National Library of Energy BETA

Sample records for national total cu

  1. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 New Hampshire - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle ...

  2. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Alaska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S2. Summary statistics for natural gas - Alaska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 269 277 185 R 159 170 Production (million cubic feet) Gross Withdrawals From Gas Wells 127,417 112,268

  3. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 District of Columbia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S9. Summary statistics for natural gas - District of Columbia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells

  4. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Indiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S16. Summary statistics for natural gas - Indiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 620 914 819 R 921 895 Production (million cubic feet) Gross Withdrawals From Gas Wells 6,802 9,075

  5. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Massachusetts - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S23. Summary statistics for natural gas - Massachusetts, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0

  6. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Nebraska - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S29. Summary statistics for natural gas - Nebraska, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 276 322 270 R 357 310 Production (million cubic feet) Gross Withdrawals From Gas Wells 2,092 1,854

  7. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    50 North Dakota - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S36. Summary statistics for natural gas - North Dakota, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 188 239 211 200 200 Production (million cubic feet) Gross Withdrawals From Gas Wells

  8. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Alabama - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S1. Summary statistics for natural gas - Alabama, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,026 7,063 6,327 R 6,165 6,118 Production (million cubic feet) Gross Withdrawals From Gas Wells

  9. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Arkansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S4. Summary statistics for natural gas - Arkansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,397 8,388 8,538 R 9,843 10,150 Production (million cubic feet) Gross Withdrawals From Gas Wells

  10. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 California - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S5. Summary statistics for natural gas - California, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 1,580 1,308 1,423 R 1,335 1,118 Production (million cubic feet) Gross Withdrawals From Gas

  11. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Colorado - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S6. Summary statistics for natural gas - Colorado, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 28,813 30,101 32,000 R 32,468 38,346 Production (million cubic feet) Gross Withdrawals From Gas

  12. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Florida - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S10. Summary statistics for natural gas - Florida, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 17,182 16,459 19,742

  13. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Georgia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S11. Summary statistics for natural gas - Georgia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells

  14. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Idaho - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S14. Summary statistics for natural gas - Idaho, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0

  15. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Illinois - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S15. Summary statistics for natural gas - Illinois, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 50 40 40 R 34 36 Production (million cubic feet) Gross Withdrawals From Gas Wells E 1,697 2,114

  16. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Iowa - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S17. Summary statistics for natural gas - Iowa, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0 0

  17. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Kansas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S18. Summary statistics for natural gas - Kansas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 22,145 25,758 24,697 R 23,792 24,354 Production (million cubic feet) Gross Withdrawals From Gas Wells

  18. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Kentucky - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S19. Summary statistics for natural gas - Kentucky, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 17,670 14,632 17,936 R 19,494 19,256 Production (million cubic feet) Gross Withdrawals From Gas

  19. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Louisiana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S20. Summary statistics for natural gas - Louisiana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 19,137 21,235 19,792 R 19,528 19,251 Production (million cubic feet) Gross Withdrawals From Gas

  20. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Maine - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S21. Summary statistics for natural gas - Maine, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 0 0 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 0 From Oil Wells 0 0

  1. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Michigan - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S24. Summary statistics for natural gas - Michigan, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 10,100 11,100 10,900 R 10,550 10,500 Production (million cubic feet) Gross Withdrawals From Gas

  2. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Mississippi - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S26. Summary statistics for natural gas - Mississippi, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 1,979 5,732 1,669 R 1,967 1,645 Production (million cubic feet) Gross Withdrawals From Gas

  3. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Missouri - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S27. Summary statistics for natural gas - Missouri, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 53 100 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 R 8 8 From

  4. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Montana - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S28. Summary statistics for natural gas - Montana, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,059 6,477 6,240 5,754 5,754 Production (million cubic feet) Gross Withdrawals From Gas Wells

  5. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Nevada - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S30. Summary statistics for natural gas - Nevada, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 0 0 0 R 4 4 Production (million cubic feet) Gross Withdrawals From Gas Wells 0 0 0 0 3 From Oil Wells

  6. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 New Mexico - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S33. Summary statistics for natural gas - New Mexico, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,748 32,302 28,206 R 27,073 27,957 Production (million cubic feet) Gross Withdrawals From

  7. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 New York - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S34. Summary statistics for natural gas - New York, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,736 6,157 7,176 R 6,902 7,119 Production (million cubic feet) Gross Withdrawals From Gas Wells

  8. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Ohio - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S37. Summary statistics for natural gas - Ohio, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 34,931 46,717 35,104 R 32,664 32,967 Production (million cubic feet) Gross Withdrawals From Gas Wells

  9. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Oklahoma - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S38. Summary statistics for natural gas - Oklahoma, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,000 41,238 40,000 39,776 40,070 Production (million cubic feet) Gross Withdrawals From Gas

  10. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Oregon - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S39. Summary statistics for natural gas - Oregon, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 26 24 27 R 26 28 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,407 1,344 770 770

  11. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Pennsylvania - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S40. Summary statistics for natural gas - Pennsylvania, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 44,500 54,347 55,136 R 53,762 70,400 Production (million cubic feet) Gross Withdrawals

  12. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Tennessee - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S44. Summary statistics for natural gas - Tennessee, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 230 210 212 R 1,089 1,024 Production (million cubic feet) Gross Withdrawals From Gas Wells 5,144

  13. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Texas - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S45. Summary statistics for natural gas - Texas, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 95,014 100,966 96,617 97,618 98,279 Production (million cubic feet) Gross Withdrawals From Gas Wells

  14. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Utah - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S46. Summary statistics for natural gas - Utah, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 6,075 6,469 6,900 R 7,030 7,275 Production (million cubic feet) Gross Withdrawals From Gas Wells 328,135

  15. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Virginia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S48. Summary statistics for natural gas - Virginia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 7,470 7,903 7,843 R 7,956 7,961 Production (million cubic feet) Gross Withdrawals From Gas Wells

  16. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    8 West Virginia - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S50. Summary statistics for natural gas - West Virginia, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 52,498 56,813 50,700 R 54,920 60,000 Production (million cubic feet) Gross Withdrawals

  17. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    -3,826 Total Supply 854,673 908,380 892,923 R 900,232 828,785 See footnotes at end of ... Gas Annual 165 Table S43. Summary statistics for natural gas - South Dakota, ...

  18. Million Cu. Feet Percent of National Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    as known volumes of natural gas that were the result of leaks, damage, accidents, migration, andor blow down. Notes: Totals may not add due to independent rounding. Prices are...

  19. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    R 196 184 Total Supply 2,627 2,619 2,689 R 2,855 2,928 See footnotes at end of table. 0 ... Gas Annual 105 Table S13. Summary statistics for natural gas - Hawaii, 2010-2014 - ...

  20. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Table S22. Summary statistics for natural gas - Maryland, 2010-2014 - continued -- Not applicable. < Percentage is less than 0.05 percent. E Estimated data. R Revised data. W ...

  1. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Table S42. Summary statistics for natural gas - South Carolina, 2010-2014 - continued * Volume is less than 500,000 cubic feet. -- Not applicable. R Revised data. W Withheld. a ...

  2. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Table S51. Summary statistics for natural gas - Wisconsin, 2010-2014 - continued -- Not applicable. R Revised data. a Pipeline and Distribution Use volumes include Line Loss, ...

  3. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    statistics for natural gas - Delaware, 2010-2014 - continued * Volume is less than 500,000 cubic feet. -- Not applicable. < Percentage is less than 0.05 percent. R Revised ...

  4. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Table S49. Summary statistics for natural gas - Washington, 2010-2014 - continued -- Not applicable. R Revised data. W Withheld. a Pipeline and Distribution Use volumes include ...

  5. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Table S25. Summary statistics for natural gas - Minnesota, 2010-2014 - continued -- Not applicable. R Revised data. W Withheld. a Pipeline and Distribution Use volumes include Line ...

  6. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Table S35. Summary statistics for natural gas - North Carolina, 2010-2014 - continued -- Not applicable. R Revised data. W Withheld. a Pipeline and Distribution Use volumes include ...

  7. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Table S7. Summary statistics for natural gas - Connecticut, 2010-2014 - continued -- Not applicable. R Revised data. a Pipeline and Distribution Use volumes include Line Loss, ...

  8. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Table S32. Summary statistics for natural gas - New Jersey, 2010-2014 - continued -- Not applicable. R Revised data. a Pipeline and Distribution Use volumes include Line Loss, ...

  9. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Table S47. Summary statistics for natural gas - Vermont, 2010-2014 - continued -- Not applicable. < Percentage is less than 0.05 percent. R Revised data. W Withheld. a Pipeline and ...

  10. Million Cu. Feet Percent of National Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Table S41. Summary statistics for natural gas - Rhode Island, 2010-2014 - continued -- Not applicable. R Revised data. W Withheld. a Pipeline and Distribution Use volumes include ...

  11. " Level: National Data and Regional Totals...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... by" "petroleum refineries, rather than purchased ... ,,"Total United States" ,"RSE Column ... 324,"Petroleum and Coal ...

  12. National Fuel Cell and Hydrogen Energy Overview: Total Energy...

    Broader source: Energy.gov (indexed) [DOE]

    Presentation by Sunita Satyapal at the Total Energy USA 2012 meeting in Houston, Texas, on November 27, 2012. National Fuel Cell and Hydrogen Energy Overview (4.73 MB) More ...

  13. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Capability to Switch Coal to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Short Tons." ,,"Coal",,,"Alternative Energy Sources(b)" ,,,,,,,,,,,"RSE" "NAICS"," ","Total","

  14. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Capability to Switch Natural Gas to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  15. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2002;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  16. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Capability to Switch Electricity to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Million Kilowatthours." ,,"Electricity Receipts",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  17. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2002; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke",,"RSE" "NAICS"," ","Total","

  18. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Capability to Switch Coal to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Short Tons." ,,"Coal",,,"Alternative Energy Sources(b)" "NAICS"," ","Total","

  19. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Capability to Switch Natural Gas to Alternative Energy Sources, 2006;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Billion Cubic Feet." ,,"Natural Gas",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  20. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006;" " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Residual Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  1. " Level: National Data and Regional Totals;"

    U.S. Energy Information Administration (EIA) Indexed Site

    8 Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; " " Level: National Data and Regional Totals;" " Row: NAICS Codes, Value of Shipments and Employment Sizes;" " Column: Energy Sources;" " Unit: Thousand Barrels." ,,"Distillate Fuel Oil",,,"Alternative Energy Sources(b)" ,,,,,,,,,,"Coal Coke" "NAICS"," ","Total","

  2. Total

    Gasoline and Diesel Fuel Update (EIA)

    Product: Total Crude Oil Liquefied Petroleum Gases PropanePropylene Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Other ...

  3. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil Liquefied Petroleum Gases PropanePropylene Normal ButaneButylene Other Liquids Oxygenates Fuel Ethanol MTBE Other Oxygenates Biomass-based Diesel Fuel ...

  4. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.9 Q Q Q Heat Pump......7.7 0.3 Q Q Steam or Hot Water System......Census Division Total West Energy Information Administration ...

  5. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.9 Q Q Q Heat Pump......6.2 3.8 2.4 Steam or Hot Water System......Census Division Total Northeast Energy Information ...

  6. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 20.6 15.1 5.5 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.4 500 to 999........................................................... 23.8 4.6 3.6 1.1 1,000 to 1,499..................................................... 20.8 2.8 2.2 0.6 1,500 to 1,999..................................................... 15.4 1.9 1.4 0.5 2,000 to 2,499..................................................... 12.2 2.3 1.7 0.5 2,500 to

  7. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.5 0.3 Q 500 to 999........................................................... 23.8 3.9 2.4 1.5 1,000 to 1,499..................................................... 20.8 4.4 3.2 1.2 1,500 to 1,999..................................................... 15.4 3.5 2.4 1.1 2,000 to 2,499..................................................... 12.2 3.2 2.1 1.1 2,500 to

  8. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.6 Q Q 500 to 999........................................................... 23.8 9.0 4.2 1.5 3.2 1,000 to 1,499..................................................... 20.8 8.6 4.7 1.5 2.5 1,500 to 1,999..................................................... 15.4 6.0 2.9 1.2 1.9 2,000 to 2,499..................................................... 12.2 4.1 2.1 0.7

  9. An In-Situ XAS Study of the Structural Changes in a CuO-CeO2/Al2O3 Catalyst during Total Oxidation of Propane

    SciTech Connect (OSTI)

    Silversmith, Geert; Poelman, Hilde; Poelman, Dirk; Gryse, Roger de; Olea, Maria; Balcaen, Veerle; Heynderickx, Philippe; Marin, Guy B.

    2007-02-02

    A CuOx-CeOx/Al2O3 catalyst was studied with in-situ transmission Cu K XAS for the total oxidation of propane as model reaction for the catalytic elimination of volatile organic compounds. The local Cu structure was determined for the catalyst as such, after pre-oxidation and after reduction with propane. The catalyst as such has a local CuO structure. No structural effect was observed upon heating in He up to 600 deg. C or after pre-oxidation at 150 deg. C. A full reduction of the Cu2+ towards metallic Cu0 occurred, when propane was fed to the catalyst. The change in local Cu structure during propane reduction was followed with a time resolution of 1 min. The {chi}(k) scans appeared as linear combinations of start and end spectra, CuO and Cu structure, respectively. However, careful examination of the XANES edge spectra indicates the presence of a small amount of additional Cu1+ species.

  10. Total................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 86.6 2,522 1,970 1,310 1,812 1,475 821 1,055 944 554 Total Floorspace (Square Feet) Fewer than 500............................. 3.2 0.9 261 336 162 Q Q Q 334 260 Q 500 to 999.................................... 23.8 9.4 670 683 320 705 666 274 811 721 363 1,000 to 1,499.............................. 20.8 15.0 1,121 1,083 622 1,129 1,052 535 1,228 1,090 676 1,500 to 1,999.............................. 15.4 14.4 1,574 1,450 945 1,628 1,327 629 1,712 1,489 808 2,000 to

  11. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    .. 111.1 24.5 1,090 902 341 872 780 441 Total Floorspace (Square Feet) Fewer than 500...................................... 3.1 2.3 403 360 165 366 348 93 500 to 999.............................................. 22.2 14.4 763 660 277 730 646 303 1,000 to 1,499........................................ 19.1 5.8 1,223 1,130 496 1,187 1,086 696 1,500 to 1,999........................................ 14.4 1.0 1,700 1,422 412 1,698 1,544 1,348 2,000 to 2,499........................................ 12.7

  12. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 1 Fewer than 500............................................ 3.2 0.4 Q 0.6 1.7 0.4 500 to 999................................................... 23.8 4.8 1.4 4.2 10.2 3.2 1,000 to 1,499............................................. 20.8 10.6 1.8 1.8 4.0 2.6 1,500 to 1,999............................................. 15.4 12.4 1.5 0.5 0.5 0.4 2,000 to 2,499............................................. 12.2 10.7 1.0 0.2 Q Q 2,500 to

  13. Total.........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Floorspace (Square Feet) Total Floorspace 2 Fewer than 500.................................................. 3.2 Q 0.8 0.9 0.8 0.5 500 to 999.......................................................... 23.8 1.5 5.4 5.5 6.1 5.3 1,000 to 1,499.................................................... 20.8 1.4 4.0 5.2 5.0 5.2 1,500 to 1,999.................................................... 15.4 1.4 3.1 3.5 3.6 3.8 2,000 to 2,499.................................................... 12.2 1.4 3.2 3.0 2.3 2.3

  14. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.9 0.5 0.9 1.0 500 to 999........................................................... 23.8 4.6 3.9 9.0 6.3 1,000 to 1,499..................................................... 20.8 2.8 4.4 8.6 5.0 1,500 to 1,999..................................................... 15.4 1.9 3.5 6.0 4.0 2,000 to 2,499..................................................... 12.2 2.3 3.2 4.1

  15. Total..........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500................................................... 3.2 0.4 Q Q 0.5 500 to 999........................................................... 23.8 2.5 1.5 2.1 3.7 1,000 to 1,499..................................................... 20.8 1.1 2.0 1.5 2.5 1,500 to 1,999..................................................... 15.4 0.5 1.2 1.2 1.9 2,000 to 2,499..................................................... 12.2 0.7 0.5 0.8 1.4

  16. Total...........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Floorspace (Square Feet) Total Floorspace 1 Fewer than 500.................................... 3.2 0.7 Q 0.3 0.3 0.7 0.6 0.3 Q 500 to 999........................................... 23.8 2.7 1.4 2.2 2.8 5.5 5.1 3.0 1.1 1,000 to 1,499..................................... 20.8 2.3 1.4 2.4 2.5 3.5 3.5 3.6 1.6 1,500 to 1,999..................................... 15.4 1.8 1.4 2.2 2.0 2.4 2.4 2.1 1.2 2,000 to 2,499..................................... 12.2 1.4 0.9

  17. Cu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cu rre n t Ge n e ratio n Lo w En e rg y Cro s s Se c tio n Me as u re m e n ts : Sc iBar an d Min iBo o NE MiniBooNE Beam ➢ 8 GeV protons on Be target ➢ <E ν > = 0.7 GeV ➢ Change horn polarity for ν, ν modes Detector ➢ 12 m diameter, 800 ton mineral oil (CH 2 ) tank ➢ 1280 inner PMTs, 240 veto PMTs ➢ Events produce prompt Cherenkov light and delayed, isotropic scintillation light ➢ A " subevent" is cluster of tank activity in time ν µ µ - e - e + π + µ + K2

  18. Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes;

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Capability to Switch Coal to Alternative Energy Sources, 2006; Level: National Data and Regional Totals; Row: NAICS Codes, Value of Shipments and Employment Sizes; Column: Energy Sources; Unit: Thousand Short Tons. NAICS Total Not Electricity Natural Distillate Residual Code(a) Subsector and Industry Consumed(c) Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil LPG Other(e) Total United States 311 Food 6,603 1,013 5,373 27 981 303 93 271 86 3112 Grain and Oilseed Milling 5,099 658 4,323

  19. Arizona - Natural Gas 2014 Million Cu. Feet Percent of

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Arizona - Natural Gas 2014 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S3. Summary statistics for natural gas - Arizona, 2010-2014 2010 2011 2012 2013 2014 Number of Producing Gas Wells at End of Year 5 5 5 5 5 Production (million cubic feet) Gross Withdrawals From Gas Wells 183 168 117 72 106 From

  20. National Fuel Cell and Hydrogen Energy Overview: Total Energy USA 2012

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation by Sunita Satyapal at the Total Energy USA 2012 meeting in Houston, Texas, on November 27, 2012.

  1. Total Particulate Matter Air Sampling Data (TEOM) from Los Alamos National Laboratory

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    LANL measures the total particulate mass concentration in the air on a routine basis as well as during incidents that may affect ambient air. The collected data is added to the Air Quality Index (AQI). AQI is an index for reporting daily air quality. It tells you how clean or polluted your air is, and what associated health effects might be a concern for you. The AQI focuses on health effects you may experience within a few hours or days after breathing polluted air. EPA calculates the AQI for five major air pollutants regulated by the Clean Air Act.

  2. Simulation information regarding Sandia National Laboratories%3CU%2B2019%3E trinity capability improvement metric.

    SciTech Connect (OSTI)

    Agelastos, Anthony Michael; Lin, Paul T.

    2013-10-01

    Sandia National Laboratories, Los Alamos National Laboratory, and Lawrence Livermore National Laboratory each selected a representative simulation code to be used as a performance benchmark for the Trinity Capability Improvement Metric. Sandia selected SIERRA Low Mach Module: Nalu, which is a uid dynamics code that solves many variable-density, acoustically incompressible problems of interest spanning from laminar to turbulent ow regimes, since it is fairly representative of implicit codes that have been developed under ASC. The simulations for this metric were performed on the Cielo Cray XE6 platform during dedicated application time and the chosen case utilized 131,072 Cielo cores to perform a canonical turbulent open jet simulation within an approximately 9-billion-elementunstructured- hexahedral computational mesh. This report will document some of the results from these simulations as well as provide instructions to perform these simulations for comparison.

  3. Total Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Imports - Total Imports - Crude Oil Imports - Crude Oil, Commercial Imports - by SPR Imports - into SPR by Others Imports - Total Products Imports - Total Motor Gasoline Imports - Finished Motor Gasoline Imports - Reformulated Gasoline Imports - Reformulated Gasoline Blended w/ Fuel Ethanol Imports - Other Reformulated Gasoline Imports - Conventional Gasoline Imports - Conv. Gasoline Blended w/ Fuel Ethanol Imports - Conv. Gasoline Blended w/ Fuel Ethanol, Ed55 & < Imports -

  4. Country Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Country Total Percent of U.S. total Canada 61,078 1% China 3,323,297 57% Germany 154,800 3% Japan 12,593 0% India 47,192 1% South Korea 251,105 4% All Others 2,008,612 34% Total 5,858,677 100% Table 7 . Photovoltaic module import shipments by country, 2014 (peak kilowatts) Note: All Others includes Cambodia, Czech Republic, Hong Kong, Malaysia, Mexico, Netherlands, Philippines, Singapore, Taiwan and Turkey Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic

  5. State Total

    U.S. Energy Information Administration (EIA) Indexed Site

    State Total Percent of U.S. total Alabama 482 0.0% Alaska 81 0.0% Arizona 194,476 3.3% Arkansas 336 0.0% California 3,163,120 53.0% Colorado 47,240 0.8% Connecticut 50,745 0.9% Delaware 6,600 0.1% District of Columbia 751 0.0% Florida 18,593 0.3% Georgia 47,660 0.8% Hawaii 78,329 1.3% Illinois 5,795 0.1% Indiana 37,016 0.6% Iowa 14,281 0.2% Kansas 1,809 0.0% Kentucky 520 0.0% Louisiana 12,147 0.2% Maine 1,296 0.0% Maryland 63,077 1.1% Massachusetts 157,415 2.6% Michigan 4,210 0.1% Minnesota

  6. " Level: National Data and Regional Totals...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... office offsite, and quantities for which payment" "is made in-kind." " Source: Energy ... by a central purchasing office offsite, and quantities for which payment" "is made in-kind

  7. " Level: National Data and Regional Totals...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... for which" "payment was not made, quantities purchased centrally within the company but separate" "from the reporting establishment, and quantities for which payment was made ...

  8. FY 2011 Los Alamos National Security, LLC, PER Summary | National...

    National Nuclear Security Administration (NNSA)

    FY 2011 Los Alamos National Security, LLC, PER Summary SUMMARY OF FY 2011 LOS ALAMOS NATIONAL SECURITY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % ...

  9. FY 2007 Los Alamos National Security, LLC, PER Summary | National...

    National Nuclear Security Administration (NNSA)

    FY 2007 Los Alamos National Security, LLC, PER Summary SUMMARY OF FY 2007 LOS ALAMOS NATIONAL SECURITY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % ...

  10. FY 2011 National Security Technologies, LLC, PER Summary | National...

    National Nuclear Security Administration (NNSA)

    FY 2011 National Security Technologies, LLC, PER Summary SUMMARY OF FY 2011 NATIONAL SECURITY TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % ...

  11. FY 2009 National Security Technologies, LLC, PER Summary | National...

    National Nuclear Security Administration (NNSA)

    FY 2009 National Security Technologies, LLC, PER Summary SUMMARY OF FY 2009 NATIONAL SECURITY TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % ...

  12. FY 2008 National Security Technologies, LLC, PER Summary | National...

    National Nuclear Security Administration (NNSA)

    FY 2008 National Security Technologies, LLC, PER Summary SUMMARY OF FY 2008 NATIONAL SECURITY TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % ...

  13. FY 2009 Los Alamos National Security, LLC, PER Summary | National...

    National Nuclear Security Administration (NNSA)

    FY 2009 Los Alamos National Security, LLC, PER Summary SUMMARY OF FY 2009 LOS ALAMOS NATIONAL SECURITY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % ...

  14. FY 2006 National Security Technologies, LLC, PER Summary | National...

    National Nuclear Security Administration (NNSA)

    FY 2006 National Security Technologies, LLC, PER Summary SUMMARY OF FY 2006 NATIONAL SECURITY TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % ...

  15. FY 2008 Los Alamos National Security, LLC, PER Summary | National...

    National Nuclear Security Administration (NNSA)

    FY 2008 Los Alamos National Security, LLC, PER Summary SUMMARY OF FY 2008 LOS ALAMOS NATIONAL SECURITY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % ...

  16. FY 2010 National Security Technologies, LLC, PER Summary | National...

    National Nuclear Security Administration (NNSA)

    FY 2010 National Security Technologies, LLC, PER Summary SUMMARY OF FY 2010 NATIONAL SECURITY TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % ...

  17. FY 2007 National Security Technologies, LLC, PER Summary | National...

    National Nuclear Security Administration (NNSA)

    FY 2007 National Security Technologies, LLC, PER Summary SUMMARY OF FY 2007 NATIONAL SECURITY TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % ...

  18. FY 2010 Los Alamos National Security, LLC, PER Summary | National...

    National Nuclear Security Administration (NNSA)

    FY 2010 Los Alamos National Security, LLC, PER Summary SUMMARY OF FY 2011 LOS ALAMOS NATIONAL SECURITY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % ...

  19. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    76 Females Male Female Male Female Male Female Male Female Male Female 27 24 86 134 65 24 192 171 1189 423 PAY PLAN SES 96 EX 4 EJ/EK 60 EN 05 39 EN 04 159 EN 03 21 EN 00 8 NN (Engineering) 398 NQ (Prof/Tech/Admin) 1165 NU (Tech/Admin Support) 54 NV (Nuc Mat Courier) 325 GS 15 3 GS 14 1 GS 13 1 GS 10 1 Total includes 2318 permanent and 17 temporary employees. DIVERSITY 2335 1559 66.8% American Indian Alaska Native African American Asian American Pacific Islander Hispanic White 33.2% National

  20. Barge Truck Total

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Barge Truck Total delivered cost per short ton Shipments with transportation rates over total shipments Total delivered cost per short ton Shipments with transportation rates over...

  1. Thermochemical process for recovering Cu from CuO or CuO.sub.2

    DOE Patents [OSTI]

    Richardson, deceased, Donald M.; Bamberger, Carlos E.

    1981-01-01

    A process for producing hydrogen comprises the step of reacting metallic Cu with Ba(OH).sub.2 in the presence of steam to produce hydrogen and BaCu.sub.2 O.sub.2. The BaCu.sub.2 O.sub.2 is reacted with H.sub.2 O to form Cu.sub.2 O and a Ba(OH).sub.2 product for recycle to the initial reaction step. Cu can be obtained from the Cu.sub.2 O product by several methods. In one embodiment the Cu.sub.2 O is reacted with HF solution to provide CuF.sub.2 and Cu. The CuF.sub.2 is reacted with H.sub.2 O to provide CuO and HF. CuO is decomposed to Cu.sub.2 O and O.sub.2. The HF, Cu and Cu.sub.2 O are recycled. In another embodiment the Cu.sub.2 O is reacted with aqueous H.sub.2 SO.sub.4 solution to provide CuSO.sub.4 solution and Cu. The CuSO.sub.4 is decomposed to CuO and SO.sub.3. The CuO is decomposed to form Cu.sub.2 O and O.sub.2. The SO.sub.3 is dissolved to form H.sub.2 SO.sub.4. H.sub.2 SO.sub.4, Cu and Cu.sub.2 O are recycled. In another embodiment Cu.sub.2 O is decomposed electrolytically to Cu and O.sub.2. In another aspect of the invention, Cu is recovered from CuO by the steps of decomposing CuO to Cu.sub.2 O and O.sub.2, reacting the Cu.sub.2 O with aqueous HF solution to produce Cu and CuF.sub.2, reacting the CuF.sub.2 with H.sub.2 O to form CuO and HF, and recycling the CuO and HF to previous reaction steps.

  2. Broken Symmetry in the Pseudogap State of YBa2Cu3O6+x (Technical...

    Office of Scientific and Technical Information (OSTI)

    Title: Broken Symmetry in the Pseudogap State of YBa2Cu3O6+x Authors: Ramshaw, Brad 1 + Show Author Affiliations Los Alamos National Laboratory Los Alamos National Laboratory ...

  3. NATIONAL SECURITY TECHNOLOGIES - NEVADA NATIONAL SECURITY SITE

    National Nuclear Security Administration (NNSA)

    - NEVADA NATIONAL SECURITY SITE FISCAL YEARS 2009 THRU 2015 SMALL BUSINESS PROGRAM RESULTS & FORECAST CATEGORY Total Procurement Total SB Small Disad. Bus Woman-Owned SB Hub-Zone ...

  4. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  5. Effects of annealing on antiwear and antibacteria behaviors of TaN-Cu nanocomposite thin films

    SciTech Connect (OSTI)

    Hsieh, J. H.; Cheng, M. K.; Chang, Y. K.; Li, C.; Chang, C. L.; Liu, P. C.

    2008-07-15

    TaN-Cu nanocomposite films were deposited by reactive cosputtering on Si and tool steel substrates. The films were then annealed using rapid thermal annealing (RTA) at 400 deg. C for 2, 4, and 8 min, respectively, to induce the nucleation and growth of Cu particles in TaN matrix and on film surface. Field emission scanning electron microscopy was applied to characterize Cu nanoparticles emerged on the surface of TaN-Cu thin films. The effects of annealing on the antiwear and antibacterial properties of these films were studied. The results reveal that annealing by RTA can cause Cu nanoparticles to form on the TaN surface. Consequently, the tribological behaviors, as well as the antibacterial behavior may vary depending on particle size, particle distribution, and total exposed Cu amount. For the samples with large Cu particles, the reduction of averaged friction and wear rate is obvious. Apparently, it is due to the smeared Cu particles adhered onto the wear tracks. This Cu layer may act as a solid lubricant. From the antibacterial testing results, it is found that both Cu particle size and total exposed Cu amount are critical in making short-term antibacterial effect. Overall, all the annealed TaN-Cu samples can reach >99% antibacterial efficiency in 24 h, with respect to uncoated Si substrate.

  6. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    . Fuel Oil Expenditures by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per...

  7. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  8. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Expenditures by Census Region, 1999" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per Square Foot"...

  9. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  10. ,"Total Fuel Oil Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Expenditures by Census Region for All Buildings, 2003" ,"Total Fuel Oil Expenditures (million dollars)",,,,"Fuel Oil Expenditures (dollars)" ,,,,,"per Gallon",,,,"per...

  11. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  12. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  13. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  14. Parallel Total Energy

    Energy Science and Technology Software Center (OSTI)

    2004-10-21

    This is a total energy electronic structure code using Local Density Approximation (LDA) of the density funtional theory. It uses the plane wave as the wave function basis set. It can sue both the norm conserving pseudopotentials and the ultra soft pseudopotentials. It can relax the atomic positions according to the total energy. It is a parallel code using MP1.

  15. U.S. Total Exports

    Gasoline and Diesel Fuel Update (EIA)

    Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt ... Sabine Pass, LA Total to Russia Total to South Korea Freeport, TX Sabine Pass, LA Total ...

  16. Modified Ni-Cu catalysts for ethanol steam reforming

    SciTech Connect (OSTI)

    Dan, M.; Mihet, M.; Almasan, V.; Borodi, G.; Katona, G.; Muresan, L.; Lazar, M. D.

    2013-11-13

    Three Ni-Cu catalysts, having different Cu content, supported on γ-alumina were synthesized by wet co-impregnation method, characterized and tested in the ethanol steam reforming (ESR) reaction. The catalysts were characterized for determination of: total surface area and porosity (N{sub 2} adsorption - desorption using BET and Dollimer Heal methods), Ni surface area (hydrogen chemisorption), crystallinity and Ni crystallites size (X-Ray Diffraction), type of catalytic active centers (Hydrogen Temperature Programmed Reduction). Total surface area and Ni crystallites size are not significantly influenced by the addition of Cu, while Ni surface area is drastically diminished by increasing of Cu concentration. Steam reforming experiments were performed at atmospheric pressure, temperature range 150-350°C, and ethanol - water molar ration of 1 at 30, using Ar as carrier gas. Ethanol conversion and hydrogen production increase by the addition of Cu. At 350°C there is a direct connection between hydrogen production and Cu concentration. Catalysts deactivation in 24h time on stream was studied by Transmission Electron Microscopy (TEM) and temperature-programmed reduction (TPR) on used catalysts. Coke deposition was observed at all studied temperatures; at 150°C amorphous carbon was evidenced, while at 350°C crystalline, filamentous carbon is formed.

  17. Summary Max Total Units

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Summary Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water

  18. Progress in obtaining an absolute calibration of a total deuterium-tritium neutron yield diagnostic based on copper activation

    SciTech Connect (OSTI)

    Ruiz, C. L.; Chandler, G. A.; Fehl, D. L.; Hahn, K. D.; Leeper, R. J.; McWatters, B. R.; Smelser, R. M.; Snow, C. S.; Torres, J. A. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Cooper, G. W.; Nelson, A. J. [Chemical and Nuclear Engineering Department, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2012-10-15

    The 350-keV Cockroft-Walton accelerator at Sandia National laboratory's Ion Beam facility is being used to calibrate absolutely a total DT neutron yield diagnostic based on the {sup 63}Cu(n,2n){sup 62}Cu({beta}+) reaction. These investigations have led to first-order uncertainties approaching 5% or better. The experiments employ the associated-particle technique. Deuterons at 175 keV impinge a 2.6 {mu}m thick erbium tritide target producing 14.1 MeV neutrons from the T(d,n){sup 4}He reaction. The alpha particles emitted are measured at two angles relative to the beam direction and used to infer the neutron flux on a copper sample. The induced {sup 62}Cu activity is then measured and related to the neutron flux. This method is known as the F-factor technique. Description of the associated-particle method, copper sample geometries employed, and the present estimates of the uncertainties to the F-factor obtained are given.

  19. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  20. ARM - Measurement - Total carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total carbon The total concentration of carbon in all its organic and non-organic forms. Categories Atmospheric Carbon, Aerosols Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  1. $787 Million Total in Small Business Contract Funding Awarded...

    National Nuclear Security Administration (NNSA)

    787 Million Total in Small Business Contract Funding Awarded in FY2009 by DOE Programs in Oak Ridge | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS...

  2. Hydrodynamic evolution and jet energy loss in Cu + Cu collisions

    SciTech Connect (OSTI)

    Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2011-04-15

    We present results from a hybrid description of Cu + Cu collisions using (3 + 1)-dimensional hydrodynamics (music) for the bulk evolution and a Monte Carlo simulation (martini) for the evolution of high-momentum partons in the hydrodynamical background. We explore the limits of this description by going to small system sizes and determine the dependence on different fractions of wounded nucleon and binary collisions scaling of the initial energy density. We find that Cu + Cu collisions are well described by the hybrid description at least up to 20% central collisions.

  3. Cu 2 S 3 complex on Cu(111) as a candidate for mass transport...

    Office of Scientific and Technical Information (OSTI)

    Cu 2 S 3 complex on Cu(111) as a candidate for mass transport enhancement Citation Details In-Document Search Title: Cu 2 S 3 complex on Cu(111) as a candidate for mass transport ...

  4. Total DOE/NNSA

    National Nuclear Security Administration (NNSA)

    8 Actuals 2009 Actuals 2010 Actuals 2011 Actuals 2012 Actuals 2013 Actuals 2014 Actuals 2015 Actuals Total DOE/NNSA 4,385 4,151 4,240 4,862 5,154 5,476 7,170 7,593 Total non-NNSA 3,925 4,017 4,005 3,821 3,875 3,974 3,826 3765 Total Facility 8,310 8,168 8,245 8,683 9,029 9,450 10,996 11,358 non-NNSA includes DOE offices and Strategic Parternship Projects (SPP) employees NNSA M&O Employee Reporting

  5. cu | OpenEI Community

    Open Energy Info (EERE)

    ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer...

  6. New Resolved Resonance Region Evaluation for 63Cu and 65Cu for Nuclear Criticality Safety Program

    SciTech Connect (OSTI)

    Sobes, Vladimir; Leal, Luiz C; Guber, Klaus H; Forget, Benoit; Kopecky, S.; Schillebeeckx, P.; Siegler, P.

    2014-01-01

    A new resolved resonance region evaluation of 63Cu and 65Cu was done in the energy region from 10-5 eV to 99.5 keV. The R-Matrix SAMMY method using the Reich-Moore approximation was used to create a new set of consistent resonance parameters. The new evaluation was based on three experimental transmission data sets; two measured at ORELA and one from MITR, and two radiative capture experimental data sets from GELINA. A total of 141 new resonances were identied for 63Cu and 117 for 65Cu. The corresponding set of external resonances for each isotope was based on the identied resonances above 99.5 keV from the ORELA transmission data. The negative external levels (bound levels) were determined to match the dierential thermal cross section measured at the MITR. Double dierential elastic scattering cross sections were calculated from the new set of resonance parameters. Benchmarking calculations were carried out on a set of ICSBEP benchmarks. This work is in support of the DOE Nuclear Criticality Safety Program.

  7. National User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National User Facilities Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Berkeley Lab's User Facilities-Engines of Discovery Berkeley Lab's User Facilities provide state-of-the-art resources for scientists across the nation and around the world. About 10,000 researchers a year use these facilities, representing nearly one third of the total for all Department of Energy

  8. FY 2010 Lawrence Livermore National Security, LLC, PER Summary...

    National Nuclear Security Administration (NNSA)

    FY 2010 Lawrence Livermore National Security, LLC, PER Summary SUMMARY OF FY 2010 LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee ...

  9. FY 2008 Lawrence Livermore National Security, LLC, PER Summary...

    National Nuclear Security Administration (NNSA)

    FY 2008 Lawrence Livermore National Security, LLC, PER Summary SUMMARY OF FY 2008 LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee ...

  10. FY 2009 Lawrence Livermore National Security, LLC, PER Summary...

    National Nuclear Security Administration (NNSA)

    FY 2009 Lawrence Livermore National Security, LLC, PER Summary SUMMARY OF FY 2009 LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee ...

  11. FY 2011 Lawrence Livermore National Security, LLC, PER Summary...

    National Nuclear Security Administration (NNSA)

    FY 2011 Lawrence Livermore National Security, LLC, PER Summary SUMMARY OF FY 2011 LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee ...

  12. Study of Cu and Pb partitioning in mine tailings using the Tessier sequential extraction scheme

    SciTech Connect (OSTI)

    Andrei, Mariana Lucia; Senila, Marin; Hoaghia, Maria Alexandra; Levei, Erika-Andrea; Borodi, Gheorghe

    2015-12-23

    The Cu and Pb partitioning in nonferrous mine tailings was investigated using the Tessier sequential extraction scheme. The contents of Cu and Pb found in the five operationally defined fractions were determined by inductively coupled plasma optical emission spectrometry. The results showed different partitioning patterns for Cu and Pb in the studied tailings. The total Cu and Pb contents were higher in tailings from Brazesti than in those from Saliste, while the Cu contents in the first two fractions considered as mobile were comparable and the content of mobile Pb was the highest in Brazesti tailings. In the tailings from Saliste about 30% of Cu and 3% of Pb were found in exchangeable fraction, while in those from Brazesti no metals were found in the exchangeable fraction, but the percent of Cu and Pb found in the bound to carbonate fraction were high (20% and 26%, respectively). The highest Pb content was found in the residual fraction in Saliste tailings and in bound to Fe and Mn oxides fraction in Brazesti tailings, while the highest Cu content was found in the fraction bound to organic matter in Saliste tailings and in the residual fraction in Brazesti tailings. In case of tailings of Brazesti medium environmental risk was found both for Pb and Cu, while in case of Saliste tailings low risk for Pb and high risk for Cu were found.

  13. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    83 Females Male Female Male Female Male Female Male Female Male Female 25 25 89 134 67 27 202 171 1198 426 PAY PLAN SES 94 EX 3 EJ/EK 52 EN 05 42 EN 04 173 EN 03 42 EN 00 23 NN (Engineering) 395 NQ (Prof/Tech/Admin) 1157 NU (Tech/Admin Support) 51 NV (Nuc Mat Courier) 327 GS 15 2 GS 14 1 ED 00 2 White 33.1% National Nuclear Security Administration As of September 5, 2015 DIVERSITY 2364 1581 66.9% American Indian Alaska Native African American Asian American Pacific Islander Hispanic SES EX EJ/EK

  14. Science DMZ Implemented at CU Boulder

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CU Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ @ UF Science DMZ @ CU ...

  15. TOTAL WORKFORCE Males

    National Nuclear Security Administration (NNSA)

    3 Females Male Female Male Female Male Female Male Female Male Female 0 1 1 4 1 0 0 4 10 4 PAY PLAN SES 7 EX 2 EJ/EK 1 EN 05 1 EN 04 2 EN 00 1 NQ (Prof/Tech/Admin) 10 NU (Tech/Admin Support) 1 National Nuclear Security Administration (NA-1) As of March 21, 2015 DIVERSITY 25 12 48.0% American Indian Alaska Native African American Asian American Pacific Islander Hispanic White 52.0% SES EX EJ/EK EN 05 EN 04 EN 00 NQ NU 28.0% 8.0% 4.0% 4.0% 8.0% 4.0% 40.0% 4.0% 0.0% 4.0% 4.0% 16.0% 4.0% 0.0% 0.0%

  16. FY 2012 Lawrence Livermore National Security, LLC, PER Summary | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Lawrence Livermore National Security, LLC, PER Summary SUMMARY OF FY 2012 LAWRENCE LIVERMORE NATIONAL SECURITY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % $50,506,024 $44,555,181 88% Lawrence Livermore National Security, LLC, the management and operating contractor for the Lawrence Livermore National Laboratory, earned a Very Good rating in Programs and Operations, a Good rating in Institutional Management and Business, and 88

  17. FY 2012 National Security Technologies, LLC, PER Summary | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) National Security Technologies, LLC, PER Summary SUMMARY OF FY 2012 NATIONAL SECURITY TECHNOLOGIES, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % $29,855,764 $28,020,923 93.85% National Security Technologies, LLC, the management and operating contractor for the Nevada National Security Site, earned an "Excellent" rating in Program, a "Very Good" in Operations and Institutional and Business Management, and 93.85

  18. National Clean Energy Business Plan Competition: Living Ink Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wins CU Clean Energy Competition Regional Championship | Department of Energy Living Ink Technologies Wins CU Clean Energy Competition Regional Championship National Clean Energy Business Plan Competition: Living Ink Technologies Wins CU Clean Energy Competition Regional Championship May 4, 2015 - 2:51pm Addthis Living Ink Technologies has developed a patent-pending technology that uses algae to transform carbon dioxide into ink that is cheaper, healthier, and more environmentally

  19. A brief history of Sandia National Laboratories and the Department of Energy%3CU%2B2019%3Es Office of Science : interplay between science, technology, and mission.

    SciTech Connect (OSTI)

    Tsao, Jeffrey Yeenien; Myers, Samuel Maxwell, Jr.; Simmons, Jerry Alvon; McIlroy, Andrew; Vook, Frederick L.; Collis, Samuel Scott; Picraux, Samuel Thomas

    2011-08-01

    In 1957, Sandia National Laboratories (Sandia) initiated its first programs in fundamental science, in support of its primary nuclear weapons mission. In 1974, Sandia initiated programs in fundamental science supported by the Department of Energy's Office of Science (DOE-SC). These latter programs have grown to the point where, today in 2011, support of Sandia's programs in fundamental science is dominated by that Office. In comparison with Sandia's programs in technology and mission applications, however, Sandia's programs in fundamental science are small. Hence, Sandia's fundamental science has been strongly influenced by close interactions with technology and mission applications. In many instances, these interactions have been of great mutual benefit, with synergies akin to a positive 'Casimir's spiral' of progress. In this report, we review the history of Sandia's fundamental science programs supported by the Office of Science. We present: (a) a technical and budgetary snapshot of Sandia's current programs supported by the various suboffices within DOE-SC; (b) statistics of highly-cited articles supported by DOE-SC; (c) four case studies (ion-solid interactions, combustion science, compound semiconductors, advanced computing) with an emphasis on mutually beneficial interactions between science, technology, and mission; and (d) appendices with key memos and reminiscences related to fundamental science at Sandia.

  20. Surface segregation as a means of gettering Cu in liquid-phase-epitaxy silicon thin layers grown from Al-Cu-Si solutions

    SciTech Connect (OSTI)

    Wang, T.H.; Ciszek, T.F.; Reedy, R.; Asher, S.; King, D.

    1996-05-01

    The authors demonstrate that, by using the natural surface segregation phenomenon, Cu can be gettered to the surface from the bulk of silicon layers so that its concentrations in the liquid-phase-epitaxy (LPE) layers are much lower than its solubility at the layer growth temperature and the reported 10{sup 17} cm{sup {minus}3} degradation threshold for solar-cell performance. Secondary-ion mass spectroscopy (SIMS) analysis indicates that, within a micron-deep sub-surface region, Cu accumulates even in as-grown LPE samples. Slower cooling after growth to room temperature enhances this Cu enrichment. X-ray photoelectron spectroscopy (XPS) measurement shows as much as 3.2% Cu in a surface region of about 50 {Angstrom}. More surface-sensitive, ion-scattering spectroscopy (ISS) analysis further reveals about 7% of Cu at the top surface. These results translate to an areal gettering capacity of about 1.0 x 10{sup 16} cm{sup {minus}2}, which is higher than the available total-area density of Cu in the layer and substrate (3.6 x 10{sup 15} cm{sup {minus}2} for a uniform 1.2 x 10{sup 17}cm{sup {minus}3} Cu throughout the layer and substrate with a total thickness of 300 {mu}m).

  1. Total quality management program planning

    SciTech Connect (OSTI)

    Thornton, P.T.; Spence, K.

    1994-05-01

    As government funding grows scarce, competition between the national laboratories is increasing dramatically. In this era of tougher competition, there is no for resistance to change. There must instead be a uniform commitment to improving the overall quality of our products (research and technology) and an increased focus on our customers` needs. There has been an ongoing effort to bring the principles of total quality management (TQM) to all Energy Systems employees to help them better prepare for future changes while responding to the pressures on federal budgets. The need exists for instituting a vigorous program of education and training to an understanding of the techniques needed to improve and initiate a change in organizational culture. The TQM facilitator is responsible for educating the work force on the benefits of self-managed work teams, designing a program of instruction for implementation, and thus getting TQM off the ground at the worker and first-line supervisory levels so that the benefits can flow back up. This program plan presents a conceptual model for TQM in the form of a hot air balloon. In this model, there are numerous factors which can individually and collectively impede the progress of TQM within the division and the Laboratory. When these factors are addressed and corrected, the benefits of TQM become more visible. As this occurs, it is hoped that workers and management alike will grasp the ``total quality`` concept as an acceptable agent for change and continual improvement. TQM can then rise to the occasion and take its rightful place as an integral and valid step in the Laboratory`s formula for survival.

  2. Level: National Data and Regional Totals; Row: NAICS Codes, Value...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Receipts(c) Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(d) ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ...

  3. Level: National Data and Regional Totals; Row: NAICS Codes, Value...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Switchable Switchable Receipts(d) Gas Fuel Oil Fuel Oil Coal Breeze Other(e) LPG ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ...

  4. Level: National Data and Regional Totals; Row: NAICS Codes, Value...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... have been consumed in place of residual fuel oil. (f) Value of Shipments and Receipts ... Notes: To obtain the RSE percentage for any table cell, multiply the cell's corresponding ...

  5. Level: National Data and Regional Totals; Row: NAICS Codes, Value...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... for which payment was made, quantities transferred in, quantities purchased and paid for by a central purchasing entity, and quantities for which payment was made in kind. ...

  6. Level: National Data and Regional Totals; Row: NAICS Codes, Value...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... It includes those quantities for which payment was made, quantities transferred in, ... Energy Sources(b) purchasing entity, and quantities for which payment was made in kind. ...

  7. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  8. sandia national labs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    sandia national labs

  9. Brookhaven National Laboratory | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Brookhaven National Laboratory

  10. Property:NEPA CU Document | Open Energy Information

    Open Energy Info (EERE)

    CU Document Jump to: navigation, search Property Name NEPA CU Document Property Type Page Description CU files for NEPA Docs. Typically Casual Use Documentation consists of a...

  11. U.S. Total Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Barbados Total To Brazil Freeport, TX Sabine Pass, LA Total to Canada Eastport, ID Calais, ME Detroit, MI Marysville, MI Port Huron, MI Crosby, ND Portal, ND Sault St. Marie, MI St. Clair, MI Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Morgan, MT Sherwood, ND Pittsburg, NH Buffalo, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Sweetgrass, MT Total to Chile Sabine Pass, LA Total to China Kenai, AK Sabine Pass, LA Total to Egypt Freeport, TX Total to India

  12. Total Eolica | Open Energy Information

    Open Energy Info (EERE)

    Eolica Jump to: navigation, search Name: Total Eolica Place: Spain Product: Project developer References: Total Eolica1 This article is a stub. You can help OpenEI by expanding...

  13. Total..............................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 86.6 2,720 1,970 1,310 1,941 1,475 821 1,059 944 554 Census Region and Division Northeast.................................... 20.6 13.9 3,224 2,173 836 2,219 1,619 583 903 830 Q New England.......................... 5.5 3.6 3,365 2,154 313 2,634 1,826 Q 951 940 Q Middle Atlantic........................ 15.1 10.3 3,167 2,181 1,049 2,188 1,603 582 Q Q Q Midwest...................................... 25.6 21.0 2,823 2,239 1,624 2,356 1,669 1,336 1,081 961 778 East North

  14. Total............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

  15. Total..............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ,171 1,618 1,031 845 630 401 Census Region and Division Northeast................................................... 20.6 2,334 1,664 562 911 649 220 New England.......................................... 5.5 2,472 1,680 265 1,057 719 113 Middle Atlantic........................................ 15.1 2,284 1,658 670 864 627 254 Midwest...................................................... 25.6 2,421 1,927 1,360 981 781 551 East North Central.................................. 17.7 2,483 1,926 1,269

  16. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    20.6 25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer ........... 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer......................... 75.6 13.7 17.5 26.6 17.8 Number of Desktop PCs 1.......................................................... 50.3 9.3 11.9 18.2 11.0 2.......................................................... 16.2 2.9 3.5 5.5 4.4 3 or More............................................. 9.0 1.5 2.1 2.9 2.5 Number of Laptop PCs

  17. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Personal Computers Do Not Use a Personal Computer ........... 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer......................... 75.6 26.6 14.5 4.1 7.9 Number of Desktop PCs 1.......................................................... 50.3 18.2 10.0 2.9 5.3 2.......................................................... 16.2 5.5 3.0 0.7 1.8 3 or More............................................. 9.0 2.9 1.5 0.5 0.8 Number of Laptop PCs

  18. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    26.7 28.8 20.6 13.1 22.0 16.6 38.6 Personal Computers Do Not Use a Personal Computer ........... 35.5 17.1 10.8 4.2 1.8 1.6 10.3 20.6 Use a Personal Computer......................... 75.6 9.6 18.0 16.4 11.3 20.3 6.4 17.9 Number of Desktop PCs 1.......................................................... 50.3 8.3 14.2 11.4 7.2 9.2 5.3 14.2 2.......................................................... 16.2 0.9 2.6 3.7 2.9 6.2 0.8 2.6 3 or More............................................. 9.0 0.4 1.2

  19. Total...............................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer ........... 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer......................... 75.6 30.3 12.5 18.1 14.7 Number of Desktop PCs 1.......................................................... 50.3 21.1 8.3 10.7 10.1 2.......................................................... 16.2 6.2 2.8 4.1 3.0 3 or More............................................. 9.0 2.9 1.4 3.2 1.6 Number of Laptop PCs

  20. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    49.2 15.1 15.6 11.1 7.0 5.2 8.0 Have Cooling Equipment............................... 93.3 31.3 15.1 15.6 11.1 7.0 5.2 8.0 Use Cooling Equipment................................ 91.4 30.4 14.6 15.4 11.1 6.9 5.2 7.9 Have Equipment But Do Not Use it............... 1.9 1.0 0.5 Q Q Q Q Q Do Not Have Cooling Equipment................... 17.8 17.8 N N N N N N Air-Conditioning Equipment 1, 2 Central System............................................. 65.9 3.9 15.1 15.6 11.1 7.0 5.2 8.0 Without a Heat

  1. Total.................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Space Heating Equipment........ 1.2 N Q Q 0.2 0.4 0.2 0.2 Q Have Main Space Heating Equipment........... 109.8 14.7 7.4 12.4 12.2 18.5 18.3 17.1 9.2 Use Main Space Heating Equipment............. 109.1 14.6 7.3 12.4 12.2 18.2 18.2 17.1 9.1 Have Equipment But Do Not Use It............... 0.8 Q Q Q Q 0.3 Q N Q Main Heating Fuel and Equipment Natural Gas................................................... 58.2 9.2 4.9 7.8 7.1 8.8 8.4 7.8 4.2 Central

  2. Total..................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    . 111.1 14.7 7.4 12.5 12.5 18.9 18.6 17.3 9.2 Do Not Have Cooling Equipment..................... 17.8 3.9 1.8 2.2 2.1 3.1 2.6 1.7 0.4 Have Cooling Equipment................................. 93.3 10.8 5.6 10.3 10.4 15.8 16.0 15.6 8.8 Use Cooling Equipment.................................. 91.4 10.6 5.5 10.3 10.3 15.3 15.7 15.3 8.6 Have Equipment But Do Not Use it................. 1.9 Q Q Q Q 0.6 0.4 0.3 Q Type of Air-Conditioning Equipment 1, 2 Central

  3. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    15.2 7.8 1.0 1.2 3.3 1.9 For Two Housing Units............................. 0.9 Q N Q 0.6 N Heat Pump.................................................. 9.2 7.4 0.3 Q 0.7 0.5 Portable Electric Heater............................... 1.6 0.8 Q Q Q 0.3 Other Equipment......................................... 1.9 0.7 Q Q 0.7 Q Fuel Oil........................................................... 7.7 5.5 0.4 0.8 0.9 0.2 Steam or Hot Water System........................ 4.7 2.9 Q 0.7 0.8 N For One Housing

  4. Total...................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Air-Conditioning Equipment 1, 2 Central System............................................... 65.9 47.5 4.0 2.8 7.9 3.7 Without a Heat Pump.................................. 53.5 37.8 3.4 2.2 7.0 3.1 With a Heat Pump....................................... 12.3 9.7 0.6 0.5 1.0 0.6 Window/Wall Units.......................................... 28.9 14.9 2.3 3.5 6.0 2.1 1 Unit........................................................... 14.5 6.6 1.0 1.6 4.2 1.2 2

  5. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.9 5.3 1.6 Use a Personal Computer................................ 75.6 13.7 9.8 3.9 Number of Desktop PCs 1.................................................................. 50.3 9.3 6.8 2.5 2.................................................................. 16.2 2.9 1.9 1.0 3 or More..................................................... 9.0 1.5 1.1 0.4 Number of Laptop PCs

  6. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer ................... 35.5 8.1 5.6 2.5 Use a Personal Computer................................ 75.6 17.5 12.1 5.4 Number of Desktop PCs 1.................................................................. 50.3 11.9 8.4 3.4 2.................................................................. 16.2 3.5 2.2 1.3 3 or More..................................................... 9.0 2.1 1.5 0.6 Number of Laptop PCs

  7. Total.......................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer ................... 35.5 6.4 2.2 4.2 Use a Personal Computer................................ 75.6 17.8 5.3 12.5 Number of Desktop PCs 1.................................................................. 50.3 11.0 3.4 7.6 2.................................................................. 16.2 4.4 1.3 3.1 3 or More..................................................... 9.0 2.5 0.7 1.8 Number of Laptop PCs

  8. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.7 Have Main Space Heating Equipment.................. 109.8 20.5 25.6 40.3 23.4 Use Main Space Heating Equipment.................... 109.1 20.5 25.6 40.1 22.9 Have Equipment But Do Not Use It...................... 0.8 N N Q 0.6 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 11.4 18.4 13.6 14.7 Central Warm-Air Furnace................................ 44.7 6.1

  9. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Space Heating Equipment............... 1.2 Q Q N Have Main Space Heating Equipment.................. 109.8 25.6 17.7 7.9 Use Main Space Heating Equipment.................... 109.1 25.6 17.7 7.9 Have Equipment But Do Not Use It...................... 0.8 N N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 18.4 13.1 5.3 Central Warm-Air Furnace................................ 44.7 16.2 11.6 4.7 For One Housing

  10. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q N Q Have Main Space Heating Equipment.................. 109.8 40.3 21.4 6.9 12.0 Use Main Space Heating Equipment.................... 109.1 40.1 21.2 6.9 12.0 Have Equipment But Do Not Use It...................... 0.8 Q Q N N Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 13.6 5.6 2.3 5.7 Central Warm-Air Furnace................................ 44.7 11.0 4.4

  11. Total........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 7.0 8.0 12.1 Do Not Have Space Heating Equipment............... 1.2 Q Q Q 0.2 Have Main Space Heating Equipment.................. 109.8 7.1 6.8 7.9 11.9 Use Main Space Heating Equipment.................... 109.1 7.1 6.6 7.9 11.4 Have Equipment But Do Not Use It...................... 0.8 N Q N 0.5 Main Heating Fuel and Equipment Natural Gas.......................................................... 58.2 3.8 0.4 3.8 8.4 Central Warm-Air Furnace................................ 44.7 1.8 Q 3.1 6.0

  12. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.6 15.1 5.5 Do Not Have Cooling Equipment............................. 17.8 4.0 2.4 1.7 Have Cooling Equipment.......................................... 93.3 16.5 12.8 3.8 Use Cooling Equipment........................................... 91.4 16.3 12.6 3.7 Have Equipment But Do Not Use it.......................... 1.9 0.3 Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 5.2 0.8 Without a Heat

  13. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Do Not Have Cooling Equipment............................. 17.8 2.1 1.8 0.3 Have Cooling Equipment.......................................... 93.3 23.5 16.0 7.5 Use Cooling Equipment........................................... 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it.......................... 1.9 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  14. Total...........................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Do Not Have Cooling Equipment............................. 17.8 10.3 3.1 7.3 Have Cooling Equipment.......................................... 93.3 13.9 4.5 9.4 Use Cooling Equipment........................................... 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it.......................... 1.9 1.0 Q 0.8 Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  15. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................ 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................ 1.9 0.3 Q 0.5 1.0 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 6.0 17.3 32.1 10.5 Without a Heat

  16. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.2 1.0 0.2 2 Times A Day...................................................... 24.6 4.0 2.7 1.2 Once a Day........................................................... 42.3 7.9 5.4 2.5 A Few Times Each Week...................................... 27.2 6.0 4.8 1.2 About Once a Week.............................................. 3.9 0.6 0.5 Q Less Than Once a

  17. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 1.4 1.0 0.4 2 Times A Day...................................................... 24.6 5.8 3.5 2.3 Once a Day........................................................... 42.3 10.7 7.8 2.9 A Few Times Each Week...................................... 27.2 5.6 4.0 1.6 About Once a Week.............................................. 3.9 0.9 0.6 0.3 Less Than Once a

  18. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 2.1 1.8 0.3 Have Cooling Equipment............................................ 93.3 23.5 16.0 7.5 Use Cooling Equipment............................................. 91.4 23.4 15.9 7.5 Have Equipment But Do Not Use it............................ 1.9 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 17.3 11.3 6.0 Without a Heat

  19. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................ 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................ 1.9 0.5 Q Q Q Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 32.1 17.6 5.2 9.3 Without a Heat

  20. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day......................................... 8.2 2.6 0.7 1.9 2 Times A Day...................................................... 24.6 6.6 2.0 4.6 Once a Day........................................................... 42.3 8.8 2.9 5.8 A Few Times Each Week...................................... 27.2 4.7 1.5 3.1 About Once a Week.............................................. 3.9 0.7 Q 0.6 Less Than Once a

  1. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 10.3 3.1 7.3 Have Cooling Equipment............................................ 93.3 13.9 4.5 9.4 Use Cooling Equipment............................................. 91.4 12.9 4.3 8.5 Have Equipment But Do Not Use it............................ 1.9 1.0 Q 0.8 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 10.5 3.9 6.5 Without a Heat

  2. Total.............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Do Not Have Cooling Equipment............................... 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................ 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................ 1.9 0.9 0.3 0.3 0.4 Type of Air-Conditioning Equipment 1, 2 Central System........................................................ 65.9 25.8 10.9 16.6 12.5 Without a Heat

  3. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    20.6 25.6 40.7 24.2 Do Not Have Cooling Equipment................................ 17.8 4.0 2.1 1.4 10.3 Have Cooling Equipment............................................. 93.3 16.5 23.5 39.3 13.9 Use Cooling Equipment.............................................. 91.4 16.3 23.4 38.9 12.9 Have Equipment But Do Not Use it............................. 1.9 0.3 Q 0.5 1.0 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 6.0 17.3 32.1 10.5

  4. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    0.7 21.7 6.9 12.1 Do Not Have Cooling Equipment................................ 17.8 1.4 0.8 0.2 0.3 Have Cooling Equipment............................................. 93.3 39.3 20.9 6.7 11.8 Use Cooling Equipment.............................................. 91.4 38.9 20.7 6.6 11.7 Have Equipment But Do Not Use it............................. 1.9 0.5 Q Q Q Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 32.1 17.6 5.2 9.3 Without a

  5. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer .......................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer....................................... 75.6 4.2 5.0 5.3 9.0 Number of Desktop PCs 1......................................................................... 50.3 3.1 3.4 3.4 5.4 2......................................................................... 16.2 0.7 1.1 1.2 2.2 3 or More............................................................ 9.0 0.3

  6. Total..............................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    7.1 19.0 22.7 22.3 Do Not Have Cooling Equipment................................ 17.8 8.5 2.7 2.6 4.0 Have Cooling Equipment............................................. 93.3 38.6 16.2 20.1 18.4 Use Cooling Equipment.............................................. 91.4 37.8 15.9 19.8 18.0 Have Equipment But Do Not Use it............................. 1.9 0.9 0.3 0.3 0.4 Air-Conditioning Equipment 1, 2 Central System........................................................... 65.9 25.8 10.9 16.6 12.5

  7. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    25.6 40.7 24.2 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.9 8.1 14.2 6.4 Use a Personal Computer.............................................. 75.6 13.7 17.5 26.6 17.8 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 10.4 14.1 20.5 13.7 Laptop Model............................................................. 16.9 3.3 3.4 6.1 4.1 Hours Turned on Per Week Less than 2

  8. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    5.6 17.7 7.9 Personal Computers Do Not Use a Personal Computer.................................. 35.5 8.1 5.6 2.5 Use a Personal Computer.............................................. 75.6 17.5 12.1 5.4 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 14.1 10.0 4.0 Laptop Model............................................................. 16.9 3.4 2.1 1.3 Hours Turned on Per Week Less than 2

  9. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.0 1.6 0.3 1.1 2 Times A Day.............................................................. 24.6 8.3 4.2 1.3 2.7 Once a Day................................................................... 42.3 15.0 8.1 2.7 4.2 A Few Times Each Week............................................. 27.2 10.9 6.0 1.8 3.1 About Once a Week..................................................... 3.9

  10. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Personal Computers Do Not Use a Personal Computer.................................. 35.5 14.2 7.2 2.8 4.2 Use a Personal Computer.............................................. 75.6 26.6 14.5 4.1 7.9 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 20.5 11.0 3.4 6.1 Laptop Model............................................................. 16.9 6.1 3.5 0.7 1.9 Hours Turned on Per Week Less than 2

  11. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    4.2 7.6 16.6 Personal Computers Do Not Use a Personal Computer.................................. 35.5 6.4 2.2 4.2 Use a Personal Computer.............................................. 75.6 17.8 5.3 12.5 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 13.7 4.2 9.5 Laptop Model............................................................. 16.9 4.1 1.1 3.0 Hours Turned on Per Week Less than 2

  12. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooking Appliances Frequency of Hot Meals Cooked 3 or More Times A Day................................................. 8.2 3.7 1.6 1.4 1.5 2 Times A Day.............................................................. 24.6 10.8 4.1 4.3 5.5 Once a Day................................................................... 42.3 17.0 7.2 8.7 9.3 A Few Times Each Week............................................. 27.2 11.4 4.7 6.4 4.8 About Once a Week.....................................................

  13. Total....................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    111.1 47.1 19.0 22.7 22.3 Personal Computers Do Not Use a Personal Computer.................................. 35.5 16.9 6.5 4.6 7.6 Use a Personal Computer.............................................. 75.6 30.3 12.5 18.1 14.7 Most-Used Personal Computer Type of PC Desk-top Model......................................................... 58.6 22.9 9.8 14.1 11.9 Laptop Model............................................................. 16.9 7.4 2.7 4.0 2.9 Hours Turned on Per Week Less than 2

  14. Total.........................................................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ..... 111.1 7.1 7.0 8.0 12.1 Personal Computers Do Not Use a Personal Computer...................................... 35.5 3.0 2.0 2.7 3.1 Use a Personal Computer.................................................. 75.6 4.2 5.0 5.3 9.0 Most-Used Personal Computer Type of PC Desk-top Model............................................................. 58.6 3.2 3.9 4.0 6.7 Laptop Model................................................................. 16.9 1.0 1.1 1.3 2.4 Hours Turned on Per Week Less

  15. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Basements Basement in Single-Family Homes and Apartments in 2-4 Unit Buildings ... Attics Attic in Single-Family Homes and Apartments in 2-4 Unit Buildings ...

  16. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Climate region 3 Very coldCold 31,898 30,469 28,057 28,228 21,019 30,542 25,067 Mixed-humid 27,873 26,716 24,044 26,365 21,026 27,096 22,812 Mixed-dryHot-dry 12,037 10,484 7,628 ...

  17. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Air-Conditioning Equipment 1, 2 Central System......Central Air-Conditioning...... 65.9 1.1 6.4 6.4 ...

  18. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Income Relative to Poverty Line Below 100 Percent......1.3 1.2 0.8 0.4 1. Below 150 percent of poverty line or 60 percent of median State ...

  19. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More 60,000 to 79,999 ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More 60,000 to 79,999 ...

  20. Total..........................................................

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Table HC7.4 Space Heating Characteristics by Household Income, 2005 Below Poverty Line ... Below Poverty Line Eligible for Federal Assistance 1 80,000 or More Space Heating ...

  1. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    ... Table HC7.7 Air-Conditioning Usage Indicators by Household Income, 2005 Below Poverty Line ... Table HC7.7 Air-Conditioning Usage Indicators by Household Income, 2005 Below Poverty Line ...

  2. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Living Space Characteristics Below Poverty Line Eligible for Federal Assistance 1 Million ... Living Space Characteristics Below Poverty Line Eligible for Federal Assistance 1 Million ...

  3. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Table HC7.12 Home Electronics Usage Indicators by Household Income, 2005 Below Poverty ... Table HC7.12 Home Electronics Usage Indicators by Household Income, 2005 Below Poverty ...

  4. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Table HC7.10 Home Appliances Usage Indicators by Household Income, 2005 Below Poverty Line ... Below Poverty Line Eligible for Federal Assistance 1 40,000 to 59,999 60,000 to 79,999 ...

  5. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    1,001 to 5,000 2,777 8,041 10,232 2.9 786 56 5,001 to 10,000 1,229 8,900 9,225 7.2 965 62 10,001 to 25,000 884 14,105 14,189 16.0 994 65 25,001 to 50,000 332 11,917 11,327 35.9 1,052 72 50,001 to 100,000 199 13,918 12,345 69.9 1,127 80 100,001 to 200,000 90 12,415 11,310 137.9 1,098 89 200,001 to 500,000 38 10,724 10,356 284.2 1,035 99 Over 500,000 8 7,074 9,196 885.0 769 117 Principal building activity Education 389 12,239 10,885 31.5 1,124 53 Food sales 177 1,252 1,172 7.1 1,067 121 Food

  6. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    1,001 to 5,000 2,777 8,041 10,232 2.9 786 56 5,001 to 10,000 1,229 8,900 9,225 7.2 965 62 10,001 to 25,000 884 14,105 14,189 16.0 994 65 25,001 to 50,000 332 11,917 11,327 35.9 1,052 72 50,001 to 100,000 199 13,918 12,345 69.9 1,127 80 100,001 to 200,000 90 12,415 11,310 137.9 1,098 89 200,001 to 500,000 38 10,724 10,356 284.2 1,035 99 Over 500,000 8 7,074 9,196 885.0 769 117 Principal building activity Education 389 12,239 10,885 31.5 1,124 53 Food sales 177 1,252 1,172 7.1 1,067 121 Food

  7. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    1,001 to 5,000 2,777 8,041 10,232 2.9 786 56 5,001 to 10,000 1,229 8,900 9,225 7.2 965 62 10,001 to 25,000 884 14,105 14,189 16.0 994 65 25,001 to 50,000 332 11,917 11,327 35.9 1,052 72 50,001 to 100,000 199 13,918 12,345 69.9 1,127 80 100,001 to 200,000 90 12,415 11,310 137.9 1,098 89 200,001 to 500,000 38 10,724 10,356 284.2 1,035 99 Over 500,000 8 7,074 9,196 885.0 769 117 Principal building activity Education 389 12,239 10,885 31.5 1,124 53 Food sales 177 1,252 1,172 7.1 1,067 121 Food

  8. Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Median square feet per building (thousand) Median square feet per worker Median operating hours per week Median age of buildings (years) All buildings 5,557 87,093 88,182 5.0 1,029 50 32 Building floorspace (square feet) 1,001 to 5,000 2,777 8,041 10,232 2.8 821 49 37 5,001 to 10,000 1,229 8,900 9,225 7.0 1,167 50 31 10,001 to 25,000 884 14,105 14,189 15.0 1,444 56 32 25,001 to 50,000 332 11,917 11,327 35.0 1,461 60 29 50,001 to 100,000 199 13,918 12,345 67.0 1,442 60 26 100,001 to 200,000 90

  9. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Housing Units (millions) UrbanRural Location (as Self-Reported) Living Space ... Housing Units (millions) UrbanRural Location (as Self-Reported) Living Space ...

  10. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Housing Units (millions) UrbanRural Location (as Self-Reported) City Town Suburbs Rural ... Housing Units (millions) UrbanRural Location (as Self-Reported) City Town Suburbs Rural ...

  11. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Living Space Characteristics Detached Attached Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC3.2 ...

  12. Total..........................................................

    Gasoline and Diesel Fuel Update (EIA)

    Table HC4.2 Living Space Characteristics by Renter-Occupied Housing Units, 2005 2 to 4 Units 5 or More Units Mobile Homes Energy Information Administration 2005 Residential Energy ...

  13. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Per Household Member Average Square Feet Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Table HC1.2.2 ...

  14. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 111.1 20.6 15.1 5.5 Do Not Have Cooling Equipment...... 17.8 4.0 2.4 1.7 Have Cooling Equipment...... 93.3 ...

  15. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 41.8 2,603 2,199 1,654 941 795 598 1-Car Garage...... 9.5 2,064 1,664 1,039 775 624 390 2-Car Garage......

  16. Total..........................................................

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... Average Square Feet per Apartment in a -- Apartments (millions) Major Outside Wall Construction Siding (Aluminum, Vinyl, Steel)...... 35.3 3.5 1,286 1,090 325 852 786 461 ...

  17. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Type of Renter-Occupied Housing Unit Housing Units (millions) Single-Family Units ... At Home Behavior Home Used for Business Yes......

  18. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Type of Owner-Occupied Housing Unit U.S. Housing Units (millions) Single-Family Units ... At Home Behavior Home Used for Business Yes......

  19. Total..........................................................

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Housing Characteristics Tables Single-Family Units Detached Type of Housing Unit Table ... At Home Behavior Home Used for Business Yes......

  20. Synthesis and Evaluation of Cu/SAPO-34 Catalysts for NH3-SCR 2: Solid-state Ion Exchange and One-pot Synthesis

    SciTech Connect (OSTI)

    Gao, Feng; Walter, Eric D.; Washton, Nancy M.; Szanyi, Janos; Peden, Charles HF

    2015-01-01

    Cu-SAPO-34 catalysts are synthesized using two methods: solid-state ion exchange (SSIE) and one-pot synthesis. SSIE is conducted by calcining SAPO-34/CuO mixtures at elevated temperatures. For the one-pot synthesis method, Cu-containing chemicals (CuO and CuSO4) are added during gel preparation. A high-temperature calcination step is also needed for this method. Catalysts are characterized with surface area/pore volume measurements, temperature programmed reduction (TPR), electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopies, and scanning electron microscopy (SEM). Catalytic properties are examined using standard ammonia selective catalytic reduction (NH3-SCR) and ammonia oxidation reactions. In Cu-SAPO-34 samples formed using SSIE, Cu presents both as isolated Cu2+ ions and unreacted CuO. The former is highly active and selective in NH3-SCR, while the latter catalyzes a side reaction; notably, the non-selective oxidation of NH3 above 350 ºC. Using the one-pot method followed by a high-temperature aging treatment, it is possible to form Cu SAPO-34 samples with predominately isolated Cu2+ ions at low Cu loadings. However at much higher Cu loadings, isolated Cu2+ ions that bind weakly with the CHA framework and CuO clusters also form. These Cu moieties are very active in catalyzing non-selective NH3 oxidation above 350 ºC. Low-temperature reaction kinetics indicate that Cu-SAPO-34 samples formed using SSIE have core-shell structures where Cu is enriched in the shell layers; while Cu is more evenly distributed within the one-pot samples. Reaction kinetics also suggest that at low temperatures, the local environment next to Cu2+ ion centers plays little role on the overall catalytic properties. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed at the Environmental

  1. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and LANS partner to record $2 million in pledges for local United Way programs November 20, 2008 LOS ALAMOS, New Mexico, November 20, 2008- Los Alamos National Laboratory employees once again demonstrated concern for their communities and those in need by pledging a record $1 million to United Way programs in Northern New Mexico and Santa Fe. With a dollar-for-dollar match by Los Alamos National Security, LLC, which operates the Laboratory, the total contribution is more than $2 million.

  2. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 million to local United Way organizations, other nonprofits December 1, 2009 Los Alamos, New Mexico, December 1, 2009-Los Alamos National Laboratory employees once more demonstrated concern for their communities and those in need by pledging a record $1.3 million to United Way and other eligible nonprofit programs.Los Alamos National Security, LLC, which operates the Laboratory, plans to prorate its $1 million match among the selected nonprofit organizations, bringing the total donation to

  3. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 million to local United Way organizations, other nonprofits November 18, 2010 LOS ALAMOS, New Mexico, November 18, 2010-Los Alamos National Laboratory employees have again demonstrated concern for their communities and those in need by pledging a record $1.5 million to United Way and other eligible nonprofit programs. Los Alamos National Security, LLC, which operates the Laboratory, plans to prorate its $1 million match among the selected nonprofit organizations, bringing the total donation to

  4. Isothermal Solid-State Transformation Kinetics Applied to Pd/Cu Alloy Membrane Fabrication

    SciTech Connect (OSTI)

    Pomerantz, Natalie L; Payzant, E Andrew; Ma, Yi Hua

    2010-01-01

    In this work, time-resolved, in situ high-temperature X-ray diffraction (HT-XRD) was used to study the solid-state transformation kinetics of the formation of the fcc Pd/Cu alloy from Pd/Cu bi-layers for the purpose of fabricating sulfur tolerant Pd/Cu membranes for H2 separation. Thin layers of Pd and Cu (total ~15 wt% Cu) were deposited on porous stainless steel (PSS) with the electroless deposition method and annealed in H2 at 500, 550 and 600 C. The kinetics of the annealing process were successfully described by the Avrami nucleation and growth model showing that the annealing process was diffusion controlled and one dimensional. The activation energy for the solid-state transformation was 175 kJ/mol, which was similar to the activation energy of Pd-Cu bulk interdiffusion. Furthermore, the Avrami model was able to successfully describe the changes in permeance and activation energy observed in Pd/Cu alloy membranes during characterization as they were annealed at high temperatures.

  5. Characteristics RSE Column Factor: Total

    U.S. Energy Information Administration (EIA) Indexed Site

    and 1994 Vehicle Characteristics RSE Column Factor: Total 1993 Family Income Below Poverty Line Eli- gible for Fed- eral Assist- ance 1 RSE Row Factor: Less than 5,000 5,000...

  6. ARM - Measurement - Total cloud water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cloud water ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Total cloud water The total concentration (mass/vol) of ice and liquid water particles in a cloud; this includes condensed water content (CWC). Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a

  7. National Competitiveness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Competition National Clean Energy Business Plan Competition The National Clean Energy Business Plan Competition inspired nearly 300 university teams across the country to create new businesses to commercialize promising energy technologies developed at U.S. universities and the National Laboratories. After pitching their business plans to panels of judges at the regional semifinals and finals, six teams advanced to the national competition for a chance to compete in the popular vote and a grand

  8. Phase transformation between Cu(In,Sn){sub 2} and Cu{sub 2}(In,Sn) compounds formed on single crystalline Cu substrate during solid state aging

    SciTech Connect (OSTI)

    Tian, Feifei; Liu, Zhi-Quan Guo, Jingdong

    2014-01-28

    Interfacial reactions between eutectic SnIn and single crystalline Cu during solid-state aging at low temperature were investigated systematically. Three types of phase transformations between Cu(In,Sn){sub 2} layer and Cu{sub 2}(In,Sn) layer were observed, which are Cu(In,Sn){sub 2} grows and Cu{sub 2}(In,Sn) consumes at 40?C, Cu(In,Sn){sub 2} and Cu{sub 2}(In,Sn) grow simultaneously at 60?C, as well as Cu(In,Sn){sub 2} consumes and Cu{sub 2}(In,Sn) grows at 80 and 100?C. According to physicochemical approach, the chemical reactions at Cu/Cu{sub 2}(In,Sn)/Cu(In,Sn){sub 2}/SnIn interfaces were discussed in detail. It was concluded that the diffusion ability of Cu and In atoms dominated different phase transformations. When diffusion constants k{sub 1In2}?>?8/3k{sub 1Cu2} Cu(In,Sn){sub 2} will grow, and if k{sub 1Cu2}???k{sub 1In2} Cu{sub 2}(In,Sn) will grow. Both Cu(In,Sn){sub 2} and Cu{sub 2}(In,Sn) can grow in the condition of k{sub 1In2} ? k{sub 1Cu2}. The values of k{sub 1Cu2} and k{sub 1In2} at different temperatures on (100)Cu and (111)Cu substrate were also calculated or estimated by analyzing the growth kinetics of the compound layers.

  9. CATEGORY Total Procurement Total Small Business Small Disadvantaged

    National Nuclear Security Administration (NNSA)

    CATEGORY Total Procurement Total Small Business Small Disadvantaged Business Woman Owned Small Business HubZone Small Business Veteran-Owned Small Business Service Disabled Veteran Owned Small Business FY 2013 Dollars Accomplished $1,049,087,940 $562,676,028 $136,485,766 $106,515,229 $12,080,258 $63,473,852 $28,080,960 FY 2013 % Accomplishment 54.40% 13.00% 10.20% 1.20% 6.60% 2.70% FY 2014 Dollars Accomplished $868,961,755 $443,711,175 $92,478,522 $88,633,031 $29,867,820 $43,719,452 $26,826,374

  10. Performance and mix measurements of indirect drive Cu doped Be...

    Office of Scientific and Technical Information (OSTI)

    Performance and mix measurements of indirect drive Cu doped Be implosions Citation Details In-Document Search Title: Performance and mix measurements of indirect drive Cu doped Be ...

  11. Understanding the Deactivation Mechanisms of Cu/Zeolite SCR Catalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deactivation Mechanisms of CuZeolite SCR Catalysts in Diesel Application Understanding the Deactivation Mechanisms of CuZeolite SCR Catalysts in Diesel Application To understand ...

  12. Investigation of Sulfur Deactivation on Cu/Zeolite SCR Catalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sulfur Deactivation on CuZeolite SCR Catalysts in Diesel Application Investigation of Sulfur Deactivation on CuZeolite SCR Catalysts in Diesel Application Investigation of Sulfur ...

  13. Origins of optical absorption characteristics of Cu2+ complexes...

    Office of Scientific and Technical Information (OSTI)

    Origins of optical absorption characteristics of Cu2+ complexes in solutions Citation Details In-Document Search Title: Origins of optical absorption characteristics of Cu2+ ...

  14. Total Number of Operable Refineries

    U.S. Energy Information Administration (EIA) Indexed Site

    Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge

  15. Total Estimated Contract Cost: Performance Period Total Fee Paid

    Office of Environmental Management (EM)

    Performance Period Total Fee Paid FY2008 $134,832 FY2009 $142,578 FY2010 $299,878 FY2011 $169,878 Cumulative Fee Paid $747,166 Contract Period: September 2007 - October 2012 $31,885,815 C/P/E Environmental Services, LLC DE-AM09-05SR22405/DE-AT30-07CC60011/SL14 Contractor: Contract Number: Contract Type: Cost Plus Award Fee $357,223 $597,797 $894,699 EM Contractor Fee Site: Stanford Linear Accelerator Center (SLAC) Contract Name: SLAC Environmental Remediation December 2012 $1,516,646 Fee

  16. Consent Order, Lawrence Livermore National National Security...

    Office of Environmental Management (EM)

    Lawrence Livermore National National Security, LLC - WCO-2010-01 Consent Order, Lawrence Livermore National National Security, LLC - WCO-2010-01 October 29, 2010 Issued to Lawrence ...

  17. Design Storm for Total Retention.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Title: Design Storm for "Total Retention" under Individual Permit, Poster, Individual ... International. Environmental Programs Design Storm for "Total Retention" under ...

  18. U.S. Total Imports

    U.S. Energy Information Administration (EIA) Indexed Site

    St. Clair, MI International Falls, MN Noyes, MN Warroad, MN Babb, MT Havre, MT Port of Del Bonita, MT Port of Morgan, MT Sweetgrass, MT Whitlash, MT Portal, ND Sherwood, ND Pittsburg, NH Champlain, NY Grand Island, NY Massena, NY Niagara Falls, NY Waddington, NY Sumas, WA Highgate Springs, VT North Troy, VT U.S. Pipeline Total from Mexico Ogilby, CA Otay Mesa, CA Alamo, TX El Paso, TX Galvan Ranch, TX Hidalgo, TX McAllen, TX Penitas, TX LNG Imports from Algeria Cove Point, MD Everett, MA Lake

  19. NATIONAL SECURITY TECHNOLOGIES - NEVADA NATIONAL SECURITY SITE

    National Nuclear Security Administration (NNSA)

    - NEVADA NATIONAL SECURITY SITE FISCAL YEARS 2009 THRU 2015 SMALL BUSINESS PROGRAM RESULTS & FORECAST CATEGORY Total Procurement Total SB Small Disad. Bus Woman-Owned SB Hub-Zone SB Veteran-Owned SB Service Disabled Vet. SB FY 2009 Dollars Goal (projected) $210,000,000 $139,860,000 $12,600,000 $14,700,000 $6,300,000 $42,000,000 $4,200,000 FY 2009 Dollars Accomplished $222,209,712 $142,098,377 $7,570,924 $11,761,989 $3,243,572 $79,415,951 $2,797,603 FY 2009 % Goal 66.60% 6.00% 7.00% 3.00%

  20. Cu-Cu direct bonding achieved by surface method at room temperature

    SciTech Connect (OSTI)

    Utsumi, Jun [Advanced Technology Research Center, Mitsubishi Heavy Industries, Ltd., 1-8-1 Sachiura, Kanazawa-ku, Yokohama 236-8515 (Japan); Ichiyanagi, Yuko, E-mail: yuko@ynu.ac.jp [Department of Physics, Graduate School of Engineering, Yokohama National University, Tokiwadai, Hodogaya, Yokohama 240-8501 (Japan)

    2014-02-20

    The metal bonding is a key technology in the processes for the microelectromechanical systems (MEMS) devices and the semiconductor devices to improve functionality and higher density integration. Strong adhesion between surfaces at the atomic level is crucial; however, it is difficult to achieve close bonding in such a system. Cu films were deposited on Si substrates by vacuum deposition, and then, two Cu films were bonded directly by means of surface activated bonding (SAB) at room temperature. The two Cu films, with the surface roughness Ra about 1.3nm, were bonded by using SAB at room temperature, however, the bonding strength was very weak in this method. In order to improve the bonding strength between the Cu films, samples were annealed at low temperatures, between 323 and 473 K, in air. As the result, the Cu-Cu bonding strength was 10 times higher than that of the original samples without annealing.

  1. Total Imports of Residual Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. Total 9,010 5,030 8,596 6,340 4,707 8,092 1936-2016 PAD District 1 3,127 2,664 2,694 1,250 1,327 2,980 1981-2016 Connecticut 1995-2015 Delaware 280 1995-2016 Florida 858 649 800 200 531 499 1995-2016 Georgia 210 262 149 106 1995-2016 Maine 1995-2015 Maryland 84 1995-2016 Massachusetts 1995-2015 New Hampshire 1995-2015 New Jersey 1,283 843 1,073 734 355 1,984 1995-2016 New York 234 824 210 196 175 1995-2016 North Carolina 1995-2011

  2. Total quality management implementation guidelines

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    These Guidelines were designed by the Energy Quality Council to help managers and supervisors in the Department of Energy Complex bring Total Quality Management to their organizations. Because the Department is composed of a rich mixture of diverse organizations, each with its own distinctive culture and quality history, these Guidelines are intended to be adapted by users to meet the particular needs of their organizations. For example, for organizations that are well along on their quality journeys and may already have achieved quality results, these Guidelines will provide a consistent methodology and terminology reference to foster their alignment with the overall Energy quality initiative. For organizations that are just beginning their quality journeys, these Guidelines will serve as a startup manual on quality principles applied in the Energy context.

  3. Total Imports of Residual Fuel

    U.S. Energy Information Administration (EIA) Indexed Site

    2010 2011 2012 2013 2014 2015 View History U.S. Total 133,646 119,888 93,672 82,173 63,294 68,265 1936-2015 PAD District 1 88,999 79,188 59,594 33,566 30,944 33,789 1981-2015 Connecticut 220 129 1995-2015 Delaware 748 1,704 510 1,604 2,479 1995-2015 Florida 15,713 11,654 10,589 8,331 5,055 7,013 1995-2015 Georgia 5,648 7,668 6,370 4,038 2,037 1,629 1995-2015 Maine 1,304 651 419 75 317 135 1995-2015 Maryland 3,638 1,779 1,238 433 938 539 1995-2015 Massachusetts 123 50 78 542 88 1995-2015 New

  4. Total Adjusted Sales of Kerosene

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Farm All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 269,010 305,508 187,656 81,102 79,674 137,928 1984-2014 East Coast (PADD 1) 198,762 237,397 142,189 63,075 61,327 106,995 1984-2014 New England (PADD 1A) 56,661 53,363 38,448 15,983 15,991 27,500 1984-2014 Connecticut 8,800 7,437

  5. Accelerating Fatigue Testing for Cu Ribbon Interconnects (Presentation)

    SciTech Connect (OSTI)

    Bosco, N.; Silverman, T.; Wohlgemuth , J.; Kurtz, S.; Inoue, M.; Sakurai, K.; Shioda, T.; Zenkoh, H.; Miyashita, M.; Tadanori, T.; Suzuki, S.

    2013-05-01

    This presentation describes fatigue experiments and discusses dynamic mechanical loading for Cu ribbon interconnects.

  6. Direct Epoxidation of Propylene over Stabilized Cu+ Surface Sites on Ti Modified Cu2O

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, X.; Kattel, S.; Xiong, K.; Mudiyanselage, K.; Rykov, S.; Senanayake, S. D.; Rodriguez, J. A.; Liu, P.; Stacchiola, D. J.; Chen, J. G.

    2015-07-17

    Direct propylene epoxidation by O2 is a challenging reaction because of the strong tendency for complete combustion. Results from the current study demonstrate the feasibility to tune the epoxidation selectivity by generating highly dispersed and stabilized Cu+ active sites in a TiCuOx mixed oxide. The TiCuOx surface anchors the key surface intermediate, oxametallacycle, leading to higher selectivity for epoxidation of propylene.

  7. Theoretical study on the CuH + H. -->. Cu + H/sub 2/ reaction pathway

    SciTech Connect (OSTI)

    Ruiz, M.E.; Garcia-Prieto, J.; Poulain, E.; Ozin, G.A.; Poirier, R.A.; Matta, S.M.; Czismadia, I.G.; Gracie, C.; Novaro, O.

    1986-01-16

    Quite recently, experimental results on the CuH + H ..-->.. Cu + H/sub 2/ thermal matrix phase reaction were reported, indicating that it proceeds with no activation barrier, and no evidence exists for an intermediate CuH/sub 2/ species at 10-13 K. Here the authors present a theoretical study of this reaction using variational and perturbational configuration interaction calculations with a relativistic pseudopotential (PSHONDO-CIPSI) set of programs. The results confirm the lack of a barrier and provide an explanation as to why the CuH/sub 2/ species may not be observed. 11 references, 3 figures, 3 tables.

  8. Total-energy and pressure calculations for random substitutional alloys

    SciTech Connect (OSTI)

    Johnson, D.D. ); Nicholson, D.M. ); Pinski, F.J. ); Gyoerffy, B.L. ); Stocks, G.M. )

    1990-05-15

    We present the details and the derivation of density-functional-based expressions for the total energy and pressure for random substitutional alloys (RSA) using the Korringa-Kohn-Rostoker Green's-function approach in combination with the coherent-potential approximation (CPA) to treat the configurational averaging. This includes algebraic cancellation of various electronic core contributions to the total energy and pressure, as in ordered-solid muffin-tin-potential calculations. Thus, within the CPA, total-energy and pressure calculations for RSA have the same foundation and have been found to have the same accuracy as those obtained in similar calculations for ordered solids. Results of our calculations for the impurity formation energy, and for the bulk moduli, the lattice parameters, and the energy of mixing as a function of concentration in fcc Cu{sub {ital c}}Zn{sub 1{minus}{ital c}} alloys show that this generalized density-functional theory will be useful in studying alloy phase stability.

  9. Kondo-lattice formation in cubic-phase YbCu{sub 5}

    SciTech Connect (OSTI)

    Tsujii, N.; He, J.; Amita, F.; Yoshimura, K.; Kosuge, K.; Michor, H.; Hilscher, G.; Goto, T.

    1997-10-01

    The YbCu{sub 5} phase with C15b structure has been prepared by a high-pressure technique, and its physical properties have been investigated. The temperature dependence of magnetic susceptibility, electrical resistivity, and specific heat show Kondo-lattice formation. Furthermore, a heavy Fermi-liquid state without magnetic ordering down to 2.0 K is found to evolve below about 6 K. The electronic specific heat coefficient {gamma} is enhanced to values as large as to 550 mJ/molthinspK{sup 2}. The magnetization measured up to 40 T at 1.6 K has a field dependence which is expected for a Kondo system when the total angular momentum is J{gt}1. All results are in good agreement with the extrapolation of the previous results of YbCu{sub 5{minus}x}Ag{sub x} (0.125{le}x{le}1.0) for x{r_arrow}0. The concentration dependence of characteristic temperatures of YbCu{sub 5{minus}x}Ag{sub x} can be quantitatively explained by the chemical pressure effect within the compressible Kondo model for the full range of Ag concentration ( 0.0{le}x{le}1.0). The origins of Kondo-lattice formation in YbCu{sub 4}Ag and the valence transition in YbCu{sub 4}In are discussed. {copyright} {ital 1997} {ital The American Physical Society}

  10. Total-derivative supersymmetry breaking

    SciTech Connect (OSTI)

    Haba, Naoyuki; Uekusa, Nobuhiro

    2010-05-15

    On an interval compactification in supersymmetric theory, boundary conditions for bulk fields must be treated carefully. If they are taken arbitrarily following the requirement that a theory is supersymmetric, the conditions could give redundant constraints on the theory. We construct a supersymmetric action integral on an interval by introducing brane interactions with which total-derivative terms under the supersymmetry transformation become zero due to a cancellation. The variational principle leads equations of motion and also boundary conditions for bulk fields, which determine boundary values of bulk fields. By estimating mass spectrum, spontaneous supersymmetry breaking in this simple setup can be realized in a new framework. This supersymmetry breaking does not induce a massless R axion, which is favorable for phenomenology. It is worth noting that fermions in hyper-multiplet, gauge bosons, and the fifth-dimensional component of gauge bosons can have zero-modes (while the other components are all massive as Kaluza-Klein modes), which fits the gauge-Higgs unification scenarios.

  11. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  12. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  13. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  14. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  15. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  16. ,"West Virginia Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Natural Gas Total Consumption ... AM" "Back to Contents","Data 1: West Virginia Natural Gas Total Consumption (MMcf)" ...

  17. ,"Total Crude Oil and Petroleum Products Exports"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Total Crude Oil and Petroleum Products ... "Back to Contents","Data 1: Total Crude Oil and Petroleum Products Exports" ...

  18. ,"New Mexico Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","New Mexico Natural Gas Total Consumption ... AM" "Back to Contents","Data 1: New Mexico Natural Gas Total Consumption (MMcf)" ...

  19. ,"North Dakota Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Natural Gas Total Consumption ... 9:10:34 AM" "Back to Contents","Data 1: North Dakota Natural Gas Total Consumption ...

  20. ,"North Carolina Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Carolina Natural Gas Total Consumption ... 9:10:33 AM" "Back to Contents","Data 1: North Carolina Natural Gas Total Consumption ...

  1. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputing Challenge draws more than 200 students to Los Alamos National Laboratory April 16, 2015 NOTE TO EDITORS: Media are welcome to attend the awards ceremony from 9 a.m. to noon a.m., April 21 at the Church of Christ, 2323 Diamond Drive, Los Alamos. Student teams from around New Mexico showcase year-long research projects April 20-21 LOS ALAMOS, N.M., April 16, 2015-More than 200 New Mexico students and their teachers are at Los Alamos National Laboratory April 20-21 for the 25th

  2. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community invited to learn about emerging technologies July 6, 2016 DisrupTech showcases innovation from Los Alamos National Laboratory LOS ALAMOS, N.M., July 6, 2016-New technologies emerging from Los Alamos National Laboratory that address everything from fusion energy to medical testing will be on display for members of the community, investors and business leaders at the DisrupTech showcase, Thursday, July 14, starting at 1:00 p.m. at the Los Alamos Golf Course Event Center. "We call it

  3. Los Alamos National Laboratory awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    awards subcontracts for architectural and engineering services August 28, 2009 Northern New Mexico small businesses to provide services Los Alamos, New Mexico, August 28, 2009-Six small businesses are receiving subcontracts totaling up to $200 million for providing architectural and engineering services to Los Alamos National Laboratory.The small businesses receiving the subcontracts from Los Alamos National Security, LLC are Lopez Engineering, Inc.; Merrick & Company; Mosaic-STC, A Joint

  4. Intermetallic M-Sn5 (M=Fe, Cu, Co, Ni) Compounds - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicles and Fuels Vehicles and Fuels Advanced Materials Advanced Materials Find More Like This Return to Search Intermetallic M-Sn5 (M=Fe, Cu, Co, Ni) Compounds Brookhaven National Laboratory Contact BNL About This Technology Technology Marketing Summary Among electrode materials for lithium ion batteries, tin offers a high theoretical capacity about 2.5 times that of graphite by weight. Unfortunately, when lithium alloys with tin the matrix undergoes a very large volume change. This change in

  5. FY 2007 Total System Life Cycle Cost, Pub 2008 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FY 2007 Total System Life Cycle Cost, Pub 2008 FY 2007 Total System Life Cycle Cost, Pub 2008 The Analysis of the Total System Life Cycle Cost (TSLCC) of the Civilian Radioactive Waste Management Program presents the Office of Civilian Radioactive Waste Management's (OCRWM) May 2007 total system cost estimate for the disposal of the Nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The TSLCC analysis provides a basis for assessing the adequacy of the Nuclear Waste Fund

  6. Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples: Laboratory Analytical Procedure (LAP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples Laboratory Analytical Procedure (LAP) Issue Date: 3/31/2008 A. Sluiter, B. Hames, D. Hyman, C. Payne, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and J. Wolfe Technical Report NREL/TP-510-42621 Revised March 2008 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov

  7. Media Advisory -- Director of National Science Foundation to Visit Colorado

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media Advisory -- Director of National Science Foundation to Visit Colorado For more information contact: Contact: Kerry Masson, NREL 275-4083 David Grimm, CU 492-6206 Tom Milligan, CSU 970-491-6432 Golden, Colo., Feb. 28, 1997 -- Media are invited to cover the visit of Dr. Neal Lane, Director of the National Science Foundation, to Colorado March 6 - 7. Dr. Lane will meet with leaders of the scientific community, business and industry and the state government to discuss federal support for

  8. National Nuclear Security Administration | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  9. Comparative study of the alloying effect on the initial oxidation of Cu-Au(100) and Cu-Pt(100)

    SciTech Connect (OSTI)

    Luo, Langli; Zhou, Guangwen; Kang, Yihong; Yang, Judith C.; Su, Dong; Stach, Eric A.

    2014-03-24

    Using in situ transmission electron microscopy, we show that the oxidation of the Cu-Au(100) results in the formation of Cu{sub 2}O islands that deeply embed into the Cu-Au substrate while the oxidation of the Cu-Pt(100) leads to the formation of Cu{sub 2}O islands that highly protrude above the Cu-Pt substrate. Their difference is attributed to the different mobilities of Pt and Au in the Cu base alloys for which the sluggish mobility of Pt in Cu results in trapped Pt atoms at the oxide/alloy interface while the faster mobility of Au in Cu leads to enhanced rehomogenization of the alloy composition.

  10. Synthesis and Evaluation of Cu-SAPO-34 Catalysts for Ammonia Selective Catalytic Reduction. 1. Aqueous Solution Ion Exchange

    SciTech Connect (OSTI)

    Gao, Feng; Walter, Eric D.; Washton, Nancy M.; Szanyi, Janos; Peden, Charles HF

    2013-09-06

    SAPO-34 molecular sieves are synthesized using various structure directing agents (SDAs). Cu-SAPO-34 catalysts are prepared via aqueous solution ion exchange. Catalysts are characterized with surface area/pore volume measurements, temperature programmed reduction (TPR), electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopies. Catalytic properties are examined using standard ammonia selective catalytic reduction (NH3-SCR) and ammonia oxidation reactions. During solution ion exchange, different SAPO-34 samples undergo different extent of structural damage via irreversible hydrolysis. Si content within the samples (i.e., Al-O-Si bond density) and framework stress are key factors that affect irreversible hydrolysis. Even using very dilute Cu acetate solutions, it is not possible to generate Cu-SAPO-34 samples with only isolated Cu2+ ions. Small amounts of CuOx species always coexist with isolated Cu2+ ions. Highly active and selective Cu-SAPO-34 catalysts for NH3-SCR are readily generated using this synthesis protocol, even for SAPO-34 samples that degrade substantially during solution ion exchange. High-temperature aging is found to improve the catalytic performance. This is likely due to reduction of intracrystalline mass-transfer limitations via formation of additional porosity in the highly defective SAPO-34 particles formed after ion exchange. The authors gratefully acknowledge the US Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy, Office of Vehicle Technologies for the support of this work. The research described in this paper was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOEs Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is operated for the US DOE by Battelle Memorial Institute under contract number DE-AC05-76RL01830.

  11. Design of cascaded low cost solar cell with CuO substrate

    SciTech Connect (OSTI)

    Samson, Mil'shtein; Anup, Pillai; Shiv, Sharma; Garo, Yessayan

    2013-12-04

    For many years the main focus of R and D in solar cells was the development of high-efficiency solar convertors. However with solar technology beginning to be a part of national grids and stand-alone power supplies for variety of individual customers, the emphasis has changed, namely, the cost per kilowatt- hour (kW-hr) started to be an important figure of merit. Although Si does dominate the market of solar convertors, this material has total cost of kilowatt-hour much higher than what the power grid is providing presently to customers. It is well known that the cost of raw semiconductor material is a major factor in formulation of the final cost of a solar cell. That motivated us to search and design a novel solar cell using cheap materials. The new p-i-n solar cell consists of hetero-structure cascade of materials with step by step decreasing energy gap. Since the lattice constant of these three materials do differ not more than 2%, the more expensive epitaxial fabrication methods can be used as well. It should be emphasized that designed solar cell is not a cascade of three solar cells connected in series. Our market study shows that Si solar panel which costs $250400 / m{sup 2} leads to a cost of $0.120.30 / kW-hr. To the contrary, CuO based solar cells with Cadmium compounds on top, would cost $100 / m{sup 2}. This will allow the novel solar cell to produce electricity at a cost of $0.060.08 / kW-hr.

  12. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignition Facility Former Army Ranger wins Sandia-sponsored student of the year award Former Army Ranger Damon Alcorn recently received the Sandia National Laboratories-Livermore Chamber of Commerce Student of the Year Award. Presented at the Chamber's State of the City Luncheon last month, the annual award highlights a Las Positas College student with exemplary academic... NNSA makers and hackers engage innovation and partnerships NNSA's labs change the world everyday through cutting-edge

  13. Science DMZ Implemented at CU Boulder

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CU Science Engagement Move your data Programs & Workshops Science Requirements Reviews Case Studies OSCARS Case Studies Science DMZ Case Studies Science DMZ @ UF Science DMZ @ CU Science DMZ @ Penn & VTTI Science DMZ @ NOAA Science DMZ @ NERSC Science DMZ @ ALS Multi-facility Workflow Case Study Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site

  14. Introduction to Brookhaven National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction to Brookhaven National Laboratory Patrick Looney Department Chair Sustainable Energy Technologies (SET) Global and Regional Solutions Directorate (GARS) STEAB Meeting June 26, 2012 Introduction to BNL * Facts, figures, facilities overview * BNL energy strategy - Building Discovery to Deployment pipelines - Tools for a Smarter Grid - Distributed Generation and Renewables Integration * Meeting sustainability goals through research * Discussion 2 FY 2011 Total Lab Operating Costs: $652

  15. Earth-Abundant Cu-based Chalcogenide Materials as Photovoltaic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic (PV) conversion is demonstrated for the first time in Cu 3 PSe 4 , a member ... Earth-Abundant Cu-based Chalcogenide Materials as Photovoltaic Absorbers Research Details ...

  16. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 634 578 46 1 Q 116.4 106.3...

  17. The Effects of Hydrothermal Agingon a Commercial Cu SCR Catalyst

    Broader source: Energy.gov [DOE]

    Examines the effect of hydrothermal aging on the Nox reduction over a commercial Cu-zeolite SCR catalyst.

  18. NATIONAL LABORATORY

    Office of Environmental Management (EM)

    N E W U T I L I T Y B U S I N E S S M O D E L S : Utility and Regulatory Models for the Modern Era Ronald Lehr former Public Utilities Commissioner A M E R I C A ' S POWER PLAN A m e r i c a ' s P o w e r P l a n Ralph Cavanagh, Natural Resources Defense Council Peter Fox-Penner, Brattle Group Tom King, National Grid Richard Sedano, Regulatory Assistance Project Alison Silverstein, former Federal Energy Regulatory Lisa Wood, Edison Foundation's Institute for Electric Efficiency We would like to

  19. Total System Performance Assessment Peer Review Panel

    Broader source: Energy.gov [DOE]

    Total System Performance Assessment (TSPA) Peer Review Panel for predicting the performance of a repository at Yucca Mountain.

  20. OPERATIONS AND PERFORMANCE OF RHIC AS A CU-CU COLLIDER.

    SciTech Connect (OSTI)

    PILAT, R.; AHRENS, L.; BAI, M.; BARTON, D.S.; ET AL.

    2005-05-16

    The 5th year of RHIC operations, started in November 2004 and expected to last till June 2005, consists of a physics run with Cu-Cu collisions at 100 GeV/u followed by one with polarized protons (pp) at 100 GeV [l]. We will address here the overall performance of the RHIC complex used for the first time as a Cu-Cu collider, and compare it with previous operational experience with Au, PP and asymmetric d-Au collisions. We will also discuss operational improvements, such as a {beta}* squeeze to 85cm in the high luminosity interaction regions from the design value of 1m, system improvements, machine performance and limitations, and address reliability and uptime issues.

  1. Cu(II) promotes amyloid pore formation

    SciTech Connect (OSTI)

    Zhang, Hangyu; Rochet, Jean-Christophe; Stanciu, Lia A.

    2015-08-14

    The aggregation of α-synuclein is associated with dopamine neuron death in Parkinson's disease. There is controversy in the field over the question of which species of the aggregates, fibrils or protofibrils, are toxic. Moreover, compelling evidence suggested the exposure to heavy metals to be a risk of PD. Nevertheless, the mechanism of metal ions in promoting PD remains unclear. In this research, we investigated the structural basis of Cu(II) induced aggregation of α-synuclein. Using transmission electron microscopy experiments, Cu(II) was found to promote in vitro aggregation of α-synuclein by facilitating annular protofibril formation rather than fibril formation. Furthermore, neuroprotective baicalein disaggregated annular protofibrils accompanied by considerable decrease of β-sheet content. These results strongly support the hypothesis that annular protofibrils are the toxic species, rather than fibrils, thereby inspiring us to search novel therapeutic strategies for the suppression of the toxic annular protofibril formation. - Highlights: • Cu(II) promoted the annular protofibril formation of α-synuclein in vitro. • Cu(II) postponed the in vitro fibrillization of α-synuclein. • Neuroprotective baicalein disaggregated annular protofibrils.

  2. National Fuel Cell Technology Evaluation Center (NFCTEC) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Fuel Cell Technologies Office webinar "National Fuel Cell Technology Evaluation Center ... CSD Safety and Reliability Data An Evaluation of the Total Cost of Ownership of Fuel ...

  3. An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Evaluation of the Total Cost of Ownership of Fuel Cell- Powered Material Handling Equipment Todd Ramsden National Renewable Energy Laboratory Technical Report NREL/TP-5600-56408 April 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No.

  4. Design Storm for Total Retention.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6414 Approved for public release; distribution is unlimited. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this

  5. Triaxial Stress Distributions in Cu / low-k Interconnect Features

    SciTech Connect (OSTI)

    C Murray; P Besser; E Ryan; J Jordan-Sweet

    2011-12-31

    The distribution of triaxial stresses within single damascene Cu/organosilicate interconnect structures as a function of linewidth, ranging from 45 to 250 nm, was measured using x-ray diffraction. Least-squares minimization techniques were employed to determine the volume-averaged stress tensors of the Cu features. Longitudinal Cu stress values increased for linewidths below 100 nm, while transverse stresses decreased with decreasing linewidth below 100 nm due to the interplay between the Cu microstructure and the feature geometry. Large tensile out-of-plane stresses were observed in all of the lines demonstrating the constraint imposed by the barrier layers that encapsulate the Cu.

  6. Bi-Se doped with Cu, p-type semiconductor

    DOE Patents [OSTI]

    Bhattacharya, Raghu Nath; Phok, Sovannary; Parilla, Philip Anthony

    2013-08-20

    A Bi--Se doped with Cu, p-type semiconductor, preferably used as an absorber material in a photovoltaic device. Preferably the semiconductor has at least 20 molar percent Cu. In a preferred embodiment, the semiconductor comprises at least 28 molar percent of Cu. In one embodiment, the semiconductor comprises a molar percentage of Cu and Bi whereby the molar percentage of Cu divided by the molar percentage of Bi is greater than 1.2. In a preferred embodiment, the semiconductor is manufactured as a thin film having a thickness less than 600 nm.

  7. National Security Science | Los National Alamos Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this Issue (pdf) In 2012 NSS received an NNSA Defense Programs AWARD OF EXCELLENCE National Security Science Mail Stop A142 Los Alamos National Laboratory Los Alamos, NM...

  8. Sandia National Laboratories | National Nuclear Security Administratio...

    National Nuclear Security Administration (NNSA)

    nuclear weapons Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge Sandia National Laboratories chemist Mark Allendorf, shown here at...

  9. National System Templates: Building Sustainable National Inventory...

    Open Energy Info (EERE)

    System Templates: Building Sustainable National Inventory Management Systems Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National System Templates: Building...

  10. Lawrence Livermore National Laboratory Lawrence Livermore National...

    National Nuclear Security Administration (NNSA)

    "Green" supercomputer reduces energy footprint by 75% "Green" supercomputer reduces energy footprint by 75% Lawrence Livermore National Laboratory Lawrence Livermore National ...

  11. An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Handling Equipment | Department of Energy An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment An Evaluation of the Total Cost of Ownership of Fuel Cell-Powered Material Handling Equipment This report by the National Renewable Energy Laboratory discusses an analysis of the total cost of ownership of fuel cell-powered and traditional battery-powered material handling equipment, including the capital costs of battery and fuel cell systems, the cost of

  12. National Security Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science National Security Science Latest Issue:July 2015 past issues All Issues submit National Security Science Showcasing Los Alamos National Laboratory's work on nuclear...

  13. National Security Science Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science NSS Archive National Security Science Latest Issue:July 2015 past issues All Issues submit National Security Science Archive National Security Science magazine...

  14. National Laboratory Impact Initiative

    Broader source: Energy.gov [DOE]

    The National Laboratory Impact Initiative supports the relationship between the Office of Energy Efficiency & Renewable Energy and the national laboratory enterprise.  The national laboratories...

  15. FY 2012 Los Alamos National Security, LLC, PER Summary | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Los Alamos National Security, LLC, PER Summary SUMMARY OF FY 2012 LOS ALAMOS NATIONAL SECURITY, LLC, AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % $74,510,494 $59,74x,064 80% Los Alamos National Security, LLC, the management and operating contractor for the Los Alamos National Laboratory, earned a "Very Good" rating in Program, a "Good" in Operations, a "Satisfactory" in Institutional Management and Business, and

  16. The effect of Cu/Zn molar ratio on CO{sub 2} hydrogenation over Cu/ZnO/ZrO{sub 2}/Al{sub 2}O{sub 3} catalyst

    SciTech Connect (OSTI)

    Shaharun, Salina E-mail: maizats@petronas.com.my; Shaharun, Maizatul S. E-mail: maizats@petronas.com.my; Taha, Mohd F.; Mohamad, Dasmawati

    2014-10-24

    Catalytic hydrogenation of carbon dioxide (CO{sub 2}) to methanol is an attractive way to recycle and utilize CO{sub 2}. A series of Cu/ZnO/Al{sub 2}O{sub 3}/ZrO{sub 2} catalysts (CZAZ) containing different molar ratios of Cu/Zn were prepared by the co-precipitation method and investigated in a stirred slurry autoclave system. The catalysts were characterized by temperature-programmed reduction (TPR), field emission scanning electron microscopy-energy dispersive analysis (FESEM-EDX), X-ray diffraction (XRD) and N{sub 2} adsorption-desorption. Higher surface area, SA{sub BET} values (42.659.9 m{sup 2}/g) are recorded at low (1) and high (5) Cu/Zn ratios with the minimum value of 35.71 m{sup 2}/g found for a Cu/Zn of 3. The reducibility of the metal oxides formed after calcination of catalyst samples was also affected due to change in metal-support interaction. At a low reaction temperature of 443 K, total gas pressure of 3.0 MPa and 0.1 g/mL of the CZAZ catalyst, the selectivity to methanol decreased as the Cu/Zn molar ratio increased, and the maximum selectivity of 67.73 was achieved at Cu/Zn molar ratio of 1. With a reaction time of 3h, the best performing catalyst was CZAZ75 with Cu/Zn molar ratio of 5 giving methanol yield of 79.30%.

  17. Synthesis of Cu{sub 2}O from CuO thin films: Optical and electrical properties

    SciTech Connect (OSTI)

    Murali, Dhanya S. Jain, Mahaveer K.; Subrahmanyam, A.; Kumar, Shailendra; Choudhary, R. J.; Wadikar, Avinash D.

    2015-04-15

    Hole conducting, optically transparent Cu{sub 2}O thin films on glass substrates have been synthesized by vacuum annealing (5×10{sup −6} mbar at 700 K for 1 hour) of magnetron sputtered (at 300 K) CuO thin films. The Cu{sub 2}O thin films are p-type and show enhanced properties: grain size (54.7 nm), optical transmission 72% (at 600 nm) and Hall mobility 51 cm{sup 2}/Vs. The bulk and surface Valence band spectra of Cu{sub 2}O and CuO thin films are studied by temperature dependent Hall effect and Ultra violet photo electron Spectroscopy (UPS). CuO thin films show a significant band bending downwards (due to higher hole concentration) than Cu{sub 2}O thin films.

  18. Method of producing .sup.67 Cu

    DOE Patents [OSTI]

    O'Brien, Jr., Harold A.; Barnes, John W.; Taylor, Wayne A.; Thomas, Kenneth E.; Bentley, Glenn E.

    1984-01-01

    A method of producing carrier-free .sup.67 Cu by proton spallation combined with subsequent chemical separation and purification is disclosed. A target consisting essentially of pressed zinc oxide is irradiated with a high energy, high current proton beam to produce a variety of spallogenic nuclides, including .sup.67 Cu and other copper isotopes. The irradiated target is dissolved in a concentrated acid solution to which a palladium salt is added. In accordance with the preferred method, the spallogenic copper is twice coprecipitated with palladium, once with metallic zinc as the precipitating agent and once with hydrogen sulfide as the precipitating agent. The palladium/copper precipitate is then dissolved in an acid solution and the copper is separated from the palladium by liquid chromatography on an anion exchange resin.

  19. Method for producing /sup 67/Cu

    DOE Patents [OSTI]

    O'Brien, H.A. Jr.; Barnes, J.W.; Taylor, W.A.; Thomas, K.E.; Bentley, G.E.

    A method of producing carrier-free /sup 67/Cu by proton spallation combined with subsequent chemical separation and purification is disclosed. A target consisting essentially of pressed zinc oxide is irradiated with a high energy, high current proton beam to produce a variety of spallogenic nuclides, including /sup 67/Cu and other copper isotopes. The irradiated target is dissolved in a concentrated acid solution to which a palladium salt is added. In accordance with the preferred method, the spallogenic copper is twice coprecipitated with palladium, once with metallic zinc as the precipitating agent and once with hydrogen sulfide as the precipitating agent. The palladium/copper precipitate is then dissolved in an acid solution and the copper is separated from the palladium by liquid chromatography on an anion exchange resin.

  20. National Security Complex | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Security Complex Y-12 National Security Complex Completes W69 Dismantlement

  1. Microsoft Word - chapterCu_4.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Copper Alloys: Pure Copper (code 4001) Prepared by: C. San Marchi, Sandia National Laboratories Editors C. San Marchi B.P. Somerday Sandia National Laboratories This report may be ...

  2. National Security Facility (NSF) | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security Facility (NSF) National Security Facility (NSF) Argonne National Laboratory's National Security Facility (NSF) is a flexible, state-of-the-art secure user facility that contains multiple national security networks, video teleconference capability, high-resolution graphics support, a fully powered and cooled data center, multi-level training facilities, and conferencing facilities. The NSF provides tools and resources to enable and strengthen connections between government

  3. National Postdoctoral Association | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Postdoctoral Association The National Postdoctoral Association (NPA) is a member-driven organization that provides a unique, national voice for postdoctoral scholars. Since 2003, we have taken on the ambitious agenda to enhance the quality of the postdoctoral experience in the U.S. We have assumed a leadership role in addressing the many issues confronting the postdoctoral community that are national in scope and requiring action beyond the local level. Read more. Argonne National Lab

  4. Sandia National Laboratories: National Security Missions: Nuclear Weapons:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Areas: Weapons Science Weapons Science & Technology National labs provide the science and technology to maintain and certify the nuclear stockpile in the absence of full-scale weapons testing. The facilities and expertise used to fulfill this mission over the last 60 years are even more critical as the stockpile ages, the total number of weapons decreases (greatly increasing the relative worth of each remaining weapon), and the security threat to the stockpile changes. Science

  5. 2009 Total Energy Production by State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Total Energy Production by State 2009 Total Energy Production by State 2009 Total Energy Production by State...

  6. Cell Total Activity Final Estimate.xls

    Office of Legacy Management (LM)

    WSSRAP Cell Total Activity Final Estimate (calculated September 2002, Fleming) (Waste streams & occupied cell volumes from spreadsheet titled "cell waste volumes-8.23.02 with macros.xls") Waste Stream a Volume (cy) Mass (g) 2 Radiological Profile 3 Nuclide Activity (Ci) 4 Total % of Total U-238 U-234 U-235 Th-228 Th-230 Th-232 Ra-226 Ra-228 Rn-222 5 Activity if > 1% Raffinate Pits Work Zone (Ci) Raffinate processed through CSS Plant 1 159990 1.49E+11 Raffinate 6.12E+01 6.12E+01

  7. Magnetic dipole moments of {sup 57,58,59}Cu

    SciTech Connect (OSTI)

    Cocolios, T. E.; Andreyev, A. N.; Bastin, B.; Bree, N.; Buescher, J.; Elseviers, J.; Gentens, J.; Huyse, M.; Kudryavtsev, Yu.; Pauwels, D.; Bergh, P. Van den; Van Duppen, P.; Sonoda, T.

    2010-01-15

    In-gas-cell laser spectroscopy of the isotopes {sup 57,58,59,63,65}Cu has been performed at the LISOL facility using the 244.164-nm optical transition from the atomic ground state of copper. A detailed discussion on the hyperfine structure of {sup 63}Cu is presented. The magnetic dipole moments of the isotopes {sup 57,58,59,65}Cu are extracted based on that of {sup 63}Cu. The new value mu=+0.479(13)mu{sub N} is proposed for {sup 58}Cu, consistent with that of a pip{sub 3/2} x nup{sub 3/2} ground-state configuration. Spin assignments for the radioactive isotopes {sup 57,58,59}Cu are confirmed. The isotope shifts between the different isotopes are also given and discussed.

  8. Theoretical investigation of structural properties of CuCl, CuBr and CuI compounds under hydrostatic pressure

    SciTech Connect (OSTI)

    Louhibi-Fasla, S.; Djabri, H. Rekab; Achour, H.; Kefif, K.

    2013-12-16

    We have applied a recent version of the full potential linear muffin-tin orbitals method (FPLMTO) to study the structural properties of copper halides CuX (X=Cl, Br, I) under high pressure using the generalized gradient approximation (GGA) for the exchange and correlation potential by Perdew et al. Results are given for lattice parameters, bulk modulus and its first derivatives in the wurtzite(B4), zinc-blende (B3), CsCl (B2), rock-salt (B1), and PbO (B10) structures. The results of these calculations are compared with the available theoretical and experimental data.

  9. TotalView Parallel Debugger at NERSC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The performance of the GUI can be greatly improved if used in conjunction with free NX software. The TotalView documentation web page is a good resource for learning more...

  10. Total Ore Processing Integration and Management

    SciTech Connect (OSTI)

    Leslie Gertsch; Richard Gertsch

    2004-06-30

    This report outlines the technical progress achieved for project DE-FC26-03NT41785 (Total Ore Processing Integration and Management) during the period 01 April through 30 June of 2004.

  11. EQUUS Total Return Inc | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: EQUUS Total Return Inc Place: Houston, Texas Product: A business development company and VC investor that trades as a closed-end fund. EQUUS is...

  12. ARM - Measurement - Net broadband total irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsNet broadband total irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Net broadband total irradiance The difference between upwelling and downwelling, covering longwave and shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  13. ARM - Measurement - Shortwave broadband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total downwelling irradiance The total diffuse and direct radiant energy that comes from some continuous range of directions, at wavelengths between 0.4 and 4 {mu}m, that is being emitted downwards. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following

  14. A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report prepared by the Lawrence Berkeley National Laboratory describes a total cost of ownership model for emerging applications in stationary fuel cell systems.

  15. Multi-component Cu-Strengthened Steel Welding Simulations: Atom...

    Office of Scientific and Technical Information (OSTI)

    Steel Welding Simulations: Atom Probe Tomography and Synchrotron X-ray Diffraction Analyses Citation Details In-Document Search Title: Multi-component Cu-Strengthened Steel Welding ...

  16. Cu Migration in Polycrystalline CdTe Solar Cells

    SciTech Connect (OSTI)

    Guo, Da; Akis, Richard; Brinkman, Daniel; Sankin, Igor; Fang, Tian; Vasileska, Dragica; Ringhofer, Christian

    2014-03-12

    An impurity reaction-diffusion model is applied to Cu defects and related intrinsic defects in polycrystalline CdTe for a better understanding of Cu’s role in the cell level reliability of CdTe PV devices. The simulation yields transient Cu distributions in polycrystalline CdTe during solar cell processing and stressing. Preliminary results for Cu migration using available diffusivity and solubility data show that Cu accumulates near the back contact, a phenomena that is commonly observed in devices after back-contact processing or stress conditions.

  17. Understanding NOx SCR Mechanism and Activity on Cu/Chabazite...

    Office of Scientific and Technical Information (OSTI)

    Book: Understanding NOx SCR Mechanism and Activity on CuChabazite Structures throughout the Catalyst Life Cycle Citation Details In-Document Search Title: Understanding NOx SCR...

  18. Enhanced Photocatalytic Property of Cu Doped Sodium Niobate

    SciTech Connect (OSTI)

    Xu, Jianbin; Zhang, Feng; Sun, Bingyang; Du, Yingge; Li, Guoqiang; Zhang, Weifeng

    2015-09-29

    We investigate the photocatalytic activity of Cu doped NaNbO3 powder sample prepared by the modified polymer complex method. The photocatalytic activity of hydrogen evolution from methanol aqueous solution was improved by Cu 2.6 at% doping. The photocatalytic degradation of rhodamine B under visible light irradiation was enhanced in comparison with pure NaNbO3. Cu inctroduction improved the adsorption property of NaNbO3, judging from the Fourier transform infrared spectra. Moreover, the ultraviolet light excitation in Cu doped sample was found to accelerate the mineralized process.

  19. NNSA National Labs Earn Nine R&D 100 Awards | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration | (NNSA) National Labs Earn Nine R&D 100 Awards July 11, 2014 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) today announced that its national laboratories - Lawrence Livermore (LLNL), Los Alamos (LANL) and Sandia - have received a total of nine of R&D Magazine's 2013 R&D 100 Awards. The awards recognize a variety of technologies created by researchers, scientists and engineers from throughout the nuclear security enterprise. "These

  20. National Ignition Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    National Ignition Facility Glass amplifiers in Laser Bay 2 at the National Ignition Facility. The construction of the 192-beam 1.8 MJ UV NIF, the world's most energetic laser, was ...

  1. Los Alamos National Lab: National Security Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    more.. Charlie McMillan, Director of Los Alamos National Laboratory 1:08 Charlie McMillan, Director of Los Alamos National Laboratory, describes how the Lab provides...

  2. National Laboratory]; Chertkov, Michael [Los Alamos National...

    Office of Scientific and Technical Information (OSTI)

    Chertkov, Michael Los Alamos National Laboratory Construction and Facility Engineering; Energy Conservation, Consumption, & Utilization(32); Energy Planning, Policy, &...

  3. Chemist, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Chemist, Sandia National Laboratories Jerilyn Timlin Jerilyn Timlin October 2009 National Institutes of Health (NIH) New Innovator Award Jerilyn Timlin, a chemist at Sandia National Laboratories, has been presented by the National Institutes of Health (NIH) with a New Innovator Award, one of 55 such awards granted by the NIH this year. The award encourages researchers to explore bold ideas that have the potential to catapult fields forward and speed the translation of

  4. Cognitive Informatics, Pacific Northwest National Laboratory | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Cognitive Informatics, Pacific Northwest National Laboratory Frank Greitzer Frank Greitzer Frank Greitzer was invited to be one of six "provocateurs," selected internationally by the National Science Foundation (NSF) and the National Institute of Standards and Technology (NIST), to participate in planning of, and present to a National Academies workshop on Usability, Security, and Privacy of Computer Systems Workshop held July 20-22, 2009 in

  5. Sandia National Laboratories: National Security Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons Defense Systems International, Homeland, & Nuclear Security Energy and Climate Facebook Twitter YouTube Flickr RSS Programs National Security Programs We strive to become the laboratory that the U.S. turns to first for technology solutions to the most challenging problems that threaten peace and freedom for our nation and the globe. At Sandia, national security is our business. We apply advanced science and engineering to help our nation and allies detect, repel, defeat, or

  6. National Security Photo Gallery | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Competition | National Nuclear Security Administration | (NNSA) Solicitation National Security Campus Management and Operating (M&O) Contract Competition Contract Competition Home Page Welcome to the National Nuclear Security Administration's website for the National Security Campus (NSC) Management and Operating Contract Competition. The NSC in Kansas City, MO, is situated on approximately 177 acres. The facility is leased for the NNSA by the General Services Administration. Satellite

  7. [Purification of {sup 67}Cu]. Progress report

    SciTech Connect (OSTI)

    DeNardo, S.J.

    1994-09-01

    This report documents progress made in several areas of research and describes results which have not yet been published. These areas include: Purification of {sup 67}Cu; Macrocyclic chelates for targeted therapy; Studies of biologic activation associated with molecular receptor increase and tumor response in ChL6/L6 protocol patients; Lym-1 single chain genetically engineered molecules; Analysis of molecular genetic coded messages to enhance tumor response; Human dosimetry and therapeutic human use radiopharmaceuticals; studies in phantoms; Quantitative SPECT; Preclinical studies; and Clinical studies.

  8. System size dependence of cluster properties from two-particle angular correlations in Cu+Cu and Au+Au collisions at sq root(s{sub NN})=200 GeV

    SciTech Connect (OSTI)

    Alver, B.; Ballintijn, M.; Busza, W.; Gulbrandsen, K.; Henderson, C.; Kane, J. L.; Kulinich, P.; Li, W.; Loizides, C.; Reed, C.; Roland, C.; Roland, G.; Stephans, G. S. F.; Nieuwenhuizen, G. J. van; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wyslouch, B.; Back, B. B.

    2010-02-15

    We present results on two-particle angular correlations in Cu+Cu and Au+Au collisions at a center-of-mass energy per nucleon pair of 200 GeV over a broad range of pseudorapidity (eta) and azimuthal angle (phi) values as a function of collision centrality. The PHOBOS detector at the Relativistic Heavy Ion Collider has a uniquely large angular coverage for inclusive charged particles, which allows for the study of correlations on both long- and short-range scales. A complex two-dimensional correlation structure in {Delta}{eta} and {Delta}{phi} emerges, which is interpreted in the context of a cluster model. The effective cluster size and decay width are extracted from the two-particle pseudorapidity correlation functions. The effective cluster size found in semicentral Cu+Cu and Au+Au collisions is comparable to that found in proton-proton collisions but a nontrivial decrease in size with increasing centrality is observed. Moreover, a comparison of results from Cu+Cu versus Au+Au collisions shows an interesting scaling of the effective cluster size with the measured fraction of total cross section (which is related to the ratio of the impact parameter to the nuclear radius, b/2R), suggesting a geometric origin. Further analysis for pairs from restricted azimuthal regions shows that the effective cluster size at {Delta}{phi}{approx}180 deg. drops more rapidly toward central collisions than the size at {Delta}{phi}{approx}0 deg. The effect of limited {eta} acceptance on the cluster parameters is also addressed, and a correction is applied to present cluster parameters for full {eta} coverage, leading to much larger effective cluster sizes and widths than previously noted in the literature. These results should provide insight into the hot and dense medium created in heavy ion collisions.

  9. Lawrence Berkeley National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Berkeley National Laboratory NNSA engineer teaches young people STEM, makes mark on Livermore lab communities. Rick Roses Job: Federal fire protection engineer and explosives safety engineer Educational background: Bachelor's degree in mechanical engineering, University of California, Berkeley (1984) and a master's in national resource strategy, National Defense University (2010). Rick Roses,... Lab employees, officials, business leaders dedicate Livermore Solar Center

  10. Unexpected crystal and magnetic structures in MnCu4In and MnCu4Sn

    SciTech Connect (OSTI)

    Provino, A.; Paudyal, D.; Fornasini, ML; Dhiman, I.; Dhar, SK.; Das, A.; Mudryk, Y.; Manfrinetti, P.; Pecharsky, VK

    2013-01-29

    We discovered a new compound MnCu4In with its own hexagonal structure type (hP12-P63mc, ternary ordered derivative of the hexagonal MgZn2-type) that becomes ferromagnetic at TC = 540 K. This transition temperature is higher than that found in the MnCu2In and MnCu2Sn alloys. In contrast, the homologous compound MnCu4Sn, which crystallizes in the cubic MgCu4Sn-type, orders antiferromagnetically with TN = 110 K. The neutron diffraction studies show ferromagnetic spin orientation in the {1 0 1} plane in MnCu4In with a magnetic moment of 4.5 ?B/Mn at 22 K, and a corresponding value of 4.7 ?B/Mn in the antiferromagnetic MnCu4Sn with propagation vector View the MathML source. The first-principles electronic structure calculations show that the unexpected difference in both magnetic and crystal structures of MnCu4In and MnCu4Sn is due to the difference in the Mn-3d bands and exchange interactions relating to different crystal anisotropy, coordination numbers, and interatomic distances.

  11. Metallic glass alloys of Zr, Ti, Cu and Ni

    DOE Patents [OSTI]

    Lin, Xianghong; Peker, Atakan; Johnson, William L.

    1997-01-01

    At least quaternary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10.sup.3 K/s. Such alloys comprise titanium from 19 to 41 atomic percent, an early transition metal (ETM) from 4 to 21 atomic percent and copper plus a late transition metal (LTM) from 49 to 64 atomic percent. The ETM comprises zirconium and/or hafnium. The LTM comprises cobalt and/or nickel. The composition is further constrained such that the product of the copper plus LTM times the atomic proportion of LTM relative to the copper is from 2 to 14. The atomic percentage of ETM is less than 10 when the atomic percentage of titanium is as high as 41, and may be as large as 21 when the atomic percentage of titanium is as low as 24. Furthermore, when the total of copper and LTM are low, the amount of LTM present must be further limited. Another group of glass forming alloys has the formula (ETM.sub.1-x Ti.sub.x).sub.a Cu.sub.b (Ni.sub.1-y Co.sub.y).sub.c wherein x is from 0.1 to 0.3, y.cndot.c is from 0 to 18, a is from 47 to 67, b is from 8 to 42, and c is from 4 to 37. This definition of the alloys has additional constraints on the range of copper content, b.

  12. Effects of Si/Al Ratio on Cu/SSZ-13 NH3-SCR Catalysts: Implications for the active Cu species and the Roles of Brønsted Acidity

    SciTech Connect (OSTI)

    Gao, Feng; Washton, Nancy M.; Wang, Yilin; Kollar, Marton; Szanyi, Janos; Peden, Charles HF

    2015-09-03

    Cu/SSZ-13 catalysts with three Si/Al ratios of 6, 12 and 35 were synthesized with Cu incorporation via solution ion exchange. The implications of varying Si/Al ratios on the nature of the multiple Cu species that can be present in the SSZ-13 zeolite are a major focus of this work, as highlighted by the results of a variety of catalyst characterization and reaction kinetics measurements. Specifically, catalysts were characterized with surface area/pore volume measurements, temperature programmed reduction by H2 (H2-TPR), NH3 temperature programmed desorption (NH3-TPD), and DRIFTS and solid-state nuclear magnetic resonance (NMR) spectroscopies. Catalytic properties were examined using NO oxidation, ammonia oxidation, and standard ammonia selective catalytic reduction (NH3-SCR) reactions on selected catalysts under differential conditions. Besides indicating possible variably active multiple Cu species for these reactions, the measurements are also used to untangle some of the complexities caused by the interplay between redox of Cu ion centers and Brønsted acidity. All three reactions appear to follow a redox reaction mechanism, yet the roles of Brønsted acidity are quite different. For NO oxidation, increasing Si/Al ratio lowers Cu redox barriers, thus enhancing reaction rates. Brønsted acidity appears to play essentially no role for this reaction. For standard NH3-SCR, residual Brønsted acidity plays a significant beneficial role at both low- and high-temperature regimes. For NH3 oxidation, no clear trend is observed suggesting both Cu ion center redox and Brønsted acidity play important and perhaps competing roles. The authors gratefully acknowledge the US Department of Energy (DOE), Energy Efficiency and Renewable Energy, Vehicle Technologies Office for the support of this work. The research described in this paper was performed in the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of

  13. Non-uniform Aging on Super Duty Diesel Truck Aged Urea Cu/Zeolite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aging on Super Duty Diesel Truck Aged Urea CuZeolite SCR Catalysts Non-uniform Aging on Super Duty Diesel Truck Aged Urea CuZeolite SCR Catalysts CuZeolite SCR catalysts aged ...

  14. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration | (NNSA) Los Alamos National Lab Performance Evaluations FY 2016 FY 2016 Performance Evaluation Plan, Los Alamos National Security, LLC FY 2015 FY 2015 Performance Evaluation Report, Los Alamos National Security, LLC FY 2015 Performance Evaluation Report, Fee Determination Letter, Los Alamos National Security, LLC FY 2015 Performance Evaluation Plan, Los Alamos National Security, LLC FY 2014 FY 2014 Performance Evaluation Report, Los Alamos National Security, LLC FY 2014

  15. ARM - Measurement - Shortwave spectral total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    total downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave spectral total downwelling irradiance The rate at which radiant energy, at specrally-resolved wavelengths between 0.4 and 4 {mu}m, is being emitted upwards and downwards into a radiation field and transferred across a surface area (real or imaginary) in a hemisphere of directions. Categories Radiometric Instruments

  16. Totally awesome since the 1980s | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    awesome since the 1980s Posted: April 22, 2014 - 5:50pm Y-12's Ron Simandl and John Brown began teaming in the 1980s when they researched alternative materials for everyday...

  17. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    U.S. Department of Energy National Nuclear Security Administration Federal Equal ... A. Name and Address of Agency National Nuclear Security Administration Office of ...

  18. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    U.S. Department of Energy National Nuclear Security Administration Federal Equal ... A. Name and Address of Agency National Nuclear Security Administration 1000 Independence ...

  19. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    15 National Nuclear Security Administration FY 2013 PER Babcock & Wilcox Technical ... The National Nuclear Security Administration (NNSA) Production Office (NPO) took into ...

  20. National Science Bowl Finals

    ScienceCinema (OSTI)

    None

    2010-09-01

    National Science Bowl finals and awards at the National Building Museum in Washington D.C. Monday 5/3/2010

  1. First National Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    First National Technology First National Technology Center Center Electronic Equipment - manufactured to withstand 8 milliseconds of voltage disruption CBEMA Curve - Chips ...

  2. National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prepared by U.S. Department of Energy National Nuclear Security Administration Nevada Field Office . Environmental Management Operations February 2015 Nevada National Security ...

  3. Level: National Data;

    U.S. Energy Information Administration (EIA) Indexed Site

    (Fuel and Nonfuel), 2006; Level: National Data; Row: Energy Sources and Shipments, ... (Fuel and Nonfuel), 2006; Level: National Data; Row: Energy Sources and Shipments, ...

  4. Antiferromagnetism in EuCu2As2 and EuCu1.82Sb2 single crystals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Anand, V. K.; Johnston, D. C.

    2015-05-07

    Single crystals of EuCu2As2 and EuCu2Sb2 were grown from CuAs and CuSb self-flux, respectively. The crystallographic, magnetic, thermal, and electronic transport properties of the single crystals were investigated by room-temperature x-ray diffraction (XRD), magnetic susceptibility χ versus temperature T, isothermal magnetization M versus magnetic field H, specific heat Cp(T), and electrical resistivity ρ(T) measurements. EuCu2As2 crystallizes in the body-centered tetragonal ThCr2Si2-type structure (space group I4/mmm), whereas EuCu2Sb2 crystallizes in the related primitive tetragonal CaBe2Ge2-type structure (space group P4/nmm). The energy-dispersive x-ray spectroscopy and XRD data for the EuCu2Sb2 crystals showed the presence of vacancies on the Cu sites, yielding themore » actual composition EuCu1.82Sb2. The ρ(T) and Cp(T) data reveal metallic character for both EuCu2As2 and EuCu1.82Sb2. Antiferromagnetic (AFM) ordering is indicated from the χ(T),Cp(T), and ρ(T) data for both EuCu2As2 (TN = 17.5 K) and EuCu1.82Sb2 (TN = 5.1 K). In EuCu1.82Sb2, the ordered-state χ(T) and M(H) data suggest either a collinear A-type AFM ordering of Eu+2 spins S = 7/2 or a planar noncollinear AFM structure, with the ordered moments oriented in the tetragonal ab plane in either case. This ordered-moment orientation for the A-type AFM is consistent with calculations with magnetic dipole interactions. As a result, the anisotropic χ(T) and isothermal M(H) data for EuCu2As2, also containing Eu+2 spins S = 7/2, strongly deviate from the predictions of molecular field theory for collinear AFM ordering and the AFM structure appears to be both noncollinear and noncoplanar.« less

  5. NREL Reports Soft Costs Now Largest Piece of Solar Installation Total Cost

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - News Releases | NREL Reports Soft Costs Now Largest Piece of Solar Installation Total Cost December 2, 2013 Two detailed reports from the Energy Department's National Renewable Energy Laboratory (NREL) find that solar financing and other non-hardware costs - often referred to as "soft costs" - now comprise up to 64% of the total price of residential solar energy systems, reflecting how soft costs are becoming an increasingly larger fraction of the cost of installing solar.

  6. Accelerating Fatigue Testing for Cu Ribbon Interconnects | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Accelerating Fatigue Testing for Cu Ribbon Interconnects Accelerating Fatigue Testing for Cu Ribbon Interconnects Presented at the 2013 Photovoltaic Module Reliability Workshop; 26-27 February 2013; Denver, Colorado 58369.pdf (3.59 MB) More Documents & Publications Thermal Cycling Combined with Dynamic Mechanical Load: Preliminary Report Physics of Failure of Electrical Interconnects Reliability of Electrical Interconnects

  7. Total internal reflection laser tools and methods

    DOE Patents [OSTI]

    Zediker, Mark S.; Faircloth, Brian O.; Kolachalam, Sharath K.; Grubb, Daryl L.

    2016-02-02

    There is provided high power laser tools and laser heads that utilize total internal reflection ("TIR") structures to direct the laser beam along a laser beam path within the TIR structure. The TIR structures may be a TIR prism having its hypotenuse as a TIR surface.

  8. The Leica TCRA1105 Reflectorless Total Station

    SciTech Connect (OSTI)

    Gaudreault, F.

    2005-09-06

    This poster provides an overview of SLAC's TCRA1105 reflectorless total station for the Alignment Engineering Group. This instrument has shown itself to be very useful for planning new construction and providing quick measurements to difficult to reach or inaccessible surfaces.

  9. Total pressing Indonesian gas development, exports

    SciTech Connect (OSTI)

    Not Available

    1994-01-24

    Total is on track to become Indonesia's leading gas exporter by the turn of the century. Total's aggressive development of its Mahakam Delta acreage in East Kalimantan is intended to keep pace with growing liquefied natural gas demand, mainly from Japan but also increasingly from South Korea and Taiwan. A frantic scramble is under way among natural gas suppliers in the Pacific Rim region, particularly those with current LNG export facilities, to accommodate projections of soaring natural gas demand in the region. Accordingly, Total's Indonesian gas production goal is the centerpiece of a larger strategy to become a major player in the Far East Asia gas scene. Its goals also fall in line with Indonesia's. Facing flat or declining oil production while domestic oil demand continues to soar along with a rapidly growing economy, Indonesia is heeding some studies that project the country could become a net oil importer by the turn of the century. The paper describes Total's Far East strategy, the Mahakam acreage which it operates, the shift to gas development, added discoveries, future development, project spending levels, and LNG export capacity.

  10. Function Specific Analysis of the Thermal Durability of Cu-Zeolite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Function Specific Analysis of the Thermal Durability of Cu-Zeolite SCR Catalyst Function Specific Analysis of the Thermal Durability of Cu-Zeolite SCR Catalyst Presentation given ...

  11. Deactivation Mechanism of Cu/Zeolite SCR Catalyst Due to Reductive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mechanism of CuZeolite SCR Catalyst Due to Reductive Hydrothermal Aging Deactivation Mechanism of CuZeolite SCR Catalyst Due to Reductive Hydrothermal Aging Better control for ...

  12. Cherokee Nation Businesses, LLC.- 2003 Project

    Broader source: Energy.gov [DOE]

    It is the goal of the Cherokee Nation to have profitable enterprises so that the tribe can become self-sufficient. The Cherokee Nation will perform a wind energy feasibility study on land owned by the tribe in Kay County, north-central Oklahoma. This land consists of two tracts of fee and trust land totaling approximately 4,275 acres. The land is presently leased for grazing.

  13. Sandia National Laboratories: Laboratories' Strategic Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Framework Vision, Mission, and Values Strategic Framework Mission Areas Laboratories Foundation Strategic Objectives and Crosscuts About Strategic Framework strategic framework Sandia continues to be engaged in the significant demands of the nation's nuclear weapons modernization program while conducting a whole range of activities in broader national security. The Laboratories' strategic framework drives strategic decisions about the totality of our work and has positioned our

  14. Brookhaven National Laboratory: A Brief Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Energy Advisory Board Meeting Sam Aronson October 10, 2012 Brookhaven National Laboratory: A Brief Overview Outline  Lab at a Glance - history, research areas  BNL Facilities and Assets  BNL Strategy - changes and what has driven them STEAB Meeting 10/10/12 2 FY 2011 Total Lab Operating Costs: $652 FY 2011 Total DOE/NNSA Costs: $25.7 Brookhaven National Laboratory at a Glance: FY 2011  Managed by Brookhaven Science Associates  Physical Assets * 5320 acres, 306 buildings 

  15. Country/Continent Total Percent of U.S. Total Africa/Europe

    U.S. Energy Information Administration (EIA) Indexed Site

    peak kilowatts Country/Continent Total Percent of U.S. Total Africa/Europe 53,898 29% Asia/Australia 107,460 59% South/Central America 11,692 6% Canada 4,378 2% Mexico 5,556 3% Total 182,984 100% Table 8. Destination of photovoltaic module export shipments, 2014 Source: U.S. Energy Information Administration, Form EIA-63B, 'Annual Photovoltaic Cell/Module Shipments Report.'

  16. Application of cluster-plus-glue-atom model to barrierless CuNiTi and CuNiTa films

    SciTech Connect (OSTI)

    Li, Xiaona, E-mail: lixiaona@dlut.edu.cn; Ding, Jianxin; Wang, Miao; Dong, Chuang [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China); Chu, Jinn P. [Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2014-11-01

    To improve the thermal stability of copper and avoid its diffusion into surrounding dielectrics or interfacial reactions with them, the authors applied the cluster-plus-glue-atom model to investigate barrierless CuNiM (M?=?Ti or Ta) seed layers. The dissolution of the third element (Ti or Ta) in the Cu lattice with the aid of Ni significantly improved the thermal stability of the Cu seed layer. The appropriate M/Ni (M?=?Ti or Ta) ratio was selected to obtain a low resistivity: the resistivity was as low as 2.5??? cm for the (Ti{sub 1.5/13.5}Ni{sub 12/13.5}){sub 0.3}Cu{sub 99.7} film and 2.8??? cm for the (Ta{sub 1.1/13.1}Ni{sub 12/13.1}){sub 0.4}Cu{sub 99.6} film after annealing at 500?C for 1?h. After annealing at 500?C for 40?h, the two films remained stable without forming a Cu{sub 3}Si compound. The authors confirmed that the range of applications of the cluster-plus-glue-atom model could be extended. Therefore, a third element M with negative enthalpies of mixing with both Cu and Ni could be selected, under the premise that the mixing enthalpy of MNi is more negative than that of MCu.

  17. How to stabilize highly active Cu+ cations in a mixed-oxide catalyst

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mudiyanselage, Kumudu; Luo, Si; Kim, Hyun You; Yang, Xiaofang; Baber, Ashleigh E.; Hoffmann, Friedrich M.; Senanayake, Sananayake; Rodriguez, Jose A.; Chen, Jingguang G.; Liu, Ping; et al

    2015-09-12

    Mixed-metal oxides exhibit novel properties that are not present in their isolated constituent metal oxides and play a significant role in heterogeneous catalysis. In this study, a titanium-copper mixed-oxide (TiCuOx) film has been synthesized on Cu(111) and characterized by complementary experimental and theoretical methods. At sub-monolayer coverages of titanium, a Cu2O-like phase coexists with TiCuOx and TiOx domains. When the mixed-oxide surface is exposed at elevated temperatures (600–650 K) to oxygen, the formation of a well-ordered TiCuOx film occurs. Stepwise oxidation of TiCuOx shows that the formation of the mixed-oxide is faster than that of pure Cu2O. As the Timore » coverage increases, Ti-rich islands (TiOx) form. The adsorption of CO has been used to probe the exposed surface sites on the TiOx–CuOx system, indicating the existence of a new Cu+ adsorption site that is not present on Cu2O/Cu(111). Adsorption of CO on Cu+ sites of TiCuOx is thermally more stable than on Cu(111), Cu2O/Cu(111) or TiO2(110). The Cu+ sites in TiCuOx domains are stable under both reducing and oxidizing conditions whereas the Cu2O domains present on sub-monolayer loads of Ti can be reduced or oxidized under mild conditions. Furthermore, the results presented here demonstrate novel properties of TiCuOx films, which are not present on Cu(111), Cu2O/Cu(111), or TiO2(110), and highlight the importance of the preparation and characterization of well-defined mixed-metal oxides in order to understand fundamental processes that could guide the design of new materials.« less

  18. Engineer, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Engineer, Sandia National Laboratories Clifford Ho Clifford Ho February 2010 Asian American Engineer of the Year Clifford Ho, a Sandia engineer, has been selected by the Chinese Institute of Engineers - USA to receive the Asian American Engineer of the Year Award. The honor is presented each year to the nation's most outstanding Asian American engineers and scientists who make significant, lasting and global contributions to the nation. Ho was recognized for his

  19. Lawrence Livermore National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory DE-AC52-07NA27344 Operated by Lawrence Livermore National Security, LLC BASIC Contract (Official) Modifications (Official) Funding Mods Available Upon Request Conformed Contract (Unofficial) LLNL Sec A (SF33) (pdf, 91KB) See Modifications Section under Conformed Contract Link LLNS Conformed Contract (weblink) LLNL Sec B-H (pdf, 306KB) LLNL Sec I pdf 687KB LLNL Sec J Appx A (pdf, 67KB) LLNL

  20. Pacific Northwest National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Pacific Northwest National Laboratory NNSA deputy visits PNNL to see radiochemistry and threat detection capabilities NNSA Principal Deputy Administrator Madelyn Creedon visited the Pacific Northwest National Laboratory (PNNL) in Washington this month to see the work it does for the agency, focusing on radiochemistry and threat detection. NNSA hosts international CTBT on-site inspection experts at Nevada National Security Site This month, NNSA hosted a Comprehensive

  1. national security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    security Klotz visits Y-12 to see progress on new projects and ongoing work on NNSA's national security missions Last week, NNSA Administrator Lt. Gen. Frank Klotz (Ret.) visited the Y-12 National Security Complex to check on the status of ongoing projects like the Uranium Processing Facility as well as the site's continuing uranium operations. He also met with the Region 2 volunteers of the Radiogical... Managing the data deluge for national security analysts ALBUQUERQUE, N.M. - After a

  2. Lawrence Livermore National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory (LLNL) is a design laboratory that is responsible for the safety and reliability of the nuclear explosives package in nuclear weapons. It supports surveillance, assessment, and refurbishment of the nuclear weapons stockpile. LLNL also possesses unique high-energy-density physics capabilities and scientific computing assets. The lab is managed by Lawrence Livermore National Security, LLC and

  3. National Nuclear Security Administration Los Alamos National

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Los Alamos National Security, LLC Fiscal Year 2014 Performance Evaluation Report (PER) NNSA Los Alamos Field Office Performance Period: October 2013 - September 2014 November 14, 2014 NA-LA November 14, 2014 Executive Summary This Performance Evaluation Report (PER) provides the assessment of Los Alamos National Security, LLC performance for the period of October 1, 2013 through September 30, 2014, as evaluated against the objectives defined in the Fiscal

  4. National Science Bowl | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Science Bowl Texas students win regional National Science Bowl competition, secure spot in finals in nation's capital More than 200 students from 37 from High schools across the Texas Panhandle gathered together with a few hundred volunteers for a meeting and competition of the minds: The Pantex Science Bowl 2016. Set up like a game show with buzzers, toss up and bonus questions, these groups of four students... Amarillo Students Win Regional National Science Bowl Competition, Secure Spot in

  5. sandia national laboratory | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    sandia national laboratory Sandia California celebrates 60 years On March 8, Sandia/California celebrates its 60th anniversary. The site, which began with a singular nuclear weapons mission, now supports all Sandia mission areas. Nuclear weapons still accounts for nearly half of the site's work, along with strong programs in homeland security, transportation... Managing the data deluge for national security analysts ALBUQUERQUE, N.M. - After a disaster or national tragedy, bits of information

  6. NNSA National Labs, Y-12 Earn 11 R&D 100 Awards | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) National Labs, Y-12 Earn 11 R&D 100 Awards July 09, 2013 WASHINGTON, D.C. - Four National Nuclear Security Administration (NNSA) sites - Lawrence Livermore (LLNL), Los Alamos (LANL) and Sandia national laboratories, along with the Y-12 National Security Site - have received a total of 11 of R&D Magazine's 2013 R&D 100 Awards. The awards recognize a variety of technologies created by researchers, scientists and engineers from throughout the nuclear security

  7. National Lab Impact Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab Impact Initiative Energy Efficiency & Renewable Energy EERE National Lab Impact Summit Driving American Energy Innovation and Competitiveness May 4, 2016 | 7:30 am-7:00 pm National Renewable Energy Laboratory Golden, Colorado EERE National Lab Impact Summit // i ` http://www.cyclotronroad.org/home TABLE OF CONTENTS Department of Energy National Lab Abbreviations .........................................................................................................ii Welcome Letter

  8. First National Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE)

    Speaker presentation prepared by Dennis Hughes, a lead property manager with First National Buildings Inc.

  9. National Security Science | Los National Alamos Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANSCE: Mission-Critical for National Security Nuclear Energy for Our Challenging Future The Invisible Neutron Threat Blasting Missiles Out of the Sky LANL and the Air Force: ...

  10. National Renewable Energy Laboratory | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Renewable Energy Laboratory NNSA lab recognized for innovation to power electric ... Annual Merit Review Awards recognized significant achievements in the Department of Energy

  11. National Ignition Facility Reaches Milestone Early | National...

    National Nuclear Security Administration (NNSA)

    Reaches Milestone Early | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  12. Previous Sandia National Laboratories | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home About Us Our Operations Acquisition and Project Management M & O Support Department Sandia National Laboratories ...

  13. Sandia National Laboratory Performance Evaluations | National...

    National Nuclear Security Administration (NNSA)

    Sandia National Laboratory Performance Evaluations FY 2016 FY 2016 Performance Evaluation Plan, Sandia Corporation FY 2015 FY 2015 Performance Evaluation Report, Sandia Corporation ...

  14. Lawrence Livermore National Laboratory | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Life Extension Program Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge SOLAR POWER PURCHASE FOR DOE LABORATORIES More about LLNL...

  15. Manager, Sandia National Laboratories | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    of New Mexico's Anderson School of Management's Hall of Fame Inductee Jim Novak from Sandia National Laboratories will be inducted into the University of New Mexico's ...

  16. sandia national lab | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    sandia national lab NNSA Researchers Advance Technology for Remote Reactor Monitoring NNSA's Defense Nuclear Nonproliferation Research and Development Program drives the innovation ...

  17. national labs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    and hackers engage innovation and partnerships NNSA's labs change the world everyday through cutting-edge developments in support of NNSA's critical national security missions. ...

  18. National Nuclear Security Administration | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) National Nuclear Security Administration FY15 Year End Report Semi Annual Report FY14 Year End Report Semi Annual

  19. Researcher, Sandia National Laboratories | National Nuclear Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Award: Fellow of the Institute of Electrical & Electronics Engineers (IEEE) Profile: Paul Dodd, a Sandia National Laboratories researcher, has been named a Fellow...

  20. Conducting mechanisms of forming-free TiW/Cu{sub 2}O/Cu memristive devices

    SciTech Connect (OSTI)

    Yan, P.; Li, Y.; Hui, Y. J.; Zhong, S. J.; Zhou, Y. X.; Xu, L.; Liu, N.; Qian, H.; Sun, H. J. Miao, X. S.

    2015-08-24

    P-type Cu{sub 2}O is a promising CMOS-compatible candidate to fabricate memristive devices for next-generation memory, logic and neuromorphic computing. In this letter, the microscopic switching and conducting mechanisms in TiW/Cu{sub 2}O/Cu memristive devices have been thoroughly investigated. The bipolar resistive switching behaviors without an electro-forming process are ascribed to the formation and rupture of the conducting filaments composed of copper vacancies. In the low resistive state, the transport of electrons in the filaments follows Mott's variable range hopping theory. When the devices switch back to high resistive state, the coexistence of Schottky emission at the Cu/Cu{sub 2}O interface and electron hopping between the residual filaments is found to dominate the conducting process. Our results will contribute to the further understanding and optimization of p-type memristive materials.

  1. Fractionated total body irradiation for metastatic neuroblastoma

    SciTech Connect (OSTI)

    Kun, L.E.; Casper, J.T.; Kline, R.W.; Piaskowski, V.D.

    1981-11-01

    Twelve patients over one year old with neuroblastoma (NBL) metastatic to bone and bone marrow entered a study of adjuvant low-dose, fractionated total body irradiation (TBI). Six children who achieved a ''complete clinical response'' following chemotherapy (cyclophosphamide and adriamycin) and surgical resection of the abdominal primary received TBI (10 rad/fraction to totals of 100-120 rad/10-12 fx/12-25 days). Two children received concurrent local irradiation for residual abdominal tumor. The intervals from cessation of chemotherapy to documented progression ranged from 2-16 months, not substatially different from patients receiving similar chemotherapy and surgery without TBI. Three additional children with progressive NBL received similar TBI (80-120 rad/8-12 fx) without objective response.

  2. Frustrated total internal reflection acoustic field sensor

    DOE Patents [OSTI]

    Kallman, Jeffrey S.

    2000-01-01

    A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

  3. Total Crude Oil and Petroleum Products Exports

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Crude Oil and Petroleum Products Crude Oil Natural Gas Plant Liquids and Liquefied Refinery Gases Pentanes Plus Liquefied Petroleum Gases Ethane/Ethylene Propane/Propylene Normal Butane/Butylene Isobutane/Isobutylene Other Liquids Hydrogen/Oxygenates/Renewables/Other Hydrocarbons Oxygenates (excl. Fuel Ethanol) Methyl Tertiary Butyl Ether (MTBE) Other Oxygenates Renewable Fuels (incl. Fuel Ethanol) Fuel Ethanol Biomass-Based Diesel Unfinished Oils Naphthas and Lighter Kerosene and

  4. ARM - Measurement - Shortwave broadband total net irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    net irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total net irradiance The difference between upwelling and downwelling broadband shortwave radiation. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available

  5. ARM - Measurement - Shortwave narrowband total downwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    downwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total downwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in a downward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following

  6. ARM - Measurement - Shortwave narrowband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave narrowband total upwelling irradiance The rate at which radiant energy, in narrow bands of wavelengths shorter than approximately 4 {mu}m, passes through a horizontal unit area in an upward direction. Categories Radiometric Instruments The above measurement is considered scientifically relevant for the following instruments.

  7. Photoelectrochemistry, Electronic Structure, and Bandgap Sizes of Semiconducting Cu(I)-Niobates and Cu(I)-Tantalates

    SciTech Connect (OSTI)

    Maggard, Paul A.

    2013-11-14

    Semiconducting metal-oxides have remained of intense research interest owing to their potential for achieving efficient solar-driven photocatalytic reactions in aqueous solutions that occur as a result of their bandgap excitation. The photocatalytic reduction of water or carbon dioxide to generate hydrogen or hydrocarbon fuels, respectively, can be driven on p-type (photocathodic) electrodes with suitable band energies. However, metal-oxide semiconductors are typically difficult to dope as p-type with a high mobility of carriers. The supported research led to the discovery of new p-type Cu(I)-niobate and Cu(I)-tantalate film electrodes that can be prepared on FTO glass. New high-purity flux syntheses and the full structural determination of several Cu(I)-containing niobates and tantalates have been completed, as well as new investigations of their optical and photoelectrochemical properties and electronic structures via density-functional theory calculations. For example, CuNbO3, Cu5Ta11O30 and CuNb3O8 were prepared in high purity and their structures were characterized by both single-crystal and powder X-ray diffraction techniques. These two classes of Cu(I)-containing compounds exhibit optical bandgap sizes ranging from ~1.3 eV to ~2.6 eV. Photoelectrochemical measurements of these compounds show strong photon-driven cathodic currents that confirm the p-type semiconductor behavior of CuNbO3, CuNb3O8, and Cu5Ta11O30. Incident-photon-to-current efficiencies are measured that approach greater than ~1%. Electronic-structure calculations based on density functional theory reveal the visible-light absorption stems from a nearly-direct bandgap transition involving a copper-to-niobium or tantalum (d10 to d0) charge-transfer excitations.

  8. National Security, Weapons Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security, Weapons Science National Security, Weapons Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. CoMuEx» Explosives Center» Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) The Dual-Axis Radiographic Hydrodynamic Test Facility at Los Alamos National Laboratory is part of the DOE's stockpile stewardship

  9. Foreign-national Investigators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    foreign national investigators Foreign-national Investigators Foreign National Investigators must have access to B174 shown on their badge. Foreign National Investigators must notify Beth Mariotti by e-mail of their first intended presence in B174. By September 2009, it is expected that there will be no restrictions on computer use by Foreign National Investigators at JLF. However, LLNL prohibits the use of personally-owned computers on-site

  10. Structure and electrochemical properties of nanometer Cu substituted ?-nickel hydroxide

    SciTech Connect (OSTI)

    Bao, Jie; Zhu, Yanjuan; Zhang, Zhongju; Xu, Qingsheng; Zhao, Weiren; Chen, Jian; Zhang, Wei; Han, Quanyong

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ? Cu substituted ?-nickel hydroxide was prepared by ultrasonic assisted precipitation. ? The XRD peaks are anisotropic broadening. ? The electrode for 0.9 wt.% Cu has the highest capacity of 310 mAh/g at 0.2 C. -- Abstract: Nanometer Cu-substituted ?-nickel hydroxide was synthesized by means of ultrasonic-assisted precipitation. Particle size distribution (PSD) measurement, X-ray diffraction (XRD), and high-resolution transmission electron microscope (HR-TEM) were used to characterize the physical properties of the synthesized samples. The results indicate that the average particle size of the samples is about 96110 nm and the XRD diffraction peaks are anisotropic broadening. The crystal grains are mainly polycrystal structure with columnar or needle-like morphology, containing many defects. With increase of Cu content, the shape of primary particles transform from columnar to needle-like. The influences of doping amounts of Cu on the electrochemical performance were investigated through constant current charge/discharge and cyclic voltammetric measurements. The specific capacity increases initially and then decreases with increasing Cu-doping ratio, the electrode C containing 0.9 wt.% Cu shows the maximum discharge capacity of 310 mAh/g at 0.2 C, and it has the lowest charging voltage, higher discharge voltage plateau, better cycle performance and larger proton diffusion coefficient than the other electrodes.

  11. Argonne National Laboratory | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Argonne National Laboratory First-of-its-Kind NNSA Capability to Support Study of Materials at Extreme Conditions for Stockpile Stewardship WASHINGTON - A new first-of-its-kind-worldwide research capability will help unravel the mysteries of material behavior at extreme conditions and short time scales in support of the Department of Energy's National Nuclear Security Administration's (DOE/NNSA's) vital

  12. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Defense Systems & Assessments: Accomplishments Accomplishments About Defense Systems & Assessments Program Areas Accomplishments Archives Cybersecurity Programs Accomplishments Protecting the nation Sandia lasers test and calibrate sensors on U.S. satellites Sandia's scientists and engineers have a significant impact on national security and continually deliver results, including these noteworthy successes from fiscal year 2012: AHW Launch Advanced Hypersonic Weapon test flight

  13. National Supplemental Screening Program | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Supplemental Screening Program The National Supplemental Screening Program (NSSP) offers medical screenings at no charge for former U.S. Department of Energy (DOE) site workers who may have been exposed to hazardous substances at work. For more information, see the documents below. PDF icon Retiree_Benefits_NSSPbrochure.pdf PDF icon Retiree_Benefits_newtest.pdf PDF icon Retiree_Benefits_NSSPemployees

  14. sandia national labotartory | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    sandia national labotartory Sandia National Laboratory Sandia Field Office Contact the Field Office Contract Administration & Business Management Emergency Information Facilities & Projects Nuclear Operations Environment, Safety & Health Public Affairs Safeguards & Security Performance and Quality Assurance Programs NEPA Reading Room

  15. Table 6a. Total Electricity Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption...

  16. Coupled skyrmion sublattices in Cu2OSeO3

    SciTech Connect (OSTI)

    Langner, M.C.; Roy,, S.; Mishra, S. K.; Lee, J. C. T.; Shi,, X. W.; Hossain, M. A.; Chuang, Y.-D.; Seki, S.; Tokura, Y.; Kevan, S. D.; Schoenlein, R. W.

    2014-04-18

    We report the observation of a skyrmion lattice in the chiral multiferroic insulator Cu2OSeO3 using Cu L3-edge resonant soft x-ray diffraction. We observe the unexpected existence of two distinct skyrmion sub-lattices that arise from inequivalent Cu sites with chemically identical coordination numbers but different magnetically active orbitals . The skyrmion sublattices are rotated with respect to each other implying a long wavelength modulation of the lattice. The modulation vector is controlled with an applied magnetic field, associating this Moir'e-like phase with a continuous phase transition. Our findings will open a new class of science involving manipulation of quantum topological states.

  17. Manipulating Stress in Cu/low-k Dielectric Nanocomposites

    SciTech Connect (OSTI)

    C Murray; P Besser; E Ryan; J Jordan-Sweet

    2011-12-31

    The interaction of x-rays with organic dielectric materials, which alters their mechanical properties, affects values of stress generated within encapsulated Cu structures. In particular, the evolution of stress within submicron Cu interconnect structures encapsulated by an organosilicate glass can be investigated in situ using synchrotron-based x-ray diffraction. The overall geometry of the composite, along with the amount of irradiation, dictates the change in stress of the Cu features. A quantitative comparison of these findings to mechanical modeling results reveals two modes of modification within the dielectric film: a densification that changes the effective eigenstrain followed by an increase in elastic modulus.

  18. ARM - Measurement - Shortwave broadband total upwelling irradiance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    upwelling irradiance ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Shortwave broadband total upwelling irradiance The rate at which radiant energy, at a wavelength between 0.4 and 4 {mu}m, is being emitted upwards into a radiation field and transferred across a surface area (real or imaginary) in a hemisphere of directions. Categories Radiometric Instruments The above measurement is considered

  19. Total Adjusted Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 55,664,448 58,258,830 59,769,444 57,512,994 58,675,008 61,890,990 1984-2014 East Coast (PADD 1) 18,219,180 17,965,794 17,864,868 16,754,388

  20. Total Adjusted Sales of Residual Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Commercial Industrial Oil Company Electric Power Vessel Bunkering Military All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 7,835,436 8,203,062 7,068,306 5,668,530 4,883,466 3,942,750 1984-2014 East Coast (PADD 1) 3,339,162 3,359,265 2,667,576 1,906,700 1,699,418 1,393,068 1984-2014 New England (PADD 1A) 318,184

  1. Total Sales of Distillate Fuel Oil

    U.S. Energy Information Administration (EIA) Indexed Site

    End Use: Total Residential Commercial Industrial Oil Company Farm Electric Power Railroad Vessel Bunkering On-Highway Military Off-Highway All Other Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: End Use Area 2009 2010 2011 2012 2013 2014 View History U.S. 54,100,092 56,093,645 57,082,558 57,020,840 58,107,155 60,827,930 1984-2014 East Coast (PADD 1) 17,821,973 18,136,965 17,757,005 17,382,566

  2. Physical Inventory Listing NRC 742cu

    National Nuclear Security Administration (NNSA)

    EXAMPLE 4 *** Company Name RIS 09/30/2008 A 864 0 0 90 J 1 1 A 864 0 0 90 J 2 2 1* 1* E4 E2 E1 864 0 90 J 3 2 A 0 4 *Reporting itemized inventory Total U U-235 E1 = 0.4 0.001 E2 = 0.4 0.11 E4 = 0.4 0.39 Total: 1.2 0.501

  3. Role of Cu-Ion Doping in Cu-α-MnO2 Nanowire Electrocatalysts for the Oxygen Reduction Reaction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Davis, Danae J.; Lambert, Timothy N.; Vigil, Julian A.; Rodriguez, Mark A.; Brumbach, Michael T.; Coker, Eric N.; Limmer, Steven J.

    2014-07-09

    The role of Cu-ion doping in α-MnO2 electrocatalysts for the oxygen reduction reaction in alkaline electrolyte was investigated. Copper doped α-MnO2 nanowires (Cu-α-MnO2) were prepared with varying amounts of Cu2+ using a solvothermal method. The electrocatalytic dataindicates that Cu-α-MnO2 nanowires have higher terminal current densities, enhanced kinetic rate constants, and improved charge transfer resistances that trend with Cu-content, exceeding values attained by α-MnO2 alone. The observed improvement in catalytic behavior correlates with an increase in Mn3+ content for the Cu-α-MnO2 nanowires. The Mn3+/Mn4+ couple is themediator for the rate-limiting redox driven O2-/OH- exchange. It is proposed that O2 adsorbs viaanmore » axial site (the eg orbital on the Mn3+ d4 ion) at the surface, or at edge defects, of the nanowireand that the increase in covalent nature of the nanowire with Cu-ion doping leads to stabilization of O2 adsorbates and faster rates of reduction. This work is applicable to other manganese oxide electrocatalysts and shows for the first time there is a correlation for manganese oxides between electrocatalytic activity for the ORR in alkaline electrolyte and an increase in Mn3+ character of the oxide.« less

  4. Total Ore Processing Integration and Management

    SciTech Connect (OSTI)

    Leslie Gertsch

    2006-01-30

    This report outlines the technical progress achieved for project DE-FC26-03NT41785 (Total Ore Processing Integration and Management) during the period 01 October through 31 December of 2005. Graphical analysis of blast patterns according to drill monitor data is continuing. Multiple linear regression analysis of 16 mine and mill variables (powder factor, two modeled size fractions, liberation index, predicted grind, total crude Fe, Satmagan Fe, sat ratio, DSC, geologic blend, ambient temperature, cobbing hours, feeder plugs, and percent feeder run time-of-mill time) indicates that December variations in plant performance are generally predictable (Figure 1). The outlier on December 28th coincides with low cobbing availability and equipment downtime. Mill productivity appeared to be most influenced, as usual, by ore quality as indicated by the liberation index--the higher the liberation index, the lower the throughput. The upcoming quarter will be concerned with wrapping up the work in progress, such as the detailed statistical analyses, and writing a final report. Hibtac Mine engineers are evaluating neural network software to determine its utility for modeling, and eventually predicting, mill throughput.

  5. Metallic glass alloys of Zr, Ti, Cu and Ni

    DOE Patents [OSTI]

    Lin, X.; Peker, A.; Johnson, W.L.

    1997-04-08

    At least quaternary alloys form metallic glass upon cooling below the glass transition temperature at a rate less than 10{sup 3} K/s. Such alloys comprise titanium from 19 to 41 atomic percent, an early transition metal (ETM) from 4 to 21 atomic percent and copper plus a late transition metal (LTM) from 49 to 64 atomic percent. The ETM comprises zirconium and/or hafnium. The LTM comprises cobalt and/or nickel. The composition is further constrained such that the product of the copper plus LTM times the atomic proportion of LTM relative to the copper is from 2 to 14. The atomic percentage of ETM is less than 10 when the atomic percentage of titanium is as high as 41, and may be as large as 21 when the atomic percentage of titanium is as low as 24. Furthermore, when the total of copper and LTM are low, the amount of LTM present must be further limited. Another group of glass forming alloys has the formula (ETM{sub 1{minus}x}Ti{sub x}){sub a} Cu{sub b} (Ni{sub 1{minus}y}Co{sub y}){sub c} wherein x is from 0.1 to 0.3, y{center_dot}c is from 0 to 18, a is from 47 to 67, b is from 8 to 42, and c is from 4 to 37. This definition of the alloys has additional constraints on the range of copper content, b. 2 figs.

  6. From nGy to MGy - New dosimetry with LiF:Mg,Cu,P thermoluminescence detectors

    SciTech Connect (OSTI)

    Obryk, Barbara

    2013-05-06

    One of the well known advantages of thermoluminescence (TL) detectors made of lithium fluoride doped with magnesium, copper and phosphorus (LiF:Mg,Cu,P) is their very high sensitivity to ionizing radiation. LiF:Mg,Cu,P detectors enable measurements of radiation doses from tens of nanograys up to a few kilograys, when the total saturation of the signal of the so-called main dosimetric peak occurs. Only recently, unprecedented high-temperature emission of LiF detectors heated to temperatures up to 600 Degree-Sign C, was observed after exposures to radiation doses ranging from 1 kGy to 1 MGy. For quantification of the glow-curve shape changes of LiF:Mg,Cu,P detectors in this range of doses and determination of the absorbed dose, the Ultra-High Temperature Ratio coefficient (UHTR) was defined. This newly established dosimetric method was tested in a range of radiation qualities, such as gamma radiation, electron and proton beams, thermal neutron fields and high-energy mixed fields around the SPS and PS accelerators at CERN. The new method for ultra-high dose range monitoring with a single LiF:Mg,Cu,P detector, which is capable of covering at least twelve orders of magnitude of doses, can be used for dosimetry at high energy accelerators, thermonuclear fusion technology facilities and has great potential for accident dosimetry in particular. A number of dosimetric sets with LiF:Mg,Cu,P detectors are currently installed around the LHC at CERN.

  7. Crystallization of Zr2PdxCu(1-x) and Zr2NixCu(1-x) Metallic Glass

    SciTech Connect (OSTI)

    Min Xu

    2008-08-18

    One interesting aspect of rretallic glasses is the numerous instances of the deviation of the phase selection from the amorphous state to thermodynamically stable phases during the crystallization process. Their devitrification pathways allow us to study the relationship between the original amorphous structure and their crystalline counter parts. Among the various factors of phase selections, size and electronic effects have been most extensively studied. Elucidating the phase selection process of a glassy alloy will be helpful to fill in the puzzle of the changes from disordered to ordered structures. In this thesis, Two model Zr{sub 2}Pd{sub x}Cu{sub (1-x)} and Zr{sub 2}Ni{sub x}Cu{sub (1-x)} (x = 0, 0.25, 0.5, 0.75 and 1) glassy systems were investigated since: (1) All of the samples can be made into a homogenous metallic glass; (2) The atomic radii differ from Pd to Cu is by 11%, while Ni has nearly the identical atomic size compare to Cu. Moreover, Pd and Ni differ by only one valence electron from Cu. Thus, these systems are ideal to test the idea of the effects of electronic structure and size factors; (3) The small number of components in these pseudo binary systems readily lend themselves to theoretical modeling. Using high temperature X-ray diffraction {HTXRD) and thermal analysis, topological, size, electronic, bond and chemical distribution factors on crystallization selections in Zr{sub 2}Pd{sub x}Cu{sub (1-x)} and Zr{sub 2}Ni{sub x}Cu{sub (1-x)} metallic glass have been explored. All Zr{sub 2}Pd{sub x}Cu{sub (1-x)} compositions share the same Cu11b phase with different pathways of meta-stable, icosahedral quasicrystalline phase (i-phase), and C16 phase formations. The quasicrystal phase formation is topologically related to the increasing icosahedral short range order (SRO) with Pd content in Zr{sub 2}Pd{sub x}Cu{sub (1·x)} system. Meta-stable C16 phase is competitive with C11b phase at x = 0.5, which is dominated by electronic structure rather than

  8. Engineer, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Engineer, Sandia National Laboratories Sandra Begay-Campbell Sandra Begay-Campbell Ely S. Parker Award Sandra Begay-Campbell, a Sandia National Laboratories engineer and a member of the Navajo Nation, was selected for the prestigious Ely S. Parker Award by the American Indian Science and Engineering Society at an honors banquet Oct. 31 in Portland, Ore. Begay-Campbell, who has worked at Sandia for 17 years and is a principal member of the technical staff, received the

  9. National Energy Education Summit

    Broader source: Energy.gov [DOE]

    The National Energy Education Summit is organized by the Council of Energy Research and Education Leaders (CEREL) and will serve as a first-of-its-kind national forum for energy educators, subject...

  10. Sandia National Laboratories

    National Nuclear Security Administration (NNSA)

    feet underground.

    Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge http:www.nnsa.energy.govblogbay-area-national-labs-team-tackle-...

  11. Nevada National Security Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 24, 2014 Cultural Artifacts Cross Eras at the Nevada National Security Site It is well known that the Nevada National Security Site (NNSS) is home to many artifacts from the ...

  12. Nevada National Security Site

    Office of Energy Efficiency and Renewable Energy (EERE)

    HISTORYIn 1950, President Truman established what is now known as the Nevada National Security Site (NNSS) to perform nuclear weapons testing activities.  In support of national defense initiatives...

  13. National Geothermal Summit

    Broader source: Energy.gov [DOE]

    The Geothermal Energy Association (GEA) will be holding it’s fifth annual National Geothermal Summit on June 3-4 at the Grand Sierra Resort and Casino in Reno, NV. The National Geothermal Summit is...

  14. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    participates in National Lab Day to increase awareness of science across the nation April 29, 2010 Events planned May 4-5 at Bradbury Science Museum LOS ALAMOS, New Mexico, April...

  15. 2012 National Electricity Forum

    Broader source: Energy.gov [DOE]

    At the 2012 National Electricity Forum, held February 8-9, 2012 and jointly organized by DOE's Office of Electricity Delivery & Energy Reliability (OE) and the National Association of...

  16. nevada national security site

    National Nuclear Security Administration (NNSA)

    7%2A en Nevada National Security Site operator recognized for green fleet http:www.nnsa.energy.govblognevada-national-security-site-operator-recognized-green-fleet

    The...

  17. National Environmental Research Parks

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The National Environmental Research Parks are outdoor laboratories that provide opportunities for environmental studies on protected lands that act as buffers around Department of Energy (DOE) facilities. The research parks are used to evaluate the environmental consequences of energy use and development as well as the strategies to mitigate these effects. They are also used to demonstrate possible environmental and land-use options. The seven parks are: Fermilab National Environmental Research Park; Hanford National Environmental Research Park; Idaho National Environmental Research Park; Los Alamos National Environmental Research Park; Nevada National Environmental Research Park; Oak Ridge National Environmental Research Park; and Savannah River National Environmental Research Park. This document gives an overview of the events that led to the creation of the research parks. Its main purpose is to summarize key points about each park, including ecological research, geological characteristics, facilities, and available databases.

  18. Improving properties of Mg with AlCu additions

    SciTech Connect (OSTI)

    Rashad, Muhammad; Pan, Fusheng; Asif, Muhammad; Hussain, Shahid; Saleem, Muhammad

    2014-09-15

    The present work reports improvement in tensile properties of the Mg matrix reinforced with micron-sized copperaluminum particulate hybrids. The AlCu particulate hybrids were incorporated into the Mg matrix through powder metallurgy method. The synthesized alloys exhibited homogeneously dispersed Mg{sub 2}Cu particles in the matrix, therefore leading to a 110% increase in yield strength (221 MPa) and a 72% enhancement in ultimate tensile strength (284 MPa) by addition of 1.0 wt.%Al0.6 wt.%Cu particle hybrids. Optical microscopy, scanning election microscopy, transmission electron microscopy and X-ray diffraction were used to investigate the microstructure and intermetallic phases of the synthesized alloys. - Highlights: Mg matrix is reinforced with AlCu particulate hybrids. Powder metallurgic method is used to fabricate the alloys. Tensile strength and ductility were increased simultaneously.

  19. U.S. Department of Commerce National Technical Information Service

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... LLW MLLW (on-site) 0 2 1 34 9,986 Totals 1,041 821,188 ... EN 9 GENERAL ATOMICS, CA BG 10 IDAHO NATIONAL LABORATORY, ... of Federal Regulations (CFR), "Transportation," and are ...

  20. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated research facilities. As a U.S. Department of Energy national laboratory, Argonne offers access to the facilities listed below through a variety of arrangements. Advanced Powertrain Research Facility Center for Transportation Research Materials Engineering Research Facility Distributed Energy Research Center

  1. Seneca Nation- 2007 Project

    Broader source: Energy.gov [DOE]

    On the three territories of the Seneca Nation, there exist opportunities for energy development from both renewable and nonrenewable resources.

  2. National Renewable Energy Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribal Energy Program Review Roger Taylor Manger State, Local & Tribal Integrated Application Group National Renewable Energy Laboratory November 5-8, 2007 Major DOE National Laboratories Brookhaven Brookhaven Pacific Northwest Pacific Northwest Lawrence Berkeley Lawrence Berkeley Lawrence Livermore Lawrence Livermore h h h h h INEL INEL National Renewable National Renewable Energy Laboratory Energy Laboratory Los Alamos Los Alamos Sandia Sandia Argonne Argonne Oak Ridge Oak Ridge Defense

  3. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientists will codirect $14.5 million National Center for Systems Biology July 28, 2009 Lab contributes computer modeling, antibody engineering capabilities Los Alamos, New Mexico, July 28, 2009- Los Alamos National Laboratory scientists will codirect a new National Center for Systems Biology located at the University of New Mexico in Albuquerque. The new Spatiotemporal Modeling Center (STMC) is funded by a $14.5 million, five- year grant from the National Institute for General Medical Sciences

  4. National Hydropower Map

    Broader source: Energy.gov [DOE]

    High-resolution map produced by Oak Ridge National Laboratory showing hydropower resources throughout the United States.

  5. Management | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Sciences & Engineering Focus: Understanding & Control of Interfacial Processes Web Site Michael Thackeray Michael Thackeray (Deputy Director) Argonne National Laboratory...

  6. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    --Environmental policy & planning --Geochemistry ... -Decision science --Emergency & disaster management ... the nation to solve society's complex scientific problems. ...

  7. National Geothermal Summit

    Broader source: Energy.gov [DOE]

    The Geothermal Energy Association hosts its annual National Geothermal Summit in Reno, Nevada, June 3-4, 2015.

  8. Alamos National Laboratory's 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    .1 million pledged during Los Alamos National Laboratory's 2013 employee giving campaign December 17, 2012 LOS ALAMOS, NEW MEXICO, December 17, 2012-Los Alamos National Laboratory employees have again demonstrated concern for their communities and those in need by pledging a record $2.13 million to United Way and other eligible nonprofit programs. Los Alamos National Security, LLC, which manages and operates the Laboratory for the National Nuclear Security Administration, plans to prorate its $1

  9. Alamos National Security, LLC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eleven nonprofit organizations receive community giving grants from Los Alamos National Security, LLC December 15, 2009 Los Alamos, New Mexico, December 15, 2009- Eleven local nonprofit organizations with projects supported by Los Alamos National Laboratory employee volunteers received $75,000 in Community Giving grants from Los Alamos National Security, LLC, the company that manages the Lab for the National Nuclear Security Administration. The organizations are located in Los Alamos, Española,

  10. Photos | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -Arms control & nonproliferation --Research reactor conversion -Biometrics -Biotechnology for national security -Cyber security -Facility security -Decision science ...

  11. Videos | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -Arms control & nonproliferation --Research reactor conversion -Biometrics -Biotechnology for national security -Cyber security -Facility security -Decision science ...

  12. National SCADA Testbed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Photovoltaic Systems Evaluation Laboratory PV Regional ... Facility Geomechanics and Drilling Labs National ... Health Monitoring Offshore Wind High-Resolution ...

  13. A total risk assessment methodology for security assessment.

    SciTech Connect (OSTI)

    Aguilar, Richard; Pless, Daniel J.; Kaplan, Paul Garry; Silva, Consuelo Juanita; Rhea, Ronald Edward; Wyss, Gregory Dane; Conrad, Stephen Hamilton

    2009-06-01

    Sandia National Laboratories performed a two-year Laboratory Directed Research and Development project to develop a new collaborative risk assessment method to enable decision makers to fully consider the interrelationships between threat, vulnerability, and consequence. A five-step Total Risk Assessment Methodology was developed to enable interdisciplinary collaborative risk assessment by experts from these disciplines. The objective of this process is promote effective risk management by enabling analysts to identify scenarios that are simultaneously achievable by an adversary, desirable to the adversary, and of concern to the system owner or to society. The basic steps are risk identification, collaborative scenario refinement and evaluation, scenario cohort identification and risk ranking, threat chain mitigation analysis, and residual risk assessment. The method is highly iterative, especially with regard to scenario refinement and evaluation. The Total Risk Assessment Methodology includes objective consideration of relative attack likelihood instead of subjective expert judgment. The 'probability of attack' is not computed, but the relative likelihood for each scenario is assessed through identifying and analyzing scenario cohort groups, which are groups of scenarios with comparable qualities to the scenario being analyzed at both this and other targets. Scenarios for the target under consideration and other targets are placed into cohort groups under an established ranking process that reflects the following three factors: known targeting, achievable consequences, and the resources required for an adversary to have a high likelihood of success. The development of these target cohort groups implements, mathematically, the idea that adversaries are actively choosing among possible attack scenarios and avoiding scenarios that would be significantly suboptimal to their objectives. An adversary who can choose among only a few comparable targets and scenarios (a

  14. Site Performance Measure Unit Lifecycle Total Estimate Pre-2016...

    Office of Environmental Management (EM)

    Number of Release Sites 443 443 443 443 Brookhaven National Laboratory Nuclear Facility Completions Number of Facilities 1 1 2 2 Brookhaven National Laboratory Radioactive Facility ...

  15. lasers. National Ignition Facility | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    target shot of fiscal year 2015 WASHINGTON - Last week, the National Ignition Facility (NIF) fired its 300th laser target shot in fiscal year (FY) 2015, meeting the year's goal...

  16. Total Supplemental Supply of Natural Gas

    U.S. Energy Information Administration (EIA) Indexed Site

    Product: Total Supplemental Supply Synthetic Propane-Air Refinery Gas Biomass Other Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Product Area 2010 2011 2012 2013 2014 2015 View History U.S. 64,575 60,088 61,366 54,650 59,528 58,555 1980-2015 Alabama 0 0 0 0 0 1967-2014 Alaska 0 0 0 0 0 2004-2014 Arizona 0 0 0 0 0 1967-2014 Arkansas 0 0 0 0 0 1967-2014 Colorado 5,148 4,268 4,412 4,077 4,120

  17. Total Ore Processing Integration and Management

    SciTech Connect (OSTI)

    Leslie Gertsch; Richard Gertsch

    2006-01-30

    This report outlines the technical progress achieved for project DE-FC26-03NT41785 (Total Ore Processing Integration and Management) during the period 01 July through 30 September of 2005. This ninth quarterly report discusses the activities of the project team during the period 1 July through 30 September 2005. Richard Gertsch's unexpected death due to natural causes while in Minnesota to work on this project has temporarily slowed progress. Statistical analysis of the Minntac Mine data set for late 2004 is continuing. Preliminary results raised several questions that could be amenable to further study. Detailed geotechnical characterization is being applied to improve the predictability of mill and agglomerator performance at Hibtac Mine.

  18. State Residential Commercial Industrial Transportation Total

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Megawatthours) (Data from forms EIA-861- schedules 4A, 4B, 4D, EIA-861S and EIA-861U) State Residential Commercial Industrial Transportation Total New England 47,211,525 53,107,038 19,107,433 557,463 119,983,459 Connecticut 12,777,579 12,893,531 3,514,798 168,552 29,354,460 Maine 4,660,605 3,984,570 3,357,486 0 12,002,661 Massachusetts 20,071,160 26,076,208 7,960,941 360,983 54,469,292 New Hampshire 4,510,487 4,464,530 1,969,064 0 10,944,081 Rhode Island 3,070,347 3,657,679 887,150 27,928

  19. Characteristics of Cu stabilized Nb3Al strands with low Cu ratio

    SciTech Connect (OSTI)

    Kikuchi, A.; Yamada, R.; Barzi, E.; Kobayashi, M.; Lamm, M.; Nakagawa, K.; Sasaki, K.; Takeuchi, T.; Turrioni, D.; Zlobin, A.V.; /NIMC, Tsukuba /Fermilab /Hitachi, Tsuchiura Works /KEK, Tsukuba

    2008-12-01

    Characteristics of recently developed F4-Nb{sub 3}Al strand with low Cu ratio are described. The overall J{sub c} of the Nb{sub 3}Al strand could be easily increased by decreasing of the Cu ratio. Although the quench of a pulse-like voltage generation is usually observed in superconducting unstable conductor, the F4 strand with a low Cu ratio of 0.61 exhibited an ordinary critical transition of gradual voltage generation. The F4 strand does not have magnetic instabilities at 4.2 K because of the tantalum interfilament matrix. The overall J{sub c} of the F4 strand achieved was 80-85% of the RRP strand. In the large mechanical stress above 100 MPa, the overall J{sub c} of the F4 strand might be comparable to that of high J{sub c} RRP-Nb{sub 3}Sn strands. The Rutherford cable with a high packing factor of 86.5% has been fabricated using F4 strands. The small racetrack magnet, SR07, was also fabricated by a 14 m F4 cable. The quench current, I{sub q}, of SR07 were obtained 22.4 kA at 4.5 K and 25.2 kA at 2.2 K. The tantalum matrix Nb{sub 3}Al strands are promising for the application of super-cooled high-field magnets as well as 4.2 K operation magnets.

  20. National SCADA Test Bed

    Broader source: Energy.gov [DOE]

    The National SCADA Test Bed (NSTB) is a one-of-a-kind national resource that draws on the integrated expertise and capabilities of the Argonne, Idaho, Lawrence Berkeley, Los Alamos, Oak Ridge, Pacific Northwest, and Sandia National Laboratories to address the cybersecurity challenges of energy delivery systems.

  1. Sandia National Laboratories | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Sandia National Laboratories Sandia employee dubbed a master at locking down NNSA's enterprise NNSA's primary missions include keeping dangerous materials out of the wrong hands while protecting and maintaining the nation's nuclear deterrent. It's no surprise, then, that NNSA's labs and sites employ the best experts available in security. At NNSA's Sandia... On Womens Equality Day, we celebrate NNSA's talented Women in STEM Sandia California hosts Military Academic Collaboration students Sandia

  2. Sandia National Laboratories | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Sandia National Laboratories NNSA's Sandia National Laboratories are responsible for the development, testing, and production of specialized nonnuclear components and quality assurance and systems engineering for all of the United States' nuclear weapons. Sandia has locations in Albuquerque, NM; Livermore, CA; Kauai, HI; and Tonopah, NV. The labs are operated by Sandia Corporation. Visit our website Z-Machine Z-Machine Related News Sandia employee dubbed a master at locking down

  3. Physicist, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Physicist, Lawrence Livermore National Laboratory Kennedy Reed Kennedy Reed July 2009 Presidential Award for Excellence in Science and Engineering Mentoring President Obama has named Lawrence Livermore National Laboratory physicist Kennedy Reed as a recipient of the prestigious Presidential Award for Excellence in Science and Engineering Mentoring. Reed is a theoretical physicist at the laboratory, conducting research on atomic collisions in high temperature

  4. Researcher, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Researcher, Lawrence Livermore National Laboratory Placeholder for Bruce Macintosh image Bruce Macintosh February 2010 AAAS Newcomb Cleveland Prize A Lawrence Livermore National Laboratory researcher's paper published in November 2008 is co-winner of this year's American Association for the Advancement of Science (AAAS) Newcomb Cleveland Prize. The Paper is one of two outstanding papers published in Science from June 1, 2008 through May 31, 2009. Bruce

  5. Researcher, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Researcher, Lawrence Livermore National Laboratory Placeholder for Mike Fitzgerald image Mike Fitzgerald February 2010 AAAS Newcomb Cleveland Prize A Lawrence Livermore National Laboratory researcher's paper published in November 2008 is co-winner of this year's American Association for the Advancement of Science (AAAS) Newcomb Cleveland Prize. The Paper is one of two outstanding papers published in Science from June 1, 2008 through May 31, 2009. Another

  6. Sandia National Laboratories | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Sandia National Laboratories Allison Davis Allison Davis October 2009 NNSA Defense Programs Award of Excellence Two individuals and nine teams received the NNSA Defense Programs Awards of Excellence at ceremonies this year at Sandia National Laboratories in New Mexico and California. The NNSA Defense Programs Awards of Excellence were created in the early 1980s to give special recognition to those at the laboratories and plants directly associated with the stockpile modernization

  7. Sandia National Laboratories | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Sandia National Laboratories Kevin Eklund Kevin Eklund May 2010 NNSA Defense Programs Awards of Excellence Two individuals and nine teams received the NNSA Defense Programs Awards of Excellence at ceremonies this year at Sandia National Laboratories in New Mexico and California. The NNSA Defense Programs Awards of Excellence were created in the early 1980s to give special recognition to those at the laboratories and plants directly associated with the stockpile modernization program.

  8. Lawrence Livermore National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Livermore National Laboratories NNSA, Air Force Complete Successful B61-12 Life Extension Program Instrumented Flight Tests WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) and United States Air Force completed eight successful B61-12 Life Extension Program (LEP) Vibration Fly Around/ Instrumented Measurement Vehicle (VFA/IMV) tests at Eglin Air Force Base and Edwards Air Force Base during July to

  9. Sandia National Laboratory | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Sandia National Laboratory NNSA's Sandia National Laboratories are responsible for the development, testing, and production of specialized nonnuclear components and quality assurance and systems engineering for all of the United States' nuclear weapons. Sandia has locations in Albuquerque, New Mexico; Livermore, California; Kauai, Hawaii; and Tonopah, Nevada. Sandia Field Office Contact the Field Office Contract Administration & Business Management Emergency Information Facilities

  10. Cu--Pd--M hydrogen separation membranes

    DOE Patents [OSTI]

    Do{hacek over }an, Omer N; Gao, Michael C; Young, Rongxiang Hu; Tafen, De Nyago

    2013-12-17

    The disclosure provides an H2 separation membrane comprised of an allow having the composition Cu.Sub.(100-x-y)Pd.sub.xM.sub.y, where x is from about 35 to about 50 atomic percent and where y is from greater than 0 to about 20 atomic percent, and where M consists of magnesium, yttrium, aluminum, titanium, lanthanum, or combinations thereof. The M elements act as strong stabilizers for the B2 phase of the allow, and extend the critical temperature of the alloy for a given hydrogen concentration and pressure. Due to the phase stabilization and the greater temperature range over which a B2 phase can be maintained, the allow is well suited for service as a H2 separation membrane, particularly when applicable conditions are established or cycled above about 600.degree. C. over the course of expected operations. In certain embodiments, the B2 phase comprises at least 60 estimated volume percent of the allow at a steady-state temperature of 400.degree. C. The B2 phase stability is experimentally validated through HT-XRD.

  11. FY 2012 Sandia Corporation PER Summary | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Sandia Corporation PER Summary SUMMARY OF FY 2012 SANDIA CORPORATION AWARD FEE DETERMINATION Total Available Fee Total Fee Earned % $27,799,114 $27,093,336 97.5% Sandia Corporation, the management and operating contractor for Sandia National Laboratories, earned a "Very Good" rating in Program and Institutional Management and Business, a "Good" in Operations, and 97.5 percent of the possible incentive fee from the National Nuclear Security

  12. Comparison of plasma temperature and electron density on nanosecond laser ablation of Cu and nano-Cu

    SciTech Connect (OSTI)

    Chen, Anmin; Jiang, Yuanfei; Wang, Tingfeng; Shao, Junfeng; Jin, Mingxing

    2015-03-15

    Laser-induced breakdown spectroscopy is performed through the collection of spectra by spectral detection equipment at different delay times and distances from targets composed of Cu and nano-Cu, which are ablated using a Nd:YAG laser (532 nm, 10 ns, 10 Hz) in our experiments. The measured wavelength range is from 475 nm to 525 nm. Using the local thermodynamic equilibrium model, we analyze the characteristics of the plasma temperature and the electron number density for different distances between the target surface and the lens. The results show that when compared with the nano-Cu plasma case, the temperature of the Cu plasma is higher, while its electron number density is lower.

  13. Growth, characterization and electrochemical properties of hierarchical CuO nanostructures for supercapacitor applications

    SciTech Connect (OSTI)

    Krishnamoorthy, Karthikeyan; Kim, Sang-Jae

    2013-09-01

    Graphical abstract: - Highlights: Hierarchical CuO nanostructures were grown on Cu foil. Monoclinic phase of CuO was grown. XPS analysis revealed the presence of Cu(2p{sub 3/2}) and Cu(2p{sub 1/2}) on the surfaces. Specific capacitance of 94 F/g was achieved for the CuO using cyclic voltammetry. Impedance spectra show their pseudo capacitor applications. - Abstract: In this paper, we have investigated the electrochemical properties of hierarchical CuO nanostructures for pseudo-supercapacitor device applications. Moreover, the CuO nanostructures were formed on Cu substrate by in situ crystallization process. The as-grown CuO nanostructures were characterized using X-ray diffraction (XRD), Fourier transform-infra red spectroscopy (FT-IR), X-ray photoelectron spectroscopy and field emission-scanning electron microscope (FE-SEM) analysis. The XRD and FT-IR analysis confirm the formation of monoclinic CuO nanostructures. FE-SEM analysis shows the formation of leave like hierarchical structures of CuO with high uniformity and controlled density. The electrochemical analysis such as cyclic voltammetry and electrochemical impedance spectroscopy studies confirms the pseudo-capacitive behavior of the CuO nanostructures. Our experimental results suggest that CuO nanostructures will create promising applications of CuO toward pseudo-supercapacitors.

  14. Analysis of the structure, configuration, and sizing of Cu and Cu oxide nanoparticles generated by fs laser ablation of solid target in liquids

    SciTech Connect (OSTI)

    Santillan, J. M. J.; Videla, F. A.; Schinca, D. C.; Scaffardi, L. B.; Fernandez van Raap, M. B.

    2013-04-07

    We report on the analysis of structure, configuration, and sizing of Cu and Cu oxide nanoparticles (Nps) produced by femtosecond (fs) laser ablation of solid copper target in liquids. Laser pulse energy ranged between 500 {mu}J and 50 {mu}J. Water and acetone were used to produce the colloidal suspensions. The study was performed through optical extinction spectroscopy using Mie theory to fit the full experimental spectra, considering free and bound electrons size dependent contributions to the metal dielectric function. Raman spectroscopy and AFM technique were also used to characterize the sample. Considering the possible oxidation of copper during the fabrication process, two species (Cu and Cu{sub 2}O) arranged in two structures (bare core or core-shell) and in two configuration types (Cu-Cu{sub 2}O or Cu{sub 2}O-Cu) were considered for the fitting depending on the laser pulse energy and the surrounding media. For water at high energy, it can be observed that a Cu-Cu{sub 2}O configuration fits the experimental spectra of the colloidal suspension, while for decreasing energy and below a certain threshold, a Cu{sub 2}O-Cu configuration needs to be included for the optimum fit. Both species coexist for energies below 170 {mu}J for water. On the other hand, for acetone at high energy, optimum fit of the full spectrum suggests the presence a bimodal Cu-Cu{sub 2}O core-shell Nps distribution while for decreasing energy and below a 70 {mu}J threshold energy value, Cu{sub 2}O-Cu core-shell Nps must be included, together with the former configuration, for the fit of the full spectrum. We discuss possible reasons for the changes in the structural configuration of the core-shell Nps.

  15. National Laboratories and Internatioanl Partnering

    SciTech Connect (OSTI)

    Eagan, R.J.; Gauster, W.B.; Hartley, D.L.; Jones, G.J.

    1998-12-07

    For nearly fifty years the US held a dominant position in research and development in the free world. The situation has changed dramatically in the last decade. Countries around the world realize that to foster sustainable economic growth, they must build and maintain a foundation in science and technology. The time in which a country could base its gross national product solely on extraction of raw materials or on people-intensive manufacturing is drawing to a close. The funding for research and development has been growing in the rest of the world, while US expenditures have not kept pace. In 1961, the United States funded 71 `?40 of the world's R&D. It is estimated that the US contribution to research and development fimding today has reached the 3 3o/0 level, and will drop to 26o/0 of the world's total by 2003.1 In 1981 US government spending per capita on non-defense research and development was nearly fifty percent above our major competitors; by 2002 it is projected to be f@ percent below them.2 This trend has a profound impact on how research and development institutions in the United States plan for their future technical growth. Sandia National Laboratories, as one of the largest US-government tided research establishments, has been watching this trend for some time. %ndi~ focusing on the Laboratories' missions in nuclear weapons and related defense systems, energy security, environmental integrity, and emerging national challenges, is committed to bringing the best in world-class technology to bear on the nation's problems. We realize maintaining our state-of-the-art technolo=~ base requires we look not only to domestic sources in universities, industries and other laboratories, but also to sources overseas. The realization that we must be "worldwide gatherers of technology" has led Sandia National Laboratories to consider the question of international partnering in some detaiI. As a national laboratory with a national security mission we are well aware

  16. Los Alamos National Security, LLC Los Alamos National Laboratory...

    Office of Environmental Management (EM)

    Security, LLC Los Alamos National Laboratory (LANL) Voluntary Protection Program (VPP) Assessment Los Alamos National Security, LLC Los Alamos National Laboratory (LANL) Voluntary...

  17. Los Alamos National Laboratory participates in National Lab Day...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Day Los Alamos National Laboratory participates in National Lab Day to increase awareness of science across the nation Connecting teachers and students with scientists,...

  18. NNSA National Labs, Y-12 Earn 11 R&D 100 Awards | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex National Labs, Y-12 ... NNSA National Labs, Y-12 Earn 11 R&D 100 Awards Posted: July 10, 2013 - 5:31pm WASHINGTON, D.C. - Four National Nuclear Security Administration (NNSA) sites - Lawrence Livermore (LLNL), Los Alamos (LANL) and Sandia national laboratories, along with the Y-12 National Security Site - have received a total of 11 of R&D Magazine's 2013 R&D 100 Awards. The awards recognize a variety of technologies created by researchers, scientists and engineers from

  19. Magnetic dipole moments of {sup 58}Cu and {sup 59}Cu by in-source laser spectroscopy

    SciTech Connect (OSTI)

    Stone, N. J.; Koester, U.; Stone, J. Rikovska; Fedorov, D. V.; Fedoseyev, V. N.; Flanagan, K. T.; Hass, M.; Lakshmi, S.

    2008-06-15

    Online measurements of the magnetic dipole moments and isotope shifts of {sup 58}Cu and {sup 59}Cu by the in-source laser spectroscopy method are reported. The results for the magnetic moments are {mu} ({sup 58}Cu) =+0.52(8) {mu}{sub N},{mu}({sup 59}Cu) =+1.84(3) {mu}{sub N} and for the isotope shifts {delta}{nu}{sup 59,65}=1.72(22) GHz and {delta}{nu}{sup 58,65}=1.99(30) GHz in the transition from the 3d{sup 10}4s {sup 2}S{sub 1/2} ground state to the 3d{sup 10}4p {sup 2}P{sub 1/2} state in Cu I. The magnetic moment of {sup 58}Cu is discussed in the context of the strength of the subshell closure at {sup 56}Ni, additivity rules and large-scale shell model calculations.

  20. Total least squares for anomalous change detection

    SciTech Connect (OSTI)

    Theiler, James P; Matsekh, Anna M

    2010-01-01

    A family of difference-based anomalous change detection algorithms is derived from a total least squares (TLSQ) framework. This provides an alternative to the well-known chronochrome algorithm, which is derived from ordinary least squares. In both cases, the most anomalous changes are identified with the pixels that exhibit the largest residuals with respect to the regression of the two images against each other. The family of TLSQ-based anomalous change detectors is shown to be equivalent to the subspace RX formulation for straight anomaly detection, but applied to the stacked space. However, this family is not invariant to linear coordinate transforms. On the other hand, whitened TLSQ is coordinate invariant, and furthermore it is shown to be equivalent to the optimized covariance equalization algorithm. What whitened TLSQ offers, in addition to connecting with a common language the derivations of two of the most popular anomalous change detection algorithms - chronochrome and covariance equalization - is a generalization of these algorithms with the potential for better performance.

  1. Apparatus and method for quantitatively evaluating total fissile and total fertile nuclide content in samples

    DOE Patents [OSTI]

    Caldwell, John T.; Kunz, Walter E.; Cates, Michael R.; Franks, Larry A.

    1985-01-01

    Simultaneous photon and neutron interrogation of samples for the quantitative determination of total fissile nuclide and total fertile nuclide material present is made possible by the use of an electron accelerator. Prompt and delayed neutrons produced from resulting induced fissions are counted using a single detection system and allow the resolution of the contributions from each interrogating flux leading in turn to the quantitative determination sought. Detection limits for .sup.239 Pu are estimated to be about 3 mg using prompt fission neutrons and about 6 mg using delayed neutrons.

  2. New York Natural Gas % of Total Residential Deliveries (Percent...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    New York Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 ... Share of Total U.S. Natural Gas Residential Deliveries New York Share of Total U.S. ...

  3. New Mexico Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    New Mexico Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 ... Share of Total U.S. Natural Gas Residential Deliveries New Mexico Share of Total U.S. ...

  4. New Jersey Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    New Jersey Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 ... Share of Total U.S. Natural Gas Residential Deliveries New Jersey Share of Total U.S. ...

  5. Minnesota Natural Gas % of Total Residential Deliveries (Percent...

    Gasoline and Diesel Fuel Update (EIA)

    Minnesota Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 ... Share of Total U.S. Natural Gas Residential Deliveries Minnesota Share of Total U.S. ...

  6. Schneider National | Open Energy Information

    Open Energy Info (EERE)

    National Jump to: navigation, search Name: Schneider National Place: Denver, CO Website: www.schneidernational.com References: Schneider National1 Information About Partnership...

  7. cygnus | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    and operated with National Securities Technologies and Los Alamos National Laboratory (LANL) at the Nevada National Security Site (NNSS), has fired its 3,000th shot. Originally...

  8. ,"Crude Oil and Petroleum Products Total Stocks Stocks by Type...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Crude Oil and Petroleum Products Total Stocks Stocks ... AM" "Back to Contents","Data 1: Crude Oil and Petroleum Products Total Stocks Stocks ...

  9. Table 6b. Relative Standard Errors for Total Electricity Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    b. Relative Standard Errors for Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total...

  10. ARM: GRAMS: data from the total solar broadband radiometer (TBBR...

    Office of Scientific and Technical Information (OSTI)

    solar broadband radiometer (TBBR) Title: ARM: GRAMS: data from the total solar broadband radiometer (TBBR) GRAMS: data from the total solar broadband radiometer (TBBR) Authors: ...

  11. ARM: GRAMS: calibration information for the total solar broadband...

    Office of Scientific and Technical Information (OSTI)

    solar broadband radiometer (TBBR) Title: ARM: GRAMS: calibration information for the total solar broadband radiometer (TBBR) GRAMS: calibration information for the total solar ...

  12. Table 5a. Total District Heat Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total District Heat Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using District Heat (thousand) Total District Heat Consumption...

  13. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  14. Webtrends Archives by Fiscal Year — EERE Totals

    Office of Energy Efficiency and Renewable Energy (EERE)

    Historical EERE office total reports include only Webtrends archives by fiscal year. EERE total reports dating after FY11 can be accessed in EERE's Google Analytics account.

  15. New Jersey Natural Gas Total Consumption (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) New Jersey Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption New Jersey Natural Gas Consumption by End Use ...

  16. New York Natural Gas Total Consumption (Million Cubic Feet)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) New York Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption New York Natural Gas Consumption by End Use ...

  17. New Mexico Natural Gas Total Consumption (Million Cubic Feet...

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) New Mexico Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption New Mexico Natural Gas Consumption by End Use ...

  18. Estimation of Anisotoropy from Total Cross Section and Optical...

    Office of Scientific and Technical Information (OSTI)

    Conference: Estimation of Anisotoropy from Total Cross Section and Optical Model Citation Details In-Document Search Title: Estimation of Anisotoropy from Total Cross Section and ...

  19. West Virginia Natural Gas Total Consumption (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) West Virginia Natural Gas Total Consumption ... Referring Pages: Natural Gas Consumption West Virginia Natural Gas Consumption by End Use ...

  20. Virginia Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Virginia Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption Virginia Natural Gas Consumption by End Use ...

  1. NREL: Building America Total Quality Management - 2015 Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NREL: Building America Total Quality Management - 2015 Peer Review NREL: Building America Total Quality Management - 2015 Peer Review Presenter: Stacey Rothgeb, NREL View the ...

  2. ,"Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, ... to Contents","Data 1: Alaska (with Total Offshore) Natural Gas Liquids Lease Condensate, ...

  3. ,"Alaska (with Total Offshore) Coalbed Methane Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alaska (with Total Offshore) Coalbed Methane Proved Reserves ... to Contents","Data 1: Alaska (with Total Offshore) Coalbed Methane Proved Reserves ...

  4. ,"Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected ... to Contents","Data 1: Alaska (with Total Offshore) Natural Gas Plant Liquids, Expected ...

  5. ,"Alaska (with Total Offshore) Shale Proved Reserves (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Alaska (with Total Offshore) Shale Proved Reserves (Billion Cubic ... to Contents","Data 1: Alaska (with Total Offshore) Shale Proved Reserves (Billion Cubic ...

  6. Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Federal Offshore -- Gulf of Mexico Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 ...

  7. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  8. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  9. North Carolina Natural Gas Total Consumption (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) North Carolina Natural Gas Total Consumption ... Referring Pages: Natural Gas Consumption North Carolina Natural Gas Consumption by End Use ...

  10. North Dakota Natural Gas Total Consumption (Million Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) North Dakota Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption North Dakota Natural Gas Consumption by End Use ...

  11. Minnesota Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Minnesota Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption Minnesota Natural Gas Consumption by End Use ...

  12. ARM: GRAMS: data from the total direct diffuse radiometer (TDDR...

    Office of Scientific and Technical Information (OSTI)

    direct diffuse radiometer (TDDR) Title: ARM: GRAMS: data from the total direct diffuse radiometer (TDDR) GRAMS: data from the total direct diffuse radiometer (TDDR) Authors: ...

  13. ,"Texas Natural Gas Gross Withdrawals Total Offshore (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas Natural Gas Gross Withdrawals Total ... 7:03:02 AM" "Back to Contents","Data 1: Texas Natural Gas Gross Withdrawals Total ...

  14. Total lymphoid irradiation for multiple sclerosis

    SciTech Connect (OSTI)

    Devereux, C.K.; Vidaver, R.; Hafstein, M.P.; Zito, G.; Troiano, R.; Dowling, P.C.; Cook, S.D.

    1988-01-01

    Although chemical immunosuppression has been shown to benefit patients with chronic progressive multiple sclerosis (MS), it appears that chemotherapy has an appreciable oncogenic potential in patients with multiple sclerosis. Accordingly, we developed a modified total lymphoid irradiation (TLI) regimen designed to reduce toxicity and applied it to a randomized double blind trial of TLI or sham irradiation in MS. Standard TLI regimens were modified to reduce dose to 1,980 rad, lowering the superior mantle margin to midway between the thyroid cartilage and angle of the mandible (to avert xerostomia) and the lower margin of the mantle field to the inferior margin of L1 (to reduce gastrointestinal toxicity by dividing abdominal radiation between mantle and inverted Y), limiting spinal cord dose to 1,000 rad by custom-made spine blocks in the mantle and upper 2 cm of inverted Y fields, and also protecting the left kidney even if part of the spleen were shielded. Clinical efficacy was documented by the less frequent functional scale deterioration of 20 TLI treated patients with chronic progressive MS compared to to 20 sham-irradiated progressive MS patients after 12 months (16% versus 55%, p less than 0.03), 18 months (28% versus 63%, p less than 0.03), and 24 months (44% versus 74%, N.S.). Therapeutic benefit during 3 years follow-up was related to the reduction in lymphocyte count 3 months post-irradiation (p less than 0.02). Toxicity was generally mild and transient, with no instance of xerostomia, pericarditis, herpes zoster, or need to terminate treatment in TLI patients. However, menopause was induced in 2 patients and staphylococcal pneumonia in one.

  15. NEVADA NATIONAL SECURITY SITE WASTE DISPOSAL OPERATIONS FY 2015...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UT-BATTELLE OAK RIDGE NATIONAL LAB (TN) GRAND TOTALS FROM ALL WASTE GENERATORS 19,359,867 46,280,033 Area 5 FY 2015 CumulativeTotals ft3 26,920,166 3,630 NUCLEAR FUEL SERVICES ...

  16. SNL Los Alamos National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration SNL Los Alamos National Laboratory

  17. Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas

    SciTech Connect (OSTI)

    Hong-Hermesdorf, Anne; Miethke, Marcus; Gallaher, Sean D.; Kropat, Janette; Dodani, Sheel C.; Chan, Jefferson; Barupala, Dulmini; Domaille, Dylan W.; Shirasaki, Dyna I.; Loo, Joseph A.; Weber, Peter K.; Pett-Ridge, Jennifer; Stemmler, Timothy L.; Chang, Christopher J.; Merchant, Sabeeha S.

    2014-10-26

    Here we identified a Cu-accumulating structure with a dynamic role in intracellular Cu homeostasis. During Zn limitation, Chlamydomonas reinhardtii hyperaccumulates Cu, a process dependent on the nutritional Cu sensor CRR1, but it is functionally Cu deficient. Visualization of intracellular Cu revealed major Cu accumulation sites coincident with electron-dense structures that stained positive for low pH and polyphosphate, suggesting that they are lysosome-related organelles. Nano-secondary ion MS showed colocalization of Ca and Cu, and X-ray absorption spectroscopy was consistent with Cu+ accumulation in an ordered structure. Zn resupply restored Cu homeostasis concomitant with reduced abundance of these structures. Cu isotope labeling demonstrated that sequestered Cu+ became bioavailable for the synthesis of plastocyanin, and transcriptome profiling indicated that mobilized Cu became visible to CRR1. Cu trafficking to intracellular accumulation sites may be a strategy for preventing protein mismetallation during Zn deficiency and enabling efficient cuproprotein metallation or remetallation upon Zn resupply.

  18. Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hong-Hermesdorf, Anne; Miethke, Marcus; Gallaher, Sean D.; Kropat, Janette; Dodani, Sheel C.; Chan, Jefferson; Barupala, Dulmini; Domaille, Dylan W.; Shirasaki, Dyna I.; Loo, Joseph A.; et al

    2014-10-26

    Here we identified a Cu-accumulating structure with a dynamic role in intracellular Cu homeostasis. During Zn limitation, Chlamydomonas reinhardtii hyperaccumulates Cu, a process dependent on the nutritional Cu sensor CRR1, but it is functionally Cu deficient. Visualization of intracellular Cu revealed major Cu accumulation sites coincident with electron-dense structures that stained positive for low pH and polyphosphate, suggesting that they are lysosome-related organelles. Nano-secondary ion MS showed colocalization of Ca and Cu, and X-ray absorption spectroscopy was consistent with Cu+ accumulation in an ordered structure. Zn resupply restored Cu homeostasis concomitant with reduced abundance of these structures. Cu isotope labelingmore » demonstrated that sequestered Cu+ became bioavailable for the synthesis of plastocyanin, and transcriptome profiling indicated that mobilized Cu became visible to CRR1. Cu trafficking to intracellular accumulation sites may be a strategy for preventing protein mismetallation during Zn deficiency and enabling efficient cuproprotein metallation or remetallation upon Zn resupply.« less

  19. National Ignition Facility | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) National Ignition Facility Glass amplifiers in Laser Bay 2 at the National Ignition Facility. The construction of the 192-beam 1.8 MJ UV NIF, the world's most energetic laser, was completed in March 2009. Current experiments are focusing on using the NIF laser and other ICF high energy density facilities leading to demonstrate fusion ignition and thermonuclear burn in the laboratory. The NIF is also being used to support basic science and SSP experiments. By the end of FY 2012, the

  20. Sandia National Laboratories | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Sandia National Laboratories Sandia National Laboratories DE-AC04-94AL85000 Operated by Sandia Corporation a Subsidiary of Lockheed Martin Corporation Contract Conformed 09/30/2015 to Modification 0588. View previous Sandia Contract and Mods (M081-A201). BASIC Contract (Official) Modifications (Official) Funding Mods Available Upon Request Conformed Contract (Updated 09/30/2015 to Mod 0588) (Unofficial) SNL M202 Section A (Supersedes Basic and all Mods) (pdf, 397KB) SNL M216 (9/15/04)