Sample records for national thermal power

  1. Karnataka Power Corporation Limited and National Thermal Power...

    Open Energy Info (EERE)

    Limited and National Thermal Power Corporation JV Jump to: navigation, search Name: Karnataka Power Corporation Limited and National Thermal Power Corporation JV Place: India...

  2. Sandia National Laboratories: solar thermal power plant components

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility, News, News & Events, Partnership,...

  3. Karnataka Power Corporation Limited and National Thermal Power Corporation

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower Co LtdTN LLC JumpJilinWind LLCKandenko CoJV |

  4. National Thermal Power Corporation NTPC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarmsPower CoLongxingPartnersNRELAct YearNTPC Jump to:

  5. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE

    SciTech Connect (OSTI)

    J. C. Giglio; A. A. Jackson

    2012-03-01T23:59:59.000Z

    The Idaho National Laboratory (INL) is preparing to fuel and test the Advanced Stirling Radioisotope Generator (ASRG), the next generation space power generator. The INL identified the thermal vacuum test chamber used to test past generators as inadequate. A second vacuum chamber was upgraded with a thermal shroud to process the unique needs and to test the full power capability of the new generator. The thermal vacuum test chamber is the first of its kind capable of testing a fueled power system to temperature that accurately simulate space. This paper outlines the new test and set up capabilities at the INL.

  6. Sandia National Laboratories: National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Test Facility Pratt Whitney Rocketdyne Testing On December 19, 2012, in Concentrating Solar Power, EC, Energy, Facilities, National Solar Thermal Test Facility, News,...

  7. Sandia National Laboratories: National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Thermal Test Facility NASA's Solar Tower Test of the 1-Meter Aeroshell On August 23, 2012, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test...

  8. Sandia National Laboratories: National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Power, Energy, Facilities, Materials Science, National Solar Thermal Test Facility, News, News & Events, Renewable Energy, Solar, Solar Newsletter, Systems...

  9. Sandia National Laboratories: National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility SolarReserve Is Testing Prototype Heliostats at NSTTF On March 3, 2015, in Concentrating Solar Power, Energy, Facilities, National Solar...

  10. Sandia National Laboratories: solar thermal storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Received Entrepreneurial Spirit Awards On April 3, 2013, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News & Events, Renewable...

  11. Sandia National Laboratories: National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On November 2, 2012, in Concentrating Solar Power, Facilities, National Solar Thermal Test Facility, News, News & Events, Renewable Energy, Solar Recently, personnel from the Air...

  12. Sandia National Laboratories: National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wins Funding for High-Temperature Falling-Particle Solar-Energy Receiver On August 8, 2012, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test...

  13. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power National Solar Thermal Testing Facility Beam Profiling On November 2, 2012, in Concentrating Solar Power, News, Renewable Energy, Solar On Thursday, June...

  14. Sandia National Laboratories: multiscale concentrated solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concentrated solar power Solar Energy Research Institute for India and the United States Kick-Off On November 27, 2012, in Concentrating Solar Power, Energy, National Solar Thermal...

  15. Sandia National Laboratories: Concentrating Solar Power Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Systems Air Force Research Laboratory Testing On November 2, 2012, in Concentrating Solar Power, Facilities, National Solar Thermal Test Facility, News,...

  16. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SolarReserve Is Testing Prototype Heliostats at NSTTF On March 3, 2015, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

  17. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power, Facilities, National Solar Thermal Test Facility, News, News & Events, Renewable Energy, Solar Recently, personnel from the Air Force Research Laboratory in Albuquerque...

  18. Sandia National Laboratories: Concentrating Solar Power: Efficiently...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

  19. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Sectors in the United States View all EC Publications Related Topics Concentrating Solar Power CRF CSP EFRC Energy Energy Efficiency Energy Security National Solar Thermal...

  20. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Partnership Projects On April 14, 2011, in National Solar Thermal Test Facility (NSTTF) The Tower at the National Solar Thermal Test Facility (NSTTF) offers a complete...

  1. Sandia National Laboratories: thermal management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    management 2013 Inverter Reliability Workshop On May 31, 2013, in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability...

  2. Solar thermal power system

    DOE Patents [OSTI]

    Bennett, Charles L.

    2010-06-15T23:59:59.000Z

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  3. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

  4. Solar Thermal Powered Evaporators

    E-Print Network [OSTI]

    Moe, Christian Robert

    2015-01-01T23:59:59.000Z

    and C. Y. Zhao, "A review of solar collectors and thermalenergy storage in solar thermal applications," Appliedon photovoltaic/thermal hybrid solar technology," Applied

  5. Air Cooling Technology for Power Electronic Thermal Control

    Broader source: Energy.gov (indexed) [DOE]

    Lustbader National Renewable Energy Laboratory Tuesday May 10, 2011 Project ID: APE019 Air Cooling Technology for Power Electronics Thermal Control This presentation does not...

  6. Thermal Control of Power Electronics of Electric Vehicles with...

    Broader source: Energy.gov (indexed) [DOE]

    Thermal Control of Power Electronics of Electric Vehicles with Small Channel Coolant Boiling PI: Dileep Singh Presenter: Wenhua Yu Argonne National Laboratory June 18, 2014 This...

  7. Power Electronics Thermal Control (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2010-05-05T23:59:59.000Z

    Thermal management plays an important part in the cost of electric drives in terms of power electronics packaging. Very promising results have been obtained by using microporous coatings and skived surfaces in conjunction with single-phase and two-phase flows. Sintered materials and thermoplastics with embedded fibers show significant promise as thermal interface materials, or TIMs. Appropriate cooling technologies depend on the power electronics package application and reliability.

  8. Sandia National Laboratories: National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Solar, Solar Newsletter A team from Sandia National Laboratories' (SNL) National Solar Thermal Test Facility (NSTTF) recently won a first place Excellence Award in the...

  9. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2010 -- Washington D.C. ape016bennion2010o.pdf More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric...

  10. Sandia National Laboratories: solar thermal energy storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy storage Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National...

  11. Sandia National Laboratories: solar thermal electric technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar thermal electric technologies Concentrating Solar Power (CSP) On April 13, 2011, in CSP R&D at Sandia Testing Facilities Software & Tools Resources Contacts News...

  12. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -- Washington D.C. ape13bennion.pdf More Documents & Publications Power Electronic Thermal System Performance and Integration Integrated Power Module Cooling Vehicle...

  13. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F.CENTRAL RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE progressCorporation, RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE I,

  14. Sandia National Laboratories: Concentrating Solar Power (CSP...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies andor validating technological concepts using Sandia's expertise and infrastructure, including the National Solar Thermal Test Facility. Areas of possible...

  15. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,” Eurosun 2010,COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A Thesis

  16. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    FOR CONCENTRATING SOLAR POWER PLANTS,” Eurosun 2010, Graz,STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa, Ontario: 1999.Concentrated Solar Thermal Power Plants A Thesis submitted

  17. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power, Energy, Energy Storage, Facilities,...

  18. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    Thermal Efficiency of Generation, Discharging, Gross Electric Generation,e 1% of the gross electric generation. Thermal losses fromNet Electric Power Generation, Discharging, MWe Net Thermal

  19. Thermal Stress and Reliability for Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Power Electronic Thermal System Performance and Integration...

  20. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Corey

  1. Solar thermal power systems. Annual technical progress report, FY 1979

    SciTech Connect (OSTI)

    Braun, Gerald W.

    1980-06-01T23:59:59.000Z

    The Solar Thermal Power Systems Program is the key element in the national effort to establish solar thermal conversion technologies within the major sectors of the national energy market. It provides for the development of concentrating mirror/lens heat collection and conversion technologies for both central and dispersed receiver applications to produce electricity, provide heat at its point of use in industrial processes, provide heat and electricity in combination for industrial, commercial, and residential needs, and ultimately, drive processes for production of liquid and gaseous fuels. This report is the second Annual Technical Progress Report for the Solar Thermal Power Systems Program and is structured according to the organization of the Solar Thermal Power Systems Program on September 30, 1979. Emphasis is on the technical progress of the projects rather than on activities and individual contractor efforts. Each project description indicates its place in the Solar Thermal Power Systems Program, a brief history, the significant achievements and real progress during FY 1979, also future project activities as well as anticipated significant achievements are forecast. (WHK)

  2. Thermal Strategies for High Efficiency Thermoelectric Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system configurations...

  3. Pv-Thermal Solar Power Assembly

    DOE Patents [OSTI]

    Ansley, Jeffrey H. (El Cerrito, CA); Botkin, Jonathan D. (El Cerrito, CA); Dinwoodie, Thomas L. (Piedmont, CA)

    2001-10-02T23:59:59.000Z

    A flexible solar power assembly includes a flexible photovoltaic device attached to a flexible thermal solar collector. The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof or side wall of a building or other structure, by use of adhesive and/or other types of fasteners.

  4. Power Modeling and Thermal Management Techniques for Manycores

    E-Print Network [OSTI]

    Simunic, Tajana

    Power Modeling and Thermal Management Techniques for Manycores Rajib Nath Computer Science number of cores in manycore archi- tectures, along with technology scaling, results in high power densities and thermal issues on the die. To explore innovative thermal management techniques

  5. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    for concentrating solar-thermal energy use a large number ofBoth solar power plants absorb thermal energy in high-of a solar power plant that converts thermal energy into

  6. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

  7. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    test loop directly supports the SunShot goals by providing development for thermal energy storage costs 15kWhth and by allowing greater collection efficiencies and...

  8. Sandia National Laboratories: Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of materials and coatings being investigated for potential marine hydrokinetic (MHK) and ocean thermal energy conversion (OTEC) technologies as well as developing novel...

  9. PV/thermal solar power assembly

    DOE Patents [OSTI]

    Ansley, Jeffrey H.; Botkin, Jonathan D.; Dinwoodie, Thomas L.

    2004-01-13T23:59:59.000Z

    A flexible solar power assembly (2) includes a flexible photovoltaic device (16) attached to a flexible thermal solar collector (4). The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof (20, 25) or side wall of a building or other structure, by use of adhesive and/or other types of fasteners (23).

  10. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solar power Recent Solar Highlights On October 31, 2012, in View all Solar Energy News Molten Salt Test Loop Commissioning On October 10, 2012, in Concentrating Solar Power, EC,...

  11. Sandia National Laboratories: Power Electronics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Security, Materials Science, Partnership, Research & Capabilities, SMART Grid, Systems Engineering, Transmission Grid Integration Increasing consumer power...

  12. Thermally matched fluid cooled power converter

    DOE Patents [OSTI]

    Radosevich, Lawrence D.; Kannenberg, Daniel G.; Kaishian, Steven C.; Beihoff, Bruce C.

    2005-06-21T23:59:59.000Z

    A thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. Power electronic circuits are thermally matched, such as between component layers and between the circuits and the support. The support may form a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

  13. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Regional Test Center (RTC). The RTC will enable research on integrating solar panels into the statewide smart grid and help reduce the cost of solar power. The...

  14. Sandia National Laboratories: Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    collaboration for DTOcean, a project aimed at accelerating the industrial development of ocean-energy power-generation knowledge and providing design tools for deploying the first...

  15. Sandia National Laboratories: Power Towers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trough Systems CLFR Power Towers Acciona Abengoa Sener Solar Millennium SkyFuel Siemens Ausra SPGMann SkyFuel Abengoa Brightsource Energy SolarReserve eSolar Dish Engine...

  16. Sandia National Laboratories: auxiliary power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    emergency backup systems, and light-duty trucks, to name a few. Providing auxiliary power to ships in berth may be added to that list soon. Joe Pratt (Energy Systems...

  17. Sandia National Laboratories: shore power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    emergency backup systems, and light-duty trucks, to name a few. Providing auxiliary power to ships in berth may be added to that list soon. Joe Pratt (Energy Systems...

  18. Advanced Thermal Interface Materials (TIMs) for Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interface Materials (TIMs) for Power Electronics Advanced Thermal Interface Materials (TIMs) for Power Electronics 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual...

  19. Sandia National Laboratories: metal hydride storage thermal-management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thermal-management issues ECIS, Boeing, Caltrans, and Others: Fuel-Cell-Powered Mobile Lighting Applications On March 29, 2013, in Capabilities, CRF, Energy, Energy Efficiency,...

  20. Thermal Storage Materials Laboratory (Fact Sheet), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar power (CSP) plants. Research objectives include...

  1. An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario (Report Summary) (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta FeAuthorization forAmesAmmaropticalandAn

  2. Low thermal resistance power module assembly

    DOE Patents [OSTI]

    Hassani, Vahab (Denver, CO); Vlahinos, Andreas (Castle Rock, CO); Bharathan, Desikan (Arvada, CO)

    2007-03-13T23:59:59.000Z

    A power module assembly with low thermal resistance and enhanced heat dissipation to a cooling medium. The assembly includes a heat sink or spreader plate with passageways or openings for coolant that extend through the plate from a lower surface to an upper surface. A circuit substrate is provided and positioned on the spreader plate to cover the coolant passageways. The circuit substrate includes a bonding layer configured to extend about the periphery of each of the coolant passageways and is made up of a substantially nonporous material. The bonding layer may be solder material which bonds to the upper surface of the plate to provide a continuous seal around the upper edge of each opening in the plate. The assembly includes power modules mounted on the circuit substrate on a surface opposite the bonding layer. The power modules are positioned over or proximal to the coolant passageways.

  3. Sandia National Laboratories: Power Electronics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home AboutMeeting: ProgramFebruaryJunePower Electronics

  4. National Laboratory Concentrating Solar Power Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory Concentrating Solar Power Research and Development National Laboratory Concentrating Solar Power Research and Development This fact sheet describes the current...

  5. Cooling, Heating and Power in the Nation's Colleges and Universities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heating and Power in the Nation's Colleges and Universities - Census, Survey, and Lessons Learned, February 2002 Cooling, Heating and Power in the Nation's Colleges and...

  6. National Laboratory Concentrating Solar Power Research and Development

    Broader source: Energy.gov (indexed) [DOE]

    and performance improvements across all major concentrating solar power (CSP) subsystems-solar fields, power plants, receivers, and thermal storage-are necessary to achieve the...

  7. Low-cost distributed solar-thermal-electric power generation

    E-Print Network [OSTI]

    Sanders, Seth

    Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach discuss the technical and economic feasibility of a low-cost distributed solar-thermal-electric power technologies should be judged by output power per dollar rather than by efficiency or other technical merits

  8. Air Cooling Technology for Power Electronic Thermal Control

    Broader source: Energy.gov (indexed) [DOE]

    air conditioners Need to understand system trade-offs driven by air source local thermal environment which are influenced by inverter location National Renewable Energy Laboratory...

  9. Low thermal resistance power module assembly

    DOE Patents [OSTI]

    Hassani, Vahab (Denver, CO); Vlahinos, Andreas (Castle Rock, CO); Bharathan, Desikan (Arvada, CO)

    2010-12-28T23:59:59.000Z

    A power module assembly (400) with low thermal resistance and enhanced heat dissipation to a cooling medium. The assembly includes a heat sink or spreader plate (410) with passageways or openings (414) for coolant that extend through the plate from a lower surface (411) to an upper surface (412). A circuit substrate (420) is provided and positioned on the spreader plate (410) to cover the coolant passageways. The circuit substrate (420) includes a bonding layer (422) configured to extend about the periphery of each of the coolant passageways and is made up of a substantially nonporous material. The bonding layer (422) may be solder material which bonds to the upper surface (412) of the plate to provide a continuous seal around the upper edge of each opening (414) in the plate. The assembly includes power modules (430) mounted on the circuit substrate (420) on a surface opposite the bonding layer (422). The power modules (430) are positioned over or proximal to the coolant passageways.

  10. Rapid Modeling of Power Electronics Thermal Management Technologies: Preprint

    SciTech Connect (OSTI)

    Bennion, K.; Kelly, K.

    2009-08-01T23:59:59.000Z

    Describes a method of rapidly evaluating trade-offs associated with alternative packaging configurations and thermal management technologies for power electronics packaging.

  11. Thermal Stress and Reliability for Advanced Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance and Reliability of Bonded Interfaces Physics of Failure of Electrical Interconnects Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines...

  12. A Power-Driven Thermal Sensor Placement Algorithm for Dynamic Thermal Management

    E-Print Network [OSTI]

    Tan, Sheldon X.-D.

    of Electrical Engineering, University of California, Riverside, CA 92521 USA Abstract--On-chip physical thermalA Power-Driven Thermal Sensor Placement Algorithm for Dynamic Thermal Management Hai Wang, Sheldon sensors play a vital role for accurately estimating the full-chip thermal profile. How to place physical

  13. Device for thermal transfer and power generation

    SciTech Connect (OSTI)

    Weaver, Stanton Earl (Northville, NY); Arik, Mehmet (Niskayuna, NY)

    2011-04-19T23:59:59.000Z

    A system is provided. The system includes a device that includes top and bottom thermally conductive substrates positioned opposite to one another, wherein a top surface of the bottom thermally conductive substrate is substantially atomically flat and a thermal blocking layer disposed between the top and bottom thermally conductive substrates. The device also includes top and bottom electrodes separated from one another between the top and bottom thermally conductive substrates to define a tunneling path, wherein the top electrode is disposed on the thermal blocking layer and the bottom electrode is disposed on the bottom thermally conductive substrate.

  14. POWER SCHEDULING IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY

    E-Print Network [OSTI]

    Römisch, Werner

    POWER SCHEDULING IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY C.C. Car e1, M.P. Nowak2, W. Romisch2 Forschungsgemeinschaft. leads to a tremendous increase in the complex- ity of the traditional power optimization mod- els-burning) thermal units, pumped-storage hydro plants and delivery con- tracts and describe an optimization model

  15. Sandia National Laboratories: National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trough Systems CLFR Power Towers Acciona Abengoa Sener Solar Millennium SkyFuel Siemens Ausra SPGMann SkyFuel Abengoa Brightsource Energy SolarReserve eSolar Dish Engine...

  16. Sandia Energy - National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution Grid Integration Permalink GalleryNational SCADA Testbed

  17. Thermal Sciences The thermal sciences area involves the study of energy conversion and transmission, power

    E-Print Network [OSTI]

    New Hampshire, University of

    Thermal Sciences The thermal sciences area involves the study of energy conversion and transmission, power generation, the flow of liquids and gases, and the transfer of thermal energy (heat) by means in virtually all energy conversion devices and systems. One may think of the jet engine as a mechanical device

  18. Sandia Energy - National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratory Fellows Jerry SimmonsModels &

  19. Powerful Partnership | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical Information STIP MapNotes:4DAQ Status EricPowered

  20. Minnesota Power- Solar-Thermal Water Heating Rebate Program

    Broader source: Energy.gov [DOE]

    Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings;...

  1. aged thermal power: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    R. Sanders 122 ECONOMICS OF REMOVAL OF COAL MOISTURE IN THERMAL POWER GENERATION WITH WASTE HEAT RECOVERY CiteSeer Summary: The techno-economic aspects of coal drying with cost...

  2. Solar thermal powered desalination: membrane versus distillation technologies

    E-Print Network [OSTI]

    Solar thermal powered desalination: membrane versus distillation technologies G. Burgess and K Canberra ACT 0200 AUSTRALIA E-mail: greg.burgess@anu.edu.au Multiple Effect Distillation (MED) is generally assisted) desalination has been conducted. Solar thermal driven Multiple Effect Distillation (MED) has been

  3. Identifying and bounding uncertainties in nuclear reactor thermal power calculations

    SciTech Connect (OSTI)

    Phillips, J.; Hauser, E.; Estrada, H. [Cameron, 1000 McClaren Woods Drive, Coraopolis, PA 15108 (United States)

    2012-07-01T23:59:59.000Z

    Determination of the thermal power generated in the reactor core of a nuclear power plant is a critical element in the safe and economic operation of the plant. Direct measurement of the reactor core thermal power is made using neutron flux instrumentation; however, this instrumentation requires frequent calibration due to changes in the measured flux caused by fuel burn-up, flux pattern changes, and instrumentation drift. To calibrate the nuclear instruments, steam plant calorimetry, a process of performing a heat balance around the nuclear steam supply system, is used. There are four basic elements involved in the calculation of thermal power based on steam plant calorimetry: The mass flow of the feedwater from the power conversion system, the specific enthalpy of that feedwater, the specific enthalpy of the steam delivered to the power conversion system, and other cycle gains and losses. Of these elements, the accuracy of the feedwater mass flow and the feedwater enthalpy, as determined from its temperature and pressure, are typically the largest contributors to the calorimetric calculation uncertainty. Historically, plants have been required to include a margin of 2% in the calculation of the reactor thermal power for the licensed maximum plant output to account for instrumentation uncertainty. The margin is intended to ensure a cushion between operating power and the power for which safety analyses are performed. Use of approved chordal ultrasonic transit-time technology to make the feedwater flow and temperature measurements (in place of traditional differential-pressure- based instruments and resistance temperature detectors [RTDs]) allows for nuclear plant thermal power calculations accurate to 0.3%-0.4% of plant rated power. This improvement in measurement accuracy has allowed many plant operators in the U.S. and around the world to increase plant power output through Measurement Uncertainty Recapture (MUR) up-rates of up to 1.7% of rated power, while also decreasing the probability of significant over-power events. This paper will examine the basic elements involved in calculation of thermal power using ultrasonic transit-time technology and will discuss the criteria for bounding uncertainties associated with each element in order to achieve reactor thermal power calculations to within 0.3% to 0.4%. (authors)

  4. Rankline-Brayton engine powered solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2012-03-13T23:59:59.000Z

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  5. Rankine-Brayton engine powered solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2009-12-29T23:59:59.000Z

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  6. Optimisation of Concentrating Solar Thermal Power Plants with Neural Networks

    E-Print Network [OSTI]

    Ábrahåm, Erika

    , Germany 2 Fraunhofer Institute for Solar Energy Systems, Freiburg, Germany Abstract. The exploitation of solar power for energy supply is of in- creasing importance. While technical development mainly takes, wind, and biomass energy. Among such tech- nologies, concentrating solar thermal power (CSP) plants

  7. Sandia National Laboratories: AREVA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility, News, News & Events, Partnership, Renewable Energy, Research &...

  8. RADIOISOTOPE POWER SYSTEM CAPABILITIES AT THE IDAHO NATIONAL LABORATORY (INL)

    SciTech Connect (OSTI)

    Kelly Lively; Stephen Johnson; Eric Clarke

    2014-07-01T23:59:59.000Z

    --Idaho National Laboratory’s, Space Nuclear Systems and Technology Division established the resources, equipment and facilities required to provide nuclear-fueled, Radioisotope Power Systems (RPS) to Department of Energy (DOE) Customers. RPSs are designed to convert the heat generated by decay of iridium clad, 238PuO2 fuel pellets into electricity that is used to power missions in remote, harsh environments. Utilization of nuclear fuel requires adherence to governing regulations and the INL provides unique capabilities to safely fuel, test, store, transport and integrate RPSs to supply power—supporting mission needs. Nuclear capabilities encompass RPS fueling, testing, handling, storing, transporting RPS nationally, and space vehicle integration. Activities are performed at the INL and in remote locations such as John F. Kennedy Space Center and Cape Canaveral Air Station to support space missions. This paper will focus on the facility and equipment capabilities primarily offered at the INL, Material and Fuel Complex located in a security-protected, federally owned, industrial area on the remote desert site west of Idaho Falls, ID. Nuclear and non-nuclear facilities house equipment needed to perform required activities such as general purpose heat source (GPHS) module pre-assembly and module assembly using nuclear fuel; RPS receipt and baseline electrical testing, fueling, vibration testing to simulate the launch environment, mass properties testing to measure the mass and compute the moment of inertia, electro-magnetic characterizing to determine potential consequences to the operation of vehicle or scientific instrumentation, and thermal vacuum testing to verify RPS power performance in the vacuum and cold temperatures of space.

  9. Thermal Energy Corporation Combined Heat and Power Project

    SciTech Connect (OSTI)

    E. Bruce Turner; Tim Brown; Ed Mardiat

    2011-12-31T23:59:59.000Z

    To meet the planned heating and cooling load growth at the Texas Medical Center (TMC), Thermal Energy Corporation (TECO) implemented Phase 1 of a Master Plan to install an additional 32,000 tons of chilled water capacity, a 75,000 ton-hour (8.8 million gallon) Thermal Energy Storage (TES) tank, and a 48 MW Combined Heat and Power (CHP) system. The Department of Energy selected TMC for a $10 million grant award as part of the Financial Assistance Funding Opportunity Announcement, U.S. Department of Energy National Energy Technology, Recovery Act: Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficiency Industrial Equipment Funding Opportunity Number: DE-FOA-0000044 to support the installation of a new 48 MW CHP system at the TMC located just outside downtown Houston. As the largest medical center in the world, TMC is home to many of the nationâ??s best hospitals, physicians, researchers, educational institutions, and health care providers. TMC provides care to approximately six million patients each year, and medical instruction to over 71,000 students. A medical center the size of TMC has enormous electricity and thermal energy demands to help it carry out its mission. Reliable, high-quality steam and chilled water are of utmost importance to the operations of its many facilities. For example, advanced medical equipment, laboratories, laundry facilities, space heating and cooling all rely on the generation of heat and power. As result of this project TECO provides this mission critical heating and cooling to TMC utilizing a system that is both energy-efficient and reliable since it provides the capability to run on power independent of the already strained regional electric grid. This allows the medical center to focus on its primary mission â?? providing top quality medical care and instruction â?? without worrying about excessive energy costs or the loss of heating and cooling due to the risk of power outages. TECOâ??s operation is the largest Chilled Water District Energy System in the United States. The company used DOEâ??s funding to help install a new high efficiency CHP system consisting of a Combustion Turbine and a Heat Recovery Steam Generator. This CHP installation was just part of a larger project undertaken by TECO to ensure that it can continue to meet TMCâ??s growing needs. The complete efficiency overhaul that TECO undertook supported more than 1,000 direct and indirect jobs in manufacturing, engineering, and construction, with approximately 400 of those being jobs directly associated with construction of the combined heat and power plant. This showcase industrial scale CHP project, serving a critical component of the nationâ??s healthcare infrastructure, directly and immediately supported the energy efficiency and job creation goals established by ARRA and DOE. It also provided an unsurpassed model of a district energy CHP application that can be replicated within other energy intensive applications in the industrial, institutional and commercial sectors.

  10. Combined Thermal and Power Energy Management Optimization

    E-Print Network [OSTI]

    Ahner, D. J.; Priestley, R. R.

    have heat recovery steam generators, one supplementary fired delivering power and process steam to the plant electrical and steam header distribution systems. The optimum dispatch of these gas turbine units under specified power and steam load... value. The dispatch of the units is determined by their relative incremental efficiency in delivering steam to the process header which results in the optimum dispatch condition of equal incremental heat recovery efficiencies. The equal incremental...

  11. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2012, in Concentrating Solar Power, EC, National Solar Thermal Test Facility, Renewable Energy Dr. David Danielson visited Sandia National Laboratories and toured the National...

  12. Thermal Performance and Reliability of Bonded Interfaces for Power Electronics Packaging Applications (Presentation)

    SciTech Connect (OSTI)

    Devoto, D.

    2013-07-01T23:59:59.000Z

    This presentation discusses the thermal performance and reliability of bonded interfaces for power electronics packaging applications.

  13. National CHP Roadmap: Doubling Combined Heat and Power Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States...

  14. Sandia National Laboratories: convert wave power into electricity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wave power into electricity WEC-Sim Code Development Meeting at the National Renewable Energy Laboratory On April 29, 2014, in Computational Modeling & Simulation, Energy, News,...

  15. Sandia National Laboratories: Evaluating Powerful Batteries for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateECEnergyEvaluating Powerful Batteries for Modular Electric Grid Energy Storage Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Sandian Spoke at the...

  16. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Sandia Wins Funding for High-Temperature Falling-Particle Solar-Energy Receiver On August 8, 2012, in Concentrating Solar Power, Energy, Facilities,...

  17. Sandia National Laboratories: Solar Power International

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Power International Sandia to host PV Bankability workshop at Solar Power International (SPI) 2013 On September 24, 2013, in Conferences, Energy, Events, News & Events,...

  18. Zero Power Reactor simulation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zero Power Reactor simulation Share Description Ever wanted to see a nuclear reactor core in action? Here's a detailed simulation of the Zero Power Reactor experiment, run by...

  19. Sandia National Laboratories: Water Power Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Personnel Water Power in the News Geothermal Advanced Bit Development Geothermal Energy & Drilling Technology Hydrogen and Fuel Cells Program Materials & Components...

  20. Sandia National Laboratories: power flow control system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power flow control system ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities,...

  1. Power Electronics Thermal Management R&D (Presentation)

    SciTech Connect (OSTI)

    Waye, S.

    2014-11-01T23:59:59.000Z

    This project will investigate and develop thermal-management strategies for wide bandgap (WBG)-based power electronics systems. Research will be carried out to deal with thermal aspects at the module- and system-level. Module-level research will focus on die- and substrate-integrated cooling strategies and heat-transfer enhancement technologies. System-level research will focus on thermal-management strategies for the entire power electronics system to enable smart packaging solutions. One challenge with WBG device-based power electronics is that although losses in the form of heat may be lower, the footprint of the components is also likely to be reduced to reduce cost, weight, and volume. Combined with higher operational temperatures, this creates higher heat fluxes which much be removed from a smaller footprint, requiring advanced cooling strategies.

  2. Power Electronics and Thermal Management Breakout Session

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prev next > Sun Mon Tue Wed May 28-29, 2015POWER ELECTRONICS

  3. Power Electronics and Thermal Management Breakout Sessions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMay 2015 < prev next > Sun Mon Tue Wed May 28-29, 2015POWER

  4. Sandia National Laboratories: Smart power infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Security, Materials Science, Partnership, Research & Capabilities, SMART Grid, Systems Engineering, Transmission Grid Integration Increasing consumer power...

  5. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'.Solar Thermal Solar Thermal Industrial

  6. Sandia National Laboratories Distributive Power Initiative (DPI...

    Broader source: Energy.gov (indexed) [DOE]

    System (NDS) Problem National Distress System (NDS) Problem Supplying Fuel to the propane generators is expensive especially when the fuel has to be chartered by helicopter....

  7. Sandia National Laboratories: hydrogen powered fuel cell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    powered fuel cell ECIS and Compass Metals: Platinum Nanostructures for Enhanced Catalysis On March 29, 2013, in Advanced Materials Laboratory, Capabilities, Energy, Energy...

  8. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia and EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency On March 29, 2013, in Concentrating Solar Power, Energy, Partnership, Photovoltaic, Renewable...

  9. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Molten Salt Test Loop Pump Installed On August 30, 2012, in Concentrating Solar Power, Energy, Energy Storage Systems, News, Renewable Energy, Solar The pump was delivered and...

  10. Sandia National Laboratories: Photovoltaic Power Systems Programme...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Power Systems Programme Task 13 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) On December 15, 2014, in...

  11. Sandia National Laboratories: advanced auxiliary power units...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    auxiliary power units (including biofuels) Sandia Participated in the 3rd Annual Technology Forum of the U.S.-China Clean Energy Research Center - Clean Vehicles Consortium...

  12. Sandia National Laboratories: utility-scale power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    utility-scale power Sandia Has Signed a Memorandum of Understanding with Case Western Reserve University On January 28, 2014, in Computational Modeling & Simulation, Energy, Energy...

  13. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measuring the effects of aerodynamicheating on radar transmissions ... Concentrating Solar Power (CSP) On April 13, 2011, in CSP R&D at Sandia Testing Facilities Software &...

  14. Sandia National Laboratories: WEC power conversion chain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Modeling & Simulation, Energy, News, News & Events, Partnership, Renewable Energy, Water Power Although ocean waves represent an enormous energy resource, most...

  15. Sandia National Laboratories: Solar Tower

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    top ... Thermal Pulses for Boeing Test Article On September 6, 2012, in Concentrating Solar Power, EC, Energy, National Solar Thermal Test Facility, News, Partnership,...

  16. Sandia National Laboratories Distributive Power Initiative (DPI...

    Office of Environmental Management (EM)

    Large Format Carbon Enhanced VRLA Battery Test Results EESAT 2009 Funded by the Energy Storage Systems Program of the U.S. Department Of Energy (DOEESS) through Sandia National...

  17. Sandia National Laboratories: Electric Power Research Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Power Research Institute Consortium for Advanced Simulation of Light-Water Reactors To Receive Up To 121.5M Over Five Years On February 24, 2015, in Computational...

  18. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2012, in CSP Images & Videos On September 26, 2012, in Image Gallery Videos Concentrating Solar Power Image Gallery A picture says a thousand words, especially on the World Wide...

  19. Novel power system demonstrated for space travel | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    demonstrated the first use of a heat pipe to cool a small nuclear reactor and power a Stirling engine at the Nevada National Security Site's Device Assembly Facility near Las...

  20. PV/thermal solar power assembly | OSTI, US Dept of Energy, Office...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PVthermal solar power assembly Re-direct Destination: A flexible solar power assembly (2) includes a flexible photovoltaic device (16) attached to a flexible thermal solar...

  1. Power Parks System Simulation Sandia National Laboratories

    E-Print Network [OSTI]

    at a steady rate to produce hydrogen, feeding a fuel cell stack to supply electricity to a transient load of a renewable energy source. Generation by photovoltaic collectors or wind turbines can be combined with energy storage technologies. Power parks provide an excellent opportunity for using hydrogen technologies

  2. High-Temperature Air-Cooled Power Electronics Thermal Design (Presentation)

    SciTech Connect (OSTI)

    Waye, S.

    2014-06-01T23:59:59.000Z

    This presentation discusses the status of research at NREL on high temperature air-cooled power electronics thermal design.

  3. IntroductiontoPowerSuppliesAN-556 National Semiconductor

    E-Print Network [OSTI]

    Paderborn, Universität

    TL G 10061 IntroductiontoPowerSuppliesAN-556 National Semiconductor Application Note 556 Ralph E ripple voltage to capacitor C1 The bridge rectifier circuit has a simple transformer but current must in a full-wave bridge for the same input voltage TL G 10061­1 FIGURE 1 Idealized Power Supply TL G 10061

  4. An FPGA-based Distributed Computing System with Power and Thermal Management Capabilities

    E-Print Network [OSTI]

    Qiu, Qinru

    An FPGA-based Distributed Computing System with Power and Thermal Management Capabilities Hao Shen of New York Binghamton, NY, 13902, USA ABSTRACT Runtime power and thermal management has attracted step in the research of distributed power and thermal management. Compared to software simulation

  5. Sandia National Laboratories: Sandia-AREVA Commission Solar Thermal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & CapabilitiesCapabilitiesSandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration Sandia-AREVA Commission Solar ThermalMolten Salt...

  6. Sandia National Laboratories: Z Pulsed Power Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTubeCenters:FacebookContractor/Bidder

  7. Pulsed Power Technology at Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program90803|PublicationsNozikSavannahPublished

  8. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    and Background Solar thermal energy collection is anCHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermal

  9. Belgirate, Italy, 28-30 September 2005 A COMPREHENSIVE THERMAL-AWARE POWER MANAGEMENT SYSTEM WITH

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Belgirate, Italy, 28-30 September 2005 A COMPREHENSIVE THERMAL-AWARE POWER MANAGEMENT SYSTEM power techniques due to shortage of battery life. Conventional power management designs focused. In this research, a block-level optimization of comprehensive thermal aware power management is presented

  10. Value of Concentrating Solar Power and Thermal Energy Storage

    SciTech Connect (OSTI)

    Sioshansi, R.; Denholm, P.

    2010-02-01T23:59:59.000Z

    This paper examines the value of concentrating solar power (CSP) and thermal energy storage (TES) in four regions in the southwestern United States. Our analysis shows that TES can increase the value of CSP by allowing more thermal energy from a CSP plant?s solar field to be used, by allowing a CSP plant to accommodate a larger solar field, and by allowing CSP generation to be shifted to hours with higher energy prices. We analyze the sensitivity of CSP value to a number of factors, including the optimization period, price and solar forecasting, ancillary service sales, capacity value and dry cooling of the CSP plant. We also discuss the value of CSP plants and TES net of capital costs.

  11. Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 | DepartmentEnergyThermal EnergyGeneration |

  12. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    ADVANCED THERMAL ENERGY STORAGE CONCEPT DEFINITION STUDY FORSchilling. F. E. , Thermal Energy Storage Using PrestressedNo ~cumulate thermal energy storage. Estimate ESTrof2(

  13. Performance of a Thermally Stable Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop

    SciTech Connect (OSTI)

    McFarlane, Joanna [ORNL] [ORNL; Bell, Jason R [ORNL] [ORNL; Felde, David K [ORNL] [ORNL; Joseph III, Robert Anthony [ORNL] [ORNL; Qualls, A L [ORNL] [ORNL; Weaver, Samuel P [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Polyaromatic hydrocarbon thermal fluids showing thermally stability to 600 C have been tested for solar thermal-power applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C indicated that the fluid isomerized and degraded at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components in trough solar electric generating systems, such as the waste heat rejection exchanger, may become coated or clogged affecting loop performance. Thus, pure 1-phenylnaphthalene, without addition of stabilizers, does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the temperatures greater than 500 C. The performance of a concentrating solar loop using high temperature fluids was modeled based on the National Renewable Laboratory Solar Advisory Model. It was determined that a solar-to-electricity efficiency of up to 30% and a capacity factor of near 60% could be achieved using a high efficiency collector and 12 h thermal energy storage.

  14. National-Scale Wind Resource Assessment for Power Generation (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, E. I.

    2013-08-01T23:59:59.000Z

    This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

  15. Sandia National Laboratories: Strategic Partnership Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Pulses for Boeing Test Article On September 6, 2012, in Concentrating Solar Power, EC, Energy, National Solar Thermal Test Facility, News, Partnership, Renewable...

  16. Sandia National Laboratories: Work for Others

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Pulses for Boeing Test Article On September 6, 2012, in Concentrating Solar Power, EC, Energy, National Solar Thermal Test Facility, News, Partnership, Renewable...

  17. Automatic Layout Optimization of a Double Sided Power Module Regarding Thermal and EMC constraints

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Automatic Layout Optimization of a Double Sided Power Module Regarding Thermal and EMC constraints. The chip position and power layout is automatically generated according to the best EMC/Thermal trade off. Optimization techniques use simple but fairly accurate EMC and Thermal models, presented in this paper

  18. The ASME handbook on water technology for thermal power systems

    SciTech Connect (OSTI)

    Cohen, P. (ed.)

    1989-01-01T23:59:59.000Z

    The idea that a handbook on water technology be developed was initially put forth in 1978 by the ASME Research Committee on Water in Thermal Power Systems. A prospectus was issued in 1979 to solicit funding from industry and government. The preparation of the handbook began in 1980 under the direct control of a Handbook Steering Subcommittee established by the Research Committee and an editor reporting to that subcommittee. Handbook content was carefully monitored by an editorial committee of industry experts and by a special honorary editorial committee from the Chemistry Committee of the Edison Electric Institute. This handbook summarizes the current state of the art of water technology for steam power plant cycles. It is intended to serve both as a training text and a reference volume for power station chemists, engineers, manufacturers, and research and development institutions. While the primary emphasis is on Electric Utility Power Generation cycles (fossil and nuclear), the book will also serve as a valuable reference on high pressure industrial steam system technology.

  19. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    PHASE CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLARChange Materials for Thermal Energy Storage in ConcentratedChange Materials for Thermal Energy Storage in Concentrated

  20. EV Everywhere Workshop: Power Electronics and Thermal Management Breakout

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11 ENVIROISSUES ESF|OffInfrastructureGroup Report

  1. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security National Solar Thermal Test Facility NSTTF Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State...

  2. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Sectors in the United States View all EC Publications Related Topics Concentrating Solar Power CRF CSP EFRC Energy Energy Efficiency Energy Security National Solar Thermal...

  3. Electric Power Produced from Nuclear Reactor | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEAWater Use Goal 4:Administration Electric Power Produced

  4. Summary Report for Concentrating Solar Power Thermal Storage Workshop: New Concepts and Materials for Thermal Energy Storage and Heat-Transfer Fluids, May 20, 2011

    SciTech Connect (OSTI)

    Glatzmaier, G.

    2011-08-01T23:59:59.000Z

    This document summarizes a workshop on thermal energy storage for concentrating solar power (CSP) that was held in Golden, Colorado, on May 20, 2011. The event was hosted by the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory, and Sandia National Laboratories. The objective was to engage the university and laboratory research communities to identify and define research directions for developing new high-temperature materials and systems that advance thermal energy storage for CSP technologies. This workshop was motivated, in part, by the DOE SunShot Initiative, which sets a very aggressive cost goal for CSP technologies -- a levelized cost of energy of 6 cents per kilowatt-hour by 2020 with no incentives or credits.

  5. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2014-09-01T23:59:59.000Z

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  6. Use of GTE-65 gas turbine power units in the thermal configuration of steam-gas systems for the refitting of operating thermal electric power plants

    SciTech Connect (OSTI)

    Lebedev, A. S.; Kovalevskii, V. P. ['Leningradskii Metallicheskii Zavod', branch of JSC 'Silovye mashiny' (Russian Federation); Getmanov, E. A.; Ermaikina, N. A. ['Institut Teploenergoproekt', branch of JSC 'Inzhenernyi tsentr EES' (Russian Federation)

    2008-07-15T23:59:59.000Z

    Thermal configurations for condensation, district heating, and discharge steam-gas systems (PGU) based on the GTE-65 gas turbine power unit are described. A comparative multivariant analysis of their thermodynamic efficiency is made. Based on some representative examples, it is shown that steam-gas systems with the GTE-65 and boiler-utilizer units can be effectively used and installed in existing main buildings during technical refitting of operating thermal electric power plants.

  7. Experimental Investigation of the Thermal Upset and Recovery of the National Ignition Facility's Optics Module

    SciTech Connect (OSTI)

    J. D. Bernardin

    1999-05-01T23:59:59.000Z

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is being constructed as the latest in a series of high-power laser facilities to study inertial confinement fusion. In particular, the NIF will generate and amplify 192 laser beams and focus them onto a fusion fuel capsule the size of a BB. The energy deposited by the laser beams will raise the core temperature of the target to 100,OOO,OOO C, which will ignite the fusion fuel and produce a fusion energy output that is several times greater than the energy input. The ability to generate, condition, and focus 192 laser beams onto a target the size of a BB, requires precision optical hardware and instrumentation. One of the most critical pieces of optical hardware within the NIF is the Optics Module (OM), a mechanical apparatus which is responsible for optical focusing and frequency conversion of the laser beam to optimize the energy deposition at the fusion target. The OM contains two potassium dihydrogen phosphate (KDP), frequency conversion crystals and a focusing lens. The functionality of the KDP crystals is extremely temperature sensitive. Small temperature changes on the order of 0.1 C can significantly alter the performance of these components. Consequently, to maximize NIF system availability and minimize beam conditioning problems, accurate temperature control of the OM optical components was deemed a necessity. In this study, an experimental OM prototype, containing mock frequency conversion crystals and a focusing lens, was used determine the thermal stability provided by a prototype water temperature control system. More importantly, the OM prototype was used to identify and characterize potential thermal upsets and corresponding recovery times of the KDP crystals. The results of this study indicate that the water temperature control system is adequate in maintaining uniform steady-state temperatures within the OM. Vacuum pump-down and venting of the OM generated significant temperature changes in the optical components. However, the corresponding recovery times of the optical components were found to be less than three hours, well within the seven hour limit posed by NW operations. Simulated laser shots also were found to create thermal upsets within the OM's optical components over a range of heat deposition rates. However, the recovery times of these thermal upsets were found to be less than one hour. Finally, the use of non-contact infrared thermocouples was demonstrated as an effective means to track the temperature of the OM's optics.

  8. PRIMAL AND DUAL METHODS FOR UNIT COMMITMENT IN A HYDRO-THERMAL POWER SYSTEM

    E-Print Network [OSTI]

    Römisch, Werner

    PRIMAL AND DUAL METHODS FOR UNIT COMMITMENT IN A HYDRO-THERMAL POWER SYSTEM R. Gollmer1 , A. Moller comprising thermal and pumped-storage hydro units a large-scale mixed-integer optimization model is developed aims at the cost optimal scheduling of on/o decisions and output levels for generating units. The power

  9. Thermal Effects on Inverted Pendulum Thrust Stands for Steady-state High-power Plasma Thrusters

    E-Print Network [OSTI]

    Choueiri, Edgar

    Thermal Effects on Inverted Pendulum Thrust Stands for Steady-state High-power Plasma Thrusters A, 2003 Abstract Thermal effects on direct measurements of the thrust produced by steady-state, high-power. Associate Fellow, AIAA. §Presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 20-23rd

  10. Sustainable solar thermal power generation (STPG) technologies in Indian context

    SciTech Connect (OSTI)

    Sharma, R.S. [Ministry of Non-Conventional Energy Sources, New Delhi (India). Solar Energy Centre

    1996-12-31T23:59:59.000Z

    India is a fast developing country. Some of the factors like population growth, industrialization, liberalization in economic policies, green revolution and awareness toward the environment, are increasing the electricity demand rapidly. As per the 14th Power Survey Report, an energy deficit of (+) 9% and peak demand deficit of (+) 18% have been estimated. Keeping in view the liberalization in economic policies, this deficit may be higher by the year 2000 AD. An estimation indicates that India is blessed with solar energy to the tune of 5 x 10{sup 15} kWh/yr. Being clean and inexhaustible source of energy, it can be used for large-scale power generation in the country. Keeping in view the present state-of-art technologies for STPG in MW range, best possible efforts are required to be made by all the concerned, to develop sustainable STPG technology of the future, specially for tropical regions. Standardization of vital equipment is an important aspect. There are a few required criteria like simple and robust technology, its transfer and adaptation in tropical climate conditions; high plant load factor without fossil-fired backup; availability of plant during evening peak and night hours; least use of fragile components, and capacity optimization for MW plants as per solar irradiance and environmental factors. In this paper, efforts have been made to compare the different STPG technologies. On the basis, of literature surveyed and studies carried out by the author, it may be stated that Central Receiver System technologies using molten salt and volumetric air receiver, along with molten salt and ceramic thermal storage respectively seems to be suitable and comparable in Indian context. Performance of SOLAR-TWO and PHOEBUS plants may be decisive.

  11. Effects of regional insolation differences upon advanced solar thermal electric power plant performance and energy costs

    SciTech Connect (OSTI)

    Latta, A.F.; Bowyer, J.M.; Fujita, T.; Richter, P.H.

    1980-02-01T23:59:59.000Z

    This study determines the performance and cost of four 10 MWe advanced solar thermal electric power plants sited in various regions of the continental United States. The solar plants are conceptualized to begin commercial operation in the year 2000. It is assumed that major subsystem performance will have improved substantially as compared to that of pilot plants currently operating or under construction. The net average annual system efficiency is therefore roughly twice that of current solar thermal electric power plant designs. Similarly, capital costs reflecting goals based on high-volume mass production that are considered to be appropriate for the year 2000 have been used. These costs, which are approximately an order of magnitude below the costs of current experimental projects, are believed to be achievable as a result of the anticipated sizeable solar penetration into the energy market in the 1990 to 2000 timeframe. The paraboloidal dish, central receiver, cylindrical parabolic trough, and compound parabolic concentrators comprise the advanced collector concepts studied. All concepts exhibit their best performance when sited in regional areas such as the sunbelt where the annual insolation is high. The regional variation in solar plant performance has been assessed in relation to the expected rise in the future cost of residential and commercial electricity in the same regions. A discussion of the regional insolation data base, a description of the solar systems performance and costs, and a presentation of a range for the forecast cost of conventional electricity by region and nationally over the next several decades are given.

  12. Technical and economic feasibility of a Thermal Gradient Utilization Cycle (TGUC) power plant

    E-Print Network [OSTI]

    Raiji, Ashok

    1980-01-01T23:59:59.000Z

    Energy Conversion unit mass mass flow rate life of system Ocean Thermal Energy Conversion power pressure heat flow Rl R4 TGUC TP T2 total primary energy subsidy expressed as BTU input per 1000 BTU output thermal energy subsidy expressed... has grown in energy technologies that use renewable resources such as solar (thermal conversion, ocean thermal energy conversion, photovoltaics, wind and biomass conversion), geothermal and magnetohydrodynamics (MHD) . A new concept that can...

  13. Sandia National Laboratories: SAND2014-4322P

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility, News, News & Events, Partnership, Renewable Energy, Research &...

  14. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    UNIVERSITY OF CALIFORNIA RIVERSIDE Phase Change Materials for Thermal Energy Storage in Concentrated Solar

  15. Transient Non-linear Thermal FEM Simulation of Smart Power Switches and Verification by Measurements

    E-Print Network [OSTI]

    V. Kosel; R. Sleik; M. Glavanovics

    2008-01-07T23:59:59.000Z

    Thermal FEM (Finite Element Method) simulations can be used to predict the thermal behavior of power semiconductors in application. Most power semiconductors are made of silicon. Silicon thermal material properties are significantly temperature dependent. In this paper, validity of a common non-linear silicon material model is verified by transient non-linear thermal FEM simulations of Smart Power Switches and measurements. For verification, over-temperature protection behavior of Smart Power Switches is employed. This protection turns off the switch at a pre-defined temperature which is used as a temperature reference in the investigation. Power dissipation generated during a thermal overload event of two Smart Power devices is measured and used as an input stimulus to transient thermal FEM simulations. The duration time of the event together with the temperature reference is confronted with simulation results and thus the validity of the silicon model is proved. In addition, the impact of non-linear thermal properties of silicon on the thermal impedance of power semiconductors is shown.

  16. Ice Thermal Storage Systems for Nuclear Power Plant Supplemental Cooling and Peak Power Shifting

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2013-03-01T23:59:59.000Z

    Availability of cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. One potential solution is to use ice thermal storage (ITS) systems that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses the ice for supplemental cooling during peak demand time. ITS also provides a way to shift a large amount of electricity from off peak time to peak time. For once-through cooling plants near a limited water body, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ITS systems can effectively reduce the efficiency loss during hot weather so that new plants could be considered in regions lack of cooling water. This paper will review light water reactor cooling issues and present the feasibility study results.

  17. EA-1857: Wind Turbine Power Generation Complex at Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    This EA would evaluate the environmental impacts of the proposed wind turbine power generation complex at Idaho National Laboratory, Idaho.

  18. GRC Workshop: The Power of the National Geothermal Data System

    Office of Energy Efficiency and Renewable Energy (EERE)

    Drilling Down: How Legacy and New Research Data Can Advance Geothermal Development—The Power of the National Geothermal Data System (NGDS) A workshop at the Geothermal Resources Council Annual Meeting in Las Vegas, Nevada Abstract: The National Geothermal Data System's (NGDS) launch in 2014 will provide open access to millions of datasets, sharing technical geothermal-relevant data across the geosciences to propel geothermal development and production forward. By aggregating findings from the Energy Department's RD&D projects and consistent, reliable geological and geothermal information from all 50 states, this free, interactive tool can shorten project development timelines and facilitate scientific discovery and best practices. Stop by our workshop for an overview of how your company can benefit from implementing, and participating in this open-source based, distributed network. To register for the GRC Annual Meeting, visit the GRC Annual Meeting and GEA Geothermal Energy Expo event website.

  19. Pressurized thermal shock evaluation of the Calvert Cliffs Unit 1 Nuclear Power Plant

    SciTech Connect (OSTI)

    Abbott, L [ed.

    1985-09-01T23:59:59.000Z

    An evaluation of the risk to the Calvert Cliffs Unit 1 nuclear power plant due to pressurized thermal shock (PTS) has been completed by Oak Ridge National Laboratory (ORNL) with the assistance of several other organizations. This evaluation was part of a Nuclear Regulatory Commission program designed to study the PTS risk to three nuclear plants, the other two plants being Oconee Unit 1 and H.B. Robinson Unit 2. The specific objectives of the program were to (1) provide a best estimate of the frequency of a through-the-wall crack in the pressure vessel at each of the three plants, together with the uncertainty in the estimated frequency and its sensitivity to the variables used in the evaluation; (2) determine the dominant overcooling sequences contributing to the estimated frequency and the associated failures in the plant systems or in operator actions; and (3) evaluate the effectiveness of potential corrective measures.

  20. EOI Uninterruptable Power Supply | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA :Work4/11 ENVIROISSUES PAGE 01/24/2005 04:22EOI

  1. High-Temperature Thermal Array for Next Generation Solar Thermal...

    Broader source: Energy.gov (indexed) [DOE]

    3 Q1 High-Temperature Thermal Array for Next Generation Solar Thermal Power Production - FY13 Q1 This document summarizes the progress of this Los Alamos National Laboratory...

  2. High thermal power density heat transfer apparatus providing electrical isolation at high temperature using heat pipes

    SciTech Connect (OSTI)

    Morris, J. F.

    1985-03-19T23:59:59.000Z

    This invention is directed to transferring heat from an extremely high temperature source to an electrically isolated lower temperature receiver. The invention is particularly concerned with supplying thermal power to a thermionic converter from a nuclear reactor with electric isolation. Heat from a high temperature heat pipe is transferred through a vacuum or a gap filled with electrically nonconducting gas to a cooler heat pipe. The heat pipe is used to cool the nuclear reactor while the heat pipe is connected thermally and electrically to a thermionic converter. If the receiver requires greater thermal power density, geometries are used with larger heat pipe areas for transmitting and receiving energy than the area for conducting the heat to the thermionic converter. In this way the heat pipe capability for increasing thermal power densities compensates for the comparatively low thermal power densities through the electrically nonconducting gap between the two heat pipes.

  3. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    Summary of the Proposed Solar Power Plant Design The ImpactGenerated by this Solar Power Plant The Impact of StorageVessel Design on the Solar Power Plant III I;l f> (I Q I)

  4. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    D. , The Central Reciever Power Plant: An Environmental,of the Proposed Solar Power Plant Design The Impact ofGenerated by this Solar Power Plant The Impact of Storage

  5. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    process configurations for solar power plants with sensible-heatsolar power plant with sensible-heat storage since the chemical~heat storage processsolar power plant with a sulfur-oxide storage process. chemical~heat

  6. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    Topping of the Steam-Cycle Power Plant . A COMPARISON OFTOPPING OF THE STEAM-CYCLE POWER PLANT The proposed solarreceiver and a steam-cycle power plant. To transport heat, a

  7. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    of the Proposed Solar Power Plant Design The Impact ofGenerated by this Solar Power Plant The Impact of StorageDesign on the Solar Power Plant III I;l f> (I Q I) II (I

  8. Sandia National Laboratories: Electric Power Generation and Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    InterconnectsElectric Power Generation and Water Use Data Electric Power Generation and Water Use Data Electric Power Generation and Water Use Data Electric Power Generation and...

  9. The integration of renewable energy sources into electric power distribution systems. Volume 1: National assessment

    SciTech Connect (OSTI)

    Barnes, P.R.; Van Dyke, J.W. [Oak Ridge National Lab., TN (United States); Tesche, F.M. [6714 Norway Road, Dallas, TX (United States); Zaininger, H.W. [Zaininger Engineering Co., San Jose, CA (United States)

    1994-06-01T23:59:59.000Z

    Renewable energy technologies such as photovoltaic, solar thermal electricity, and wind turbine power are environmentally beneficial sources of electric power generation. The integration of renewable energy sources into electric power distribution systems can provide additional economic benefits because of a reduction in the losses associated with transmission and distribution lines. Benefits associated with the deferment of transmission and distribution investment may also be possible for cases where there is a high correlation between peak circuit load and renewable energy electric generation, such as photovoltaic systems in the Southwest. Case studies were conducted with actual power distribution system data for seven electric utilities with the participation of those utilities. Integrating renewable energy systems into electric power distribution systems increased the value of the benefits by about 20 to 55% above central station benefits in the national regional assessment. In the case studies presented in Vol. II, the range was larger: from a few percent to near 80% for a case where costly investments were deferred. In general, additional savings of at least 10 to 20% can be expected by integrating at the distribution level. Wind energy systems were found to be economical in good wind resource regions, whereas photovoltaic systems costs are presently a factor of 2.5 too expensive under the most favorable conditions.

  10. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    insure constant output from a solar power plant. However. aoutput from the steam turbines is maintained. Equipment design for the proposed solar power

  11. Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)

    SciTech Connect (OSTI)

    Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

    2013-09-26T23:59:59.000Z

    The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

  12. Journal of Power Sources 160 (2006) 662673 Power and thermal characterization of a lithium-ion battery

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Journal of Power Sources 160 (2006) 662­673 Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles Kandler Smith, Chao-Yang Wang Electrochemical Engine Center-electric vehicle (HEV) battery pack. Depleted/saturated active material Li surface concentrations in the negative

  13. Power Handling of the Bulk Tungsten Divertor Row at JET: First Measurements and Comparison to the GTM Thermal Model

    E-Print Network [OSTI]

    Power Handling of the Bulk Tungsten Divertor Row at JET: First Measurements and Comparison to the GTM Thermal Model

  14. THERMAL FATIGUE AND FAILURE OF ELECTRONIC POWER DEVICE SUBSTRATES. S. Pietranico1&2

    E-Print Network [OSTI]

    - 1 - THERMAL FATIGUE AND FAILURE OF ELECTRONIC POWER DEVICE SUBSTRATES. S. Pietranico1&2 , S, avenue du Président Wilson, 94235 Cachan, France Abstract: Electronic power devices used shows that the fatigue life and the reliability of power electronic devices could be optimized using

  15. System-Level Modeling of Energy in TLM for Early Validation of Power and Thermal Management

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    System-Level Modeling of Energy in TLM for Early Validation of Power and Thermal Management Tayeb--Modern systems-on-a-chip are equipped with power architectures, allowing to control the consumption of individual; hence the need for early system-level models of power consumption. B. High-Level Models and Simulation

  16. Vehicle Technologies Office Merit Review 2015: Power Electronics Thermal Management R&D

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about power...

  17. Advanced Electro-thermal SPICE Modelling of Large Power IGBTs

    E-Print Network [OSTI]

    Ng, Wai Tung

    self-heating and latchup. A thermal circuit representing the characteristics of the IGBT package junction temperature variations due to self-heating. The resulting electro-thermal model is validated] is developed here for the study of dynamic performance variations due to self-heating effects

  18. Sandia National Laboratories: Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Force Research Laboratory Testing On August 17, 2012, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, Renewable Energy, Solar...

  19. Sandia National Laboratories: Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wins Three R&D100 Awards On July 24, 2013, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News & Events, Photovoltaic,...

  20. Sandia National Laboratories: Solar Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Research Pratt Whitney Rocketdyne Testing On December 19, 2012, in Concentrating Solar Power, EC, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

  1. Sandia National Laboratories: advanced materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility, News, News & Events, Renewable Energy, Solar, Systems Engineering...

  2. Sandia National Laboratories: sustainable photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photovoltaics Solar Energy Research Institute for India and the United States Kick-Off On November 27, 2012, in Concentrating Solar Power, Energy, National Solar Thermal Test...

  3. Sandia National Laboratories: Solar Two

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workers Received Entrepreneurial Spirit Awards On April 3, 2013, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News & Events,...

  4. Project Profile: National Solar Thermal Test Facility | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 |of Energy TEES logo TexasEnergy SNL logo

  5. Thermal And Mechanical Analysis of High-power Light-emitting Diodes with Ceramic Packages

    E-Print Network [OSTI]

    J. Hu; L. Yang; M. -W. Shin

    2008-01-07T23:59:59.000Z

    In this paper we present the thermal and mechanical analysis of high-power light-emitting diodes (LEDs) with ceramic packages. Transient thermal measurements and thermo-mechanical simulation were performed to study the thermal and mechanical characteristics of ceramic packages. Thermal resistance from the junction to the ambient was decreased from 76.1 oC/W to 45.3 oC/W by replacing plastic mould to ceramic mould for LED packages. Higher level of thermo-mechanical stresses in the chip were found for LEDs with ceramic packages despite of less mismatching coefficients of thermal expansion comparing with plastic packages. The results suggest that the thermal performance of LEDs can be improved by using ceramic packages, but the mounting process of the high power LEDs with ceramic packages is critically important and should be in charge of delaminating interface layers in the packages.

  6. High-density thermoelectric power generation and nanoscale thermal metrology

    E-Print Network [OSTI]

    Mayer, Peter (Peter Matthew), 1978-

    2007-01-01T23:59:59.000Z

    Thermoelectric power generation has been around for over 50 years but has seen very little large scale implementation due to the inherently low efficiencies and powers available from known materials. Recent material advances ...

  7. Molten Salt Nanomaterials for Thermal Energy Storage and Concentrated Solar Power Applications

    E-Print Network [OSTI]

    Shin, Donghyun

    2012-10-19T23:59:59.000Z

    The thermal efficiency of concentrated solar power (CSP) system depends on the maximum operating temperature of the system which is determined by the operating temperature of the TES device. Organic materials (such as synthetic oil, fatty acid...

  8. Molten Salt Nanomaterials for Thermal Energy Storage and Concentrated Solar Power Applications 

    E-Print Network [OSTI]

    Shin, Donghyun

    2012-10-19T23:59:59.000Z

    The thermal efficiency of concentrated solar power (CSP) system depends on the maximum operating temperature of the system which is determined by the operating temperature of the TES device. Organic materials (such as synthetic oil, fatty acid...

  9. NEUTRONIC AND THERMAL HYDRAULIC DESIGNS OF ANNULAR FUEL FOR HIGH POWER DENSITY BWRS

    E-Print Network [OSTI]

    Morra, P.

    As a promising new fuel for high power density light water reactors, the feasibility of using annular fuel for BWR services is explored from both thermal hydraulic and neutronic points of view. Keeping the bundle size ...

  10. Thermal desalination : structural optimization and integration in clean power and water

    E-Print Network [OSTI]

    Zak, Gina Marie

    2012-01-01T23:59:59.000Z

    A large number of resources are dedicated to seawater desalination and will only grow as world-wide water scarcity increases. In arid areas with high temperature and salinity seawater, thermal desalination and power plants ...

  11. Where solar thermal meets photovoltaic for high-efficiency power conversion

    E-Print Network [OSTI]

    Bierman, David M. (David Matthew)

    2014-01-01T23:59:59.000Z

    To develop disruptive techniques which generate power from the Sun, one must understand the aspects of existing technologies that limit performance. Solar thermal and solar photovoltaic schemes dominate today's solar market ...

  12. Thermal Properties of Graphene and Applications for Thermal Management of High-Power Density Electronics

    E-Print Network [OSTI]

    Yan, Zhong

    2013-01-01T23:59:59.000Z

    the development of high-power density semiconductor devices.Management of High-Power Density Electronics A DissertationManagement of High-Power Density Electronics by Zhong Yan

  13. Transient thermal analysis of a space reactor power system

    E-Print Network [OSTI]

    Gaeta, Michael J.

    1988-01-01T23:59:59.000Z

    bv the coolant piping model. The entire model recieves upda. ted mass flosv rate values every time step from the momentum model. The program is used to simulate a variety of transients. The nuclear reactor power source is scrammed and restarted... power drop 67 2]. 22. Temperature versus time for fuel nodes for a temporary reactor power drop Maximum temperature versus time for reactor for a temporary reactor power drop Temperature versus time in thermoelectrics for a temporary reactor...

  14. Method of operating a thermal engine powered by a chemical reaction

    DOE Patents [OSTI]

    Ross, John (Stanford, CA); Escher, Claus (Nieder-Ronstadt, DE)

    1988-01-01T23:59:59.000Z

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction.

  15. Method of operating a thermal engine powered by a chemical reaction

    DOE Patents [OSTI]

    Ross, J.; Escher, C.

    1988-06-07T23:59:59.000Z

    The invention involves a novel method of increasing the efficiency of a thermal engine. Heat is generated by a non-linear chemical reaction of reactants, said heat being transferred to a thermal engine such as Rankine cycle power plant. The novel method includes externally perturbing one or more of the thermodynamic variables of said non-linear chemical reaction. 7 figs.

  16. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    16.500 KW and Larger. General Electric Company Reprint GER-communication with General Electric Company. Power Genera-New York, (1960). General Electric Company, Steam Turbine-

  17. Innovative Phase hange Thermal Energy Storage Solution for Baseload Power

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  18. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20T23:59:59.000Z

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  19. POWER, THERMAL, AND RELIABILITY MODELING IN NANOMETER-SCALE

    E-Print Network [OSTI]

    Dick, Robert

    LEAKAGE POWER. THE WAGES OF POWER ARE BULKY, SHORT-LIVED BATTERIES, HUGE HEAT SINKS, LARGE ON pow- er supply circuitry design, and reduces battery life. Researchers have recently ded- icated result in transient voltage fluctuations as a result of the distributed inductance and resistance in off

  20. Recently, microprocessors have increasingly faced vexing power and thermal

    E-Print Network [OSTI]

    Martonosi, Margaret

    ---because their formal underpinnings let designers analyze and bound worst case behavior. In microprocessor power control system make adjust­ ments on the fly, according to the current power situation. Indeed, part­theoretic techniques have proved useful in many dynamic control sce­ narios---from aerospace systems to manufac­ turing

  1. Recently, microprocessors have increasingly faced vexing power and thermal

    E-Print Network [OSTI]

    Martonosi, Margaret

    --because their formal underpinnings let designers analyze and bound worst case behavior. In microprocessor power control system make adjust- ments on the fly, according to the current power situation. Indeed, part-theoretic techniques have proved useful in many dynamic control sce- narios--from aerospace systems to manufac- turing

  2. RELIABILITY STUDY OF POWER RF LDMOS DEVICES UNDER THERMAL STRESS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    (Ids) less than 20 mA (without a self-heating effect), that corresponds to the quiescent current and hot, different extremes temperatures T). The performances shift for some critical electrical to electrical and thermal overload over extended periods of time, shock and cycling phenomena may lead to device

  3. Monitoring the Thermal Power of Nuclear Reactors with a Prototype Cubic Meter Antineutrino Detector

    E-Print Network [OSTI]

    A. Bernstein; N. S. Bowden; A. Misner; T. Palmer

    2008-04-30T23:59:59.000Z

    In this paper, we estimate how quickly and how precisely a reactor's operational status and thermal power can be monitored over hour to month time scales, using the antineutrino rate as measured by a cubic meter scale detector. Our results are obtained from a detector we have deployed and operated at 25 meter standoff from a reactor core. This prototype can detect a prompt reactor shutdown within five hours, and monitor relative thermal power to three percent within seven days. Monitoring of short-term power changes in this way may be useful in the context of International Atomic Energy Agency's (IAEA) Reactor Safeguards Regime, or other cooperative monitoring regimes.

  4. Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants

    E-Print Network [OSTI]

    Hardin, Corey Lee

    2011-01-01T23:59:59.000Z

    demonstrated how well a molten salt thermal storage systembased CSP plant. Cold molten salt is pumped from a largetemperature and send to a hot molten salt tank. Salt is then

  5. How the National Labs Help Us Understand the Inner Workings of Power Plants

    Broader source: Energy.gov [DOE]

    Learn more about research at the National Energy Technology Lab that's helping us understand more about what happens inside power plants.

  6. Sandia National Laboratories: fuel-cell-powered mobile lighting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel-cell-powered mobile lighting system ECIS, Boeing, Caltrans, and Others: Fuel-Cell-Powered Mobile Lighting Applications On March 29, 2013, in Capabilities, CRF, Energy, Energy...

  7. Sandia National Laboratories: wind turbines produce rated power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind turbines produce rated power Increasing the Scaled Wind Farm Technology Facility's Power Production On April 7, 2014, in Energy, Facilities, News, News & Events, Partnership,...

  8. A thermally efficient micro-reactor for thermophotovoltaic power generation

    E-Print Network [OSTI]

    Nielsen, Ole Mattis, 1977-

    2006-01-01T23:59:59.000Z

    Hydrocarbon fuels exhibit very high energy densities, and micro-generators converting the stored chemical energy into electrical power are interesting alternatives to batteries in certain applications. The increasing demands ...

  9. Solar-thermal hybridization of Advanced Zero Emissions Power Plants

    E-Print Network [OSTI]

    El Khaja, Ragheb Mohamad Fawaz

    2012-01-01T23:59:59.000Z

    Carbon Dioxide emissions from power production are believed to have significant contributions to the greenhouse effect and global warming. Alternative energy resources, such as solar radiation, may help abate emissions but ...

  10. SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT

    E-Print Network [OSTI]

    Baldwin, Thomas F.

    2011-01-01T23:59:59.000Z

    of sites suitable for a solar plant with sulfur oxide TableProcess for a Steam Solar Electric Plant Report No. LBL-Summary of the Proposed Solar Power Plant Design The Impact

  11. Waverly Light and Power- Residential Solar Thermal Rebates

    Broader source: Energy.gov [DOE]

    Waverly Light and Power (WL&P) offers rebates for solar hot water heating systems to its residential customers. All purchases must be pre-approved through WL&P's solar water heater...

  12. Statement of work for solar thermal power systems and photovoltaic solar-energy systems technical support services

    SciTech Connect (OSTI)

    none,

    1982-01-01T23:59:59.000Z

    Work is broken down in the following areas: solar thermal central receiver systems analysis; advanced solar thermal systems analysis and engineering; thermal power systems support; total energy systems mission analysis; irrigation and small community mission analysis; photovoltaics mission analysis; Solar Thermal Test Facility and Central Receiver Pilot Plant systems engineering. (LEW)

  13. High-Temperature Thermal Array for Next Generation Solar Thermal Power Production- FY13 Q1

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this Los Alamos National Laboratory project, funded by SunShot, for the first quarter of fiscal year 2013.

  14. High Temperature Thermal Array for Next Generation Solar Thermal Power Production

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  15. Nice, Cte d'Azur, France, 27-29 September 2006 THERMAL MODELING OF HIGH POWER LED MODULES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    generation a part of the input electric power is converted into light, which is described by the wall plugNice, Côte d'Azur, France, 27-29 September 2006 THERMAL MODELING OF HIGH POWER LED MODULES D a study of accuracy issues in thermal modeling of high power LED modules on system level. Both physical

  16. Exploring Phase Change Memory and 3D Die-Stacking for Power/Thermal Friendly, Fast and Durable Memory Architectures

    E-Print Network [OSTI]

    Kavi, Krishna

    Exploring Phase Change Memory and 3D Die-Stacking for Power/Thermal Friendly, Fast and Durable) as a promising candidate to achieve scalable, low power and thermal friendly memory system architecture leakages and retention time. DRAM-based main memory is also consuming an increasing proportion of the power

  17. Development and Demonstration of an Innovative Thermal Energy Storage System for Baseload Power Generation

    SciTech Connect (OSTI)

    D. Y. Goswami

    2012-09-04T23:59:59.000Z

    The objective of this project is to research and develop a thermal energy storage system (operating range 3000C ���¹�������� 450 0C ) based on encapsulated phase change materials (PCM) that can meet the utility-scale base-load concentrated solar power plant requirements at much lower system costs compared to the existing thermal energy storage (TES) concepts. The major focus of this program is to develop suitable encapsulation methods for existing low-cost phase change materials that would provide a cost effective and reliable solution for thermal energy storage to be integrated in solar thermal power plants. This project proposes a TES system concept that will allow for an increase of the capacity factor of the present CSP technologies to 75% or greater and reduce the cost to less than $20/kWht.

  18. Vehicle Technologies Office Merit Review 2015: Thermal Control of Power Electronics of Electric Vehicles with Small Channel Coolant Boiling

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about thermal control...

  19. Review Article Solar-Thermal Powered Desalination: Its Significant

    E-Print Network [OSTI]

    Reif, John H.

    @kau.edu.sa Abstract Solar-desalination systems are desalination systems that are powered by solar energy review the technologies for solar energy systems used for capturing and concentrating heat energy- desalination systems that (i) first transform solar energy into electrical energy and then (ii) employed

  20. Efficient Coupling of Thermal Electron Bernstein Waves to the Ordinary Electromagnetic Mode on the National Spherical Torus Experiment (NSTX)

    SciTech Connect (OSTI)

    G. Taylor; P.C. Efthimion; B.P. LeBlanc; M.D. Carter; J.B. Caughman; J.B. Wilgen; J. Preinhaelter; R.W. Harvey; S.A. Sabbagh

    2005-02-02T23:59:59.000Z

    Efficient coupling of thermal electron Bernstein waves (EBW) to ordinary mode (Omode) electromagnetic radiation has been measured in plasmas heated by energetic neutral beams and high harmonic fast waves in the National Spherical Torus Experiment (NSTX) [M. Ono, S. Kaye, M. Peng, et al., Proceedings 17th IAEA Fusion Energy Conference (IAEA, Vienna, Austria, 1999), Vol.3, p. 1135]. The EBW to electromagnetic mode coupling efficiency was measured to be 0.8 {+-} 0.2, compared to a numerical EBW modeling prediction of 0.65. The observation of efficient EBW coupling to O-mode, in relatively good agreement with numerical modeling, is a necessary prerequisite for implementing a proposed high power EBW current drive system on NSTX.

  1. Sandia National Laboratories: green hy-drogen power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hy-drogen power Portable Hydrogen Fuel-Cell Unit to Provide Green, Sustainable Power to Honolulu Port On March 13, 2014, in Center for Infrastructure Research and Innovation...

  2. Smart Power Laboratory (Fact Sheet), NREL (National Renewable...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system manufacturers * Home automation and energy management system manufacturers * Power electronics device vendors * Utilities * State energy commissions * Certification...

  3. National Laboratory Concentrating Solar Power Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    receivers, and thermal storage-are necessary to achieve the cost goal of producing solar energy for 0.06kWh. cspnatllabrdfactsheet.pdf More Documents & Publications...

  4. Maximizing Thermal Efficiency and Optimizing Energy Management (Fact Sheet), Thermal Test Facility (TTF), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from a NewCuneo Matthew Cuneoand Renewable Energy,

  5. Sandia National Laboratories: energy storage materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility, News, News & Events,...

  6. Sandia National Laboratories: better predict combustion efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    all EC Publications Related Topics Concentrating Solar Power CRF CSP EFRC Energy Energy Efficiency Energy Security National Solar Thermal Test Facility NSTTF Nuclear Energy...

  7. Sandia National Laboratories: test prototype heliostats

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 3, 2015, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News & Events, Partnership, Renewable Energy, Solar, Solar Newsletter...

  8. Sandia National Laboratories: Solar Receiver Shroud

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Receiver Shroud Pratt Whitney Rocketdyne Testing On December 19, 2012, in Concentrating Solar Power, EC, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

  9. Sandia National Laboratories: innovative solar technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

  10. Fifth parabolic dish solar thermal power program annual review: proceedings

    SciTech Connect (OSTI)

    None

    1984-03-01T23:59:59.000Z

    The primary objective of the Review was to present the results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program. The Review consisted of nine technical sessions covering overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development, and associated hardware and test results to date; distributed systems operating experience; international dish development activities; and non-DOE-sponsored domestic dish activities. A panel discussion concerning business views of solar electric generation was held. These Proceedings contain the texts of presentations made at the Review, as submitted by their authors at the beginning of the Review; therefore, they may vary slightly from the actual presentations in the technical sessions.

  11. Thermal Properties of Graphene and Applications for Thermal Management of High-Power Density Electronics

    E-Print Network [OSTI]

    Yan, Zhong

    2013-01-01T23:59:59.000Z

    Turin and A. A. Balandin, Electronics Letters 40, 81 (2004).REFERENCES G. E. Moore, Electronics 38 (1965). E. Pop, Nanofor High-power Electronics” PCSI-38:38th Conference on the

  12. Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems

    SciTech Connect (OSTI)

    None

    2011-12-05T23:59:59.000Z

    HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNL’s metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800°C). A high-temperature tank in PNNL’s storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNL’s thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

  13. High Operating Temperature Heat Transfer Fluids for Solar Thermal Power

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of Energy CompletingPresentedGeneration FY13 Q1 |

  14. Power Electronics and Thermal Management Breakout Session | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA Administrative Judgea.WorkEconomic

  15. Pathway from the National Ignition Facility to an operational LIFE power plant

    E-Print Network [OSTI]

    Pathway from the National Ignition Facility to an operational LIFE power plant Presentation to AAAS next step, after NIF, is construction of a full-scale power plant NIF-1111-23807.ppt 4 #12 · PG&E · Southern Company · Wisconsin Energy · SSEB Power Plant Vendors Laser

  16. Measurement of total ultrasonic power using thermal expansion and change in buoyancy of an absorbing target

    SciTech Connect (OSTI)

    Dubey, P. K., E-mail: premkdubey@gmail.com; Kumar, Yudhisther; Gupta, Reeta; Jain, Anshul; Gohiya, Chandrashekhar [Acoustics, Ultrasonics, Vibration Standards and Electronics Instrumentation Cell, CSIR–National Physical Laboratory, New Delhi 110012 (India)

    2014-05-15T23:59:59.000Z

    The Radiation Force Balance (RFB) technique is well established and most widely used for the measurement of total ultrasonic power radiated by ultrasonic transducer. The technique is used as a primary standard for calibration of ultrasonic transducers with relatively fair uncertainty in the low power (below 1 W) regime. In this technique, uncertainty comparatively increases in the range of few watts wherein the effects such as thermal heating of the target, cavitations, and acoustic streaming dominate. In addition, error in the measurement of ultrasonic power is also caused due to movement of absorber at relatively high radiated force which occurs at high power level. In this article a new technique is proposed which does not measure the balance output during transducer energized state as done in RFB. It utilizes the change in buoyancy of the absorbing target due to local thermal heating. The linear thermal expansion of the target changes the apparent mass in water due to buoyancy change. This forms the basis for the measurement of ultrasonic power particularly in watts range. The proposed method comparatively reduces uncertainty caused by various ultrasonic effects that occur at high power such as overshoot due to momentum of target at higher radiated force. The functionality of the technique has been tested and compared with the existing internationally recommended RFB technique.

  17. Sandia National Laboratories: clean hydrogen-powered fuel cell...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydrogen-powered fuel cell electric vehicles Storing Hydrogen Underground Could Boost Transportation, Energy Security On February 26, 2015, in Capabilities, Center for...

  18. Sandia National Laboratories: reduce the cost of solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Regional Test Center (RTC). The RTC will enable research on integrating solar panels into the statewide smart grid and help reduce the cost of solar power. The...

  19. Sandia National Laboratories: power-to-gas applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power-to-gas applications Storing Hydrogen Underground Could Boost Transportation, Energy Security On February 26, 2015, in Capabilities, Center for Infrastructure Research and...

  20. Sandia National Laboratories: character-izing solar-power-plant...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    character-izing solar-power-plant output variability Sandia PV Team Publishes Book Chapter On January 21, 2014, in Computational Modeling & Simulation, Energy, Modeling & Analysis,...

  1. Sandia National Laboratories: simulating solar-power-plant output...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulating solar-power-plant output variability Sandia PV Team Publishes Book Chapter On January 21, 2014, in Computational Modeling & Simulation, Energy, Modeling & Analysis,...

  2. Sandia National Laboratories: control-ling the power-conversion...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State Lighting SSLS Connect Contact Us RSS Google+ Twitter...

  3. Sandia National Laboratories: PNM Distributed Energy Solar Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PNM Distributed Energy Solar Power Program Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution...

  4. Power Systems Integration Laboratory (Fact Sheet), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from fundamental research to applications engineering. Partners at the ESIF's Power Systems Integration Laboratory may include: * Manufacturers of distributed generation and...

  5. Sandia National Laboratories: Ocean Renewable Power Company TidGenź...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Company TidGen turbine High-Fidelity Hydrostructural Analysis of Ocean Renewable Power Company's (ORPC's) TidGen Turbine On March 19, 2014, in Computational Modeling &...

  6. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report

    SciTech Connect (OSTI)

    Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

    2012-03-30T23:59:59.000Z

    We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

  7. Survey of thermal-hydraulic models of commercial nuclear power plants

    SciTech Connect (OSTI)

    Determan, J.C.; Hendrix, C.E.

    1992-12-01T23:59:59.000Z

    A survey of the thermal-hydraulic models of nuclear power plants has been performed to identify the NRC's current analytical capabilities for critical event response. The survey also supports ongoing research for accident management. The results of the survey are presented here. The PC database which records detailed data on each model is described.

  8. Survey of thermal-hydraulic models of commercial nuclear power plants

    SciTech Connect (OSTI)

    Determan, J.C.; Hendrix, C.E.

    1992-12-01T23:59:59.000Z

    A survey of the thermal-hydraulic models of nuclear power plants has been performed to identify the NRC`s current analytical capabilities for critical event response. The survey also supports ongoing research for accident management. The results of the survey are presented here. The PC database which records detailed data on each model is described.

  9. Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation

    E-Print Network [OSTI]

    Sanders, Seth

    Stirling Engines for Low-Temperature Solar-Thermal- Electric Power Generation Artin Der Minassians Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB - Electrical Engineering and Computer Sciences in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA

  10. STUDY OF THERMAL INTERACTION BETWEEN A 150 KW CW POWER COUPLER AND A SUPERCONDUCTING 704 MHZ ELLIPTICAL CAVITY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    us also to perform in-situ measurements of thermal parameters needed in the thermal model without degradation of its RF performance. · Determine, by in situ measurements, some unknown thermal) Specification Frequency (MHz) 704 RF power (kW) 150 - CW Impedance () 50 Outer Conductor (OC) material

  11. Power efficiency for very high temperature solar thermal cavity receivers

    DOE Patents [OSTI]

    McDougal, Allan R. (LaCanada-Flintridge, CA); Hale, Robert R. (Upland, CA)

    1984-01-01T23:59:59.000Z

    This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positioned in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts infrared radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatures are attained.

  12. Power enhancement of heat engines via correlated thermalization in multilevel systems

    E-Print Network [OSTI]

    David Gelbwaser-Klimovsky; Wolfgang Niedenzu; Paul Brumer; Gershon Kurizki

    2014-11-05T23:59:59.000Z

    We analyze a heat machine based on a periodically-driven quantum system permanently coupled to hot and cold baths. It is shown that the maximal power output of a degenerate $V$-type three-level heat engine is that generated by two independent two-level systems. For $N$ levels, this maximal enhancement is $(N-1)$-fold. Hence, level degeneracy is a thermodynamic resource that may effectively boost the power output. The efficiency, however, is not affected. We find that coherence is not an essential asset in multilevel-based heat machines. The existence of multiple thermalization pathways sharing a common ground state suffices for power enhancement.

  13. Power in Collaboration: National Energy Literacy Virtual Meet-Up

    Broader source: Energy.gov [DOE]

    The webinar will be a dynamic virtual conversation of ongoing efforts from across the country in utilizing the Department of Energy's Energy Literacy Framework to address one of our nation's...

  14. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, M.

    2006-10-31T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel Partnership and the 21st Century Truck Partnership through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes speci

  15. Sandia National Laboratories: grid-tied wind-power inverters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wind-power inverters Sandia, DOE Energy Storage Program, GeneSiC Semiconductor, U.S. Army ARDEC: Ultra-High-Voltage Silicon Carbide Thyristors On March 29, 2013, in Capabilities,...

  16. Sandia National Laboratories: long-distance power transmission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid relies on power transmission from the production source-be it a coal-fired plant, solar array, or wind farm-to the consumer. Long-distance transmission results in...

  17. Analysis of Off-Board Powered Thermal Preconditioning in Electric Drive Vehicles: Preprint

    SciTech Connect (OSTI)

    Barnitt, R. A.; Brooker, A. D.; Ramroth, L.; Rugh , J.; Smith, K. A.

    2010-12-01T23:59:59.000Z

    Following a hot or cold thermal soak, vehicle climate control systems (air conditioning or heat) are required to quickly attain a cabin temperature comfortable to the vehicle occupants. In a plug-in hybrid electric or electric vehicle (PEV) equipped with electric climate control systems, the traction battery is the sole on-board power source. Depleting the battery for immediate climate control results in reduced charge-depleting (CD) range and additional battery wear. PEV cabin and battery thermal preconditioning using off-board power supplied by the grid or a building can mitigate the impacts of climate control. This analysis shows that climate control loads can reduce CD range up to 35%. However, cabin thermal preconditioning can increase CD range up to 19% when compared to no thermal preconditioning. In addition, this analysis shows that while battery capacity loss over time is driven by ambient temperature rather than climate control loads, concurrent battery thermal preconditioning can reduce capacity loss up to 7% by reducing pack temperature in a high ambient temperature scenario.

  18. System for thermal energy storage, space heating and cooling and power conversion

    DOE Patents [OSTI]

    Gruen, Dieter M. (Downers Grove, IL); Fields, Paul R. (Chicago, IL)

    1981-04-21T23:59:59.000Z

    An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.

  19. EA-1247: Electrical Power System Upgrades at Los Alamos National Laboratory, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to upgrade the electrical power supply system for the U.S. Department of Energy Los Alamos National Laboratory to increase the...

  20. National Aeronautics and Space Administration Space power and energy Storage roadmap

    E-Print Network [OSTI]

    Waliser, Duane E.

    National Aeronautics and Space Administration Space power and energy Storage roadmap Technology's integrated technology roadmap, including both technology pull and technology push strategies, considers is documented in NASA's DRAFT Space Technology Roadmap, an integrated set of fourteen technology area roadmaps

  1. Management of National Nuclear Power Programs for assured safety

    SciTech Connect (OSTI)

    Connolly, T.J. (ed.)

    1985-01-01T23:59:59.000Z

    Topics discussed in this report include: nuclear utility organization; before the Florida Public Service Commission in re: St. Lucie Unit No. 2 cost recovery; nuclear reliability improvement and safety operations; nuclear utility management; training of nuclear facility personnel; US experience in key areas of nuclear safety; the US Nuclear Regulatory Commission - function and process; regulatory considerations of the risk of nuclear power plants; overview of the processes of reliability and risk management; management significance of risk analysis; international and domestic institutional issues for peaceful nuclear uses; the role of the Institute of Nuclear Power Operations (INPO); and nuclear safety activities of the International Atomic Energy Agency (IAEA).

  2. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOE Patents [OSTI]

    Bowman, Charles D. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  3. Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux

    DOE Patents [OSTI]

    Bowman, C.D.

    1992-11-03T23:59:59.000Z

    Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

  4. Proceedings of National Avian-Wind Power Planning Meeting IV

    SciTech Connect (OSTI)

    NWCC Avian Subcommittee

    2001-05-01T23:59:59.000Z

    OAK-B135 The purpose of the fourth meeting was to (1) share research and update research conducted on avian wind interactions (2) identify questions and issues related to the research results, (3) develop conclusions about some avian/wind power issues, and (4) identify questions and issues for future avian research.

  5. Sandia National Laboratories and the Electric Power Research Institute (EPRI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitcheSandian Wins AwardNational Nuclear

  6. Utility Grid-Connected Distributed Power Systems National Solar Energy Conference

    E-Print Network [OSTI]

    Utility Grid-Connected Distributed Power Systems National Solar Energy Conference ASES Solar 96 at least half of its energy obtained from energy efficiency and renewable resources by the year 2000. Solar energy, distributed generation resource. Investments made in solar power today are expected to provide

  7. Impact of a 1,000-foot thermal mixing zone on the steam electric power industry

    SciTech Connect (OSTI)

    Veil, J.A.

    1994-04-01T23:59:59.000Z

    Thermal discharge requirements for power plants using once-through cooling systems are based on state water quality standards for temperatures that must be met outside of designated mixing zones. This study evaluates the impact of limiting the extent of thermal mixing zones. This study evaluates the impact of limiting the extent of thermal mixing zones to no more than 1,000 feet from the discharge point. Data were collected from 79 steam electric plants. Of the plants currently using once-through cooling systems, 74% could not meet current thermal standards at the edge of a 1,000-foot mixing zone. Of this total, 68% would retrofit cooling towers, and 6% would retrofit diffusers. The estimated nationwide capital cost for retrofitting plants that could not meet current thermal standards at the edge of a 1,000-foot mixing zone is $21.4 billion. Conversion of a plant from once-through cooling to cooling towers or addition of diffusers would result in a lower energy output from that plant. For the affected plants, the total estimated replacement cost would be $370 to $590 million per year. Some power companies would have to construct new generating capacity to meet the increased energy demand. The estimated nationwide cost of this additional capacity would be $1.2 to $4.8 billion. In addition to the direct costs associated with compliance with a 1,000-foot mixing zone limit, other secondary environmental impacts would also occur. Generation of the additional power needed would increase carbon dioxide emissions by an estimated 8.3 million tons per year. In addition, conversion from once-through cooling systems to cooling towers at affected plants would result in increased evaporation of about 2.7 million gallons of water per minute nationwide.

  8. Quantity, quality, and availability of waste heat from United States thermal power generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gingerich, Daniel B; Mauter, Meagan S

    2015-06-10T23:59:59.000Z

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJthmore »of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.« less

  9. Quantity, quality, and availability of waste heat from United States thermal power generation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gingerich, Daniel B [Carnegie Mellon Univ., Pittsburgh, PA (United States); Mauter, Meagan S [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2015-06-10T23:59:59.000Z

    Secondary application of unconverted heat produced during electric power generation has the potential to improve the life-cycle fuel efficiency of the electric power industry and the sectors it serves. This work quantifies the residual heat (also known as waste heat) generated by U.S. thermal power plants and assesses the intermittency and transport issues that must be considered when planning to utilize this heat. Combining Energy Information Administration plant-level data with literature-reported process efficiency data, we develop estimates of the unconverted heat flux from individual U.S. thermal power plants in 2012. Together these power plants discharged an estimated 18.9 billion GJth of residual heat in 2012, 4% of which was discharged at temperatures greater than 90 °C. We also characterize the temperature, spatial distribution, and temporal availability of this residual heat at the plant level and model the implications for the technical and economic feasibility of its end use. Increased implementation of flue gas desulfurization technologies at coal-fired facilities and the higher quality heat generated in the exhaust of natural gas fuel cycles are expected to increase the availability of residual heat generated by 10.6% in 2040.

  10. Development of encapsulated lithium hydride thermal energy storage for space power systems

    SciTech Connect (OSTI)

    Morris, D.G.; Foote, J.P.; Olszewski, M.

    1987-12-01T23:59:59.000Z

    Inclusion of thermal energy storage in a pulsed space power supply will reduce the mass of the heat rejection system. In this mode, waste heat generated during the brief high-power burst operation is placed in the thermal store; later, the heat in the store is dissipated to space via the radiator over the much longer nonoperational period of the orbit. Thus, the radiator required is of significantly smaller capacity. Scoping analysis indicates that use of lithium hydride as the thermal storage medium results in system mass reduction benefits for burst periods as long as 800 s. A candidate design for the thermal energy storage component utilizes lithium hydride encapsulated in either 304L stainless steel or molybdenum in a packed-bed configuration with a lithium or sodium-potassium (NaK) heat transport fluid. Key issues associated with the system design include phase-change induced stresses in the shell, lithium hydride and shell compatibility, lithium hydride dissociation and hydrogen loss from the system, void presence and movement associated with the melt-freeze process, and heat transfer limitations on obtaining the desired energy storage density. 58 refs., 40 figs., 11 tabs.

  11. Tax Revenue and Job Benefits from Solar Thermal Power Plants in Nye County

    SciTech Connect (OSTI)

    Kuver, Walt

    2009-11-10T23:59:59.000Z

    The objective of this report is to establish a common understanding of the financial benefits that the County will receive as solar thermal power plants are developed in Amargosa Valley. Portions of the tax data and job estimates in the report were provided by developers Solar Millennium and Abengoa Solar in support of the effort. It is hoped that the resulting presented data will be accepted as factual reference points for the ensuing debates and financial decisions concerning these development projects.

  12. Klotz visits Bettis Atomic Power Laboratory | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy Materials CenterTechnologies |Technologiestowards

  13. SOLAR POWER PURCHASE FOR DOE LABORATORIES | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City,Enriched UraniumPhysical SecurityResponding to

  14. Bettis and Knolls Atomic Power Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of the Administrator|

  15. Request for Information on a National Power Transformer Reserve: Federal

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR -Department ofEMSpent Nuclear Fuels RequestRegister

  16. Sandia Energy - Sandia Nuclear Power Safety Expert Elected to National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments HomeDatabase on Engine FuelAcademy of

  17. National Laboratory Concentrating Solar Power Research | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDyn NOPRNancy Sutley GeothermalEnergy National

  18. Powering the Nuclear Navy | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear AstrophysicsPayroll,Physics

  19. The National Carbon Capture Center at the Power Systems Development

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item youThe Discovery of Archaea,Facility | SciTech

  20. The National Carbon Capture Center at the Power Systems Development

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item youThe Discovery of Archaea,Facility |

  1. Powering the Nuclear Navy | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical Information STIP MapNotes:4DAQ StatusAbout Us / Our

  2. National Bio Energy Gongzhuling Biomass Power Plant | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen Energy Information National Alliance

  3. Alternative Fuels Data Center: Propane Powers Fleets Across the Nation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels CleanReduceNew HampshirePropaneOrleans

  4. National Laboratory Concentrating Solar Power Research and Development

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC)TABLEChallenges|AdvancedofPresentation |3,| Department

  5. National Laboratory Concentrating Solar Power Research and Development |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC)TABLEChallenges|AdvancedofPresentation |3,|

  6. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, M.

    2008-10-15T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors, and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making HEVs practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies.

  7. FY2009 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery

    SciTech Connect (OSTI)

    Olszewski, Mitchell [ORNL

    2009-11-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), all electric vehicles, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher-temperature environments while achieving high reliability; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control and packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2009 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.

  8. 7-122 A solar pond power plant operates by absorbing heat from the hot region near the bottom, and rejecting waste heat to the cold region near the top. The maximum thermal efficiency that the power plant

    E-Print Network [OSTI]

    Bahrami, Majid

    , and rejecting waste heat to the cold region near the top. The maximum thermal efficiency that the power plant

  9. Sandia National Laboratories: reducing start-up risks for solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reducing start-up risks for solar thermal generation Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power,...

  10. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Reddy, Ramana G. [The University of Alabama] [The University of Alabama

    2013-10-23T23:59:59.000Z

    The explicit UA program objective is to develop low melting point (LMP) molten salt thermal energy storage media with high thermal energy storage density for sensible heat storage systems. The novel Low Melting Point (LMP) molten salts are targeted to have the following characteristics: 1. Lower melting point (MP) compared to current salts (<222șC) 2. Higher energy density compared to current salts (>300 MJ/m3) 3. Lower power generation cost compared to current salt In terms of lower power costs, the program target the DOE's Solar Energy Technologies Program year 2020 goal to create systems that have the potential to reduce the cost of Thermal Energy Storage (TES) to less than $15/kWh-th and achieve round trip efficiencies greater than 93%. The project has completed the experimental investigations to determine the thermo-physical, long term thermal stability properties of the LMP molten salts and also corrosion studies of stainless steel in the candidate LMP molten salts. Heat transfer and fluid dynamics modeling have been conducted to identify heat transfer geometry and relative costs for TES systems that would utilize the primary LMP molten salt candidates. The project also proposes heat transfer geometry with relevant modifications to suit the usage of our molten salts as thermal energy storage and heat transfer fluids. The essential properties of the down-selected novel LMP molten salts to be considered for thermal storage in solar energy applications were experimentally determined, including melting point, heat capacity, thermal stability, density, viscosity, thermal conductivity, vapor pressure, and corrosion resistance of SS 316. The thermodynamic modeling was conducted to determine potential high temperature stable molten salt mixtures that have thermal stability up to 1000 °C. The thermo-physical properties of select potential high temperature stable (HMP) molten salt mixtures were also experimentally determined. All the salt mixtures align with the go/no-go goals stipulated by the DOE for this project. Energy densities of all salt mixtures were higher than that of the current solar salt. The salt mixtures costs have been estimated and TES system costs for a 2 tank, direct approach have been estimated for each of these materials. All estimated costs are significantly below the baseline system that used solar salt. These lower melt point salts offer significantly higher energy density per volume than solar salt – and therefore attractively smaller inventory and equipment costs. Moreover, a new TES system geometry has been recommended A variety of approaches were evaluated to use the low melting point molten salt. Two novel changes are recommended that 1) use the salt as a HTF through the solar trough field, and 2) use the salt to not only create steam but also to preheat the condensed feedwater for Rankine cycle. The two changes enable the powerblock to operate at 500°C, rather than the current 400°C obtainable using oil as the HTF. Secondly, the use of salt to preheat the feedwater eliminates the need to extract steam from the low pressure turbine for that purpose. Together, these changes result in a dramatic 63% reduction required for 6 hour salt inventory, a 72% reduction in storage volume, and a 24% reduction in steam flow rate in the power block. Round trip efficiency for the Case 5 - 2 tank “direct” system is estimated at >97%, with only small losses from time under storage and heat exchange, and meeting RFP goals. This attractive efficiency is available because the major heat loss experienced in a 2 tank “indirect” system - losses by transferring the thermal energy from oil HTF to the salt storage material and back to oil to run the steam generator at night - is not present for the 2 tank direct system. The higher heat capacity values for both LMP and HMP systems enable larger storage capacities for concentrating solar power.

  11. Space nuclear-power reactor design based on combined neutronic and thermal-fluid analyses

    SciTech Connect (OSTI)

    Koenig, D.R.; Gido, R.G.; Brandon, D.I.

    1985-01-01T23:59:59.000Z

    The design and performance analysis of a space nuclear-power system requires sophisticated analytical capabilities such as those developed during the nuclear rocket propulsion (Rover) program. In particular, optimizing the size of a space nuclear reactor for a given power level requires satisfying the conflicting requirements of nuclear criticality and heat removal. The optimization involves the determination of the coolant void (volume) fraction for which the reactor diameter is a minimum and temperature and structural limits are satisfied. A minimum exists because the critical diameter increases with increasing void fraction, whereas the reactor diameter needed to remove a specified power decreases with void fraction. The purpose of this presentation is to describe and demonstrate our analytical capability for the determination of minimum reactor size. The analysis is based on combining neutronic criticality calculations with OPTION-code thermal-fluid calculations.

  12. Testing Active Power Control from Wind Power at the National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Ela, E.

    2011-05-01T23:59:59.000Z

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  13. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This...

  14. Preliminary Thermal Modeling of HI-STORM 100 Storage Modules at Diablo Canyon Power Plant ISFSI

    SciTech Connect (OSTI)

    Cuta, Judith M.; Adkins, Harold E.

    2014-04-17T23:59:59.000Z

    Thermal analysis is being undertaken at Pacific Northwest National Laboratory (PNNL) in support of inspections of selected storage modules at various locations around the United States, as part of the Used Fuel Disposition Campaign of the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE) Fuel Cycle Research and Development. This report documents pre-inspection predictions of temperatures for two modules at the Diablo Canyon Power Plant ISFSI identified as candidates for inspection. These are HI-STORM 100 modules of a site-specific design for storing PWR 17x17 fuel in MPC-32 canisters. The temperature predictions reported in this document were obtained with detailed COBRA-SFS models of these storage systems, with the following boundary conditions and assumptions. • storage module overpack configuration based on FSAR documentation of HI-STORM100S-218, Version B; due to unavailability of site-specific design data for Diablo Canyon ISFSI modules • Individual assembly and total decay heat loadings for each canister, based on at-loading values provided by PG&E, “aged” to time of inspection using ORIGEN modeling o Special Note: there is an inherent conservatism of unquantified magnitude – informally estimated as up to approximately 20% -- in the utility-supplied values for at-loading assembly decay heat values • Axial decay heat distributions based on a bounding generic profile for PWR fuel. • Axial location of beginning of fuel assumed same as WE 17x17 OFA fuel, due to unavailability of specific data for WE17x17 STD and WE 17x17 Vantage 5 fuel designs • Ambient conditions of still air at 50°F (10°C) assumed for base-case evaluations o Wind conditions at the Diablo Canyon site are unquantified, due to unavailability of site meteorological data o additional still-air evaluations performed at 70°F (21°C), 60°F (16°C), and 40°F (4°C), to cover a range of possible conditions at the time of the inspection. (Calculations were also performed at 80°F (27°C), for comparison with design basis assumptions.) All calculations are for steady-state conditions, on the assumption that the surfaces of the module that are accessible for temperature measurements during the inspection will tend to follow ambient temperature changes relatively closely. Comparisons to the results of the inspections, and post-inspection evaluations of temperature measurements obtained in the specific modules, will be documented in a separate follow-on report, to be issued in a timely manner after the inspection has been performed.

  15. Wavelet-based multi-resolution analysis and artificial neural networks for forecasting temperature and thermal power consumption

    E-Print Network [OSTI]

    Boyer, Edmond

    and thermal power consumption Julien Eynard, Stéphane Grieu1 and Monique Polit ELIAUS Lab., University. The number of past sequences to take into account and the chosen time step were also major concerns

  16. Numerical simulation of the thermal conditions in a sea bay water area used for water supply to nuclear power plants

    SciTech Connect (OSTI)

    Sokolov, A. S. [JSC 'B. E. Vedeneev All-Russia Research Institute of Hydraulic Engineering (VNIIG)' (Russian Federation)] [JSC 'B. E. Vedeneev All-Russia Research Institute of Hydraulic Engineering (VNIIG)' (Russian Federation)

    2013-07-15T23:59:59.000Z

    Consideration is given to the numerical simulation of the thermal conditions in sea water areas used for both water supply to and dissipation of low-grade heat from a nuclear power plant on the shore of a sea bay.

  17. Dense, low-power sensor network for three-dimensional thermal characterization of large-scale atria spaces

    E-Print Network [OSTI]

    Gong, Nan-Wei

    We describe the design and implementation of a dense, low-power wireless sensor network for fine-grained three-dimensional thermal characterization of a large open indoor space. To better understand the airflow dynamics ...

  18. Dynamic modeling and control strategies for a micro-CSP plant with thermal storage powered by the Organic Rankine cycle

    E-Print Network [OSTI]

    Ireland, Melissa Kara

    2014-01-01T23:59:59.000Z

    Organic Rankine cycle (ORC) systems are gaining ground as a means of effectively providing sustainable energy. Coupling small-scale ORCs powered by scroll expander- generators with solar thermal collectors and storage can ...

  19. Proceedings of national avian-wind power planning meeting 2

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    This meeting was the second in a series. The purposes of this meeting were to: (1) provide information on avian/wind power interactions that will help meet the needs of regulators, researchers, and other stakeholders concerned with responsible development and permitting of wind plants; (2) create dialogue among regulators, researchers and other stakeholders to help all parties understand the role that research can play in responsible development and permitting of wind plants, and allow researchers to understand the relevance of their research to the process; and (3) propose research projects and the appropriate sponsorship. The meeting began with oral presentations and discussions of nine White Papers on the theory and methods for studying and understanding impacts. The Proceedings include the written version of each of the nine White Papers, plus a summary of the oral discussion associated with each paper. The second part of the meeting consisted of four working group sessions: (1) site evaluation and pre-permit research and planning; (2) operational monitoring; (3) modeling and forecasting, including population dynamics models; and (4) avian behavior and mortality reduction. The Proceedings includes a summary of the discussions on these topics, including each working group`s recommendations for future research or associated activities. A final plenary session drew together the main recommendations.

  20. Neutronic and thermal calculation of blanket for high power operating condition of fusion reactor

    SciTech Connect (OSTI)

    Sagawa, H.; Shimakawa, S.; Kuroda, T. [Oarai Research Establishement of JAERI, Ibaraki (Japan)] [and others

    1994-12-31T23:59:59.000Z

    Internal (breeding region) structures of ceramic breeder blanket to accommodate high power operating conditions such as a DEMO reactor have been investigated. The conditions considered here are the maximum neutron wall load of 2.8 MW/m{sup 2} at outboard midplane corresponding to a fusion power of 3.0 GW and the coolant temperature of 200{degrees}C. Structure of a blanket is based on the layered pebble bed concept, which has been proposed by Japan since the ITER CDA. Lithium oxide with 50% enriched {sup 6}Li is used in a shape of small spherical pebbles which are filled in a 316SS can avoid its compatibility issue with Be. Beryllium around the breeder can is filled also in a shape of spherical pebbles which works not only as a neutron multiplier but also as a thermal resistant layer to maintain breeder temperature for effective in-situ tritium recovery. Diameters and packing fractions of both pebbles are {<=} 1 mm and 65%, respectively. A layer of block Be between cooling panels is introduced as a neutron multiplier (not as the thermal resistant layer) to enhance tritium breeding performance. Inlet temperature of water coolant is 200{degrees}C to meet the high temperature conditioning requirement to the first wall which is one of walls of the blanket vessel. Neutronics calculations have been carried out by one-dimensional transport code, and thermal calculations have also been carried out by one-dimensional slab code.

  1. Monitoring Thermal Fatigue Damage In Nuclear Power Plant Materials Using Acoustic Emission

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Watson, Bruce E.; Pitman, Stan G.; Roosendaal, Timothy J.; Bond, Leonard J.

    2012-04-26T23:59:59.000Z

    Proactive aging management of nuclear power plant passive components requires technologies to enable monitoring and accurate quantification of material condition at early stages of degradation (i.e., pre-macrocrack). Acoustic emission (AE) is well-suited to continuous monitoring of component degradation and is proposed as a method to monitor degradation during accelerated thermal fatigue tests. A key consideration is the ability to separate degradation responses from external sources such as water spray induced during thermal fatigue testing. Water spray provides a significant background of acoustic signals, which can overwhelm AE signals caused by degradation. Analysis of AE signal frequency and energy is proposed in this work as a means for separating degradation signals from background sources. Encouraging results were obtained by applying both frequency and energy filters to preliminary data. The analysis of signals filtered using frequency and energy provides signatures exhibiting several characteristics that are consistent with degradation accumulation in materials. Future work is planned to enable verification of the efficacy of AE for thermal fatigue crack initiation detection. While the emphasis has been placed on the use of AE for crack initiation detection during accelerated aging tests, this work also has implications with respect to the use of AE as a primary tool for early degradation monitoring in nuclear power plant materials. The development of NDE tools for characterization of aging in materials can also benefit from the use of a technology such as AE which can continuously monitor and detect crack initiation during accelerated aging tests.

  2. Horizontal Steam Generator Thermal-Hydraulics at Various Steady-State Power Levels

    SciTech Connect (OSTI)

    Stevanovic, Vladimir D. [University of Belgrade, Kraljice Marije 16, 11000 Belgrade, Serbia and Montenegro (Yugoslavia); Stosic, Zoran V.; Kiera, Michael; Stoll, Uwe [Framatome ANP GmbH, P.O. Box 3220, 91050 Erlangen (Germany)

    2002-07-01T23:59:59.000Z

    Three-dimensional computer simulation and analyses of the horizontal steam generator thermal-hydraulics of the WWER 1000 nuclear power plant have been performed for 50% and 75% partial loads, 100% nominal load and 110% over-load. Presented results show water and steam mass flow rate vectors, steam void fraction spatial distribution, recirculation zones, swell level position, water mass inventory on the shell side, and other important thermal-hydraulic parameters. The simulations have been performed with the computer code 3D ANA, based on the 'two-fluid' model approach. Steam-water interface transport processes, as well as tube bundle flow resistance, energy transfer, and steam generation within tube bundles are modelled with {sup c}losure laws{sup .} Applied approach implies non-equilibrium thermal and flow conditions. The model is solved by the control volume procedure, which has been extended in order to take into account the 3D flow of liquid and gas phase. The methodology is validated by comparing numerical and experimental results of real steam generator operational conditions at various power levels of the WWER Novovoronezh, Unit 5. One-dimensional model of the horizontal steam generator has been built with the RELAP 5 standard code on the basis of the multidimensional two-phase flow structure obtained with the 3D ANA code. RELAP 5 and 3D ANA code results are compared, showing acceptable agreement. (authors)

  3. Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2010-06-01T23:59:59.000Z

    Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be built at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic benefits and avoid forced derating and shutdown during extremely hot weather. For the new plants using dry cooling towers, adding the ice thermal storage systems can effectively reduce the efficiency loss and water consumption during hot weather so that new LWRs could be considered in regions without enough cooling water. \\ This paper presents the feasibility study of using ice thermal storage systems for LWR supplemental cooling and peak power shifting. LWR cooling issues and ITS application status will be reviewed. Two ITS application case studies will be presented and compared with alternative options: one for once-through cooling without enough cooling for short time, and the other with dry cooling. Because capital cost, especially the ice storage structure/building cost, is the major cost for ITS, two different cost estimation models are developed: one based on scaling method, and the other based on a preliminary design using Building Information Modeling (BIM), an emerging technology in Architecture/Engineering/Construction, which enables design options, performance analysis and cost estimating in the early design stage.

  4. Power Surge: Uranium alloy fuel for TerraPower | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project OfficePower Electronics Power Electronics

  5. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    Proceedings on thermal energy storage and energy conversion;polymer microcomposites for thermal energy storage. SAE SocLow temperature thermal energy storage: a state of the art

  6. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    materials (PCM) in solar thermal concentrating technologyeffective and efficient solar thermal electricity generatorbeen considered for solar thermal energy storages. These are

  7. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    been considered for solar thermal energy storages. These arePCMs for thermal energy storage in solar driven residentialfluid and thermal energy storage medium in the solar heat

  8. Kinematic Stirling engine as an energy conversion subsystem for paraboloidal dish solar thermal power plants

    SciTech Connect (OSTI)

    Bowyer, J.M.

    1984-04-15T23:59:59.000Z

    The potential of a suitably designed and economically manufactured Stirling engine as the energy conversion subsystem of a paraboloidal dish-Stirling solar thermal power module has been estimated. Results obtained by elementary cycle analyses have been shown to match quite well the performance characteristics of an advanced kinematic Stirling engine, the United Stirling P-40, as established by current prototypes of the engine and by a more sophisticated analytic model of its advanced derivative. In addition to performance, brief consideration has been given to other Stirling engine criteria such as durability, reliability, and serviceability. Production costs have not been considered here.

  9. Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model

    SciTech Connect (OSTI)

    Denholm, P.; Hummon, M.

    2012-11-01T23:59:59.000Z

    Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

  10. An In-Core Power Deposition and Fuel Thermal Environmental Monitor for Long-Lived Reactor Cores

    SciTech Connect (OSTI)

    Don W. Miller

    2004-09-28T23:59:59.000Z

    The primary objective of this program is to develop the Constant Temperature Power Sensor (CTPS) as in-core instrumentation that will provide a detailed map of local nuclear power deposition and coolant thermal-hydraulic conditions during the entire life of the core.

  11. Thermal ecology of Naegleria fowleri from a power plant cooling reservoir

    SciTech Connect (OSTI)

    Huizinga, H.W. (Illinois State Univ., Normal (USA)); McLaughlin, G.L. (Univ. of Illinois, Urbana (USA))

    1990-07-01T23:59:59.000Z

    The pathogenic, free-living amoeba Naegleria fowleri is the causative agent of human primary amebic meningoencephalitis. N. fowleri has been isolated from thermally elevated aquatic environments worldwide, but temperature factors associated with occurrence of the amoeba remain undefined. In this study, a newly created cooling reservoir (Clinton Lake, Illinois) was surveyed for Naegleria spp. before and after thermal additions from a nuclear power plant. Water and sediment samples were collected from heated and unheated arms of the reservoir and analyzed for the presence of thermophilic Naegleria spp. and pathogenic N. fowleri. Amoebae were identified by morphology, in vitro cultivation, temperature tolerance, mouse pathogenicity assay, and DNA restriction fragment length analysis. N. fowleri was isolated from the thermally elevated arm but not from the ambient-temperature arm of the reservoir. The probability of isolating thermophilic Naegleria and pathogenic N. fowleri increased significantly with temperature. Repetitive DNA restriction fragment profiles of the N. fowleri Clinton Lake isolates and a known N. fowleri strain of human origin were homogeneous.

  12. Improved Electrical Load Match In California By Combining Solar Thermal Power Plants with Wind Farms

    SciTech Connect (OSTI)

    Vick, B. D.; Clark, R. N.; Mehos, M.

    2008-01-01T23:59:59.000Z

    California with its hydro, geothermal, wind, and solar energy is the second largest producer of renewable electricity in the United States (Washington state is the largest producer of renewable energy electricity due to high level of hydro power). Replacing fossil fuel electrical generation with renewable energy electrical generation will decrease the release of carbon dioxide into the atmosphere which will slow down the rapid increase in global warming (a goal of the California state government). However, in order for a much larger percentage of the total electrical generation in California to be from renewable energies like wind and solar, a better match between renewable energy generation and utility electrical load is required. Using wind farm production data and predicted production from a solar thermal power plant (with and without six hours of storage), a comparison was made between the renewable energy generation and the current utility load in California. On a monthly basis, wind farm generated electricity at the three major wind farm areas in California (Altamont Pass, east of San Francisco Bay area; Tehachapi Pass in the high desert between Tehachapi and Mojave; and San Gorgonio Pass in the low desert near Palm Springs) matches the utility load well during the highest electrical load months (May through September). Prediction of solar thermal power plant output also indicates a good match with utility load during these same high load months. Unfortunately, the hourly wind farm output during the day is not a very good match to the utility electrical load (i.e. in spring and summer the lowest wind speed generally occurs during mid-day when utility load is highest). If parabolic trough solar thermal power plants are installed in the Mojave Desert (similar to the 354 MW of plants that have been operating in Mojave Desert since 1990) then the solar electrical generation will help balance out the wind farm generation since highest solar generated electricity will be during mid-day. Adding six hours of solar thermal storage improved the utility load match significantly in the evening and reliability was also improved. Storage improves reliability because electrical production can remain at a high level even when there are lulls in the wind or clouds decrease the solar energy striking the parabolic trough mirrors. The solar energy from Mojave Desert and wind energy in the major wind farm areas are not a good match to utility load during the winter in California, but if the number of wind farms were increased east of San Diego, then the utility renewable energy match would be improved (this is because the wind energy is highest during the winter in this area). Currently in California, wind electrical generation only contributes 1.8% of total electricity and solar electrical generation only contributes 0.2%. Combining wind farms and solar thermal power plants with storage would allow a large percentage of the electrical load in California to be met by wind and solar energy due to a better match with utility load than by either renewable resource separately.

  13. Survey of strong motion earthquake effects on thermal power plants in California with emphasis on piping systems. Volume 2, Appendices

    SciTech Connect (OSTI)

    Stevenson, J.D. [Stevenson and Associates, Cleveland, OH (United States)

    1995-11-01T23:59:59.000Z

    Volume 2 of the ``Survey of Strong Motion Earthquake Effects on Thermal Power Plants in California with Emphasis on Piping Systems`` contains Appendices which detail the detail design and seismic response of several power plants subjected to strong motion earthquakes. The particular plants considered include the Ormond Beach, Long Beach and Seal Beach, Burbank, El Centro, Glendale, Humboldt Bay, Kem Valley, Pasadena and Valley power plants. Included is a typical power plant piping specification and photographs of typical power plant piping specification and photographs of typical piping and support installations for the plants surveyed. Detailed piping support spacing data are also included.

  14. Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage.

    SciTech Connect (OSTI)

    Ehrhart, Brian David; Gill, David Dennis

    2013-07-01T23:59:59.000Z

    The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. There is a fairly dramatic difference between the design point and annual average performance, especially in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Additionally, there are relatively small differences (<2%) in annual average efficiencies between the Base and High Temperature cases, despite an increase in thermal to electric conversion efficiency of over 8%. This is due the increased thermal losses at higher temperature and operational losses due to subsystem start-up and shut-down. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.

  15. 100-kWp photovoltaic power system at Natural Bridges National Monument

    SciTech Connect (OSTI)

    Solman, F.J.; Helfrich, J.H.; Lyon, E.F.; Benoit, A.E.

    1980-01-01T23:59:59.000Z

    The Natural Bridges National Monument in southeastern Utah is the location of the world's largest solar photovoltaic power system. This system, which operates in a stand-alone mode without utility backup, supplies from 300 to 400 kWh/day of 60-Hz AC electrical energy to the diversified loads in the monument headquarters area. A diesel-powered generator serves as backup for the system. The solutions to a number of problems encountered in the design, fabrication, testing and early operation of the system are discussed.

  16. Polarization Effects on Thermal-Induced Mode Instabilities in High Power Fiber Lasers

    E-Print Network [OSTI]

    Tao, Rumao; Wang, Xiaolin; Zhou, Pu; Liu, Zejin

    2015-01-01T23:59:59.000Z

    We present detailed studies of the effect of polarization on thermal-induced mode instability (MI) in ytterbium-doped fiber amplifiers. Based on a steady-state theoretical model, which takes both electric fields along the two principal axes into consideration, the effect of polarization effects on the gain of Stokes wave was analyzed, which shows that the polarization characteristics of the fiber laser have no impact on the threshold of MI. Experimental validation of the theoretical analysis is presented with experimental results agreeing well with the theoretical results, in which polarization-maintained and non-polarization-maintained fiber lasers with core/inner cladding diameter of 30/250um and core NA of 0.07 were employed. The MI threshold power is measured to be about 367~386W.

  17. A Bulk Tungsten Tile for JET: Derivation of Power-Handling Performance and Validation of the Thermal Model, in the MARION Facility

    E-Print Network [OSTI]

    A Bulk Tungsten Tile for JET: Derivation of Power-Handling Performance and Validation of the Thermal Model, in the MARION Facility

  18. Sandia National Laboratories: $0.06 per kilowatt-hour for solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

  19. 2/1/2014 Tinywindmills mayone daypower cell phones | INDIAN POWER SECTOR http://indianpowersector.com/home/2014/01/tiny-windmills-may-one-day-power-cell-phones/ 1/8

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    Electricity Regulation RGGVY National Solar Mission R-APDRP Power Plant Thermal Power Plant Hydro Power Plant Nuclear Power Plant Renewable Energy Wind Power Tidal Power Biomass Power Geothermal Energy Solar Power Solar India Info Policy Support for Renewable Energy Power Companies State Electricity Board PSU Private

  20. Abstract--Disruption of electric power operations can be catastrophic on the national security and economy. Due to the

    E-Print Network [OSTI]

    Manimaran, Govindarasu

    Abstract--Disruption of electric power operations can be catastrophic on the national security). This paper is an overview of the cybersecurity issues for electric power control and automation systems are increasingly networked and complex. Computer, communication, and power infrastructures are interdependent

  1. Experimental Evaluation of the Thermal Performance of a Water Shield for a Surface Power Reactor

    SciTech Connect (OSTI)

    Pearson, J. Boise; Stewart, Eric T. [NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States); Reid, Robert S. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States)

    2007-01-30T23:59:59.000Z

    Water based reactor shielding is being investigated for use on initial lunar surface power systems. A water shield may lower overall cost (as compared to development cost for other materials) and simplify operations in the setup and handling. The thermal hydraulic performance of the shield is of significant interest. The mechanism for transferring heat through the shield is natural convection. Natural convection in a 100 kWt lunar surface reactor shield design is evaluated with 2 kW power input to the water in the Water Shield Testbed (WST) at the NASA Marshall Space Flight Center. The experimental data from the WST is used to validate a CFD model. Performance of the water shield on the lunar surface is then predicted with a CFD model anchored to test data. The experiment had a maximum water temperature of 75 deg. C. The CFD model with 1/6-g predicts a maximum water temperature of 88 deg. C with the same heat load and external boundary conditions. This difference in maximum temperature does not greatly affect the structural design of the shield, and demonstrates that it may be possible to use water for a lunar reactor shield.

  2. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies: Preprint

    SciTech Connect (OSTI)

    Hummon, M.; Denholm, P.; Jorgenson, J.; Mehos, M.

    2013-10-01T23:59:59.000Z

    Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

  3. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.; Jorgenson, J.; Denholm, P.; Mehos, M.

    2013-10-01T23:59:59.000Z

    Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

  4. A thermally self-sustained micro solid-oxide fuel-cell stack with high power density

    E-Print Network [OSTI]

    Haile, Sossina M.

    A thermally self-sustained micro solid-oxide fuel-cell stack with high power density Zongping Shao1 design challenges and cannot operate with hydrocarbon fuels of higher energy density. Solid-oxide fuel cells (SOFCs) enable direct use of higher hydrocarbons4­6 , but have not been seriously con- sidered

  5. Thermal Modeling of NUHOMS HSM-15 and HSM-1 Storage Modules at Calvert Cliffs Nuclear Power Station ISFSI

    SciTech Connect (OSTI)

    Suffield, Sarah R.; Fort, James A.; Adkins, Harold E.; Cuta, Judith M.; Collins, Brian A.; Siciliano, Edward R.

    2012-10-01T23:59:59.000Z

    As part of the Used Fuel Disposition Campaign of the Department of Energy (DOE), visual inspections and temperature measurements were performed on two storage modules in the Calvert Cliffs Nuclear Power Station’s Independent Spent Fuel Storage Installation (ISFSI). Detailed thermal models models were developed to obtain realistic temperature predictions for actual storage systems, in contrast to conservative and bounding design basis calculations.

  6. FY 2005 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, M

    2005-11-22T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel and the 21st Century Truck Partnerships through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following

  7. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications AMaterials for Concentrating Solar Power Plant Applications

  8. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    3 Fig. 1.2. Solar power plant operation [Materials for Concentrating Solar Power Plant Applications Afor Concentrating Solar Power Plant Applications by Melina

  9. A thermally self-sustained micro-power plant with integrated micro-solid oxide fuel cells, micro-reformer and functional

    E-Print Network [OSTI]

    Daraio, Chiara

    A thermally self-sustained micro-power plant with integrated micro-solid oxide fuel cells, micro Micro-solid oxide fuel cell Thin films Butane reformation Chemical micro-reactors Thermally independent fuel cell (micro-SOFC) systems are an attractive alternative power source for small-size portable

  10. INTRODUCTION With the Jawaharlal Nehru National Solar Mission, there is a thrust

    E-Print Network [OSTI]

    Narayanan, H.

    of the overall system. The solar thermal power plant simulator will enable one to simulate different scenarios Power in India. To facilitate the development of cost effective Solar Power Plants in India, IIT Bombay is setting up a National Solar Thermal Power Testing, Simulation and Research Facility with the financial

  11. Oak Ridge National Laboratory Wireless Power Transfer Development for Sustainable Campus Initiative

    SciTech Connect (OSTI)

    Onar, Omer C [ORNL] [ORNL; Miller, John M [ORNL] [ORNL; Campbell, Steven L [ORNL] [ORNL; Coomer, Chester [ORNL] [ORNL; White, Cliff P [ORNL] [ORNL; Seiber, Larry Eugene [ORNL] [ORNL

    2013-01-01T23:59:59.000Z

    Wireless power transfer (WPT) is a convenient, safe, and autonomous means for electric and plug-in hybrid electric vehicle charging that has seen rapid growth in recent years for stationary applications. WPT does not require bulky contacts, plugs, and wires, is not affected by dirt or weather conditions, and is as efficient as conventional charging systems. This study summarizes some of the recent Sustainable Campus Initiative activities of Oak Ridge National Laboratory (ORNL) in WPT charging of an on-campus vehicle (a Toyota Prius plug-in hybrid electric vehicle). Laboratory development of the WPT coils, high-frequency power inverter, and overall systems integration are discussed. Results cover the coil performance testing at different operating frequencies, airgaps, and misalignments. Some of the experimental results of insertion loss due to roadway surfacing materials in the air-gap are presented. Experimental lessons learned are also covered in this study.

  12. Methods for Procuring Power System Flexibility, Greening the Grid (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals fromprocess used in mining - Energyto

  13. Microsoft PowerPoint - Cherri Schmidt Working with National Labs.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals fromprocess usedGELustreMeasuresPowerfamily of newWewith

  14. Study of thermal interfaces aging for power electronics applications J.-P. Ousten, Z. Khatir

    E-Print Network [OSTI]

    Boyer, Edmond

    (change phase, graphite and polymer based) have undergone 1500 of such cycles. As a result, only the phase change material thermal interface has been affected with a 30% decrease of initial thermal resistance. Nevertheless, any structural alterations of these materials should result in changes in their thermal

  15. Enabling Greater Penetration of Solar Power via the Use of CSP with Thermal Energy Storage

    SciTech Connect (OSTI)

    Denholm, P.; Mehos, M.

    2011-11-01T23:59:59.000Z

    At high penetration of solar generation there are a number of challenges to economically integrating this variable and uncertain resource. These include the limited coincidence between the solar resource and normal demand patterns and limited flexibility of conventional generators to accommodate variable generation resources. Of the large number of technologies that can be used to enable greater penetration of variable generators, concentrating solar power (CSP) with thermal energy storage (TES) presents a number of advantages. The use of storage enables this technology to shift energy production to periods of high demand or reduced solar output. In addition, CSP can provide substantial grid flexibility by rapidly changing output in response to the highly variable net load created by high penetration of solar (and wind) generation. In this work we examine the degree to which CSP may be complementary to PV by performing a set of simulations in the U.S. Southwest to demonstrate the general potential of CSP with TES to enable greater use of solar generation, including additional PV.

  16. Thermal and Bulk Comptonization in Accretion-Powered X-Ray Pulsars

    E-Print Network [OSTI]

    Peter A. Becker; Michael T. Wolff

    2006-09-01T23:59:59.000Z

    We develop a new theoretical model for the spectral formation process in accretion-powered X-ray pulsars based on a detailed treatment of the bulk and thermal Comptonization occurring in the accreting, shocked gas. A rigorous eigenfunction expansion method is employed to obtain the analytical solution for the Green's function describing the scattering of radiation injected into the column from a monochromatic source located at an arbitrary height above the stellar surface. The emergent spectrum is calculated by convolving the Green's function with source terms corresponding to bremsstrahlung, cyclotron, and blackbody emission. The energization of the photons in the shock, combined with cyclotron absorption, naturally produces an X-ray spectrum with a relatively flat continuum shape and a high-energy quasi-exponential cutoff. We demonstrate that the new theory successfully reproduces the phase-averaged spectra of the bright pulsars Her X-1, LMC X-4, and Cen X-3. In these luminous sources, it is shown that the emergent spectra are dominated by Comptonized bremsstrahlung emission.

  17. Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Phase 1 Final Report

    SciTech Connect (OSTI)

    Qiu, Songgang

    2013-05-15T23:59:59.000Z

    The primary purpose of this project is to develop and validate an innovative, scalable phase change salt thermal energy storage (TES) system that can interface with Infinia’s family of free-piston Stirling engines (FPSE). This TES technology is also appropriate for Rankine and Brayton power converters. Solar TES systems based on latent heat of fusion rather than molten salt temperature differences, have many advantages that include up to an order of magnitude higher energy storage density, much higher temperature operation, and elimination of pumped loops for most of Infinia’s design options. DOE has funded four different concepts for solar phase change TES, including one other Infinia awarded project using heat pipes to transfer heat to and from the salt. The unique innovation in this project is an integrated TES/pool boiler heat transfer system that is the simplest approach identified to date and arguably has the best potential for minimizing the levelized cost of energy (LCOE). The Phase 1 objectives are to design, build and test a 1-hour TES proof-of-concept lab demonstrator integrated with an Infinia 3 kW Stirling engine, and to conduct a preliminary design of a 12-hour TES on-sun prototype.

  18. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with CombinedHeat and Power

    SciTech Connect (OSTI)

    Marnay, Chris; Stadler, Michael; Cardoso, Goncalo; Megel, Olivier; Lai, Judy; Siddiqui, Afzal

    2009-08-15T23:59:59.000Z

    The addition of solar thermal and heat storage systems can improve the economic, as well as environmental attraction of micro-generation systems, e.g. fuel cells with or without combined heat and power (CHP) and contribute to enhanced CO2 reduction. However, the interactions between solar thermal collection and storage systems and CHP systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of solar thermal and heat storage on CO2 emissions and annual energy costs, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program. The objective is minimization of annual energy costs. This paper focuses on analysis of the optimal interaction of solar thermal systems, which can be used for domestic hot water, space heating and/or cooling, and micro-CHP systems in the California service territory of San Diego Gas and Electric (SDG&E). Contrary to typical expectations, our results indicate that despite the high solar radiation in southern California, fossil based CHP units are dominant, even with forecast 2020 technology and costs. A CO2 pricing scheme would be needed to incent installation of combined solar thermal absorption chiller systems, and no heat storage systems are adopted. This research also shows that photovoltaic (PV) arrays are favored by CO2 pricing more than solar thermal adoption.

  19. Assessment of environmental effects of the coal used in the Seyitomer thermal power plant (Turkey) on white willow

    SciTech Connect (OSTI)

    Cicek, A.; Koparal, A.S. [Anadolu University, Eskisehir (Turkey). Applied Research Center for Environmental Problems

    2006-07-01T23:59:59.000Z

    Thermal power plants increase local pollution through SOx, NOx, volatile organic compounds (VOCs), and oils containing primarily particulates (including heavy metals) and increase global pollution through CO{sub 2}, the greenhouse gas that causes global warming. These strong pollutants have harmful effects on living organisms and the entire ecosystem. In this study, we analysed the heavy metals iron (Fe), cadmium (Cd), chromium (Cr), copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and sulfur (S) induced by sulfur dioxide found in both the washed and unwashed leaves of Salix alba L. tree, grown in six distinct localities in the vicinity of the Seyitomer thermal power plant, to assess the environmental impact. All parameters were examined in the surface soils (0-30 cm), and the most intense concentration of the pollutants in both soils and leaves was observed to be in the direction of the prevailing wind.

  20. Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System

    SciTech Connect (OSTI)

    Robert C. O'Brien; Andrew C. Klein; William T. Taitano; Justice Gibson; Brian Myers; Steven D. Howe

    2011-02-01T23:59:59.000Z

    Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

  1. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    batteries. Solar Water Heater Solar water heater is becomingSolar Water Heater heaters, thermal protection for electronics, spacecrafts, and solar

  2. Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines (Presentation)

    SciTech Connect (OSTI)

    O'Keefe, M. P.

    2009-05-01T23:59:59.000Z

    This presentation gives an overview of NREL's Thermal Stress and Reliability Project work from October 2007 to March 2009 with an emphasis on activity during 2008/2009.

  3. FY2007 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, Mitchell [ORNL

    2007-10-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as 'FreedomCAR' (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR and Vehicle Technologies Program. A key element in making hybrid electric vehicles (HEVs) practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2007 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.

  4. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility, News, News & Events, Partnership, Renewable Energy, Solar, Solar Newsletter On November 24, 2012 the National Solar Thermal Test...

  5. Increase in NOx Emissions from Indian Thermal Power Plants during 1996-2010: Unit-Based Inventories and Multisatellite Observations

    E-Print Network [OSTI]

    Jacob, Daniel J.

    and Multisatellite Observations Zifeng Lu* and David G. Streets Decision and Information Sciences Division, Argonne National Laboratory, Argonne, Illinois, United States *S Supporting Information ABSTRACT: Driven by rapid economic development and growing electricity demand, NOx emissions (E) from the power sector in India have

  6. EIS-0066: The Role of Bonneville Power Administration in the Pacific Northwest Power Supply System- including its Participation in a Hydro-Thermal Power Program

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration (BPA) prepared this EIS to examine the environmental impacts of the Pacific Northwest Power Planning and Conservation Act, which will foster regional electric power planning in the four Northwest states, as well as increase BPA’s authority to address future power needs.

  7. FY2010 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, Mitchell [ORNL

    2010-10-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public-private partnerships to fund high risk, high payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the PE and electrical machines subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machines Research Program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2010 and conveys highlights of their accomplishment

  8. General syllabus for third-cycle studies in Thermal Power Engineering This syllabus has been adopted by the Board of LTH, 3 November 2008

    E-Print Network [OSTI]

    with fuel cells and partly in connection with the so-called CO2-free processes. 2. Aim of third Engineering is the development of methods for the analysis and optimization of thermal power plants in both

  9. Physics Design of the National High-power Advanced Torus Experiment

    SciTech Connect (OSTI)

    Menard, J E; Fu, G -Y; Gorelenkov, N; Kaye, S M; Kramer, G; Maingi, R; Neumeyer, C L; Sabbagh, S A; Soukhanovskii, V A

    2007-07-18T23:59:59.000Z

    Moving beyond ITER toward a demonstration power reactor (Demo) will require the integration of stable high fusion gain in steady-state, advanced methods for dissipating very high divertor heat-fluxes, and adherence to strict limits on in-vessel tritium retention. While ITER will clearly address the issue of high fusion gain, and new and planned long-pulse experiments (EAST, JT60-SA, KSTAR, SST-1) will collectively address stable steady-state highperformance operation, none of these devices will adequately address the integrated heat-flux, tritium retention, and plasma performance requirements needed for extrapolation to Demo. Expressing power exhaust requirements in terms of Pheat/R, future ARIES reactors are projected to operate with 60-200MW/m, a Component Test Facility (CTF) or Fusion Development Facility (FDF) for nuclear component testing (NCT) with 40-50MW/m, and ITER 20-25MW/m. However, new and planned long-pulse experiments are currently projected to operate at values of Pheat/R no more than 16MW/m. Furthermore, none of the existing or planned experiments are capable of operating with very high temperature first-wall (Twall = 600-1000C) which may be critical for understanding and ultimately minimizing tritium retention with a reactor-relevant metallic first-wall. The considerable gap between present and near-term experiments and the performance needed for NCT and Demo motivates the development of the concept for a new experiment — the National High-power advanced-Torus eXperiment (NHTX) — whose mission is to study the integration of a fusion-relevant plasma-material interface with stable steady-state high-performance plasma operation.

  10. Thermal-hydraulic analysis of cross-shaped spiral fuel in high power density BWRs

    E-Print Network [OSTI]

    Conboy, Thomas M

    2007-01-01T23:59:59.000Z

    Preliminary analysis of the cross-shaped spiral (CSS) fuel assembly suggests great thermal-hydraulic upside. According to computational models, the increase in rod surface area, combined with an increase in coolant turbulence ...

  11. FY2011 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, Mitchell [ORNL

    2011-10-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the U.S. Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE's commitment to developing public-private partnerships to fund high risk-high reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research') that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machines (PEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the PEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The PEEM subprogram supports the efforts of the U.S. DRIVE partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component R&D activities; (2) develop and validate individual subsystems and components, including EMs and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, efficiency, and cost targets for the PE and EM subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor-inverter traction drive system concepts. ORNL's PEEM research program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP Advanced Power Electronics and Electric Motors (APEEM) program. In this role, ORNL serves on the U.S. DRIVE Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for

  12. Thermal Issues Associated with the Lighting Systems, Electronics Racks, and Pre-Amplifier Modules in the National Ignition System

    SciTech Connect (OSTI)

    A. C. Owen; J. D. Bernardin; K. L. Lam

    1998-08-01T23:59:59.000Z

    This report summarizes an investigation of the thermal issues related to the National Ignition Facility. The influence of heat sources such as lighting fixtures, electronics racks, and pre-amplifier modules (PAMs) on the operational performance of the laser guide beam tubes and optical alignment hardware in the NE laser bays were investigated with experiments and numerical models. In particular, empirical heat transfer data was used to establish representative and meaningful boundary conditions and also serve as bench marks for computational fluid dynamics (CFD) models. Numerical models, constructed with a commercial CFD code, were developed to investigate the extent of thermal plumes and radiation heat transfer from the heat sources. From these studies, several design modifications were recommended including reducing the size of all fluorescent lights in the NIF laser bays to single 32 W bulb fixtures, maintaining minimum separation distances between light fixtures/electronics racks and beam transport hardware, adding motion sensors in areas of the laser bay to control light fixture operation during maintenance procedures, properly cooling all electronics racks with air-water heat exchangers with heat losses greater than 25 W/rack to the M1 laser bay, ensuring that the electronics racks are not overcooked and thus maintain their surface temperatures to within a few degrees centigrade of the mean air temperature, and insulating the electronic bays and optical support structures on the PAMs.

  13. Thermal Integration of CO{sub 2} Compression Processes with Coal-Fired Power Plants Equipped with Carbon Capture

    SciTech Connect (OSTI)

    Edward Levy

    2012-06-29T23:59:59.000Z

    Coal-fired power plants, equipped either with oxycombustion or post-combustion CO{sub 2} capture, will require a CO{sub 2} compression system to increase the pressure of the CO{sub 2} to the level needed for sequestration. Most analyses show that CO{sub 2} compression will have a significant effect on parasitic load, will be a major capital cost, and will contribute significantly to reduced unit efficiency. This project used first principle engineering analyses and computer simulations to determine the effects of utilizing compressor waste heat to improve power plant efficiency and increase net power output of coal-fired power plants with carbon capture. This was done for units with post combustion solvent-based CO{sub 2} capture systems and for oxyfired power plants, firing bituminous, PRB and lignite coals. The thermal integration opportunities analyzed for oxycombustion capture are use of compressor waste heat to reheat recirculated flue gas, preheat boiler feedwater and predry high-moisture coals prior to pulverizing the coal. Among the thermal integration opportunities analyzed for post combustion capture systems are use of compressor waste heat and heat recovered from the stripper condenser to regenerate post-combustion CO{sub 2} capture solvent, preheat boiler feedwater and predry high-moisture coals. The overall conclusion from the oxyfuel simulations is that thermal integration of compressor heat has the potential to improve net unit heat rate by up to 8.4 percent, but the actual magnitude of the improvement will depend on the type of heat sink used and to a lesser extent, compressor design and coal rank. The simulations of a unit with a MEA post combustion capture system showed that thermal integration of either compressor heat or stripper condenser heat to preheat boiler feedwater would result in heat rate improvements from 1.20 percent to 4.19 percent. The MEA capture simulations further showed that partial drying of low rank coals, done in combination with feedwater heating, would result in heat rate reductions of 7.43 percent for PRB coal and 10.45 percent for lignite.

  14. Vehicle Technologies Office Merit Review 2014: High-Temperature Air-Cooled Power Electronics Thermal Design

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  15. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power

    E-Print Network [OSTI]

    Marnay, Chris

    2010-01-01T23:59:59.000Z

    Environmental Value of Solar Thermal Systems in MicrogridsEnvironmental Value of Solar Thermal Systems in Microgridsa) ABSTRACT The addition of solar thermal and heat storage

  16. Thermal Conductivity Enhancement of High Temperature Phase Change Materials for Concentrating Solar Power Plant Applications

    E-Print Network [OSTI]

    Roshandell, Melina

    2013-01-01T23:59:59.000Z

    Solar Water Heater power systems that rely on batteries. Solar Water HeaterSolar water heater is becoming more popular because they are

  17. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  18. Reversible Metal Hydride Thermal Energy Storage for High Temperature Power Generation Systems

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  19. Summary of: Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Hummon, M.

    2013-02-01T23:59:59.000Z

    Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

  20. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated...

  1. 1999 IEEE ITW, Kruger National Park, South Africa, June 20 -25 Transmit Power Allocation for Gaussian Multiple Access Channels

    E-Print Network [OSTI]

    Müller, Ralf R.

    1999 IEEE ITW, Kruger National Park, South Africa, June 20 - 25 Transmit Power Allocation minimizing the sum energy of all users for xed rates. In the following we focus on the second case. Instead to the diversity model. II. Uniqueness of Optimum Transmit Energy Considering transmission of K users to M

  2. Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    an important role in the success of electric, hybrid and fuel cell vehicles. Typical power electronics circuits/DC converter; electric drives; electric vehicles; fuel cell; hybrid electric vehicles; power electronics, motor for fuel cells and advanced heavy-duty hybrid electric vehicles. He also has experience with alternative

  3. High Power SiC Modules for HEVs and PHEVs Abstract--With efforts to reduce the cost, size, and thermal

    E-Print Network [OSTI]

    Tolbert, Leon M.

    , and thermal management systems for the power electronics drivetrain in hybrid electric vehicles (HEVs, inverter, efficiency, hybrid electric vehicle, HEV, PHEV. I. INTRODUCTION Development of power electronics system targets for year 2015 and 2020 as shown in Table I for hybrid electric vehicles (HEVs). The drive

  4. Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants

    SciTech Connect (OSTI)

    Gawlik, Keith

    2013-06-25T23:59:59.000Z

    Thermal energy storage systems using phase change materials were evaluated for trough systems that use oil, steam, and high temperature salts as heat transfer fluids. A variety of eutectic salts and metal alloys were considered as phase change materials in a cascaded arrangement. Literature values of specific heat, latent heat, density, and other thermophysical properties were used in initial analyses. Testing laboratories were contracted to measure properties for candidate materials for comparison to the literature and for updating the models. A TRNSYS model from Phase 1 was further developed for optimizing the system, including a novel control algorithm. A concept for increasing the bulk thermal conductivity of the phase change system was developed using expanded metal sheets. Outside companies were contracted to design and cost systems using platecoil heat exchangers immersed in the phase change material. Laboratory evaluations of the one-dimensional and three-dimensional behavior of expanded metal sheets in a low conductivity medium were used to optimize the amount of thermal conductivity enhancement. The thermal energy storage systems were compared to baseline conventional systems. The best phase change system found in this project, which was for the high temperature plant, had a projected cost of $25.2 per kWhth, The best system also had a cost that was similar to the base case, a direct two-tank molten salt system.

  5. THE NATIONAL CARBON CAPTURE CENTER AT THE POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect (OSTI)

    None, None

    2011-03-01T23:59:59.000Z

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The newly established NCCC will include multiple, adaptable test skids that will allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period One reporting period, efforts at the PSDF/NCCC focused on developing a screening process for testing consideration of new technologies; designing and constructing pre- and post-combustion CO2 capture facilities; developing sampling and analytical methods; expanding fuel flexibility of the Transport Gasification process; and operating the gasification process for technology research and for syngas generation to test syngas conditioning technologies.

  6. THE NATIONAL CARBON CAPTURE CENTER AT THE POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect (OSTI)

    None, None

    2012-09-01T23:59:59.000Z

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period Three reporting period, efforts at the NCCC/PSDF focused on testing of pre-combustion CO2 capture and related processes; commissioning and initial testing at the post-combustion CO2 capture facilities; and operating the gasification process to develop gasification related technologies and for syngas generation to test syngas conditioning technologies.

  7. THE NATIONAL CARBON CAPTURE CENTER AT THE POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect (OSTI)

    None, None

    2011-05-11T23:59:59.000Z

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period Two reporting period, efforts at the PSDF/NCCC focused on new technology assessment and test planning; designing and constructing post-combustion CO2 capture facilities; testing of pre-combustion CO2 capture and related processes; and operating the gasification process to develop gasification related technologies and for syngas generation to test syngas conditioning technologies.

  8. JV Task 46 - Development and Testing of a Thermally Integrated SOFC-Gasification System for Biomass Power Generation

    SciTech Connect (OSTI)

    Phillip Hutton; Nikhil Patel; Kyle Martin; Devinder Singh

    2008-02-01T23:59:59.000Z

    The Energy & Environmental Research Center has designed a biomass power system using a solid oxide fuel cell (SOFC) thermally integrated with a downdraft gasifier. In this system, the high-temperature effluent from the SOFC enables the operation of a substoichiometric air downdraft gasifier at an elevated temperature (1000 C). At this temperature, moisture in the biomass acts as an essential carbon-gasifying medium, reducing the equivalence ratio at which the gasifier can operate with complete carbon conversion. Calculations show gross conversion efficiencies up to 45% (higher heating value) for biomass moisture levels up to 40% (wt basis). Experimental work on a bench-scale gasifier demonstrated increased tar cracking within the gasifier and increased energy density of the resultant syngas. A series of experiments on wood chips demonstrated tar output in the range of 9.9 and 234 mg/m{sup 3}. Both button cells and a 100-watt stack was tested on syngas from the gasifier. Both achieved steady-state operation with a 22% and 15% drop in performance, respectively, relative to pure hydrogen. In addition, tar tolerance testing on button cells demonstrated an upper limit of tar tolerance of approximately 1%, well above the tar output of the gasifier. The predicted system efficiency was revised down to 33% gross and 27% net system efficiency because of the results of the gasifier and fuel cell experiments. These results demonstrate the feasibility and benefits of thermally integrating a gasifier and a high-temperature fuel cell in small distributed power systems.

  9. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  10. Cold side thermal energy storage system for improved operation of air cooled power plants

    E-Print Network [OSTI]

    Williams, Daniel David

    2012-01-01T23:59:59.000Z

    Air cooled power plants experience significant performance fluctuations as plant cooling capacity reduces due to higher daytime temperature than nighttime temperature. The purpose of this thesis is to simulate the detailed ...

  11. Acoustic and thermal packaging of small gas turbines for portable power

    E-Print Network [OSTI]

    Tanaka, Shinji, S.M. Massachusetts Institute of Technology

    2009-01-01T23:59:59.000Z

    To meet the increasing demand for advanced portable power units, for example for use in personal electronics and robotics, a number of studies have focused on portable small gas turbines. This research is concerned with ...

  12. On the Influence of Supernova Remnant Thermal Energy in Powering Galactic Winds

    E-Print Network [OSTI]

    Brad K. Gibson

    1994-10-11T23:59:59.000Z

    The fundamental tenet of the classical supernovae-driven wind model of elliptical galaxies is that the residual thermal energy of all supernovae remnants (SNRs) provide sufficient energy to overcome the binding energy of the remaining interstellar gas, thereby driving a global galactic wind. We re-examine model predictions of this epoch of wind ejection t_GW, highlighting a heretofore underappreciated sensitivity to the adopted remnant thermal energy formalism, and illustrating cases in which previous work may have substantially overestimated t_GW. Arguments based upon chemical evolution alone, put forth to reject the hypothesis of dark matter distributions similar to the luminous component in spheroids, are shown to be tenuous. Finally, the predicted enrichment of intracluster gas during the wind phase of cluster ellipticals, and its relation to the selected SNR interior thermal energy evolutionary scheme, is addressed. Despite the success of previous wind models, our results still call into question the correctness of the simple analytical approach used thus far, and imply that a more appropriate technique should be adopted in the future.

  13. PEEM Thermal Stress and Reliability (Presentation)

    SciTech Connect (OSTI)

    O'Keefe, M. P.

    2007-11-08T23:59:59.000Z

    Advancing power electronics thermal stress and reliability is a critical factor in power electronics equipment. NREL aims to improve thermal stress and reliability of power electronics technologies.

  14. Atlas - a new pulsed power tool at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Archuleta, S. A. (Stephanie A.); Ballard, E. O. (Evan O.); Barr, G. W. (Gerald W.); Cochrane, J. C. (James C.), Jr.; Davis, H. A. (Harold A.); Griego, J. R. (Jeff R.); Hadden, E. S. (E. Staley); Hinckley, W. B. (William B.); Hosack, K. W. (Keith W.); Martinez, J. E. (John E.); Mills, D. (Diann); Padilla, J. N. (Jennifer N.); Parker, J. V. (Jerald V.); Parsons, W. M. (William Mark); Reinovsky, R. E. (Robert E.); Stokes, J. L. (John L.); Thompson, M. C. (M. Clark); Tom, C. Y.; Wysocki, Frederick Joseph; Vigil, B. N. (Billy N.); Elizondo, J. (Juan); Miller, R. Bruce (Robert Bruce),; Anderson, H. D.; Campbell, T. N. (Timothy N.); Owens, R. S. (Ronnie S.); Scudder, D. W. (David W.)

    2001-01-01T23:59:59.000Z

    The Atlas pulsed power driver has recently been commissioned at Los Alamos National Laboratory. This paper provides an overview of the Atlas facility, its initial experimental program and plans for the future. The reader desiring more detailed information is referred to papers in this conference by Keinigs et al. on materials studies, Cochrane et al.on machine performance and Ballard et al. on fabrication and assembly. Atlas is a high current generator capable of driving 30 megamps through a low-inductance load. It has been designed to require minimal maintenance, provide excellent diagnostic access, and rapid turnaround. Its capacitor bank stores 23.5 megajoules in a four-stage Marx configuration which erects to 240 kV at maximum charge. It has a quarter-cycle time of 4.5 microseconds. It will typically drive cylindrical aluminum liners in a z-pinch configuration to velocities up to 10 mm/msec while maintaining the inner surface in the solid state. Diagnostic access includes 360 of radial view as well as axial views from above and below. The photograph shows the circle of tanks containing capacitor banks, the diagnostic platform and load area. Atlas construction began in 1996 and high-current acceptance tests were completed in December of 2000. Initial shots include liner characterization shots using a target design similar to NTLX experiments (see several papers by Turchi et al., this meeting). These will be followed by experiments studying hydro features, useful for validating hydrodynamic algorithms used in weapons computer codes. DOE plans to relocate the Atlas generator to the Nevada Test Site as early as 2002, where it will continue its experimental program supporting the Stockpile Stewarship program and the other users.

  15. Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation

    SciTech Connect (OSTI)

    Qui, Songgang [Temple University] [Temple University; Galbraith, Ross [Infinia] [Infinia

    2013-01-23T23:59:59.000Z

    This final report summarizes the final results of the Phase II Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation project being performed by Infinia Corporation for the U.S. Department of Energy under contract DE-FC36-08GO18157 during the project period of September 1, 2009 - August 30, 2012. The primary objective of this project is to demonstrate the practicality of integrating thermal energy storage (TES) modules, using a suitable thermal salt phase-change material (PCM) as its medium, with a dish/Stirling engine; enabling the system to operate during cloud transients and to provide dispatchable power for 4 to 6 hours after sunset. A laboratory prototype designed to provide 3 kW-h of net electrical output was constructed and tested at Infinia's Ogden Headquarters. In the course of the testing, it was determined that the system's heat pipe network - used to transfer incoming heat from the solar receiver to both the Stirling generator heater head and to the phase change salt - did not perform to expectations. The heat pipes had limited capacity to deliver sufficient heat energy to the generator and salt mass while in a charging mode, which was highly dependent on the orientation of the device (vertical versus horizontal). In addition, the TES system was only able to extract about 30 to 40% of the expected amount of energy from the phase change salt once it was fully molten. However, the use of heat pipes to transfer heat energy to and from a thermal energy storage medium is a key technical innovation, and the project team feels that the limitations of the current device could be greatly improved with further development. A detailed study of manufacturing costs using the prototype TES module as a basis indicates that meeting DOE LCOE goals with this hardware requires significant efforts. Improvement can be made by implementing aggressive cost-down initiatives in design and materials, improving system performance by boosting efficiencies, and by refining cost estimates with vendor quotes in lieu of mass-based approaches. Although the prototype did not fully demonstrate performance and realize projected cost targets, the project team believes that these challenges can be overcome. The test data showed that the performance can be significantly improved by refining the heat pipe designs. However, the project objective for phase 3 is to design and test on sun the field ready systems, the project team feels that is necessary to further refine the prototype heat pipe design in the current prototype TES system before move on to field test units, Phase 3 continuation will not be pursued.

  16. Thermal Efficiency Optimization for Industrial Power Plants Under Load Fluctuations Using Fuzzy Logic

    E-Print Network [OSTI]

    Steffenhagan, W.; de Sam Lazaro, A.

    The automation of the control to a power plant is indeed a challenge mainly because of the occurrences of random and unpredictable variations in output demands as well as because of highly non-linear behavior of the system itself. It is sometimes...

  17. Use of plasma fuel systems at thermal power plants in Russia, Kazakhstan, China, and Turkey

    SciTech Connect (OSTI)

    Karpenko, E.I.; Karpenko, Y.E.; Messerle, V.E.; Ustimenko, A.B. [Russian Academy of Sciences, Ulan Ude (Russian Federation). Institute of Thermal Physics

    2009-05-15T23:59:59.000Z

    The technology of plasma ignition of solid fuels is described, as well as its creation and development steps, the technoeconomic characteristics of plasma igniter systems, schemes of their installation in pulverized-coal boilers, and results of their application at pulverized coal-fired power plants.

  18. Experimental Investigation of Non-Thermal Electric Fields and Plasma Waves in Pulsed-Power Plasmas

    E-Print Network [OSTI]

    -field-plasma interaction, particle accelera- tion, growth of instabilities and plasma waves. As yet, to the hest of our and the properties of plasmas under high-power pulses at the nanosecond time scale. The method is based on resonant in a coaxial-pulsed-plasma configura- tion. The plasma is doped with a laser-produced lithium heam, fol- lowed

  19. China power - thermal coal and clean coal technology export. Topical report

    SciTech Connect (OSTI)

    Binsheng Li

    1996-12-31T23:59:59.000Z

    China is the world`s fourth largest electric power producer, and is expected to surpass Japan within the next two years to become the third largest power producer. During the past 15 years, China`s total electricity generation more than tripled, increasing from about 300 TWh to about 1,000 TWh. Total installed generating capacity grew at an average of 8.2 percent per year, increasing from 66 to 214 GW. The share of China`s installed capacity in Asia increased from 21 to 31 percent. The Chinese government plans to continue China`s rapid growth rate in the power sector. Total installed capacity is planned to reach 300 GW by 2000, which will generate 1,400 TWh of electricity per year. China`s long-term power sector development is subject to great uncertainty. Under the middle scenario, total capacity is expected to reach 700 GW by 2015, with annual generation of 3,330 TWh. Under the low and high scenarios, total capacity will reach 527-1,005 GW by 2015. The high scenario representing possible demand. To achieve this ambitious scenario, dramatic policy changes in favor of power development are required; however, there is no evidence that such policy changes will occur at this stage. Even under the high scenario, China`s per capita annual electricity consumption would be only 3,000 kWh by 2015, less than half of the present per capita consumption for OECD countries. Under the low scenario, electricity shortages will seriously curb economic growth.

  20. AlGaN/GaN field effect transistors for power electronics—Effect of finite GaN layer thickness on thermal characteristics

    SciTech Connect (OSTI)

    Hodges, C., E-mail: chris.hodges@bristol.ac.uk; Anaya Calvo, J.; Kuball, M. [H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom)] [H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Stoffels, S.; Marcon, D. [IMEC, Kapeldreef 75, B3001 Leuven (Belgium)] [IMEC, Kapeldreef 75, B3001 Leuven (Belgium)

    2013-11-11T23:59:59.000Z

    AlGaN/GaN heterostructure field effect transistors with a 150?nm thick GaN channel within stacked Al{sub x}Ga{sub 1?x}N layers were investigated using Raman thermography. By fitting a thermal simulation to the measured temperatures, the thermal conductivity of the GaN channel was determined to be 60?W m{sup ?1} K{sup ?1}, over 50% less than typical GaN epilayers, causing an increased peak channel temperature. This agrees with a nanoscale model. A low thermal conductivity AlGaN buffer means the GaN spreads heat; its properties are important for device thermal characteristics. When designing power devices with thin GaN layers, as well as electrical considerations, the reduced channel thermal conductivity must be considered.

  1. Smart grid powers up on NNSA land in Los Alamos | National Nuclear...

    National Nuclear Security Administration (NNSA)

    and Development Organization (NEDO) of Japan, Los Alamos County through the Dept. of Public Utilities (DPU), and Los Alamos National Laboratory hosted a ceremony to unveil a...

  2. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power

    E-Print Network [OSTI]

    Marnay, Chris

    2010-01-01T23:59:59.000Z

    Economic and Environmental Value of Solar Thermal Systems inEconomic and Environmental Value of Solar Thermal Systems insolar thermal and heat storage systems can improve the economic, as well as environmental

  3. The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power

    E-Print Network [OSTI]

    Marnay, Chris

    2010-01-01T23:59:59.000Z

    solar thermal and heat storage on CO 2 emissions and annual energyenergy costs, heat storage does not directly support solar thermal /energy costs. This paper focuses on analysis of the optimal interaction of solar thermal

  4. STANDARDS FOR MEASUREMENTS AND TESTING OF WIND TURBINE POWER QUALITY Poul Srensen, Ris National Laboratory, P.O.Box 49, DK-4000 Roskilde, Denmark.

    E-Print Network [OSTI]

    Heinemann, Detlev

    STANDARDS FOR MEASUREMENTS AND TESTING OF WIND TURBINE POWER QUALITY Poul SĂžrensen, RisĂž National and verification of wind turbine power quality. The work has been organised in three major activities. The first farm summation on the power quality of wind turbines with constant rotor speed. The third activity has

  5. Fouling and thermal-performance characteristics of the Humboldt Bay Unit 2 power-plant condenser

    SciTech Connect (OSTI)

    Rabas, T.J. [Argonne National Lab., IL (United States); Elliott, E.S. [Pacific Gas and Electric Co., San Ramon, CA (US)

    1993-07-01T23:59:59.000Z

    An experimental program was conducted at the Humboldt Bay condenser using eight clusters of four neighboring tubes with different conditions. In each cluster, there were (1) a new tube, the tubeside fluid being distilled water; (2) a new tube, the tubeside fluid being plant circulating water (seawater) and no cleaning; (3) an old tube, plant circulating water with no cleaning; and (4) an old tube, plant circulating water with normal periodic manual cleaning (blowing plugs or sponge balls). These tube clusters were located at four different locations within both the first and second passes of this two-pass condenser. Because of the different conditions, the fouling and cleaning characteristics can be obtained with measurements of the flow rate and inlet, outlet, and saturation temperatures. In addition to the fouling data, the thermal performance can be compared to that obtained with the standard rating method. There was a reduction in the thermal performance of the new, distilled-water tubes for about the first 80 days, and then the performance remained essentially constant. This performance change was most likely the result of the change from dropwise to filmwise condensation on the 7/8-in OD, 18 BWG Admiralty tubes. There was a continued increase of the tubeside fouling resistance with time (no asymptotic behavior) for the tubes that were not cleaned in each cluster using the plant circulating water. The fouling rates were somewhat larger for the first or lower temperature pass initially for the new tubes and after about 100 days for the old tubes. However, the fouling resistance values were substantially larger for the old tubes.

  6. Environmental Assessment for Electrical Power System Upgrades at Los Alamos National Laboratory, Los Alamos, New Mexico - Final Document

    SciTech Connect (OSTI)

    N /A

    2000-03-09T23:59:59.000Z

    The ''National Environmental Policy Act of 1969'' (NEPA) requires Federal agency officials to consider the environmental consequences of their proposed actions before decisions are made. In complying with NEPA, the United States (U.S.) Department of Energy (DOE) follows the Council on Environmental Quality (CEQ) regulations (40 Code of Federal Regulations [CFR] 1500-1508) and DOE's NEPA implementing procedures (10 CFR 1021). The purpose of an Environmental Assessment (EA) is to provide Federal decision makers with sufficient evidence and analysis to determine whether to prepare an Environmental Impact Statement (EIS) or issue a Finding of No Significant Impact. In this case, the DOE decision to be made is whether to construct and operate a 19.5-mile (mi) (31-kilometer [km]) electric transmission line (power line) reaching from the Norton Substation, west across the Rio Grande, to locations within the Los Alamos National Laboratory (LANL) Technical Areas (TAs) 3 and 5 at Los Alamos, New Mexico. The construction of one electric substation at LANL would be included in the project as would the construction of two line segments less than 1,200 feet (ft) (366 meters [m]) long that would allow for the uncrossing of a portion of two existing power lines. Additionally, a fiber optics communications line would be included and installed concurrently as part of the required overhead ground conductor for the power line. The new power line would improve the reliability of electric service in the LANL and Los Aktrnos County areas as would the uncrossing of the crossed segments of the existing lines. Additionally, installation of the new power line would enable the LANL and the Los Alamos County electric grid, which is a shared resource, to be adapted to accommodate the future import of increased power when additional power service becomes available in the northern New Mexico area. Similarly, the fiber optics line would allow DOE to take advantage of future opportunities in enhanced communications services. The objectives of this EA are to (1) describe the baseline environmental conditions at the proposed power line location, (2) analyze the potential effects to the existing environment from construction, operation, and maintenance of a new power line, and (3) compare the effects of the Proposed Action and the four action alternatives to the No Action Alternative. In addition, the EA provides DOE with environmental information that could be used in developing mitigative actions to minimize or avoid adverse effects to the integrity of the human environment and natural ecosystems should DOE decide to proceed with construction and operation of the new power line. Ultimately, the goal of NEPA and this EA is to aid DOE officials in making decisions based on understanding the environmental consequences of their decision.

  7. Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta FeAuthorization|EnergyAnalysis ofAnalysis ofAn

  8. Molten Nitrate Salt Development for Thermal Energy Storage in Parabolic Trough Solar Power Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174 This manuscript has been authored

  9. Determining the best source of renewable electricity to power a remote site for the National Park Service

    SciTech Connect (OSTI)

    Azerbegl, R.; Mas, C.; Walker, A.; Morris, R.; Christensen, J.

    1999-07-01T23:59:59.000Z

    Renewable energy technologies have economic and environmental advantages in many remote applications. They can provide most of the power to off-grid loads, where batteries and another power source such as a generator or a fuel cell may be required to ensure availability and feasibility. In support of the National Park Service, the Federal Energy Management Program Team at the National Renewable Energy Laboratory has evaluated several methods for providing a renewable source of electricity to a beach campsite at Kirby Cove, Marin County, California. This site requires 2 kWh per day to power a campground host in a motor home five months power year. The existing electricity line to the site is in need of replacement and the NPS is interested in evaluating more cost-effective and environmentally sensitive alternatives. Photovoltaics, tidal current, and wind power systems in combination with a back-up electric system (standard, thermoelectric, and Stirling generator and fuel cell) and an energy storage medium (battery, flywheel, and hydrogen) were analyzed. Multi-objective optimization criteria include initial cost, operating cost, emissions, maintenance requirements, and to be consistent with the NPS requirements, the system must be clean, silent, and sustainable. The best system combination was designed according to these evaluation criteria and a demonstration system is to be constructed. This paper describes the optimization procedure and design. Results indicate that a 800 Watt photovoltaic array with a hydrogen fuel cell best serves the requirements for clean, silent power. Since fuel cells are developmental, a propane generator is recommended as an alternative.

  10. EA-1266: Proposed Decontamination and Disassembly of the Argonne Thermal Source Reactor (ATSR) At Argonne National Laboratory, Argonne, Illinois

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal for the decontamination and disassembly of the U.S. Department of Energy's Argonne Thermal Source Reactor.

  11. Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation

    SciTech Connect (OSTI)

    R. Panneer Selvam, Micah Hale and Matt strasser

    2013-03-31T23:59:59.000Z

    Thermal energy can be stored by the mechanism of sensible or latent heat or heat from chemical reactions. Sensible heat is the means of storing energy by increasing the temperature of the solid or liquid. Since the concrete as media cost per kWhthermal is $1, this seems to be a very economical material to be used as a TES. This research is focused on extending the concrete TES system for higher temperatures (500 Ă?ÂșC to 600 Ă?ÂșC) and increasing the heat transfer performance using novel construction techniques. To store heat at high temperature special concretes are developed and tested for its performance. The storage capacity costs of the developed concrete is in the range of $0.91-$3.02/kWhthermal Two different storage methods are investigated. In the first one heat is transported using molten slat through a stainless steel tube and heat is transported into concrete block through diffusion. The cost of the system is higher than the targeted DOE goal of $15/kWhthermal The increase in cost of the system is due to stainless steel tube to transfer the heat from molten salt to the concrete blocks.The other method is a one-tank thermocline system in which both the hot and cold fluid occupy the same tank resulting in reduced storage tank volume. In this model, heated molten salt enters the top of the tank which contains a packed bed of quartzite rock and silica sand as the thermal energy storage (TES) medium. The single-tank storage system uses about half the salt that is required by the two-tank system for a required storage capacity. This amounts to a significant reduction in the cost of the storage system. The single tank alternative has also been proven to be cheaper than the option which uses large concrete modules with embedded heat exchangers. Using computer models optimum dimensions are determined to have an round trip efficiency of 84%. Additionally, the cost of the structured concrete thermocline configuration provides the TES capacity cost of $33.80$/kWhthermal compared with $30.04/kWhthermal for a packed-bed thermocline (PBTC) configuration and $46.11/kWhthermal for a two-tank liquid configuration.

  12. Active Power Control Testing at the U.S. National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Ela, E.

    2011-01-01T23:59:59.000Z

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  13. 1-Dimensional simulation of thermal annealing in a commercial nuclear power plant reactor pressure vessel wall section

    SciTech Connect (OSTI)

    Nakos, J.T.; Rosinski, S.T.; Acton, R.U.

    1994-11-01T23:59:59.000Z

    The objective of this work was to provide experimental heat transfer boundary condition and reactor pressure vessel (RPV) section thermal response data that can be used to benchmark computer codes that simulate thermal annealing of RPVS. This specific protect was designed to provide the Electric Power Research Institute (EPRI) with experimental data that could be used to support the development of a thermal annealing model. A secondary benefit is to provide additional experimental data (e.g., thermal response of concrete reactor cavity wall) that could be of use in an annealing demonstration project. The setup comprised a heater assembly, a 1.2 in {times} 1.2 m {times} 17.1 cm thick [4 ft {times} 4 ft {times} 6.75 in] section of an RPV (A533B ferritic steel with stainless steel cladding), a mockup of the {open_quotes}mirror{close_quotes} insulation between the RPV and the concrete reactor cavity wall, and a 25.4 cm [10 in] thick concrete wall, 2.1 in {times} 2.1 in [10 ft {times} 10 ft] square. Experiments were performed at temperature heat-up/cooldown rates of 7, 14, and 28{degrees}C/hr [12.5, 25, and 50{degrees}F/hr] as measured on the heated face. A peak temperature of 454{degrees}C [850{degrees}F] was maintained on the heated face until the concrete wall temperature reached equilibrium. Results are most representative of those RPV locations where the heat transfer would be 1-dimensional. Temperature was measured at multiple locations on the heated and unheated faces of the RPV section and the concrete wall. Incident heat flux was measured on the heated face, and absorbed heat flux estimates were generated from temperature measurements and an inverse heat conduction code. Through-wall temperature differences, concrete wall temperature response, heat flux absorbed into the RPV surface and incident on the surface are presented. All of these data are useful to modelers developing codes to simulate RPV annealing.

  14. Characterization of the Li(Si)/CoS(2) couple for a high-voltage, high-power thermal battery

    SciTech Connect (OSTI)

    GUIDOTTI,RONALD A.; REINHARDT,FREDERICK W.

    2000-02-01T23:59:59.000Z

    In order to determined the capabilities of a thermal battery with high-voltage and high-power requirements, a detailed characterization of the candidate LiSi/LiCl-LiBr-LiF/CoS{sub 2} electrochemical couple was conducted. The rate capability of this system was investigated using 0.75 inch-dia. and 1.25 inch-dia. single and multiple cells under isothermal conditions, where the cells were regularly pulsed at increasingly higher currents. Limitations of the electronic loads and power supplies necessitated using batteries to obtain the desired maximum current densities possible for this system. Both 1.25 inch-dia. and 3 inch-dia. stacks were used with the number of cells ranging from 5 to 20. Initial tests involved 1.25 inch-dia. cells, where current densities in excess of 15 A/cm{sup 2} (>200 W/cm{sup 2}) were attained with 20-cell batteries during 1-s pulses. In subsequent follow-up tests with 3 inch-dia., 10-cell batteries, ten 400-A 1-s pulses were delivered over an operating period often minutes. These tests formed the foundation for subsequent full-sized battery tests with 125 cells with this chemistry.

  15. 2015 National Environmental Justice Conference and Training Program Call for PowerPoint/Video Presentations

    Broader source: Energy.gov [DOE]

    As part of its Youth/Emerging Leaders Summit, the 2015 National Environmental Justice Conference and Training Program (NEJC) planners are inviting individuals or groups, ages 15 to 25, to submit...

  16. National Association of Counties Webinar- Combined Heat and Power: Resiliency Strategies for Critical Facilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    Combined heat and power (CHP), also known as cogeneration, is a method whereby energy is produced, and excess heat from the production process can be used for heating and cooling processes....

  17. Improved power efficiency for very-high-temperature solar-thermal-cavity receivers

    DOE Patents [OSTI]

    McDougal, A.R.; Hale, R.R.

    1982-04-14T23:59:59.000Z

    This invention is an improved solar energy cavity receiver for exposing materials and components to high temperatures. The receiver includes a housing having an internal reflective surface defining a cavity and having an inlet for admitting solar radiation thereto. A photothermal absorber is positiond in the cavity to receive radiation from the inlet. A reflective baffle is positioned between the absorber and the inlet to severely restrict the re-radiation of energy through the inlet. The front surface of the baffle defines a narrow annulus with the internal reflective surface of the housing. The front surface of the baffle is contoured to reflect incoming radiation onto the internal surface of the housing, from which it is reflected through the annulus and onto the front surface of the absorber. The back surface of the baffle intercepts radiation from the front of the absorber. With this arrangement, a high percentage of the solar power input is retained in the cavity; thus, high internal temperatues are attained.

  18. Collaborative National Program for the Development and Performance Testing of Distributed Power Technologies with Emphasis on Combined Heat and Power Applications

    SciTech Connect (OSTI)

    Soinski, Arthur; Hanson, Mark

    2006-06-28T23:59:59.000Z

    A current barrier to public acceptance of distributed generation (DG) and combined heat and power (CHP) technologies is the lack of credible and uniform information regarding system performance. Under a cooperative agreement, the Association of State Energy Research and Technology Transfer Institutions (ASERTTI) and the U.S. Department of Energy have developed four performance testing protocols to provide a uniform basis for comparison of systems. The protocols are for laboratory testing, field testing, long-term monitoring and case studies. They have been reviewed by a Stakeholder Advisory Committee made up of industry, public interest, end-user, and research community representatives. The types of systems covered include small turbines, reciprocating engines (including Stirling Cycle), and microturbines. The protocols are available for public use and the resulting data is publicly available in an online national database and two linked databases with further data from New York State. The protocols are interim pending comments and other feedback from users. Final protocols will be available in 2007. The interim protocols and the national database of operating systems can be accessed at www.dgdata.org. The project has entered Phase 2 in which protocols for fuel cell applications will be developed and the national and New York databases will continue to be maintained and populated.

  19. Using Encapsulated Phase Change Material in Thermal Energy Storage for Baseload Concentrating Solar Power (EPCM-TES)

    SciTech Connect (OSTI)

    Mathur, Anoop [Terrafore Technologies LLC, Minneapolis, MN (United States)

    2013-12-15T23:59:59.000Z

    Terrafore successfully demonstrated and optimized the manufacturing of capsules containing phase-changing inorganic salts. The phase change was used to store thermal energy collected from a concentrating solar-power plant as latent heat. This latent heat, in addition to sensible heat increased the energy density (energy stored per unit weight of salt) by over 50%, thus requiring 40% less salt and over 60% less capsule container. Therefore, the cost to store high-temperature thermal energy collected in a concentrating solar power plant will be reduced by almost 40% or more, as compared to conventional two-tank, sensible-only storage systems. The cost for thermal energy storage (TES) system is expected to achieve the Sun Shot goal of $15 per kWh(t). Costs associated with poor heat-transfer in phase change materials (PCM) were also eliminated. Although thermal energy storage that relies on the latent heat of fusion of PCM improves energy density by as much as 50%, upon energy discharge the salt freezes and builds on the heat transfer surfaces. Since these salts have low thermal conductivity, large heat-transfer areas, or larger conventional heat-exchangers are needed, which increases costs. By encapsulating PCM in small capsules we have increased the heat transfer area per unit volume of salt and brought the heat transfer fluid in direct contact with the capsules. These two improvements have increased the heat transfer coefficient and boosted heat transfer. The program was successful in overcoming the phenomenon of melt expansion in the capsules, which requires the creation of open volume in the capsules or shell to allow for expansion of the molten salt on melting and is heated above its melting point to 550°C. Under contract with the Department of Energy, Terrafore Inc. and Southwest Research Institute, developed innovative method(s) to economically create the open volume or void in the capsule. One method consists of using a sacrificial polymer coating as the middle layer between the salt prill and the shell material. The selected polymer decomposes at temperatures below the melting point of the salt and forms gases which escape through the pores in the capsule shell thus leaving a void in the capsule. We have demonstrated the process with a commonly used inorganic nitrate salt in a low-cost shell material that can withstand over 10,000 high-temperature thermal cycles, or a thirty-year or greater life in a solar plant. The shell used to encapsulate the salt was demonstrated to be compatible with molten salt heat transfer fluid typically used in CSP plants to temperatures up to 600 °C. The above findings have led to the concept of a cascaded arrangement. Salts with different melting points can be encapsulated using the same recipe and contained in a packed bed by cascading the salt melting at higher melting point at the top over the salt melting at lower melting point towards the bottom of the tank. This cascaded energy storage is required to effectively transfer the sensible heat collected in heat transfer fluids between the operating temperatures and utilize the latent heat of fusion in the salts inside the capsule. Mathematical models indicate that over 90% of the salts will undergo phase change by using three salts in equal proportion. The salts are selected such that the salt at the top of the tank melts at about 15°C below the high operating-temperature, and the salt at the bottom of the tank melts 15°C above the low operating-temperature. The salt in the middle of tank melts in-between the operating temperature of the heat transfer fluid. A cascaded arrangement leads to the capture of 90% of the latent-heat of fusion of salts and their sensible heats. Thus the energy density is increased by over 50% from a sensible-only, two-tank thermal energy storage. Furthermore, the Terrafore cascaded storage method requires only one tank as opposed to the two-tanks used in sensible heat storage. Since heat is transferred from the heat transfer fluid by direct contact with capsules, external heat-exchangers are not required

  20. Large-Scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERNLandLargefor High Offshore

  1. The Effects of Nanoparticle Augmentation of Nitrate Thermal Storage Materials for Use in Concentrating Solar Power Applications

    E-Print Network [OSTI]

    Betts, Matthew

    2011-08-08T23:59:59.000Z

    The Department of Energy funded a project to determine if the specific heat of thermal energy storage materials could be improved by adding nanoparticles. The standard thermal energy storage materials are molten salts. The chosen molten salt was a...

  2. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

  3. Gas-phase thermal dissociation of uranium hexafluoride: Investigation by the technique of laser-powered homogeneous pyrolysis

    SciTech Connect (OSTI)

    Bostick, W.D.; McCulla, W.H.; Trowbridge, L.D.

    1987-04-01T23:59:59.000Z

    In the gas-phase, uranium hexafluoride decomposes thermally in a quasi-unimolecular reaction to yield uranium pentafluoride and atomic fluorine. We have investigated this reaction using the relatively new technique of laser-powered homogeneous pyrolysis, in which a megawatt infrared laser is used to generate short pulses of high gas temperatures under strictly homogeneous conditions. In our investigation, SiF/sub 4/ is used as the sensitizer to absorb energy from a pulsed CO/sub 2/ laser and to transfer this energy by collisions with the reactant gas. Ethyl chloride is used as an external standard ''thermometer'' gas to permit estimation of the unimolecular reaction rate constants by a relative rate approach. When UF/sub 6/ is the reactant, CF/sub 3/Cl is used as reagent to trap atomic fluorine reaction product, forming CF/sub 4/ as a stable indicator which is easily detected by infrared spectroscopy. Using these techniques, we estimate the UF/sub 6/ unimolecular reaction rate constant near the high-pressure limit. In the Appendix, we describe a computer program, written for the IBM PC, which predicts unimolecular rate constants based on the Rice-Ramsperger-Kassel theory. Parameterization of the theoretical model is discussed, and recommendations are made for ''appropriate'' input parameters for use in predicting the gas-phase unimolecular reaction rate for UF/sub 6/ as a function of temperature and gas composition and total pressure. 85 refs., 17 figs., 14 tabs.

  4. Isotopic power supplies for space and terrestrial systems: quality assurance by Sandia National Laboratories

    SciTech Connect (OSTI)

    Hannigan, R.L.; Harnar, R.R.

    1981-09-01T23:59:59.000Z

    The Sandia National Laboratories participation in Quality Assurance (QA) programs for Radioisotopic Thermoelectric Generators which have been used in space and terrestrial systems over the past 15 years is summarized. Basic elements of the program are briefly described and recognition of assistance from other Sandia organizations is included. Descriptions of the various systems for which Sandia has had the QA responsibility are also presented. In addition, the outlook for Sandia participation in RTG programs for the next several years is noted.

  5. Comments on: Sandia Nuclear Power Safety Expert Elected to National Academy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials

  6. High-Temperature Thermal Array for Next Generation Solar Thermal...

    Broader source: Energy.gov (indexed) [DOE]

    Thermal Array for Next Generation Solar Thermal Power Production Award Number: DE-EE00025828 Report Date: March 15, 2013 PI: Stephen Obrey * Technical approach is focused on...

  7. WIND AND WATER POWER TECHNOLOGIES OFFICE Pacific Northwest National Laboratory's Tethys:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley Nickell Director of Transmission PlanningWICF Testing,|a

  8. Power Marketing Administrations Leading the Nation's Transition to a 21st

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM615_CostNSAR - T enAmount forDecontaminationComments andEnergyCentury

  9. National Lab Helping to Train Operators for Next Generation of Power Plants

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC)TABLEChallenges|AdvancedofPresentation |3,| Department of

  10. Comparative ranking of 0. 1 to 10 MW(e) solar thermal electric power systems. Volume I. Summary of results. Final report

    SciTech Connect (OSTI)

    Thornton, J.P.; Brown, K.C.; Finegold, J.G.; Gresham, J.B.; Herlevich, F.A.; Kowalik, J.S.; Kriz, T.A.

    1980-08-01T23:59:59.000Z

    This report is part of a two-volume set summarizing the results of a comparative ranking of generic solar thermal concepts designed specifically for electric power generation. The original objective of the study was to project the mid-1990 cost and performance of selected generic solar thermal electric power systems for utility applications and to rank these systems by criteria that reflect their future commercial acceptance. This study considered plants with rated capacities of 1 to 10 MW(e), operating over a range of capacity factors from the no-storage case to 0.7 and above. Later, the study was extended to include systems with capacities from 0.1 to 1 MW(e), a range that is attractive to industrial and other non-utility applications. This volume summarizes the results for the full range of capacities from 0.1 to 10 MW(e). Volume II presents data on performance and cost and ranking methodology.

  11. Preliminary Physics Motivation and Engineering Design Assessment of the National High Power Torus

    SciTech Connect (OSTI)

    Robert D. Woolley

    2009-06-11T23:59:59.000Z

    In April 2006, Dr. Ray Orbach, Director of the DOE Office of Science, challenged the fusion community to "propose a new facility... which will put the U.S. at the lead in world fusion science." Analysis of the gaps between expected ITER performance and the requirements of a demonstration power plant (Demo) pointed to the critical and urgent need to develop fusion-relvant plasma-material interface (PMI) solutions consistent with sustained high plasma performance. A survey of world fusion program indicated that present and planned experimental devices do not advance the PMI issue beyond ITER, and a major dedicated experimental facility is warranted. Such a facility should provide the flexibility and access needed to solve plasma boundary challenges related to divertor heat flux and particle exhaust while also developing methods to minimize hydrogenic isotope retention and remaining compatible with high plasma performance.

  12. Oak Ridge National Laboratory (ORNL) Superconducting Technology Program for electric power systems. Annual report for FY 1994

    SciTech Connect (OSTI)

    Koncinski, W.S. [ed.; Hawsey, R.A. [comp.

    1994-12-01T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The three major elements of this program are conductor development, applications development, and the Superconductivity Partnership Initiative. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1994 Annual Program Review held July 19--20, 2994. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to industrial competitiveness projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  13. Configuration and Heating Power Dependence of Edge Parameters and H-mode Dynamics in National Spherical Torus Experiment (NSTX)

    SciTech Connect (OSTI)

    C.E. Bush; M.G. Bell; R.E. Bell; J. Boedo; E.D. Fredrickson; S.M. Kaye; S. Kubota; B.P. LeBlanc; R. Maingi; R.J. Maqueda; S.A. Sabbagh; V.A. Soukhanovskii; D. Stutman; D.W. Swain; J.B. Wilgen; S.J. Zweben; W.M. Davis; D.A. Gates; D.W. Johnson; R. Kaita; H.W. Kugel; D. Mastrovito; S. Medley; J.E. Menard; D. Mueller; M. Ono; F. Paoletti; S.J. Paul; Y-K.M. Peng; R. Raman; P.G. Roney; A.L. Roquemore; C.H. Skinner; E.J. Synakowski; G. Taylor; the NSTX Team

    2003-01-09T23:59:59.000Z

    Edge parameters play a critical role in H-mode (high-confinement mode) access, which is a key component of plasma discharge optimization in present-day toroidal confinement experiments and the design of next-generation devices. Because the edge magnetic topology of a spherical torus (ST) differs from a conventional aspect ratio tokamak, H-modes in STs exhibit important differences compared with tokamaks. The dependence of the NSTX (National Spherical Torus Experiment) edge plasma on heating power, including the L-H transition requirements and the occurrence of edge-localized modes (ELMs), and on divertor configuration is quantified. Comparisons between good L-modes (low-confinement modes) and H-modes show greater differences in the ion channel than the electron channel. The threshold power for the H-mode transition in NSTX is generally above the predictions of a recent ITER (International Thermonuclear Experimental Reactor) scaling. Correlations of transition and ELM phenomena with turbulent fluctuations revealed by Gas Puff Imaging (GPI) and reflectometry are observed. In both single-null and double-null divertor discharges, the density peaks off-axis, sometimes developing prominent ''ears'' which can be sustained for many energy confinement times, tau subscript ''E'', in the absence of ELMs. A wide variety of ELM behavior is observed, and ELM characteristics depend on configuration and fueling.

  14. Near and far field models of external fluid mechanics of Ocean Thermal Energy Conversion (OTEC) power plants

    E-Print Network [OSTI]

    Rodríguez Buńo, Mariana

    2013-01-01T23:59:59.000Z

    The world is facing the challenge of finding new renewable sources of energy - first, in response to fossil fuel reserve depletion, and second, to reduce greenhouse gas emissions. Ocean Thermal Energy Conversion (OTEC) can ...

  15. Numerical and Experimental Investigation of Inorganic Nanomaterials for Thermal Energy Storage (TES) and Concentrated Solar Power (CSP) Applications

    E-Print Network [OSTI]

    Jung, Seunghwan

    2012-07-16T23:59:59.000Z

    maximizing the thermal conductivity of the nanomaterial (which typically occurs for nanoparticle size varying between ~ 20-30nm) and maximizing the specific heat capacity (which typically occurs for nanoparticle size less than 5nm), while simultaneously...

  16. Numerical and Experimental Investigation of Inorganic Nanomaterials for Thermal Energy Storage (TES) and Concentrated Solar Power (CSP) Applications 

    E-Print Network [OSTI]

    Jung, Seunghwan

    2012-07-16T23:59:59.000Z

    cause significant enhancement in the specific heat capacity of nanofluids and nanocomposites. The interfacial thermal resistance (also known as Kapitza resistance, or “Rk”) between a nanoparticle and the surrounding solvent molecules (for these molten...

  17. Solar Thermal Reactor Materials Characterization

    SciTech Connect (OSTI)

    Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

    2008-03-01T23:59:59.000Z

    Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

  18. Scattering Solar Thermal Concentrators

    Broader source: Energy.gov (indexed) [DOE]

    eere.energy.gov * energy.govsunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving...

  19. Critical experiments at Sandia National Laboratories : technical meeting on low-power critical facilities and small reactors.

    SciTech Connect (OSTI)

    Harms, Gary A.; Ford, John T.; Barber, Allison Delo

    2010-11-01T23:59:59.000Z

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-III is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide benchmark reactor physics data to support validation of the reactor physics codes used to design commercial reactor fuel elements in an enrichment range above the current 5% enrichment cap. A first set of critical experiments in the 7uPCX has been completed. More experiments are planned in the 7uPCX series. The critical experiments at Sandia National Laboratories are currently funded by the US Department of Energy Nuclear Criticality Safety Program (NCSP). The NCSP has committed to maintain the critical experiment capability at Sandia and to support the development of a critical experiments training course at the facility. The training course is intended to provide hands-on experiment experience for the training of new and re-training of practicing Nuclear Criticality Safety Engineers. The current plans are for the development of the course to continue through the first part of fiscal year 2011 with the development culminating is the delivery of a prototype of the course in the latter part of the fiscal year. The course will be available in fiscal year 2012.

  20. EA-1629:Southwestern Power Administration Utility Corridor and Tower Site Vegetation Management; Ozark-St. Francis National Forest, Pope and Searcy Counties, Arkansas

    Broader source: Energy.gov [DOE]

    U.S. Forest Service prepared an EA that evaluated the potential environmental impacts of amending a Southwestern Area Power Administration (SWPA) permit to allow herbicide application within SWPA transmission line rights-of-way in the Ozark-St. Francis National Forest. SWPA initially was a cooperating agency, and later ended its involvement in preparing the EA.

  1. Evaluation of the thermal-hydraulic response and fuel rod thermal and mechanical deformation behavior during the power burst facility test LOC-3. [PWR

    SciTech Connect (OSTI)

    Yackle, T.R.; MacDonald, P.E.; Broughton, J.M.

    1980-01-01T23:59:59.000Z

    An evaluation of the results from the LOC-3 nuclear blowdown test conducted in the Power Burst Facility is presented. The test objective was to examine fuel and cladding behavior during a postulated cold leg break accident in a pressurized water reactor (PWR). Separate effects of rod internal pressure and the degree of irradiation were investigated in the four-rod test. Extensive cladding deformation (ballooning) and failure occurred during blowdown. The deformation of the low and high pressure rods was similar; however, the previously irradiated test rod deformed to a greater extent than a similar fresh rod exposed to identical system conditions.

  2. Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish Engine Solar Power Generation

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  3. Chemically Reactive Working Fluids for the Capture and Transport of Concentrated Solar Thermal Energy for Power Generation

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  4. Sandia Energy - National SCADA Testbed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National SCADA Testbed Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for Electric Infrastructure National...

  5. Thermal springs list for the United States; National Oceanic and Atmospheric Administration Key to Geophysical Records Documentation No. 12

    SciTech Connect (OSTI)

    Berry, G.W.; Grim, P.J.; Ikelman, J.A. (comps.)

    1980-06-01T23:59:59.000Z

    The compilation has 1702 thermal spring locations in 23 of the 50 States, arranged alphabetically by State (Postal Service abbreviation) and degrees of latitude and longitude within the State. It shows spring name, surface temperature in degrees Fahrenheit and degrees Celsius; USGS Professional Paper 492 number, USGS Circular 790 number, NOAA number, north to south on each degree of latitude and longitude of the listed. USGS 1:250,000-scale (AMS) map; and the USGS topographic map coverage, 1:63360- or 1:62500-scale (15-minute) or 1:24000-scale (7.5-minute) quadrangle also included is an alphabetized list showing only the spring name and the State in which it is located. Unnamed springs are omitted. The list includes natural surface hydrothermal features: springs, pools, mud pots, mud volcanoes, geysers, fumaroles, and steam vents at temperature of 20{sup 0}C (68[sup 0}F) or greater. It does not include wells or mines, except at sites where they supplement or replace natural vents presently or recently active, or, in some places, where orifices are not distinguishable as natural or artificial. The listed springs are located on the USGS 1:250,000 (AMS) topographic maps. (MHR)

  6. Thermal performance evaluation of SiC power devices packaging A.GRACIA, S.AZZOPARDI, E.WOIRGARD

    E-Print Network [OSTI]

    Boyer, Edmond

    N allow high power densities, size reduction, high integration and elevated operating temperatures. In this study, we present solutions for high temperature power packages based on finite element simulations [1]. A SiC device has been already studied with an operating temperature of 400 șC [2-3]. High

  7. Sandia National Laboratories: Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Solar, Solar Newsletter A team from Sandia National Laboratories' (SNL) National Solar Thermal Test Facility (NSTTF) recently won a first place Excellence Award in the...

  8. Sandia National Laboratories: Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

  9. Supplement Analysis for the Site-Wide Environmental Impact Statement for Continued Operation of Los Alamos National Laboratory -- Recovery and Storage of Strontium-90 Fueled Radioisotope Thermal Electric Generators at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    N /A

    2004-01-22T23:59:59.000Z

    This Supplement Analysis (SA) has been prepared to determine if the Site-Wide Environmental Impact Statement for Continued Operations of Los Alamos National Laboratory (SWEIS) (DOE/EIS-0238) adequately addresses the environmental effects of recovery and storage for disposal of six strontium-90 (Sr-90) fueled radioisotope thermal electric generators (RTGs) at the Los Alamos National Laboratory (LANL) Technical Area (TA)-54, Area G, or if the SWEIS needs to be supplemented. DOE's National Nuclear Security Administration (NNSA) proposed to recover and store six Sr-90 RTGs from the commercial sector as part of its Offsite-Source Recovery Project (OSRP). The OSRP focuses on the proactive recovery and storage of unwanted radioactive sealed sources exceeding the US Nuclear Regulatory Commission (NRC) limits for Class C low-level waste (also known as Greater than Class C waste, or GTCC). In response to the events of September 11, 2001, NRC conducted a risk-based evaluation of potential vulnerabilities to terrorist threats involving NRC-licensed nuclear facilities and materials. NRC's evaluation concluded that possession of unwanted radioactive sealed sources with no disposal outlet presents a potential vulnerability (NRC 2002). In a November 25, 2003 letter to the manager of the NNSA's Los Alamos Site Office, the NRC Office of Nuclear Security and Incident Response identified recovery of several Sr-90 RTGs as the highest priority and requested that DOE take whatever actions necessary to recovery these sources as soon as possible. This SA specifically compares key impact assessment parameters of this proposal to the offsite source recovery program evaluated in the SWEIS and a subsequent SA that evaluated a change to the approach of a portion of the recovery program. It also provides an explanation of any differences between the Proposed Action and activities described in the previous SWEIS and SA analyses.

  10. Preliminary Thermal Modeling of HI-Storm 100S-218 Version B Storage Modules at Hope Creek Cuclear Power Station ISFSI

    SciTech Connect (OSTI)

    Cuta, Judith M.; Adkins, Harold E.

    2013-08-30T23:59:59.000Z

    As part of the Used Fuel Disposition Campaign of the U. S. Department of Energy, Office of Nuclear Energy (DOE-NE) Fuel Cycle Research and Development, a consortium of national laboratories and industry is performing visual inspections and temperature measurements of selected storage modules at various locations around the United States. This report documents thermal analyses in in support of the inspections at the Hope Creek Nuclear Generating Station ISFSI. This site utilizes the HI-STORM100 vertical storage system developed by Holtec International. This is a vertical storage module design, and the thermal models are being developed using COBRA-SFS (Michener, et al., 1987), a code developed by PNNL for thermal-hydraulic analyses of multi assembly spent fuel storage and transportation systems. This report describes the COBRA-SFS model in detail, and presents pre-inspection predictions of component temperatures and temperature distributions. The final report will include evaluation of inspection results, and if required, additional post-test calculations, with appropriate discussion of results.

  11. Sandia National Laboratories: ACEC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ACEC Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar...

  12. Thermal Performance Benchmarking (Presentation)

    SciTech Connect (OSTI)

    Moreno, G.

    2014-11-01T23:59:59.000Z

    This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

  13. THE 1998 NOVEMBER 14 OCCULTATION OF GSC 0622-00345 BY SATURN. II. STRATOSPHERIC THERMAL PROFILE, POWER SPECTRUM, AND GRAVITY WAVES

    SciTech Connect (OSTI)

    Harrington, Joseph [Planetary Sciences Group, Department of Physics, University of Central Florida, Orlando, FL 32816-2385 (United States); French, Richard G. [Astronomy Department, Wellesley College, Wellesley, MA 02481 (United States); Matcheva, Katia, E-mail: jh@physics.ucf.ed, E-mail: rfrench@wellesley.ed, E-mail: katia@phys.ufl.ed [Department of Physics, University of Florida, P.O. Box 118440, Gainesville, FL 32611 (United States)

    2010-06-10T23:59:59.000Z

    On 1998 November 14, Saturn and its rings occulted the star GSC 0622-00345. The occultation latitude was 55.{sup 0}5 S. This paper analyzes the 2.3 {mu}m light curve derived by Harrington and French. A fixed-baseline isothermal fit to the light curve has a temperature of 140 {+-} 3 K, assuming a mean molecular mass of 2.35 AMU. The thermal profile obtained by numerical inversion is valid between 1 and 60 {mu}bar. The vertical temperature gradient is > 0.2 K km{sup -1} more stable than the adiabatic lapse rate, but it still shows the alternating-rounded-spiked features seen in many temperature gradient profiles from other atmospheric occultations and usually attributed to breaking gravity (buoyancy) waves. We conduct a wavelet analysis of the thermal profile, and show that, even with our low level of noise, scintillation due to turbulence in Earth's atmosphere can produce large temperature swings in light-curve inversions. Spurious periodic features in the 'reliable' region of a wavelet amplitude spectrum can exceed 0.3 K in our data. We also show that gravity-wave model fits to noisy isothermal light curves can lead to convincing wave 'detections'. We provide new significance tests for localized wavelet amplitudes, wave model fits, and global power spectra of inverted occultation light curves by assessing the effects of pre- and post-occultation noise on these parameters. Based on these tests, we detect several significant ridges and isolated peaks in wavelet amplitude, to which we fit a gravity wave model. We also strongly detect the global power spectrum of thermal fluctuations in Saturn's atmosphere, which resembles the 'universal' (modified Desaubies) curve associated with saturated spectra of propagating gravity waves on Earth and Jupiter.

  14. 1.Physics Department, Colorado School of Mines, Golden, CO 2. National Renewable Energy Laboratory, Golden, CO 3. United Solar Ovonic, LLC Troy, MI, United States THERMAL ACTIVATION OF DEEP OXYGEN DEFECT FORMATION AND HYDROGEN EFFUSION

    E-Print Network [OSTI]

    was partially supported by a DOE grant through United Solar Ovonics, Inc., under the Solar America Initiative1.Physics Department, Colorado School of Mines, Golden, CO 2. National Renewable Energy Laboratory, Golden, CO 3. United Solar Ovonic, LLC Troy, MI, United States BACKGROUND THERMAL ACTIVATION OF DEEP

  15. Measurement of Hydrogen Balmer Line Broadening and Thermal Power Balances of Noble Gas-Hydrogen Discharge Plasmas

    E-Print Network [OSTI]

    talyst atoms or ions which ionize at integer multiples of the potential energy of atomic hydrogen (St, He + , or Ar + ) caused an increase in power; whereas, no excess power was observed in the case of krypton which does not provide a reaction with a net enthalpy of a multiple of the potential energy of atomic hydrogen under these conditions. For a power input to the glow discharge of 110 W, the excess output power of mixtures of strontium with argon- hydrogen (95/5%), strontium with hydrogen, strontium with helium-hydrogen (95/5%), and argon-hydrogen (95/5%) was 75, 58, 50, and 28 W, respectively, based a comparison of the temperature rise of the cell with krypton-hydrogen mixture (95/5%) and krypton alone. The input power was varied to find conditions that resulted in the optimal output for the strontium- hydrogen plasma. At 136 W input, the excess power significantly increased to 184 W. These studies provide a useful comparison of catalysts for the optimization of the catal

  16. News | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers from Argonne National Laboratory modeled several scenarios to add more solar power to the electric grid, using real-world data from the southwestern power...

  17. Vehicle Technologies Office Merit Review 2014: Thermal Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Control of Power Electronics of Electric Vehicles with Small Channel Coolant Boiling Vehicle Technologies Office Merit Review 2014: Thermal Control of Power Electronics of...

  18. Project Profile: Innovative Thermal Energy Storage for Baseload...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Energy Storage for Baseload Solar Power Generation Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power Generation University of South Florida logo...

  19. Project Profile: Innovative Phase Change Thermal Energy Storage...

    Energy Savers [EERE]

    Phase Change Thermal Energy Storage Solution for Baseload Power Project Profile: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Infinia logo Infinia,...

  20. Project Profile: Reducing the Cost of Thermal Energy Storage...

    Energy Savers [EERE]

    Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power...

  1. Sandia National Laboratories: performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance Photovoltaic (PV) Regional Test Center (RTC) Website Goes Live On February 26, 2013, in Energy, National Solar Thermal Test Facility, News, News & Events, Partnership,...

  2. Sandia National Laboratories: Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic (PV) Regional Test Center (RTC) Website Goes Live On February 26, 2013, in Energy, National Solar Thermal Test Facility, News, News & Events, Partnership,...

  3. Sandia National Laboratories: NSTTF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events, Partnership, Renewable Energy, Solar, Solar Newsletter SolarReserve is testing engineering units at the National Solar Thermal Test Facility (NSTTF) operated by Sandia....

  4. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  5. SENSITIVITY OF THERMAL POWER GENERATION TO CLIMATE G. P. Harrison*, L. C. Cradden, A. Zacheshigriva, S. Nairn, J. P. Chick

    E-Print Network [OSTI]

    Harrison, Gareth

    stations. With gas turbines designed to operate with constant volumetric airflow, the reduced density causes the mass flow to fall, consequently reducing the power of the gas turbine and the amount of heat station in Fife, and Rye House combined cycle gas turbine (CCGT) station in Hertfordshire. The results

  6. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Modelling Concentrating Solar Power

    E-Print Network [OSTI]

    ;9 Production Cost Modeling Objective: Balance generation and load, every hour, at least cost · Natural-gas Solar Power Solar Energy Solar Field Steam Turbine Generator #12;13 Concentrating Solar Power with Thermal Energy StorageSolar Energy Solar Field Storage Tank Steam Turbine Generator #12;14 Another

  7. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories on a new concentrated solar power (CSP) installation with thermal energy storage. The CSP storage project combines Areva's modular Compact Linear Fresnel...

  8. Sandia National Laboratories: CLFR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CLFR Sandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power, Energy, Energy Storage, Facilities,...

  9. Sandia National Laboratories: MSTL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MSTL Sandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power, Energy, Energy Storage, Facilities,...

  10. Sandia National Laboratories: SSLS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Test Facility NSTTF Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State Lighting SSLS Connect...

  11. Central receiver solar thermal power system, Phase 1: CDRL Item 2, pilot plant preliminary design report. Volume VII. Pilot plant cost and commercial plant cost and performance

    SciTech Connect (OSTI)

    Hallet, Jr., R. W.; Gervais, R. L.

    1980-05-01T23:59:59.000Z

    Detailed cost and performance data for the proposed tower focus pilot plant and commercial plant are given. The baseline central receiver concept defined by the MDAC team consists of the following features: (A) an external receiver mounted on a tower, and located in a 360/sup 0/ array of sun-tracking heliostats which comprise the collector subsystem. (B) feedwater from the electrical power generation subsystem is pumped through a riser to the receiver, where the feedwater is converted to superheated steam in a single pass through the tubes of the receiver panels. (C) The steam from the receiver is routed through a downcomer to the ground and introduced to a turbine directly for expansion and generation of electricity, and/or to a thermal storage subsystem, where the steam is condensed in charging heat exchangers to heat a dual-medium oil and rock thermal storage unit (TSU). (D) Extended operation after daylight hours is facilitated by discharging the TSU to generate steam for feeding the admission port of the turbine. (E) Overall control of the system is provided by a master control unit, which handles the interactions between subsystems that take place during startup, shutdown, and transitions between operating modes. (WHK)

  12. Dish Stirling High Performance Thermal Storage

    Broader source: Energy.gov (indexed) [DOE]

    National Laboratories Amir Faghri, University of Connecticut Judith Gomez, NREL National Solar Thermal Test Facility: World Class Capabilities at Your Service Testing 5MW...

  13. Sandia National Laboratories: solar thermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the United States Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States Conceptual Framework for Developing...

  14. $18.8 Million Award for Power Systems Engineering Research Center Continues Collaboration of 13 Universities and 35 Utilities for Electric Power Research, Building the Nation's Energy Workforce

    Broader source: Energy.gov [DOE]

    The Department of Energy awarded a cooperative agreement on January 16, 2009, to the Arizona State University (ASU) Board of Regents to operate the Power Systems Engineering Research Center (PSERC). PSERC is a collaboration of 13 universities with 35 electricity industry member organizations including utilities, transmission companies, vendors and research organizations.

  15. Time-resolved electron thermal conduction by probing of plasma formation in transparent solids with high power subpicosecond laser pulses

    SciTech Connect (OSTI)

    Vu, B.T.V.

    1994-02-01T23:59:59.000Z

    This dissertation work includes a series of experimental measurements in a search for better understanding of high temperature (10{sup 4}-10{sup 6}K) and high density plasmas (10{sup 22}-10{sup 24}cm{sup {minus}3}) produced by irradiating a transparent solid target with high intensity (10{sup 13} - 10{sup 15}W/cm{sup 2}) and subpicosecond (10{sup {minus}12}-10{sup {minus}13}s) laser pulses. Experimentally, pump and probe schemes with both frontside (vacuum-plasma side) and backside (plasma-bulk material side) probes are used to excite and interrogate or probe the plasma evolution, thereby providing useful insights into the plasma formation mechanisms. A series of different experiments has been carried out so as to characterize plasma parameters and the importance of various nonlinear processes. Experimental evidence shows that electron thermal conduction is supersonic in a time scale of the first picosecond after laser irradiation, so fast that it was often left unresolved in the past. The experimental results from frontside probing demonstrate that upon irradiation with a strong (pump) laser pulse, a thin high temperature ({approximately}40eV) super-critical density ({approximately}10{sup 23}/cm{sup 3}) plasma layer is quickly formed at the target surface which in turn becomes strongly reflective and prevents further transmission of the remainder of the laser pulse. In the bulk region behind the surface, it is also found that a large sub-critical ({approximately}10{sup 18}/cm{sup 3}) plasma is produced by inverse Bremsstrahlung absorption and collisional ionization. The bulk underdense plasma is evidenced by large absorption of the backside probe light. A simple and analytical model, modified from the avalanche model, for plasma evolution in transparent materials is proposed to explain the experimental results. Elimination of the bulk plasma is then experimentally illustrated by using targets overcoated with highly absorptive films.

  16. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

    E-Print Network [OSTI]

    Enabling Greater Penetration of Solar Power via the Use of CSP with Thermal Energy Storage Paul Denholm of CSP with Thermal Energy Storage Paul Denholm and Mark Mehos Prepared under Task No. SS10NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency

  17. NREL's Water Power Software Makes a Splash (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency Visit | National Nuclear13 Denver WestEnergy

  18. Solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L. (Livermore, CA)

    2007-09-18T23:59:59.000Z

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  19. DOE/EA-1519: Environmental Assessment for the Proposed Decontamination and Decommissioning of the Zero Power Reactors (Building 315) at Argonne National Laboratory (April 2005)

    SciTech Connect (OSTI)

    N /A

    2005-04-30T23:59:59.000Z

    The U.S. Department of Energy (DOE) is proposing to decontaminate and decommission the Zero Power Reactor (ZPR) facilities located in Building 315 at Argonne National Laboratory (ANL) in Argonne, Illinois (Figure 1-1). The proposed action would occur in two phases: ZPR-6 would be the focus of Phase I and ZPR-9 would be the focus of Phase II. DOE has prepared this environmental assessment (EA) in accordance with the National Environmental Policy Act (NEPA), 42 U.S.C. {section} 4321 et seq., and applicable regulations (Title 40, Code of Federal Regulations [CFR] Parts 1500-1508 and 10 CFR Part 1021). This section describes the reactors and their current status.

  20. Sandia National Laboratories: Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  1. Sandia National Laboratories: Jawaharlal Nehru Solar National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jawaharlal Nehru Solar National Solar Energy Mission Solar Energy Research Institute for India and the United States Kick-Off On November 27, 2012, in Concentrating Solar Power,...

  2. National Account Energy Alliance Final Report for the Ritz Carlton, San Francisco Combined Heat and Power Project

    SciTech Connect (OSTI)

    Rosfjord, Thomas J [UTC Power

    2007-11-01T23:59:59.000Z

    Under collaboration between DOE and the Gas Technology Institute (GTI), UTC Power partnered with Host Hotels and Resorts to install and operate a PureComfort 240M Cooling, Heating and Power (CHP) System at the Ritz-Carlton, San Francisco. This packaged CHP system integrated four microturbines, a double-effect absorption chiller, two fuel gas boosters, and the control hardware and software to ensure that the system operated predictably, reliably, and safely. The chiller, directly energized by the recycled hot exhaust from the microturbines, could be configured to provide either chilled or hot water. As installed, the system was capable of providing up to 227 kW of net electrical power and 142 RT of chilled water at a 59F ambient temperature.

  3. Power Electronics Symposium 2011 | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of expertise at the Center include: Advanced Power Electronics Electric Machines Thermal Control for Power Electronics Power Quality and Utility Interconnection The symposium will...

  4. Power Electonics & Electric Machinery | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Areas of expertise include advanced power electronics, electric machines, thermal control for power electronics, and power quality and utility interconnection. For more...

  5. Preliminary Thermal Modeling of Hi-Storm 100S-218 Version B Storage Modules at Hope Creek Nuclear Power Station ISFSI

    SciTech Connect (OSTI)

    Cuta, Judith M.; Adkins, Harold E.

    2013-08-30T23:59:59.000Z

    This report fulfills the M3 milestone M3FT-13PN0810022, “Report on Inspection 1”, under Work Package FT-13PN081002. Thermal analysis is being undertaken at Pacific Northwest National Laboratory (PNNL) in support of inspections of selected storage modules at various locations around the United States, as part of the Used Fuel Disposition Campaign of the U.S. Department of Energy, Office of Nuclear Energy (DOE-NE) Fuel Cycle Research and Development. This report documents pre-inspection predictions of temperatures for four modules at the Hope Creek Nuclear Generating Station ISFSI that have been identified as candidates for inspection in late summer or early fall/winter of 2013. These are HI-STORM 100S-218 Version B modules storing BWR 8x8 fuel in MPC-68 canisters. The temperature predictions reported in this document were obtained with detailed COBRA-SFS models of these four storage systems, with the following boundary conditions and assumptions.

  6. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Downscaling Solar Power

    E-Print Network [OSTI]

    and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Downscaling Solar Power Output to 4NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency-Seconds for Use in Integration Studies Marissa Hummon 3rd International Solar Power Integration Workshop

  7. EA-1616: National Carbon Research Center Project at Southern Company Services' Power Systems Development Facility near Wilsonville, Alabama

    Broader source: Energy.gov [DOE]

    This EA evaluates and updates the potential environmental impacts of DOE’s proposed continued operations of the NCCC Project at the PSDF plant. The NCCC is designed to test and evaluate carbon dioxide (CO2) control technologies for power generation facilities, including CO2 capture solvents and sorbents, mass-transfer devices, lower cost water-gas shift reactors, and scaled-up membrane technologies. Additionally, the NCCC evaluates methods to integrate CO2 capture technologies with other coal-based power plant systems by testing both pre-combustion and post-combustion technologies. The NCCC provides the capability to test these systems under a wide range of fuels, including bituminous and sub-bituminous coals, lignites and biomass/coal mixtures. The goal of the NCCC project is to accelerate the development, optimization, and commercialization of viable CO2 control technologies.

  8. Final report : impacts analysis for cyber attack on electric power systems (National SCADA Test Bed FY08).

    SciTech Connect (OSTI)

    Phillips, Laurence R.; Richardson, Bryan T.; Stamp, Jason Edwin; LaViolette, Randall A.

    2009-02-01T23:59:59.000Z

    To analyze the risks due to cyber attack against control systems used in the United States electrical infrastructure, new algorithms are needed to determine the possible impacts. This research is studying the Reliability Impact of Cyber ttack (RICA) in a two-pronged approach. First, malevolent cyber actions are analyzed in terms of reduced grid reliability. Second, power system impacts are investigated using an abstraction of the grid's dynamic model. This second year of esearch extends the work done during the first year.

  9. Final report : impacts analysis for cyber attack on electric power systems (national SCADA test bed FY09).

    SciTech Connect (OSTI)

    Stamp, Jason Edwin; LaViolette, Randall A.; Gardiner, Judith D. (Ohio State University, Columbus, OH)

    2009-09-01T23:59:59.000Z

    The development continues for Finite State Abstraction (FSA) methods to enable Impacts Analysis (IA) for cyber attack against power grid control systems. Building upon previous work, we successfully demonstrated the addition of Bounded Model Checking (BMC) to the FSA method, which constrains grid conditions to reasonable behavior. The new FSA feature was successfully implemented and tested. FSA is an important part of IA for the power grid, complementing steady-state approaches. It enables the simultaneous evaluation of myriad dynamic trajectories for the system, which in turn facilitates IA for whole ranges of system conditions simultaneously. Given the potentially wide range and subtle nature of potential control system attacks, this is a promising research approach. In this report, we will explain the addition of BMC to the previous FSA work and some testing/simulation upon the implemented code using a two-bus test system. The current FSA approach and code allow the calculation of the acceptability of power grid conditions post-cyber attack (over a given time horizon and for a specific grid topology). Future work will enable analysis spanning various topologies (to account for switching events), as well as an understanding of the cyber attack stimuli that can lead to undesirable grid conditions.

  10. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    E-Print Network [OSTI]

    Ho, Tony

    2012-01-01T23:59:59.000Z

    National Labs, "Solar Thermal Energy Research," in Sandiareclamation and solar thermal energy," Energy [accepted]. [and M Dennis, "Solar thermal energy systems in Australia,"

  11. Importance of thermal effects and sea surface roughness for offshore wind resource assessment

    E-Print Network [OSTI]

    Heinemann, Detlev

    sites. The first large offshore wind farms are currently being built in several countries in EuropeImportance of thermal effects and sea surface roughness for offshore wind resource assessment National Laboratory, Roskilde, Denmark Abstract The economic feasibility of offshore wind power utilisation

  12. Lab Tests Demonstrate Effectiveness of Advanced Power Strips (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS Experimental RunProcedureofUW MadisonNREL

  13. Advanced Condenser Boosts Geothermal Power Plant Output (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP Related LinksATHENAAdministrative80-AA Geothermal resources-the

  14. Water Power for a Clean Energy Future (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    Water power technologies harness energy from rivers and oceans to generate electricity for the nation's homes and businesses, and can help the United States meet its pressing energy, environmental, and economic challenges. Water power technologies; fall into two broad categories: conventional hydropower and marine and hydrokinetic technologies. Conventional hydropower uses dams or impoundments to store river water in a reservoir. Marine and hydrokinetic technologies capture energy from waves, tides, ocean currents, free-flowing rivers, streams, and ocean thermal gradients.

  15. Smart Grid | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers from Argonne National Laboratory modeled several scenarios to add more solar power to the electric grid, using real-world data from the southwestern power...

  16. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    E-Print Network [OSTI]

    Coso, Dusan

    2013-01-01T23:59:59.000Z

    S. a. , 2004, “Solar Thermal Collectors and Applications,”86] Schnatbaum L. , 2009, “Solar Thermal Power Plants,” Thefor Storage of Solar Thermal Energy,” Solar Energy, 18 (3),

  17. COMMERCIAL FISHERY DATA FROM A PROPOSED OCEAN THERMAL ENERGY CONVERSION (OTEC) SITE IN PUERTO RICO

    E-Print Network [OSTI]

    Ryan, Constance J.

    2013-01-01T23:59:59.000Z

    proposed Ocean Thermal Energy Conversion (OTEC) sites toassessment: ocean thermal energy conversion (OTEC) program;operation of Ocean Thermal Energy Conversion (OTEC) power

  18. COMMERCIAL FISHERY DATA FROM A PROPOSED OCEAN THERMAL ENERGY CONVERSION (OTEC) SITE IN PUERTO RICO

    E-Print Network [OSTI]

    Ryan, Constance J.

    2013-01-01T23:59:59.000Z

    assessment: ocean thermal energy conversion (OTEC) program;proposed Ocean Thermal Energy Conversion (OTEC) sites tooperation of Ocean Thermal Energy Conversion (OTEC) power

  19. Carbon Foam Thermal Management Materials for Electronic Packaging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Foam Thermal Management Materials for Electronic Packaging David P. Stinton Oak Ridge National Laboratory Project Team: Nidia C. Gallego, ORNL Brian Thompson, ThermalCentric...

  20. Solar Power in the Desert: Are the current large-scale solar developments really improving California’s environment?

    E-Print Network [OSTI]

    Allen, Michael F.; McHughen, Alan

    2011-01-01T23:59:59.000Z

    habitat loss from solar and thermal power expansions (Photovoltaic vs Solar Thermal. In: Planetary Stewardship.of the vegetation for thermal solar power units. The net C

  1. Green Power Purchasing

    Broader source: Energy.gov [DOE]

    Eligible resources include tidal and wave power, fuel cells using renewable fuels, hydropower facilities less than 60 megawatts (MW), solar thermal-electric systems, photovoltaics (PV), wind,...

  2. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Facilities, National Solar Thermal Test Facility, News, Partnership, Renewable Energy, Solar, Videos This test is part of a series in support of NASA's In-Space...

  3. Sandia National Laboratories: heliostat innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events, Partnership, Renewable Energy, Solar, Solar Newsletter SolarReserve is testing engineering units at the National Solar Thermal Test Facility (NSTTF) operated by Sandia....

  4. Proceedings of the international meeting on thermal nuclear reactor safety. Vol. 1

    SciTech Connect (OSTI)

    none,

    1983-02-01T23:59:59.000Z

    Separate abstracts are included for each of the papers presented concerning current issues in nuclear power plant safety; national programs in nuclear power plant safety; radiological source terms; probabilistic risk assessment methods and techniques; non LOCA and small-break-LOCA transients; safety goals; pressurized thermal shocks; applications of reliability and risk methods to probabilistic risk assessment; human factors and man-machine interface; and data bases and special applications.

  5. Composable Thermal Modeling and Simulation for Architecture-Level Thermal Designs of Multi-core Microprocessors

    E-Print Network [OSTI]

    Tan, Sheldon X.-D.

    1 Composable Thermal Modeling and Simulation for Architecture-Level Thermal Designs of Multi and Technology of China Efficient temperature estimation is vital for designing thermally efficient, lower power and robust integrated circuits in nanometer regime. Thermal simulation based on the detailed thermal

  6. Westinghouse thermal barrier coatings development

    SciTech Connect (OSTI)

    Goedjen, J.G.; Wagner, G. [Westinghouse Electric Corp., Orlando, FL (United States)

    1995-10-01T23:59:59.000Z

    Westinghouse, in conjunction with the Department of Energy and Oak Ridge National Laboratory, has embarked upon a program for the development of advanced thermal barrier coatings for industrial gas turbines. Development of thermal barrier coatings (TBC`s) for industrial gas turbines has relied heavily on the transfer of technology from the aerospace industry. Significant differences in the time/temperature/stress duty cycles exist between these two coating applications. Coating systems which perform well in aerospace applications may not been optimized to meet power generation performance requirements. This program will focus on development of TBC`s to meet the specific needs of power generation applications. The program is directed at developing a state-of-the-art coating system with a minimum coating life of 25,000 hours at service temperatures required to meet increasing operating efficiency goals. Westinghouse has assembled a team of university and industry leaders to accomplish this goal. Westinghouse will coordinate the efforts of all program participants. Chromalloy Turbine Technologies, Inc. and Sermatech International, Inc. will be responsible for bond coat and TBC deposition technology. Praxair Specialty Powders, Inc. will be responsible for the fabrication of all bond coat and ceramic powders for the program. Southwest Research Institute will head the life prediction modelling effort; they will also be involved in coordinating nondestructive evaluation (NDE) efforts. Process modelling will be provided by the University of Arizona.

  7. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 Inverter Reliability Workshop On May 31, 2013, in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project...

  8. Sandia National Laboratories: SPI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference, the Department of Energy (DOE), the Electric Power Research Instisute (EPRI), Sandia National Laboratories, ... Last Updated: September 10, 2012 Go To Top ...

  9. Sandia National Laboratories: IRED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid, Solar Sandia National Laboratories, the Electric Power Research Institute (EPRI) and European Distributed Energies Research Laboratories (DERlab) have organized a...

  10. Economics of Ocean Thermal Energy Conversion (OTEC): Luis A. Vega Ph.D., National Marine Renewable Energy Center at the University of Hawai'i

    E-Print Network [OSTI]

    OTC 21016 Economics of Ocean Thermal Energy Conversion (OTEC): An Update Luis A. Vega Ph and we will face a steadily diminishing petroleum supply. This situation justifies re-evaluating OTEC should begin to implement the first generation of OTEC plantships providing electricity, via submarine

  11. Artificial Retina Project: Electromagnetic and Thermal Effects

    SciTech Connect (OSTI)

    Lazzi, Gianluca

    2014-08-29T23:59:59.000Z

    This award supported the investigation on electromagnetic and thermal effects associated with the artificial retina, designed in collaboration with national laboratories, universities, and private companies. Our work over the two years of support under this award has focused mainly on 1) Design of new telemetry coils for optimal power and data transfer between the implant and the external device while achieving a significant size reduction with respect to currently used coils; 2) feasibility study of the virtual electrode configuration 3) study the effect of pulse shape and duration on the stimulation efficacy.

  12. Green Power Purchase Plan

    Broader source: Energy.gov [DOE]

    Class I renewable energy resources include solar, wind, new sustainable biomass, landfill gas, fuel cells (using renewable or non-renewable fuels), ocean thermal power, wave or tidal power, low...

  13. acceptable thermal conditions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transformer Top-Oil Thermal Models: Pt. 2: Comparing Metrics Power Transmission, Distribution and Plants Websites Summary: transformer top-oil thermal models are examined vis-...

  14. Hanford Site radionuclide national emission standards for hazardous ari pollutants registered and and unregistered stack (powered exhaust) source assessment

    SciTech Connect (OSTI)

    Davis, W.E.

    1995-12-01T23:59:59.000Z

    On February 3, 1993, US DOE Richland Operations Office received a Compliance Order and Information Request from the Director of the Air and Toxics Div. of US EPA, Region X. The compliance order requires the Richland Operations Office to evaluate all radionuclide emission points at the Hanford site to determine which are subject to the continuous emission measurement requirements in Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, and to continuously measure radionuclide emissions in accordance with 40 CFR 61.93. The Information Request required The provision of a written compliance plan to meet the requirements of the compliance order. A compliance plan was submitted to EPA, Region X, on April 30, 1993. It set as one of the milestones, the complete assessment of the Hanford Site 84 stacks registered with the Washington State Department of Health, by December 17, 1993. This milestone was accomplished. The compliance plan also called for reaching a Federal Facility Compliance Agreement; this was reached on February 7, 1994, between DOE Richland Operations and EPA, Region X. The milestone to assess the unregistered stacks (powered exhaust) by August 31, 1994, was met. This update presents assessments for 72 registered and 22 unregistered stacks with potential emissions > 0.1 mrem/yr.

  15. Sandia National Laboratories: Unconventional Lasing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Test Facility NSTTF Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State Lighting SSLS Connect...

  16. Evaluation of the Heating & Cooling Energy Demand of a Case Residential Building by Comparing The National Calculation Methodology of Turkey and EnergyPlus through Thermal Capacity Calculations

    E-Print Network [OSTI]

    Atamaca, Merve; Kalaycioglu, Ece; Yilmaz, Zerrin

    2011-10-01T23:59:59.000Z

    usage and energy performance in buildings was published by European Union. In this scope, Turkey has developed a National Building Energy Performance Calculation Methodology, BepTr, which is based on simple hourly method in ISO EN 13790 Umbrella Document...

  17. Environmental externalities: An ASEAN application to coal-based power generation. [Association of South East Asian Nations (ASEAN)

    SciTech Connect (OSTI)

    Szpunar, C.B.; Gillette, J.L.

    1992-06-01T23:59:59.000Z

    Significant benefits to human health that result from emissions control programs may justify the costs of pollution control policies. Many scientists, economists, risk analysts, and policymakers believe that comparisons of the benefits with the costs of pollution control demonstrate that the US stationary source, air emissions control program is justified. This justification is based upon pronounced benefits to human health, especially from controlling suspended particulates and sulfur compounds. Market decisions are usually made on the basis of a consideration of traditional costs such as capital, operating and maintenance, fuel costs, and fixed charges. Social costs, which could be significant, are not incorporated explicitly into such decisions. These social costs could result in a net reduction in the welfare of individuals, and of society as a whole. Because these social costs and their effects are not represented in the price of energy, individual have no way to explicitly value them; hence, they remain unaccounted for in market decisions. By accounting for external costs, the selection of energy sources and production of energy products can lead to and equilibrium, where the total cost of energy and energy products, together with resulting social costs, can be brought to an economic minimum. The concept of an air emissions control program is of interest to the ASEAN countries (Brunei, Indonesia, Malaysia, the Philippines, Singapore, and Thailand) and their governments, especially if such a program could be justified in cost-benefit terms and shown to be directly applicable to ASEAN conditions. It is the intent of the effort described herein to demonstrate that technical options are available to control emissions from coal-based, electric power plants and that that costs of these options may be justified in cost-benefit terms.

  18. HRB-22 preirradiation thermal analysis

    SciTech Connect (OSTI)

    Acharya, R.; Sawa, K.

    1995-05-01T23:59:59.000Z

    This report describes the preirradiation thermal analysis of the HRB-22 capsule designed for irradiation in the removable beryllium (RB) position of the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). CACA-2 a heavy isotope and fission product concentration calculational code for experimental irradiation capsules was used to determine time dependent fission power for the fuel compacts. The Heat Engineering and Transfer in Nine Geometries (HEATING) computer code, version 7.2, was used to solve the steady-state heat conduction problem. The diameters of the graphite fuel body that contains the compacts and the primary pressure vessel were selected such that the requirements of running the compacts at an average temperature of < 1,250 C and not exceeding a maximum fuel temperature of 1,350 C was met throughout the four cycles of irradiation.

  19. Prepping Power Engineers for the Smart Grid

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration and Washington State University have designed a special program that’s preparing the power workforce for the nation’s smarter energy future.

  20. Energy for the future with Ris from nuclear power to sustainable energy Ris NatioNal laboRatoRy foR sustaiNable eNeRgy

    E-Print Network [OSTI]

    Energy for the future ­ with Risű from nuclear power to sustainable energy Risű NatioNal laboRatoRy foR sustaiNable eNeRgy edited by MoRteN JastRup #12;Energy for the future #12;Energy for the future ­ with Risű from nuclear power to sustainable energy Translated from 'Energi til fremtiden ­ med Risű fra