Powered by Deep Web Technologies
Note: This page contains sample records for the topic "national solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Sandia National Laboratories: solar thermal storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia Workers Received Entrepreneurial Spirit Awards On April 3, 2013, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

2

Sandia National Laboratories: solar thermal energy storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

thermal energy storage Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities,...

3

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Power Technical Management Position On July 12, 2012, in Concentrating Solar Power, Energy, Facilities, Job Listing, National Solar Thermal Test Facility, News,...

4

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Visit to NSTTF On September 10, 2012, in Concentrating Solar Power, EC, National Solar Thermal Test Facility, Renewable Energy Dr. David Danielson visited Sandia National...

5

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

6

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test Facility Air Force Research Laboratory Testing On August 17, 2012, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, Renewable...

7

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia Wins Three R&D100 Awards On July 24, 2013, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News & Events, Photovoltaic,...

8

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

9

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Sandia Capabilities to Support Power Industry On January 8, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

10

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ECISEnergyRenewable EnergySolar EnergyConcentrating Solar Power ECISEnergyRenewable EnergySolar EnergyConcentrating Solar Power (CSP)National Solar Thermal Test Facility National Solar Thermal Test Facility NSTTF Interactive Tour National Solar Thermal Test Facility (NSTTF) Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility of this type in the United States. The NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants planned for large-scale power generation. In addition, the site was built and instrumented to provide test facilities for a variety of solar and nonsolar applications. The facility can provide

11

Project Profile: National Solar Thermal Test Facility  

Broader source: Energy.gov [DOE]

The first solar receivers ever tested in the world were tested at the National Solar Thermal Test Facility (NSTTF). The receivers were each rated up to 5 megawatts thermal (MWt). Receivers with various working fluids have been tested here over the years, including air, water-steam, molten salt, liquid sodium, and solid particles. The NSTTF has also been used for a large variety of other tests, including materials tests, simulation of thermal nuclear pulses and aerodynamic heating, and ablator testing for NASA.

12

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test Facility (NSTTF) Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

13

Sandia National Laboratories: solar thermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

14

Sandia National Laboratories: National Solar Thermal Testing...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Beam Profiling On November 2, 2012, in Concentrating Solar Power, News, Renewable Energy, Solar On Thursday, June 7, we began beam profiling the NSTTF field heliostat beam....

15

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

16

Thermal effects testing at the National Solar Thermal Test Facility  

SciTech Connect (OSTI)

The National Solar Thermal Test Facility is operated by Sandia National Laboratories and located on Kirkland Air Force Base in Albuquerque, New Mexico. The permanent features of the facility include a heliostat field and associated receiver tower, two solar furnaces, two point-focus parabolic concentrators, and Engine Test Facility. The heliostat field contains 220 computer-controlled mirrors, which reflect concentrated solar energy to test stations on a 61-m tower. The field produces a peak flux density of 250 W/cm{sup 2} that is uniform over a 15-cm diameter with a total beam power of over 5 MW{sub t}. The solar beam has been used to simulate aerodynamic heating for several customers. Thermal nuclear blasts have also been simulated using a high-speed shutter in combination with heliostat control. The shutter can accommodate samples up to 1 m {times} 1 m and it has been used by several US and Canadian agencies. A glass-windowed wind tunnel is also available in the Solar Tower. It provides simultaneous exposure to the thermal flux and air flow. Each solar furnace at the facility includes a heliostat, an attenuator, and a parabolic concentrator. One solar furnace produces flux levels of 270 W/cm{sup 2} over and delivers a 6-mm diameter and total power of 16 kW{sub t}. A second furnace produces flux levels up to 1000 W/cm{sup 2} over a 4 cm diameter and total power of 60 kW{sub t}. Both furnaces include shutters and attenuators that can provide square or shaped pulses. The two 11 m diameter tracking parabolic point-focusing concentrators at the facility can each produce peak flux levels of 1500 W/cm{sup 2} over a 2.5 cm diameter and total power of 75 kW{sub t}. High-speed shutters have been used to produce square pulses.

Ralph, M.E.; Cameron, C.P. [Sandia National Labs., Albuquerque, NM (United States); Ghanbari, C.M. [Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States)

1992-12-31T23:59:59.000Z

17

Thermal effects testing at the National Solar Thermal Test Facility  

SciTech Connect (OSTI)

The National Solar Thermal Test Facility is operated by Sandia National Laboratories and located on Kirkland Air Force Base in Albuquerque, New Mexico. The permanent features of the facility include a heliostat field and associated receiver tower, two solar furnaces, two point-focus parabolic concentrators, and Engine Test Facility. The heliostat field contains 220 computer-controlled mirrors, which reflect concentrated solar energy to test stations on a 61-m tower. The field produces a peak flux density of 250 W/cm[sup 2] that is uniform over a 15-cm diameter with a total beam power of over 5 MW[sub t]. The solar beam has been used to simulate aerodynamic heating for several customers. Thermal nuclear blasts have also been simulated using a high-speed shutter in combination with heliostat control. The shutter can accommodate samples up to 1 m [times] 1 m and it has been used by several US and Canadian agencies. A glass-windowed wind tunnel is also available in the Solar Tower. It provides simultaneous exposure to the thermal flux and air flow. Each solar furnace at the facility includes a heliostat, an attenuator, and a parabolic concentrator. One solar furnace produces flux levels of 270 W/cm[sup 2] over and delivers a 6-mm diameter and total power of 16 kW[sub t]. A second furnace produces flux levels up to 1000 W/cm[sup 2] over a 4 cm diameter and total power of 60 kW[sub t]. Both furnaces include shutters and attenuators that can provide square or shaped pulses. The two 11 m diameter tracking parabolic point-focusing concentrators at the facility can each produce peak flux levels of 1500 W/cm[sup 2] over a 2.5 cm diameter and total power of 75 kW[sub t]. High-speed shutters have been used to produce square pulses.

Ralph, M.E.; Cameron, C.P. (Sandia National Labs., Albuquerque, NM (United States)); Ghanbari, C.M. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States))

1992-01-01T23:59:59.000Z

18

Sandia National Laboratories: Sandia-AREVA Commission Solar Thermal...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECResearch & CapabilitiesCapabilitiesSandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration Sandia-AREVA Commission Solar ThermalMolten Salt...

19

Sandia National Laboratories: solar thermal electric technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

20

Sandia National Laboratories: National Solar Thermal Test Facility...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plant Reliability Workshop Sandia Wind Energy in the News Wind & Water Power Newsletter Solar Energy Solar Newsletter Photovoltaics Advanced Research & Development Microsystems...

Note: This page contains sample records for the topic "national solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Salt Initial Flow Testing is a Tremendous Success On November 2, 2012, in Concentrating Solar Power, News, Renewable Energy, Solar The Molten Salt Test Loop (MSTL ) system at...

22

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and systems ... Solar Furnace On November 10, 2010, in A solar furnace uses a heliostat that tracks the sun to direct sunlight onto a mirrored parabolic dish. Because the...

23

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

24

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CSP Images & Videos On September 26, 2012, in Image Gallery Videos Concentrating Solar Power Image Gallery A picture says a thousand words, especially on the World Wide Web. Both...

25

Sandia National Laboratories: Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

26

Sandia National Laboratories: solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

27

Passive Solar Building Design and Solar Thermal Space Heating...  

Broader source: Energy.gov (indexed) [DOE]

Passive Solar Building Design and Solar Thermal Space Heating Webinar Passive Solar Building Design and Solar Thermal Space Heating Webinar Watch a recording of National Renewable...

28

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Air Force Research Laboratory Testing On August 17, 2012, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, Renewable Energy, Solar...

29

Sandia National Laboratories: Solar Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

30

Sandia National Laboratories: Solar Tower  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power, EC, Energy, National Solar Thermal Test Facility, News, Partnership, Renewable Energy, Solar On June 26 and 27, a series of exposures were made to multiple Boeing test...

31

Sandia National Laboratories: Solar Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Pratt Whitney Rocketdyne Testing On December 19, 2012, in Concentrating Solar Power, EC, Energy, Facilities, National Solar Thermal Test Facility, News, News & Events,...

32

Sandia National Laboratories: Solar Two  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia Workers Received Entrepreneurial Spirit Awards On April 3, 2013, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

33

Sandia National Laboratories: multiscale concentrated solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

concentrated solar power Solar Energy Research Institute for India and the United States Kick-Off On November 27, 2012, in Concentrating Solar Power, Energy, National Solar Thermal...

34

Sandia National Laboratories: solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

35

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

36

Sandia National Laboratories: Solar Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

37

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Power Technical Management Position On July 12, 2012, in Concentrating Solar Power, Energy, Facilities, Job Listing, National Solar Thermal Test Facility, News,...

38

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NASA's Solar Tower Test of the 1-Meter Aeroshell On August 23, 2012, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, Partnership,...

39

Solar Keymark Testing of Solar Thermal Products  

Science Journals Connector (OSTI)

The Solar Keymark is the official CEN certification scheme for thermal solar collectors and factory made thermal solar systems. The Solar Keymark requires that the products fulfil the...

Harald Drück; Stephan Fischer…

2009-01-01T23:59:59.000Z

40

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

Note: This page contains sample records for the topic "national solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Sandia National Laboratories: Solar Receiver Shroud  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Receiver Shroud Pratt Whitney Rocketdyne Testing On December 19, 2012, in Concentrating Solar Power, EC, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

42

Sandia National Laboratories: Solar Regional Test Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

43

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia Workers Received Entrepreneurial Spirit Awards On April 3, 2013, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

44

Sandia National Laboratories: innovative solar technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

45

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety and Health Go Green Initiative On December 19, 2012, in Concentrating Solar Power, Energy, Events, Facilities, National Solar Thermal Test Facility, News, News...

46

Sandia National Laboratories: Concentrating Solar Power Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Power Systems Air Force Research Laboratory Testing On November 2, 2012, in Concentrating Solar Power, Facilities, National Solar Thermal Test Facility, News, News & Events,...

47

Sandia National Laboratories: solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Thermal Testing Facility Beam Profiling On November 2, 2012, in Concentrating Solar Power, News, Renewable Energy, Solar On Thursday, June 7, we began beam profiling...

48

Solar Thermal Processes  

Science Journals Connector (OSTI)

The use of solar energy for desalination purposes was one of ... The process is based on the use of solar thermal energy to evaporate water, thus separating pure ... brine. In this chapter an overview of solar thermal

M.T. Chaibi; Ali M. El-Nashar

2009-01-01T23:59:59.000Z

49

Sandia National Laboratories: solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

50

National Laboratory Concentrating Solar Power Research and Development...  

Broader source: Energy.gov (indexed) [DOE]

& Publications National Laboratory Concentrating Solar Power Research and Development Particle Receiver Integrated with Fludized Bed Scattering Solar Thermal Concentrators...

51

Sandia National Laboratories: Solar Tower  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Thermal Test Facility * NSTTF * Renewable Energy * SAND2012-8086W * solar * Solar Energy * solar power * Solar Research * Solar Tower Comments are closed. Renewable...

52

Sandia National Laboratories: reducing start-up risks for solar...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

start-up risks for solar thermal generation Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy...

53

Sandia National Laboratories: Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

54

Sandia National Laboratories: Jawaharlal Nehru Solar National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jawaharlal Nehru Solar National Solar Energy Mission Solar Energy Research Institute for India and the United States Kick-Off On November 27, 2012, in Concentrating Solar Power,...

55

Solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2007-09-18T23:59:59.000Z

56

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

3 Q1 High-Temperature Thermal Array for Next Generation Solar Thermal Power Production - FY13 Q1 This document summarizes the progress of this Los Alamos National Laboratory...

57

Sandia National Laboratories: Solar Regional Test Center in Vermont...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

58

Sandia National Laboratories: NASA's Solar Tower Test of the...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* National Solar Thermal Test Facility * NSTTF * Partnership * Renewable Energy * Solar Energy Comments are closed. Last Updated: September 29, 2014 Go To Top Exceptional...

59

Scattering Solar Thermal Concentrators  

Broader source: Energy.gov [DOE]

"This fact sheet describes a scattering solar thermal concentrators project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pennsylvania State University, is working to demonstrate a new, scattering-based approach to concentrating sunlight that aims to improve the overall performance and reliability of the collector field. The research team aims to show that scattering solar thermal collectors are capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but with the added benefits of immunity to wind-load tracking error, more efficient land use, and utilization of stationary receivers."

60

Sandia National Laboratories: Areva Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

Note: This page contains sample records for the topic "national solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Sandia National Laboratories: solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

62

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

63

SunShot Initiative: National Laboratory Concentrating Solar Power Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Laboratory Concentrating National Laboratory Concentrating Solar Power Research to someone by E-mail Share SunShot Initiative: National Laboratory Concentrating Solar Power Research on Facebook Tweet about SunShot Initiative: National Laboratory Concentrating Solar Power Research on Twitter Bookmark SunShot Initiative: National Laboratory Concentrating Solar Power Research on Google Bookmark SunShot Initiative: National Laboratory Concentrating Solar Power Research on Delicious Rank SunShot Initiative: National Laboratory Concentrating Solar Power Research on Digg Find More places to share SunShot Initiative: National Laboratory Concentrating Solar Power Research on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage

64

Solar energy: Radiation nation  

Science Journals Connector (OSTI)

... Australia receives more solar radiation per square metre, on average, than any other continent. Although turning this ... to make use of its heat. We spoke to Australian proponents of two very different solar-thermal systems, both rather confusingly known as ...

Carina Dennis

2006-09-06T23:59:59.000Z

65

Solar Thermal Reactor Materials Characterization  

SciTech Connect (OSTI)

Current research into hydrogen production through high temperature metal oxide water splitting cycles has created a need for robust high temperature materials. Such cycles are further enhanced by the use of concentrated solar energy as a power source. However, samples subjected to concentrated solar radiation exhibited lifetimes much shorter than expected. Characterization of the power and flux distributions representative of the High Flux Solar Furnace(HFSF) at the National Renewable Energy Laboratory(NREL) were compared to ray trace modeling of the facility. In addition, samples of candidate reactor materials were thermally cycled at the HFSF and tensile failure testing was performed to quantify material degradation. Thermal cycling tests have been completed on super alloy Haynes 214 samples and results indicate that maximum temperature plays a significant role in reduction of strength. The number of cycles was too small to establish long term failure trends for this material due to the high ductility of the material.

Lichty, P. R.; Scott, A. M.; Perkins, C. M.; Bingham, C.; Weimer, A. W.

2008-03-01T23:59:59.000Z

66

Unique Solar Thermal Laboratory Gets an Upgrade | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Unique Solar Thermal Laboratory Gets an Upgrade Unique Solar Thermal Laboratory Gets an Upgrade Unique Solar Thermal Laboratory Gets an Upgrade September 10, 2010 - 2:54pm Addthis This “power tower” is part of the National Solar Thermal Test Facility in Albuquerque, which is getting upgrades through Recovery Act funding. | Photo Courtesy of Sandia National Laboratories This "power tower" is part of the National Solar Thermal Test Facility in Albuquerque, which is getting upgrades through Recovery Act funding. | Photo Courtesy of Sandia National Laboratories Lorelei Laird Writer, Energy Empowers The National Solar Thermal Test Facility at Sandia National Laboratories is unique - and in demand. The Facility has been instrumental in NASA tests, national defense programs and concentrated solar technology development.

67

Sandia National Laboratories: Solar Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergySolar EnergySolar Newsletter Solar Newsletter T Receive Updates Go Govbubble20px.png?3.21 Sandia National Laboratory - Energy & Climate banner image Sandia National...

68

Thermal Storage of Solar Energy  

Science Journals Connector (OSTI)

Thermal storage is needed to improve the efficiency and usefulness of solar thermal systems. The paper indicates the main storage ... which would greatly increase the practical use of solar energy — is more diffi...

H. Tabor

1984-01-01T23:59:59.000Z

69

Thermal Solar Power Plants Experience  

Science Journals Connector (OSTI)

In parallel with rising interest in solar power generation, several solar thermal facilities of different configuration and size were ... were designed as modest-size experimental or prototype solar power plants ...

W. Grasse; H. P. Hertlein; C.-J. Winter; G. W. Braun

1991-01-01T23:59:59.000Z

70

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a Tremendous Success On November 2, 2012, in Concentrating Solar Power, News, Renewable Energy, Solar The Molten Salt Test Loop (MSTL ) system at Sandia National Laboratories'...

71

Sandia National Laboratories: Solar Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnership, Photovoltaic, Photovoltaic Regional Testing Center (PV RTC), Renewable Energy, Solar, Solar Newsletter, SunShot HelioVolt, Sandia National Laboratories, the...

72

SunShot Initiative: Low-Cost Solar Thermal Collector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Low-Cost Solar Thermal Collector Low-Cost Solar Thermal Collector to someone by E-mail Share SunShot Initiative: Low-Cost Solar Thermal Collector on Facebook Tweet about SunShot Initiative: Low-Cost Solar Thermal Collector on Twitter Bookmark SunShot Initiative: Low-Cost Solar Thermal Collector on Google Bookmark SunShot Initiative: Low-Cost Solar Thermal Collector on Delicious Rank SunShot Initiative: Low-Cost Solar Thermal Collector on Digg Find More places to share SunShot Initiative: Low-Cost Solar Thermal Collector on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment National Laboratory Research & Development

73

Sandia National Laboratories: photovoltaic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure Infrastructure Security National Solar Thermal Test Facility NSTTF photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar...

74

Status of Solar Thermal Conversion in China  

Science Journals Connector (OSTI)

China has an abundant solar energy resource. Solar thermal conversion systems have been studied for more than 25 years and solar thermal industry has been developing since 1990’s....2 solar collectors were sold a...

Yin Zhiqiang

2009-01-01T23:59:59.000Z

75

Sandia National Laboratories: solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heat can also be efficiently and cheaply stored to produce electricity when the sun ... Solar Energy On February 3, 2011, in Solar Programs Photovoltaics Concentrating Solar...

76

Sandia National Laboratories: Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Download On March 13, 2014, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar, Solar Newsletter Sandia developed the Solar Glare Hazard Analysis Tool...

77

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molten Salt Test Loop Melted Salt On October 10, 2012, in Concentrating Solar Power, Energy, News, Renewable Energy, Solar The Molten Salt Test Loop (MSTL) team at Sandia National...

78

Solar Thermal Process Heat | Open Energy Information  

Open Energy Info (EERE)

Solar Thermal Process Heat Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarThermalProcessHeat&oldid267198" Category: Articles with outstanding TODO tasks...

79

Laser Texturing for Solar Thermal Systems  

Science Journals Connector (OSTI)

High solar absorptance and low thermal emittance is desired for absorber surface in solar thermal systems. Molybdenum surface was textured by pulsed fiber laser and...

Shah, Ankit; Gupta, Mool

80

Sandia National Laboratories: Solar Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

at Sandia National Laboratories is a critical part of the U.S. Department of Energy's Solar Energy Technologies Program (SETP) technology pipeline. The lab supports SETP's...

Note: This page contains sample records for the topic "national solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK  

E-Print Network [OSTI]

CALIFORNIA SOLAR INITIATIVE-THERMAL PROGRAMHANDBOOK CALIFORNIA PUBLIC UTILITIES California Solar Initiative Thermal Program Handbook i 1. Introduction to CSI-Thermal Program ..........................................................................3 2.1 Participants in the CSI-Thermal Program

82

solar thermal | OpenEI  

Open Energy Info (EERE)

thermal thermal Dataset Summary Description This dataset presents summary information related to world solar energy. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R. Source Earth Policy Institute Date Released January 12th, 2011 (3 years ago) Date Updated Unknown Keywords EU solar solar PV solar thermal world Data application/vnd.ms-excel icon Excel spreadsheet, summary solar energy data on multiple tabs (xls, 145.9 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Attribution License Comment "Reuse of our data is permitted. We merely ask that wherever it is listed, it be appropriately cited"

83

Impact of Ageing on Thermal Efficiency of Solar Thermal Collectors  

Science Journals Connector (OSTI)

Today it is common practice to calculate the performance of solar thermal systems or solar collectors based on the results of a thermal performance test carried out with a new solar collector. However, for an int...

Elke Streicher; Stephan Fischer…

2009-01-01T23:59:59.000Z

84

Scattering Solar Thermal Concentrators  

Broader source: Energy.gov (indexed) [DOE]

is a rendering of a scattering solar concentrator. Light collected by a cylindrical Fresnel lens is focused within a curved glass "guide" sheet, where it is redirected into...

85

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

86

Sandia National Laboratories: solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

mission of the U.S. Department of Energy's SunShot Initiative to decrease total cost of solar energy systems by 75% by 2020 and make solar energy cost-competitive with ......

87

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

ENERGY STORAGE FOR CONCENTRATING SOLAR POWER PLANTS,”Thermal Energy Storage in Concentrated Solar Thermal PowerThermal Energy Storage in Concentrated Solar Thermal Power

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

88

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermalfor Thermal Energy Storage in Concentrated Solar Thermal

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

89

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

and Background Solar thermal energy collection is anCHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLAR POWERfor Thermal Energy Storage in Concentrated Solar Thermal

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

90

Sandia National Laboratories: Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Event On December 4, 2014, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar During the TEDxABQ event, Sandia's Vipin Gupta (in the Material, Devices,...

91

Sandia National Laboratories: Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mesa del Sol, Microgrid, News, News & Events, Partnership, Photovoltaic, Renewable Energy, SMART Grid, Solar, Systems Analysis, Systems Engineering The Mesa del Sol...

92

Sandia National Laboratories: Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandian Selected for Outstanding Young Engineer Award On June 4, 2014, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar The Albuquerque Section of the...

93

Sandia National Laboratories: solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Renewable Energy On November 10, 2010, in Renewable Energy Wind Solar Water Geothermal Biomass Renewable Energy Events Renewable News Renewable Energy Renewable energy comes from...

94

Sandia National Laboratories: solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Innovation Magazine On October 31, 2011, in Energy, News, Photovoltaic, Renewable Energy, Solar Sandia researcher Greg Nielson, team leader on the Microsystems-Enabled...

95

Sandia National Laboratories: solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

96

Sandia National Laboratories: solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

solar Sandia Has Signed a Memorandum of Understanding with Case Western Reserve University On January 28, 2014, in Computational Modeling & Simulation, Energy, Energy Storage,...

97

Sandia National Laboratories: solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

testing of parabolic concentrators. When a parabolic concentrator (or any other solar collecting device) is equipped with an elevation tracker and mounted on the rotating...

98

Sandia National Laboratories: solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utility Operations and Programs On April 4, 2012, in Utilities need to understand how solar generating technologies will behave on their systems (transmission and distribution)...

99

Sandia National Laboratories: solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

solar PV Arc-Fault and Ground Fault Detection and Mitigation Program On April 4, 2012, in Background Program Goals IndustryCollaboration FutureCollaborations Publications Contacts...

100

Sandia National Laboratories: solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6, 2012, in Desirable Features of Power Towers for Utilities Because of their practical energy storage, solar power towers have two features that are particularly desirable for...

Note: This page contains sample records for the topic "national solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NREL: Climate Neutral Research Campuses - Solar Thermal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cooling system in 2006. Back to Top Technology Basics The following resources explain the fundamentals of solar thermal technologies: NREL Solar Energy Basics: Descriptive overview...

102

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT Thomas F.CENTRAL RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE progressCorporation, RECEIVER SOLAR THERMAL POWER SYSTEM, PHASE I,

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

103

Solar Thermal Energy Storage  

Science Journals Connector (OSTI)

Various types of thermal energy storage systems are introduced and their importance and desired characteristics are outlined. Sensible heat storage, which is one of the most commonly used storage systems in pract...

E. Paykoç; S. Kakaç

1987-01-01T23:59:59.000Z

104

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

Thermal Array for Next Generation Solar Thermal Power Production Award Number: DE-EE00025828 Report Date: March 15, 2013 PI: Stephen Obrey * Technical approach is focused on...

105

Sandia National Laboratories: solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maui Energy Storage Study On March 6, 2013, in EC, Energy, News, Photovoltaic, Renewable Energy, Solar March 6, 2013 14:00 - 15:00 Eastern The Energy Storage Technology...

106

Sandia National Laboratories: solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SunShot Grand Challenge Summit and Technology Forum On June 1, 2012, in Conferences, Energy, Events, News, Photovoltaic, Renewable Energy, Solar, SunShot Sandia will be a...

107

Sandia National Laboratories: solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2012, in CSP Images & Videos On September 26, 2012, in Image Gallery Videos Concentrating Solar Power Image Gallery A picture says a thousand words, especially on the World Wide...

108

Practical Solar Thermal Chilled Water  

E-Print Network [OSTI]

the potential to impact America's use of non-renewable energy beyond its own design capacity by applying it to the optimization of an existing building's system. Solar-thermal chilling systems are not new. However, few of them can be described as a practical...

Leavell, B.

2010-01-01T23:59:59.000Z

109

Sandia National Laboratories: Concentrating Solar Power (CSP...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to, (1) novel research, development, and demonstration in reflector systems for efficient solar energy collection; (2) large-scale metrology; (3) receivers for solar-to-thermal...

110

Collector Field Maintenance: Distributed Solar Thermal Systems  

Science Journals Connector (OSTI)

This paper reports on recent operation and maintenance experiences with distributed solar thermal systems. Although some information on system-...

E. C. Boes; E. C. Cameron; E. L. Harley

1986-01-01T23:59:59.000Z

111

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

significant challenge for solar thermal energy generation issolar thermal, cogeneration of electrical and thermal energy,for efficient energy production. Solar thermal plants, such

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

112

Concentrating solar thermal power  

Science Journals Connector (OSTI)

...formidable challenges for academic...science, energy economy and...electricity grid has the capacity...electricity from renewable sources will...regional integration, -energy feed-in via renewable energy...mechanisms across national and continental...supply of energy, the investment...based on renewable energies...

2013-01-01T23:59:59.000Z

113

California Solar Initiative - Solar Thermal Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

California Solar Initiative - Solar Thermal Program California Solar Initiative - Solar Thermal Program California Solar Initiative - Solar Thermal Program < Back Eligibility Commercial Fed. Government Industrial Local Government Low-Income Residential Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Maximum Rebate Step 1 Incentive Limits (contact utility to determine current incentive limits): Single-family residential systems that displace natural gas: $2,719 Single-family residential systems that displace electricity or propane: $1,834 Commercial and multifamily residential systems that displace natural gas: $500,000 Commercial and multifamily residential systems that displace electricity or propane: $250,000

114

PERFORMANCE OF A CONCENTRATING PHOTOVOLTAIC/THERMAL SOLAR COLLECTOR  

E-Print Network [OSTI]

increased solar energy conversion and potential cost benefits (Fujisawa and Tani, 1997, 2001, Huang et alPERFORMANCE OF A CONCENTRATING PHOTOVOLTAIC/THERMAL SOLAR COLLECTOR Joe S Coventry Centre for Sustainable Energy Systems, Australian National University, Canberra, 0200, Australia +612 6125 3976, +612

115

Sandia National Laboratories: Solar Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Energy On February 3, 2011, in Solar Programs Photovoltaics Concentrating Solar Power Sunshine to Petrol Solar Publications Recent Solar Highlights Photovoltaics (PV)...

116

Sandia National Laboratories: Solar Furnace  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test Facility * NSTTF * Parabolic Dish * Renewable Energy * SAND 2011-4654W * solar * Solar Energy * Solar Furnace * solar power * Solar Research Comments are closed. Renewable...

117

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

13 2.2.2. Solar Thermal Versus Photovoltaic ..…………..…………doi:10.1038/nmat2090. 17. Solar Thermal Technology on anFigure 2.5: An eSolar solar thermal system in Burbank,

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

118

Solar energy thermalization and storage device  

DOE Patents [OSTI]

A passive solar thermalization and thermal energy storage assembly which is visually transparent. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.

McClelland, John F. (Ames, IA)

1981-09-01T23:59:59.000Z

119

Bionics in textiles: flexible and translucent thermal insulations for solar thermal applications  

Science Journals Connector (OSTI)

...translucent thermal insulations for solar thermal applications Thomas Stegmaier...Denkendorf73770 Denkendorf, Germany Solar thermal collectors used at present consist...transparent thermal insulation|solar thermal collector| 1. Introduction...

2009-01-01T23:59:59.000Z

120

The Status of Solar Thermal Electric Technology  

Science Journals Connector (OSTI)

Solar thermal electric technology was evaluated as a future source of power for United States utilities. The technology status was developed using an ... configuration was selected for each of the major solar col...

Richard J. Holl; Edgar A. DeMeo

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "national solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Chapter 10 - Solar Thermal Power Systems  

Science Journals Connector (OSTI)

Abstract Chapter 10 deals with solar thermal power systems. Initially, the general design considerations are given followed by the presentation of the three basic technologies. These include the parabolic trough collector system, which includes a description of the PTC power plant and outlook of the technology; the power tower systems and the dish systems. This is followed by the thermal analysis of the basic cycles of solar thermal power plants. Subsequently, solar updraft tower systems are examined, which include the initial steps and first demonstration, and the thermal analysis. Finally, solar ponds are examined, which is a form of large solar collector and storage system that can be used for solar power generation and include practical design considerations, salty water transmission estimation, methods of heat extraction, description of two large experimental solar ponds, and applications of solar ponds.

Soteris A. Kalogirou

2014-01-01T23:59:59.000Z

122

National Thermal Power Corporation NTPC | Open Energy Information  

Open Energy Info (EERE)

NTPC NTPC Jump to: navigation, search Name National Thermal Power Corporation (NTPC) Place New Delhi, Delhi (NCT), India Zip 110003 Sector Biomass, Hydro, Solar, Wind energy Product Delhi-based, state owned largest thermal power generating company of India. The firm has also ventured into consultancy, power trading, ash utilisation and coal mining. The firm is also developing various wind, solar, small hydro and biomass project. References National Thermal Power Corporation (NTPC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. National Thermal Power Corporation (NTPC) is a company located in New Delhi, Delhi (NCT), India . References ↑ "National Thermal Power Corporation (NTPC)"

123

Solar Thermal Incentive Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Thermal Incentive Program Solar Thermal Incentive Program Solar Thermal Incentive Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate 50% of the project cost Program Info Funding Source Public Benefits Fund State Connecticut Program Type State Rebate Program Rebate Amount Calculated: $70 multiplied by the SRCC "C" rating multiplied by the number of collectors multiplied by the Shading Factor Provider Clean Energy Finance and Investment Authority Note: This program is not currently accepting applications. Check the program web site for information regarding future financing programs. To participate in the residential solar hot water rebate, homeowners must first complete an energy assessment. Then, they must work with CEFIA

124

Solar-Thermal Processing of Methane to Produce Hydrogen and Syngas  

Science Journals Connector (OSTI)

A solar-thermal aerosol flow reactor has been constructed, installed, and tested with the High-Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL). Experiments were successfully carried out for the dissociation of methane to ...

Jaimee K. Dahl; Joseph Tamburini; Alan W. Weimer; Allan Lewandowski; Roland Pitts; Carl Bingham

2001-07-27T23:59:59.000Z

125

A solar concentrating photovoltaic/thermal collector .  

E-Print Network [OSTI]

??This thesis discusses aspects of a novel solar concentrating photovoltaic / thermal (PV/T) collector that has been designed to produce both electricity and hot water.… (more)

Coventry, Joseph S

2008-01-01T23:59:59.000Z

126

An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario (Report Summary) (Presentation), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Analysis of Concentrating Solar Power An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario (Report Summary) Paul Denholm, Yih-Huei Wan, Marissa Hummon, Mark Mehos March 2013 NREL/PR-6A20-58470 2 Motivation * Implement concentrating solar power (CSP) with thermal energy storage (TES) in a commercial production cost model o Develop approaches that can be used by utilities and system planners to incorporate CSP in standard planning tools * Evaluate the optimal dispatch of CSP with TES o How would a plant actually be used to minimize system production cost? * Quantify the value of adding storage to CSP in a high renewable energy (RE) scenario in California

127

Pv-Thermal Solar Power Assembly  

DOE Patents [OSTI]

A flexible solar power assembly includes a flexible photovoltaic device attached to a flexible thermal solar collector. The solar power assembly can be rolled up for transport and then unrolled for installation on a surface, such as the roof or side wall of a building or other structure, by use of adhesive and/or other types of fasteners.

Ansley, Jeffrey H. (El Cerrito, CA); Botkin, Jonathan D. (El Cerrito, CA); Dinwoodie, Thomas L. (Piedmont, CA)

2001-10-02T23:59:59.000Z

128

Thermal Management of Solar Cells  

E-Print Network [OSTI]

a better thermal conductance and when ceramic particles areor ceramic fillers that enhances thermal conductivity. Solid

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

129

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

for concentrating solar-thermal energy use a large number ofBoth solar power plants absorb thermal energy in high-of a solar power plant that converts thermal energy into

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

130

A NEW SOLAR THERMAL RECEIVER UTILIZING SMALL PARTICLES  

E-Print Network [OSTI]

iuision, Ext. 6782 A New Solar Thermal Receiver UtilizingI \\D \\. }J F--' A NEW SOLAR THERMAL RECEIVER UTILIZING SMALL94720 ABSTRACT A new type of solar thermal receiver is being

Hunt, Arlon J.

2011-01-01T23:59:59.000Z

131

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

heat can also be efficiently and cheaply stored to produce electricity when the sun ... Solar Energy On February 3, 2011, in Solar Programs Photovoltaics Concentrating Solar...

132

Sandia National Laboratories: Solar Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Download On March 13, 2014, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar, Solar Newsletter Sandia developed the Solar Glare Hazard Analysis Tool...

133

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molten Salt Test Loop Melted Salt On October 10, 2012, in Concentrating Solar Power, Energy, News, Renewable Energy, Solar The Molten Salt Test Loop (MSTL) team at Sandia National...

134

Solar Energy Research at the Australian National University A.W. Blakers  

E-Print Network [OSTI]

Solar Energy Research at the Australian National University A.W. Blakers Centre for Sustainable in the areas of photovoltaics and solar thermal energy. 1. INTRODUCTION The Centre for Sustainable Energy in photovoltaics and solar thermal energy. The Centre currently has 33 staff and 8 PhD students and an annual

135

Thermal model of solar absorption HVAC systems  

SciTech Connect (OSTI)

This paper presents a thermal model that describes the performance of solar absorption HVAC systems. The model considers the collector array, the building cooling and heating loads, the absorption chiller and the high temperature storage. Heat losses from the storage tank and piping are included in the model. All of the results presented in the paper are for an array of flat plate solar collectors with black chrome (selective surface) absorber plates. The collector efficiency equation is used to calculate the useful heat output from the array. The storage is modeled as a non-stratified tank with polyurethane foam insulation. The system is assumed to operate continuously providing air conditioning during the cooling season, space heating during the winter and hot water throughout the year. The amount of heat required to drive the chiller is determined from the coefficient of performance of the absorption cycle. Results are presented for a typical COP of 0.7. The cooling capacity of the chiller is a function of storage (generator) temperature. The nominal value is 190 F (88 C) and the range of values considered is 180 F (82 C) to 210 F (99 C). Typical building cooling and heating loads are determined as a function of ambient conditions. Performance results are presented for Sacramento, CA and Washington, D.C. The model described in the paper makes use of National Solar Radiation Data Base (NSRDB) data and results are presented for these two locations. The uncertainties in the NSRDB are estimated to be in a range of 6% to 9%. This is a significant improvement over previously available data. The model makes it possible to predict the performance of solar HVAC systems and calculate quantities such as solar fraction, storage temperature, heat losses and parasitic power for every hour of the period for which data are available.

Bergquam, J.B.; Brezner, J.M. [California State Univ., Sacramento, CA (United States). Dept. of Mechanical Engineering; [Bergquam Energy Systems, Sacramento, CA (United States)

1995-11-01T23:59:59.000Z

136

Sandia National Laboratories: solar forecasting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Modeling & Analysis, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis The book, Solar Energy Forecasting and Resource...

137

Preliminary Investigation into Solar Thermal Combi-system Performance.  

E-Print Network [OSTI]

??Solar thermal combi-systems use solar energy to provide thermal energy for space heating and domestic hot water. These systems come in many different designs and… (more)

Lee, Elizabeth

2014-01-01T23:59:59.000Z

138

Argonne National Laboratory's Solar Energy Development Programmatic...  

Open Energy Info (EERE)

EIS Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Argonne National Laboratory's Solar Energy Development Programmatic EIS Website...

139

INTRODUCTION With the Jawaharlal Nehru National Solar Mission, there is a thrust  

E-Print Network [OSTI]

of the overall system. The solar thermal power plant simulator will enable one to simulate different scenarios is setting up a National Solar Thermal Power Testing, Simulation and Research Facility with the financial thermal power plant, with a gross capacity of 1 MWe, has been designed, built and is being commissioned

Narayanan, H.

140

The Italian National Solar Energy History Project  

Science Journals Connector (OSTI)

This poster presentation introduces “The Italian National Solar Energy History Project” (The Project) to the participants of the ISES SWC 2007. The Project is currently being promoted by the “Italian National Com...

Cesare Silvi

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "national solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Preliminary requirements for thermal storage subsystems in solar thermal applications  

SciTech Connect (OSTI)

Methodologies for the analysis of value and comparing thermal storage concepts are presented. Value is a measure of worth and is determined by the cost of conventional fuel systems. Value data for thermal storage in large solar thermal electric power applications are presented. Thermal storage concepts must be compared when all are performing the same mission. A method for doing that analysis, called the ranking index, is derived. Necessary data to use the methodology are included.

Copeland, R.J.

1980-04-01T23:59:59.000Z

142

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

for Storage of Solar Thermal Energy,” Solar Energy, 18 (3),Toward Molecular Solar-Thermal Energy Storage,” Angewandtescale molecular solar thermal energy storage system, in

Coso, Dusan

2013-01-01T23:59:59.000Z

143

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network [OSTI]

S. a. , 2004, “Solar Thermal Collectors and Applications,”86] Schnatbaum L. , 2009, “Solar Thermal Power Plants,” Thefor Storage of Solar Thermal Energy,” Solar Energy, 18 (3),

Coso, Dusan

2013-01-01T23:59:59.000Z

144

Sandia National Laboratories: solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Recent Solar Highlights On October 31, 2012, in View all Solar Energy News Molten Salt Test Loop Commissioning On October 10, 2012, in Concentrating Solar Power, EC, Energy, News,...

145

Sandia National Laboratories: dispatch solar energy night or...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

dispatch solar energy night or day Sandia-AREVA Commission Solar ThermalMolten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power,...

146

Solar thermal energy contract list, fiscal year 1990  

SciTech Connect (OSTI)

The federal government has conducted the national Solar Thermal Technology Program since 1975. Its purpose is to provide focus, direction, and funding for the development of solar thermal technology as an energy option for the United States. This year's document is more concise than the summaries of previous years. The FY 1990 contract overview comprises a list of all subcontracts begun, ongoing, or completed during FY 1990 (October 1, 1989, through September 30, 1990). Under each managing laboratory projects are listed alphabetically by project area and then by subcontractor name. Amount of funding milestones are listed.

Not Available

1991-09-01T23:59:59.000Z

147

Sandia National Laboratories: Solar Events  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Events No events coming up Tagged with: Energy * Energy Security * Events * Renewable Energy * solar * Solar Energy Comments are closed. Renewable Energy Wind Energy Wind Plant...

148

Sandia National Laboratories: Solar Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Grid Integration, Infrastructure Security, News, News & Events, Photovoltaic, Renewable Energy, Solar, Solar Newsletter, Systems Engineering Matthew Reno, a Sandian and an...

149

Sandia National Laboratories: solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnership, Photovoltaic, Photovoltaic Regional Testing Center (PV RTC), Renewable Energy, Solar, Solar Newsletter, SunShot U.S. Senator Bernie Sanders (I-VT) joined...

150

Sandia National Laboratories: solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Resource Assessment Facilities Contacts About Photovoltaics at Sandia Sandia's solar photovoltaic (PV) work is focused on developing cost-effective, reliable...

151

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

On April 4, 2012, in Current activates have built upon past efforts, most notably the Solar American Cities (now Communities) program in recent years. Solar American Cities...

152

National Solar Radiation Database | Open Energy Information  

Open Energy Info (EERE)

National Solar Radiation Database National Solar Radiation Database Jump to: navigation, search The National Solar Radiation Database, or NSRDB, describes the amount of solar energy which is available at any location in the United States. It is generated by the National Renewable Energy Laboratory, with the assistance of many collaborators.[1] Technical Overview Per its user's manual, "The NSRDB is a serially complete collection of hourly values of the three most common measurements of solar radiation (global horizontal, direct normal, and diffuse horizontal) over a period of time adequate to establish means and extremes, and at a sufficient number of locations to represent regional solar radiation climates."[2] There have been two releases of the NSRDB, each covering different time

153

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

COST REDUCTION STUDY FOR SOLAR THERMAL POWER PLANTS, Ottawa,Storage in Concentrated Solar Thermal Power Plants A ThesisStorage in Concentrated Solar Thermal Power Plants by Corey

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

154

Low-cost distributed solar-thermal-electric power generation  

E-Print Network [OSTI]

Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed: Solar Thermal Collectors, Solar Thermal Electricity, Stirling Engine 1. INTRODUCTION In this paper, we

Sanders, Seth

155

Thermal Insulation in Solar Thermal Devices  

Science Journals Connector (OSTI)

Thermal Insulation is a device or a practice which is used in a system for minimising heat losses caused due to transfer of heat from hotter to colder regions. It is one of the cheapest methods of energy conse...

B. C. Raychaudhuri

1986-01-01T23:59:59.000Z

156

Project Profile: Low-Cost Solar Thermal Collector | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Thermal Collector Project Profile: Low-Cost Solar Thermal Collector SunTrough Energy logo SunTrough, under the Baseload CSP FOA, is developing a new class of solar...

157

Optical and Thermal Characterization of High Reflective Surface with Applications in Thermal-Solar Technology  

Science Journals Connector (OSTI)

Selective solar absorbing coating consists of a high thermal reflectance layer and high solar absorbance layer deposited over a substrate. In this work optical and thermal properties...

Macias, Juan Daniel; Ramirez Rincon, Jorge Andres; Lizama Tzec, Francisco Ivan; Ares Muzio, Oscar Eduardo; Oskam, Gerko; De Coss Gomez, Romeo; Alvarado Gil, Juan José

158

Optical and Thermal Characterization of High Reflection Surfaces with Applcations in Thermal-Solar Technology  

Science Journals Connector (OSTI)

Selective solar absorbing coating consists of a high thermal reflectance layer and a high solar absorbance layer deposited over a substrate. In this work optical and thermal properties...

Macias, Juan Daniel; Ramirez Rincon, Jorge Andres; Lizama Tzec, Francisco Ivan; Ares Muzio, Oscar Eduardo; Oskam, Gerko; De Coss Gomez, Romeo; Alvarado Gil, Juan José

159

Solar thermal propulsion status and future  

SciTech Connect (OSTI)

The status of solar absorber/thruster research is reviewed, and potential future applications and advanced solar thermal propulsion concepts are discussed. Emphasis is placed on two concepts, the windowless heat exchanger cavity and the porous material absorption concepts. Mission studies demonstrate greater than 50 percent increase in payload compared to chemical propulsion for a LEO-to-GEO mission. Alternative missions that have been considered for this concept include the Thousand Astronomical Unit mission, LEO-to-lunar orbit, and other SEI missions. It is pointed out that solar thermal propulsion is inherently simple and capable of moderate-to-high engine performance at moderate-to-low thrust levels. 15 refs.

Shoji, J.M.; Frye, P.E.; Mcclanahan, J.A. (Rockwell International Corp., Rocketdyne Div., Canoga Park, CA (United States))

1992-03-01T23:59:59.000Z

160

Thermal metastabilities in the solar core  

E-Print Network [OSTI]

Linear stability analysis indicates that solar core is thermally stable for infinitesimal internal perturbations. For the first time, thermal metastabilities are found in the solar core when outer perturbations with significant amplitude are present. The obtained results show that hot bubbles generated by outer perturbations may travel a significant distance in the body of the Sun. These deep-origin hot bubbles have mass, energy, and chemical composition that may be related to solar flares. The results obtained may have remarkable relations to activity cycles in planets like Jupiter and also in extrasolar planetary systems.

Attila Grandpierre; Gabor Agoston

2002-01-18T23:59:59.000Z

Note: This page contains sample records for the topic "national solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Thermal Management of Solar Cells  

E-Print Network [OSTI]

D. Mills, "Cooling of photovoltaic cells under concentratedelectric performance of a photovoltaic cells by cooling andSolar Cell A photovoltaic cell is a semiconductor that

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

162

Thermal Management of Solar Cells.  

E-Print Network [OSTI]

??The focus on solar cells as a source of photovoltaic energy is rapidly increasing nowadays. The amount of sun's energy entering earth surface in one… (more)

Saadah, Mohammed Ahmed

2013-01-01T23:59:59.000Z

163

Utilizing Solar Thermal Energy in Textile Processing Units  

Science Journals Connector (OSTI)

This chapter presents the prospects of solar thermal energy utilization in the textile processing units in Pakistan. Various solar thermal technologies suitable for thermal energy production and their application...

Asad Mahmood; Khanji Harijan

2012-01-01T23:59:59.000Z

164

Sandia National Laboratories: fundamental physics of CIGS solar...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regional Testing Center (PV RTC), Renewable Energy, Solar, Solar Newsletter, SunShot HelioVolt, Sandia National Laboratories, the National Renewable Energy Laboratory,...

165

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CSP Mid-Year FY12 AOP Review On September 10, 2012, in Concentrating Solar Power, Energy, News, Renewable Energy, Solar Sandia held its mid-year FY12 Annual Operating Plan (AOP)...

166

List of Solar Thermal Process Heat Incentives | Open Energy Information  

Open Energy Info (EERE)

Process Heat Incentives Process Heat Incentives Jump to: navigation, search The following contains the list of 204 Solar Thermal Process Heat Incentives. CSV (rows 1 - 204) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat

167

Long Island Solar Farm | Brookhaven National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Long Island Solar Farm Long Island Solar Farm Project Overview The Long Island Solar Farm (LISF) is a 32-megawatt solar photovoltaic power plant built through a collaboration including BP Solar, the Long Island Power Authority (LIPA), and the Department of Energy. The LISF, located on the Brookhaven National Laboratory site, began delivering power to the LIPA grid in November 2011, and is currently the largest solar photovoltaic power plant in the Eastern United States. It is generating enough renewable energy to power approximately 4,500 homes, and is helping New York State meet its clean energy and carbon reduction goals. Project Developer/Owner/Operator: Long Island Solar Farm, LLC (BP Solar & MetLife) Purchaser of Power: Long Island Power Authority (LIPA) purchases 100

168

Eighth national passive solar conference. Final report  

SciTech Connect (OSTI)

The Eighth National Passive Solar Conference was held near Santa Fe, New Mexico at the Glorieta Conference Center on September 5 to 11, 1983. Nearly 900 people from all across the nation and the world attended the conference. Close to 200 technical papers were presented, 50 solar product exhibits were available; 34 poster sessions were presented; 16 solar workshops were conducted; 10 renowned solar individuals participated in rendezvous sessions; 7 major addresses were delivered; 5 solar home tours were conducted; 2 emerging architecture sessions were held which included 21 separate presentations; and commercial product presentations were given for the first time ever at a national passive solar conference. Peter van Dresser of Santa Fe received the prestigious Passive Solar Pioneer Award, posthumously, from the American Solar Energy Society and Benjamin T. Buck Rogers of Embudo received the prestigious Peter van Dresser Award from the New Mexico Solar Energy Association. This report reviews conference organization, attendance, finances, conference evaluation form results, and includes press coverage samples, selected conference photos courtesy of Marshall Tyler, and a summary with recommendations for future conferences. The Appendices included conference press releases and a report by the New Mexico Solar Industry Development Corporation on exhibits management.

Owen, A.; Zee, R.

1983-12-01T23:59:59.000Z

169

OpenEI - solar thermal  

Open Energy Info (EERE)

Summary World Solar Summary World Solar Energy Data (from World on the Edge) http://en.openei.org/datasets/node/460 This dataset presents summary information related to world solar energy. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R.

License
170

Solar Thermal Incentive Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Thermal Incentive Program Thermal Incentive Program Solar Thermal Incentive Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Residential: $4,000 per site/meter Non-residential: $25,000 per site/meter Incentive also capped at 80% of calculated existing thermal load Program Info Funding Source RPS surcharge Start Date 12/10/2010 Expiration Date 12/31/2015 State New York Program Type State Rebate Program Rebate Amount $1.50 per kWh displaced annually, for displacement of up to 80% of calculated existing thermal load Provider New York State Energy Research and Development Authority The New York State Energy Research and Development Authority (NYSERDA)

171

SunShot Initiative: Scattering Solar Thermal Concentrators  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scattering Solar Thermal Scattering Solar Thermal Concentrators to someone by E-mail Share SunShot Initiative: Scattering Solar Thermal Concentrators on Facebook Tweet about SunShot Initiative: Scattering Solar Thermal Concentrators on Twitter Bookmark SunShot Initiative: Scattering Solar Thermal Concentrators on Google Bookmark SunShot Initiative: Scattering Solar Thermal Concentrators on Delicious Rank SunShot Initiative: Scattering Solar Thermal Concentrators on Digg Find More places to share SunShot Initiative: Scattering Solar Thermal Concentrators on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

172

Project Profile: High-Temperature Thermal Array for Next-Generation Solar Thermal Power Production  

Broader source: Energy.gov [DOE]

The Los Alamos National Laboratory (ORNL), under the National Laboratory R&D competitive funding opportunity, is developing a megawatt-scale heat pipe–based technology designed to bridge the heliostat reflector field and the power cycle by replacing both the solar receiver and the heat transfer fluid (HTF) system used in concentrating solar power (CSP) systems. The technology, called the high-temperature thermal array, aims to achieve the SunShot Initiative's goals by addressing technical challenges, reducing capital and operating expenses, and increasing net photon-to-electricity conversion efficiency.

173

Solar thermal electric power information user study  

SciTech Connect (OSTI)

The results of a series of telephone interviews with groups of users of information on solar thermal electric power are described. These results, part of a larger study on many different solar technologies, identify types of information each group needed and the best ways to get information to each group. The report is 1 of 10 discussing study results. The overall study provides baseline data about information needs in the solar community. An earlier study identified the information user groups in the solar community and the priority (to accelerate solar energy commercialization) of getting information to each group. In the current study only high-priority groups were examined. Results from five solar thermal electric power groups of respondents are analyzed: DOE-Funded Researchers, Non-DOE-Funded Researchers, Representatives of Utilities, Electric Power Engineers, and Educators. The data will be used as input to the determination of information products and services the Solar Energy Research Institute, the Solar Energy Information Data Bank Network, and the entire information outreach community should be preparing and disseminating.

Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

1981-02-01T23:59:59.000Z

174

Sandia National Laboratories: Solar Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

175

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Empower tribal leaders to make informed decisions about energy choices; bring renewable energy ... Solar Market Transformation On November 10, 2010, in Sandia's Market...

176

Sandia National Laboratories: Solar Glitter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Glitter On March 21, 2013, in Capabilities, Energy, Partnership, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, SunShot Sandia scientists have developed...

177

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10, 2014, in Energy, Materials Science, News, News & Events, Photovoltaic, Renewable Energy, Research & Capabilities, Solar The Institute of Electrical and Electronics...

178

Sandia National Laboratories: Solar Newsletter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnership on Livermore Valley Open Campus On February 26, 2013, in Concentrating Solar Power, Energy, Livermore Valley Open Campus (LVOC), News, News & Events,...

179

Sandia National Laboratories: solar engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 9, 2014, in Center for Infrastructure Research and Innovation (CIRI), Concentrating Solar Power, Energy, Energy Storage, Energy Storage Systems, Facilities, Infrastructure...

180

Sandia National Laboratories: solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Features of Power Towers for Utilities Because of their practical energy storage, solar power towers have two features that are particularly desirable for utilities: flexible...

Note: This page contains sample records for the topic "national solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Utility Operations and Programs On April 4, 2012, in Utilities need to understand how solar generating technologies will behave on their systems (transmission and distribution) as...

182

Sandia National Laboratories: Solar Mirrors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

183

Sandia National Laboratories: Solar Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6, 2012, in Desirable Features of Power Towers for Utilities Because of their practical energy storage, solar power towers have two features that are particularly desirable for...

184

Sandia National Laboratories: Solar Tower  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

185

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PV systems evaluations and ... Renewable Energy On November 10, 2010, in Renewable Energy Wind Solar Water Geothermal Biomass Renewable Energy Events Renewable News...

186

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(PV) Photovoltaics (PV) is a method of generating electrical power by converting solar light into electricity. Sandia photovoltaic work is centered on developing...

187

Solar Thermal/PV | OpenEI  

Open Energy Info (EERE)

Thermal/PV Thermal/PV Dataset Summary Description Provides annual consumption (in quadrillion Btu) of renewable energy by energy use sector (residential, commercial, industrial, transportation and electricity) and by energy source (e.g. solar, biofuel) for 2004 through 2008. Original sources for data are cited on spreadsheet. Also available from: www.eia.gov/cneaf/solar.renewables/page/trends/table1_2.xls Source EIA Date Released August 01st, 2010 (4 years ago) Date Updated Unknown Keywords annual energy consumption biodiesel Biofuels biomass energy use by sector ethanol geothermal Hydroelectric Conventional Landfill Gas MSW Biogenic Other Biomass renewable energy Solar Thermal/PV Waste wind Wood and Derived Fuels Data application/vnd.ms-excel icon RE Consumption by Energy Use Sector, Excel file (xls, 32.8 KiB)

188

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

for efficient energy production. Solar thermal plants, suchenergy production. It would require a substantial amount of land usage to install enough solar

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

189

Optics and Photonics in Solar Thermal Energy Technologies  

Science Journals Connector (OSTI)

The complex optical diagnostics employed in the development and application of solar thermal and wind energy technologies are reviewed, with application in particle receivers, solar...

Nathan, G J 'Gus'; Alwahabi, Zeyad; Dally, Bassam B; Medwell, Paul R; Arjomandi, Maziar; Sun, Zhiwei; Lau, Timothy C; van Eyk, Philip

190

City of Dubuque - Solar Thermal Licensing Requirement | Department of  

Broader source: Energy.gov (indexed) [DOE]

City of Dubuque - Solar Thermal Licensing Requirement City of Dubuque - Solar Thermal Licensing Requirement City of Dubuque - Solar Thermal Licensing Requirement < Back Eligibility Construction Installer/Contractor Savings Category Heating & Cooling Solar Water Heating Program Info State Iowa Program Type Solar/Wind Contractor Licensing Provider City of Dubuque The City of Dubuque requires a Solar Thermal License in order for a person to install a solar thermal project on a home or business. The requirement does not apply to solar photovoltaics. The licensing requirement can be met one of two ways. An installer may be Solar Thermal Certified by the North American Board of Certified Energy Practitioners (NABCEP) or An installer may complete the Northeast Iowa Community College Solar Thermal Training Installers are also required to obtain a permit before altering or

191

Sandia National Laboratories: solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The dishes track the sun in two axes to provide very high concentrations (1500 Wcm of solar power over ... Central Receiver Test Facility On April 4, 2011, in Operated by...

192

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

26, 2012, in This area of the site allows industry partners to install full-scale solar dishes for long-term reliability testing and evaluation. There are currently ten SES...

193

Sandia National Laboratories: Solar Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maui Energy Storage Study On March 6, 2013, in EC, Energy, News, Photovoltaic, Renewable Energy, Solar March 6, 2013 14:00 - 15:00 Eastern The Energy Storage Technology...

194

Sandia National Laboratories: Solar Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

26, 2012, in This area of the site allows industry partners to install full-scale solar dishes for long-term reliability testing and evaluation. There are currently ten SES...

195

Sandia National Laboratories: solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

26, 2012, in This area of the site allows industry partners to install full-scale solar dishes for long-term reliability testing and evaluation. There are currently ten SES...

196

National Laboratory Concentrating Solar Power Research and Development  

Broader source: Energy.gov (indexed) [DOE]

and performance improvements across all major concentrating solar power (CSP) subsystems-solar fields, power plants, receivers, and thermal storage-are necessary to achieve the...

197

Thermal and non-thermal energies in solar flares  

E-Print Network [OSTI]

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same magnitude. This surprising result may be interpreted by an efficient conversion of non-thermal energy to hot flare plasma.

Pascal Saint-Hilaire; Arnold O. Benz

2005-03-03T23:59:59.000Z

198

Integration of solar thermal energy into processes with heat demand  

Science Journals Connector (OSTI)

An integration of solar thermal energy can reduce the utility cost and the environmental impact. A proper integration of solar thermal energy is required in order to achieve ... objective of this study is to maxi...

Andreja Nemet; Zdravko Kravanja…

2012-06-01T23:59:59.000Z

199

Tuning energy transport in solar thermal systems using nanostructured materials  

E-Print Network [OSTI]

Solar thermal energy conversion can harness the entire solar spectrum and theoretically achieve very high efficiencies while interfacing with thermal storage or back-up systems for dispatchable power generation. Nanostructured ...

Lenert, Andrej

2014-01-01T23:59:59.000Z

200

List of Solar Thermal Electric Incentives | Open Energy Information  

Open Energy Info (EERE)

Electric Incentives Electric Incentives Jump to: navigation, search The following contains the list of 548 Solar Thermal Electric Incentives. CSV (rows 1-500) CSV (rows 501-548) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active 30% Business Tax Credit for Solar (Vermont) Corporate Tax Credit Vermont Commercial Industrial Photovoltaics Solar Space Heat Solar Thermal Electric Solar Thermal Process Heat Solar Water Heat No APS - Net Metering (Arizona) Net Metering Arizona Commercial Industrial Residential Nonprofit Schools Local Government State Government Fed. Government Agricultural Institutional Solar Thermal Electric Photovoltaics Wind energy Biomass No Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional

Note: This page contains sample records for the topic "national solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Solar wind electron temperature and density measurements on the Solar Orbiter with thermal noise spectroscopy  

E-Print Network [OSTI]

Solar wind electron temperature and density measurements on the Solar Orbiter with thermal noise of the plasma thermal noise analysis for the Solar Orbiter, in order to get accurate measurements of the total of their small mass and therefore large thermal speed, the solar wind electrons are expected to play a major role

California at Berkeley, University of

202

10 MWe Solar Thermal Central Receiver Pilot Plant — Heliostat Evaluation  

Science Journals Connector (OSTI)

Sandia is responsible for evaluating the heliostats at the 10 MWe Solar Thermal Central Receiver Pilot Plant in Barstow, California...

C. L. Mavis; J. J. Bartel

1986-01-01T23:59:59.000Z

203

Thermal and non-thermal energies in solar flares  

E-Print Network [OSTI]

The energy of the thermal flare plasma and the kinetic energy of the non-thermal electrons in 14 hard X-ray peaks from 9 medium-sized solar flares have been determined from RHESSI observations. The emissions have been carefully separated in the spectrum. The turnover or cutoff in the low-energy distribution of electrons has been studied by simulation and fitting, yielding a reliable lower limit to the non-thermal energy. It remains the largest contribution to the error budget. Other effects, such as albedo, non-uniform target ionization, hot target, and cross-sections on the spectrum have been studied. The errors of the thermal energy are about equally as large. They are due to the estimate of the flare volume, the assumption of the filling factor, and energy losses. Within a flare, the non-thermal/thermal ratio increases with accumulation time, as expected from loss of thermal energy due to radiative cooling or heat conduction. Our analysis suggests that the thermal and non-thermal energies are of the same m...

Saint-Hilaire, P; Saint-Hilaire, Pascal; Benz, Arnold O.

2005-01-01T23:59:59.000Z

204

Flexible thermal cycle test equipment for concentrator solar cells  

DOE Patents [OSTI]

A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

Hebert, Peter H. (Glendale, CA); Brandt, Randolph J. (Palmdale, CA)

2012-06-19T23:59:59.000Z

205

SUBMITTED TO GRL 1 Thermal Anisotropies in the Solar Wind  

E-Print Network [OSTI]

SUBMITTED TO GRL 1 E Thermal Anisotropies in the Solar Wind: vidence of Heating by Interstellar cyclotron instabilit s generated by newly created pickup ions and heats the thermal solar wind protons TO GRL 2 T Introduction he thermal anisotropy of the solar wind is the ratio between the temperatures p

Richardson, John

206

A solar concentrating photovoltaic / thermal collector J.S. Coventry  

E-Print Network [OSTI]

A solar concentrating photovoltaic / thermal collector J.S. Coventry Centre for Sustainable Energy solar concentrating photovoltaic / thermal collector Coventry "Photovoltaic and Wind Power for Urban of both photovoltaic and solar thermal power generation. Some of the recent projects in Australia

207

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concentrating Solar Power Solar Energy On February 3, 2011, in Solar Programs Photovoltaics Concentrating Solar Power Sunshine to Petrol Solar Publications Recent Solar Highlights...

208

Los Alamos National Laboratory passive solar program  

SciTech Connect (OSTI)

Progress in passive solar tasks performed at the Los Alamos National Laboratory for FY-81 is documented. A third volume of the Passive Solar Design Handbook is nearly complete. Twenty-eight configurations of sunspaces were studied using the solar load ratio method of predicting performance; the configuration showing best performance is discussed. The minimum level of insolation needed to generate convective flow in the thermosiphon test rig is noted and measured. Information is also included on test room performance, off-peak auxiliary electric heating for a passive home, free convection experiment, monitored buildings, and technical support to the US Department of Energy.

Neeper, D.A.

1981-01-01T23:59:59.000Z

209

Karnataka Power Corporation Limited and National Thermal Power...  

Open Energy Info (EERE)

Limited and National Thermal Power Corporation JV Jump to: navigation, search Name: Karnataka Power Corporation Limited and National Thermal Power Corporation JV Place: India...

210

Sandia National Laboratories: Solar Resource Assessment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tagged with: Energy * photovoltaic * Photovoltaics * PV * Renewable Energy * solar * Solar Energy * Solar Research * Solar Resource Assessment Comments are closed. Renewable...

211

Small solar (thermal) water-pumping system  

SciTech Connect (OSTI)

A small solar (thermal) water pump phototype was tested. The pump works on an organic Rankine cycle using refrigerant R113. The design of the pump is described. Detailed temperature and pressure measurements of the working fluid for different operating conditions are performed. The behaviour of the cycle is analysed to get a clear picture of the thermodynamic process. Power-characteristic curves are obtained by a systematic variation of water temperature, pumping head and heat input. 10 refs., 13 figs., 2 tabs.

Spindler, K.; Hahne, E. [Universitaet Stuttgart (Germany)] [Universitaet Stuttgart (Germany); Chandwalker, K. [Stiletto Engineers, Hyderabad (India)] [Stiletto Engineers, Hyderabad (India)

1996-07-01T23:59:59.000Z

212

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants.  

E-Print Network [OSTI]

??Experimental studies are presented that aim to utilize phase change materials (PCM's) to enhance thermal energy storage systems for concentrated solar thermal power (CSP) systems.… (more)

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

213

The Ben Gurion National Solar Energy Center | Open Energy Information  

Open Energy Info (EERE)

Ben Gurion National Solar Energy Center Ben Gurion National Solar Energy Center Jump to: navigation, search Name The Ben-Gurion National Solar Energy Center Place Sede-Boqer Campus, Israel Zip 84990 Sector Solar Product Houses 6 Laboratories, each of which is used for the study of one or more aspect of solar energy conversion. References The Ben-Gurion National Solar Energy Center[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. The Ben-Gurion National Solar Energy Center is a company located in Sede-Boqer Campus, Israel . References ↑ "The Ben-Gurion National Solar Energy Center" Retrieved from "http://en.openei.org/w/index.php?title=The_Ben_Gurion_National_Solar_Energy_Center&oldid=352167"

214

Cogenerating Photovoltaic and Thermal Solar Collector  

E-Print Network [OSTI]

cell, 25% max ­ Steam power plant, 50% max · Data Centers in the U.S. ­ Demand increases as internet.2% of the nations electricity consumption · Load equivalent to 5 1000 MW power plants · Over 2.2 billion dollars applications #12;First Prototype Spring 2008 #12;#12;Experimental Results · Thermal power generated ­ 1.4 KW

Su, Xiao

215

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

Solar thermal energy collection is an exciting technology for the replacement of non-renewable energy production.

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

216

Gulf Power - Solar Thermal Water Heating Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gulf Power - Solar Thermal Water Heating Program Gulf Power - Solar Thermal Water Heating Program Gulf Power - Solar Thermal Water Heating Program < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $1,000 Program Info State Florida Program Type Utility Rebate Program Provider Energy Efficiency '''''This program reopened on October 3, 2011 for 2012 applications. Funding is limited and must be reserved through online application before the installation of qualifying solar water heating systems. See Gulf Power's [http://www.gulfpower.com/renewable/solarThermal.asp Solar Water Heating] web site for more information.''''' Gulf Power offers a Solar Thermal Water Heating rebate to customers who install water heaters. This program started after the original pilot

217

Camera-based reflectivity measurement for solar thermal applications  

E-Print Network [OSTI]

Tubular receivers for solar thermal power plants, specifically tower plants, are in common use, in plantsCamera-based reflectivity measurement for solar thermal applications John D. Pye1 , Clifford K. Ho2 of the solar-weighted reflectivity of the receiver component in CSP systems. Such reflectivity measurement

218

Sorption thermal storage for solar energy  

Science Journals Connector (OSTI)

Abstract Sorption technologies, which are considered mainly for solar cooling and heat pumping before, have gained a lot of interests for heat storage of solar energy in recent years, due to their high energy densities and long-term preservation ability for thermal energy. The aim of this review is to provide an insight into the basic knowledge and the current state of the art of research on sorption thermal storage technologies. The first section is concerned with the terminology and classification for sorption processes to give a clear scope of discussion in this paper. Sorption thermal storage is suggested to cover four technologies: liquid absorption, solid adsorption, chemical reaction and composite materials. Then the storage mechanisms and descriptions of basic closed and open cycles are given. The progress of sorption materials, cycles, and systems are also reviewed. Besides the well-known sorbents like silica gels and zeolites, some new materials, including aluminophosphates (AlPOs), silico-aluminophosphates (SAPOs) and metal-organic frameworks (MOFs), are proposed for heat storage. As energy density is a key criterion, emphais is given to the comparison of storage densities and charging tempertures for different materials. Ongoing research and development studies show that the challenges of the technology focus on the aspects of different types of sorption materials, the configurations of absorption cycles and advanced adsorption reactors. Booming progress illustrates that sorption thermal storage is a realistic and sustainable option for storing solar energy, especially for long-term applications. To bring the sorption storage solution into market, more intensive studies in fields of evaluation of advanced materials and development of efficient and compact prototypes are still required.

N. Yu; R.Z. Wang; L.W. Wang

2013-01-01T23:59:59.000Z

219

Review Article Solar-Thermal Powered Desalination: Its Significant  

E-Print Network [OSTI]

1 Review Article Solar-Thermal Powered Desalination: Its Significant Challenges and Potential John@kau.edu.sa Abstract Solar-desalination systems are desalination systems that are powered by solar energy. With the goal of identifying the key technical challenges and potential opportunities solar-desalination, we

Reif, John H.

220

Augmentation of thermal power stations with solar energy  

Science Journals Connector (OSTI)

A new concept of integration of a solar concentrator field with a modern thermal power station is proposed. Such a configuration ... and infrastructure as a base load facility and solar energy to reduce the fuel ...

BR Pai

1991-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "national solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy Balance and Thermal Comfort in Passive Solar Housing  

Science Journals Connector (OSTI)

To evaluate the performance of different passive solar dwellings it is necessary to consider not only the thermal performance but also the “comfort performance” of the system.

K. Alder; Ch. Eriksson; A. Faist; N. Morel

1984-01-01T23:59:59.000Z

222

Parabolic Trough Solar Thermal Electric Power Plants (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides an overview of the potential for parabolic trough solar thermal electric power plants, especially in the Southwestern U.S.

Not Available

2006-07-01T23:59:59.000Z

223

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration.  

E-Print Network [OSTI]

??A solar tracker and concentrator was designed and assembled for the purpose of cogeneration of thermal power and electrical power using thermoelectric technology. A BiTe… (more)

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

224

Colored solar-thermal absorbing coatings with high absorptance  

Science Journals Connector (OSTI)

It's difficult to obtain different color appearance and keep high absorptance simultaneously. We introduced AR films into solar-thermal absorbing coatings to tune the color appearance...

Wang, Shao-Wei; Chen, Feiliang; Liu, Xingxing; Wang, Xiaofang; Yu, Liming; Lu, Wei

225

Sandia National Laboratories: sustainable photovoltaics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

photovoltaics Solar Energy Research Institute for India and the United States Kick-Off On November 27, 2012, in Concentrating Solar Power, Energy, National Solar Thermal Test...

226

Solar Thermal Energy Storage Device: Hybrid Nanostructures for High-Energy-Density Solar Thermal Fuels  

SciTech Connect (OSTI)

HEATS Project: MIT is developing a thermal energy storage device that captures energy from the sun; this energy can be stored and released at a later time when it is needed most. Within the device, the absorption of sunlight causes the solar thermal fuel’s photoactive molecules to change shape, which allows energy to be stored within their chemical bonds. A trigger is applied to release the stored energy as heat, where it can be converted into electricity or used directly as heat. The molecules would then revert to their original shape, and can be recharged using sunlight to begin the process anew. MIT’s technology would be 100% renewable, rechargeable like a battery, and emissions-free. Devices using these solar thermal fuels—called Hybrisol—can also be used without a grid infrastructure for applications such as de-icing, heating, cooking, and water purification.

None

2012-01-09T23:59:59.000Z

227

New Simulation Tool Could Help Add More Solar to the Nation¹s...  

Broader source: Energy.gov (indexed) [DOE]

Simulation Tool Could Help Add More Solar to the Nations Electric Grid New Simulation Tool Could Help Add More Solar to the Nations Electric Grid April 17, 2014 - 11:26am...

228

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network [OSTI]

thermal absorption solar photo- storage chiller thermalbetween solar thermal collection and storage systems and CHPimpact of solar thermal and heat storage on CO 2 emissions

Marnay, Chris

2010-01-01T23:59:59.000Z

229

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network [OSTI]

Environmental Value of Solar Thermal Systems in MicrogridsEnvironmental Value of Solar Thermal Systems in Microgridsa) ABSTRACT The addition of solar thermal and heat storage

Marnay, Chris

2010-01-01T23:59:59.000Z

230

Solar wind electron density and temperature over solar cycle 23: Thermal noise measurements on Wind  

E-Print Network [OSTI]

Solar wind electron density and temperature over solar cycle 23: Thermal noise measurements on Wind; received in revised form 6 April 2005; accepted 25 April 2005 Abstract We present the solar wind plasma parameters obtained from the Wind spacecraft during more than nine years, encompassing almost the whole solar

California at Berkeley, University of

231

Energy management in solar thermal power plants with double thermal storage system and subdivided solar field  

Science Journals Connector (OSTI)

In the paper, two systems for solar thermal power plants (STPPs) are devised for improving the overall performance of the plant. Each one attempts to reduce losses coming from two respective sources. The systems are simulated and compared to a reference STPP. They consists on: (a) a double thermal energy storage (DTS) with different functionalities for each storage and (b) the subdivision of the solar collector field (SSF) into specialised sectors, so that each sector is designed to meet a thermal requirement, usually through an intermediate heat exchanger. This subdivision reduces the losses in the solar field by means of a decrease of the temperature of the heat transfer fluid (HTF). Double thermal energy storage is intended for keeping the plant working at nominal level for many hours a day, including post-sunset hours. One of the storages gathers a fluid which is heated up to temperatures above the nominal one. In order to make it work, the solar field must be able to overheat the fluid at peak hours. The second storage is the classical one. The combination of both allows the manager of the plant to keep the nominal of the plant for longer periods than in the case of classical thermal energy storage. To the authors’ knowledge, it is the first time that both configurations are presented and simulated for the case of parabolic through STPP with HTF technology. The results show that, if compared to the reference STPP, both configurations may raise the annual electricity generation (up to 1.7% for the DTS case and 3.9% for the SSF case).

Antonio Rovira; María José Montes; Manuel Valdes; José María Martínez-Val

2011-01-01T23:59:59.000Z

232

Thermal behaviour of new crystalline semitransparent solar cell structure  

Science Journals Connector (OSTI)

This paper presents the structure of a novel semitransparent solar cell and its thermal behaviour, which cell can be used for building integrated applications. The crystalline self-made test cells can be manufactured using basic semiconductor technological ... Keywords: Building integrated photovoltaics, Semitransparent solar cell and thermal characteristics

Enik Bándy; Márta Rencz,

2013-11-01T23:59:59.000Z

233

Spectrally Solar Selective Coatings for Colored Flat Plate Solar Thermal Collectors  

Science Journals Connector (OSTI)

The paper is a review on the state-of-the-art on colored materials (absorbers and glazings) for solar thermal flat plate collectors obtained world-wide. The ... input for novel, market-acceptable flat plate solar

Luminita Isac; Alexandru Enesca…

2014-01-01T23:59:59.000Z

234

Sandia National Laboratories: quantify the solar irradiance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis of Glare Impacts of Ivanpah Solar Power Site On August 7, 2014, in Concentrating Solar Power, Energy, News, News & Events, Renewable Energy, Solar, Systems Analysis The...

235

Sandia National Laboratories: Ivanpah Solar Electric Generating...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis of Glare Impacts of Ivanpah Solar Power Site On August 7, 2014, in Concentrating Solar Power, Energy, News, News & Events, Renewable Energy, Solar, Systems Analysis The...

236

Sandia National Laboratories: Solar Market Transformation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transformation * photovoltaic * Photovoltaics * PV * Renewable Energy * SAND 2011-4654W * Solar Energy * Solar Market Transformation * Solar Research Comments are closed. Renewable...

237

Rankline-Brayton engine powered solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2012-03-13T23:59:59.000Z

238

Rankine-Brayton engine powered solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2009-12-29T23:59:59.000Z

239

DOE Solar Decathlon Coming to National Mall | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar Decathlon Coming to National Mall Solar Decathlon Coming to National Mall DOE Solar Decathlon Coming to National Mall October 1, 2009 - 12:00am Addthis WASHINGTON, DC - Early this morning, twenty university-led teams descended on the National Mall along with high-tech, high-efficiency solar-powered homes they have built for the 2009 U.S. Department of Energy Solar Decathlon. Over 800 student competitors from the United States, Canada, Spain and Germany will compete in the 2009 Solar Decathlon. The international competition takes place on the National Mall from October 8 -18 and will showcase high-efficiency, solar-powered homes that include the latest high-tech solutions and money-saving features. The overall winner will be announced on Friday, October 16. This is the fourth time DOE has

240

Waverly Light and Power - Residential Solar Thermal Rebates | Department of  

Broader source: Energy.gov (indexed) [DOE]

Solar Thermal Rebates Solar Thermal Rebates Waverly Light and Power - Residential Solar Thermal Rebates < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $3,500 Program Info Start Date 07/01/2009 State Iowa Program Type Utility Rebate Program Rebate Amount 30/sq. foot of collector area Provider Waverly Light and Power Waverly Light and Power (WL&P) offers rebates for solar hot water heating systems to its residential customers. All purchases must be pre-approved through WL&P's solar water heater application process. In addition, residential customers must obtain a county-issued permit prior to installing a solar water heating system. There is a limit of one rebate per address. Funding is available until the rebate fund is exhausted.

Note: This page contains sample records for the topic "national solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Development of a Web-based Emissions Reduction Calculator for Solar Thermal and Solar Photovoltaic Installations  

E-Print Network [OSTI]

DEVELOPMENT OF A WEB-BASED EMISSIONS REDUCTION CALCULATOR FOR SOLAR THERMAL AND SOLAR PHOTOVOLTAIC INSTALLATIONS Juan-Carlos Baltazar Research Associate Jeff S. Haberl, Ph.D., P.E. Professor/Associate Director Don R. Gilman, P.E. Senior... the potential emission reductions due to the electricity savings from the application of some of the most common solar thermal and solar photovoltaic systems. The methodology to estimate the potential NOx emission reduction integrates legacy analysis tools...

Baltazar-Cervantes, J. C.; Gilman, D.; Haberl, J. S.; Culp, C.

2005-01-01T23:59:59.000Z

242

TOPCAT Solar Cell Alignment & Energy Concentration Technology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Solar Thermal Find More Like This Return to Search TOPCAT Solar Cell Alignment & Energy Concentration Technology Sandia National Laboratories Contact SNL About This...

243

A NEW SOLAR THERMAL RECEIVER UTILIZING A SMALL PARTICLE HEAT EXCHANGER  

E-Print Network [OSTI]

Report LBL 8520. ) A NEW SOLAR THERMAL RECEIVER UTILIZING Aenergy. A new type of solar thermal receiver based on thisThe success of the solar thermal electric power program

Hunt, Arlon J.

2011-01-01T23:59:59.000Z

244

Development of Non?Tracking Solar Thermal Technology  

Science Journals Connector (OSTI)

The aims of this research is to develop high temperature solar thermal collectors that do not require complex solar tracking devices to maintain optimal performance. The collector technology developed through these efforts uses non?imaging optics and is referred to as an external compound parabolic concentrator. It is able to operate with a solar thermal efficiency of approximately 50% at a temperature of 200?°?C and can be readily manufactured at a cost between $15 and $18 per square foot.

2011-01-01T23:59:59.000Z

245

Solar Keymark-Experiences with the European Solar Thermal Quality Label  

Science Journals Connector (OSTI)

Many aspects come to mind when thinking and talking about technically reliable and long-time durable solar thermal products. The following paper tries to answer...

Korbinian Kramer; Matthias Rommel…

2009-01-01T23:59:59.000Z

246

National Laboratory Concentrating Solar Power Research and Development  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Concentrating Solar Power Research and Development Motivation The U.S. Department of Energy (DOE) launched the SunShot Initiative as a collaborative national endeavor to make...

247

In-Situ Preparation and thermal shock resistance of mullite-cordierite heat tube material for solar thermal power  

Science Journals Connector (OSTI)

In order to improve the thermal shock resistance of solar thermal heat transfer tube material, the mullite-cordierite composite ceramic as solar thermal heat transfer tube material were fabricated by...?-Al2O3......

Xiaohong Xu ???; Xionghua Ma; Jianfeng Wu…

2013-06-01T23:59:59.000Z

248

National Lab 'Flips Switch' on East Coast's Largest Solar Array |  

Broader source: Energy.gov (indexed) [DOE]

National Lab 'Flips Switch' on East Coast's Largest Solar Array National Lab 'Flips Switch' on East Coast's Largest Solar Array National Lab 'Flips Switch' on East Coast's Largest Solar Array November 21, 2011 - 12:16pm Addthis An aerial view of the 32-megawatt photovoltaic array of the Long Island Solar Farm, which will produce enough energy to power up to 4,500 local homes. The central Brookhaven National Laboratory campus is seen at left. An aerial view of the 32-megawatt photovoltaic array of the Long Island Solar Farm, which will produce enough energy to power up to 4,500 local homes. The central Brookhaven National Laboratory campus is seen at left. Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs What are the key facts? The 32-megawatt Long Island Solar Farm Project will produce enough

249

Minnesota Power - Solar-Thermal Water Heating Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

Minnesota Power - Solar-Thermal Water Heating Rebate Program Minnesota Power - Solar-Thermal Water Heating Rebate Program Minnesota Power - Solar-Thermal Water Heating Rebate Program < Back Eligibility Commercial Industrial Low-Income Residential Multi-Family Residential Residential Savings Category Heating & Cooling Solar Water Heating Maximum Rebate Single-family unit: $2,000 Two- to three-family units: $4,000 Multi-family units (four or more): $10,000 Businesses: $25,000 Program Info Start Date 03/2010 Expiration Date 12/31/2013 State Minnesota Program Type Utility Rebate Program Rebate Amount 25% of costs Provider Minnesota Power Minnesota Power offers a 25% rebate for qualifying solar thermal water heating systems. The maximum award for single-family customers is $2,000 per customer; $4,000 for 2-3 family unit buildings; $10,000 for buildings

250

Made in Minnesota Solar Thermal Rebate | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Made in Minnesota Solar Thermal Rebate Made in Minnesota Solar Thermal Rebate Made in Minnesota Solar Thermal Rebate < Back Eligibility Commercial Multi-Family Residential Residential Savings Category Heating & Cooling Solar Swimming Pool Heaters Water Heating Buying & Making Electricity Commercial Heating & Cooling Maximum Rebate Single-Family Residential: $2,500 Multi-Family Residential: $5,000 Commercial: $25,000 Program Info Start Date 1/1/2014 Expiration Date 12/31/2023 State Minnesota Program Type State Rebate Program Rebate Amount 25% Provider Minnesota Department of Commerce Beginning in 2014, the Department of Commerce will offer a Made in Minnesota Solar Thermal Rebate program. Rebates are 25% of installed costs, with a $2,500 maximum for residential systems, $5,000 maximum for multi-family residential systems, and $25,000 for commercial systems.

251

Sandia National Laboratories: SunShot  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SunShot Solar Regional Test Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test...

252

NREL: Transmission Grid Integration - Solar Integration National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Develops Sub-Hour Solar Power Data Set This fact sheet explains how NREL data will help utilities incorporate solar energy into their electric power systems. Sub-Hour Solar Data...

253

Brookhaven National Laboratory Solar Energy and Smarter Grid  

E-Print Network [OSTI]

Brookhaven National Laboratory Solar Energy and Smarter Grid Research Update Presented to BNL CAC on Market Barriers #12;5 BNL's research agenda for solar energy and smarter electric grid focuses on two key areas Advancement of Solar Energy Generation in Northeast · Characterization of renewable generation

254

Concentrating Solar Power Thermal Storage System Basics | Department of  

Broader source: Energy.gov (indexed) [DOE]

Thermal Storage System Basics Thermal Storage System Basics Concentrating Solar Power Thermal Storage System Basics August 21, 2013 - 10:33am Addthis One challenge facing the widespread use of solar energy is reduced or curtailed energy production when the sun sets or is blocked by clouds. Thermal energy storage provides a workable solution to this challenge. In a concentrating solar power (CSP) system, the sun's rays are reflected onto a receiver, which creates heat that is used to generate electricity. If the receiver contains oil or molten salt as the heat-transfer medium, then the thermal energy can be stored for later use. This enables CSP systems to be cost-competitive options for providing clean, renewable energy. Several thermal energy storage technologies have been tested and

255

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia and EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency On March 29, 2013, in Concentrating Solar Power, Energy, Partnership, Photovoltaic, Renewable...

256

Sandia National Laboratories: dynamically managing solar energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microgrid, Partnership, Photovoltaic, Renewable Energy, Research & Capabilities, Solar Solar energy is both predictable-the sun rises and sets everyday-and intermittent-a...

257

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Salt Initial Flow Testing is a Tremendous Success On November 2, 2012, in Concentrating Solar Power, News, Renewable Energy, Solar The Molten Salt Test Loop (MSTL ) system at...

258

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Concentrating Solar Power (CSP) On April 13, 2011, in CSP R&D at Sandia Testing Facilities Software & Tools Resources Contacts News Concentrating Solar Power ANNOUNCEMENT: Sandia's...

259

Karnataka Power Corporation Limited and National Thermal Power Corporation  

Open Energy Info (EERE)

Karnataka Power Corporation Limited and National Thermal Power Corporation Karnataka Power Corporation Limited and National Thermal Power Corporation JV Jump to: navigation, search Name Karnataka Power Corporation Limited and National Thermal Power Corporation JV Place India Sector Wind energy Product India-based wind power project developer. References Karnataka Power Corporation Limited and National Thermal Power Corporation JV[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Karnataka Power Corporation Limited and National Thermal Power Corporation JV is a company located in India . References ↑ "Karnataka Power Corporation Limited and National Thermal Power Corporation JV" Retrieved from "http://en.openei.org/w/index.php?title=Karnataka_Power_Corporation_Limited_and_National_Thermal_Power_Corporation_JV&oldid=3479

260

Sandia National Laboratories: PWR  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PWR Pratt Whitney Rocketdyne Testing On December 19, 2012, in Concentrating Solar Power, EC, Energy, Facilities, National Solar Thermal Test Facility, News, News & Events,...

Note: This page contains sample records for the topic "national solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Sandia National Laboratories: Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

262

Sandia National Laboratories: Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

263

Residential solar-absorption chiller thermal dynamics  

SciTech Connect (OSTI)

Research is reported on the transient performance of a commercial residential 3 ton lithium bromide-water absorption chiller designed for solar firing. Emphasis was placed on separating the chiller response from that of the entire test facility so that its transient response could solely be observed and quantified. It was found that the entire system time response and thermal capacitance has a major impact on performance degradation due to transient operation. Tests run to ascertain computer algorithms which simulate system isolated chiller performance, revealed processes hitherto undocumented. Transient operation is simulated by three distinct algorithms associated with the three phases of chiller operation. The first phase is start up time. It was revealed during testing that the time required to reach steady state performance values, when the chiller was turned on, was a linear function of steady state water supply temperatures. The second phase is quasi steady state performance. Test facility's performance compared favorably with the manufacturer's published data. The third phase is the extra capacity produced during spin down. Spin down occurs when the hot water supply pump is turned off while the other system pumps remain operating for a few minutes, thus allowing extra chiller capacity to be realized. The computer algorithms were used to generate plots which show the operational surface of an isolated absorption chiller subjected to off design and transient operation.

Guertin, J.M.; Wood, B.D.; McNeill, B.W.

1981-03-01T23:59:59.000Z

264

Solar  

Science Journals Connector (OSTI)

With sharp drop in costs for photovoltaic and solar thermal processes, solar energy has become more attractive alternative ... Almost half the total was earmarked for PV and solar thermal projects. ...

WARD WORTHY

1991-06-17T23:59:59.000Z

265

Commercial Solar Thermal Incentive Program (Connecticut) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Solar Thermal Incentive Program (Connecticut) Solar Thermal Incentive Program (Connecticut) Commercial Solar Thermal Incentive Program (Connecticut) < Back Eligibility Commercial Industrial Institutional Local Government Low-Income Residential Multi-Family Residential Nonprofit Schools Tribal Government Savings Category Heating & Cooling Solar Water Heating Maximum Rebate $150,000 Program Info Funding Source Public Benefits Fund Start Date 03/15/2013 State Connecticut Program Type State Grant Program Provider Clean Energy Finance and Investment Authority '''''Note: This program is not currently accepting applications. Check the program web site for information regarding future financing programs. ''''' The Clean Energy Finance and Investment Authority is offering grants and loans to non-residential entities for solar hot water installations. Only

266

Solar thermal power plants for the Spanish electricity market  

Science Journals Connector (OSTI)

Solar thermal power plants are at present the cheapest technology for solar electricity production. At good sites Levelised Electricity Costs (LEC) of 11 Ct/kWh have been achieved in commercially operated power plants. Economy of scale and further technical improvements will reduce the LEC for future projects. On the 27th of March 2004 in Spain the existing feed-in-law has been modified in order to support the erection of solar thermal power plants and thus make use of the huge solar potential of Spain. A payment of approx. 21 Ct/kWh, guaranteed for the first 25 years of operation, makes the erection and operation of solar thermal power plants very profitable for possible investors on the Spanish peninsula. This paper will present the present situation in Spain and the planned power plant projects. For one specific project the set-up is presented in more detail.

M. Eck; F. Rueda; S. Kronshage; C. Schillings; F. Trieb; E. Zarza

2007-01-01T23:59:59.000Z

267

Photoswitchable Molecular Rings for Solar-Thermal Energy Storage  

Science Journals Connector (OSTI)

Photoswitchable Molecular Rings for Solar-Thermal Energy Storage ... Ground-state energy barriers along the NN torsional coordinates were also computed, along with excitation energies and intensities for the species that can contribute to the photostationary state. ...

E. Durgun; Jeffrey C. Grossman

2013-03-04T23:59:59.000Z

268

The Exchange-Value of Solar Thermal Energy  

Science Journals Connector (OSTI)

In Sweden there is a tendency that alternative energy will develop on market premises. In this ... I suggest that the low exergy value of solar thermal heat limits the technique“s commodification, i ... . By appl...

Johan Leidi

2009-01-01T23:59:59.000Z

269

Marshall Municipal Utilities- Solar Thermal Water Heater Rebate Program  

Broader source: Energy.gov [DOE]

Marshall Municipal Utilities (MMU) offers residential customers rebates for installing a ENERGY STAR Solar Thermal Water Heater. Rebates are based on the size of the system; MMU offers $20 per...

270

Materials selection for thermal comfort in passive solar buildings  

Science Journals Connector (OSTI)

This paper presents the results of a combined analytical, computational, and experimental study of the key parameters for selecting affordable materials and designing for thermal comfort in passive solar build...

J. M. Thomas; S. Algohary; F. Hammad; W. O. Soboyejo

2006-11-01T23:59:59.000Z

271

Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage  

E-Print Network [OSTI]

1980, but its thermal solar and storage systems received achiller. A 30 m heat storage tank solar decouples heatfacility with thermal storage and solar- assisted HVAC for

Mammoli, Andrea

2014-01-01T23:59:59.000Z

272

Thermal efficiency of single-pass solar air collector  

SciTech Connect (OSTI)

Efficiency of a finned single-pass solar air collector was studied. This paper presents the experimental study to investigate the effect of solar radiation and mass flow rate on efficiency. The fins attached at the back of absorbing plate to improve the thermal efficiency of the system. The results show that the efficiency is increased proportional to solar radiation and mass flow rate. Efficiency of the collector archived steady state when reach to certain value or can be said the maximum performance.

Ibrahim, Zamry; Ibarahim, Zahari; Yatim, Baharudin [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia); Ruslan, Mohd Hafidz [Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan (Malaysia)

2013-11-27T23:59:59.000Z

273

10 MWe Solar Thermal Central Receiver Pilot Plant Total Capital Cost  

Science Journals Connector (OSTI)

A cost analysis of the 10MWe Solar One Thermal Central Receiver Plant near Barstow, California, ... is presented to help predict costs of future solar thermal central receiver plants. In this paper, the Solar One...

H. F. Norris

1985-01-01T23:59:59.000Z

274

Thermal storage module for solar dynamic receivers  

DOE Patents [OSTI]

A thermal energy storage system comprising a germanium phase change material and a graphite container.

Beatty, Ronald L. (Farragut, TN); Lauf, Robert J. (Oak Ridge, TN)

1991-01-01T23:59:59.000Z

275

Thermal Storage Materials Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Materials Storage Materials Laboratory may include: * CSP technology developers * Utilities * Certification laboratories * Government agencies * Universities * Other National laboratories Contact Us If you are interested in working with NREL's Thermal Storage Materials Laboratory, please contact: ESIF Manager Carolyn Elam Carolyn.Elam@nrel.gov 303-275-4311 Thermal Storage Materials Laboratory The Thermal Storage Materials Laboratory at NREL's Energy Systems Integration Facility (ESIF) investigates materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar power (CSP) plants. Research objectives include the discovery and evaluation of

276

National Lab 'Flips Switch' on East Coast's Largest Solar Array |  

Broader source: Energy.gov (indexed) [DOE]

Lab 'Flips Switch' on East Coast's Largest Solar Array Lab 'Flips Switch' on East Coast's Largest Solar Array National Lab 'Flips Switch' on East Coast's Largest Solar Array November 21, 2011 - 12:16pm Addthis An aerial view of the 32-megawatt photovoltaic array of the Long Island Solar Farm, which will produce enough energy to power up to 4,500 local homes. The central Brookhaven National Laboratory campus is seen at left. An aerial view of the 32-megawatt photovoltaic array of the Long Island Solar Farm, which will produce enough energy to power up to 4,500 local homes. The central Brookhaven National Laboratory campus is seen at left. Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs What are the key facts? The 32-megawatt Long Island Solar Farm Project will produce enough

277

Performance of a Thermally Stable Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop  

SciTech Connect (OSTI)

Polyaromatic hydrocarbon thermal fluids showing thermally stability to 600 C have been tested for solar thermal-power applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C indicated that the fluid isomerized and degraded at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components in trough solar electric generating systems, such as the waste heat rejection exchanger, may become coated or clogged affecting loop performance. Thus, pure 1-phenylnaphthalene, without addition of stabilizers, does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the temperatures greater than 500 C. The performance of a concentrating solar loop using high temperature fluids was modeled based on the National Renewable Laboratory Solar Advisory Model. It was determined that a solar-to-electricity efficiency of up to 30% and a capacity factor of near 60% could be achieved using a high efficiency collector and 12 h thermal energy storage.

McFarlane, Joanna [ORNL] [ORNL; Bell, Jason R [ORNL] [ORNL; Felde, David K [ORNL] [ORNL; Joseph III, Robert Anthony [ORNL] [ORNL; Qualls, A L [ORNL] [ORNL; Weaver, Samuel P [ORNL] [ORNL

2014-01-01T23:59:59.000Z

278

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

outstanding technical challenges focused on applicability to heat pipes to Concentrated Solar Power production. These include * Counter gravity physics * Counter gravity...

279

Energy-Dependent Timing of Thermal Emission in Solar Flares  

Science Journals Connector (OSTI)

We report solar flare plasma to be multi-thermal in nature based on the theoretical model and study of the energy-dependent timing of thermal emission in ten M-class flares. We ... observed by the Si detector of ...

Rajmal Jain; Arun Kumar Awasthi; Arvind Singh Rajpurohit…

2011-05-01T23:59:59.000Z

280

Design of a solar thermal collector simulator.  

E-Print Network [OSTI]

??The recent increased interest in renewable energy has created a need for research in the area of solar technology. This has brought about many new… (more)

Bolton, Kirk G.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "national solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Sandia National Laboratories: Solar Energy Research Institute...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Research Institute for India and the United States Solar Energy Research Institute for India and the United States Kick-Off On November 27, 2012, in Concentrating Solar...

282

Solar thermal organic rankine cycle for micro-generation  

Science Journals Connector (OSTI)

The conceptual design of an Organic Rankine Cycle (ORC) driven by solar thermal energy is developed for the decentralized production of electricity of up to 50 kW. Conventional Rankine Cycle uses water as the working fluid whereas ORC uses organic compound as the working fluid and it is particularly suitable for low temperature applications. The ORC and the solar collector will be sized according to the solar flux distribution in the Republic of Yemen for the required power output of 50 kW. This will be a micro power generation system that consists of two cycles the solar thermal cycle that harness solar energy and the power cycle which is the ORC that generates electricity. As for the solar thermal cycle heat transfer fluid (HTF) circulates the cycle while absorbing thermal energy from the sun through a parabolic trough collector and then storing it in a thermal storage to increase system efficiency and maintains system operation during low radiation. The heat is then transferred to the organic fluid in the ORC via a heat exchanger. The organic fluids to be used and analyzed in the ORC are hydrocarbons R600a and R290.

2012-01-01T23:59:59.000Z

283

Modeling and Simulation of Solar Chimney Power Plant with and without the Effect of Thermal Energy Storage Systems.  

E-Print Network [OSTI]

??A solar updraft tower power plant – sometimes also called 'solar chimney' or just ‘solar tower’ – is a solar thermal power plant utilizing a… (more)

Daba, Robera

2011-01-01T23:59:59.000Z

284

Modeling The Potential For Thermal Concentrating Solar Power Technologies  

SciTech Connect (OSTI)

In this paper we explore the tradeoffs between thermal storage capacity, cost, and other system parameters in order to examine possible evolutionary pathways for thermal Concen-trating Solar Power (CSP) technologies. A representation of CSP performance that is suit-able for incorporation into economic modeling tools is developed. We find that, as the fraction of electricity supplied by CSP technologies grows, the application of thermal CSP technologies might progress from current hybrid plants, to plants with a modest amount of thermal storage, and potentially even to plants with sufficient thermal storage to provide base load generation capacity. The representation of CSP cost and performance developed here was implemented in the ObjECTS MiniCAM long-term integrated assessment model. Datasets for global solar resource characteristics as applied to CSP technology were also developed. The regional and global potential of thermal CSP technologies is examined.

Zhang, Yabei; Smith, Steven J.; Kyle, G. Page; Stackhouse, Jr., Paul W.

2010-10-25T23:59:59.000Z

285

Energy Department Announces $15 Million to Integrate Affordable Solar Energy into Nation’s Electrical Grid  

Office of Energy Efficiency and Renewable Energy (EERE)

Supporting the goals of the Obama Administration’s Climate Action Plan, the Energy Department today announced $15 million in available funding to help integrate distributed, on-site solar energy systems into the nation’s electrical grid.

286

Use of Renewable Energy in Buildings: Experiences With Solar Thermal Utilization  

E-Print Network [OSTI]

Solar energy is receiving much more attention in building energy systems in recent years. Solar thermal utilization should be based on the integration of solar collectors into buildings. The facades of buildings can be important solar collectors...

Wang, R.; Zhai, X.

2006-01-01T23:59:59.000Z

287

Thermal instability in planar solar coronal structures  

Science Journals Connector (OSTI)

Prominentes and filaments are thought to arise as a consequence of a magnetized plasma undergoing thermal instability. Therefore the thermal stability of a magnetized plasma is investigated under coronal condi...

R. A. M. Van der Linden; M. Goossens

1990-01-01T23:59:59.000Z

288

Project Profile: Scattering Solar Thermal Concentrators  

Broader source: Energy.gov [DOE]

Pennsylvania State University, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is designing and testing a novel solar collector system that relies on stationary optics, avoiding the need for mirror movement. The system is capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but at a lower cost.

289

National Solar Radiation Data Base | OpenEI  

Open Energy Info (EERE)

Solar Radiation Data Base Solar Radiation Data Base Dataset Summary Description The National Solar Radiation Data Base (NSRDB) is the most comprehensive collection of solar data freely available. The 1991 - 2005 NSRDB contains hourly solar radiation (including global, direct, and diffuse) and meteorological data for 1,454 stations. NCDC's Integrated Surface Data (ISD) were the key data source for this effort, with much of the solar data modeled/estimated based on the surface observations. This dataset builds on the 1961-1990 NSRDB, which contains data for 239 stations. These data are extremely useful in estimating solar energy potential across the U.S., and in estimating heating/cooling requirements for buildings based on heat-gain from solar radiation. More information available at http://www.ncdc.noaa.gov/oa/reds/

290

Optimisation of Solar Collector Area for Solar Thermal Systems  

Science Journals Connector (OSTI)

Invariably solar energy systems are provided with an auxiliary energy source to meet the energy requirements of a system operating at a constant temperature. A technoeconomic analysis has been developed in thi...

N. K. Bansal; Aman Dang

1984-01-01T23:59:59.000Z

291

A New Solar Carbon Capture Process: Solar Thermal Electrochemical Photo (STEP) Carbon Capture  

Science Journals Connector (OSTI)

A New Solar Carbon Capture Process: Solar Thermal Electrochemical Photo (STEP) Carbon Capture ... CO2 can be captured from 34% to over 50% solar energy efficiency (depending on the level of solar heat inclusion), as solid carbon and stored, or used as carbon monoxide to be available for a feedstock to synthesize (with STEP generated hydrogen) solar diesel fuel, synthetic jet fuel, or chemical production. ... STEP Iron, a Chemistry of Iron Formation without CO2 Emission: Molten Carbonate Solubility and Electrochemistry of Iron Ore Impurities ...

Stuart Licht; Baohui Wang; Susanta Ghosh; Hina Ayub; Dianlu Jiang; Jason Ganley

2010-07-14T23:59:59.000Z

292

Thermal layering: a passive solar design strategy  

SciTech Connect (OSTI)

SOLARGREEN was the author's entry into the US Department of Housing and Urban Development's Passive Solar Residential Design Competition. The objective of the design was to develop a low-cost, innovative passive solar heating and cooling system as part of a marketable, aesthetically pleasing dwelling that could be easily constructed using existing building practices. The basic design is a three-bedroom, two-story, 1600 square foot home with a solarium that serves as both a solar collector and a food-producing greenhouse. The entry received a design award and five construction awards in the competition.

Moore, F.

1980-01-01T23:59:59.000Z

293

High Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

A 10% increase in shaft work is directly attributable to modified thermal heat capacity Engineering HTF Specific heat yields modified power output. 27 127 227 327 427 527...

294

Sandia National Laboratories: Improved Method to Measure Glare...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Measure Glare and Reflected Solar Irradiance On February 27, 2013, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

295

National Solar Radiation Database 1991-2005 Update: User's Manual  

SciTech Connect (OSTI)

This manual describes how to obtain and interpret the data products from the updated 1991-2005 National Solar Radiation Database (NSRDB). This is an update of the original 1961-1990 NSRDB released in 1992.

Wilcox, S.

2007-04-01T23:59:59.000Z

296

Thermal Energy Transport in the Solar Wind  

Science Journals Connector (OSTI)

This paper is intended to summarize the present status of measurements of heat flux in the solar wind and to provide a comparison of these measurements with the theory for collision-dominated heat transport in...

Michael D. Montgomery

1972-01-01T23:59:59.000Z

297

Thermal Modernisation Through Utilisation of Solar Energy  

Science Journals Connector (OSTI)

The paper presents idea of modernization of energy system in buildings through implementation of traditional energy efficiency measures and introduction of modern options of utilization of solar energy systems...

Dorota Chwieduk

2009-01-01T23:59:59.000Z

298

Azobenzene-Functionalized Carbon Nanotubes As High-Energy Density Solar Thermal Fuels  

Science Journals Connector (OSTI)

Azobenzene-Functionalized Carbon Nanotubes As High-Energy Density Solar Thermal Fuels ... Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. ... Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. ...

Alexie M. Kolpak; Jeffrey C. Grossman

2011-06-20T23:59:59.000Z

299

Thermal performance evaluation of a solar air heater with and without thermal energy storage  

Science Journals Connector (OSTI)

This communication presents the experimental study and performance analysis of a solar air heater with and without phase change ... found that the output temperature in case with thermal energy storage (TES) is h...

V. V. Tyagi; A. K. Pandey; S. C. Kaushik…

2012-03-01T23:59:59.000Z

300

Non-thermal solar wind heating by supra-thermal ions  

Science Journals Connector (OSTI)

The effect of a new energy source due to energies transferred from supra-thermal secondary ions on the temperature profile of the solar wind has been considered. For this purpose ... solution of a tri-fluid model...

H. J. Fahr

1973-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "national solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Experiments on solar absorption using a greenhouse-effect gas in a thermal solar collector  

Science Journals Connector (OSTI)

This paper investigates an augmentation to the thermal solar absorption of solar collectors by introducing a greenhouse gas between the glazing and the absorber part of the solar collector. Experiments are designed and conducted to compare the effect of adding the gas on the efficiency of the collector without that addition. The maximum temperature rise of the absorber the time of heat retention before reaching room temperature and the energy conversion efficiency in heating up water for domestic use were all studied.

Abdul Hai M. B. Alami

2010-01-01T23:59:59.000Z

302

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

InstituteSandia Photovoltaic Systems Symposium On April 15, 2014, in Concentrating Solar Power, Distribution Grid Integration, Energy, Facilities, Grid Integration, News,...

303

Sandia National Laboratories: Cool Earth Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Open Campus (LVOC). A new research agreement between the two organizations aims to make solar energy more affordable and accessible and demonstrates how the LVOC can foster new...

304

Sandia National Laboratories: solar energy integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

solar energy integration ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities,...

305

Sandia National Laboratories: Solar Electric Propulsion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Plan Webinar Wednesday, Jan. 14 Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) EC Top Publications Design and Analysis...

306

Sandia National Laboratories: solar to hydrogen  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 9, 2014, in Center for Infrastructure Research and Innovation (CIRI), Concentrating Solar Power, Energy, Energy Storage, Energy Storage Systems, Facilities, Infrastructure...

307

Sandia National Laboratories: Cool Earth Solar  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Partnership on Livermore Valley Open Campus On February 26, 2013, in Concentrating Solar Power, Energy, Livermore Valley Open Campus (LVOC), News, News & Events,...

308

Sandia National Laboratories: Solar Power International  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2013 On September 24, 2013, in Conferences, Energy, Events, News & Events, Renewable Energy, Seminars & Conferences, Solar, Workshops Sandia will host PV Bankability workshop...

309

Sandia National Laboratories: Solar Power International (SPI...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Workshop On September 10, 2012, in Energy, News, Partnership, Photovoltaic, Renewable Energy, Solar Achieving High Penetrations of PV: Streamlining Interconnection and Managing...

310

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Transportation R&D Activities View all EC Publications Related Topics Concentrating Solar Power CSP EFRC Energy Energy Efficiency Energy Security Infrastructure...

311

Sandia National Laboratories: Solar Thermochemical Hydrogen Production  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the chemical and physical transformations occurring in materials used to convert solar energy into hydrogen and develop and test novel reactor concepts at relevant scales....

312

Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems  

E-Print Network [OSTI]

Solar Thermal Energy Research," in Sandia National Laboratory Science and Engineering Exposition 2011, Albuquerque, New Mexico,

Ho, Tony

2012-01-01T23:59:59.000Z

313

Thermal-Mechanical Technologies | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal-Mechanical Technologies Thermal-Mechanical Technologies Heat management plays a critical role in almost all energy-related applications. Research topics in this area...

314

Sandia National Laboratories: Renewable Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

315

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

316

Sandia National Laboratories: Systems Analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

317

Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis of Concentrating Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario Paul Denholm, Yih-Huei Wan, Marissa Hummon, and Mark Mehos Technical Report NREL/TP-6A20-58186 March 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario Paul Denholm, Yih-Huei Wan, Marissa Hummon, and Mark Mehos Prepared under Task No. CP08.8301

318

High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems; Volume 6 Building America Best Practices Series  

Broader source: Energy.gov (indexed) [DOE]

by by Pacific Northwest National Laboratory & Oak Ridge National Laboratory June 4, 2007 June 2007 * NREL/TP-550-41085 PNNL-16362 High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems Building America Best Practices Series Volume 6 High-Performance Home Technologies: Solar Thermal & Photovoltaic Systems Building America Best Practices Series Prepared by Pacific Northwest National Laboratory, a DOE national laboratory Michael C. Baechler Theresa Gilbride, Kathi Ruiz, Heidi Steward and Oak Ridge National Laboratory, a DOE national laboratory Pat M. Love June 4, 2007 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty,

319

Off-peak summer performance enhancement for rows of fixed solar thermal collectors using reflective surfaces.  

E-Print Network [OSTI]

??The possibility of increasing the efficiency of fixed solar thermal collectors without greatly adding to the cost or complexity of the overall solar collection system… (more)

Armenta, Casiano

2011-01-01T23:59:59.000Z

320

Overview of the United Nations Environment Programme's Solar and Wind  

Open Energy Info (EERE)

Overview of the United Nations Environment Programme's Solar and Wind Overview of the United Nations Environment Programme's Solar and Wind Energy Resource Assessment (SWERA) Project Dataset Summary Description (Abstract): Project overview describing rationale, products and partners of the UNEP/GEF Solar and Wind Energy Resource Assessment project. (Purpose): Project overview for presentation at the Asia regional meeting at the Second International Conference on Renewable Energy Technology for Rural Development (RETRUD-03) in Katmandu on 12-14 October 2003 Source NREL Date Released October 14th, 2003 (11 years ago) Date Updated October 20th, 2007 (7 years ago) Keywords GEF solar SWERA UNEP United Nations wind Data application/zip icon Download Presentation (zip, 5 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage

Note: This page contains sample records for the topic "national solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Progress Toward an Updated National Solar Radiation Data Base  

SciTech Connect (OSTI)

Progress is reported on an updated National Solar Radiation Database (NSRDB). Focus on this year's work was on preparing a test-year database for evaluating several solar radiation models that could be used to replace the METSTAT model used in the original 1961-1990 NSRDB. That model is no longer compatible with cloud observations reported by the National Weather Service. We have also included a satellite-based model that will increase the spatial resolution of solar radiation for GIS or mapping applications. Work also included development of improved estimates for aerosols, water vapor, and ozone. High-quality solar measurements were obtained for 33 sites near National Weather Service stations, and model runs were completed for test years 1999 and 2000.

Wilcox, S.; Anderberg, M.; George, R.; Marion, W.; Myers, D.; Renne, D.; Beckman, W.; DeGaetano, A.; Gueymard, C.; Perez, R.; Plantico, M.; Stackhouse, P.; Vignola, F.

2005-01-01T23:59:59.000Z

322

Technical assessment of solar thermal energy storage technologies  

Science Journals Connector (OSTI)

Solar energy is recognized as one of the most promising alternative energy options. On sunny days, solar energy systems generally collect more energy than necessary for direct use. Therefore, the design and development of solar energy storage systems, is of vital importance and nowadays one of the greatest efforts in solar research. These systems, being part of a complete solar installation, provide an optimum tuning between heat demand and heat supply. This paper reviews the basic concepts, systems design, and the latest developments in (sensible and latent heat) thermal energy storage. Parameters influencing the storage system selection, the advantages and disadvantages of each system, and the problems encountered during the systems operation are highlighted.

Hassan E.S. Fath

1998-01-01T23:59:59.000Z

323

Potential solar thermal integration in Spanish combined cycle gas turbines  

Science Journals Connector (OSTI)

Abstract Combined cycle gas turbines (CCGTs) are volumetric machines, which means that their net power output decreases at air temperatures above the design point. Such temperatures generally occur during periods of high solar irradiation. Many countries where these conditions occur, including Spain, have installed a significant number of \\{CCGTs\\} in recent years, with the subsequent yield losses in the summer. This implies enormous potential for solar hybridization, increasing production in peak hours and overall efficiency and reducing CO2 emissions. This paper analyzes the overall potential for solar thermal integration in 51 CCGTS (25,340 MW) in mainland Spain under different operating scenarios based on increasing yield, solar fraction and the hourly operational range adapted to the Spanish electricity market, considering actual meteorological conditions. A production model for integrating solar energy into combined cycles is proposed and described and the code in R is freely released so that the assessment can be replicated.

J. Antonanzas; E. Jimenez; J. Blanco; F. Antonanzas-Torres

2014-01-01T23:59:59.000Z

324

Thermal characteristics of a classical solar telescope primary mirror  

E-Print Network [OSTI]

We present a detailed thermal and structural analysis of a 2m class solar telescope mirror which is subjected to a varying heat load at an observatory site. A 3-dimensional heat transfer model of the mirror takes into account the heating caused by a smooth and gradual increase of the solar flux during the day-time observations and cooling resulting from the exponentially decaying ambient temperature at night. The thermal and structural response of two competing materials for optical telescopes, namely Silicon Carbide -best known for excellent heat conductivity and Zerodur -preferred for its extremely low coefficient of thermal expansion, is investigated in detail. The insight gained from these simulations will provide a valuable input for devising an efficient and stable thermal control system for the primary mirror.

Banyal, Ravinder K

2011-01-01T23:59:59.000Z

325

Semi-transparent solar energy thermal storage device  

DOE Patents [OSTI]

A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

McClelland, John F. (Ames, IA)

1986-04-08T23:59:59.000Z

326

Semi-transparent solar energy thermal storage device  

DOE Patents [OSTI]

A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

McClelland, John F. (Ames, IA)

1985-06-18T23:59:59.000Z

327

Solar Thermal Group Research School of Engineering  

E-Print Network [OSTI]

DEVELOPMENT OF COMPLEX OXIDE-BASED MATERIALS FOR HYBRID SOLAR THERMOELECTRIC GENERATOR Speaker: Dr Ruoming- and n- type thermoelectric materials. A number of strategies for enhancing the material efficiency were interests are in the development of oxide-based thermoelectric materials via ad- vanced synthesis

328

Sandia National Laboratories: Concentrating Solar Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CSP Resources On September 26, 2012, in CSP Images & Videos On September 26, 2012, in Image Gallery Videos Concentrating Solar Power Image Gallery A picture says a thousand words,...

329

Sandia National Laboratories: identifying solar product failure...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

solar product failure modes Sandia R&D Funded under New DOE SunShot Program On November 27, 2013, in Energy, News, News & Events, Partnership, Photovoltaic, Renewable Energy,...

330

Sandia National Laboratories: Solar Electric Propulsion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a wide array of missions for NASA. This multipurpose space vehicle concentrates the Sun's energy into a Sandia designed solar collector using a large reflector to power a Sandia...

331

National Solar Radiation Database 1991…2010 Update: User's Manual  

Open Energy Info (EERE)

is a national laboratory of the U.S. Department of Energy, Office of Energy is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 National Solar Radiation Database 1991-2010 Update: User's Manual Stephen Wilcox Technical Report NREL/TP-5500-54824 August 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 National Solar Radiation Database 1991-2010 Update: User's Manual

332

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network [OSTI]

solar thermal and heat storage on CO 2 emissions and annual energyenergy costs, heat storage does not directly support solar thermal /energy costs. This paper focuses on analysis of the optimal interaction of solar thermal

Marnay, Chris

2010-01-01T23:59:59.000Z

333

Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage  

E-Print Network [OSTI]

of a solar-thermal- assisted hvac system. Energy andsolar thermal collectors using flat reflective surfaces. Solar Energy,of a solar-assisted HVAC system with thermal storage. Energy

Mammoli, Andrea

2014-01-01T23:59:59.000Z

334

Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage  

E-Print Network [OSTI]

performance of a solar-thermal- assisted hvac system. Energyfor rows of fixed solar thermal collectors using flatassisted by a 232 m solar thermal array providing heat to a

Mammoli, Andrea

2014-01-01T23:59:59.000Z

335

E-Print Network 3.0 - advanced solar thermal Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

..) - residential and commercial. (A. Athienitis) 2. Solar thermal systems for heating and cooling (DHW... and optimization tool. THEME 1 Integration THEME 2 Thermal THEME...

336

Two-tank indirect thermal storage designs for solar parabolic trough power plants.  

E-Print Network [OSTI]

??The performance of a solar thermal parabolic trough plant with thermal storage is dependent upon the arrangement of the heat exchangers that ultimately transfer energy… (more)

Kopp, Joseph E.

2009-01-01T23:59:59.000Z

337

Solar thermal power generation: a bibliography with abstracts. Quarterly update, October-December 1979  

SciTech Connect (OSTI)

This annotated bibliography contains the following subjects: energy overviews, solar overviews, energy conservation, economics and law, solar thermal power, thermionic and thermoelectric, ocean thermal energy conversion, biomass and photochemical energy, and large-scale photovoltaics. (MHR)

Not Available

1980-04-01T23:59:59.000Z

338

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Research Center of the DOE Office of Basic Energy Sciences SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER Progress from DOE EFRC: Solid-State Solar-Thermal Energy...

339

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC )...

340

Outdoor and Indoor Testing to Increase the Efficiency and Durability of Flat Plate Solar Thermal Collectors  

Science Journals Connector (OSTI)

This paper presents the test performed on the solar thermal flat plate collector and the effect of saline aerosol on the solar thermal conversion; an assembly of testing rigs developed ... presented; the rigs all...

Daniela Ciobanu; Ion Visa; Anca Duta…

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "national solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Transient-heat-transfer and stress analysis of a thermal-storage solar cooker module  

E-Print Network [OSTI]

This paper details the analysis carried out in Solidworks to determine the best material and configuration of a thermal-storage solar cooker module.The thermal-storage solar cooker utilizes the high-latent-heat lithium ...

Zengeni, Hazel C

2014-01-01T23:59:59.000Z

342

FPD's Perspective Photos - Los Alamos National Labratory - NISA...  

Broader source: Energy.gov (indexed) [DOE]

National Labratory - NISA Enforcement Letter, Los Alamos National Security, LLC - May 15, 2008 High Temperature Thermal Array for Next Generation Solar Thermal Power Production...

343

Performance contracting for parabolic trough solar thermal systems  

SciTech Connect (OSTI)

Several applications of solar energy have proven viable in the energy marketplace, due to competitive technology and economic performance. One example is the parabolic trough solar collectors, which use focused solar energy to maximize efficiency and reduce material use in construction. Technical improvements are complemented by new business practices to make parabolic trough solar thermal systems technically and economically viable in an ever widening range of applications. Technical developments in materials and fabrication techniques reduce production cost and expand applications from swimming pool heating and service hot water, to higher-temperature applications such as absorption cooling and process steam. Simultaneously, new financing mechanisms such as a recently awarded US Department of Energy (DOE) Federal Energy Management Program (FEMP) indefinite quantity Energy Savings Performance Contract (Super ESPC) facilitate and streamline implementation of the technology in federal facilities such as prisons and military bases.

Brown, H.; Hewett, R.; Walker, A. [National Renewable Energy Lab., Golden, CO (United States); Gee, R.; May, K. [Industrial Solar Technology, Golden, CO (United States)

1997-12-31T23:59:59.000Z

344

Quality assurance of solar thermal systems with the ISFH-Input/Output-Procedure  

E-Print Network [OSTI]

. Supplementary sensors may be necessary for some special solar systems (e. g. solar systems with several storagesQuality assurance of solar thermal systems with the ISFH- Input/Output-Procedure Peter Paerisch/Output-Controllers for in situ and automatic function control of solar thermal systems that were developed within the research

345

Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors  

E-Print Network [OSTI]

Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors developed for the optimization of light-emitting diodes (LED) and solar thermal collectors. The surface a light-extraction efficiency of only 3.7%). The solar thermal collector we considered consists

Mayer, Alexandre

346

Solar Thermal Policy in the U.S.: A Review of Best Practices  

E-Print Network [OSTI]

Solar Thermal Policy in the U.S.: A Review of Best Practices in Leading States Renewable Energy are supported at the master's and doctoral levels. #12;Solar Thermal Policy in the U.S.: A Review of Best · Julie Bellino ­ Renewable Energy Vermont · Front Page Top Picture ­ Solar Thermal Array at Kent County

Delaware, University of

347

Thermal and Magnetic Parameters in Solar Flares Derived from GOES X-Ray Light Curves  

Science Journals Connector (OSTI)

......6110 6190 6220 6310 Thermal and Magnetic Parameters in Solar Flares Derived from...impulsive phase of 20 solar flares and to estimate the thermal and magnetic parameters...parameters and the thermal ones, have been applied not only to solar flares, but also......

Tetsuya T. Yamamoto; Takashi Sakurai

2010-06-25T23:59:59.000Z

348

Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation  

E-Print Network [OSTI]

Stirling Engines for Low-Temperature Solar-Thermal- Electric Power Generation Artin Der Minassians-Temperature Solar-Thermal-Electric Power Generation by Artin Der Minassians Karshenasi (Amirkabir University-Temperature Solar-Thermal-Electric Power Generation Copyright c 2007 by Artin Der Minassians #12;1 Abstract Stirling

Sanders, Seth

349

Progress on an Updated National Solar Radiation Data Base: Preprint  

SciTech Connect (OSTI)

In 1992, The National Renewable Energy Laboratory (NREL) released the 1961-1990 National Solar Radiation Data Base (NSRDB), a 30-year set of hourly solar radiation data. In April 2003, NREL convened a meeting of experts to investigate issues concerning a proposed update of the NSRDB. The panel determined that an important difficulty posed by the update was the shift from manual to automated cloud observations at National Weather Service stations in the United States. The solar model used in the original NSRDB relied heavily on the methodology and resolution of the manual cloud observations. The meeting participants recommended that NREL produce a plan for creating an update using currently available meteorological observations and satellite imagery. This paper describes current progress toward a plan for an updated NSRDB.

Wilcox, S.; Anderberg, M.; George, R.; Marion, W.; Myers, D.; Renne, D.; Beckman, W.; DeGaetano, A.; Gueymard, C.; Perez, R.; Plantico, M.; Stackhouse, P.; Vignola, F.

2004-03-01T23:59:59.000Z

350

Enhanced regeneration of degraded polymer solar cells by thermal annealing  

SciTech Connect (OSTI)

The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and P3HT:indene-C{sub 60} bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ?50% performance restoration over several degradation/regeneration cycles.

Kumar, Pankaj, E-mail: pankaj@mail.nplindia.ernet.in [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012 (India); Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C., E-mail: Paul.Dastoor@newcastle.edu.au [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); Feron, Krishna [Centre for Organic Electronics, Physics, University of Newcastle, Callaghan NSW-2308 (Australia); CSIRO Energy Technology, P. O. Box 330, Newcastle NSW 2300 (Australia)

2014-05-12T23:59:59.000Z

351

Exergetic optimization of solar collector and thermal energy storage system  

Science Journals Connector (OSTI)

This paper deals with the exergetic optimization of a solar thermal energy system. This consists of a solar collector (SC) and a rectangular water storage tank (ST) that contains a phase change material (PCM) distributed in an assembly of slabs. The study takes into account both conduction and convection heat transfer mode for water in the SC, and also the phase change process for the PCM in the ST. An analytical solution for the melting process in the PCM is also presented. The results of the study are compared with previous experimental data, confirming the accuracy of the model. Results of a numerical case study are presented and discussed.

F. Aghbalou; F. Badia; J. Illa

2006-01-01T23:59:59.000Z

352

Mobile-mirror concentrators for solar thermal power plants  

SciTech Connect (OSTI)

Seven central-receiver, solar-thermal power plants with heliostat concentrators have been built around the world in the last two decades. This technology has proven to be much too expensive for commercial power plants and efforts to reduce the cost have reached an impasse. It is the nature of the solar concentrators which makes it so expensive. There are two types of concentrators: those, called heliostats, with mirrors on stationary supports, and those with mirrors on mobile supports. Mobile mirrors are potentially much cheaper than heliostats.

Ratliff, G. [Ratliff (George), Pittsburgh, PA (United States)

1999-11-01T23:59:59.000Z

353

Review and perspectives on Life Cycle Analysis of solar technologies with emphasis on building-integrated solar thermal systems  

Science Journals Connector (OSTI)

Abstract Building-Integrated (BI) solar thermal are systems which are integrated into the building, are a new tendency in the building sector and they provide multiple advantages in comparison with the Building-Added (BA) solar thermal configurations. The present investigation is a critical review about Life Cycle Analysis (LCA) studies of solar systems. Emphasis is given on the BI solar thermal installations. Studies about BA configurations and systems which produce electrical (or electrical/thermal) energy are also presented in order to provide a more complete overview of the literature. The influence of the BI solar thermal systems on building environmental profile is also examined. Critical issues such as ongoing standardization and environmental indicators are discussed. The results reveal that there is a gap in the field of LCA about real BI solar thermal (and solar thermal/electrical) installations. Thus, there is a need for more LCA studies which examine the BI solar thermal system itself and/or in conjunction with the building. Active systems which could provide energy for the building would be interesting to be studied. Investigations about the influence of the BI solar thermal systems on building life-cycle performance could also provide useful information in the frame of a more sustainable built environment.

Chr. Lamnatou; D. Chemisana; R. Mateus; M.G. Almeida; S.M. Silva

2015-01-01T23:59:59.000Z

354

Sandia National Laboratories: Advanced Materials Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

355

Sandia National Laboratories: Customer Interface Document for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gill (6123, 844-1524). Tagged with: Central Receiver test facility * Concentrating Solar Power Systems * CRTF * CSP * molten salt test loop * MSTL * National Solar Thermal...

356

An investigation of the efficiency of the receiver of a solar thermal cooker with thermal energy storage.  

E-Print Network [OSTI]

??A small scale solar concentrator cooker with a thermal energy storage system was designed, constructed and tested on the roof of the Physics building at… (more)

Heilgendorff, Heiko Martin.

2015-01-01T23:59:59.000Z

357

Novel Thermal Storage Technologies for Concentrating Solar Power Generation  

SciTech Connect (OSTI)

The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

2013-06-20T23:59:59.000Z

358

SolarOil Project, Phase I preliminary design report. [Solar Thermal Enhanced Oil Recovery project  

SciTech Connect (OSTI)

The preliminary design of the Solar Thermal Enhanced Oil Recovery (SolarOil) Plant is described in this document. This plant is designed to demonstrate that using solar thermal energy is technically feasible and economically viable in enhanced oil recovery (EOR). The SolarOil Plant uses the fixed mirror solar concentrator (FMSC) to heat high thermal capacity oil (MCS-2046) to 322/sup 0/C (611/sup 0/F). The hot fluid is pumped from a hot oil storage tank (20 min capacity) through a once-through steam generator which produces 4.8 MPa (700 psi) steam at 80% quality. The plant net output, averaged over 24 hr/day for 365 days/yr, is equivalent to that of a 2.4 MW (8.33 x 10/sup 6/ Btu/hr) oil-fired steam generator having an 86% availability. The net plant efficiency is 57.3% at equinox noon, a 30%/yr average. The plant will be demonstrated at an oilfield site near Oildale, California.

Baccaglini, G.; Bass, J.; Neill, J.; Nicolayeff, V.; Openshaw, F.

1980-03-01T23:59:59.000Z

359

Baoding Solar Thermal Equipment Company | Open Energy Information  

Open Energy Info (EERE)

Equipment Company Equipment Company Jump to: navigation, search Name Baoding Solar Thermal Equipment Company Place Baoding, Hebei Province, China Sector Solar Product Solar water heating system manufacturer. Coordinates 38.855011°, 115.480217° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.855011,"lon":115.480217,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

360

Technical and economical evaluation of solar thermal power generation  

Science Journals Connector (OSTI)

This article presents a feasibilty on a solar power system based on the Stirling dish (SD) technology, reviews and compares the available Stirling engines in the perspective of a solar Stirling system. The system is evaluated, as a parameter to alleviate the energy system of the Cretan island while taking care of the CO2 emissions. In the results a sensitivity analysis was implemented, as well as a comparison with conventional power systems. In the long-term, solar thermal power stations based on a SD can become a competitive option on the electricity market, if a concerted programme capable of building the forces of industry, finance, insurance and other decision makers will support the market extension for this promising technology.

Theocharis Tsoutsos; Vasilis Gekas; Katerina Marketaki

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "national solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Thermal insulation with paper honeycombs with solar gain  

SciTech Connect (OSTI)

In this contribution the authors describe the concept and the model for the heat flux and the effective U-value of paper honeycombs (PHC) used as efficient and cheap transparent insulation material. With this thermal-insulation-material static U-values of U = 0.25 W/(m{sup 2}K) are obtained due to the very low thermal conduction value {lambda} = 0.04 W/(mK), which is comparable to thermal insulators as PU-foam or mineral wool. Contrary to conventional insulation materials PHC also gathers solar radiation due to its geometry, thereby providing heat flux into the interior of the building. Because the angle of incidence of the sun in wintertime is low, the direct solar radiation is absorbed approximately within the outermost 3 centimeters of the PHC. Even at ambient temperatures below 0 C, this region is warmed up to 60 C. By conduction the heat is brought to the brick wall underneath, which acts as reservoir and gets to temperatures between 15 and 30 C. Calculated across the full heating period, it is shown, that effective U values of 0.14 W/(m{sup 2}K) are reached by using PHC, reducing the brick wall U value by a factor of 3/4. Contrary to other transparent thermal insulation systems, e.g. developed by the Fraunhofer Institute for Solar Energy Systems, this system does not overheat during summertime, because the capillary structure is shielding the solar rays. A Windows based program solves the heat conduction equation with finite element methods.

Hingerl, K.; Baumgartner, G.; Aschauer, H.

1996-12-31T23:59:59.000Z

362

National Programme for the Promotion of Solar Energy | Open Energy  

Open Energy Info (EERE)

for the Promotion of Solar Energy for the Promotion of Solar Energy Jump to: navigation, search Name National Programme for the Promotion of Solar Energy Agency/Company /Organization Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector Climate Focus Area Renewable Energy, Solar Topics - Energy Access, - Energy Security, Low emission development planning, -LEDS, -NAMA, Market analysis Website http://www.giz.de/Themen/en/SI Country Chile South America References Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ)[1] Program Overview Chile is successfully promoting the introduction of renewable energies to the electricity market. In a short span of time, feeding renewably generated electricity into the grid - mainly from wind and mini-hydropower sources - has gained growing importance for the

363

Geometric Modularity in the Thermal Modeling of Solar Steam Turbines  

Science Journals Connector (OSTI)

Abstract To optimize the start-up schedules of steam turbines operating in concentrating solar power plants, accurate predictions of the temperatures within the turbine are required. In previous work by the authors, thermal models of steam turbines have been developed and validated for parabolic trough solar power plant applications. Building on these results, there is an interest to increase the adaptability of the models with respect to different turbine geometries due to the growing trend of having larger steam turbines in parabolic trough and solar tower power plants. In this work, a modular geometric approach has been developed and compared against both the previous modeling approach and 96 h of measured data from an operational parabolic trough power plant. Results show a large degree of agreement with respect to the measured data in spite of the different detail levels. The new model allows for simple and fast prediction of the thermal behavior of different steam turbine sizes and geometries, which is expected to be of significant importance for future concentrating solar power plants.

M. Topel; J. Spelling; M. Jöcker; B. Laumert

2014-01-01T23:59:59.000Z

364

DRAFT INTERIM REPORT: NATIONAL PROGRAM PLAN FOR PASSIVE AND HYBRID SOLAR HEATING AND COOLING  

E-Print Network [OSTI]

for sub-metering on solar energy projects to ensure adequateSolar Energy in Federal Facilities IV.C.l Select high-visibility federal building projectsproject support is expected to continue from the national laboratories, the Solar Energy

Authors, Various

2012-01-01T23:59:59.000Z

365

Independent Verification Survey Report for the Long Island Solar Farm, Brookhaven National Laboratory, Upton, New York  

SciTech Connect (OSTI)

5119-SR-01-0 INDEPENDENT VERIFICATION SURVEY REPORT FOR THE LONG ISLAND SOLAR FARM, BROOKHAVEN NATIONAL LABORATORY

E.M. Harpenau

2010-11-15T23:59:59.000Z

366

Thermal Systems Process and Components Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Systems Process and Systems Process and Components Laboratory may include: * CSP technology developers * Utilities * Certification laboratories * Government agencies * Universities * Other National laboratories Contact Us If you are interested in working with NREL's Thermal Systems Process and Components Laboratory, please contact: ESIF Manager Carolyn Elam Carolyn.Elam@nrel.gov 303-275-4311 Thermal Systems Process and Components Laboratory The focus of the Thermal Systems Process and Components Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to research, develop, test, and evaluate new techniques for thermal energy storage systems that are relevant to utility-scale concentrating solar power plants. The laboratory holds

367

Far-IR and radio thermal continua in solar flares  

E-Print Network [OSTI]

With the invention of new far-infrared (FIR) and radio mm and sub-mm instruments (DESIR on SMESE satellite, ESO-ALMA), there is a growing interest in observations and analysis of solar flares in this so far unexplored wavelength region. Two principal radiation mechanisms play a role: the synchrotron emission due to accelerated particle beams moving in the magnetic field and the thermal emission due to the energy deposit in the lower atmospheric layers. In this contribution we explore the time-dependent effects of beams on thermal FIR and radio continua. We show how and where these continua are formed in the presence of time dependent beam heating and non-thermal excitation/ionisation of the chromospheric hydrogen plasma.

Kašparová, J; Karlický, M; Moravec, Z; Varady, M

2009-01-01T23:59:59.000Z

368

Potential Impact of ZT = 4 Thermoelectric Materials on Solar Thermal Energy Conversion Technologies  

Science Journals Connector (OSTI)

Photovoltaic and solar-thermal are two conversion technologies receiving a great deal of attention. ... Solar-thermal conversion uses the full solar spectrum and generates electricity by conventional electromagnetic induction methods. ... Resource and environmental impact considerations will play an increasingly important role in reaching decisions concerning the practicality of thermoelectric power generation systems. ...

Ming Xie; Dieter M. Gruen

2010-03-02T23:59:59.000Z

369

Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies  

Science Journals Connector (OSTI)

Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies ... We report the first flexible hybrid energy cell that is capable of simultaneously or individually harvesting thermal, mechanical, and solar energies to power some electronic devices. ... By integrating the NGs and the solar cells, a hybrid energy cell was fabricated to simultaneously harvest three different types of energies. ...

Ya Yang; Hulin Zhang; Guang Zhu; Sangmin Lee; Zong-Hong Lin; Zhong Lin Wang

2012-12-03T23:59:59.000Z

370

Corrigenda for Solar Engineering of Thermal Processes, Fourth Ed. J. A. Duffie and W. A. Beckman  

E-Print Network [OSTI]

Corrigenda for Solar Engineering of Thermal Processes, Fourth Ed. J. A. Duffie and W. A. Beckman 2 Last Eqn on page Second Ti should be Ti-1 #12;Corrigenda for Solar Engineering of Thermal Processes "radiation on" to "radiation at solar noon on" Second equation Change G to Gb + Gd Six lines from bottom

Wisconsin at Madison, University of

371

Propagation of three--dimensional Alfv'en waves in a stratified, thermally conducting solar wind  

E-Print Network [OSTI]

Propagation of three--dimensional Alfv'en waves in a stratified, thermally conducting solar wind S to the well--known thermal expansion of the solar corona [Parker, 1958, 1963, 1991]. In particular Alfv'en waves in the solar atmosphere and wind, taking into account relevant physical effects

372

Optical Analysis and Thermal Modeling of a Window for a Small Particle Solar Receiver  

Science Journals Connector (OSTI)

Abstract Concentrated solar power (CSP) systems use heliostats to concentrate solar radiation in order to produce high temperature heat, which drives a turbine to generate electricity. A 5 \\{MWth\\} Small Particle Solar Receiver is being developed for power tower CSP plants based on volumetric absorption by a gas-particle suspension by the support from the U.S. Department of Energy under the SunShot Initiative. The radiation enters the pressurized receiver (0.5 MPa) through a curved window, which must sustain the thermal loads from the concentrated solar flux and infrared reradiation from inside the receiver. The thermal load from the solar flux on the window is calculated by using the computer code MIRVAL from Sandia National Laboratory which uses the Monte Carlo Ray Trace (MCRT) method, along with two other codes developed by the authors. Thermal loading was calculated from energy absorbed at various points throughout the window from both the heliostat field and inside the receiver. Transmission and reflective losses were also calculated for different window materials in order to find out how much radiation will enter the receiver or will be lost. The three dimensional temperature distribution of the window is analyzed by an energy balance taking into account spectral volumetric absorption, spectral surface emission, conduction within the window, and convection from both surfaces. A maximum window temperature of 800 °C must be enforced to prevent cracking and/or devitrification due to overheating. Several grades of quartz are considered for this study with detailed spectral calculations. For a chosen material, the window temperature was found to be held under 800 °C. The results showed that most of the heat load on the window comes from the inside of receiver due to spectral variation.

A.M. Mecit; F.J. Miller; A. Whitmore

2014-01-01T23:59:59.000Z

373

Thermal Efficiency of Solar Collector Made from Thermoplastics  

Science Journals Connector (OSTI)

Abstract Thermoplastics solar collectors have been used to replace a typical metal collector because their mechanical and physical properties make the volume production of lightweight, low cost and corrosion resistance. Effect of thermal conductivity and collector area was observed for four type of themoplastics based i.e PVC-B (PVC: Polyvinyl Chloride-Blue), PB (PB: Polybutene), PP-R (PP-R: Polypropylene Random Copolymer) and PVC-CB: (Polyvinyl Chloride-Carbon Black). The collector area of 2 m2 were prepared as for solar collector. The position of collector panel to south orientation and angle of 140 to the horizontal, which was the collector slope obtaining highest annual efficiency in Thailand, were implemented. Data was collected by data logger from 9.00-16.00 am throughout the day in which temperature reached a sufficient level according to standard test method of ASHRAE 93 77. The mass flow rate of water in collector was 0.02 (kg.s-1). The results of the differing thermal conductivity materials have indicated that there is no different of the materials on collector thermal efficiency. The collector efficiency was depends on the areas of the panel. This suggestion that one material should not only be chosen over another in term of its ability to transfer heat to the liquid within the panel but also collector area.

Warunee Ariyawiriyanan; Tawatchai Meekaew; Manop Yamphang; Pongpitch Tuenpusa; Jakrawan Boonwan; Nukul Euaphantasate; Pongphisanu Muangchareon; Supachat Chungpaibulpatana

2013-01-01T23:59:59.000Z

374

Thermal Load based Adaptive Tracking for Flat Plate Solar Collectors  

Science Journals Connector (OSTI)

Abstract The energy output of solar-thermal systems using flat plate collectors can be improved by tracking. Tracking is well known as a path for increasing the amount of solar radiation received by the collector; additionally the paper proposes a new concept that considers the inverse tracking as a viable option for protecting the collectors against overheating. An analysis of the thermal energy output and conversion efficiency is done considering forward tracking in three different days with different radiation profile (cloudy, sunny and mixed days), followed by an analysis of the inverse tracking concept. The in-field data show that there is a limiting angle below which inverse tracking is not effective and this value is estimated at 40° as compared with the optimal orientation. A logical scheme is proposed based on four different programs for forward tracking, inverse tracking, maximum inverse tracking or fixing the collector; this decisional scheme covers a broad range of functional situations having as central concept the production of thermal energy only when needed, for satisfying the demand, decreasing the energy consumption for forced circulation and supporting the systems reliability and safety.

Mircea Neagoe; Ion Visa; Bogdan G. Burduhos; Macedon D. Moldovan

2014-01-01T23:59:59.000Z

375

Fifth parabolic dish solar thermal power program annual review: proceedings  

SciTech Connect (OSTI)

The primary objective of the Review was to present the results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program. The Review consisted of nine technical sessions covering overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development, and associated hardware and test results to date; distributed systems operating experience; international dish development activities; and non-DOE-sponsored domestic dish activities. A panel discussion concerning business views of solar electric generation was held. These Proceedings contain the texts of presentations made at the Review, as submitted by their authors at the beginning of the Review; therefore, they may vary slightly from the actual presentations in the technical sessions.

None

1984-03-01T23:59:59.000Z

376

Different Models for Determination of Thermal Stratification in A Solar Storage Tank  

Science Journals Connector (OSTI)

In this work two different models are shown for describing the thermal stratification in the solar storage tank of the solar water heating system. The first model was ... hour from the average hourly data of the

P. Géczy-Víg; I. Farkas

2009-01-01T23:59:59.000Z

377

Thermal and Magnetic Parameters in Solar Flares Derived from GOES X-Ray Light Curves  

Science Journals Connector (OSTI)

......released amount of energy in a solar flare, and there...the derived thermal energy with the magnetic free energy. It is found that...Japan and Nobeyama Solar Radio Observatory...is a collaborative project involving the NRL......

Tetsuya T. Yamamoto; Takashi Sakurai

2010-06-25T23:59:59.000Z

378

Attraction of carbon investments to implement the solar energy thermal utilization projects  

Science Journals Connector (OSTI)

The possibilities for attracting investments of carbon funds to implement solar energy thermal projects using solar collectors under the Clean Development Mechanism are ... about 10% of the funds required for project

R. A. Zakhidov

2007-10-01T23:59:59.000Z

379

Thermal lens effect in solar-pumped high-power solid-state lasers  

Science Journals Connector (OSTI)

The thermal lens effect in the Nd:YAG laser rods pumped with a concentrated solar flux of the Big Solar Furnace of the NPO Fizika-Solntse of...

S. A. Bakhramov; Sh. D. Paiziev; Sh. I. Klychev; A. K. Kasimov…

2007-09-01T23:59:59.000Z

380

Sandia National Laboratories: Sandia and EMCORE: Solar Photovoltaics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyRenewable EnergySolarConcentrating Solar PowerSandia and EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency Sandia and EMCORE: Solar...

Note: This page contains sample records for the topic "national solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Solar-thermal-energy collection/storage-pond system  

DOE Patents [OSTI]

A solar thermal energy collection and storage system is disclosed. Water is contained, and the water surface is exposed directly to the sun. The central part of an impermeable membrane is positioned below the water's surface and above its bottom with a first side of the membrane pointing generally upward in its central portion. The perimeter part of the membrane is placed to create a watertight boundary separating the water into a first volume which is directly exposable to the sun and which touches the membranes first side, and a second volumn which touches the membranes second side. A salt is dissolved in the first water volume.

Blahnik, D.E.

1982-03-25T23:59:59.000Z

382

Analysis of the rigid porous manifold as an effevtive device to stratify solar thermal storage tanks.  

E-Print Network [OSTI]

??One of the most effective and simplest methods to maintain thermal stratification of solar hot water storage tanks during charge and discharge is the use… (more)

Ghosh, Vivekananda

2011-01-01T23:59:59.000Z

383

High Temperature InGaN Topping Cells for Hybrid Photovoltaic/Concentrating Solar Thermal Systems  

Science Journals Connector (OSTI)

Hybrid PV/CSP systems offer the potential of higher solar to grid efficiency, with the benefits of dispatchable electricity from thermal storage. Here we present an implementation...

Honsberg, Christiana; Gleckman, Philip; Doolittle, William A; Ponce, Fernando; Arena, Chantal; Vasileska, Dragica; Goodnick, Stephen M

384

Residential building solar thermal analysis| A case study on Sophia Gordon Hall.  

E-Print Network [OSTI]

?? Solar thermal technologies, such as residential hot water heating and space conditioning, have potential for reducing green house gas emissions and fossil fuel consumption.… (more)

Trethewey, Ross M.

2010-01-01T23:59:59.000Z

385

Optimization of central receiver concentrated solar thermal : site selection, heliostat layout & canting .  

E-Print Network [OSTI]

??In this thesis, two new models are introduced for the purposes of (i) locating sites in hillside terrain suitable for central receiver solar thermal plants… (more)

Noone, Corey J. (Corey James)

2011-01-01T23:59:59.000Z

386

Ris Energy Report 5 Solar thermal 41 by the end of 2004 about 110 million m2  

E-Print Network [OSTI]

Risø Energy Report 5 Solar thermal 41 6.3.2 by the end of 2004 about 110 million m2 of solar ther be within the competence of the existing solar thermal industry. Solar thermal PETER AHM, PA ENERgy LTD- mal collectors were installed worldwide. Figure 24 il- lustrates the energy contribution from

387

Sandia National Laboratories: Molten Nitrate Salt Initial Flow...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

David Gill, ddgill@sandia.gov, (505)-844-1524. Tagged with: Concentrating Solar Power * CSP * Molten Salt * molten salt test loop * National Solar Thermal Test Facility * NSTTF *...

388

Sandia National Laboratories: SAND2012-10734W  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

734W Pratt Whitney Rocketdyne Testing On December 19, 2012, in Concentrating Solar Power, EC, Energy, Facilities, National Solar Thermal Test Facility, News, News & Events,...

389

Sandia National Laboratories: concentrates sunlight onto a fall...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

390

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

with Sensible- Heat Storage Solar Power Plant with Sulfurof the Solar Power Plant Storage-Vessel Design, . . . . .System for Chemical Storage of Solar Energy. UC Berkeley,

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

391

Design and Implementation of Tracking System for Dish Solar Thermal Energy Based on Embedded System  

Science Journals Connector (OSTI)

Solar thermal energy has lots of advantages compare with photovoltage ... and stability can’t satisfy the requirements of thermal energy system. This paper gives a design and implementation of tracking system for...

Jian Kuang; Wei Zhang

2012-01-01T23:59:59.000Z

392

Potential of thermal insulation and solar thermal energy in domestic hot water and space heating and cooling sectors in Lebanon in the period 2010 - 2030.  

E-Print Network [OSTI]

??The potential of thermal insulation and solar thermal energy in domestic water heating, space heating and cooling in residential and commercial buildings Lebanon is studied… (more)

Zaatari, Z.A.R.

2012-01-01T23:59:59.000Z

393

SOLAR COLLECTORS, SELECTIVE SURFACES, AND HEAT ENGINES  

Science Journals Connector (OSTI)

SOLAR COLLECTORS, SELECTIVE SURFACES, AND HEAT...Tabor NATIONAL PHYSICAL LABORATORY OF ISRAEL SOLAR COLLECTORS, SELECTIVE SURFACES, AND HEAT...I should be working on the conversion of solar energy to power by thermal means instead...

H. Tabor

1961-01-01T23:59:59.000Z

394

21 - Thermal energy storage systems for concentrating solar power (CSP) technology  

Science Journals Connector (OSTI)

Abstract The option to supply electricity on demand is a key advantage of solar thermal power plants with integrated thermal storage. Diurnal storage systems providing thermal power in the multi-MW range for several hours are required here, the temperature range being between 250 °C and 700 °C. This chapter describes the state of the art in commercial storage systems used in solar thermal power generation. An overview of alternative and innovative storage concepts for this application area is given.

W.-D. Steinmann

2015-01-01T23:59:59.000Z

395

Outdoor testing of advanced optical materials for solar thermal electric applications  

SciTech Connect (OSTI)

The development of low-cost, durable advanced optical materials is an important element in making solar energy viable for electricity production. It is important to determine the expected lifetime of candidate reflector materials in real-world service conditions. The demonstration of the optical durability of such materials in outdoor environments is critical to the successful commercialization of solar thermal electric technologies. For many years optical performance data have been collected and analyzed by the National Renewable Energy Laboratory (NREL) for candidate reflector materials subjected to simulated outdoor exposure conditions. Much of this testing is accelerated in order to predict service durability. Some outdoor testing has occurred but not in a systematic manner. To date, simulated/accelerated testing has been limited correlation with actual outdoor exposure testing. Such a correlation is desirable to provide confidence in lifetime predictions based upon accelerated weathering methods. To obtain outdoor exposure data for realistic environments and to establish a data base for correlating simulated/accelerated outdoor exposure data with actual outdoor exposure data, the development of an expanded outdoor testing program has recently been initiated by NREL. Several outdoor test sites will be selected based on the solar climate, potential for solar energy utilization by industry, and cost of installation. Test results are site dependent because exposure conditions vary with geographical location. The importance of this program to optical materials development is outlined, and the process used to determine and establish the outdoor test sites is described. Candidate material identification and selection is also discussed. 10 refs.

Wendelin, T.J.; Jorgensen, G.; Goggin, R.M.

1992-05-01T23:59:59.000Z

396

Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC)  

Broader source: Energy.gov [DOE]

Introduction to the solid-state solar-thermal energy conversion center plus discussion on phonon transport and solar thermoelectric energy conversion

397

Simulation and experimental study on honeycomb-ceramic thermal energy storage for solar thermal systems  

Science Journals Connector (OSTI)

Abstract A honeycomb-ceramic thermal energy storage (TES) was proposed for thermal utilization of concentrating solar energy. A numerical model was developed to simulate the thermal performances, and TES experiments were carried out to demonstrate and improve the model. The outlet temperature difference between simulation and experimental results was within 5% at the end of a charging period, indicating the simulation model was reasonable. The simulation model was applied to predict the effects of geometric, thermo-physical parameters and flow fluxes on TES performances. The temperature dropped more quickly and decreased to a lower temperature in discharging period when the conductivity was smaller. The storage capacity increased with the growth of volumetric heat capacity. As to a TES with big channels and thin walls, the outlet temperature increased quickly and greatly in a charging process and dropped sharply in a discharging process.

Zhongyang Luo; Cheng Wang; Gang Xiao; Mingjiang Ni; Kefa Cen

2014-01-01T23:59:59.000Z

398

The Solar Power Tower Jülich — A Solar Thermal Power Plant for Test and Demonstration of Air Receiver Technology  

Science Journals Connector (OSTI)

The open volumetric receiver technology allows the use of air as heat transfer medium at high temperatures in solar thermal power tower plants. It combines porous ceramic ... a strictly modular receiver design. H...

K. Hennecke; P. Schwarzbözl; G. Koll…

2009-01-01T23:59:59.000Z

399

Sandia National Laboratories: Planting the "SEEDS" of Solar Technology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage Systems Planting the "SEEDS" of Solar Technology in the Home On June 12, 2014, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar, Solar...

400

Sandia National Laboratories: Solar Glare Hazard Analysis Tool...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to Honolulu Port Solar Glare Hazard Analysis Tool Available for Download On March 13, 2014, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar, Solar...

Note: This page contains sample records for the topic "national solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Sandia National Laboratories: Solar Glare Hazard Analysis Tool  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Download On March 13, 2014, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar, Solar Newsletter Sandia developed the Solar Glare Hazard Analysis Tool...

402

Design and global optimization of high-efficiency solar thermal systems  

E-Print Network [OSTI]

, Massachusetts 02139, USA bermel@mit.edu Abstract: Solar thermal, thermoelectric, and thermophotovoltaic (TPVDesign and global optimization of high-efficiency solar thermal systems with tungsten cermets DavidDepartment of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, Massachusetts

Soljaèiæ, Marin

403

Rapid Solar-thermal Dissociation of Natural Gas in an Aerosol Flow Reactor  

E-Print Network [OSTI]

/or hydrogen powered fuel cell vehicles could help to mitigate the energy supply and environmental problems black production. For solar-thermal processing, where carbon black is sold, fossil energy usageRapid Solar-thermal Dissociation of Natural Gas in an Aerosol Flow Reactor Jaimee Dahl a , Karen

404

Solar thermal power generation: a bibliography with abstracts. Quarterly update, July-September 1979  

SciTech Connect (OSTI)

This annotated bibliography covers the following subjects: energy overviews, solar overviews, energy conservation, economics and law, solar thermal power, thermionic and thermoelectric, ocean thermal energy conversion, wind power, biomass and photochemical energy, and large scale photovoltaics. An author index and a keyword index are included. (MHR)

Not Available

1980-02-01T23:59:59.000Z

405

Solar thermal power generation: a bibliography with abstracts. Quarterly update, April-June 1980  

SciTech Connect (OSTI)

This annotated bibliography covers the following subjects: energy overviews; solar overviews; energy conservation; environment, law, and policy; total energy systems; solar thermal power and energy storage; thermoelectric, thermionic, and thermolysis; Ocean Thermal Energy Conversion; wind energy; biomass; bioconversion, and photochemical; satellite power systems; and photovoltaic applications. (MHR)

Sparkman, T.; Bozman, W.R. (eds.)

1980-08-01T23:59:59.000Z

406

Solar thermal power generation: a bibliography with abstracts. Quarterly update, January-March 1980  

SciTech Connect (OSTI)

This annotated bibliography contains the following: energy overviews, solar overviews, energy conservation, economics and law, total energy systems, solar thermal power, thermionic and thermoelectric, ocean thermal energy conversion, wind power, biomass and photochemical energy, satellite power stations, and large-scale photovoltaics. (MHR)

Not Available

1980-06-01T23:59:59.000Z

407

The Thermal Control of the New Solar Telescope at Big Bear Observatory  

E-Print Network [OSTI]

The Thermal Control of the New Solar Telescope at Big Bear Observatory Angelo P. Verdonia and Carsten Denkera aNew Jersey Institute of Technology, Center for Solar-Terrestrial Research, 323 Martin Luther King Blvd, Newark, NJ 07102, US ABSTRACT We present the basic design of the THermal Control System

408

Integrating Solar Thermal and Photovoltaic Systems in Whole Building Energy Simulation  

E-Print Network [OSTI]

INTEGRATING SOLAR THERMAL AND PHOTOVOLTAIC SYSTEMS IN WHOLE BUILDING ENERGY SIMULATION Soolyeon Cho1 and Jeff S. Haberl2 1The Catholic University of America, Washington, DC 2Texas A&M University, College Station, TX ABSTRACT... This paper introduces methodologies on how the renewable energy generated by the solar thermal and solar photovoltaic (PV) systems installed on site can be integrated in the whole building simulation analyses, which then can be available to analyze...

Cho, S.; Haberl, J.

409

Sandia National Laboratories: virtual time series of solar power...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Modeling & Analysis, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis The book, Solar Energy Forecasting and Resource...

410

Sandia National Laboratories: simulating solar-power-plant output...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Modeling & Analysis, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis The book, Solar Energy Forecasting and Resource...

411

Sandia National Laboratories: Solar Energy Forecasting and Resource...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Modeling & Analysis, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis The book, Solar Energy Forecasting and Resource...

412

Sustainable solar thermal power generation (STPG) technologies in Indian context  

SciTech Connect (OSTI)

India is a fast developing country. Some of the factors like population growth, industrialization, liberalization in economic policies, green revolution and awareness toward the environment, are increasing the electricity demand rapidly. As per the 14th Power Survey Report, an energy deficit of (+) 9% and peak demand deficit of (+) 18% have been estimated. Keeping in view the liberalization in economic policies, this deficit may be higher by the year 2000 AD. An estimation indicates that India is blessed with solar energy to the tune of 5 x 10{sup 15} kWh/yr. Being clean and inexhaustible source of energy, it can be used for large-scale power generation in the country. Keeping in view the present state-of-art technologies for STPG in MW range, best possible efforts are required to be made by all the concerned, to develop sustainable STPG technology of the future, specially for tropical regions. Standardization of vital equipment is an important aspect. There are a few required criteria like simple and robust technology, its transfer and adaptation in tropical climate conditions; high plant load factor without fossil-fired backup; availability of plant during evening peak and night hours; least use of fragile components, and capacity optimization for MW plants as per solar irradiance and environmental factors. In this paper, efforts have been made to compare the different STPG technologies. On the basis, of literature surveyed and studies carried out by the author, it may be stated that Central Receiver System technologies using molten salt and volumetric air receiver, along with molten salt and ceramic thermal storage respectively seems to be suitable and comparable in Indian context. Performance of SOLAR-TWO and PHOEBUS plants may be decisive.

Sharma, R.S. [Ministry of Non-Conventional Energy Sources, New Delhi (India). Solar Energy Centre

1996-12-31T23:59:59.000Z

413

EIA - International Energy Outlook 2009-Solar Photovoltaic and solar  

Gasoline and Diesel Fuel Update (EIA)

Solar Photovoltaic and Solar Thermal Electric Technologies Solar Photovoltaic and Solar Thermal Electric Technologies International Energy Outlook 2009 Solar Photovoltaic and Solar Thermal Electric Technologies Solar power is one of the fastest-growing sources of renewable energy worldwide. Many nations, concerned about the environmental impacts of electricity generation from fossil fuels or from large-scale hydroelectric plants, have been turning to solar power as an environmentally benign alternative. The solar energy that reaches the earth can be harnessed to generate electric power, and the potential for large-scale applications of solar power has improved markedly in recent years. Two solar power technologies—solar photovoltaic and solar thermal—are widely employed today, and their use is likely to increase in the future.

414

Software-as-a-Service Optimised Scheduling of a Solar-Assisted HVAC System with Thermal Storage  

E-Print Network [OSTI]

solar energy available would result in overcharging of the hot storage.of a solar-assisted HVAC system with thermal storage. Energystorage and solar- assisted HVAC for the purpose of optimizing its energy

Mammoli, Andrea

2014-01-01T23:59:59.000Z

415

Application of thermal treatment procedure for concrete with the help of solar energy to construction engineering practice  

Science Journals Connector (OSTI)

The experience of solar energy usage for concreting with the help of different solar radiation devices in Russian regions and in ... reported. Information about the cost efficiency of solar energy usage for thermal

N. I. Podgornov; D. D. Koroteev

2007-10-01T23:59:59.000Z

416

Improving Solar Dryers’ Performances Using Design and Thermal Heat Storage  

Science Journals Connector (OSTI)

Solar drying is one of the most important ... , at the same time as using free solar energy permits to reduce the cost of ... face or to limit the intermittent character of solar energy, storage is proposed as a ...

Lyes Bennamoun

2013-12-01T23:59:59.000Z

417

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

provide solar power plant energy storage for a reasonablefor Chemical Storage of Solar Energy. UC Berkeley, M.S.for a solar power plant without energy storage for nighttime

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

418

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Power Plant Solar Power Ideal Gas Turbine Topping Braytonefficiency of a solar power plant with gas-turbine toppingfor a solar power plant with Brayton-cycle gas turbine

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

419

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Design. Propofied Solar Cooling Tower Type Wet-Cooled Powerdry-cooling tower was used in the proposed solar power plantTower • Power-Generation Subsystem Summary An Overall Summary of the Proposed Solar

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

420

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

Power Plant Solar Power Ideal Gas Turbine Topping Braytonwill require higher parasitic power for gas circulation. Theefficiency of a solar power plant with gas-turbine topping

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "national solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar  

E-Print Network [OSTI]

and moist air for thermal storage of solar energy: global performance Benoit Michela, *, Nathalie Mazeta-gas reaction, hydration, thermal storage, seasonal storage, solar energy * Corresponding author: E-mail: mazet in solar energy. Solar energy is widely affordable and has the capability to meet household demand over

Paris-Sud XI, Université de

422

Quality assurance with the ISFH-Input/Output-Procedure 6-year-experience with 14 solar thermal systems  

E-Print Network [OSTI]

sensors into a solar system with buffer storage tank and direct discharging. Figure 1 shows the sensorsQuality assurance with the ISFH-Input/Output-Procedure 6-year-experience with 14 solar thermal of standard solar thermal systems usually don't recognise failures affecting the solar yield, because

423

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

ADVANCED THERMAL ENERGY STORAGE CONCEPT DEFINITION STUDY FORSchilling. F. E. , Thermal Energy Storage Using PrestressedNo ~cumulate thermal energy storage. Estimate ESTrof2(

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

424

Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation  

E-Print Network [OSTI]

Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation Mike He on the design of a Stirling engine for distributed solar thermal ap- plications. In particular, we design renewable energy applications. A key advantage of a solar thermal system is that they can incorporate

Sanders, Seth

425

Secretary Chu to Tour Sandia National Laboratories and Highlight...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

at the University of New Mexico. Tour of Sandia National Laboratories' National Solar Thermal Test Facility WHO: Congressman Martin Heinrich (NM-1), Energy Secretary Steven...

426

Sandia National Laboratories: Energy Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is collaborating with Sandia National Laboratories on a new concentrated solar power (CSP) installation with thermal energy storage. The CSP storage project combines Areva's...

427

In-Depth: Cleantech at the National Labs | Department of Energy  

Energy Savers [EERE]

- 5:30pm Addthis These solar power collection dishes at Sandia National Labs' National Solar Thermal Test Facility are capable of some of the highest solar to electricity...

428

Green Energy Ohio - GEO Solar Thermal Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ohio - GEO Solar Thermal Rebate Program Ohio - GEO Solar Thermal Rebate Program Green Energy Ohio - GEO Solar Thermal Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Solar Water Heating Program Info Start Date 04/01/2009 State Ohio Program Type Non-Profit Rebate Program Provider Green Energy Ohio With funding from The Sierra Club, Green Energy Ohio (GEO) is offering rebates on residential properties in Ohio for solar water heating systems purchased after April 1, 2009. The rebates are based on the projected energy output from the solar collectors and are calculated at $30 per kBtu/day (based on SRCC rating for "Clear Day/C Interval"). The maximum amount is $2,400 per applicant. There are two parts to the application. PART I of the application collects

429

Oscillating Magnetic Trap and Non-Thermal Emission from Solar Flares  

Science Journals Connector (OSTI)

......connected with the electron thermal conductivity and ion viscosity...1, ed. Galeev A. A., Sudan R. N. (North-Holland Physics...Oscillating Magnetic Trap and Non-Thermal Emission from Solar Flares...scattering of trapped non-thermal electrons (Aschwanden et al......

Yuri Tsap; Yulia Kopylova; Tatiana Goldvarg; Alexander Stepanov

2013-12-05T23:59:59.000Z

430

New Directions in Low Temperature Solar Thermal Storage  

Science Journals Connector (OSTI)

Comprehensive overviews of energy storage techhologies for solar applications are already available [1,2,3...

C. J. Swet

1987-01-01T23:59:59.000Z

431

Efficient solar cooling: first ever non-tracking solar collectors powering a double effect absorption chiller  

E-Print Network [OSTI]

solar thermal technologies. ..Advances in solar thermal electricity technology”. Solar107 1. Introduction Solar thermal technologies have been

Poiry, Heather Marie

2011-01-01T23:59:59.000Z

432

Comparison of the Thermal Performance of a Solar Heating System with Open and Closed Solid Sorption Storage  

Science Journals Connector (OSTI)

Abstract The aim of this paper is to compare two solar heating systems with different solid sorption storage concepts; an open storage concept with material transport and external reactor and a closed sorption storage concept with the material reservoir as reactor. Both storage concepts are part of system concepts that have been investigated during national projects for a period of more than 3 years each. A TRNSYS model has been developed for each concept and the corresponding mathematical model is described. An emphasis is given on the model simplifications and thus its up- and downscaling possibilities. TRNSYS simulation studies were performed using similar boundary conditions. Hence the simulation results can be compared directly, thus the advantages and disadvantages of both concepts under investigation can be elaborated and assessed. TRNSYS simulations have been performed for each system concept using the properties of two different thermochemical storage materials (TCM). It is shown that the type of TCM has a significant influence on the systems fractional thermal energy savings. Using silica gel as TCM, both system concepts’ performances are only slightly better compared to a standard water-filled storage tank of the same size. The TCM zeolite 13 XBF, a binder free 13 X zeolite, leads to significantly better fractional thermal energy savings. Although the two systems under investigation behave differently, the fractional thermal energy savings are similar. High solar thermal fractions up to a complete solar coverage can be achieved for both storage concepts with moderate collector array and store sizes.

Florian Bertsch; Dagmar Jaehnig; Sebastian Asenbeck; Henner Kerskes; Harald Drueck; Waldemar Wagner; Werner Weiss

2014-01-01T23:59:59.000Z

433

National Solar Schools Census 2014 | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

use of solar at K-12 schools, The Solar Foundation (TSF) and its research partners at the Solar Energy Industries Association have built the most comprehensive database known of...

434

Sandia National Laboratories: Areva Solar and Sandia Labs Join...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar PowerAreva Solar and Sandia Labs Join Forces for CLFR Molten-Salt Storage Areva Solar and Sandia Labs Join Forces for CLFR Molten-Salt Storage Dr. David Danielson Visit to...

435

Sandia National Laboratories: Cool Earth Solar and Sandia Team...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyRenewable EnergySolarConcentrating Solar PowerCool Earth Solar and Sandia Team Up in First-Ever Public-Private Partnership on Livermore Valley Open Campus Cool Earth...

436

National Aeronautics and Space Administration A Journey to the Beginning of the Solar System  

E-Print Network [OSTI]

impossible--with a more conventional propulsion system. Two large solar panels, stretching approximately 19National Aeronautics and Space Administration Dawn A Journey to the Beginning of the Solar System of our Solar System. How is this "time travel" possible? Many thousands of small bodies orbit the Sun

Waliser, Duane E.

437

Mexico National Solar Energy Association | Open Energy Information  

Open Energy Info (EERE)

Association Association Jump to: navigation, search Name Mexico National Solar Energy Association Address Calzada Acoxpa no 524 Desp 506-B Colonia Prado Coapa (14350) Mexico Place Mexico Website http://www.anes.org/ Coordinates 19.4968732°, -99.7232673° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19.4968732,"lon":-99.7232673,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

438

National Clean Energy Business Plan Competition: Unified Solar...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

11:01am Addthis Unified Solar's integrated circuit solution helps reduce energy loss for solar panels. The student team from Massachusetts Institute of Technology won the MIT...

439

Sandia National Laboratories: very high solar energy conversion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microgrid, Partnership, Photovoltaic, Renewable Energy, Research & Capabilities, Solar Solar energy is both predictable-the sun rises and sets everyday-and intermittent-a...

440

Sandia National Laboratories: very high solar energy reliability  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microgrid, Partnership, Photovoltaic, Renewable Energy, Research & Capabilities, Solar Solar energy is both predictable-the sun rises and sets everyday-and intermittent-a...

Note: This page contains sample records for the topic "national solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Sandia National Laboratories: high-efficiency solar cells  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

cells Sandia and EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency On March 29, 2013, in Concentrating Solar Power, Energy, Partnership, Photovoltaic,...

442

Sandia National Laboratories: European PV Solar Energy Conference...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

European PV Solar Energy Conference and Exhibition Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) On December 15, 2014, in...

443

Sandia National Laboratories: reduce the cost of solar power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the cost of solar power Launch of Solar Testing Site in Vermont On November 27, 2013, in Energy, Facilities, News, News & Events, Partnership, Photovoltaic, Photovoltaic Regional...

444

Collisional Thermalization of Hydrogen and Helium in Solar Wind Plasma  

E-Print Network [OSTI]

In situ observations of the solar wind frequently show the temperature of $\\alpha$-particles (fully ionized helium), $T_\\alpha$, to significantly differ from that of protons (ionized hydrogen), $T_p$. Many heating processes in the plasma act preferentially on $\\alpha$-particles, even as collisions among ions act to gradually establish thermal equilibrium. Measurements from the $\\textit{Wind}$ spacecraft's Faraday cups reveal that, at $r=1.0\\ \\textrm{AU}$ from the Sun, the observed values of the $\\alpha$-proton temperature ratio, $\\theta_{\\alpha p} \\equiv T_\\alpha\\,/\\,T_p$ has a complex, bimodal distribution. This study applied a simple model for the radial evolution of $\\theta_{\\alpha p}$ to these data to compute expected values of $\\theta_{\\alpha p}$ at $r=0.1\\ \\textrm{AU}$. These inferred $\\theta_{\\alpha p}$-values have no trace of the bimodality seen in the $\\theta_{\\alpha p}$-values measured at $r=1.0\\ \\textrm{AU}$ but are instead consistent with the actions of the known mechanisms for $\\alpha$-particle p...

Maruca, Bennett A; Sorriso-Valvo, Luca; Kasper, Justin C; Stevens, Michael L

2013-01-01T23:59:59.000Z

445

Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)  

SciTech Connect (OSTI)

The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

2013-09-26T23:59:59.000Z

446

Indian Solar Thermal Technology – Technology to Protect Environment and Ecology  

Science Journals Connector (OSTI)

Rising fuel costs and global warming are pushing the development of renewable energy supplies. Solar energy is most promising as unlike wind ... and more predictable. 1 % of the solar energy received on earth wou...

Deepak Gadhia

2011-01-01T23:59:59.000Z

447

Thermal History of Planetary Materials in the Solar Nebula  

Science Journals Connector (OSTI)

The current bulk composition of planets has been cast in some extent during the early history of the solar system, associated with the formation and evolution of the solar nebula. Particularly, this stage regu...

T. V. Ruzmaikina

1995-01-01T23:59:59.000Z

448

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

Since the ceramic wafers have a high thermal conductivity,easily altered ceramic blocks all had a thermal conductivityCeramics. Available Online: http://www.dynacer.com/thermal_

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

449

Analyzing the efficiency of a photovoltaic-thermal solar collector based on heat pipes  

Science Journals Connector (OSTI)

The structure of a photovoltaic/thermal solar collector based on aluminum heat pipes and ... , along with the results from analyzing its efficiency. Its optimum mode of operation is shown...

S. M. Khairnasov

2014-01-01T23:59:59.000Z

450

Analysis of a solar dish–Stirling system with hybridization and thermal storage  

Science Journals Connector (OSTI)

A high potential of thermosolar power generation systems is the use of thermal storage and/or hybridization to overcome dependability of solar resource availability. The incorporation of these technologies ... on...

Carlos Monné; Yolanda Bravo…

2014-07-01T23:59:59.000Z

451

Indirect estimation of energy disposition by non-thermal electrons in solar flares  

Science Journals Connector (OSTI)

The broad-band EUV and microwave fluxes correlate strongly with hard X-ray fluxes in the impulsive phase of a solar flare. This note presents numerical aids for the estimation of the non-thermal electron fluxe...

H. S. Hudson; R. C. Canfield; S. R. Kane

1978-11-01T23:59:59.000Z

452

Solar Thermal Energy Use in EU-27 Countries: Evolution and Promotion  

Science Journals Connector (OSTI)

Growth in the use of renewable energies in the 27 European Union (EU-27 ... past decade has been remarkable. Among these energies is solar thermal energy (STE). The average annual growth rate ... has reached almo...

María P. del Pablo-Romero; Antonio Sánchez-Braza; Enrique Lerma

2013-01-01T23:59:59.000Z

453

Electrodeposition and characterization of nanostructured black nickel selective absorber coatings for solar–thermal energy conversion  

Science Journals Connector (OSTI)

Selective coatings consisting of a bright nickel interlayer and black nickel overlayer for solar-to-thermal energy conversion have been electrodeposited onto stainless steel...2, NiOOH, Ni2O3..., NiO, water and m...

F. I. Lizama-Tzec; J. D. Macías…

2014-08-01T23:59:59.000Z

454

Multi-objective genetic algorithm for the optimization of a flat-plate solar thermal collector  

Science Journals Connector (OSTI)

We present a multi-objective genetic algorithm we developed for the optimization of a flat-plate solar thermal collector. This collector consists of a waffle-shaped Al substrate with...

Mayer, Alexandre; Gaouyat, Lucie; Nicolay, Delphine; Carletti, Timoteo; Deparis, Olivier

2014-01-01T23:59:59.000Z

455

Development of a Solar-Thermal ZnO/Zn Water-Splitting Thermochemical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of a Solar-thermal ZnOZn Water-splitting Thermochemical Cycle Final Report (DE-PS36-03GO93007 - Subcontract RF-05-SHGR-006) Alan W. Weimer (PI), Christopher Perkins,...

456

Thermal Solar Energy Systems for Space Heating of Buildings  

E-Print Network [OSTI]

to compensate the deficit. In this case a traditional solar heating system having the same characteristics with regard to the solar collecting area and the volume of storage tank is used. It can be concluded that the space heating system using a solar energy...

Gomri, R.; Boulkamh, M.

2010-01-01T23:59:59.000Z

457

Performance comparison of thermal energy storage oils for solar cookers during charging  

Science Journals Connector (OSTI)

Abstract Charging experiments to evaluate the thermal performance of three thermal energy storage oils for solar cookers are presented. An experimental setup using an insulated 20 L storage tank is used to perform the experiments. The three thermal oils evaluated are Sunflower Oil, Shell Thermia C and Shell Thermia B. Energy and exergy based thermal performance parameters are evaluated. A new parameter, the exergy factor, is proposed which evaluates the ratio of the exergy content to the energy content. Sunflower Oil performs better than the other thermal oils under high power charging. Thermal performances of the oils are comparable under low power charging.

Ashmore Mawire; Abigail Phori; Simeon Taole

2014-01-01T23:59:59.000Z

458

OLADE-Solar Thermal World Portal | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » OLADE-Solar Thermal World Portal Jump to: navigation, search Tool Summary Name: OLADE-Solar Thermal World Portal Agency/Company /Organization: Latin American Energy Organization (OLADE) Sector: Energy Focus Area: Renewable Energy, Solar, - Concentrating Solar Power, - Solar Hot Water User Interface: Website Website: www.solarthermalworld.org/ Cost: Free UN Region: Caribbean, South America Language: "English, Spanish; Castilian" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Proven√ßal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volap√ºk, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

459

A dynamic thermal performance model for flat-plate solar collectors based on the thermal inertia correction of the steady-state test method  

Science Journals Connector (OSTI)

Abstract In determining the dynamic thermal performance of a flat-plate solar collector, when the instantaneous solar irradiance changes sharply at one moment, most of the existing models cannot accurately predict the momentary thermal characteristics of outlet temperature and useful heat gain. In the present study, an analytical model in the form of series expansion is put forward to depict the momentary thermal characteristics of flat-plate solar collectors. The analytical model reveals that, instantaneous useful heat gain of a solar collector at one moment consists of the steady-state useful heat gain and corresponding thermal inertia correction. The model is then validated by the experimental data. It indicates that the analytical model can properly predict the dynamic thermal performance of the solar air collector. Besides, the model pertains to other types of solar thermal collectors, if they can be tested by the steady-state test method.

Jie Deng; Yupeng Xu; Xudong Yang

2015-01-01T23:59:59.000Z

460

Pressure drops for direct steam generation in line-focus solar thermal systems  

E-Print Network [OSTI]

the focus of the solar collector, and then generate steam outside the collector in a large heat exchanger applicable to DSG in long horizontal pipes as required for the current work with a line-focus collector. #12Pressure drops for direct steam generation in line-focus solar thermal systems John Pye1 , Graham

Note: This page contains sample records for the topic "national solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Biomass Gasification using Solar Thermal Energy M. Munzinger and K. Lovegrove  

E-Print Network [OSTI]

.lovegrove@anu.edu.au Hydrogen from Biomass as an energy carrier has generated increasing interest in recent years in connection with the use of solar heat as energy source for the conversion reaction. Biomass gasification effective as high energy density transport fuels. Gas derived from solar thermal conversion of biomass

462

Unglazed transpired solar collector having a low thermal-conductance absorber  

DOE Patents [OSTI]

An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprises an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution. 3 figs.

Christensen, C.B.; Kutscher, C.F.; Gawlik, K.M.

1997-12-02T23:59:59.000Z

463

Unglazed transpired solar collector having a low thermal-conductance absorber  

DOE Patents [OSTI]

An unglazed transpired solar collector using solar radiation to heat incoming air for distribution, comprising an unglazed absorber formed of low thermal-conductance material having a front surface for receiving the solar radiation and openings in the unglazed absorber for passage of the incoming air such that the incoming air is heated as it passes towards the front surface of the absorber and the heated air passes through the openings in the absorber for distribution.

Christensen, Craig B. (Boulder, CO); Kutscher, Charles F. (Golden, CO); Gawlik, Keith M. (Boulder, CO)

1997-01-01T23:59:59.000Z

464

Tax Revenue and Job Benefits from Solar Thermal Power Plants in Nye County  

SciTech Connect (OSTI)

The objective of this report is to establish a common understanding of the financial benefits that the County will receive as solar thermal power plants are developed in Amargosa Valley. Portions of the tax data and job estimates in the report were provided by developers Solar Millennium and Abengoa Solar in support of the effort. It is hoped that the resulting presented data will be accepted as factual reference points for the ensuing debates and financial decisions concerning these development projects.

Kuver, Walt

2009-11-10T23:59:59.000Z

465

A DANISH SOLAR THERMAL ENERGY DATA BASE FOR HEATING SYSTEM DESIGN  

Science Journals Connector (OSTI)

ABSTRACT Successful design of solar heating systems is readily achieved if the designer has access to representative weather data and tested performance algorithms. This paper describes how updated solar radiation data have been provided via a public database system in Denmark. This work was carried out in cooperation with VE-data at Ålborg University and with the support of the Danish National Council of Technology (Teknologirådet). The product of this work is Solar Energy Program Package (SEPP) for IBM PC compatible computers. The Package provides a tool based on the f-chart method1 for use in the design and evaluation of solar water heating systems and solar space/hot water heating systems. A program for the economic evaluation of solar energy heating system is also supplied. KEYWORDS Solar energy database; f-chart method; Kt method; weather data; economics of solar heating; IBM compatible; software.

lektor Frank Bason

1988-01-01T23:59:59.000Z

466

Team Canada Returns to the Solar Decathlon with First Nation Values in Mind  

Broader source: Energy.gov (indexed) [DOE]

Team Canada Returns to the Solar Decathlon with First Nation Values Team Canada Returns to the Solar Decathlon with First Nation Values in Mind Team Canada Returns to the Solar Decathlon with First Nation Values in Mind June 2, 2011 - 5:30pm Addthis A model of Team Canada's TRTL house | Courtest of Riley Brandt, Team Canada A model of Team Canada's TRTL house | Courtest of Riley Brandt, Team Canada April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this project do? Team Canada's 2011 Solar Decathlon house -- which is known as TRTL (Technological Residence that respects Traditional Living.) -- addresses critical housing issues in Alberta, Canada's Aboriginal communities. In honor of the U.S Department of Energy's Solar Decathlon -- which challenges 20 collegiate teams to design, build, and operate solar-powered

467

Thermal and Hydraulic Design of a Solar Collector Field for a Primary School Pool  

Science Journals Connector (OSTI)

Abstract The methodology and results of the thermal and hydraulic design for a solar heating field of an elementary school's semi-olympic pool is presented. Improved flat solar collectors with copper tube and aluminum fins were used. From own experiences, many Mexican solar fields do not operate correctly because of their poor flow balance (irrigation), may be due to lack of attention given to this aspect. That's why the research of this work focuses on studying the behavior of the pressure drop in a hydraulic arrangement, particularly of this facility, in which all collector batteries are connected in parallel. Previously two solar collectors were sent to a specialized laboratory for certification tests, obtaining the optimum water flow value for maximum thermal efficiency. The results show an optimum range between 4 and 11 L/min. On the other hand, the development of a thermal model based on a temporal energy balance, allowed us to determine that the optimum solar heating area is around 338 m2, using 195 flat-coated solar collectors, with copper tube and aluminum fin. For this heating system a water volume/solar collection area relation, called REVA, of 1.45m3/m2 was obtained. Referred to the hydraulic design and using the program EPANET 2.0 it was found that in the proposed arrangement, 192 solar collectors were irrigated with the optimal range and only 2 solar collectors were below the lower range at 3 L/min.

Rubén Dorantes; Georgina García; Carlos Salazar; Heber Oviedo; Humberto González; Raúl Alanis; Edgar Salazar; Ignacio R. Martín-Dominguez

2014-01-01T23:59:59.000Z

468

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

OF CALIFORNIA RIVERSIDE Phase Change Materials for ThermalOF THE THESIS Phase Change Materials for Thermal Energyto utilize phase change materials (PCM’s) to enhance thermal

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

469

Phase Change Materials for Thermal Energy Storage in Concentrated Solar Thermal Power Plants  

E-Print Network [OSTI]

PHASE CHANGE THERMAL ENERGY STORAGE FOR CONCENTRATING SOLARChange Materials for Thermal Energy Storage in ConcentratedChange Materials for Thermal Energy Storage in Concentrated

Hardin, Corey Lee

2011-01-01T23:59:59.000Z

470

Control of thermal emittance of stainless steel using sputtered tungsten thin films for solar thermal power applications  

Science Journals Connector (OSTI)

Abstract Low thermal emittance is the key factor of a solar collector. For high temperature solar thermal applications, low emittance is an important parameter, because the thermal radiative losses of the absorbers increase proportionally by T4. Our primary motivation for carrying out this work has been to lower the thermal emittance of stainless steel substrate (intrinsic emittance=0.12–0.13) by coating a thin film of high infrared (IR) reflecting tungsten (W). Tungsten thin films were deposited on stainless steel substrates using a glow discharge direct current magnetron sputtering system. Emittance as low as 0.03 was obtained by varying the thickness of W coating on stainless steel substrate. The influences of structural, morphological and electrical properties of the W coating on its emittance values are studied. The effect of substrate roughness on the emittance of W coating is also examined. Thermal stability of the W coatings is studied in both vacuum and air. In order to demonstrate the effect of W interlayer, solar selective coating of AlTiN/AlTiON/AlTiO tandem absorber was deposited on W coated stainless steel substrates, which exhibited absorptance of 0.955 and emittance of 0.08 with a thermal stability up to 600 °C in vacuum.

K.P. Sibin; Siju John; Harish C. Barshilia

2015-01-01T23:59:59.000Z

471

Testing thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems used in parabolic trough solar power plants.  

SciTech Connect (OSTI)

Parabolic trough power systems that utilize concentrated solar energy to generate electricity are a proven technology. Industry and laboratory research efforts are now focusing on integration of thermal energy storage as a viable means to enhance dispatchability of concentrated solar energy. One option to significantly reduce costs is to use thermocline storage systems, low-cost filler materials as the primary thermal storage medium, and molten nitrate salts as the direct heat transfer fluid. Prior thermocline evaluations and thermal cycling tests at the Sandia National Laboratories' National Solar Thermal Test Facility identified quartzite rock and silica sand as potential filler materials. An expanded series of isothermal and thermal cycling experiments were planned and implemented to extend those studies in order to demonstrate the durability of these filler materials in molten nitrate salts over a range of operating temperatures for extended timeframes. Upon test completion, careful analyses of filler material samples, as well as the molten salt, were conducted to assess long-term durability and degradation mechanisms in these test conditions. Analysis results demonstrate that the quartzite rock and silica sand appear able to withstand the molten salt environment quite well. No significant deterioration that would impact the performance or operability of a thermocline thermal energy storage system was evident. Therefore, additional studies of the thermocline concept can continue armed with confidence that appropriate filler materials have been identified for the intended application.

Kelly, Michael James; Hlava, Paul Frank; Brosseau, Douglas A.

2004-07-01T23:59:59.000Z

472

Thermal distributions in stellar plasmas, nuclear reactions and solar neutrinos  

E-Print Network [OSTI]

The physics of nuclear reactions in stellar plasma is reviewed with special emphasis on the importance of the velocity distribution of ions. Then the properties (density and temperature) of the weak-coupled solar plasma are analysed, showing that the ion velocities should deviate from the Maxwellian distribution and could be better described by a weakly-nonexstensive (|q-1|solar neutrino fluxes, and on the pp neutrino energy spectrum, and analyse the consequences for the solar neutrino problem.

M. Coraddu; G. Kaniadakis; A. Lavagno; M. Lissia; G. Mezzorani; P. Quarati

1998-11-24T23:59:59.000Z

473

Thermodynamic Analysis And Simulation Of A Solar Thermal Power System.  

E-Print Network [OSTI]

??Solar energy is a virtually inexhaustible energy resource, and thus, has great potential in helping meet many of our future energy requirements. Current technology used… (more)

Harith, Akila

2012-01-01T23:59:59.000Z

474

Solar cooking : the development of a thermal battery .  

E-Print Network [OSTI]

??There are many rural area in the world where cooking fuel is very scarce. One solution to this problem is to use solar energy to… (more)

Cutting, Alexander Chatfield

2007-01-01T23:59:59.000Z

475

Research Program - Center for Solar and Thermal Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In the Inorganic PV thrust, we develop nanostructured materials architectures for solar energy conversion by engineering absorption and transport properties not available in the...

476

SENSIBLE HEAT STORAGE FOR A SOLAR THERMAL POWER PLANT  

E-Print Network [OSTI]

ollection subsystem uses heliostats and a central receiverhr Installed Cost of the Heliostats* - Installed Cost of thein Chapter 4. Table 2-4. Heliostats Reference Solar Power

Baldwin, Thomas F.

2011-01-01T23:59:59.000Z

477

Wind Issues in Solar Thermal Performance Ratings: Preprint  

SciTech Connect (OSTI)

We suggest that wind bias against unglazed solar water heaters be mitigated by using a calibrated collector model to derive a wind correction to the measured efficiency curve.

Burch, J.; Casey, R.

2009-04-01T23:59:59.000Z

478

Rock bed thermal storage for concentrating solar power plants.  

E-Print Network [OSTI]

??ENGLISH ABSTRACT: Concentrating solar power plants are a promising means of generating electricity. However, they are dependent on the sun as a source of energy,… (more)

Allen, Kenneth Guy

2014-01-01T23:59:59.000Z

479

An Analysis of Solar Thermal Technologies Integrated into a Canadian Office Building  

Science Journals Connector (OSTI)

Abstract This paper presents an analysis of three innovative solar heating and cooling systems integrated into a typical high performance office building in Montreal, Québec, Canada. A base case energy model of the office is first created in TRNSYS and used to determine the building thermal loads and the end use energy use distribution. This model then serves as the base for the analysis of several reference cases and innovative solar systems, including solar driven absorption chiller and heat pump designs. Results highlight the importance of operating the solar system in both heating and cooling modes. A combination of a GSHP with a solar driven chiller and direct solar heating was found to achieve the highest primary energy savings, with a 76% reduction relative to a standard reference system. The highest solar fractions were obtained for a solar driven absorption heat pump, with the system achieving an annual solar fraction of 0.31 while meeting nearly the entire heating load and a significant portion of the cooling load of a typical building floor through solar energy. It was concluded that the most practical application of solar energy for this building type and climate involved using solar energy to supplement a highly efficient base mechanical system such as a heat pump. Future work will examine additional climate regions and control strategies for system operations.

Justin Tamasauskas; Martin Kegel; Roberto Sunye

2014-01-01T23:59:59.000Z

480

Task 39 Exhibition – Assembly of Polymeric Components for a New Generation of Solar Thermal Energy Systems  

Science Journals Connector (OSTI)

Abstract IEA SHC Task 39 is dedicated to the development, optimization and deployment of materials and designs for polymer based solar thermal systems and components. To increase the confidence in polymeric solar thermal applications, Task 39 actively supports international research activities and seeks to promote successful applications and state-of-the-art products. For the SHC conference 2013, different polymeric components suitable for domestic hot water preparation and space heating were singled out for an exhibition. Promising polymeric collectors, air collectors, thermosiphons, storage tanks and other components from industrial partners all over the world were brought to Freiburg and assembled at the Fraunhofer-Institute for Solar Energy Systems ISE. The resulting SHC Task 39 Exhibition of polymeric components shows the feasibility of all-polymeric solar thermal systems and highlights their potential, especially as scalable and modular applications for building integration or as export products to sunny regions.

Michael Koehl; Sandrin Saile; Andreas Piekarczyk; Stephan Fischer

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "national solar thermal" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules  

E-Print Network [OSTI]

A model of the thermal processing of particles in solar nebula shocks: Application to the cooling for the thermal processing of particles in shock waves typical of the solar nebula. This shock model improves are accounted for in their ef fects on the mass, momentum and energy fluxes. Also, besides thermal exchange

Connolly Jr, Harold C.

482

Sandia National Laboratories: Compact Linear Fesnel Reflector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is collaborating with Sandia National Laboratories on a new concentrated solar power (CSP) installation with thermal energy storage. The CSP storage project combines Areva's...

483

Sandia National Laboratories: Careers: Students & Postdocs: Internship...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SENTINL: Energy Surety Incubator enter alt text ESI Class of 2011 at the National Solar Thermal Test Facility. When offered Summer only Who can apply Undergraduate and graduate...

484

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

the thermoelectric module, and the water cooling tubes. Tothermoelectric module, combined with the thermal power transferred by the water cooling

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

485

Unique Challenges in the Design and Operation Philosophy of Solar Thermal Power Plants  

Science Journals Connector (OSTI)

Abstract Solar thermal power plant design and operation philosophy involves unique challenges as compared to design of conventional thermal power plants. The solar receiver operation should be able to absorb maximum solar load during transient events like daily start-up and shut-down. This requires aggressive ramp rates for transient operation of the power plant. However, the component and system level limitations must be considered in formulating these modes of operation and ramp rates. A solar receiver which usually receives heat from heliostats is designed to receive high heat flux to operate at high temperature and pressure during daytime. However, during night-time the receiver receives no heat flux and is losing heat to the environment. Day-night cyclic operation of a solar thermal power plant induces thermal cycles in the solar receiver pressure parts. Since solar receiver tubes are not insulated, the amplitude of thermal cycling is significant and needs to be addressed with proper tools and design approach. Besides, higher plant cycle efficiency requires higher operating temperature and pressure of a solar receiver, further increasing the amplitude of thermal cycling. The system level and component level response to these day-night cycles has a significant impact on modes of operation as well as on the life usage of various components. It also affects the design, specifications and operation of various plant level components. The solar thermal power plant design and operation process is optimized by having a system level thermal-hydraulics model for the solar receiver to simulate the transient start-up and shut-down events. Since all of the major components of the system are included in the model, it reflects the transient response of each of the components on each other and on the overall system. This simulation can be used to generate input conditions for component level life usage analysis. The component level life usage analysis is done using the finite-element method. The component level life usage analysis determines the permissible ramp rates. The thermal-hydraulics dynamic simulation outlines the operational philosophy of the system.

R. Terdalkar; H. Qian; G. Ye

2014-01-01T23:59:59.000Z

486

Application of solar thermal energy to buildings and industry  

SciTech Connect (OSTI)

Flat plate collectors and evacuated tube collectors are described, as are parabolic troughs, Fresnel lenses, and compound parabolic concentrators. Use of solar energy for domestic hot water and for space heating and cooling are discussed. Some useful references and methods of system design and sizing are given. This includes mention of the importance of economic analysis. The suitability of solar energy for industrial use is discussed, and solar ponds, point-focus receivers and central receivers are briefly described. The use of solar energy for process hot water, drying and dehydration, and process steam are examined, industrial process heat field tests by the Department of Energy are discussed, and a solar total energy system in Shenandoah, GA is briefly described. (LEW)

Kutscher, C. F.

1981-05-01T23:59:59.000Z

487

National passive solar conference, 4th, Kansas City, MO, October 3-5, 1979, proceedings. Volume 4  

SciTech Connect (OSTI)

Papers concern recent experience in the research, development and application of passive solar technology. Specific topics include the legislative barriers and incentives to passive solar systems, coupled thermal and lighting simulations for evaluating daylighting design effectiveness, passive solar applications in inner city housing, radiative cooling in a desert climate, salinity gradient solar ponds, the retrofit of a masonry home for passive space heating, the performances of active and passive solar domestic hot water systems, builder experience with passive solar home construction, the use of solar energy installations on farm buildings, and a method of determining the thermal performance of passive storage walls.

Franta, G.

1981-01-01T23:59:59.000Z

488

Solar thermal collector system modeling and testing for novel solar cooker  

E-Print Network [OSTI]

Solar cookers are aimed at reducing pollution and desertification in the developing world. However, they are often disregarded as they do not give users the ability to cook after daylight hours. The Wilson solar cooker is ...

Foley, Brian, S.B. (Brian M.). Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

489

Numerical Study on the Thermal Environment of UFAD System with Solar Chimney for the Data Center  

Science Journals Connector (OSTI)

Abstract To improve the thermal environment in the data center, a solar chimney was integrated with Under-floor Air Distribution (UFAD) system in the Computational Fluid Dynamics (CFD) software Airpak. By using the validated model, three types of solar chimney, such as solar chimney transversely over the hot and cold aisles, solar chimney lengthways above the cold or hot aisles, were simulated. The comparison between the model calculation result shows that all types of solar chimneys used in this paper has great potential in providing a better temperature and airflow distribution. Especially in the case of the solar chimney above the cold aisle, the temperature in upper zone of cold aisle can be decreased by 13 °C, and the temperature field inside the rack is improved greatly without any additional power.

Kai Zhang; Xiaosong Zhang; Shuhong Li; Geng Wang

2014-01-01T23:59:59.000Z

490

DOE/EA-1663: Environmental Assessment for BP Solar Array Project Brookhaven National Laboratory (December 2009)  

Broader source: Energy.gov (indexed) [DOE]

BP SOLAR ARRAY PROJECT BP SOLAR ARRAY PROJECT BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK Brookhaven Site Office December 2009 DOE/EA-1663 i Table of Contents 1.0 PREFACE ........................................................................................................................... 1 2.0 SUMMARY.......................................................................................................................... 2 3.0 PURPOSE AND NEED .................................................................................................... 12

491

A two dimensional thermal network model for a photovoltaic solar wall  

SciTech Connect (OSTI)

A two dimensional thermal network model is proposed to predict the temperature distribution for a section of photovoltaic solar wall installed in an outdoor room laboratory in Concordia University, Montreal, Canada. The photovoltaic solar wall is constructed with a pair of glass coated photovoltaic modules and a polystyrene filled plywood board as back panel. The active solar ventilation through a photovoltaic solar wall is achieved with an exhaust fan fixed in the outdoor room laboratory. The steady state thermal network nodal equations are developed for conjugate heat exchange and heat transport for a section of a photovoltaic solar wall. The matrix solution procedure is adopted for formulation of conductance and heat source matrices for obtaining numerical solution of one dimensional heat conduction and heat transport equations by performing two dimensional thermal network analyses. The temperature distribution is predicted by the model with measurement data obtained from the section of a photovoltaic solar wall. The effect of conduction heat flow and multi-node radiation heat exchange between composite surfaces is useful for predicting a ventilation rate through a solar ventilation system. (author)

Dehra, Himanshu [1-140 Avenue Windsor, Lachine, Quebec (Canada)

2009-11-15T23:59:59.000Z

492

Sandia National Laboratories: High-Efficiency Solar Thermochemical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 9, 2014, in Center for Infrastructure Research and Innovation (CIRI), Concentrating Solar Power, Energy, Energy Storage, Energy Storage Systems, Facilities, Infrastructure...

493

Sandia National Laboratories: high-efficiency solar thermochemical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 9, 2014, in Center for Infrastructure Research and Innovation (CIRI), Concentrating Solar Power, Energy, Energy Storage, Energy Storage Systems, Facilities, Infrastructure...

494

Sandia National Laboratories: solar-driven thermochemical water...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 9, 2014, in Center for Infrastructure Research and Innovation (CIRI), Concentrating Solar Power, Energy, Energy Storage, Energy Storage Systems, Facilities, Infrastructure...

495

Sandia National Laboratories: control key solar cell material...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4, 2014, in Energy, Materials Science, News, News & Events, Photovoltaic, Renewable Energy, Research & Capabilities, Solar Sandia researchers have received a 1.2M award from...

496

Sandia National Laboratories: PNM Distributed Energy Solar Power...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PNM Distributed Energy Solar Power Program Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution...

497

Sandia National Laboratories: control key solar cell interfaces  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4, 2014, in Energy, Materials Science, News, News & Events, Photovoltaic, Renewable Energy, Research & Capabilities, Solar Sandia researchers have received a 1.2M award from...

498

Sandia National Laboratories: character-izing solar-power-plant...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

character-izing solar-power-plant output variability Sandia PV Team Publishes Book Chapter On January 21, 2014, in Computational Modeling & Simulation, Energy, Modeling & Analysis,...

499

Working fluid selection for an increased efficiency hybridized geothermal-solar thermal power plant in Newcastle, Utah.  

E-Print Network [OSTI]

??Renewable sources of energy are of extreme importance to reduce greenhouse gas emissions from traditional power plants. Such renewable sources include geothermal and solar thermal… (more)

Carnell, John Walter

2012-01-01T23:59:59.000Z

500

Thermal Analysis of Compound—Parabolic Concentrating Solar Energy Collectors  

Science Journals Connector (OSTI)

Despite the vast attention devoted recently to the design and development of effective collectors for harnessing solar energy at medium and high temperatures (>100° ... in the design of the compound parabolic con...

B. Norton; D. E. Prapas

1987-01-01T23:59:59.000Z