Powered by Deep Web Technologies
Note: This page contains sample records for the topic "national reactor testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Idaho National Laboratory Advanced Test Reactor Probabilistic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment September 19, 2012...

2

PIA - Advanced Test Reactor National Scientific User Facility...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor...

3

Advanced Test Reactor National Scientific User Facility  

Science Conference Proceedings (OSTI)

The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

2011-08-01T23:59:59.000Z

4

The Advanced Test Reactor National Scientific User Facility  

Science Conference Proceedings (OSTI)

Symposium, Materials Solutions for the Nuclear Renaissance ... U.S. Department of Energy designated the Advanced Test Reactor (ATR) as a National Scientific ...

5

Idaho National Laboratory Advanced Test Reactor Probabilistic Risk  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment September 19, 2012 Presenter: Bentley Harwood, Advanced Test Reactor Nuclear Safety Engineer Battelle Energy Alliance Idaho National Laboratory Topics covered: PRA studies began in the late 1980s 1989, ATR PRA published as a summary report 1991, ATR PRA full report 1994 and 2004 various model changes 2011, Consolidation, update and improvement of previous PRA work 2012/2013, PRA risk monitor implementation Idaho National Laboratory Advanced Test Reactor Probabilistic Risk Assessment More Documents & Publications DOE's Approach to Nuclear Facility Safety Analysis and Management Nuclear Regulatory Commission Handling of Beyond Design Basis Events for

6

Advanced Test Reactor National Scientific User Facility Partnerships  

SciTech Connect

In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin-Madison; (8) Illinois Institute of Technology (IIT) Materials Research Collaborative Access Team (MRCAT) beamline at Argonne National Laboratory's Advanced Photon Source; and (9) Nanoindenter in the University of California at Berkeley (UCB) Nuclear Engineering laboratory Materials have been analyzed for ATR NSUF users at the Advanced Photon Source at the MRCAT beam, the NIST Center for Neutron Research in Gaithersburg, MD, the Los Alamos Neutron Science Center, and the SHaRE user facility at Oak Ridge National Laboratory (ORNL). Additionally, ORNL has been accepted as a partner facility to enable ATR NSUF users to access the facilities at the High Flux Isotope Reactor and related facilities.

Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

2012-03-01T23:59:59.000Z

7

The Advanced Test Reactor National Scientific User Facility  

Science Conference Proceedings (OSTI)

In 2007, the Advanced Test Reactor (ATR), located at Idaho National Laboratory (INL), was designated by the Department of Energy (DOE) as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by approved researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide those researchers with the best ideas access to the most advanced test capability, regardless of the proposer’s physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, obtained access to additional PIE equipment, taken steps to enable the most advanced post-irradiation analysis possible, and initiated an educational program and digital learning library to help potential users better understand the critical issues in reactor technology and how a test reactor facility could be used to address this critical research. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program invited universities to nominate their capability to become part of a broader user facility. Any university is eligible to self-nominate. Any nomination is then peer reviewed to ensure that the addition of the university facilities adds useful capability to the NSUF. Once added to the NSUF team, the university capability is then integral to the NSUF operations and is available to all users via the proposal process. So far, six universities have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these university capabilities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user’s technical needs. The current NSUF partners are shown in Figure 1. This article describes the ATR as well as the expanded capabilities, partnerships, and services that allow researchers to take full advantage of this national resource.

Todd R. Allen; Collin J. Knight; Jeff B. Benson; Frances M. Marshall; Mitchell K. Meyer; Mary Catherine Thelen

2011-08-01T23:59:59.000Z

8

Advanced Test Reactor National Scientific User Facility Progress  

SciTech Connect

The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) is one of the world’s premier test reactors for studying the effects of intense neutron radiation on reactor materials and fuels. The ATR began operation in 1967, and has operated continuously since then, averaging approximately 250 operating days per year. The combination of high flux, large test volumes, and multiple experiment configuration options provide unique testing opportunities for nuclear fuels and material researchers. The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected highly-enriched uranium fueled, reactor with a maximum operating power of 250 MWth. The ATR peak thermal flux can reach 1.0 x1015 n/cm2-sec, and the core configuration creates five main reactor power lobes (regions) that can be operated at different powers during the same operating cycle. In addition to these nine flux traps there are 68 irradiation positions in the reactor core reflector tank. The test positions range from 0.5” to 5.0” in diameter and are all 48” in length, the active length of the fuel. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. Goals of the ATR NSUF are to define the cutting edge of nuclear technology research in high temperature and radiation environments, contribute to improved industry performance of current and future light water reactors, and stimulate cooperative research between user groups conducting basic and applied research. The ATR NSUF has developed partnerships with other universities and national laboratories to enable ATR NSUF researchers to perform research at these other facilities, when the research objectives cannot be met using the INL facilities. The ATR NSUF program includes a robust education program enabling students to participate in their research at INL and the partner facilities, attend the ATR NSUF annual User Week, and compete for prizes at sponsored conferences. Development of additional research capabilities is also a key component of the ATR NSUF Program; researchers are encouraged to propose research projects leading to these enhanced capabilities. Some ATR irradiation experiment projects irradiate more specimens than are tested, resulting in irradiated materials available for post irradiation examination by other researchers. These “extra” specimens comprise the ATR NSUF Sample Library. This presentation will highlight the ATR NSUF Sample Library and the process open to researchers who want to access these materials and how to propose research projects using them. This presentation will provide the current status of all the ATR NSUF Program elements. Many of these were not envisioned in 2007, when DOE established the ATR NSUF.

Frances M. Marshall; Todd R. Allen; James I. Cole; Jeff B. Benson; Mary Catherine Thelen

2012-10-01T23:59:59.000Z

9

Advanced Test Reactor National Scientific User Facility 2010 Annual Report  

Science Conference Proceedings (OSTI)

This is the 2010 ATR National Scientific User Facility Annual Report. This report provides an overview of the program for 2010, along with individual project reports from each of the university principal investigators. The report also describes the capabilities offered to university researchers here at INL and at the ATR NSUF partner facilities.

Mary Catherine Thelen; Todd R. Allen

2011-05-01T23:59:59.000Z

10

Operational Philosophy for the Advanced Test Reactor National Scientific User Facility  

SciTech Connect

In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groups conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.

J. Benson; J. Cole; J. Jackson; F. Marshall; D. Ogden; J. Rempe; M. C. Thelen

2013-02-01T23:59:59.000Z

11

Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility  

Science Conference Proceedings (OSTI)

The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 “flux traps” (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loop’s temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation.

Douglas M. Gerstner

2009-05-01T23:59:59.000Z

12

Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research  

SciTech Connect

The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called User’s Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. User’s week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

John Jackson; Todd Allen; Frances Marshall; Jim Cole

2013-03-01T23:59:59.000Z

13

The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology  

Science Conference Proceedings (OSTI)

To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team projects and faculty/staff exchanges. In June of 2008, the first week-long ATR NSUF Summer Session was attended by 68 students, university faculty and industry representatives. The Summer Session featured presentations by 19 technical experts from across the country and covered topics including irradiation damage mechanisms, degradation of reactor materials, LWR and gas reactor fuels, and non-destructive evaluation. High impact research results from leveraging the entire research infrastructure, including universities, industry, small business, and the national laboratories. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. Current partner facilities include the MIT Reactor, the University of Michigan Irradiated Materials Testing Laboratory, the University of Wisconsin Characterization Laboratory, and the University of Nevada, Las Vegas transmission Electron Microscope User Facility. Needs for irradiation of material specimens at tightly controlled temperatures are being met by dedication of a large in-pile pressurized water loop facility for use by ATR NSUF users. Several environmental mechanical testing systems are under construction to determine crack growth rates and fracture toughness on irradiated test systems.

T. R. Allen; J. B. Benson; J. A. Foster; F. M. Marshall; M. K. Meyer; M. C. Thelen

2009-05-01T23:59:59.000Z

14

TEMPERATURE MONITORING OPTIONS AVAILABLE AT THE IDAHO NATIONAL LABORATORY ADVANCED TEST REACTOR  

SciTech Connect

As part of the Advanced Test Reactor National Scientific User Facility (ATR NSUF) program, the Idaho National Laboratory (INL) has developed in-house capabilities to fabricate, test, and qualify new and enhanced sensors for irradiation testing. To meet recent customer requests, an array of temperature monitoring options is now available to ATR users. The method selected is determined by test requirements and budget. Melt wires are the simplest and least expensive option for monitoring temperature. INL has recently verified the melting temperature of a collection of materials with melt temperatures ranging from 100 to 1000 C with a differential scanning calorimeter installed at INL’s High Temperature Test Laboratory (HTTL). INL encapsulates these melt wires in quartz or metal tubes. In the case of quartz tubes, multiple wires can be encapsulated in a single 1.6 mm diameter tube. The second option available to ATR users is a silicon carbide temperature monitor. The benefit of this option is that a single small monitor (typically 1 mm x 1 mm x 10 mm or 1 mm diameter x 10 mm length) can be used to detect peak irradiation temperatures ranging from 200 to 800 C. Equipment has been installed at INL’s HTTL to complete post-irradiation resistivity measurements on SiC monitors, a technique that has been found to yield the most accurate temperatures from these monitors. For instrumented tests, thermocouples may be used. In addition to Type-K and Type-N thermocouples, a High Temperature Irradiation Resistant ThermoCouple (HTIR-TC) was developed at the HTTL that contains commercially-available doped molybdenum paired with a niobium alloy thermoelements. Long duration high temperature tests, in furnaces and in the ATR and other MTRs, demonstrate that the HTIR-TC is accurate up to 1800 C and insensitive to thermal neutron interactions. Thus, degradation observed at temperatures above 1100 C with Type K and N thermocouples and decalibration due to transmutation with tungsten-rhenium and platinum rhodium thermocouples can be avoided. INL is also developing an Ultrasonic Thermometry (UT) capability. In addition to small size, UT’s offer several potential advantages over other temperature sensors. Measurements may be made near the melting point of the sensor material, potentially allowing monitoring of temperatures up to 3000 C. In addition, because no electrical insulation is required, shunting effects are avoided. Most attractive, however, is the ability to introduce acoustic discontinuities to the sensor, as this enables temperature measurements at several points along the sensor length. As discussed in this paper, the suite of temperature monitors offered by INL is not only available to ATR users, but also to users at other MTRs.

J.E. Daw; J.L. Rempe; D.L. Knudson; T. Unruh; B.M. Chase; K.L Davis

2012-03-01T23:59:59.000Z

15

An Engineering Test Reactor  

SciTech Connect

A relatively inexpensive reactor for the specific purpose of testing a sub-critical portion of another reactor under conditions that would exist during actual operation is discussed. It is concluded that an engineering tool for reactor development work that bridges the present gap between exponential and criticality experiments and the actual full scale operating reactor is feasible. An example of such a test reactor which would not entail development effort to ut into operation is depicted.

Fahrner, T.; Stoker, R.L.; Thomson, A.S.

1951-03-16T23:59:59.000Z

16

New Sensors for In-Pile Temperature Measurement at the Advanced Test Reactor National Scientific User Facility  

SciTech Connect

The U.S. Department of Energy (DOE) designated the Advanced Test Reactor (ATR) a National Scientific User Facility (NSUF) in April 2007 to support U.S. research in nuclear science and technology. As a user facility, the ATR is supporting new users from universities, laboratories, and industry, as they conduct basic and applied nuclear research and development to advance the nation’s energy security needs. A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing measurements of key parameters during irradiation. This paper describes the strategy for determining what instrumentation is needed and the program for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available and under development for in-pile detection of temperature at various irradiation locations in the ATR.

J. L. Rempe; D. L. Knudson; J. E. Daw; K. G. Condie

2011-09-01T23:59:59.000Z

17

THE COMPONENT TEST FACILITY – A NATIONAL USER FACILITY FOR TESTING OF HIGH TEMPERATURE GAS-COOLED REACTOR (HTGR) COMPONENTS AND SYSTEMS  

DOE Green Energy (OSTI)

The Next Generation Nuclear Plant (NGNP) and other High-Temperature Gas-cooled Reactor (HTGR) Projects require research, development, design, construction, and operation of a nuclear plant intended for both high-efficiency electricity production and high-temperature industrial applications, including hydrogen production. During the life cycle stages of an HTGR, plant systems, structures and components (SSCs) will be developed to support this reactor technology. To mitigate technical, schedule, and project risk associated with development of these SSCs, a large-scale test facility is required to support design verification and qualification prior to operational implementation. As a full-scale helium test facility, the Component Test facility (CTF) will provide prototype testing and qualification of heat transfer system components (e.g., Intermediate Heat Exchanger, valves, hot gas ducts), reactor internals, and hydrogen generation processing. It will perform confirmation tests for large-scale effects, validate component performance requirements, perform transient effects tests, and provide production demonstration of hydrogen and other high-temperature applications. Sponsored wholly or in part by the U.S. Department of Energy, the CTF will support NGNP and will also act as a National User Facility to support worldwide development of High-Temperature Gas-cooled Reactor technologies.

David S. Duncan; Vondell J. Balls; Stephanie L. Austad

2008-09-01T23:59:59.000Z

18

2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond  

SciTech Connect

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance and other issues Discussion of the facility's environmental impacts During the 2011 permit year, approximately 166 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

Mike Lewis

2012-02-01T23:59:59.000Z

19

2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond  

SciTech Connect

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance issues Discussion of the facility’s environmental impacts During the 2012 permit year, approximately 183 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

Mike Lewis

2013-02-01T23:59:59.000Z

20

Overview of Sandia National Laboratories pulse nuclear reactors  

SciTech Connect

Sandia National Laboratories has designed, constructed and operated bare metal Godiva-type and pool-type pulse reactors since 1961. The reactor facilities were designed to support a wide spectrum of research, development, and testing activities associated with weapon and reactor systems.

Schmidt, T.R. [Sandia National Labs., Albuquerque, NM (United States); Reuscher, J.A. [Texas A& M Univ., College Station, TX (United States)

1994-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "national reactor testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

STATEMENT OF CONSIDERATIONS Advance Test Reactor Class Waiver  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Test Reactor Class Waiver Advance Test Reactor Class Waiver W(C)-2008-004 The Advanced Test Reactor (A TR) is a pressurized water test reactor at the Idaho National Laboratory (INL) that operates at low pressure and temperature. The ATR was originally designed to study the effects of intense radiation on reactor material and fuels . It has a "Four Leaf Clover" design that allows a diverse array of testing locations. The unique design allows for different flux in various locations and specialized systems also allow for certain experiments to be run at their own temperature and pressure. The U.S. Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007. This designation will allow the ATR to

22

Instrumentation to Enhance Advanced Test Reactor Irradiations  

SciTech Connect

The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR will support basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors has been completed. Based on this review, recommendations are made with respect to what instrumentation is needed at the ATR and a strategy has been developed for obtaining these sensors. Progress toward implementing this strategy is reported in this document. It is anticipated that this report will be updated on an annual basis.

J. L. Rempe; D. L. Knudson; K. G. Condie; J. E. Daw; S. C. Taylor

2009-09-01T23:59:59.000Z

23

Microstructural Characterization of Test Reactor Irradiated RPV ...  

Science Conference Proceedings (OSTI)

Presentation Title, Microstructural Characterization of Test Reactor Irradiated RPV ... Evolution in High Purity Reference V-4Cr-4Ti Alloy for Fusion Reactor.

24

2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond  

Science Conference Proceedings (OSTI)

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2009 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Discussion of the facility’s environmental impacts During the 2010 permit year, approximately 164 million gallons of wastewater were discharged to the Cold Waste Pond. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

mike lewis

2011-02-01T23:59:59.000Z

25

A Transient Numerical Simulation of Perched Ground-Water Flow at the Test Reactor Area, Idaho National Engineering and Environmental Laboratory, Idaho, 1952-94  

SciTech Connect

Studies of flow through the unsaturated zone and perched ground-water zones above the Snake River Plain aquifer are part of the overall assessment of ground-water flow and determination of the fate and transport of contaminants in the subsurface at the Idaho National Engineering and Environmental Laboratory (INEEL). These studies include definition of the hydrologic controls on the formation of perched ground-water zones and description of the transport and fate of wastewater constituents as they moved through the unsaturated zone. The definition of hydrologic controls requires stratigraphic correlation of basalt flows and sedimentary interbeds within the saturated zone, analysis of hydraulic properties of unsaturated-zone rocks, numerical modeling of the formation of perched ground-water zones, and batch and column experiments to determine rock-water geochemical processes. This report describes the development of a transient numerical simulation that was used to evaluate a conceptual model of flow through perched ground-water zones beneath wastewater infiltration ponds at the Test Reactor Area (TRA).

B. R. Orr (USGS)

1999-11-01T23:59:59.000Z

26

Sandia National Laboratories Medical Isotope Reactor concept.  

SciTech Connect

This report describes the Sandia National Laboratories Medical Isotope Reactor and hot cell facility concepts. The reactor proposed is designed to be capable of producing 100% of the U.S. demand for the medical isotope {sup 99}Mo. The concept is novel in that the fuel for the reactor and the targets for the {sup 99}Mo production are the same. There is no driver core required. The fuel pins that are in the reactor core are processed on a 7 to 21 day irradiation cycle. The fuel is low enriched uranium oxide enriched to less than 20% {sup 235}U. The fuel pins are approximately 1 cm in diameter and 30 to 40 cm in height, clad with Zircaloy (zirconium alloy). Approximately 90 to 150 fuel pins are arranged in the core in a water pool {approx}30 ft deep. The reactor power level is 1 to 2 MW. The reactor concept is a simple design that is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days. The fuel fabrication, reactor design and operation, and {sup 99}Mo production processing use well-developed technologies that minimize the technological and licensing risks. There are no impediments that prevent this type of reactor, along with its collocated hot cell facility, from being designed, fabricated, and licensed today.

Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

2010-04-01T23:59:59.000Z

27

Material Science Advances Using Test Reactor Facilities  

Science Conference Proceedings (OSTI)

Aug 2, 2010 ... About this Symposium. Meeting, 2011 TMS Annual Meeting & Exhibition. Symposium, Material Science Advances Using Test Reactor Facilities.

28

Transpiring wall supercritical water oxidation test reactor design report  

Science Conference Proceedings (OSTI)

Sandia National Laboratories is working with GenCorp, Aerojet and Foster Wheeler Development Corporation to develop a transpiring wall supercritical water oxidation reactor. The transpiring wall reactor promises to mitigate problems of salt deposition and corrosion by forming a protective boundary layer of pure supercritical water. A laboratory scale test reactor has been assembled to demonstrate the concept. A 1/4 scale transpiring wall reactor was designed and fabricated by Aerojet using their platelet technology. Sandia`s Engineering Evaluation Reactor serves as a test bed to supply, pressurize and heat the waste; collect, measure and analyze the effluent; and control operation of the system. This report describes the design, test capabilities, and operation of this versatile and unique test system with the transpiring wall reactor.

Haroldsen, B.L.; Ariizumi, D.Y.; Mills, B.E.; Brown, B.G. [Sandia National Labs., Livermore, CA (United States). Engineering for Transportation and Environment Dept.; Rousar, D.C. [GenCorp Aerojet, Sacramento, CA (United States)

1996-02-01T23:59:59.000Z

29

Department of Energy Designates the Idaho National Laboratory Advanced Test  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Designates the Idaho National Laboratory Designates the Idaho National Laboratory Advanced Test Reactor as a National Scientific User Facility Department of Energy Designates the Idaho National Laboratory Advanced Test Reactor as a National Scientific User Facility April 23, 2007 - 12:36pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today designated the Idaho National Laboratory's (INL) Advanced Test Reactor (ATR) as a National Scientific User Facility. Establishing the ATR as a National Scientific User Facility will help assert U.S. leadership in nuclear science and technology, and will attract new users - universities, laboratories and industry - to conduct research at the ATR. This facility will support basic and applied nuclear research and development (R&D), furthering

30

National SCADA Test Bed | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Services Cybersecurity Energy Delivery Systems Cybersecurity National SCADA Test Bed National SCADA Test Bed Electricity Advisory Committee Transmission Planning...

31

Ground test facility for nuclear testing of space reactor subsystems  

SciTech Connect

Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs.

Quapp, W.J.; Watts, K.D.

1985-01-01T23:59:59.000Z

32

REACTOR FUEL ELEMENTS TESTING CONTAINER  

DOE Patents (OSTI)

This patent shows a method for detecting leaks in jacketed fuel elements. The element is placed in a sealed tank within a nuclear reactor, and, while the reactor operates, the element is sparged with gas. The gas is then led outside the reactor and monitored for radioactive Xe or Kr. (AEC)

Whitham, G.K.; Smith, R.R.

1963-01-15T23:59:59.000Z

33

Achievements: Nuclear Reactors designed/built by Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements > Achievements > Argonne National Laboratory Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

34

The Argonaut Reactor - Reactors designed/built by Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievements > Achievements > Argonne Reactors > Training Reactors About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy

35

Zero Power Reactor simulation | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Zero Power Reactor simulation Share Description Ever wanted to see a nuclear reactor core in action? Here's a detailed simulation of the Zero Power Reactor experiment, run by...

36

RERTR 2009 (Reduced Enrichment for Research and Test Reactors)  

SciTech Connect

The U.S. Department of Energy/National Nuclear Security Administration's Office of Global Threat Reduction in cooperation with the China Atomic Energy Authority and International Atomic Energy Agency hosted the 'RERTR 2009 International Meeting on Reduced Enrichment for Research and Test Reactors.' The meeting was organized by Argonne National Laboratory, China Institute of Atomic Energy and Idaho National Laboratory and was held in Beijing, China from November 1-5, 2009. This was the 31st annual meeting in a series on the same general subject regarding the conversion of reactors within the Global Threat Reduction Initiative (GTRI). The Reduced Enrichment for Research and Test Reactors (RERTR) Program develops technology necessary to enable the conversion of civilian facilities using high enriched uranium (HEU) to low enriched uranium (LEU) fuels and targets.

Totev, T.; Stevens, J.; Kim, Y. S.; Hofman, G.; Matos, J.; Hanan, N.; Garner, P.; Dionne, B.; Olson, A.; Feldman, E.; Dunn, F.; Nuclear Engineering Division; Atomic Research Center; Inst. of Nuclear Physics; LLNL; INL; Korea Atomic Energy Research Inst.; Comisi?n Nacional de Energ?a At?mica; Nuclear Reactor Lab.; Inst. of Atomic Energy-Poland; AECL-Canada; Hungarian Academy of Sciences KFKI Atomic Energy Research Inst.; Japan Atomic Energy Agency; Nuclear Power Inst. of China; Kyoto Univ. Research Reactor Inst.

2010-03-01T23:59:59.000Z

37

CRAD, Training - Oak Ridge National Laboratory High Flux Isotope Reactor |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Reactor CRAD, Training - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Training Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor. RADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Training - Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Training - Oak Ridge National Laboratory High Flux Isotope Reactor

38

CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Reactor CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Maintenance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications CRAD, Safety Basis - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor

39

TEST REACTORS MEETING FOR INDUSTRY, IDAHO FALLS, IDAHO, MAY 13-15, 1959. PART I. CONSTRUCTION AND OPERATION OF TEST REACTORS. PART II. UTILIZATION OF TEST REACTORS  

SciTech Connect

Twelve papers on construction and operation of test reactors and nine papers on the utilization of test reactors are presented.(W.D.M.)

1959-10-31T23:59:59.000Z

40

More About NNSA's Naval Reactors Office | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

to skip to the main content Facebook Flickr RSS Twitter YouTube More About NNSA's Naval Reactors Office | National Nuclear Security Administration Our Mission Managing the...

Note: This page contains sample records for the topic "national reactor testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Domestic U.S. Reactor Conversions: Fact Sheet | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Reactor Conversions: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

42

THERMAL PERFORMANCE OF A FAST NEUTRON TEST CONCEPT FOR THE ADVANCED TEST REACTOR  

Science Conference Proceedings (OSTI)

Since 1967, the Advanced Test Reactor (ATR) located at Idaho National Laboratory (INL) has provided state-of-the-art experimental irradiation testing capability. A unique design is investigated herein for the purpose of providing a fast neutron flux test capability in the ATR. This new test capability could be brought on line in approximately 5 or 6 years, much sooner than a new test reactor could be built, to provide an interim fast-flux test capability in the timeframe before a fast-flux research reactor could be built. The proposed cost for this system is approximately $63M, much less than the cost of a new fast-flux test reactor. A concept has been developed to filter out a large portion of the thermal flux component by using a thermally conductive neutron absorber block. The objective of this study is to determine the feasibility of this experiment cooling concept.

Donna Post Guillen

2008-06-01T23:59:59.000Z

43

EBR-2 (Experimental Breeder Reactor-2) test programs  

SciTech Connect

The Experimental Breeder Reactor-2 (EBR-2) is a sodium cooled power reactor supplying about 20 MWe to the Idaho National Engineering Laboratory (INEL) grid and, in addition, is the key component in the development of the Integral Fast Reactor (IFR). EBR-2's testing capability is extensive and has seen four major phases: (1) demonstration of LMFBR power plant feasibility, (2) irradiation testing for fuel and material development, (3) testing the off-normal performance of fuel and plant systems and (4) operation as the IFR prototype, developing and demonstrating the IFR technology associated with fuel and plant design. Specific programs being carried out in support of the IFR include advanced fuels and materials development, advanced control system development, plant diagnostics development and component testing. This paper discusses EBR-2 as the IFR prototype and the associated testing programs. 29 refs.

Sackett, J.I.; Lehto, W.K.; Lindsay, R.W. (Argonne National Lab., Idaho Falls, ID (USA)); Planchon, H.P.; Lambert, J.D.B.; Hill, D.J. (Argonne National Lab., IL (USA))

1990-01-01T23:59:59.000Z

44

Reactor Tree of Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne Reactors > The Argonne Reactor Tree About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne...

45

National SCADA Test Bed | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home National SCADA Test Bed National SCADA Test Bed Supervisory Control and Data Acquisition (SCADA) systems...

46

CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Engineering - Oak Ridge National Laboratory High Flux Isotope Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor

47

In-Situ Creep Testing Capability for the Advanced Test Reactor  

Science Conference Proceedings (OSTI)

An instrumented creep testing capability is being developed for specimens irradiated in Pressurized Water Reactor (PWR) coolant conditions at the Advanced Test Reactor (ATR). The test rig has been developed such that samples will be subjected to stresses ranging from 92 to 350 MPa at temperatures between 290 and 370 °C up to at least 2 dpa (displacement per atom). The status of Idaho National Laboratory (INL) efforts to develop the test rig in-situ creep testing capability for the ATR is described. In addition to providing an overview of in-pile creep test capabilities available at other test reactors, this paper reports efforts by INL to evaluate a prototype test rig in an autoclave at INL’s High Temperature Test Laboratory (HTTL). Initial data from autoclave tests with 304 stainless steel (304 SS) specimens are reported.

B. G. Kim; J. L. Rempe; D. L. Knudson; K. G. Condie; B. H. Sencer

2012-09-01T23:59:59.000Z

48

EBR-2 (Experimental Breeder Reactor-2), IFR (Integral Fast Reactor) prototype testing programs  

SciTech Connect

The Experimental Breeder Reactor-2 (EBR-2) is a sodium cooled power reactor supplying about 20 MWe to the Idaho National Engineering Laboratory (INEL) grid and, in addition, is the key component in the development of the Integral Fast Reactor (IFR). EBR-2's testing capability is extensive and has seen four major phases: (1) demonstration of LMFBR power plant feasibility, (2) irradiation testing for fuel and material development. (3) testing the off-normal performance of fuel and plant systems and (4) operation as the IFR prototype, developing and demonstrating the IFR technology associated with fuel and plant design. Specific programs being carried out in support of the IFR include advanced fuels and materials development and component testing. This paper discusses EBR-2 as the IFR prototype and the associated testing programs. 29 refs.

Lehto, W.K.; Sackett, J.I.; Lindsay, R.W. (Argonne National Lab., Idaho Falls, ID (USA). EBR-II Div. Argonne National Lab., IL (USA)); Planchon, H.P.; Lambert, J.D.B. (Argonne National Lab., IL (USA))

1990-01-01T23:59:59.000Z

49

Advanced Burner Test Reactor - Preconceptual Design Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Burner Test Reactor Preconceptual Design Report ANL-ABR-1 (ANL-AFCI-173) Nuclear Engineering Division Disclaimer This report was prepared as an account of work sponsored by an...

50

CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Contractor ORR Reactor Contractor ORR CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Maintenance Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR More Documents & Publications CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor

51

Advanced LWR Fuel Testing Capabilities in the ORNL High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

A new test capability for the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) is being developed that will allow testing of advanced nuclear fuels and cladding materials under prototypic light-water reactor (LWR) operating conditions in less time than it takes in other research reactors. This paper will describe the HFIR testing capabilities, the new advanced fuel/cladding testing facilities, and the initial cooperative irradiation experiments currently planned to start in late 2008.

Ott, Larry J [ORNL; McDuffee, Joel Lee [ORNL; Spellman, Donald J [ORNL

2008-01-01T23:59:59.000Z

52

PRA insights applicable to the design of the Broad Applications Test Reactor  

SciTech Connect

Design insights applicable to the design of a new Broad Applications Test Reactor (BATR), being studied at Idaho National Engineering Laboratory, are summarized. Sources of design insights include past probabilistic risk assessments and related studies for department of Energy-owned Class A reactors and for commercial reactors. The report includes a preliminary risk allocation scheme for the BATR.

Khericha, S.T.; Reilly, H.J.

1993-01-01T23:59:59.000Z

53

CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management- Oak Ridge National Laboratory High Flux Isotope Management- Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Management in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor More Documents & Publications CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope

54

Action Memorandum for the Engineering Test Reactor under the Idaho Cleanup Project  

SciTech Connect

This Action Memorandum documents the selected alternative for decommissioning of the Engineering Test Reactor at the Idaho National Laboratory under the Idaho Cleanup Project. Since the missions of the Engineering Test Reactor Complex have been completed, an engineering evaluation/cost analysis that evaluated alternatives to accomplish the decommissioning of the Engineering Test Reactor Complex was prepared adn released for public comment. The scope of this Action Memorandum is to encompass the final end state of the Complex and disposal of the Engineering Test Reactor vessol. The selected removal action includes removing and disposing of the vessel at the Idaho CERCLA Disposal Facility and demolishing the reactor building to ground surface.

A. B. Culp

2007-01-26T23:59:59.000Z

55

Research and Medical Isotope Reactor Supply | Y-12 National Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Medical ... Research and Medical Isotope Reactor Supply Our goal is to fuel research and test reactors with low-enriched uranium. Y-12 tops the short list of the...

56

CRAD, Training - Oak Ridge National Laboratory High Flux Isotope Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reactor Contractor ORR Reactor Contractor ORR CRAD, Training - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Training Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Training - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR More Documents & Publications CRAD, Conduct of Operations - Oak Ridge National Laboratory High Flux

57

Design and Status of RERTR Irradiation Tests in the Advanced Test Reactor  

Science Conference Proceedings (OSTI)

Irradiation testing of U-Mo based fuels is the central component of the Reduced Enrichment for Research and Test Reactors (RERTR) program fuel qualification plan. Several RERTR tests have recently been completed or are planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory in Idaho Falls, ID. Four mini-plate experiments in various stages of completion are described in detail, including the irradiation test design, objectives, and irradiation conditions. Observations made during and after the in-reactor RERTR-7A experiment breach are summarized. The irradiation experiment design and planned irradiation conditions for full-size plate test are described. Progress toward element testing will be reviewed.

Daniel M. Wachs; Richard G. Ambrosek; Gray Chang; Mitchell K. Meyer

2006-10-01T23:59:59.000Z

58

CRAD, Management - Oak Ridge National Laboratory High Flux Isotope Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge National Laboratory High Flux Isotope Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Management - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Management portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Management - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR More Documents & Publications

59

CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oak Ridge National Laboratory High Flux Isotope Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR February 2007 A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory, High Flux Isotope Reactor. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR More Documents & Publications

60

Reactor Decommissioning Projects | Brookhaven National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Brookhaven Graphite Research Reactor(BGRR) BGRR Overview BGRR Complex Description Decommissioning Decision BGRR Complex Cleanup Actions BGRR Documents BGRR Science &...

Note: This page contains sample records for the topic "national reactor testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Reactor Testing and Qualification: Prioritized High-level Criticality Testing Needs  

SciTech Connect

Researchers at the Idaho National Laboratory (INL) were tasked with reviewing possible criticality testing needs to support development of the fission surface power system reactor design. Reactor physics testing can provide significant information to aid in development of technologies associated with small, fast spectrum reactors that could be applied for non-terrestrial power systems, leading to eventual system qualification. Several studies have been conducted in recent years to assess the data and analyses required to design and build a space fission power system with high confidence that the system will perform as designed [Marcille, 2004a, 2004b; Weaver, 2007; Parry et al., 2008]. This report will provide a summary of previous critical tests and physics measurements that are potentially applicable to the current reactor design (both those that have been benchmarked and those not yet benchmarked), summarize recent studies of potential nuclear testing needs for space reactor development and their applicability to the current baseline fission surface power (FSP) system design, and provide an overview of a suite of tests (separate effects, sub-critical or critical) that could fill in the information database to improve the accuracy of physics modeling efforts as the FSP design is refined. Some recommendations for tasks that could be completed in the near term are also included. Specific recommendations on critical test configurations will be reserved until after the sensitivity analyses being conducted by Los Alamos National Laboratory (LANL) are completed (due August 2011).

S. Bragg-Sitton; J. Bess; J. Werner; G. Harms; S. Bailey

2011-09-01T23:59:59.000Z

62

Mechanical Testing of Core Fast Reactor Materials for the Advanced ...  

Science Conference Proceedings (OSTI)

To achieve this goal, the core fast reactor materials (cladding and duct) must be ... in situ Mechanical Test Methods in the US Fusion Reactor Materials Program.

63

An Account of Oak Ridge National Laboratory's Thirteen Research Reactors  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

Rosenthal, Murray Wilford [ORNL

2009-08-01T23:59:59.000Z

64

Enhanced In-Pile Instrumentation at the Advanced Test Reactor  

SciTech Connect

Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper provides an update on this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.

Joy Rempe; Darrell Knudson; Joshua Daw; Troy Unruh; Benjamin Chase; Kurt Davis; Robert Schley; Steven Taylor

2012-08-01T23:59:59.000Z

65

Enhanced In-Pile Instrumentation at the Advanced Test Reactor  

Science Conference Proceedings (OSTI)

Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility (NSUF) in 2007 to support the development and deployment of enhanced in-pile sensors. This paper reports results from this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.

J. Rempe; D. Knudson; J. Daw; T. Unruh; B. Chase; K. Condie

2011-06-01T23:59:59.000Z

66

Reduced enrichment for research and test reactors: Proceedings  

SciTech Connect

The international effort to develop new research reactor fuel materials and designs based on the use of low-enriched uranium, instead of highly-enriched uranium, has made much progress during the eight years since its inception. To foster direct communication and exchange of ideas among the specialist in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at the Argonne National Laboratory, sponsored this meeting as the ninth of a series which began in 1978. All previous meetings of this series are listed on the facing page. The focus of this meeting was on the LEU fuel demonstration which was in progress at the Oak Ridge Research (ORR) reactor, not far from where the meeting was held. The visit to the ORR, where a silicide LEU fuel with 4.8 g A/cm/sup 3/ was by then in routine use, illustrated how far work has progressed.

1988-05-01T23:59:59.000Z

67

Maria Research Reactor loaded with LEU - Otwock, Poland | National Nuclear  

National Nuclear Security Administration (NNSA)

Maria Research Reactor loaded with LEU - Otwock, Poland | National Nuclear Maria Research Reactor loaded with LEU - Otwock, Poland | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Video Gallery > Maria Research Reactor loaded with LEU - ... Maria Research Reactor loaded with LEU - Otwock, Poland Maria Research Reactor loaded with LEU - Otwock, Poland

68

Electric Power Produced from Nuclear Reactor | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric Power Produced from Nuclear Reactor | National Nuclear Security Electric Power Produced from Nuclear Reactor | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Electric Power Produced from Nuclear Reactor Electric Power Produced from Nuclear Reactor December 20, 1951 Arco, ID Electric Power Produced from Nuclear Reactor

69

HEAVY WATER COMPONENTS TEST REACTOR DECOMMISSIONING  

Science Conference Proceedings (OSTI)

The Heavy Water Components Test Reactor (HWCTR) Decommissioning Project was initiated in 2009 as a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Removal Action with funding from the American Recovery and Reinvestment Act (ARRA). This paper summarizes the history prior to 2009, the major D&D activities, and final end state of the facility at completion of decommissioning in June 2011. The HWCTR facility was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In the early 1990s, DOE began planning to decommission HWCTR. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. In 2009 the $1.6 billion allocation from the ARRA to SRS for site footprint reduction at SRS reopened the doors to HWCTR - this time for final decommissioning. Alternative studies concluded that the most environmentally safe, cost effective option for final decommissioning was to remove the reactor vessel, both steam generators, and all equipment above grade including the dome. The transfer coffin, originally above grade, was to be placed in the cavity vacated by the reactor vessel and the remaining below grade spaces would be grouted. Once all above equipment including the dome was removed, a concrete cover was to be placed over the remaining footprint and the groundwater monitored for an indefinite period to ensure compliance with environmental regulations.

Austin, W.; Brinkley, D.

2011-10-13T23:59:59.000Z

70

Final safeguards analysis, High Temperature Lattice Test Reactor  

SciTech Connect

Information on the HTLTR Reactor is presented concerning: reactor site; reactor buildings; reactor kinetics and design characteristics; experimental and test facilitles; instrumentation and control; maintenance and modification; initial tests and operations; administration and procedural safeguards; accident analysis; seifterminated excursions; main heat exchanger leak; training program outline; and reliability analysis of safety systems. (7 references) (DCC)

Hanthorn, H.E.; Brown, W.W.; Clark, R.G.; Heineman, R.E.; Humes, R.M.

1966-01-01T23:59:59.000Z

71

Sandia National Laboratories: Research: Facilities: Sandia Pulsed Reactor  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia Pulsed Reactor Facility - Critical Experiments Sandia Pulsed Reactor Facility - Critical Experiments Sandia scientist John Ford places fuel rods in the Seven Percent Critical Experiment (7uPCX) at the Sandia Pulsed Reactor Facility Critical Experiments (SPRF/CX) test reactor - a reactor stripped down to its simplest form. The Sandia Pulsed Reactor Facility - Critical Experiments (SPRF/CX) provides a flexible, shielded location for performing critical experiments that employ different reactor core configurations and fuel types. The facility is also available for hands-on nuclear criticality safety training. Research and other activities The 7% series, an evaluation of various core characteristics for higher commercial-fuel enrichment, is currently under way at the SPRF/CX. Past critical experiments at the SPRF/CX have included the Burnup Credit

72

Sandia National Laboratories: National Solar Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

ECISEnergyRenewable EnergySolar EnergyConcentrating Solar Power ECISEnergyRenewable EnergySolar EnergyConcentrating Solar Power (CSP)National Solar Thermal Test Facility National Solar Thermal Test Facility NSTTF Interactive Tour National Solar Thermal Test Facility (NSTTF) Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility of this type in the United States. The NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants planned for large-scale power generation. In addition, the site was built and instrumented to provide test facilities for a variety of solar and nonsolar applications. The facility can provide

73

Advanced burner test reactor preconceptual design report.  

Science Conference Proceedings (OSTI)

The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand, to address nuclear waste management concerns and to promote non-proliferation. Implementation of the GNEP requires development and demonstration of three major technologies: (1) Light water reactor (LWR) spent fuel separations technologies that will recover transuranics to be recycled for fuel but not separate plutonium from other transuranics, thereby providing proliferation-resistance; (2) Advanced Burner Reactors (ABRs) based on a fast spectrum that transmute the recycled transuranics to produce energy while also reducing the long term radiotoxicity and decay heat loading in the repository; and (3) Fast reactor fuel recycling technologies to recover and refabricate the transuranics for repeated recycling in the fast reactor system. The primary mission of the ABR Program is to demonstrate the transmutation of transuranics recovered from the LWR spent fuel, and hence the benefits of the fuel cycle closure to nuclear waste management. The transmutation, or burning of the transuranics is accomplished by fissioning and this is most effectively done in a fast spectrum. In the thermal spectrum of commercial LWRs, some transuranics capture neutrons and become even heavier transuranics rather than being fissioned. Even with repeated recycling, only about 30% can be transmuted, which is an intrinsic limitation of all thermal spectrum reactors. Only in a fast spectrum can all transuranics be effectively fissioned to eliminate their long-term radiotoxicity and decay heat. The Advanced Burner Test Reactor (ABTR) is the first step in demonstrating the transmutation technologies. It directly supports development of a prototype full-scale Advanced Burner Reactor, which would be followed by commercial deployment of ABRs. The primary objectives of the ABTR are: (1) To demonstrate reactor-based transmutation of transuranics as part of an advanced fuel cycle; (2) To qualify the transuranics-containing fuels and advanced structural materials needed for a full-scale ABR; and (3) To support the research, development and demonstration required for certification of an ABR standard design by the U.S. Nuclear Regulatory Commission. The ABTR should also address the following additional objectives: (1) To incorporate and demonstrate innovative design concepts and features that may lead to significant improvements in cost, safety, efficiency, reliability, or other favorable characteristics that could promote public acceptance and future private sector investment in ABRs; (2) To demonstrate improved technologies for safeguards and security; and (3) To support development of the U.S. infrastructure for design, fabrication and construction, testing and deployment of systems, structures and components for the ABRs. Based on these objectives, a pre-conceptual design of a 250 MWt ABTR has been developed; it is documented in this report. In addition to meeting the primary and additional objectives listed above, the lessons learned from fast reactor programs in the U.S. and worldwide and the operating experience of more than a dozen fast reactors around the world, in particular the Experimental Breeder Reactor-II have been incorporated into the design of the ABTR to the extent possible.

Chang, Y. I.; Finck, P. J.; Grandy, C.; Cahalan, J.; Deitrich, L.; Dunn, F.; Fallin, D.; Farmer, M.; Fanning, T.; Kim, T.; Krajtl, L.; Lomperski, S.; Moisseytsev, A.; Momozaki, Y.; Sienicki, J.; Park, Y.; Tang, Y.; Reed, C.; Tzanos, C; Wiedmeyer, S.; Yang, W.; Chikazawa, Y.; JAEA

2008-12-16T23:59:59.000Z

74

Multi-physics Reactor Performance and Safety Simulations - Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Computation Engineering Computation and Design > Multi-physics Reactor Performance and Safety Simulations Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Multi-physics Reactor Performance and Safety Simulations Bookmark and Share Contact Keith S. Bradley, Ph.D. Technical Director, Nuclear Engineering Division Argonne National Laboratory Email address protected by JavaScript. Please enable JavaScript The SHARP simulation suite development team, led by Argonne National Laboratory, includes other leading national laboratories and research universities. SHARP is developed under the auspices of the U.S. Department of Energy, Office of Nuclear Energy, Nuclear Energy Advanced Modeling and Simulation Program (NEAMS).

75

Decommissioning of the Tokamak Fusion Test Reactor  

SciTech Connect

The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.

E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola

2003-10-28T23:59:59.000Z

76

National Solar Thermal Test Facility  

SciTech Connect

This is a brief report about a Sandia National Laboratory facility which can provide high-thermal flux for simulation of nuclear thermal flash, measurements of the effects of aerodynamic heating on radar transmission, etc

Cameron, C.P.

1989-12-31T23:59:59.000Z

77

FUNDAMENTALS IN THE OPERATION OF NUCLEAR TEST REACTORS. VOLUME 1. REACTOR SCIENCE AND TECHNOLOGY  

SciTech Connect

A resume of nuclear physics basic to reactor operation precedes discussion of aspects of reactor physics, engineering, chemistry, metallurgy, instrumentation, control, kinetics, and safety. The object is to provide an approach to and understanding of problems in irradiation test programs in the Materials Testing and Engineering Test Reactors. (D.C.W.)

1963-06-01T23:59:59.000Z

78

National SCADA Test Bed | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Cybersecurity » Energy Delivery Systems Cybersecurity Cybersecurity » Energy Delivery Systems Cybersecurity » National SCADA Test Bed National SCADA Test Bed Created in 2003, the National SCADA Test Bed (NSTB) is a one-of-a-kind national resource that draws on the integrated expertise and capabilities of the Argonne, Idaho, Lawrence Berkeley, Los Alamos, Oak Ridge, Pacific Northwest, and Sandia National Laboratories to address the cybersecurity challenges of energy delivery systems. Core and Frontier Research The NSTB core capabilities combine a network of the national labs' state-of-the-art operational system testing facilities with expert research, development, analysis, and training to discover and address critical security vulnerabilities and threats the energy sector faces. NSTB offers testing and research facilities, encompassing field-scale control

79

Sandia National Laboratories: Sandia National Laboratories: Tonopah Test  

NLE Websites -- All DOE Office Websites (Extended Search)

Tonopah Test Range Tonopah Test Range Tonopah Tonopah Test Range (TTR) is the testing range of choice for all national security missions. Sandia conducts operations at TTR in support of the Department of Energy/National Nuclear Security Administration's weapons programs. Principal DOE activities at TTR include stockpile reliability testing; arming, fusing, and firing systems testing; and the testing of nuclear weapon delivery systems. The range also offers a unique test environment for use by other U.S. government agencies and their contractors. Located about 160 miles northwest of Las Vegas, TTR is an immense area of flat terrain ideal for rockets and low-altitude, high-speed aircraft operations. Situated between two mountain ranges, TTR's remote location and restricted airspace ensure that tests can be conducted with a high degree

80

Nuclear reactor containment spray testing system. [PWR  

SciTech Connect

Disclosed is a method for periodic testing of a spray system in a nuclear reactor containment. The method includes injecting a gas into the spray system such that a temperature differential exists between the gas and the containment atmosphere. Scanning the gas jet discharged from the spray nozzles with infrared apparatus then provides a real-time thermal image on a monitor, such as a cathode ray tube, and detects any partially or completely blocked nozzles in the spray system. The scanning may be performed from the containment operating deck. 1 claim, 4 figures.

Rubin, K.

1978-01-10T23:59:59.000Z

Note: This page contains sample records for the topic "national reactor testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Blade Testing at NREL's National Wind Technology Center (NWTC) (Presentation)  

DOE Green Energy (OSTI)

Presentation of Blade Testing at NREL's National Wind Technology Center for the 2010 Sandia National Laboratories Blade Testing Workshop.

Hughes, S.

2010-07-20T23:59:59.000Z

82

Massive Hanford Test Reactor Removed- Plutonium Recycle Test Reactor removed from Hanford’s 300 Area  

Energy.gov (U.S. Department of Energy (DOE))

RICHLAND, WA – Hanford’s River Corridor contractor, Washington Closure Hanford, has met a significant cleanup challenge on the U.S. Department of Energy’s (DOE) Hanford Site by removing a 1,082-ton nuclear test reactor from the 300 Area.

83

Risk management at the Oak Ridge National Laboratory research reactors  

SciTech Connect

In November of 1986, the High Flux Isotope Reactor (HFIR) was shut down by Oak Ridge National Laboratory (ORNL) due to a concern regarding embrittlement of the reactor vessel. A massive review effort was undertaken by ORNL and the Department of Energy (DOE). This review resulted in an extensive list of analyses and design modifications to be completed before restart could take place. The review also focused on the improvement of management practices including implementation of several of the Institute of Nuclear Power Operations (INPO) requirements. One of the early items identified was the need to perform a Probabilistic Risk Assessment (PRA) on the reactor. It was decided by ORNL management that this PRA would not be just an exercise to assess the ``bottom`` line in order to restart, but would be used to improve the overall safety of the reactor, especially since resources (both manpower and dollars) were severely limited. The PRA would become a basic safety tool to be used instead of a more standard deterministic approach to safety used in commercial reactor power plants. This approach was further reinforced, because the reactor was nearly 25 years old at this time, and the design standards and regulations had changed significantly since the original design, and many of the safety issues could not be addressed by compliance to codes and standards.

Flanagan, G.F.; Linn, M.A.; Proctor, L.D.; Cook, D.H.

1994-12-31T23:59:59.000Z

84

Reactor and Material Supply | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor and Reactor and Material Supply Reactor and Material Supply Y-12 has processed highly enriched uranium for more than 60 years in support of the nation's defense. The end of the Cold War and ensuing strategic arms control treaties have resulted in an excess of HEU materials. In 1994, approximately 174 metric tons of weapons-usable HEU was declared surplus to defense needs. The HEU disposition program was established to make the surplus HEU unsuitable for use in weapons by blending it down to low-enriched uranium and to recover the economic value of the materials to the extent practical. In 2005, the Secretary of Energy announced that an additional 200 metric tons of HEU would be removed from further use as fissile material in U.S. nuclear weapons. Approximately 20 metric tons of this material will

85

Current Reactor Physics Benchmark Activities at the Idaho National Laboratory  

SciTech Connect

The International Reactor Physics Experiment Evaluation Project (IRPhEP) [1] and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) [2] were established to preserve integral reactor physics and criticality experiment data for present and future research. These valuable assets provide the basis for recording, developing, and validating our integral nuclear data, and experimental and computational methods. These projects are managed through the Idaho National Laboratory (INL) and the Organisation for Economic Co-operation and Development Nuclear Energy Agency (OECD-NEA). Staff and students at the Department of Energy - Idaho (DOE-ID) and INL are engaged in the development of benchmarks to support ongoing research activities. These benchmarks include reactors or assemblies that support Next Generation Nuclear Plant (NGNP) research, space nuclear Fission Surface Power System (FSPS) design validation, and currently operational facilities in Southeastern Idaho.

John D. Bess; Margaret A. Marshall; Mackenzie L. Gorham; Joseph Christensen; James C. Turnbull; Kim Clark

2011-11-01T23:59:59.000Z

86

Safety Assurance for Irradiating Experiments in the Advanced Test Reactor  

SciTech Connect

The Advanced Test Reactor (ATR), located at the Idaho National Engineering and Environmental Laboratory (INEEL), was specifically designed to provide a high neutron flux test environment for conducting a variety of experiments. This paper addresses the safety assurance process for two general types of experiments conducted in the ATR facility and how the safety analyses for experiments are related to the ATR safety basis. One type of experiment is more routine and generally represents greater risks; therefore, this type of experiment is addressed in more detail in the ATR safety basis. This allows the individual safety analysis for this type of experiment to be more standardized. The second type of experiment is defined in more general terms in the ATR safety basis and is permitted under more general controls. Therefore, the individual safety analysis for the second type of experiment tends to be more unique and is tailored to each experiment.

T. A. Tomberlin; S. B. Grover

2004-11-01T23:59:59.000Z

87

Engineering Test Reactor (ETR) Vessel Relocated after 50 years.  

NLE Websites -- All DOE Office Websites (Extended Search)

Printer Friendly Printer Friendly Engineering Test Reactor (ETR) Vessel Relocated Engineering Test Reactor Vessel Pre-startup 1957 Click on image to enlarge. Image 1 of 5 Gantry jacks attached to ETR vessel. Initial lift starts. - Click on image to enlarge. Image 2 of 5 ETR vessel removed from substructure. Vessel lifted approximately 40 ft. - Click on image to enlarge. On Monday, September 24, 2007 the Engineering Test Reactor (ETR) vessel was removed from its location and delivered to the Idaho CERCLA Disposal Facility (ICDF). The long history of the ETR began for this water-cooled reactor with its start up in 1957, after taking only 2 years to build. According to "Proving the Principles," by Susan M. Stacy: When the Engineering Test Reactor started up at the Test Reactor Area in

88

Crush Testing at Oak Ridge National Laboratory  

SciTech Connect

The dynamic crush test is required in the certification testing of some small Type B transportation packages. International Atomic Energy Agency regulations state that the test article must be 'subjected to a dynamic crush test by positioning the specimen on the target so as to suffer maximum damage.' Oak Ridge National Laboratory (ORNL) Transportation Technologies Group performs testing of Type B transportation packages, including the crush test, at the National Transportation Research Center in Knoxville, Tennessee (United States). This paper documents ORNL's experiences performing crush tests on several different Type B packages. ORNL has crush tested five different drum-type package designs, continuing its 60 year history of RAM package testing. A total of 26 crush tests have been performed in a wide variety of package orientations and crush plate CG alignments. In all cases, the deformation of the outer drum created by the crush test was significantly greater than the deformation damage caused by the 9 m drop test. The crush test is a highly effective means for testing structural soundness of smaller nondense Type B shipping package designs. Further regulatory guidance could alleviate the need to perform the crush test in a wide range of orientations and crush plate CG alignments.

Feldman, Matthew R [ORNL

2011-01-01T23:59:59.000Z

89

Technical specification: Mixed-oxide pellets for the light-water reactor irradiation demonstration test  

Science Conference Proceedings (OSTI)

This technical specification is a Level 2 Document as defined in the Fissile Materials Disposition Program Light-Water Reactor Mixed-oxide Fuel Irradiation Test Project Plan. It is patterned after the pellet specification that was prepared by Atomic Energy of Canada, Limited, for use by Los Alamos National Laboratory in fabrication of the test fuel for the Parallex Project, adjusted as necessary to reflect the differences between the Canadian uranium-deuterium reactor and light-water reactor fuels. This specification and the associated engineering drawing are to be utilized only for preparation of test fuel as outlined in the accompanying Request for Quotation and for additional testing as directed by Oak Ridge National Laboratory or the Department of Energy.

Cowell, B.S.

1997-06-01T23:59:59.000Z

90

CHARACTERIZATION OF RADIOACTIVITY IN THE REACTOR VESSEL OF THE HEAVY WATER COMPONENT TEST REACTOR  

Science Conference Proceedings (OSTI)

The Heavy Water Component Test Reactor (HWCTR) facility is a pressurized heavy water reactor that was used to test candidate fuel designs for heavy water power reactors. The reactor operated at nominal power of 50 MW{sub th}. The reactor coolant loop operated at 1200 psig and 250 C. Two isolated test loop were designed into the reactor to provide special test conditions. Fig. 1 shows a cut-away view of the reactor. The two loops are contained in four inch diameter stainless steel piping. The HWCTR was operated for only a short duration, from March 1962 to December 1964 in order to test the viability of test fuel elements and other reactor components for use in a heavy water power reactor. The reactor achieved 13,882 MWd of total power while testing 36 different fuel assemblies. In the course of operation, HWCTR experienced the cladding failures of 10 separate test fuel assemblies. In each case, the cladding was breached with some release of fuel core material into the isolated test loop, causing fission product and actinide contamination in the main coolant loop and the liquid and boiling test loops. Despite the contribution of the contamination from the failed fuel, the primary source of radioactivity in the HWCTR vessel and internals is the activation products in the thermal shields, and to a lesser degree, activation products in the reactor vessel walls and liner. A detailed facility characterization report of the HWCTR facility was completed in 1996. Many of the inputs and assumptions in the 1996 characterization report were derived from the HWCTR decommissioning plan published in 1975. The current paper provides an updated assessment of the radioisotopic characteristics of the HWCTR vessel and internals to support decommissioning activities on the facility.

Vinson, Dennis

2010-06-01T23:59:59.000Z

91

10 CFR 830 Major Modification Determination for Advanced Test Reactor LEU Fuel Conversion  

SciTech Connect

The Advanced Test Reactor (ATR), located in the ATR Complex of the Idaho National Laboratory (INL), was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. The ATR is fueled with high-enriched uranium (HEU) matrix (UAlx) in an aluminum sandwich plate cladding. The National Nuclear Security Administration Global Threat Reduction Initiative (GTRI) strategic mission includes efforts to reduce and protect vulnerable nuclear and radiological material at civilian sites around the world. Converting research reactors from using HEU to low-enriched uranium (LEU) was originally started in 1978 as the Reduced Enrichment for Research and Test Reactors (RERTR) Program under the U.S. Department of Energy (DOE) Office of Science. Within this strategic mission, GTRI has three goals that provide a comprehensive approach to achieving this mission: The first goal, the driver for the modification that is the subject of this determination, is to convert research reactors from using HEU to LEU. Thus the mission of the ATR LEU Fuel Conversion Project is to convert the ATR and Advanced Test Reactor Critical facility (ATRC) (two of the six U.S. High-Performance Research Reactors [HPRR]) to LEU fuel by 2017. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification.

Boyd D. Christensen; Michael A. Lehto; Noel R. Duckwitz

2012-05-01T23:59:59.000Z

92

Space reactor fuel element testing in upgraded TREAT  

DOE Green Energy (OSTI)

The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.

Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W.Y.

1993-05-01T23:59:59.000Z

93

Space reactor fuel element testing in upgraded TREAT  

DOE Green Energy (OSTI)

The testing of candidate fuel elements at prototypic operating conditions with respect to temperature, power density, hydrogen coolant flow rate, etc., a crucial component in the development and qualification of nuclear rocket engines based on the Particle Bed Reactor (PBR), NERVA-derivative, and other concepts. Such testing may be performed at existing reactors, or at new facilities. A scoping study has been performed to assess the feasibility of testing PBR based fuel elements at the TREAT reactor. initial results suggest that full-scale PBR, elements could be tested at an average energy deposition of {approximately}60--80 MW-s/L in the current TREAT reactor. If the TREAT reactor was upgraded to include fuel elements with a higher temperature limit, average energy deposition of {approximately}100 MW/L may be achievable.

Todosow, M.; Bezler, P.; Ludewig, H.; Kato, W.Y.

1993-01-14T23:59:59.000Z

94

National SCADA Test Bed Consequence Modeling Tool | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National SCADA Test Bed Consequence Modeling Tool National SCADA Test Bed Consequence Modeling Tool This document presents a consequence modeling tool that provides, for asset...

95

Project plan for the decontamination and decommissioning of the Argonne National Laboratory Experimental Boiling Water Reactor  

SciTech Connect

In 1956, the Experimental Boiling Water Reactor (EBWR) Facility was first operated at Argonne National Laboratory (ANL) as a test reactor to demonstrate the feasibility of operating an integrated power plant using a direct cycle boiling water reactor as a heat source. In 1967, ANL permanently shut down the EBWR and placed it in dry lay-up. This project plan presents the schedule and organization for the decontamination and decommissioning of the EBWR Facility which will allow it to be reused by other ANL scientific research programs. The project total estimated cost is $14.3M and is projected to generate 22,000 cubic feet of low-level radioactive waste which will be disposed of at an approved DOE burial ground. 18 figs., 3 tabs.

Boing, L.E.

1989-12-01T23:59:59.000Z

96

2012 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond  

SciTech Connect

This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

Mike Lewis

2013-02-01T23:59:59.000Z

97

2011 Radiological Monitoring Results Associated with the Advanced Test Reactor Complex Cold Waste Pond  

SciTech Connect

This report summarizes radiological monitoring performed of the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

Mike Lewis

2012-02-01T23:59:59.000Z

98

2010 Radiological Monitoring Results Associated with the Advance Test Reactor Complex Cold Waste Pond  

SciTech Connect

This report summarizes radiological monitoring performed of the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste wastewater prior to discharge into the Cold Waste Pond and of specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit (#LA-000161-01, Modification B). All radiological monitoring is performed to fulfill Department of Energy requirements under the Atomic Energy Act.

mike lewis

2011-02-01T23:59:59.000Z

99

Linear variable differential transformer (LVDT)-based elongation measurements in Advanced Test Reactor high temperature irradiation testing  

Science Conference Proceedings (OSTI)

New materials are being considered for fuel, cladding, and structures in next generation and existing nuclear reactors. These materials can undergo significant dimensional and physical changes during high temperature irradiations. Currently, such changes are determined by repeatedly irradiating a specimen for a specified period of time in the Advanced Test Reactor (ATR) and then removing it from the reactor for evaluation. The labor and time to remove, examine, and return irradiated samples for each measurement makes this approach very expensive. In addition, such techniques provide limited data and may disturb the phenomena of interest. To resolve these issues, an instrumented creep testing capability is being developed for specimens irradiated in pressurized water reactor (PWR) coolant conditions in the ATR at the Idaho National Laboratory (INL). This paper reports the status of INL efforts to develop this testing capability. In addition to providing an overview of in-pile creep test capabilities available at other test reactors, this paper focuses on efforts to design and evaluate a prototype test rig in an autoclave at INL's High Temperature Test Laboratory (HTTL).

D. L. Knudson; J. L. Rempe

2012-02-01T23:59:59.000Z

100

Linear variable differential transformer (LVDT)-based elongation measurements in Advanced Test Reactor high temperature irradiation testing  

Science Conference Proceedings (OSTI)

New materials are being considered for fuel, cladding and structures in next generation and existing nuclear reactors. These materials can undergo significant dimensional and physical changes during high temperature irradiations. Currently, such changes are determined by repeatedly irradiating a specimen for a specified period of time in the Advanced Test Reactor (ATR) and then removing it from the reactor for evaluation. The labor and time to remove, examine and return irradiated samples for each measurement make this approach very expensive. In addition, such techniques provide limited data and may disturb the phenomena of interest. To resolve these issues, an instrumented creep testing capability is being developed for specimens irradiated under pressurized water reactor coolant conditions in the ATR at the Idaho National Laboratory (INL). This paper reports the status of INL efforts to develop this testing capability. In addition to providing an overview of in-pile creep test capabilities available at other test reactors, this paper focuses on efforts to design and evaluate a prototype test rig in an autoclave at INL’s High Temperature Test Laboratory.

D. L. Knudson; J. L. Rempe

2012-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "national reactor testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Enhanced In-pile Instrumentation for Material Testing Reactors  

Science Conference Proceedings (OSTI)

An increasing number of U.S. nuclear research programs are requesting enhanced in-pile instrumentation capable of providing real-time measurements of key parameters during irradiations. For example, fuel research and development funded by the U.S. Department of Energy now emphasize approaches that rely on first principle models to develop optimized fuel designs that offer significant improvements over current fuels. To facilitate this approach, high fidelity, real-time data are essential for characterizing the performance of new fuels during irradiation testing. Furthermore, sensors that obtain such data must be miniature, reliable and able to withstand high flux/high temperature conditions. Depending on user requirements, sensors may need to obtain data in inert gas, pressurized water, or liquid metal environments. To address these user needs, in-pile instrumentation development efforts have been initiated as part of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF), the Fuel Cycle Research & Development (FCR&D), and the Nuclear Energy Enabling Technology (NEET) programs. This paper reports on recent INL achievements to support these programs. Specifically, an overview of the types of sensors currently available to support in-pile irradiations and those sensors currently available to MTR users are identified. In addition, recent results and products available from sensor research and development are detailed. Specifically, progress in deploying enhanced in-pile sensors for detecting elongation and thermal conductivity are reported. Results from research to evaluate the viability of ultrasonic and fiber optic technologies for irradiation testing are also summarized.

Joy Rempe; Darrell Knudson; Joshua Daw; Troy Unruh; Benjamin Chase; Kurt Davis; Robert Schley

2012-07-01T23:59:59.000Z

102

DOI Designates B Reactor at DOE's Hanford Site as a National Historic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOI Designates B Reactor at DOE's Hanford Site as a National DOI Designates B Reactor at DOE's Hanford Site as a National Historic Landmark DOI Designates B Reactor at DOE's Hanford Site as a National Historic Landmark August 25, 2008 - 3:20pm Addthis DOE to offer regular public tours in 2009 WASHINGTON, DC - U.S. Department of the Interior (DOI) Deputy Secretary Lynn Scarlett and U.S. Department of Energy (DOE) Acting Deputy Secretary Jeffrey F. Kupfer today announced the designation of DOE's B Reactor as a National Historic Landmark and unveiled DOE's plan for a new public access program to enable American citizens to visit B Reactor during the 2009 tourist season. The B Reactor at DOE's Hanford Site in southeast Washington State was the world's first industrial-scale nuclear reactor and produced plutonium for the atomic weapon that was dropped on Nagasaki,

103

DOI Designates B Reactor at DOE's Hanford Site as a National Historic  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOI Designates B Reactor at DOE's Hanford Site as a National DOI Designates B Reactor at DOE's Hanford Site as a National Historic Landmark DOI Designates B Reactor at DOE's Hanford Site as a National Historic Landmark August 25, 2008 - 3:20pm Addthis DOE to offer regular public tours in 2009 WASHINGTON, DC - U.S. Department of the Interior (DOI) Deputy Secretary Lynn Scarlett and U.S. Department of Energy (DOE) Acting Deputy Secretary Jeffrey F. Kupfer today announced the designation of DOE's B Reactor as a National Historic Landmark and unveiled DOE's plan for a new public access program to enable American citizens to visit B Reactor during the 2009 tourist season. The B Reactor at DOE's Hanford Site in southeast Washington State was the world's first industrial-scale nuclear reactor and produced plutonium for the atomic weapon that was dropped on Nagasaki,

104

Testing of Biomass in a Transport Reactor Gasifier  

Science Conference Proceedings (OSTI)

A 200-hour gasification test was undertaken on biomass fuels from sources that include wood waste and a potential energy crop such as switchgrass. The test involved the design and construction of a feed system to allow 100% biomass to be continuously fed to the pilot-scale transport reactor development unit (TRDU) at the Energy & Environmental Research Center. Biomass performance was also assessed in a high-efficiency transport reactor gasifier, the centerpiece of an advanced biomass integrated ...

2012-11-28T23:59:59.000Z

105

Production test IP-412-AI: B and C reactors export system test  

SciTech Connect

Purpose of this test was to determine the adequacy of the export system for supplying flow to a dual reactor area under simulated emergency conditions.

Benson, J.L.; Jones, S.S.

1961-08-02T23:59:59.000Z

106

IRRADIATION TESTING OF THE RERTR FUEL MINIPLATES WITH BURNABLE ABSORBERS IN THE ADVANCED TEST REACTOR  

SciTech Connect

Based on the results of the reactor physics assessment, conversion of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) can be potentially accomplished in two ways, by either using U-10Mo monolithic or U-7Mo dispersion type plates in the ATR fuel element. Both designs, however, would require incorporation of the burnable absorber in several plates of the fuel element to compensate for the excess reactivity and to flatten the radial power profile. Several different types of burnable absorbers were considered initially, but only borated compounds, such as B4C, ZrB2 and Al-B alloys, were selected for testing primarily due to the length of the ATR fuel cycle and fuel manufacturing constraints. To assess and compare irradiation performance of the U-Mo fuels with different burnable absorbers we have designed and manufactured 28 RERTR miniplates (20 fueled and 8 non-fueled) containing fore-mentioned borated compounds. These miniplates will be tested in the ATR as part of the RERTR-13 experiment, which is described in this paper. Detailed plate design, compositions and irradiations conditions are discussed.

I. Glagolenko; D. Wachs; N. Woolstenhulme; G. Chang; B. Rabin; C. Clark; T. Wiencek

2010-10-01T23:59:59.000Z

107

Early Exploration - Reactors designed/built by Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Early Exploration Early Exploration About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

108

Deterministic Modeling of the High Temperature Test Reactor  

SciTech Connect

Idaho National Laboratory (INL) is tasked with the development of reactor physics analysis capability of the Next Generation Nuclear Power (NGNP) project. In order to examine INL’s current prismatic reactor deterministic analysis tools, the project is conducting a benchmark exercise based on modeling the High Temperature Test Reactor (HTTR). This exercise entails the development of a model for the initial criticality, a 19 column thin annular core, and the fully loaded core critical condition with 30 columns. Special emphasis is devoted to the annular core modeling, which shares more characteristics with the NGNP base design. The DRAGON code is used in this study because it offers significant ease and versatility in modeling prismatic designs. Despite some geometric limitations, the code performs quite well compared to other lattice physics codes. DRAGON can generate transport solutions via collision probability (CP), method of characteristics (MOC), and discrete ordinates (Sn). A fine group cross section library based on the SHEM 281 energy structure is used in the DRAGON calculations. HEXPEDITE is the hexagonal z full core solver used in this study and is based on the Green’s Function solution of the transverse integrated equations. In addition, two Monte Carlo (MC) based codes, MCNP5 and PSG2/SERPENT, provide benchmarking capability for the DRAGON and the nodal diffusion solver codes. The results from this study show a consistent bias of 2–3% for the core multiplication factor. This systematic error has also been observed in other HTTR benchmark efforts and is well documented in the literature. The ENDF/B VII graphite and U235 cross sections appear to be the main source of the error. The isothermal temperature coefficients calculated with the fully loaded core configuration agree well with other benchmark participants but are 40% higher than the experimental values. This discrepancy with the measurement stems from the fact that during the experiments the control rods were adjusted to maintain criticality, whereas in the model, the rod positions were fixed. In addition, this work includes a brief study of a cross section generation approach that seeks to decouple the domain in order to account for neighbor effects. This spectral interpenetration is a dominant effect in annular HTR physics. This analysis methodology should be further explored in order to reduce the error that is systematically propagated in the traditional generation of cross sections.

Ortensi, J.; Cogliati, J. J.; Pope, M. A.; Ferrer, R. M.; Ougouag, A. M.

2010-06-01T23:59:59.000Z

109

Opportunities for mixed oxide fuel testing in the advanced test reactor to support plutonium disposition  

Science Conference Proceedings (OSTI)

Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification; (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania; (3) The effects of WGPu isotopic composition; (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight; (5) The effects of americium and gallium in WGPu; (6) Fission gas release from MOX fuel pellets made from WGPu; (7) Fuel/cladding gap closure; (8) The effects of power cycling and off-normal events on fuel integrity; (9) Development of radial distributions of burnup and fission products; (10) Power spiking near the interfaces of MOX and urania fuel assemblies; and (11) Fuel performance code validation. The Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory possesses many advantages for performing tests to resolve most of the issues identified above. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified. The facilities at Argonne National Laboratory-West can meet all potential needs for pre- and post-irradiation examination that might arise in a MOX fuel qualification program.

Terry, W.K.; Ryskamp, J.M.; Sterbentz, J.W. [and others

1995-08-01T23:59:59.000Z

110

THE ADVANCED TEST REACTOR-ATR FINAL CONCEPTUAL DESIGN  

SciTech Connect

The results of a study are presented which provided additional experimental-loop irradiation space for the AECDRD testing program. It was a premise that the experiments allocated to this reactor were those which could not be accommodated in the MTR, ETR, or in existing commercial test reactors. To accomplish the design objectives called for a reactor producing perturbed neutron fluxes exceeding 1O/sup 15/ thermal n/cm/sup 2/-sec and 1.5 x 1O/sup 15/ epithermal n/cm/sup 2/-sec. To accommodate the experimental samples, the reactor fuel core is four feet long in the direction of experimental loops. This is twice the length of the MTR core and a third longer than the ETR core. The vertical arrangement of reactor and experiments permits the use of loops penetrating the top cap of the reactor vessel running straight and vertically through the reactor core. The design offers a high degree of accessibility of the exterior portions of the experiments and offers very convenient handling and discharge of experiments. Since the loops are to be integrated into the reactor design and the in-pile portions installed before reactor start-up, it is felt that many of the problems encountered in MTR and ETR experience will cease to exist. Installation of the loops prior to startup will have an added advantage in that the flux variations experienced in experiments in ETR every time a new loop is installed will be absent. The Advanced Test Reactor has a core configuration that provides essentially nine flux-trap regions in a geometry that is almost optimum for cylindrical experiments. The geometry is similar to that of a fourleaf clover with one flux trap in each leaf, one at the intersection of the leaves, and one between each pair of leaves. The nominal power level is 250 Mw. The study was carried out in enough detail to permit the establishment of the design parameters and to develop the power requirement which, conservatively rated, will definitely reach the flux specifications. A critical mockup of an arrangement similar to ATR was loaded into the Engineering Test Reactor Critical Facility. (auth)

deBoisblanc, D.R. et al

1960-11-01T23:59:59.000Z

111

Proceedings of the 1988 International Meeting on Reduced Enrichment for Research and Test Reactors  

SciTech Connect

The international effort to develop and implement new research reactor fuels utilizing low-enriched uranium, instead of highly- enriched uranium, continues to make solid progress. This effort is the cornerstone of a widely shared policy aimed at reducing, and possibly eliminating, international traffic in highly-enriched uranium and the nuclear weapon proliferation concerns associated with this traffic. To foster direct communication and exchange of ideas among the specialists in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Argonne National Laboratory, sponsored this meeting as the eleventh of a series which began 1978. Individual papers presented at the meeting have been cataloged separately.

1993-07-01T23:59:59.000Z

112

Interim Report on the Analysis of Argonne National Laboratory LOCA Tests  

Science Conference Proceedings (OSTI)

Experiments being conducted at the Argonne National Laboratory (ANL) will provide information on how light water reactor (LWR) fuel exposed to high burnups will respond to design-basis hypothetical accidents such as the loss of coolant accident (LOCA). EPRI is participating in this program by providing fuel specimens for the tests, analytical support for the design of test configurations, and an independent evaluation of test results in order to determine whether current LOCA criteria remain applicable a...

2003-11-07T23:59:59.000Z

113

Battery testing at Argonne National Laboratory  

DOE Green Energy (OSTI)

Argonne National Laboratory's Analysis Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life, and the most-promising R D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies (Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid). These evaluations were performed for the Department of Energy's. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1993-03-25T23:59:59.000Z

114

Battery testing at Argonne National Laboratory  

DOE Green Energy (OSTI)

Argonne National Laboratory`s Analysis & Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life, and the most-promising R&D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies (Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid). These evaluations were performed for the Department of Energy`s. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1993-03-25T23:59:59.000Z

115

Battery testing at Argonne National Laboratory  

SciTech Connect

Argonne National Laboratory's Analysis Diagnostic Laboratory (ADL) tests advanced batteries under simulated electric and hybrid vehicle operating conditions. The ADL facilities also include a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. The ADL provides a common basis for battery performance characterization and life evaluations with unbiased application of tests and analyses. The battery evaluations and post-test examinations help identify factors that limit system performance and life, and the most-promising R D approaches for overcoming these limitations. Since 1991, performance characterizations and/or life evaluations have been conducted on eight battery technologies (Na/S, Li/S, Zn/Br, Ni/MH, Ni/Zn, Ni/Cd, Ni/Fe, and lead-acid). These evaluations were performed for the Department of Energy's. Office of Transportation Technologies, Electric and Hybrid Propulsion Division (DOE/OTT/EHP), and Electric Power Research Institute (EPRI) Transportation Program. The results obtained are discussed.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1993-03-25T23:59:59.000Z

116

The ORNL High Flux Isotope Reactor and New Advanced Fuel Testing Capabilities  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy s High Flux Isotope Reactor (HFIR), located at the Oak Ridge National Laboratory (ORNL), was originally designed (in the 1960s) primarily as a part of the overall program to produce transuranic isotopes for use in the heavy-element research program of the United States. Today, the reactor is a highly versatile machine, producing medical and transuranic isotopes and performing materials test experimental irradiations and neutron-scattering experiments. The ability to test advanced fuels and cladding materials in a thermal neutron spectrum in the United States is limited, and a fast-spectrum irradiation facility does not currently exist in this country. The HFIR has a distinct advantage for consideration as a fuel/cladding irradiation facility because of the extremely high neutron fluxes that this reactor provides over the full thermal- to fast-neutron energy range. New test capabilities have been developed that will allow testing of advanced nuclear fuels and cladding materials in the HFIR under prototypic light-water reactor (LWR) and fast-reactor (FR) operating conditions.

Ott, Larry J [ORNL; McDuffee, Joel Lee [ORNL

2011-01-01T23:59:59.000Z

117

Why Nuclear Energy? - Reactors designed/built by Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Energy: Nuclear Energy: Why Nuclear Energy? About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

118

Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Risk Informed Safety Margin Characterization (RISMC) Advanced Test Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC)

119

Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(RISMC) Advanced Test (RISMC) Advanced Test Reactor Demonstration Case Study Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about light water reactor design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway research and development (R&D) is to support plant decisions for

120

TEST-HOLE CONSTRUCTION FOR A NEUTRONIC REACTOR  

DOE Patents (OSTI)

Test-hole construction is described for a reactor which provides safe and ready access to the neutron flux region for specimen materials which are to be irradiated therein. An elongated tubular thimble adapted to be inserted in the access hole through the wall of the reactor is constructed of aluminum and is provided with a plurality of holes parallel to the axis of the thimble for conveying the test specimens into position for irradiation, and a conduit for the circulation of coolant. A laminated shield formed of alternate layers of steel and pressed wood fiber is disposed lengthwise of the thimble near the outer end thereof.

Ohlinger, L.A.; Seitz, F.; Young, G.J.

1959-02-17T23:59:59.000Z

Note: This page contains sample records for the topic "national reactor testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Department of Energy Designates the Idaho National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Designates the Idaho National Laboratory Advanced Test Reactor as a National Scientific User Facility Department of Energy Designates the Idaho National Laboratory Advanced Test...

122

Advanced Fuel/Cladding Testing Capabilities in the ORNL High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

The ability to test advanced fuels and cladding materials under reactor operating conditions in the United States is limited. The Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and the newly expanded post-irradiation examination (PIE) capability at the ORNL Irradiated Fuels Examination Laboratory provide unique support for this type of advanced fuel/cladding development effort. The wide breadth of ORNL's fuels and materials research divisions provides all the necessary fuel development capabilities in one location. At ORNL, facilities are available from test fuel fabrication, to irradiation in HFIR under either thermal or fast reactor conditions, to a complete suite of PIEs, and to final product disposal. There are very few locations in the world where this full range of capabilities exists. New testing capabilities at HFIR have been developed that allow testing of advanced nuclear fuels and cladding materials under prototypic operating conditions (i.e., for both fast-spectrum conditions and light-water-reactor conditions). This paper will describe the HFIR testing capabilities, the new advanced fuel/cladding testing facilities, and the initial cooperative irradiation experiment that begins this year.

Ott, Larry J [ORNL; Ellis, Ronald James [ORNL; McDuffee, Joel Lee [ORNL; Spellman, Donald J [ORNL; Bevard, Bruce Balkcom [ORNL

2009-01-01T23:59:59.000Z

123

National SCADA Test Bed Enhancing control systems security in...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SCADA Test Bed Enhancing control systems security in the energy sector National SCADA Test Bed Enhancing control systems security in the energy sector Improving the security of...

124

Battery testing at Argonne National Laboratory  

SciTech Connect

Advanced battery technology evaluations are performed under simulated electric-vehicle operating conditions at the Analysis Diagnostic Laboratory (ADL) of Argonne National Laboratory. The ADL results provide insight into those factors that limit battery performance and life. The ADL facilities include a test laboratory to conduct battery experimental evaluations under simulated application conditions and a post-test analysis laboratory to determine, in a protected atmosphere if needed, component compositional changes and failure mechanisms. This paper summarizes the performance characterizations and life evaluations conducted during FY 1992 on both single cells and multi-cell modules that encompass six battery technologies [Na/S, Li/FeS, Ni/Metal-Hydride, Ni/Zn, Ni/Cd, Ni/Fe]. These evaluations were performed for the Department of Energy, Office of Transportation Technologies, Electric and Hybrid Propulsion Division, and the Electric Power Research Institute. The ADL provides a common basis for battery performance characterization and lie evaluations with unbiased application of tests and analyses. The results help identify the most promising R D approaches for overcoming battery limitations, and provide battery users, developers, and program managers with a measure of the progress being made in battery R D programs, a comparison of battery technologies, and basic data for modeling.

DeLuca, W.H.; Gillie, K.R.; Kulaga, J.E.; Smaga, J.A.; Tummillo, A.F.; Webster, C.E.

1992-01-01T23:59:59.000Z

125

FUNDAMENTALS IN THE OPERATION OF NUCLEAR TEST REACTORS. VOLUME 2. MATERIALS TESTING REACTOR DESIGN AND OPERATION  

SciTech Connect

The reactor components, building, control system and circuitry, and experimental and handling facilities are described and discussed, together with operation, shutdown, tank work and supplemental facilities. Training questions and answers are included. (D.C.W.)

1963-10-01T23:59:59.000Z

126

Heavy Water Components Test Reactor Decommissioning - Major Component Removal  

SciTech Connect

The Heavy Water Components Test Reactor (HWCTR) facility (Figure 1) was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR facility is on high, well-drained ground, about 30 meters above the water table. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. It was not a defense-related facility like the materials production reactors at SRS. The reactor was moderated with heavy water and was rated at 50 megawatts thermal power. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In 1965, fuel assemblies were removed, systems that contained heavy water were drained, fluid piping systems were drained, deenergized and disconnected and the spent fuel basin was drained and dried. The doors of the reactor facility were shut and it wasn't until 10 years later that decommissioning plans were considered and ultimately postponed due to budget constraints. In the early 1990s, DOE began planning to decommission HWCTR again. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. The $1.6 billion allocation from the American Recovery and Reinvestment Act to SRS for site clean up at SRS has opened the doors to the HWCTR again - this time for final decommissioning. During the lifetime of HWCTR, 36 different fuel assemblies were tested in the facility. Ten of these experienced cladding failures as operational capabilities of the different designs were being established. In addition, numerous spills of heavy water occurred within the facility. Currently, radiation and radioactive contamination levels are low within HWCTR with most of the radioactivity contained within the reactor vessel. There are no known insults to the environment, however with the increasing deterioration of the facility, the possibility exists that contamination could spread outside the facility if it is not decommissioned. An interior panoramic view of the ground floor elevation taken in August 2009 is shown in Figure 2. The foreground shows the transfer coffin followed by the reactor vessel and control rod drive platform in the center. Behind the reactor vessel is the fuel pool. Above the ground level are the polar crane and the emergency deluge tank at the top of the dome. Note the considerable rust and degradation of the components and the interior of the containment building. Alternative studies have concluded that the most environmentally safe, cost effective option for final decommissioning is to remove the reactor vessel, steam generators, and all equipment above grade including the dome. Characterization studies along with transport models have concluded that the remaining below grade equipment that is left in place including the transfer coffin will not contribute any significant contamination to the environment in the future. The below grade space will be grouted in place. A concrete cover will be placed over the remaining footprint and the groundwater will be monitored for an indefinite period to ensure compliance with environmental regulations. The schedule for completion of decommissioning is late FY2011. This paper describes the concepts planned in order to remove the major components including the dome, the reactor vessel (RV), the two steam generators (SG), and relocating the transfer coffin (TC).

Austin, W.; Brinkley, D.

2010-05-05T23:59:59.000Z

127

Heavy Water Components Test Reactor Decommissioning - Major Component Removal  

SciTech Connect

The Heavy Water Components Test Reactor (HWCTR) facility (Figure 1) was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR facility is on high, well-drained ground, about 30 meters above the water table. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. It was not a defense-related facility like the materials production reactors at SRS. The reactor was moderated with heavy water and was rated at 50 megawatts thermal power. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In 1965, fuel assemblies were removed, systems that contained heavy water were drained, fluid piping systems were drained, deenergized and disconnected and the spent fuel basin was drained and dried. The doors of the reactor facility were shut and it wasn't until 10 years later that decommissioning plans were considered and ultimately postponed due to budget constraints. In the early 1990s, DOE began planning to decommission HWCTR again. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. The $1.6 billion allocation from the American Recovery and Reinvestment Act to SRS for site clean up at SRS has opened the doors to the HWCTR again - this time for final decommissioning. During the lifetime of HWCTR, 36 different fuel assemblies were tested in the facility. Ten of these experienced cladding failures as operational capabilities of the different designs were being established. In addition, numerous spills of heavy water occurred within the facility. Currently, radiation and radioactive contamination levels are low within HWCTR with most of the radioactivity contained within the reactor vessel. There are no known insults to the environment, however with the increasing deterioration of the facility, the possibility exists that contamination could spread outside the facility if it is not decommissioned. An interior panoramic view of the ground floor elevation taken in August 2009 is shown in Figure 2. The foreground shows the transfer coffin followed by the reactor vessel and control rod drive platform in the center. Behind the reactor vessel is the fuel pool. Above the ground level are the polar crane and the emergency deluge tank at the top of the dome. Note the considerable rust and degradation of the components and the interior of the containment building. Alternative studies have concluded that the most environmentally safe, cost effective option for final decommissioning is to remove the reactor vessel, steam generators, and all equipment above grade including the dome. Characterization studies along with transport models have concluded that the remaining below grade equipment that is left in place including the transfer coffin will not contribute any significant contamination to the environment in the future. The below grade space will be grouted in place. A concrete cover will be placed over the remaining footprint and the groundwater will be monitored for an indefinite period to ensure compliance with environmental regulations. The schedule for completion of decommissioning is late FY2011. This paper describes the concepts planned in order to remove the major components including the dome, the reactor vessel (RV), the two steam generators (SG), and relocating the transfer coffin (TC).

Austin, W.; Brinkley, D.

2010-05-05T23:59:59.000Z

128

The High Flux Isotope Reactor at Oak Ridge National Laboratory  

NLE Websites -- All DOE Office Websites

The High Flux Isotope Reactor at ORNL The High Flux Isotope Reactor at ORNL Aerial of the High Flux Isotope Reactor Site The High Flux Isotope Reactor site is located on the south side of the ORNL campus and is about a three-minute drive from her sister neutron facility, the Spallation Neutron Source. Operating at 85 MW, HFIR is the highest flux reactor-based source of neutrons for research in the United States, and it provides one of the highest steady-state neutron fluxes of any research reactor in the world. The thermal and cold neutrons produced by HFIR are used to study physics, chemistry, materials science, engineering, and biology. The intense neutron flux, constant power density, and constant-length fuel cycles are used by more than 500 researchers each year for neutron scattering research into

129

More About NNSA's Naval Reactors Office | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

Naval Reactors Office The Naval Nuclear Propulsion Program provides militarily effective nuclear propulsion plants and ensures their safe, reliable and long-lived operation. This...

130

A review of two recent occurrences at the Advanced Test Reactor involving subcontractor activities  

Science Conference Proceedings (OSTI)

This report documents the results of a brief, unofficial investigation into two incidents at the Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Test Reactor (ATR) facility, reported on October 25 and 31, 1997. The first event was an unanticipated breach of confinement. The second involved reactor operation with an inoperable seismic scram subsystem, violating the reactor`s Technical Specifications. These two incidents have been found to be unrelated. A third event that occurred on December 16, 1996, is also discussed because of its similarities to the first event listed above. Both of these incidents were unanticipated breaches of confinement, and both involved the work of construction subcontractor personnel. The cause for the subcontractor related occurrences is a work control process that fails to effectively interface with LMITCO management. ATR Construction Project managers work sufficient close with construction subcontractor personnel to understand planned day-to-day activities. They also have sufficient training and understanding of reactor operations to ensure adherence to applicable administrative requirements. However, they may not be sufficiently involved in the work authorization and control process to bridge an apparent communications gap between subcontractor employees and Facility Operations/functional support personnel for work inside the reactor facility. The cause for the inoperable seismic scram switch (resulting from a disconnected lead) is still under investigation. It does not appear to be subcontractor related.

Dahlke, H.J.; Jensen, N.C.; Vail, J.A.

1997-11-01T23:59:59.000Z

131

The Next Generation Nuclear Plant/Advanced Gas Reactor Fuel Irradiation Experiments in the Advanced Test Reactor  

SciTech Connect

The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating eight separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006, and the second experiment (AGR-2) is currently in the design phase. The design of test trains, as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation will be discussed. In addition, the purpose and differences between the two experiments will be compared and the irradiation results to date on the first experiment will be presented.

S. Blaine Grover

2009-09-01T23:59:59.000Z

132

Vertical Pretreatment Reactor System (Poster), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Vertical Pretreatment Reactor System Vertical Pretreatment Reactor System Two-vessel system for primary and secondary pretreatment at diff erent temperatures * Biomass is heated by steam injection to temperatures of 120°C to 210°C in the pressurized mixing tube * Preheated, premixed biomass is retained for specified residence time in vertical holding vessel; material continuously moves by gravity from top to bottom of reactor in plug-fl ow fashion * Residence time is adjusted by changing amount of material held in vertical vessel relative to continuous fl ow of material entering and exiting vessel * Optional additional reactor vessel allows for secondary pretreatment at lower temperatures-120°C to 180°C-with potential to add other chemical catalysts * First vessel can operate at residence

133

FAST FUEL TEST REACTOR-FFTR CONCEPTUAL DESIGN STUDY  

SciTech Connect

The Fast Fuel Test Reactor (FFTR) is a nuclear facility for the purpose of irradiating samples of fuels and structural components for use in fast reactors. The core consisis of a plate type element in a square configuration. Beryllium metal between the fuel elements is used to obtain a neutron energy spectrum in the hard intermediate region. Cooling of the core and test specimens is accomplished by means of liquid sodium. The design concept was carried through in sufficient degree in the following areas of preliminary concern: number and size of irradiation facilities, sample power requirements, plant layout to evaluate site requirements, plant and nuclear design parameters to evaluate essential equipment requirements. plant-capital-cost estimate, annual- operating-cost estimate, and estimate of construction time schedule. (W.D.M.)

Brubaker, R.; Hummel, H.H.; McArthy, A.; Smaardyk, A.; Kittel, J.H.

1960-08-01T23:59:59.000Z

134

Domestic U.S. Reactor Conversions: Fact Sheet | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Domestic U.S. Reactor Conversions: Fact Sheet | National Nuclear Security Domestic U.S. Reactor Conversions: Fact Sheet | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Fact Sheets > Domestic U.S. Reactor Conversions: Fact Sheet Fact Sheet Domestic U.S. Reactor Conversions: Fact Sheet Mar 23, 2012 The National Nuclear Security Administration (NNSA) helps convert research

135

Office of Research, Development, Test, and Evaluation | National...  

National Nuclear Security Administration (NNSA)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Office of Research, Development, Test, and Evaluation Home > About...

136

Office of Test and Evaluation | National Nuclear Security Administrati...  

National Nuclear Security Administration (NNSA)

Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Office of Test and Evaluation Home > About Us > Our Programs >...

137

Reducing emissions to improve nuclear test detection | National...  

National Nuclear Security Administration (NNSA)

Reducing emissions to improve nuclear test detection | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

138

Limited Test Ban Treaty Signed | National Nuclear Security Administrat...  

NLE Websites -- All DOE Office Websites (Extended Search)

Limited Test Ban Treaty Signed | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

139

Senate Rejects Test Ban Treaty | National Nuclear Security Administrat...  

NLE Websites -- All DOE Office Websites (Extended Search)

Senate Rejects Test Ban Treaty | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

140

Clinton Extends Moratorium on Nuclear Weapons Testing | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

Note: This page contains sample records for the topic "national reactor testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

142

Los Alamos National Laboratory begins pumping tests on chromium...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory begins pumping tests on chromium plume The chromium originated from cooling towers at a Laboratory power plant and was released from 1956 to 1972. May 22,...

143

Results of the DF-4 BWR (boiling water reactor) control blade-channel box test  

DOE Green Energy (OSTI)

The DF-4 in-pile fuel damage experiment investigated the behavior of boiling water reactor (BWR) fuel canisters and control blades in the high temperature environment of an unrecovered reactor accident. This experiment, which was carried out in the Annular Core Research Reactor (ACRR) at Sandia National Laboratories, was performed under the USNRC's internationally sponsored severe fuel damage (SFD) program. The DF-4 test is described herein and results from the experiment are presented. Important findings from the DF-4 test include the low temperature melting of the stainless steel control blade caused by reaction with the B{sub 4}C, and the subsequent low temperature attack of the Zr-4 channel box by the relocating molten blade components. Hydrogen generation was found to continue throughout the experiment, diminishing slightly following the relocation of molten oxidizing zircaloy to the lower extreme of the test bundle. A large blockage which was formed from this material continued to oxidize while steam was being fed into the the test bundle. The results of this test have provided information on the initial stages of core melt progression in BWR geometry involving the heatup and cladding oxidation stages of a severe accident and terminating at the point of melting and relocation of the metallic core components. The information is useful in modeling melt progression in BWR core geometry, and provides engineering insight into the key phenomena controlling these processes. 12 refs., 12 figs.

Gauntt, R.O.; Gasser, R.D.

1990-10-01T23:59:59.000Z

144

DIAMOND WIRE CUTTING OF THE TOKAMAK FUSION TEST REACTOR  

Science Conference Proceedings (OSTI)

The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. As a result, decommissioning commenced in October 1999. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The deuterium-tritium experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 Mev neutrons. The total tritium content within the vessel is in excess of 7,000 Curies while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the Tokamak present a unique and challenging task for dismantling. Engineers at the Princeton Plasma Physics Laboratory (PPPL) decided to investigate an alternate, innovative approach for dismantlement of the TFTR vacuum vessel: diamond wire cutting technology. In August 1999, this technology was successfully demonstrated and evaluated on vacuum vessel surrogates. Subsequently, the techno logy was improved and redesigned for the actual cutting of the vacuum vessel. 10 complete cuts were performed in a 6-month period to complete the removal of this unprecedented type of D&D activity.

Rule, Keith; Perry, Erik; Parsells, Robert

2003-02-27T23:59:59.000Z

145

Diamond Wire Cutting of the Tokamak Fusion Test Reactor  

Science Conference Proceedings (OSTI)

The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. As a result, decommissioning commenced in October 1999. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The deuterium-tritium experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 MeV neutrons. The total tritium content within the vessel is in excess of 7,000 Curies, while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the tokamak present a unique and challenging task for dismantling. Engineers at the Princeton Plasma Physics Laboratory (PPPL) decided to investigate an alternate, innovative approach for dismantlement of the TFTR vacuum vessel: diamond wire cutting technology. In August 1999, this technology was successfully demonstrated and evaluated on vacuum vessel surrogates. Subsequently, the technology was improved and redesigned for the actual cutting of the vacuum vessel. Ten complete cuts were performed in a 6-month period to complete the removal of this unprecedented type of D&D (Decontamination and Decommissioning) activity.

Keith Rule; Erik Perry; Robert Parsells

2003-01-31T23:59:59.000Z

146

An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory  

SciTech Connect

Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs.

Boing, L.E.; Henley, D.R. (Argonne National Lab., IL (USA)); Manion, W.J.; Gordon, J.W. (Nuclear Energy Services, Inc., Danbury, CT (USA))

1989-12-01T23:59:59.000Z

147

Tag: Naval Reactors | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Naval Reactors Naval Reactors Tag: Naval Reactors Displaying 1 - 7 of 7... Category: Employees & Retirees "Cook"ing at Y-12 for 70 years We have an enduring mission. Y-12 plays a key role in it. And a nuclear deterrent remains the ultimate insurance policy for America. More... Category: News Y-12 Knows Uranium Y-12 produces many forms of uranium. More... Category: News A Rich Resource Requires Recovery Given the value and scarcity of enriched uranium, Y-12 recycles and reuses as much of it as possible. More... Category: News Seawolf Manufacturing Challenge For decades, attack submarines were either fast or quiet - but never both. The fast subs were so loud that an enemy could hear them long before they were within striking distance. More... Category: News Reliable fuel source

148

Horizontal Pretreatment Reactor System (Poster), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Diff Diff erent pretreatment chemistry/ residence time combinations are possible using these multiple horizontal-tube reactors * Each tube is indirectly and directly steam heated to temperatures of 150 0 C to 210 0 C * Residence time is varied by changing the speed of the auger that moves the biomass through each tube reactor * Tubes are used individually or in combination to achieve diff erent pretreatment residence times * Smaller tubes made from Hastelloy, an acid-resistant material, are used with more corrosive chemicals and residence times from 3 to 20 minutes * Larger tubes made from 316 stainless steel are used for residence times from 20 to 120 minutes Horizontal Pretreatment Reactor System Versatile pretreatment system for a wide range of pretreatment chemistries

149

Small Modular Reactors, National Security and Clean Energy: A...  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Princeton Plasma Physics Laboratory. All rights reserved. U.S. Department of Energy Princeton Plasma Physics Laboratory is a U.S. Department of Energy national...

150

Los Alamos National Laboratory Omega West Reactor restart  

Science Conference Proceedings (OSTI)

This report is a critical evaluation of the effort for the restart of the Omega West reactor. It is divided into the following areas: progress made; difficulties in restart effort; current needs; and suggested detailed steps for improvement. A brief discussion is given for each area of study.

NONE

1993-08-27T23:59:59.000Z

151

Materials Transportation Testing & Analysis at Sandia National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Testing & Analysis Mission Sandia's Transportation Risk & Packaging Program develops innovative technologies and methodologies to solve transportation and packaging...

152

Test storage of spent reactor fuel in the Climax granite at the Nevada Test Site  

SciTech Connect

A test of retrievable dry geologic storage of spent fuel assemblies from an operating commercial nuclear reactor is underway at the Nevada Test Site. This generic test is located 420 m below the surface in the Climax granitic stock. Eleven canisters of spent fuel approximately 2.3 years out of reactor core (about 2 kW/canister thermal output) will be emplaced in a storage drift along with 6 electrical simulator canisters and their effects will be compared. Two adjacent drifts will contain electrical heaters, which will be operated to simulate within the test array the thermal field of a large repository. The test objectives, technical concepts and rationale, and details of the test are stated and discussed.

Ramspott, L.D.; Ballou, L.B.

1980-02-13T23:59:59.000Z

153

BWRVIP-262NP: BWR Vessel and Internals Project, Baseline Fracture Toughness and Crack Growth Rate Testing of Alloys X-750 and XM-19 (Idaho National Laboratory Phase I)  

Science Conference Proceedings (OSTI)

The Advanced Test Reactor National Scientific User Facility (ATR NSUF) based at the Idaho National Laboratory (INL) and the Electric Power Research Institute (EPRI) formed an agreement to test representative alloys used as reactor structural materials in a pilot program intended to establish guidelines for future ATR NSUF research programs. This report contains results from the portion of this program established as Phase 1 (of three phases), which entails baseline fracture toughness, stress corrosion cr...

2012-08-06T23:59:59.000Z

154

Office of Research, Development, Test, and Evaluation | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Research, Development, Test, and Evaluation | National Nuclear Research, Development, Test, and Evaluation | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Office of Research, Development, Test, and Evaluation Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation

155

Inverter testing at Sandia National Laboratories  

SciTech Connect

Inverters are key building blocks of photovoltaic (PV) systems that produce ac power. The balance of systems (BOS) portion of a PV system can account for up to 50% of the system cost, and its reliable operation is essential for a successful PV system. As part of its BOS program, Sandia National Laboratories (SNL) maintains a laboratory wherein accurate electrical measurements of power systems can be made under a variety of conditions. This paper outlines the work that is done in that laboratory.

Ginn, J.W.; Bonn, R.H.; Sittler, G. [Sandia National Labs., Albuquerque, NM (United States). Photovoltaic System Components Dept.

1997-04-01T23:59:59.000Z

156

Economic analysis of nuclear power reactor dissemination to less developed nations with implications for nuclear proliferation  

SciTech Connect

An economic model is applied to the transfer of nuclear-power reactors from industrialized nations to the less developed nations. The model includes demand and supply factors and predicts the success of US nonproliferation positions and policies. It is concluded that economic forces dominate the transfer of power reactors to less developed nations. Our study shows that attempts to either restrict or promote the spread of nuclear-power technology by ignoring natural economic incentives would have only limited effect. If US policy is too restrictive, less developed nations will seek other suppliers and thereby lower US Influence substantially. Allowing less developed nations to develop nuclear-power technology as dictated by economic forces will result in a modest rate of transfer that should comply with nuclear-proliferation objectives.

Gustavson, R.L.; Howard, J.S. II

1979-09-01T23:59:59.000Z

157

Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility  

Science Conference Proceedings (OSTI)

A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

2008-04-01T23:59:59.000Z

158

INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK  

SciTech Connect

5098-SR-03-0 FINAL REPORT- INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS, BROOKHAVEN NATIONAL LABORATORY

P.C. Weaver

2010-12-15T23:59:59.000Z

159

Technology issues for decommissioning the Tokamak Fusion Test Reactor  

SciTech Connect

The approach for decommissioning the Tokamak Fusion Test Reactor has evolved from a conservative plan based on cutting up and burying all of the systems, to one that considers the impact tritium contamination will have on waste disposal, how large size components may be used as their own shipping containers, and even the possibility of recycling the materials of components such as the toroidal field coils and the tokamak structure. In addition, the project is more carefully assessing the requirements for using remotely operated equipment. Finally, valuable cost database is being developed for future use by the fusion community.

Spampinato, P.T.; Walton, G.R. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Commander, J.C. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1994-07-01T23:59:59.000Z

160

Improved computational neutronics methods and validation protocols for the advanced test reactor  

SciTech Connect

The Idaho National Laboratory (INL) is in the process of updating the various reactor physics modeling and simulation tools used to support operation and safety assurance of the Advanced Test Reactor (ATR). Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (HELIOS, KENO6/SCALE, NEWT/SCALE, ATTILA, and an extended implementation of MCNP5) has been installed at the INL. Corresponding models of the ATR and ATRC are now operational with all five codes, demonstrating the basic feasibility of the new code packages for their intended purposes. On the experimental side of the project, new hardware was fabricated, measurement protocols were finalized, and the first four of six planned physics code validation experiments based on neutron activation spectrometry have been conducted at the ATRC facility. Data analysis for the first three experiments, focused on characterization of the neutron spectrum in one of the ATR flux traps, has been completed. The six experiments will ultimately form the basis for flexible and repeatable ATR physics code validation protocols that are consistent with applicable national standards. (authors)

Nigg, D. W.; Nielsen, J. W.; Chase, B. M.; Murray, R. K.; Steuhm, K. A.; Unruh, T. [Idaho National Laboratory, 2525 Fremont Street, Idaho Falls, ID 83415-3870 (United States)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "national reactor testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

EXPERIMENT OPERATIONS PLAN FOR A LOSS-OF-COOLANT ACCIDENT SIMULATION IN THE NATIONAL RESEARCH UNIVERSAL REACTOR  

SciTech Connect

Pressurized water reactor loss-of-coolant accident phenomena are being simulated with a series of experiments in the U-2 loop of the National Research Universal Reactor at Chalk River, Ontario, Canada. The first of these experiments includes up to 45 parametric thermal-hydraulic tests to establish the relationship between the reflood delay time of emergency coolant, the reflooding rate, and the resultant fuel rod cladding peak temperature. This document contains both experiment proposal and assembly proposal information. The intent of this document is to supply information required by the Chalk River Nuclear Laboratories (CRNL), and to identify the planned procedures and data that will be used both to establish readiness to proceed from one test phase to the next and to operate the experiment. Operating control settings and limits are provided for both experimenter systems and CRNL systems. A hazards review summarizes safety issues that have been addressed during the development of the experiment plan.

Russcher, G. E.; Cannon, L. W.; Goodman, R. L.; Hesson, G. M.; King, L. L.; McDuffie, P. N.; Marshall, R. K.; Nealley, C.; Pilger, J. P.; Mohr, C. L.

1981-04-01T23:59:59.000Z

162

Sandia National Laboratories: Locations: Kauai Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Facility P.O. Box 308 Waimea, Kauai HI 96796-0308 7:30 a.m. - 4:30 p.m. Hawaii-Aleutian Standard Time, M - F Steven Lautenschleger, Manager (505) 845-9234,...

163

INITIAL TESTING AND OPERATION OF THE ARGONNE LOW POWER REACTOR (ALPR)  

SciTech Connect

The major events of a program designed to test and operate the completed reactor power plant and associated equipment are described. The design and construction phases of the project, component installation, preliminary systems testing, zero-power experiments, areas affected by the design parameters, reactor operation, plant safety, and reactor operator training are covered. (W.D.M.)

Hamer, E.E. ed.

1959-12-01T23:59:59.000Z

164

Vortex Diode Analysis and Testing for Fluoride Salt-Cooled High-Temperature Reactors  

SciTech Connect

Fluidic diodes are presently being considered for use in several fluoride salt-cooled high-temperature reactor designs. A fluidic diode is a passive device that acts as a leaky check valve. These devices are installed in emergency heat removal systems that are designed to passively remove reactor decay heat using natural circulation. The direct reactor auxiliary cooling system (DRACS) uses DRACS salt-to-salt heat exchangers (DHXs) that operate in a path parallel to the core flow. Because of this geometry, under normal operating conditions some flow bypasses the core and flows through the DHX. A flow diode, operating in reverse direction, is-used to minimize this flow when the primary coolant pumps are in operation, while allowing forward flow through the DHX under natural circulation conditions. The DRACSs reject the core decay heat to the environment under loss-of-flow accident conditions and as such are a reactor safety feature. Fluidic diodes have not previously been used in an operating reactor system, and therefore their characteristics must be quantified to ensure successful operation. This report parametrically examines multiple design parameters of a vortex-type fluidic diode to determine the size of diode needed to reject a particular amount of decay heat. Additional calculations were performed to size a scaled diode that could be tested in the Oak Ridge National Laboratory Liquid Salt Flow Loop. These parametric studies have shown that a 152.4 mm diode could be used as a test article in that facility. A design for this diode is developed, and changes to the loop that will be necessary to test the diode are discussed. Initial testing of a scaled flow diode has been carried out in a water loop. The 150 mm diode design discussed above was modified to improve performance, and the final design tested was a 171.45 mm diameter vortex diode. The results of this testing indicate that diodicities of about 20 can be obtained for diodes of this size. Experimental results show similar trends as the computational fluid dynamics (CFD) results presented in this report; however, some differences exist that will need to be assessed in future studies. The results of this testing will be used to improve the diode design to be tested in the liquid salt loop system.

Yoder Jr, Graydon L [ORNL; Elkassabgi, Yousri M. [Texas A& M University, Kingsville; De Leon, Gerardo I. [Texas A& M University, Kingsville; Fetterly, Caitlin N. [Texas A& M University, Kingsville; Ramos, Jorge A. [Texas A& M University, Kingsville; Cunningham, Richard Burns [University of Tennessee, Knoxville (UTK)

2012-02-01T23:59:59.000Z

165

First Thermonuclear Device Successfully Tested | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermonuclear Device Successfully Tested | National Nuclear Security Thermonuclear Device Successfully Tested | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > First Thermonuclear Device Successfully Tested First Thermonuclear Device Successfully Tested December 31, 1952 Enewetak Atoll First Thermonuclear Device Successfully Tested

166

First Plutonium Bomb Successfully Tested | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Plutonium Bomb Successfully Tested | National Nuclear Security Plutonium Bomb Successfully Tested | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > First Plutonium Bomb Successfully Tested First Plutonium Bomb Successfully Tested July 16, 1945 Los Alamos, NM First Plutonium Bomb Successfully Tested

167

Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security Eisenhower Halts Nuclear Weapons Testing | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Eisenhower Halts Nuclear Weapons Testing Eisenhower Halts Nuclear Weapons Testing August 22, 1958 Washington, DC Eisenhower Halts Nuclear Weapons Testing

168

First Plutonium Bomb Successfully Tested | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Plutonium Bomb Successfully Tested | National Nuclear Security Plutonium Bomb Successfully Tested | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > First Plutonium Bomb Successfully Tested First Plutonium Bomb Successfully Tested July 16, 1945 Los Alamos, NM First Plutonium Bomb Successfully Tested

169

Storage of spent fuel from the nation`s nuclear reactors: Status, technology, and policy options  

SciTech Connect

Since the beginning of the commercial nuclear electric power industry, it has been recognized that spent nuclear reactor fuel must be able to be readily removed from the reactor vessel in the plant and safely stored on-site. The need for adjacent ready storage is first for safety. In the event of an emergency, or necessary maintenance that requires the removal of irradiated fuel from the reactor vessel, cooled reserve storage capacity for the full amount of fuel from the reactor core must be available. Also, the uranium fuel in the reactor eventually reaches the point where its heat generation is below the planned efficiency for steam production which drives the turbines and generators. It then must be replaced by fresh uranium fuel, with the ``spent fuel`` elements being removed to a safe and convenient storage location near the reactor vessel. The federal nuclear waste repository program, even without delays in the current schedule of disposal becoming available in 2003, will result in a large percentage of the 111 existing operable commercial reactors requiring expansion of their spent fuel storage capacity. How that need can and will be met raises issues of both technology and policy that will be reviewed in this report.

1989-10-01T23:59:59.000Z

170

National SCADA Test Bed Fact Sheet  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROTECTING ENERGY INFRASTRUCTURE BY IMPROVING THE SECURITY OF CONTROL SYSTEMS PROTECTING ENERGY INFRASTRUCTURE BY IMPROVING THE SECURITY OF CONTROL SYSTEMS Improving the security of energy control systems has become a national priority. Since the mid-1990's, security experts have become increasingly concerned about the threat of malicious cyber attacks on the vital supervisory control and data acquisition (SCADA) and distributed control systems (DCS) used to monitor and manage our energy infrastructure. Many of the systems still in use today were designed to operate in closed, proprietary networks. Increasing use of common software and operating systems and connection to public telecommunication networks and the Internet have made systems more reliable and efficient-but also more

171

Tritium production analysis and management strategies for a Fluoride-salt-cooled high-temperature test reactor (FHTR)  

E-Print Network (OSTI)

The Fluoride-salt-cooled High-temperature Test Reactor (FHTR) is a test reactor concept that aims to demonstrate the neutronics, thermal-hydraulics, materials, tritium management, and to address other reactor operational ...

Rodriguez, Judy N

2013-01-01T23:59:59.000Z

172

Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2010  

SciTech Connect

Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance and, to some extent, experiment management are obsolete, inconsistent with the state of modern nuclear engineering practice, and are becoming increasingly difficult to properly verify and validate (V&V). Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In 2009 the Idaho National Laboratory (INL) initiated a focused effort to address this situation through the introduction of modern high-fidelity computational software and protocols, with appropriate V&V, within the next 3-4 years via the ATR Core Modeling and Simulation and V&V Update (or “Core Modeling Update”) Project. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF).

Rahmat Aryaeinejad; Douglas S. Crawford; Mark D. DeHart; George W. Griffith; D. Scott Lucas; Joseph W. Nielsen; David W. Nigg; James R. Parry; Jorge Navarro

2010-09-01T23:59:59.000Z

173

Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2013  

SciTech Connect

Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance, and to some extent, experiment management, are inconsistent with the state of modern nuclear engineering practice, and are difficult, if not impossible, to verify and validate (V&V) according to modern standards. Furthermore, the legacy staff knowledge required for effective application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In late 2009, the Idaho National Laboratory (INL) initiated a focused effort, the ATR Core Modeling Update Project, to address this situation through the introduction of modern high-fidelity computational software and protocols. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF).

David W. Nigg

2013-09-01T23:59:59.000Z

174

Run - Beyond - Cladding - Breach (RBCB) test results for the Integral Fast Reactor (IFR) metallic fuels program  

Science Conference Proceedings (OSTI)

In 1984 Argonne National Laboratory (ANL) began an aggressive program of research and development based on the concept of a closed system for fast-reactor power generation and on-site fuel reprocessing, exclusively designed around the use of metallic fuel. This is the Integral Fast Reactor (IFR). Although the Experimental Breeder Reactor-II (EBR-II) has used metallic fuel since its creation 25 yeas ago, in 1985 ANL began a study of the characteristics and behavior of an advanced-design metallic fuel based on uranium-zirconium (U-Zr) and uranium-plutonium-zirconium (U-Pu-Zr) alloys. During the past five years several areas were addressed concerning the performance of this fuel system. In all instances of testing the metallic fuel has demonstrated its ability to perform reliably to high burnups under varying design conditions. This paper will present one area of testing which concerns the fuel system's performance under breach conditions. It is the purpose of this paper to document the observed post-breach behavior of this advanced-design metallic fuel. 2 figs., 1 tab.

Batte, G.L. (Argonne National Lab., Idaho Falls, ID (USA)); Hoffman, G.L. (Argonne National Lab., IL (USA))

1990-01-01T23:59:59.000Z

175

Dynamic Impregnator Reactor System (Poster), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Several unit operations are combined into Several unit operations are combined into one robust system, off ering fl exible and staged process confi gurations in one vessel. Spraying, soaking, low-severity pretreat- ment, enzymatic hydrolysis, fermentation, concentration/evaporation, and distillation are amongst its many capabilities. * 1,900 L Horizontal Paddle Blender Vessel with Sidewall Liquid Drains * 6-60 rpm / 50 HP Tri-Directional Agitator * 3.4 bar & Vacuum ASME Design, 316L Stainless Steel * Heating/Cooling Jacket using Water or Steam * 150 L Chemical Mix Tank & Pump with Spray Injectors * Vent Condenser with Collection Tank and Vacuum Pump Dynamic Impregnator Reactor System Multifaceted system designed for complex feedstock impregnation and processing Integrated Biorefi nery Research Facility | NREL * Golden, Colorado | December 15, 2011 | NREL/PO-5100-56156

176

NREL: Wind Research - National Wind Technology Center Blade Testing Video  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Blade Testing Video (Text Version) Center Blade Testing Video (Text Version) Below is the text version for the National Wind Technology Center Blade Testing Video. The video opens with the NREL and NWTC logos, surrounded by black screen and including the title: "NWTC Test Facility Introduction, Dr. Fort Felker, Director of the National Wind Technology Center, TRT 1:42, May 29, 2013." Fort Felker is in a yellow helmet and vest, standing in the NWTC's testing facility. There is a railing to his left, construction cones behind him, and a ladder to his right. Fort Felker: "I'm Fort Felker, I'm the director at the Department of Energy's National Wind Technology Center." Fort's name and title cut in on the right. Fort walks toward the camera while talking. Fort Felker: "Here at the NWTC, we have been conducting structural testing

177

Inverter Testing at Sandia National Laboratories* Jerry W. Ginn  

Office of Scientific and Technical Information (OSTI)

Inverter Testing at Sandia National Inverter Testing at Sandia National Laboratories* Jerry W. Ginn Russell H. Bonn Photovoltaic System Components Department Sandia National Laboratories PO Box 5800 Albuquerque, NM 87185-0752 Abstract. Inverters are key building blocks of photovoltaic (PV) systems that produce ac power. The balance of systems @OS) portion of a PV system can account for up to 50% of the system cost, and its reliable operation is essential for a successful PV system. As part of its BOS program, Sandia National Laboratories (SNL) maintains a laboratory wherein accurate electrical measurements of power systems can be made under a variety of conditions. This paper outlines the work that is done in that laboratory. TESTING ACTIVITIES Inverter testing at SNL thus far

178

Status Report on Efforts to Enhance Instrumentation to Support Advanced Test Reactor Irradiations  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort is to prove new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. To address this need, an assessment of instrumentation available and under-development at other test reactors was completed. Based on this review, recommendations were made with respect to what instrumentation is needed at the ATR; and a strategy was developed for obtaining these sensors. In 2009, a report was issued documenting this program’s strategy and initial progress toward accomplishing program objectives. In 2009, a report was issued documenting this instrumentation development strategy and initial progress toward accomplishing instrumentation development program objectives. This document reports progress toward implementing this strategy in 2010.

J. L. Rempe; D. L. Knudson; J. E. Daw

2011-03-01T23:59:59.000Z

179

Decontamination and dismantlement of the JANUS Reactor at Argonne National Laboratory-East. Project final report  

Science Conference Proceedings (OSTI)

The decontamination and dismantlement of the JANUS Reactor at Argonne National Laboratory-East (ANL-E) was completed in October 1997. Descriptions and evaluations of the activities performed and analyses of the results obtained during the JANUS D and D Project are provided in this Final Report. The following information is included: objective of the JANUS D and D Project; history of the JANUS Reactor facility; description of the ANL-E site and the JANUS Reactor facility; overview of the D and D activities performed; description of the project planning and engineering; description of the D and D operations; summary of the final status of the JANUS Reactor facility based upon the final survey results; description of the health and safety aspects of the project, including personnel exposure and OSHA reporting; summary of the waste minimization techniques utilized and total waste generated by the project; and summary of the final cost and schedule for the JANUS D and D Project.

Fellhauer, C.R.; Clark, F.R. [Argonne National Lab., IL (United States). Technology Development Div.; Garlock, G.A. [MOTA Corp., Cayce, SC (United States)

1997-10-01T23:59:59.000Z

180

Research reactor usage at the Idaho National Engineering Laboratory in support of university research and education  

SciTech Connect

The Idaho National Engineering Laboratory is a US Department of Energy laboratory which has a substantial history of research and development in nuclear reactor technologies. There are a number of available nuclear reactor facilities which have been incorporated into the research and training needs of university nuclear engineering programs. This paper addresses the utilization of the Advanced Reactivity Measurement Facility (ARMF) and the Coupled Fast Reactivity Measurement Facility (CFRMF) for thesis and dissertation research in the PhD program in Nuclear Science and Engineering by the University of Idaho and Idaho State University. Other reactors at the INEL are also being used by various members of the academic community for thesis and dissertation research, as well as for research to advance the state of knowledge in innovative nuclear technologies, with the EBR-II facility playing an essential role in liquid metal breeder reactor research. 3 refs.

Woodall, D.M.; Dolan, T.J.; Stephens, A.G. (Idaho National Engineering Lab., Idaho Falls, ID (USA))

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "national reactor testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

National Carbon Capture Center Launches Post-Combustion Test Center |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Carbon Capture Center Launches Post-Combustion Test Center National Carbon Capture Center Launches Post-Combustion Test Center National Carbon Capture Center Launches Post-Combustion Test Center June 7, 2011 - 1:00pm Addthis Washington, D.C. - The recent successful commissioning of an Alabama-based test facility is another step forward in research that will speed deployment of innovative post-combustion carbon dioxide (CO2) capture technologies for coal-based power plants, according to the U.S. Department of Energy (DOE). Technologies tested at the Post-Combustion Carbon Capture Center (or PC4) are an important component of Carbon Capture and Storage, whose commercial deployment is considered by many experts as essential for helping to reduce human-generated CO2 emissions that contribute to potential climate change.

182

Preliminary Advanced Test Reactor LEU Fuel Conversion Feasibility Study  

SciTech Connect

The Advanced Test Reactor (ATR) is a high power density, high neutron flux research reactor operating in the United States. The ATR has large irradiation test volumes located in high flux areas. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth with a maximum unperturbed thermal neutron flux rating of 1.0 x 1015 n/cm2–s. As a result, the ATR is a representative candidate for assessing the necessary modifications and evaluating the subsequent operating effects associated with low-enriched uranium (LEU) fuel conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed for the fuel cycle burnup comparison analysis. Using the current HEU 235U enrichment of 93.0 % as a baseline, an analysis can be performed to determine the LEU uranium density and 235U enrichment required in the fuel meat to yield an equivalent Keff between the HEU core and a LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the 235U loading in the LEU core, such that the differences in Keff between the HEU and LEU core can be minimized for operation at 150 EFPD with a total core power of 115 MW. The Monte-Carlo with ORIGEN-2 (MCWO) method was used to calculate Keff versus EFPDs. The MCWO-calculated results for the LEU case demonstrated adequate excess reactivity such that the LEU core conversion designer should be able to optimize the 235U content of each fuel plate, so that the Keff and relative radial fission heat flux profile are similar to the reference ATR HEU case. However, to demonstrate that the LEU core fuel cycle performance can meet the Upgraded Final Safety Analysis Report (UFSAR) safety requirements, a further study will be required in order to investigate the detailed radial, axial, and azimuthal heat flux profile variations versus EFPDs.

G. S. Chang; R. G. Ambrosek

2005-11-01T23:59:59.000Z

183

Status of the NGNP Fuel Experiment AGR-2 Irradiated in the Advanced Test Reactor  

SciTech Connect

The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2), which utilized the same experiment design as well as control and monitoring systems as AGR-1, started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The design of this experiment and support systems will be briefly discussed, followed by the progress and status of the experiment to date.

Blaine Grover

2012-10-01T23:59:59.000Z

184

Implementation of a testing and diagnostic concept for an NPP reactor protection system  

Science Conference Proceedings (OSTI)

This paper presents the concept and practical realization of the testing and diagnostic methodology for a reactor protection system in a nuclear power plant. The test concept utilizes the highly redundant nature of these systems to conduct tests during ...

Tamás Bartha; István Varga; Alexandros Soumelidis; Géza Szabé

2005-04-01T23:59:59.000Z

185

Testing of an advanced thermochemical conversion reactor system  

DOE Green Energy (OSTI)

This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective of this project was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions. 6 refs., 59 figs., 29 tabs.

Not Available

1990-01-01T23:59:59.000Z

186

February 29, 2012 National Institutes of Health Genetic Testing Registry  

E-Print Network (OSTI)

tests would be beneficial for several groups such as health care providers, researchers, laboratories to the Charge of the Secretary of Health and Human Services. 2008. See http://oba.odFebruary 29, 2012 National Institutes of Health Genetic Testing Registry Scientific advances over

Levin, Judith G.

187

IMPROVED COMPUTATIONAL NEUTRONICS METHODS AND VALIDATION PROTOCOLS FOR THE ADVANCED TEST REACTOR  

SciTech Connect

The Idaho National Laboratory (INL) is in the process of modernizing the various reactor physics modeling and simulation tools used to support operation and safety assurance of the Advanced Test Reactor (ATR). Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (HELIOS, KENO6/SCALE, NEWT/SCALE, ATTILA, and an extended implementation of MCNP5) has been installed at the INL. Corresponding models of the ATR and ATRC are now operational with all five codes, demonstrating the basic feasibility of the new code packages for their intended purpose. Of particular importance, a set of as-run core depletion HELIOS calculations for all ATR cycles since August 2009 was successfully completed during 2011. This demonstration supported a decision late in the year to proceed with the phased incorporation of the HELIOS methodology into the ATR fuel cycle management process beginning in 2012. On the experimental side of the project, new hardware was fabricated, measurement protocols were finalized, and the first four of six planned physics code validation experiments based on neutron activation spectrometry were conducted at the ATRC facility. Data analysis for the first three experiments, focused on characterization of the neutron spectrum in one of the ATR flux traps, has been completed. The six experiments will ultimately form the basis for a flexible, easily-repeatable ATR physics code validation protocol that is consistent with applicable ASTM standards.

David W. Nigg; Joseph W. Nielsen; Benjamin M. Chase; Ronnie K. Murray; Kevin A. Steuhm

2012-04-01T23:59:59.000Z

188

High uranium density dispersion fuel for the reduced enrichment of research and test reactors program.  

E-Print Network (OSTI)

??This work describes the fabrication of a high uranium density fuel for the Reduced Enrichment of Research and Test Reactors Program. In an effort to… (more)

[No author

2006-01-01T23:59:59.000Z

189

Final Site-Specific Decommissioning Inspection Report for the University of Washington Research and Test Reactor  

SciTech Connect

Report of site-specific decommissioning in-process inspection activities at the University of Washington Research and Test Reactor Facility.

Sarah Roberts

2006-10-18T23:59:59.000Z

190

Fast Flux Test Reactor: Re-evaluation of the Department's Approach...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sites Power Marketing Administration Other Agencies You are here Home Fast Flux Test Reactor: Re-evaluation of the Department's Approach to Deactivation, Decontamination,...

191

Recovery Act Funds Test Reactor Dome Removal in Historic D&D Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act Funds Test Reactor Dome Removal in Historic D&D Recovery Act Funds Test Reactor Dome Removal in Historic D&D Project Recovery Act Funds Test Reactor Dome Removal in Historic D&D Project February 1, 2011 - 12:00pm Addthis Media Contacts Jim Giusti, DOE (803) 952-7697 james-r.giusti@srs.gov Paivi Nettamo, SRNS (803) 646-6075 paivi.nettamo@srs.gov AIKEN, S.C. - The landscape of the Savannah River Site (SRS) is a little flatter and a little less colorful with the removal today of the 75-foot-tall rusty-orange dome from the Cold War-era test reactor. This $25-million reactor decommissioning and deactivation project is funded By the American Recovery and Reinvestment Act. Affectionately known by SRS employees as "Hector," the iconic Heavy Water Components Test Reactor (HWCTR) has stood in the Site's B Area since 1959

192

Nuclear Weapons Testing Resumes | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Resumes | National Nuclear Security Administration Testing Resumes | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Nuclear Weapons Testing Resumes Nuclear Weapons Testing Resumes September 01, 1961 Washington, DC Nuclear Weapons Testing Resumes The Soviet Union breaks the nuclear test moratorium and the United States

193

HISTORICAL AMERICAN ENGINEERING RECORD - IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY, TEST AREA NORTH, HAER NO. ID-33-E  

SciTech Connect

Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly & Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to house the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway.

Susan Stacy; Hollie K. Gilbert

2005-02-01T23:59:59.000Z

194

Overview of Component Testing Requirements for a Small Fluoride Salt-Cooled High Tempreature Reactor  

Science Conference Proceedings (OSTI)

This article summarizes the information necessary to provide reasonable assurance that components for a small fluoride salt-cooled high temperature reactor will meet their functional requirements. In support of the analysis of testing requirements, a simplified, conceptual description of the systems, structures, and components specific to this reactor class was developed. These reactor system elements were divided into major categories based on their functions: (1) reactor core systems, (2) heat transport system, (3) reactor auxiliary cooling system, and (4) instrumentation and controls system. An assessment of technical maturity for each element was made, and a gap analysis was performed to identify specific areas that require further testing. A prioritized list of the testing requirements was then developed. The prioritization was based on both the relative importance of the system to reactor viability, and performance and time requirements to perform the testing.

Cetiner, Mustafa Sacit [ORNL; Holcomb, David Eugene [ORNL; Flanagan, George F [ORNL; Peretz, Fred J [ORNL; Yoder Jr, Graydon L [ORNL

2010-01-01T23:59:59.000Z

195

Testing, Training, and Signature Devices | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing, Testing, Training, and ... Testing, Training, and Signature Devices Y-12 manufactures specialized uranium testing, training, and signature devices to support the nuclear detection community. As part of our national security mission, and in partnership with Oak Ridge National Laboratory, we are producing unique test objects for passive gamma ray signature analysis. Y-12 is fabricating new Highly Enriched Uranium Equivalent Radiological Signature Training Devices, tools that use an innovative method to replicate a much larger mass of uranium. These objects contain small amounts of U-235 embedded in an aluminum alloy. When seen by a detector, however, the gamma ray signature is nearly equivalent to a much larger amount of U-235, due to the alloying effect that minimizes the uranium

196

Materials Transportation Testing & Analysis at Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Testing Carlos Lopez, (505) 845-9545 Packages transporting the larger "Type B" quantities of radioactive materials must be qualified and certified under Title 10, Code of Federal Regulations, Part 71, or under the equivalent international standard ST-1 issued by the International Atomic Energy Agency. The principal thermal qualification test is the 30 minute pool fire. As part of the National Transportation Program, the Transportation Risk & Packaging Program at Sandia can plan and conduct these tests for DOE and other package suppliers. Test Plans, QA plans and other necessary test documents can be prepared for customer and regulatory approval. Tests may be conducted with a variety of available facilities at Sandia, including large pools, an indoor fire facility, and a radiant heat test

197

Sodium Reaction Experimental Test Facility (SRETF) - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Form Modeling Departments Engineering Analysis Nuclear Systems Analysis Research & Test Reactor Nonproliferation and National Security Detection & Diagnostic Systems...

198

Materials Transportation Testing & Analysis at Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Unique Solutions] Unique Solutions] [Working With Us] [Contacting Us] [News Center] [Search] [Home] [navigation panel] Materials Transportation Testing & Analysis Our Mission Our Contacts Write to Us Package Development Risk Assessment RADTRAN GIS Mapping Structural Analysis Thermal Analysis Structural Testing Thermal Testing MIDAS Data Aquisition System Concepts Materials Characterization Regulatory Development Certification Support RMIR Data Base Scientific Visualization Mobile Instrumentation Data Acquisition System (MIDAS) Doug Ammerman, (505) 845-8158 The Mobile Instrumentation Data Acquisition System (MIDAS), developed by Sandia National Laboratories for the U.S. Department of Energy, provides on-site data acquisition of containers that transport radioactive materials during impact, puncture, fire, and immersion tests.

199

Review of the Oak Ridge National Laboratory High Flux Isotope Reactor Implementation Verification Review Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Independent Oversight Review of the Independent Oversight Review of the Oak Ridge National Laboratory High Flux Isotope Reactor Implementation Verification Review Processes May 2011 January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U. S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background........................................................................................................................................... 1 3.0 Scope..................................................................................................................................................... 2

200

Review of the Oak Ridge National Laboratory High Flux Isotope Reactor Implementation Verification Review Processes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Independent Oversight Review of the Independent Oversight Review of the Oak Ridge National Laboratory High Flux Isotope Reactor Implementation Verification Review Processes May 2011 January 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U. S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................. 1 2.0 Background........................................................................................................................................... 1 3.0 Scope..................................................................................................................................................... 2

Note: This page contains sample records for the topic "national reactor testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Review of the proposed Strategic National Plan for Civilian Nuclear Reactor Development: Volume 1  

SciTech Connect

On August 9, 1985, the Secretary of Energy requested that the Chairman of the Energy Research Advisory Board establish an ad-hoc Panel to review a draft ''Strategic National Plan for Civilian Nuclear Reactor Development.'' The resulting report, approved by the Board, contains suggestions for improving the draft plan and also contains major recommendations for alleviating the several institutional barriers that appear to preclude the construction of any new nuclear power plants in this country.

1986-10-01T23:59:59.000Z

202

Blade Testing at NREL's National Wind Technology Center (NWTC) (Presentation)  

SciTech Connect

Presentation of Blade Testing at NREL's National Wind Technology Center for the 2010 Sandia National Laboratories Blade Testing Workshop.

Hughes, S.

2010-07-20T23:59:59.000Z

203

Reducing emissions to improve nuclear test detection | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing emissions to improve nuclear test detection | National Nuclear Reducing emissions to improve nuclear test detection | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Reducing emissions to improve nuclear test detection Reducing emissions to improve nuclear test detection Posted By Office of Public Affairs In early November, medical isotope producers met with nuclear explosion

204

Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear  

National Nuclear Security Administration (NNSA)

Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear Clinton Extends Moratorium on Nuclear Weapons Testing | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Clinton Extends Moratorium on Nuclear Weapons Testing Clinton Extends Moratorium on Nuclear Weapons Testing July 03, 1993 Washington, DC

205

National Carbon Capture Center Launches Post-Combustion Test Center |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Capture Center Launches Post-Combustion Test Center Carbon Capture Center Launches Post-Combustion Test Center National Carbon Capture Center Launches Post-Combustion Test Center June 6, 2011 - 2:32pm Addthis Jenny Hakun What does this mean for me? Commercial deployment of the processes tested here could cut carbon pollution. Innovation is important to finding ways to make energy cleaner. And testing the ideas and processes that researchers come up with is critical to moving ideas from the lab to the marketplace. That's why the Department of Energy recently commissioned an Alabama testing facility that will help move research forward and speed up deployment of innovative post-combustion carbon dioxide (CO2) capture technologies for coal-based power plants. The Post-Combustion Carbon Capture Center (or PC4) facility tests new

206

Results of Sandia National Laboratories grid-tied inverter testing  

SciTech Connect

This paper proposes a definition for a Non-Islanding Inverter. This paper also presents methods that can be used to implement such an inverter, along with references to prior work on the subject. Justification for the definition is provided on both a theoretical basis and results from tests conducted at Sandia National Laboratories and Ascension Technology, Inc.

Kern, G.A. [Ascension Technology, Inc., Boulder, CO (United States); Bonn, R.H.; Ginn, J.; Gonzalez, S. [Sandia National Labs., Albuquerque, NM (United States)

1998-07-01T23:59:59.000Z

207

Design of the Next Generation Nuclear Plant Graphite Creep Experiments for Irradiation in the Advanced Test Reactor  

SciTech Connect

The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six gas reactor graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy’s lead laboratory for nuclear energy development. The ATR is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These graphite irradiations are being accomplished to support development of the next generation reactors in the United States. The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain seven separate stacks of graphite specimens. Six of the specimen stacks will have half of their graphite specimens under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six stacks will be organized into pairs with a different compressive load being applied to the top half of each pair of specimen stacks. The seventh stack will not have a compressive load on the graphite specimens during irradiation. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be the capability of sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during initial start-up of the experiment. The final design phase for the first experiment was completed in September 2008, and the fabrication and assembly of the experiment test train as well as installation and testing of the control and support systems that will monitor and control the experiment during irradiation are being completed in early calendar 2009. The first experiment is scheduled to be ready for insertion in the ATR by April 30, 2009. This paper will discuss the design of the experiment including the test train and the temperature and compressive load monitoring, control, and data collection systems.

S. Blaine Grover

2009-05-01T23:59:59.000Z

208

MATERIALS TESTING REACTOR-ENGINEERING TEST REACTOR TECHNICAL BRANCHES. Quarterly Report No. 3, July 1-September 30, 1963  

SciTech Connect

8 6 < platelets containing U/sub 3/O/sub 8/, UO/sub 2/, or UAl/sub 3/ in aluminum matrices were irradiated in the ETR at inltial surface temperatures of 180 deg C to burnups of 1 x 10/sup 21/ fiss/ cm/sup 3/. The high fuel loadings (approximately 35 wt% U/sup 235/) in UO/sub 2/ and U/sub 3/O/sub 8/ blistered under these conditions; the UAl/sub samples were still in good condition at the end of the test. Electrolyzed coatings on aluminum deteriorated badly under exposures of 3 to 5 x 10/sup 20/ n/cm/sup 2/ (>1Mev) in the ETR process water. The ARMF-1 regulating rod was repaired and digital regulating rod position readout instrumentation installed during an extended shutdown after more than two years of operation. Fission product transient curves extrapolated to about the same zero time reactivity value with initial data varying from 30 minutes to 6 hours. This limited considerably the probability that short-lived high cross section fission products exist. Under present ETR operating conditions the maximum decrease in effectiveness of a nickel absorber section as a result of burnup would be less than 20% in 20 years. Thus, burnup appears not to be a factor which limits its useful life. The preliminary analysis and flow charts for the Phillips General Purpose Monte Carlo Program for the IBM 7040 are nearing completion. Two reactor simulation devices were put into service in the Analog Computer Facility, a reactor kinetics simulator and seven transport lag simulation channels. Preliminary design of a Xe-135 simulator was completed. The fission cross section of Pu/sup 241/ was measured from 2 to 100 ev. Resolution of the linear electron accelerator used was sufficient to permit multilevel analysis of the neutron levels below 36 ev. Transmission measurements were obtained on a separated Pa/sup 233/ sample containing approximately 10 mg of Pa/sup 2/O/sub 5/. The energies of these resonances observed with the unseparated sample with their relative sizes are presented. Several experiments were conducted to determine the useful lifetime of solid state detectors under in- pile conditions of fission fragment bombardment. A single detector, using an external U/sup 235/ fission source was irradiated to approximately 3 x 10/sup 9/ total fission, at which point the fission fragment peaks were still well resolved and the signal pulses were sufficientiy large compared to noise level so that the latter could be effectively biased out. Averaged reduced partial differential scatiering cross sections for a powder Be sample were obtained. A Data Processing System for transient data was developed for use in the SPERT reactor complex. Data are recorded on an FM tape system and applied to a magnetic memory for temporary storage and from there to one or more of several readout devices. An Eight-Input Adapter and an Initial Delay Counter were developed to increase the utility of an existing time-of-flight analyzer. A Personnel Monitor ( Frisker'') is described, which approaches closely an ideal monitor for use with widely varying radiation backgrounds. Current feedback around an operational amplifier is used to provide a current source used to drive oscillograph galvanometers thereby extending the range of linear operation of the galvanometers. The work of placing a large telemetered radiological survey system in operation is described along with the description of a remote station simulator. Dynamic pressure tests of several commercial transducers are described together with the criteria established for suitability for their use in reactor transient studies. Rod drop deceleration times were measured on an ETR control rod; the test instrumentation is described. The 7090 version of PDQ-4 (20,000 mesh points) was converted and modified for operation on the 7040. The following reactor codes are also now in operation on the 7040: TEMPEST-II, GAM, FOG, ZUT, MIST, ULCER, and TOPIC. Being de-bugged are HEAT-I and IREKIN. In addition, the following programs for the 7040 were written and placed in operation: matrix inversion, ordinary differ

1964-02-15T23:59:59.000Z

209

Large-Scale Testing and High-Fidelity Simulation Capabilities at Sandia National Laboratories to Support Space Power and Propulsion  

SciTech Connect

Sandia National Laboratories, as a Department of Energy, National Nuclear Security Agency, has major responsibility to ensure the safety and security needs of nuclear weapons. As such, with an experienced research staff, Sandia maintains a spectrum of modeling and simulation capabilities integrated with experimental and large-scale test capabilities. This expertise and these capabilities offer considerable resources for addressing issues of interest to the space power and propulsion communities. This paper presents Sandia's capability to perform thermal qualification (analysis, test, modeling and simulation) using a representative weapon system as an example demonstrating the potential to support NASA's Lunar Reactor System.

Dobranich, Dean [Thermal and Reactive Processes Department, Sandia National Laboratories Albuquerque, NM 87185 (United States); Blanchat, Thomas K. [Fire Science and Technology Department, Sandia National Laboratories Albuquerque, NM 87185 (United States)

2008-01-21T23:59:59.000Z

210

Idaho National Laboratory - Enforcement Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

associated with Replacement of Exhaust Ventilation Filters at the Test Reactor Area Hot Cell Facility at the Idaho National Engineering and Environmental Laboratory, May 19,...

211

DOE - Office of Legacy Management -- Idaho National Engineering...  

Office of Legacy Management (LM)

energy resources, science, and national security. Originally named the National Reactor Testing Station, the INEEL was once the site of the worlds largest concentration of...

212

Environmental Assessment for Decontamination and Decommissioning of the Juggernaut Reactor at Argonne National Laboratory Â… East Argonne, Illinois  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE/EA-1483 DOE/EA-1483 Environmental Assessment for Decontamination and Decommissioning of the Juggernaut Reactor at Argonne National Laboratory - East Argonne, Illinois March 2004 U.S. Department of Energy Chicago Operations Office Argonne Area Office Argonne, Illinois Environmental Assessment for Decontamination and Decommissioning of the Juggernaut Reactor at Argonne National Laboratory - East Argonne, Illinois Table of Contents Acronyms....................................................................................................................................... iii 1.0 Background ..........................................................................................................................1 1.1 Facility History ........................................................................................................1

213

National security and the comprehensive test ban treaty  

Science Conference Proceedings (OSTI)

For nearly three years now, the US, UK, and USSR have been working on the draft of a treaty that would ban all nuclear explosions (both peaceful applications and weapon tests) and institute verification and monitoring provisions to ensure compliance with the treaty. The status of the draft treaty is summarized. The question, Is a CTBT really in the interest of US national security. is analyzed with arguments used by both proponents and opponents of the CTBT. It is concluded that there are arguments both for and against a CTBT, but, for those whose approach to national security can be expressed as peace through preparedness, the arguments against a CTBT appear persuasive. (LCL)

Landauer, J.K.

1980-08-01T23:59:59.000Z

214

Mixed oxide fuels testing in the advanced test reactor to support plutonium disposition  

Science Conference Proceedings (OSTI)

An intense worldwide effort is now under way to find means of reducing the stockpile of weapons-grade plutonium. One of the most attractive solutions would be to use WGPu as fuel in existing light water reactors (LWRs) in the form of mixed oxide (MOX) fuel - i.e., plutonia (PUO{sub 2}) mixed with urania (UO{sub 2}). Before U.S. reactors could be used for this purpose, their operating licenses would have to be amended. Numerous technical issues must be resolved before LWR operating licenses can be amended to allow the use of MOX fuel. These issues include the following: (1) MOX fuel fabrication process verification, (2) Whether and how to use burnable poisons to depress MOX fuel initial reactivity, which is higher than that of urania, (3) The effects of WGPu isotopic composition, (4) The feasibility of loading MOX fuel with plutonia content up to 7% by weight, (5) The effects of americium and gallium in WGPu, (6) Fission gas release from MOX fuel pellets made from WGPu, (7) Fuel/cladding gap closure, (8) The effects of power cycling and off-normal events on fuel integrity, (9) Development of radial distributions of burnup and fission products, (10) Power spiking near the interfaces of MOX and urania fuel assemblies, and (11) Fuel performance code validation. We have performed calculations to show that the use of hafnium shrouds can produce spectrum adjustments that will bring the flux spectrum in ATR test loops into a good approximation to the spectrum anticipated in a commercial LWR containing MOX fuel while allowing operation of the test fuel assemblies near their optimum values of linear heat generation rate. The ATR would be a nearly ideal test bed for developing data needed to support applications to license LWRs for operation with MOX fuel made from weapons-grade plutonium. The requirements for planning and implementing a test program in the ATR have been identified.

Ryskamp, J.M.; Sterbentz, J.W.; Chang, G.S. [and others

1995-09-01T23:59:59.000Z

215

Prototype dish testing and analysis at Sandia National Laboratories  

Science Conference Proceedings (OSTI)

During the past year, Sandia National Laboratories performed on-sun testing of several dish concentrator concepts. These tests were undertaken at the National Solar Thermal Test Facility (NSTTF). Two of the tests were performed in support of the DOE Concentrator Receiver Development Program. The first was on-sun testing of the single-element stretched-membrane dish; this 7-meter diameter dish uses a single preformed metal membrane with an aluminized polyester optical surface and shows potential for future dish-Stirling systems. The next involved two prototype facets from the Faceted Stretched-Membrane Dish Program. These facets, representing competitive design concepts, are closest to commercialization. Five 1-meter triangular facets were tested on-sun as part of the development program for a solar dynamic system on Space Station Freedom. While unique in character, all the tests utilized the Beam Characterization System (BCS) as the main measurement tool and all were analyzed using the Sandia-developed CIRCE2 computer code. The BCS is used to capture and digitize an image of the reflected concentrator beam that is incident on a target surface. The CIRCE2 program provides a computational tool, which when given the geometry of the concentrator and target as well as other design parameters will predict the flux distribution of the reflected beam. One of these parameters, slope error, is the variable that has a major effect in determining the quality of the reflected beam. The methodology used to combine these two tools to predict uniform slope errors for the dishes is discussed in this document. As the Concentrator Development Programs continue, Sandia will test and evaluate two prototype dish systems. The first, the faceted stretched-membrane dish, is expected to be tested in 1992, followed by the full-scale single-element stretched-membrane dish in 1993. These tests will use the tools and methodology discussed in this document. 14 refs., 10 figs., 5 tabs.

Grossman, J.W.; Houser, R.M.; Erdman, W.W.

1991-01-01T23:59:59.000Z

216

Testing mass-varying neutrinos with reactor experiments  

E-Print Network (OSTI)

We propose that reactor experiments could be used to constrain the environment dependence of neutrino mass and mixing parameters, which could be induced due to an acceleron coupling to matter fields. There are several short-baseline reactor experiment projects with different fractions of air and earth matter along the neutrino path. Moreover, the short baselines, in principle, allow the physical change of the material between source and detector. Hence, such experiments offer the possibility for a direct comparison of oscillations in air and matter. We demonstrate that for sin 2 (2?13) ? 0.04, two reactor experiments (one air, one matter) with baselines of at least 1.5 km can constrain any oscillation effect which is different in air and matter at the level of a few per cent. Furthermore, we find that using the same experiment while physically moving the material between source and detector improves systematics. PACS: 14.60.Pq

unknown authors

2005-01-01T23:59:59.000Z

217

Materials Transportation Testing & Analysis at Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Characterization Materials Characterization Paul McConnell, (505) 844-8361 The purpose of hazardous and radioactive materials, i.e., mixed waste, packaging is to enable this waste type to be transported without posing a threat to the health or property of the general public. To achieve this goal, regulations have been written establishing general design requirement for such packagings. Based on these regulatory requirements, a Mixed Waste Chemical Compatibility Testing Program is intended to assure regulatory bodies that the issue of packaging compatibility towards hazardous and radioactive materials has been addressed. Such a testing program has been developed in the Transportation Systems Department at Sandia National Laboratories. Materials Characterization Capabilities

218

MATERIALS TESTING REACTOR PROJECT. QUARTERLY REPORT FOR PERIOD ENDING MARCH 1, 1950  

SciTech Connect

Progress is reported in finaiizing basic design data for the Materials Testing Reactor. The major emphasis at ANL was on issurance of design reports on practically all phases of the MTR project outside the reactor face and low the first fioor level. Operation of the mock-up reacr at ORNL at 10 watts resulted in no major design changes. Topics discussed include the reactor building, wing, and reactor service building; canal and canal facilities; water systems; air exhaust systems; electrical power systems; effluent control; and shielding requirements. 11 drawings. (C.H.)

Huffman, J.R.

1958-10-31T23:59:59.000Z

219

Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.  

Science Conference Proceedings (OSTI)

This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition from normal high-flow operation to natural circulation. Low-flow coolant events are the most difficult to design for because they involve the most complex thermal-hydraulic behavior induced by the dominance of thermal-buoyancy forces acting on the coolants. Such behavior can cause multiple-component flow interaction phenomena, which are not adequately understood or appreciated by reactor designers as to their impact on reactor performance and safety. Since the early 1990s, when DOE canceled the U.S. Liquid Metal Fast Breeder Reactor (LMFBR) program, little has been done experimentally to further understand the importance of the complex thermal-buoyancy phenomena and their impact on reactor design or to improve the ability of three-dimensional (3-D) transient computational fluid dynamics (CFD) and structures codes to model the phenomena. An improved experimental data base and the associated improved validated codes would provide needed design tools to the reactor community. The improved codes would also facilitate scale-up from small-scale testing to prototype size and would facilitate comparing performance of one reactor/component design with another. The codes would also have relevance to the design and safety of water-cooled reactors. To accomplish the preceding, it is proposed to establish a national GNEP-LMR research and development center at Argonne having as its foundation state-of-art science-based infrastructure consisting of: (a) thermal-hydraulic experimental capabilities for conducting both water and sodium testing of individual reactor components and complete reactor in-vessel models and (b) a computational modeling development and validation capability that is strongly interfaced with the experimental facilities. The proposed center would greatly advance capabilities for reactor development by establishing the validity of high-fidelity (i.e., close to first principles) models and tools. Such tools could be used directly for reactor design or for qualifying/tuning of lower-fidelity models, which now require costly experimental qualification for each different type of design

Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

2007-06-30T23:59:59.000Z

220

Evaluation and Test of Improved Fire Resistant Fluid Lubricants for Water Reactor Coolant Pump Motors, Volume 1: Fluid Evaluation, Bearing Model Tests, Motor Tests, and Fire Tests  

Science Conference Proceedings (OSTI)

Commercially available fire-resistant fluid lubricants were evaluated to determine their suitability for use in primary-system pump motors in nuclear reactors. Volume 1 describes the procedures and results of tests of lubrication properties; fire and radiation resistance; and thermal, oxidative, and hydrolytic stability.

1980-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "national reactor testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

An Analysis of Testing Requirements for Fluoride Salt Cooled High Temperature Reactor Components  

SciTech Connect

This report provides guidance on the component testing necessary during the next phase of fluoride salt-cooled high temperature reactor (FHR) development. In particular, the report identifies and describes the reactor component performance and reliability requirements, provides an overview of what information is necessary to provide assurance that components will adequately achieve the requirements, and then provides guidance on how the required performance information can efficiently be obtained. The report includes a system description of a representative test scale FHR reactor. The reactor parameters presented in this report should only be considered as placeholder values until an FHR test scale reactor design is completed. The report focus is bounded at the interface between and the reactor primary coolant salt and the fuel and the gas supply and return to the Brayton cycle power conversion system. The analysis is limited to component level testing and does not address system level testing issues. Further, the report is oriented as a bottom-up testing requirements analysis as opposed to a having a top-down facility description focus.

Holcomb, David Eugene [ORNL; Cetiner, Mustafa Sacit [ORNL; Flanagan, George F [ORNL; Peretz, Fred J [ORNL; Yoder Jr, Graydon L [ORNL

2009-11-01T23:59:59.000Z

222

TESTING OF THE RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY  

SciTech Connect

The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, nonelectrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. Positive results from initial deployment trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and the anticipated future potential use of RadBall throughout the U.S. Department of Energy Complex have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further test, underpin, and strengthen the technical performance of the technology. The study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of this testing was to characterize a hot cell with unknown radiation sources. The RadBall calibration experiments and hot cell deployment were successful in that for each trial radiation tracks were visible. The deployment of RadBall can be accomplished in different ways depending on the size and characteristics of the contaminated area (e.g., a hot cell that already has a crane/manipulator available or highly contaminated room that requires the use of a remote control device with sensor and video equipment to position RadBall). This report also presents SRNL-designed RadBall accessories for future RadBall deployment (a harness, PODS, and robot).

Farfan, E.; Foley, T.

2010-02-10T23:59:59.000Z

223

Impacts Analyses Supporting the National Environmental Policy Act Environmental Assessment for the Resumption of Transient Testing Program  

Science Conference Proceedings (OSTI)

Environmental and health impacts are presented for activities associated with transient testing of nuclear fuel and material using two candidate test reactors. Transient testing involves irradiation of nuclear fuel or materials for short time-periods under high neutron flux rates. The transient testing process includes transportation of nuclear fuel or materials inside a robust shipping cask to a hot cell, removal from the shipping cask, pre-irradiation examination of the nuclear materials, assembly of an experiment assembly, transportation of the experiment assembly to the test reactor, irradiation in the test reactor, transport back to the hot cell, and post-irradiation examination of the nuclear fuel or material. The potential for environmental or health consequences during the transportation, examination, and irradiation actions are assessed for normal operations, off-normal (accident) scenarios, and transportation. Impacts to the environment (air, soil, and groundwater), are assessed during each phase of the transient testing process. This report documents the evaluation of potential consequences to the general public. This document supports the Environmental Assessment (EA) required by the U.S. National Environmental Policy Act (NEPA) (42 USC Subsection 4321 et seq.).

Annette L. Schafer; Lloyd C. Brown; David C. Carathers; Boyd D. Christensen; James J. Dahl; Mark L. Miller; Cathy Ottinger Farnum; Steven Peterson; A. Jeffrey Sondrup; Peter V. Subaiya; Daniel M. Wachs; Ruth F. Weiner

2013-11-01T23:59:59.000Z

224

Hydrothermal Testing of K Basin Sludge and N Reactor Fuel at Sludge Treatment Project Operating Conditions  

DOE Green Energy (OSTI)

The Sludge Treatment Project (STP), managed for the U. S. DOE by Fluor Hanford (FH), was created to design and operate a process to eliminate uranium metal from K Basin sludge prior to packaging for Waste Isolation Pilot Plant (WIPP). The STP process uses high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. Under nominal process conditions, the sludge will be heated in pressurized water at 185°C for as long as 72 hours to assure the complete reaction (corrosion) of up to 0.25-inch diameter uranium metal pieces. Under contract to FH, the Pacific Northwest National Laboratory (PNNL) conducted bench-scale testing of the STP hydrothermal process in November and December 2006. Five tests (~50 ml each) were conducted in sealed, un-agitated reaction vessels under the hydrothermal conditions (e.g., 7 to 72 h at 185°C) of the STP corrosion process using radioactive sludge samples collected from the K East Basin and particles/coupons of N Reactor fuel also taken from the K Basins. The tests were designed to evaluate and understand the chemical changes that may be occurring and the effects that any changes would have on sludge rheological properties. The tests were not designed to evaluate engineering aspects of the process. The hydrothermal treatment affected the chemical and physical properties of the sludge. In each test, significant uranium compound phase changes were identified, resulting from dehydration and chemical reduction reactions. Physical properties of the sludge were significantly altered from their initial, as-settled sludge values, including, shear strength, settled density, weight percent water, and gas retention.

Delegard, Calvin H.; Schmidt, Andrew J.; Thornton, Brenda M.

2007-03-30T23:59:59.000Z

225

Metrics for the National SCADA Test Bed Program  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) National SCADA Test Bed (NSTB) Program is providing valuable inputs into the electric industry by performing topical research and development (R&D) to secure next generation and legacy control systems. In addition, the program conducts vulnerability and risk analysis, develops tools, and performs industry liaison, outreach and awareness activities. These activities will enhance the secure and reliable delivery of energy for the United States. This report will describe metrics that could be utilized to provide feedback to help enhance the effectiveness of the NSTB Program.

Craig, Philip A.; Mortensen, J.; Dagle, Jeffery E.

2008-12-05T23:59:59.000Z

226

Potential role of the Fast Flux Test Facility and the advanced test reactor in the U.S. tritium production system  

Science Conference Proceedings (OSTI)

The Deparunent of Energy is currently engaged in a dual-track strategy to develop an accelerator and a conunercial light water reactor (CLWR) as potential sources of tritium supply. New analysis of the production capabilities of the Fast Flux Test Facility (FFTF) at the Hanford Site argues for considering its inclusion in the tritium supply,system. The use of the FFTF (alone or together with the Advanced Test Reactor [ATR] at the Idaho National Engineering Laboratory) as an integral part of,a tritium production system would help (1) ensure supply by 2005, (2) provide additional time to resolve institutional and technical issues associated with the- dual-track strategy, and (3) reduce discounted total life-cycle`costs and near-tenn annual expenditures for accelerator-based systems. The FFRF would also provide a way to get an early start.on dispositioning surplus weapons-usable plutonium as well as provide a source of medical isotopes. Challenges Associated With the Dual-Track Strategy The Departinent`s purchase of either a commercial reactor or reactor irradiation services faces challenging institutional issues associated with converting civilian reactors to defense uses. In addition, while the technical capabilities of the individual components of the accelerator have been proven, the entire system needs to be demonstrated and scaled upward to ensure that the components work toge ther 1548 as a complete production system. These challenges create uncertainty over the ability of the du2a-track strategy to provide an assured tritium supply source by 2005. Because the earliest the accelerator could come on line is 2007, it would have to operate at maximum capacity for the first few years to regenerate the reserves lost through radioactive decay aftei 2005.

Dautel, W.A.

1996-10-01T23:59:59.000Z

227

Production test IP-338-A, Supp. A, DR-Reactor heat decay test at high outlet water temperatures  

SciTech Connect

This test is identical to the original except that it authorizes the performance of a trial reduction in reactor flow during a prior reactor shutdown. This trial flow reduction will be performed in the same manner as proposed for the actual test, with one exception. This is, that based upon the results of this preliminary test some changes in the timing of the different steps may be indicated. Such changes can readily be handled by making each step dependent upon the observed reactor outlet temperature during the test performance. The other significant change in the production test is the increase in the allowable bulk outlet temperature from Ti + 40 {plus_minus} 3{degrees}C{sup *}. This change is needed to obtain a reasonable extrapolation of the results of tests No. 1 and No.2 to 90{degrees}C, and is justified from a hazards standpoint by the excellent flow control achieved during test No. 1 and by the trial test that will be run prior to the performance of the actual test No. 2. Other aspects of the test basis and justification are presented in the original production test.

Jones, S.S.

1962-05-18T23:59:59.000Z

228

Argonne National Laboratory Terahertz- and Millimeter-Wave Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

PROFILE: PROFILE: Argonne Homeland Security Technologies APPLICATIONS A R G O N N E N A T I O N A L L A B O R A T O R Y Terahertz- and Millimeter-Wave Test Facility B E N E F I T S Detect Terrorist-Related Contraband with Terahertz Technology * Spectral "fingerprints" uniquely identify materials * Can identify the factory where explosives and other chemicals were manufactured * Detects minute amounts of chemicals from a distance * Identifies materials in seconds Companies that develop or manufacture instruments to detect terrorist contraband can benefit by using a unique facility at the U.S. Department of Energy's Argonne National Laboratory. Called the Terahertz Test Facility, its sensitive, new instruments - developed at Argonne and available nowhere else in the world - can obtain spectral "fingerprints" that uniquely

229

Fuel subassembly leak test chamber for a nuclear reactor  

DOE Patents (OSTI)

A container with a valve at one end is inserted into a nuclear reactor coolant pool. Once in the pool, the valve is opened by a mechanical linkage. An individual fuel subassembly is lifted into the container by a gripper; the valve is then closed providing an isolated chamber for the subassembly. A vacuum is drawn on the chamber to encourage gaseous fission product leakage through any defects in the cladding of the fuel rods comprising the subassembly; this leakage may be detected by instrumentation, and the need for replacement of the assembly ascertained.

Divona, Charles J. (Santa Ana, CA)

1978-04-04T23:59:59.000Z

230

PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK  

Science Conference Proceedings (OSTI)

5098-SR-04-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY

P.C. Weaver

2010-11-03T23:59:59.000Z

231

PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK  

SciTech Connect

5098-SR-05-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1 BROOKHAVEN NATIONAL LABORATORY

E.M. Harpenau

2010-12-15T23:59:59.000Z

232

MODELING ASSUMPTIONS FOR THE ADVANCED TEST REACTOR FRESH FUEL SHIPPING CONTAINER  

SciTech Connect

The Advanced Test Reactor Fresh Fuel Shipping Container (ATR FFSC) is currently licensed per 10 CFR 71 to transport a fresh fuel element for either the Advanced Test Reactor, the University of Missouri Research Reactor (MURR), or the Massachusetts Institute of Technology Research Reactor (MITR-II). During the licensing process, the Nuclear Regulatory Commission (NRC) raised a number of issues relating to the criticality analysis, namely (1) lack of a tolerance study on the fuel and packaging, (2) moderation conditions during normal conditions of transport (NCT), (3) treatment of minor hydrogenous packaging materials, and (4) treatment of potential fuel damage under hypothetical accident conditions (HAC). These concerns were adequately addressed by modifying the criticality analysis. A tolerance study was added for both the packaging and fuel elements, full-moderation was included in the NCT models, minor hydrogenous packaging materials were included, and fuel element damage was considered for the MURR and MITR-II fuel types.

Rick J. Migliore

2009-09-01T23:59:59.000Z

233

Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport  

DOE Green Energy (OSTI)

A chemical reactor for carbon dioxide reforming of methane was integrated into a sodium reflux heat pipe receiver and tested in the solar furnace of the Weizmann Institute of Science, Rehovot, Israel. The receiver/reactor was a heat pipe with seven tubes inside an evacuated metal box containing sodium. The catalyst, 0.5 wt% Rh on alumina, filled two of the tubes with the front surface of the box serving as the solar absorber. In operation, concentrated sunlight heated the front plate and vaporized sodium from a wire mesh wick attached to other side. Sodium vapor condensed on the reactor tubes, releasing latent heat and returning to the wick by gravity. The receiver system performed satisfactorily in many tests under varying flow conditions. The maximum power absorbed was 7.5 kW at temperatures above 800C. The feasibility of operating a heat pipe receiver/reactor under solar conditions was proven, and the advantages of reflux devices confirmed.

Diver, R.B.; Fish, J.D. (Sandia National Labs., Albuquerque, NM (United States)); Levitan, R.; Levy, M.; Meirovitch, E.; Rosin, H. (Weizmann Inst. of Science, Rehovot (Israel)); Paripatyadar, S.A.; Richardson, J.T. (Univ. of Houston, TX (United States))

1992-01-01T23:59:59.000Z

234

DOE/OE National SCADA Test Bed Fiscal Year 2009 Work Plan | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OE National SCADA Test Bed Fiscal Year 2009 Work Plan DOEOE National SCADA Test Bed Fiscal Year 2009 Work Plan This document is designed to help guide and strengthen the DOEOE...

235

Isotope correlation studies relative to high enrichment test reactor fuels  

SciTech Connect

Several correlations of fission product isotopic ratios with atom percent fission and neutron flux, for highly enriched /sup 235/U fuel irradiated in two different water moderated thermal reactors, have been evaluated. In general, excellent correlations were indicated for samples irradiated in the same neutron spectrum; however, significant differences in the correlations were noted with the change in neutron spectrum. For highly enriched /sup 235/U fuel, the correlation of the isotopic ratio /sup 143/Nd//sup 145 +146/Nd with atom percent fission has wider applicability than the other fission product isotopic ratio evaluated. The /sup 137/Cs//sup 135/Cs atom ratio shows promise for correlation with neutron flux. Correlations involving heavy element ratios are very sensitive to the neutron spectrum.

Maeck, W.J.; Tromp, R.L.; Duce, F.A.; Emel, W.A.

1978-06-01T23:59:59.000Z

236

The Palo Verde Reactor Neutrino Experiment A Test for Long Baseline Neutrino Oscillations  

E-Print Network (OSTI)

:1. Our range of sensitivity is tuned to test the š¯ $ še solution of the atmospheric neutrino anomaly. 11 The Palo Verde Reactor Neutrino Experiment A Test for Long Baseline Neutrino Oscillations 94305 e Palo Verde Nuclear Generating Station,Tonopah AZ 85354 Our collaboration has installed a long

Piepke, Andreas G.

237

The Palo Verde Reactor Neutrino Experiment A Test for Long Baseline Neutrino Oscillations  

E-Print Network (OSTI)

\\Gamma3 eV 2 and sin 2 2\\Theta ! 0:1. Our range of sensitivity is tuned to test the š ¯ $ š e solutionThe Palo Verde Reactor Neutrino Experiment A Test for Long Baseline Neutrino Oscillations Presented 85287 S. Pittalwala, R. Wilferd, S. Young Palo Verde Nuclear Generating Station, Tonopah AZ 85354 Our

Piepke, Andreas G.

238

Challenges for Reactor Materials: J.T. Busby, Oak Ridge National ...  

Science Conference Proceedings (OSTI)

Feb 28, 2012 ... concern in existing reactors/nuclear ... Understanding the limitations of materials in nuclear ... the existing nuclear reactor fleet .... Rate theory.

239

Reactor Physics Methods and Preconceptual Core Design Analyses for Conversion of the Advanced Test Reactor to Low-Enriched Uranium Fuel Annual Report for Fiscal Year 2012  

SciTech Connect

Under the current long-term DOE policy and planning scenario, both the ATR and the ATRC will be reconfigured at an appropriate time within the next several years to operate with low-enriched uranium (LEU) fuel. This will be accomplished under the auspices of the Reduced Enrichment Research and Test Reactor (RERTR) Program, administered by the DOE National Nuclear Security Administration (NNSA). At a minimum, the internal design and composition of the fuel element plates and support structure will change, to accommodate the need for low enrichment in a manner that maintains total core excess reactivity at a suitable level for anticipated operational needs throughout each cycle while respecting all control and shutdown margin requirements and power distribution limits. The complete engineering design and optimization of LEU cores for the ATR and the ATRC will require significant multi-year efforts in the areas of fuel design, development and testing, as well as a complete re-analysis of the relevant reactor physics parameters for a core composed of LEU fuel, with possible control system modifications. Ultimately, revalidation of the computational physics parameters per applicable national and international standards against data from experimental measurements for prototypes of the new ATR and ATRC core designs will also be required for Safety Analysis Report (SAR) changes to support routine operations with LEU. This report is focused on reactor physics analyses conducted during Fiscal Year (FY) 2012 to support the initial development of several potential preconceptual fuel element designs that are suitable candidates for further study and refinement during FY-2013 and beyond. In a separate, but related, effort in the general area of computational support for ATR operations, the Idaho National Laboratory (INL) is conducting a focused multiyear effort to introduce modern high-fidelity computational reactor physics software and associated validation protocols to replace several obsolete components of the current analytical tool set used for ATR neutronics support. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). It will also greatly facilitate the LEU conversion effort, since the upgraded computational capabilities are now at a stage where they can be, and in fact have been, used for the required physics analysis from the beginning. In this context, extensive scoping neutronics analyses were completed for six preconceptual candidate LEU fuel element designs for the ATR (and for its companion critical facility, ATRC). Of these, four exhibited neutronics performance in what is believed to be an acceptable range. However, there are currently some concerns with regard to fabricability and mechanical performance that have emerged for one of the four latter concepts. Thus three concepts have been selected for more comprehensive conceptual design analysis during the upcoming fiscal year.

David W. Nigg; Sean R. Morrell

2012-09-01T23:59:59.000Z

240

Containment performance analyses for the Advanced Neutron Source Reactor at the Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

This paper discusses salient aspects of methodology, assumptions, and modeling of various features related to estimation of source terms from two conservatively scoped severe accident scenarios in the Advanced Neutron Source (ANS) reactor at the Oak Ridge National Laboratory. Various containment configurations are considered for steaming-pool-type accidents and an accident involving molten core-concrete interaction. Several design features (such as rupture disks) are examined to study containment response during postulated severe accidents. Also, thermal-hydraulic response of the containment and radionuclide transport and retention in the containment are studied. The results are described as transient variations of source terms for each scenario, which are to be used for studying off-site radiological consequences and health effects for these postulated severe accidents. Also highlighted will be a comparison of source terms estimated by two different versions of the MELCOR code.

Kim, S.H.; Taleyarkhan, R.P.; Georgevich, V.

1992-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "national reactor testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Waste minimization value engineering workshop for the Los Alamos National Laboratory Omega West Reactor Decommissioning Project  

SciTech Connect

The Los Alamos National Laboratory Pollution Prevention Program Office sponsored a Value Engineering (VE) Workshop to evaluate recycling options and other pollution prevention and waste minimization (PP/WMin) practices to incorporate into the decommissioning of the Omega West Reactor (OWR) at the laboratory. The VE process is an organized, systematic approach for evaluating a process or design to identify cost saving opportunities, or in this application, waste reduction opportunities. This VE Workshop was a facilitated process that included a team of specialists in the areas of decontamination, decommissioning, PP/WMin, cost estimating, construction, waste management, recycling, Department of Energy representatives, and others. The uniqueness of this VE Workshop was that it used an interdisciplinary approach to focus on PP/WMin practices that could be included in the OWR Decommissioning Project Plans and specifications to provide waste reduction. This report discusses the VE workshop objectives, summarizes the OWR decommissioning project, and describes the VE workshop activities, results, and lessons learned.

Hartnett, S.; Seguin, N. [Benchmark Environmental Corp., Albuquerque, NM (United States); Burns, M. [Los Alamos National Lab., NM (United States)

1995-12-31T23:59:59.000Z

242

Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2011  

SciTech Connect

Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance and, to some extent, experiment management are obsolete, inconsistent with the state of modern nuclear engineering practice, and are becoming increasingly difficult to properly verify and validate (V&V). Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In 2009 the Idaho National Laboratory (INL) initiated a focused effort to address this situation through the introduction of modern high-fidelity computational software and protocols, with appropriate V&V, within the next 3-4 years via the ATR Core Modeling and Simulation and V&V Update (or 'Core Modeling Update') Project. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). The ATR Core Modeling Update Project, targeted for full implementation in phase with the anticipated ATR Core Internals Changeout (CIC) in the 2014 time frame, began during the last quarter of Fiscal Year 2009, and has just completed its first full year. Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (SCALE, KENO-6, HELIOS, NEWT, and ATTILA) have been installed at the INL under various permanent sitewide license agreements and corresponding baseline models of the ATR and ATRC are now operational, demonstrating the basic feasibility of these code packages for their intended purpose. Furthermore, a capability for rigorous sensitivity analysis and uncertainty quantification based on the TSUNAMI system is being implemented and initial computational results have been obtained. This capability will have many applications in 2011 and beyond as a tool for understanding the margins of uncertainty in the new models as well as for validation experiment design and interpretation. Finally we note that although full implementation of the new computational models and protocols will extend over a period 3-4 years as noted above, interim applications in the much nearer term have already been demonstrated. In particular, these demonstrations included an analysis that was useful for understanding the cause of some issues in December 2009 that were triggered by a larger than acceptable discrepancy between the measured excess core reactivity and a calculated value that was based on the legacy computational methods. As the Modeling Update project proceeds we anticipate further such interim, informal, applications in parallel with formal qualification of the system under the applicable INL Quality Assurance procedures and standards.

David W. Nigg; Devin A. Steuhm

2011-09-01T23:59:59.000Z

243

Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2011  

SciTech Connect

Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance and, to some extent, experiment management are obsolete, inconsistent with the state of modern nuclear engineering practice, and are becoming increasingly difficult to properly verify and validate (V&V). Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In 2009 the Idaho National Laboratory (INL) initiated a focused effort to address this situation through the introduction of modern high-fidelity computational software and protocols, with appropriate V&V, within the next 3-4 years via the ATR Core Modeling and Simulation and V&V Update (or 'Core Modeling Update') Project. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). The ATR Core Modeling Update Project, targeted for full implementation in phase with the anticipated ATR Core Internals Changeout (CIC) in the 2014 time frame, began during the last quarter of Fiscal Year 2009, and has just completed its first full year. Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (SCALE, KENO-6, HELIOS, NEWT, and ATTILA) have been installed at the INL under various permanent sitewide license agreements and corresponding baseline models of the ATR and ATRC are now operational, demonstrating the basic feasibility of these code packages for their intended purpose. Furthermore, a capability for rigorous sensitivity analysis and uncertainty quantification based on the TSUNAMI system is being implemented and initial computational results have been obtained. This capability will have many applications in 2011 and beyond as a tool for understanding the margins of uncertainty in the new models as well as for validation experiment design and interpretation. Finally we note that although full implementation of the new computational models and protocols will extend over a period 3-4 years as noted above, interim applications in the much nearer term have already been demonstrated. In particular, these demonstrations included an analysis that was useful for understanding the cause of some issues in December 2009 that were triggered by a larger than acceptable discrepancy between the measured excess core reactivity and a calculated value that was based on the legacy computational methods. As the Modeling Update project proceeds we anticipate further such interim, informal, applications in parallel with formal qualification of the system under the applicable INL Quality Assurance procedures and standards.

David W. Nigg; Devin A. Steuhm

2011-09-01T23:59:59.000Z

244

Advanced Test Reactor Core Modeling Update Project Annual Report for Fiscal Year 2012  

SciTech Connect

Legacy computational reactor physics software tools and protocols currently used for support of Advanced Test Reactor (ATR) core fuel management and safety assurance, and to some extent, experiment management, are inconsistent with the state of modern nuclear engineering practice, and are difficult, if not impossible, to properly verify and validate (V&V) according to modern standards. Furthermore, the legacy staff knowledge required for application of these tools and protocols from the 1960s and 1970s is rapidly being lost due to staff turnover and retirements. In late 2009, the Idaho National Laboratory (INL) initiated a focused effort, the ATR Core Modeling Update Project, to address this situation through the introduction of modern high-fidelity computational software and protocols. This aggressive computational and experimental campaign will have a broad strategic impact on the operation of the ATR, both in terms of improved computational efficiency and accuracy for support of ongoing DOE programs as well as in terms of national and international recognition of the ATR National Scientific User Facility (NSUF). The ATR Core Modeling Update Project, targeted for full implementation in phase with the next anticipated ATR Core Internals Changeout (CIC) in the 2014-2015 time frame, began during the last quarter of Fiscal Year 2009, and has just completed its third full year. Key accomplishments so far have encompassed both computational as well as experimental work. A new suite of stochastic and deterministic transport theory based reactor physics codes and their supporting nuclear data libraries (HELIOS, KENO6/SCALE, NEWT/SCALE, ATTILA, and an extended implementation of MCNP5) has been installed at the INL under various licensing arrangements. Corresponding models of the ATR and ATRC are now operational with all five codes, demonstrating the basic feasibility of the new code packages for their intended purpose. Of particular importance, a set of as-run core depletion HELIOS calculations for all ATR cycles since August 2009, Cycle 145A through Cycle 151B, was successfully completed during 2012. This major effort supported a decision late in the year to proceed with the phased incorporation of the HELIOS methodology into the ATR Core Safety Analysis Package (CSAP) preparation process, in parallel with the established PDQ-based methodology, beginning late in Fiscal Year 2012. Acquisition of the advanced SERPENT (VTT-Finland) and MC21 (DOE-NR) Monte Carlo stochastic neutronics simulation codes was also initiated during the year and some initial applications of SERPENT to ATRC experiment analysis were demonstrated. These two new codes will offer significant additional capability, including the possibility of full-3D Monte Carlo fuel management support capabilities for the ATR at some point in the future. Finally, a capability for rigorous sensitivity analysis and uncertainty quantification based on the TSUNAMI system has been implemented and initial computational results have been obtained. This capability will have many applications as a tool for understanding the margins of uncertainty in the new models as well as for validation experiment design and interpretation.

David W. Nigg, Principal Investigator; Kevin A. Steuhm, Project Manager

2012-09-01T23:59:59.000Z

245

RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: STACK TESTS  

DOE Green Energy (OSTI)

High temperature steam electrolysis is a promising technology for efficient sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-term durability of SOECs. Electrolytesupported and electrode-supported SOEC stacks were provided by Ceramatec Inc., Materials and Systems Research Inc. (MSRI), and Saint Gobain Advanced Materials (St. Gobain), respectively for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technology developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, respectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. A three-cell short stack provided by St. Gobain, however, showed rapid degradation in the electrolysis mode. Improvements on electrode materials, interconnect coatings, and electrolyteelectrode interface microstructures contribute to better durability of SOEC stacks.

X, Zhang; J. E. O'Brien; R. C. O'Brien; J. J. Hartvigsen; G. Tao; N. Petigny

2012-07-01T23:59:59.000Z

246

Multiple Irradiation Capsule Experiment (MICE)-3B Irradiation Test of Space Fuel Specimens in the Advanced Test Reactor (ATR) - Close Out Documentation for Naval Reactors (NR) Information  

SciTech Connect

Few data exist for UO{sub 2} or UN within the notional design space for the Prometheus-1 reactor (low fission rate, high temperature, long duration). As such, basic testing is required to validate predictions (and in some cases determine) performance aspects of these fuels. Therefore, the MICE-3B test of UO{sub 2} pellets was designed to provide data on gas release, unrestrained swelling, and restrained swelling at the upper range of fission rates expected for a space reactor. These data would be compared with model predictions and used to determine adequacy of a space reactor design basis relative to fission gas release and swelling of UO{sub 2} fuel and to assess potential pellet-clad interactions. A primary goal of an irradiation test for UN fuel was to assess performance issues currently associated with this fuel type such as gas release, swelling and transient performance. Information learned from this effort may have enabled use of UN fuel for future applications.

M. Chen; CM Regan; D. Noe

2006-01-09T23:59:59.000Z

247

Light Water Reactor Fuel Cladding Research and Testing | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Water Reactor Fuel Cladding Research Light Water Reactor Fuel Cladding Research June 01, 2013 Severe Accident Test Station ORNL is the focus point for Light Water Reactor (LWR) fuel cladding research and testing. The purpose of this research is to furnish U.S. industry (EPRI, Areva, Westinghouse), and regulators (NRC) with much-needed data supporting safe and economical nuclear power generation and used fuel management. LWR fuel cladding work is tightly integrated with ORNL accident tolerant fuel development and used fuel disposition programs thereby providing a powerful capability that couples basic materials science research with the nuclear applications research and development. The ORNL LWR fuel cladding program consists of five complementary areas of research: Accident tolerant fuel and cladding material testing under design

248

Hot-Gas Filter Testing with a Transport Reactor Gasifier  

Science Conference Proceedings (OSTI)

Today, coal supplies over 55% of the electricity consumed in the United States and will continue to do so well into the next century. One of the technologies being developed for advanced electric power generation is an integrated gasification combined cycle (IGCC) system that converts coal to a combustible gas, cleans the gas of pollutants, and combusts the gas in a gas turbine to generate electricity. The hot exhaust from the gas turbine is used to produce steam to generate more electricity from a steam turbine cycle. The utilization of advanced hot-gas particulate and sulfur control technologies together with the combined power generation cycles make IGCC one of the cleanest and most efficient ways available to generate electric power from coal. One of the strategic objectives for U.S. Department of Energy (DOE) IGCC research and development program is to develop and demonstrate advanced gasifiers and second-generation IGCC systems. Another objective is to develop advanced hot-gas cleanup and trace contaminant control technologies. One of the more recent gasification concepts to be investigated is that of the transport reactor gasifier, which functions as a circulating fluid-bed gasifier while operating in the pneumatic transport regime of solid particle flow. This gasifier concept provides excellent solid-gas contacting of relatively small particles to promote high gasification rates and also provides the highest coal throughput per unit cross-sectional area of any other gasifier, thereby reducing capital cost of the gasification island.

Swanson, M.L.; Hajicek, D.R.

2002-09-18T23:59:59.000Z

249

Warm Water Oxidation Verification - Scoping and Stirred Reactor Tests  

Science Conference Proceedings (OSTI)

Scoping tests to evaluate the effects of agitation and pH adjustment on simulant sludge agglomeration and uranium metal oxidation at {approx}95 C were performed under Test Instructions(a,b) and as per sections 5.1 and 5.2 of this Test Plan prepared by AREVA. (c) The thermal testing occurred during the week of October 4-9, 2010. The results are reported here. For this testing, two uranium-containing simulant sludge types were evaluated: (1) a full uranium-containing K West (KW) container sludge simulant consisting of nine predominant sludge components; (2) a 50:50 uranium-mole basis mixture of uraninite [U(IV)] and metaschoepite [U(VI)]. This scoping study was conducted in support of the Sludge Treatment Project (STP) Phase 2 technology evaluation for the treatment and packaging of K-Basin sludge. The STP is managed by CH2M Hill Plateau Remediation Company (CHPRC) for the U.S. Department of Energy. Warm water ({approx}95 C) oxidation of sludge, followed by immobilization, has been proposed by AREVA and is one of the alternative flowsheets being considered to convert uranium metal to UO{sub 2} and eliminate H{sub 2} generation during final sludge disposition. Preliminary assessments of warm water oxidation have been conducted, and several issues have been identified that can best be evaluated through laboratory testing. The scoping evaluation documented here was specifically focused on the issue of the potential formation of high strength sludge agglomerates at the proposed 95 C process operating temperature. Prior hydrothermal tests conducted at 185 C produced significant physiochemical changes to genuine sludge, including the formation of monolithic concretions/agglomerates that exhibited shear strengths in excess of 100 kPa (Delegard et al. 2007).

Braley, Jenifer C.; Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

2011-06-15T23:59:59.000Z

250

Environmental Assessment for Decontamination and Decommissioning of the Juggernaut Reactor at Argonne National Laboratory Â… East Argonne, Illinois  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Finding of No Significant Impact Finding of No Significant Impact Proposed Decontamination and Decommissioning of the Juggernaut Reactor at Argonne National Laboratory - East Argonne, Illinois AGENCY: U. S. Department of Energy (DOE) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: DOE has prepared an Environmental Assessment (EA), DOE/EA-1483, evaluating the decontamination and decommissioning of the Juggernaut Reactor at Argonne National Laboratory-East (ANL-E), in Argonne, Illinois. The decontamination and decommissioning of the reactor is needed to ensure the protection of the health and safety of the public, DOE and contractor employees, and the environment, consistent with DOE Order 5400.5, Radiation Protection of the Public and the Environment. Based on the analysis in the EA, DOE has determined that the proposed action does not

251

Certification testing at the National Wind Technology Center  

DOE Green Energy (OSTI)

The International Electrotechnical Commission is developing a new standard that defines power performance measurement techniques. The standard will provide the basis for international recognition of a wind turbine`s performance primarily for certification, but also for qualification for tax and investment incentives, and for contracts. According to the standard, the power performance characteristics are defined by a measured power curve and by projections of annual energy production for a range of wind conditions. The National Wind Technology Center (NWTC) has adopted these power performance measurement techniques. This paper reviews the results of the NWTC`s first test conducted under the new protocol on the Atlantic Orient Corporation`s AOC 15/50 wind turbine at the NWTC. The test required collecting sufficient data to establish a statistically significant database over a range of wind speeds and conditions. From the data, the power curve was calculated. Then the results from a site calibration procedure determined the flow distortion between winds measured at the turbine location and those measured at the meteorological tower. Finally, this paper discusses the uncertainty analysis that was performed in accordance with the standard. Use of these procedures resulted in the definition of the AOC 15/50`s power curve within about 3 kW.

Huskey, A.; Link, H.

1996-11-01T23:59:59.000Z

252

Gas-cooled fast breeder reactor steady-state irradiation testing program  

Science Conference Proceedings (OSTI)

The requirements for the gas-cooled fast breeder reactor irradiation program are specified, and an irradiation program plan which satisfies these requirements is presented. The irradiation program plan consists of three parts and includes a schedule and a preliminary cost estimate: (1) a steady-state irradiation program, (2) irradiations in support of the design basis transient test program, and (3) irradiations in support of the GRIST-2 safety test program. Data from the liquid metal fast breeder reactor program are considered, and available irradiation facilities are examined.

Acharya, R.T.; Campana, R.J.; Langer, S.

1980-08-01T23:59:59.000Z

253

Tests of candidate materials for particle bed reactors  

DOE Green Energy (OSTI)

Rhenium metal hot frits and zirconium carbide-coated fuel particles appear suitable for use in flowing hydrogen to at least 2000 K, based on previous tests. Recent tests on alternate candidate cooled particle and frit materials are described. Silicon carbide-coated particles began to react with rhenium frit material at 1600 K, forming a molten silicide at 2000 K. Silicon carbide was extensively attacked by hydrogen at 2066 K for 30 minutes, losing 3.25% of its weight. Vitrous carbon was also rapidly attacked by hydrogen at 2123 K, losing 10% of its weight in two minutes. Long term material tests on candidate materials for closed cycle helium cooled particle bed fuel elements are also described. Surface imperfections were found on the surface of pyrocarbon-coated fuel particles after ninety days exposure to flowing (approx.500 ppM) impure helium at 1143 K. The imperfections were superficial and did not affect particle strength.

Horn, F.L.; Powell, J.R.; Wales, D.

1987-01-01T23:59:59.000Z

254

Nuclear Weapons Testing Resumes | National Nuclear Security Administra...  

National Nuclear Security Administration (NNSA)

> Nuclear Weapons Testing Resumes Nuclear Weapons Testing Resumes September 01, 1961 Washington, DC Nuclear Weapons Testing Resumes The Soviet Union breaks the nuclear test...

255

Results and Analyses of Irradiation/Anneal Experiments Conducted on Yankee Rowe Reactor Pressure Vessel Surrogate Materials: Yankee Atomic Electric Company Test Reactor Program  

Science Conference Proceedings (OSTI)

Many variables influence the response of reactor vessel steels to neutron irradiation. This study looks at the influence of irradiation temperature, steel heat treatment and microstructure, and nickel and phosphorus content on the irradiation response of high-copper reactor vessel steel. Also addressed are several studies evaluating the potential of thermal annealing to restore the mechanical properties of the steels tested.

1996-03-22T23:59:59.000Z

256

On0Line Fuel Failure Monitor for Fuel Testing and Monitoring of Gas Cooled Very High Temperature Reactor  

Science Conference Proceedings (OSTI)

IVery High Temperature Reactors (VHTR) utilize the TRISO microsphere as the fundamental fuel unit in the core. The TRISO microsphere (~ 1- mm diameter) is composed of a UO2 kernel surrounded by a porous pyrolytic graphite buffer, an inner pyrolytic graphite layer, a silicon carbide (SiC) coating, and an outer pyrolytic graphite layer. The U-235 enrichment of the fuel is expected to range from 4% – 10% (higher enrichments are also being considered). The layer/coating system that surrounds the UO2 kernel acts as the containment and main barrier against the environmental release of radioactivity. To understand better the behavior of this fuel under in-core conditions (e.g., high temperature, intense fast neutron flux, etc.), the US Department of Energy (DOE) is launching a fuel testing program that will take place at the Advanced Test Reactor (ATR) located at Idaho National Laboratory (INL). During this project North Carolina State University (NCSU) researchers will collaborate with INL staff for establishing an optimized system for fuel monitoring for the ATR tests. In addition, it is expected that the developed system and methods will be of general use for fuel failure monitoring in gas cooled VHTRs.

Ayman I. Hawari; Mohamed A. Bourham

2010-04-22T23:59:59.000Z

257

Continuous-flow stirred-tank reactor 20-L demonstration test: Final report  

SciTech Connect

One of the proposed methods of removing the cesium, strontium, and transuranics from the radioactive waste storage tanks at Savannah River is the small-tank tetraphenylborate (TPB) precipitation process. A two-reactor-in-series (15-L working volume each) continuous-flow stirred-tank reactor (CSTR) system was designed, constructed, and installed in a hot cell to test the Savannah River process. The system also includes two cross-flow filtration systems to concentrate and wash the slurry produced in the process, which contains the bulk of radioactivity from the supernatant processed through the system. Installation, operational readiness reviews, and system preparation and testing were completed. The first test using the filtration systems, two CSTRs, and the slurry concentration system was conducted over a 61-h period with design removal of Cs, Sr, and U achieved. With the successful completion of Test 1a, the following tests, 1b and 1c, were not required.

Lee, D.D.; Collins, J.L.

2000-02-01T23:59:59.000Z

258

DOE National SCADA Test Bed Program Multi-Year Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National SCADA Test Bed Program Multi-Year Plan National SCADA Test Bed Program Multi-Year Plan DOE National SCADA Test Bed Program Multi-Year Plan This document presents the National SCADA Test Bed Program Multi-Year Plan, a coherent strategy for improving the cyber security of control systems in the energy sector. The NSTB Program is conducted within DOE's Office of Electricity Delivery and Energy Reliability (OE), which leads national efforts to modernize the electric grid, enhance the security and reliability of the energy infrastructure, and facilitate recovery from disruptions to the energy supply. The Plan covers the planning period of fiscal year 2008 to 2013. DOE National SCADA Test Bed Program Multi-Year Plan More Documents & Publications DOE/OE National SCADA Test Bed Fiscal Year 2009 Work Plan

259

Neutronics, steady-state, and transient analyses for the Poland MARIA reactor for irradiation testing of LEU lead test fuel assemblies from CERCA : ANL independent verification results.  

Science Conference Proceedings (OSTI)

The MARIA reactor at the Institute of Atomic Energy (IAE) in Swierk (30 km SE of Warsaw) in the Republic of Poland is considering conversion from high-enriched uranium (HEU) to low-enriched uranium (LEU) fuel assemblies (FA). The FA design in MARIA is rather unique; a suitable LEU FA has never been designed or tested. IAE has contracted with CERCA (the fuel supply portion of AREVA in France) to supply 2 lead test assemblies (LTA). The LTAs will be irradiated in MARIA to burnup level of at least 40% for both LTAs and to 60% for one LTA. IAE may decide to purchase additional LEU FAs for a full core conversion after the test irradiation. The Reactor Safety Committee within IAE and the National Atomic Energy Agency in Poland (PAA) must approve the LTA irradiation process. The approval will be based, in part, on IAE submitting revisions to portions of the Safety Analysis Report (SAR) which are affected by the insertion of the LTAs. (A similar process will be required for the full core conversion to LEU fuel.) The analysis required was established during working meetings between Argonne National Laboratory (ANL) and IAE staff during August 2006, subsequent email correspondence, and subsequent staff visits. The analysis needs to consider the current high-enriched uranium (HEU) core and 4 core configurations containing 1 and 2 LEU LTAs in various core positions. Calculations have been performed at ANL in support of the LTA irradiation. These calculations are summarized in this report and include criticality, burn-up, neutronics parameters, steady-state thermal hydraulics, and postulated transients. These calculations have been performed at the request of the IAE staff, who are performing similar calculations to be used in their SAR amendment submittal to the PAA. The ANL analysis has been performed independently from that being performed by IAE and should only be used as one step in the verification process.

Garner, P. L.; Hanan, N. A. (Nuclear Engineering Division)

2011-06-07T23:59:59.000Z

260

Analytical Study of High Concentration PCB Paint at the Heavy Water Components Test Reactor  

SciTech Connect

This report provides results of an analytical study of high concentration PCB paint in a shutdown nuclear test reactor located at the US Department of Energy's Savannah River Site (SRS). The study was designed to obtain data relevant for an evaluation of potential hazards associated with the use of and exposure to such paints.

Lowry, N.J.

1998-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "national reactor testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DESIGN CRITERIA FOR HIGH TEMPERATURE LATTICE TEST REACTOR PROJECT CAH-100  

SciTech Connect

Design and construction specifications to be followed in the development of the reactor, its associated systems and experimental facilities, and the housing and required services for the facility are presented. The testing procedures to be used are outlined. (D.C.W.)

Ballard, D.L.; Brown, W.W.; Harrison, C.W.; Heineman, R.E.; Henry, H.L.; Jeffs, T.W.; Morrow, G.W.; Russell, J.T.; Waite, J.K.

1963-05-24T23:59:59.000Z

262

Clinton Extends Moratorium on Nuclear Weapons Testing | National...  

National Nuclear Security Administration (NNSA)

Weapons Testing Clinton Extends Moratorium on Nuclear Weapons Testing July 03, 1993 Washington, DC Clinton Extends Moratorium on Nuclear Weapons Testing President Clinton...

263

Limited Test Ban Treaty Signed | National Nuclear Security Administrat...  

National Nuclear Security Administration (NNSA)

Timeline > Limited Test Ban Treaty Signed Limited Test Ban Treaty Signed August 05, 1963 Washington, DC Limited Test Ban Treaty Signed The United States, Great Britain, and the...

264

Testing, Training, and Signature Devices | Y-12 National Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing, Training, and ... Testing, Training, and Signature Devices Y-12 manufactures specialized uranium testing, training, and signature devices to support the nuclear detection...

265

Design and Nuclear-Safety Related Simulations of Bare-Pellet Test Irradiations for the Production of Pu-238 in the High Flux Isotope Reactor using COMSOL  

Science Conference Proceedings (OSTI)

The Oak Ridge National Laboratory (ORNL)is developing technology to produce plutonium-238 for the National Aeronautics and Space Administration (NASA) as a power source material for powering vehicles while in deep-space[1]. The High Flux Isotope Reactor (HFIR) of ORNL has been utilized to perform test irradiations of incapsulated neptunium oxide (NpO2) and aluminum powder bare pellets for purposes of understanding the performance of the pellets during irradiation[2]. Post irradiation examinations (PIE) are currently underway to assess the effect of temperature, thermal expansion, swelling due to gas production, fission products, and other phenomena

Freels, James D [ORNL; Jain, Prashant K [ORNL; Hobbs, Randy W [ORNL

2012-01-01T23:59:59.000Z

266

Status of the NGNP Graphite Creep Experiments AGC-1 and AGC-2 Irradiated in the Advanced Test Reactor  

Science Conference Proceedings (OSTI)

The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Program will be irradiating six nuclear graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The graphite experiments will be irradiated over the next six to eight years to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Next Generation Nuclear Plant (NGNP) Very High Temperature Gas Reactor, as well as other future gas reactors. The experiments will each consist of a single capsule that will contain six peripheral stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens will not be subjected to a compressive load during irradiation. The six peripheral stacks will have different compressive loads applied to the top half of each pair of specimen stacks, while a seventh stack will not have a compressive load. The specimens will be irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There will also be sampling the sweep gas effluent to determine if any oxidation or off-gassing of the specimens occurs during irradiation of the experiment. The first experiment, AGC-1, started its irradiation in September 2009, and the irradiation was completed in January 2011. The second experiment, AGC-2, started its irradiation in April 2011 and completed its irradiation in May 2012. This paper will briefly discuss the design of the experiment and control systems, and then present the irradiation results for each experiment to date.

Blaine Grover

2012-10-01T23:59:59.000Z

267

REACTOR  

DOE Patents (OSTI)

A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

Roman, W.G.

1961-06-27T23:59:59.000Z

268

Design and Testing of Vacuum Breaker Check Valve for Simplified Boiling Water Reactor  

Science Conference Proceedings (OSTI)

A new design of the vacuum breaker check valve was developed to replace the mechanical valve in a simplified boiling water reactor. Scaling and design calculations were performed to obtain the geometry of new passive hydraulic vacuum breaker check valve. In order to check the valve performance, a RELAP5 model of the simplified boiling water reactor system with the new valve was developed. The valve was implemented in an integral facility, PUMA and was tested for large break loss of coolant accident. (authors)

Ishii, M.; Xu, Y.; Revankar, S.T. [Purdue University, West Lafayette, IN 47907 (United States)

2002-07-01T23:59:59.000Z

269

Acoustic emission monitoring of hot functional testing: Watts Bar Unit 1 Nuclear Reactor  

Science Conference Proceedings (OSTI)

Acoustic emission (AE) monitoring of selected pressure boundary areas at TVA's Watts Bar, Unit 1 Nuclear Power Plant during hot functional preservice testing is described in this report. The report deals with background, methodology, and results. The work discussed here is a major milestone in a program supported by NRC to develop and demonstrate application of AE monitoring for continuous surveillance of reactor pressure boundaries to detect and evaluate growing flaws. The subject work demonstrated that anticipated problem areas can be overcome. Work is continuing toward AE monitoring during reactor operation.

Hutton, P.H.; Dawson, J.F.; Friesel, M.A.; Harris, J.C.; Pappas, R.A.

1984-06-01T23:59:59.000Z

270

Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine  

SciTech Connect

This project, Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine was established at the Kharkiv Institute of Physics and Technology (KIPT). The associated CRADA was established with Campbell Applied Physics (CAP) located in El Dorado Hills, California. This project extends an earlier project involving both CAP and KIPT conducted under a separate CRADA. The initial project developed the basic Plasma Chemical Reactor (PCR) for generation of ozone gas. This project built upon the technology developed in the first project, greatly enhancing the output of the PCR while also improving reliability and system control.

Reilly, Raymond W.

2012-07-30T23:59:59.000Z

271

National Preparedness Goal  

Science Conference Proceedings (OSTI)

... impact on security, national economic security, national public health or ... technology; national monuments and icons; nuclear reactors, material, and ...

2011-10-20T23:59:59.000Z

272

Scientific Upgrades at the Oak Ridge National Laboratory High Flux Isotope Reactor  

Science Conference Proceedings (OSTI)

The United States Department of Energy is sponsoring a number of projects that will provide scientific upgrades to the neutron science facilities associated with the High Flux Isotope Reactor (HFIR) located at Oak Ridge National Laboratory. Funding for the first upgrade project was initiated in 1996 and all presently identified upgrade projects are expected to be completed by the end of 2003. The upgrade projects include: (1) larger beam tubes, (2) a new monochromator drum for the HB-1 beam line, (3) a new HB-2 beam line system that includes one thermal guide and a new monochromator drum, (4) new instruments for the HB-2 beamline, (5) a new monochromator drum for the HB-3 beam line, (6) a supercritical hydrogen cold source system to be retrofitted into the HB-4 beam tube, (7) a 3.5 kW refrigeration system at 20 K to support the cold source and a new building to house it, (8) a new HB-4 beam line system composed of four cold neutron guides with various mirror coatings and associated shielding, (9) a number of new instruments for the cold beams including two new SANS instruments, and (10) construction of support buildings. This paper provides a short summary of these projects including their present status and schedule.

Selby, Douglas L [ORNL; Jones, Amy [ORNL; Crow, Lowell [ORNL

2012-01-01T23:59:59.000Z

273

Decontamination and decommissioning of the Experimental Boiling Water Reactor (EBWR): Project final report, Argonne National Laboratory  

SciTech Connect

The Final Report for the Decontamination and Decommissioning (D&D) of the Argonne National Laboratory - East (ANL-E) Experimental Boiling Water Reactor (EBWR) facility contains the descriptions and evaluations of the activities and the results of the EBWR D&D project. It provides the following information: (1) An overall description of the ANL-E site and EBWR facility. (2) The history of the EBWR facility. (3) A description of the D&D activities conducted during the EBWR project. (4) A summary of the final status of the facility, including the final and confirmation surveys. (5) A summary of the final cost, schedule, and personnel exposure associated with the project, including a summary of the total waste generated. This project report covers the entire EBWR D&D project, from the initiation of Phase I activities to final project closeout. After the confirmation survey, the EBWR facility was released as a {open_quotes}Radiologically Controlled Area,{close_quotes} noting residual elevated activity remains in inaccessible areas. However, exposure levels in accessible areas are at background levels. Personnel working in accessible areas do not need Radiation Work Permits, radiation monitors, or other radiological controls. Planned use for the containment structure is as an interim transuranic waste storage facility (after conversion).

Fellhauer, C.R.; Boing, L.E. [Argonne National Lab., IL (United States); Aldana, J. [NES, Inc., Danbury, CT (United States)

1997-03-01T23:59:59.000Z

274

Preliminary Benchmark Evaluation of Japan’s High Temperature Engineering Test Reactor  

SciTech Connect

A benchmark model of the initial fully-loaded start-up core critical of Japan’s High Temperature Engineering Test Reactor (HTTR) was developed to provide data in support of ongoing validation efforts of the Very High Temperature Reactor Program using publicly available resources. The HTTR is a 30 MWt test reactor utilizing graphite moderation, helium coolant, and prismatic TRISO fuel. The benchmark was modeled using MCNP5 with various neutron cross-section libraries. An uncertainty evaluation was performed by perturbing the benchmark model and comparing the resultant eigenvalues. The calculated eigenvalues are approximately 2-3% greater than expected with an uncertainty of ±0.70%. The primary sources of uncertainty are the impurities in the core and reflector graphite. The release of additional HTTR data could effectively reduce the benchmark model uncertainties and bias. Sensitivity of the results to the graphite impurity content might imply that further evaluation of the graphite content could significantly improve calculated results. Proper characterization of graphite for future Next Generation Nuclear Power reactor designs will improve computational modeling capabilities. Current benchmarking activities include evaluation of the annular HTTR cores and assessment of the remaining start-up core physics experiments, including reactivity effects, reactivity coefficient, and reaction-rate distribution measurements. Long term benchmarking goals might include analyses of the hot zero-power critical, rise-to-power tests, and other irradiation, safety, and technical evaluations performed with the HTTR.

John Darrell Bess

2009-05-01T23:59:59.000Z

275

The results of systems tests of the 500 kV busbar controllable shunting reactor in the Tavricheskaya substation  

Science Conference Proceedings (OSTI)

The results of systems tests of the 500 kV busbar magnetization-controllable shunting reactor (CSR), set up in the Tavricheskaya substation, including measurements of the quality of the electric power, the harmonic composition of the network currents of the reactor for different values of the reactive power consumed, the determination of the regulating characteristics of the reactor, the speed of response of the shunting reactor in the current and voltage stabilization modes, and also the operation of the reactor under dynamic conditions for different perturbations, are presented. The results obtained are analyzed.

Gusev, S. I. [JSC 'FSK EES' (Russian Federation); Karpov, V. N.; Kiselev, A. N.; Kochkin, V. I. [Scientific-Research Institute of Electric Power Engineering (VNIIE) - Branch of the JSC 'NTTs Elektroenergetiki', (Russian Federation)

2009-09-15T23:59:59.000Z

276

Tokamaks with high-performance resistive magnets: advanced test reactors and prospects for commercial applications  

DOE Green Energy (OSTI)

Scoping studies have been made of tokamak reactors with high performance resistive magnets which maximize advantages gained from high field operation and reduced shielding requirements, and minimize resistive power requirements. High field operation can provide very high values of fusion power density and n tau/sub e/ while the resistive power losses can be kept relatively small. Relatively high values of Q' = Fusion Power/Magnet Resistive Power can be obtained. The use of high field also facilitates operation in the DD-DT advanced fuel mode. The general engineering and operational features of machines with high performance magnets are discussed. Illustrative parameters are given for advanced test reactors and for possible commercial reactors. Commercial applications that are discussed are the production of fissile fuel, electricity generation with and without fissioning blankets and synthetic fuel production.

Bromberg, L.; Cohn, D.R.; Williams, J.E.C.; Becker, H.; Leclaire, R.; Yang, T.

1981-10-01T23:59:59.000Z

277

Monitoring Uranium Transformations Determined by the Evolution of Biogeochemical Processes: Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory  

SciTech Connect

With funds provided by the US DOE, Argonne National Laboratory subcontracted the design of batch and column studies to a Stanford University team with field experience at the ORNL IFRC, Oak Ridge, TN. The contribution of the Stanford group ended in 2011 due to budget reduction in ANL. Over the funded research period, the Stanford research team characterized ORNL IFRC groundwater and sediments and set up microcosm reactors and columns at ANL to ensure that experiments were relevant to field conditions at Oak Ridge. The results of microcosm testing demonstrated that U(VI) in sediments was reduced to U(IV) with the addition of ethanol. The reduced products were not uraninite but were instead U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. The Stanford team communicated with the ANL team members through email and conference calls and face to face at the annual ERSP PI meeting and national meetings.

Criddle, Craig S.; Wu, Weimin

2013-04-17T23:59:59.000Z

278

Design and Status of the NGNP Fuel Experiment AGR-3/4 Irradiated in the Advanced Test Reactor  

SciTech Connect

The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and is currently scheduled to be completed in April 2013. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in November 2013. Since the purpose of this experiment is to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment is significantly different from the first two experiments, though the control and monitoring systems are very similar. The purpose and design of this experiment will be discussed followed by its progress and status to date.

Blaine Grover

2012-10-01T23:59:59.000Z

279

Initial data testing of ENDF/B-VI for thermal reactor benchmark analysis  

SciTech Connect

This paper summarizes some early data testing of ENDF/B-VI by members of the Cross Section Evaluation Working Group (CSEWG) Thermal Reactor Data Testing Subcommittee. Projections of ENDF/B-VI performance in thermal benchmark calculations are beginning to be available; and in some cases the calculations were performed with only a portion of the cross sections taken from version VI, the remainder taken from earlier data files. A factor delaying the thermal reactor data testing is that the final {sup 235}U evaluation has not yet been officially released--only an earlier evaluation with a constant low-energy eta value (like in version V) is currently available. The official version VI {sup 235}U evaluation (scheduled for release as Mod-1) gives a drooping eta variation at low energy; i.e., eta decreases with decreasing energy. This behavior was suggested by European studies to improve the calculation of temperature coefficients in LWRs.

Williams, M.L. [Louisiana State Univ., Baton Rouge, LA (United States). Nuclear Science Center; Kahler, A.C. [Bettis Atomic Power Lab., West Mifflin, PA (United States); MacFarlane, R.E. [Los Alamos National Lab., NM (United States); Milgram, M. [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.; Wright, R.Q. [Oak Ridge National Lab., TN (United States)

1991-12-31T23:59:59.000Z

280

Development of a Fissile Materials Irradiation Capability for Advanced Fuel Testing at the MIT Research Reactor  

SciTech Connect

A fissile materials irradiation capability has been developed at the Massachusetts Institute of Technology (MIT) Research Reactor (MITR) to support nuclear engineering studies in the area of advanced fuels. The focus of the expected research is to investigate the basic properties of advanced nuclear fuels using small aggregates of fissile material. As such, this program is intended to complement the ongoing fuel evaluation programs at test reactors. Candidates for study at the MITR include vibration-packed annular fuel for light water reactors and microparticle fuels for high-temperature gas reactors. Technical considerations that pertain to the design of the MITR facility are enumerated including those specified by 10 CFR 50 concerning the definition of a research reactor and those contained in a separate license amendment that was issued by the U.S. Nuclear Regulatory Commission to MIT for these types of experiments. The former includes limits on the cross-sectional area of the experiment, the physical form of the irradiated material, and the removal of heat. The latter addresses experiment reactivity worth, thermal-hydraulic considerations, avoidance of fission product release, and experiment specific temperature scrams.

Hu Linwen; Bernard, John A.; Hejzlar, Pavel; Kohse, Gordon [Massachusetts Institute of Technology (United States)

2005-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "national reactor testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Advanced Test Reactor Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect

U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Advanced Test Reactor Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. U.S. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-11-01T23:59:59.000Z

282

Senate Rejects Test Ban Treaty | National Nuclear Security Administrat...  

National Nuclear Security Administration (NNSA)

Timeline > Senate Rejects Test Ban Treaty Senate Rejects Test Ban Treaty October 13, 1999 Washington, DC Senate Rejects Test Ban Treaty The Senate votes 48-51 to reject the...

283

IDAHO NATIONAL LABORATORY  

NLE Websites -- All DOE Office Websites (Extended Search)

History of the Idaho National Laboratory (INL) History of the Idaho National Laboratory (INL) You are here: DOE-ID Home > Inside ID > Brief History Site History The Idaho National Laboratory (INL), an 890-square-mile section of desert in southeast Idaho, was established in 1949 as the National Reactor Testing Station. Initially, the missions at the INL were the development of civilian and defense nuclear reactor technologies and management of spent nuclear fuel. Fifty-two reactors—most of them first-of-a-kind—were built, including the Navy’s first prototype nuclear propulsion plant. Of the 52 reactors, three remain in operation at the site. In 1951, the INL achieved one of the most significant scientific accomplishments of the century—the first use of nuclear fission to produce a usable quantity of electricity at the Experimental Breeder Reactor No.

284

User:GregZiebold/U.S. National Concept test | Open Energy Information  

Open Energy Info (EERE)

this page on Facebook icon Twitter icon User:GregZieboldU.S. National Concept test < User:GregZiebold Jump to: navigation, search Energy Initiatives: Energy Initiatives -...

285

LANL's ChemCam conducts first laser test over the weekend | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

conducts first laser test over the weekend | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

286

LANL's ChemCam conducts first laser test over the weekend | National...  

National Nuclear Security Administration (NNSA)

LANL's ChemCam conducts first laser test over the weekend | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the...

287

An Experimental Shield Test Facility for the Development of Minimum Weight Shields for Compact Reactor Power Systems  

SciTech Connect

Discussions are given of the characteristics of fission-source plate, graphite reactor, and pool-type reactor facilities applicable to development studies of minimum weight shielding materials. Advantages of a proposed SNAP dual-purpose shielding facility are described in terms of a disk-shaped fission-source plate, reactor, and building. A program for the study of advanced shielding materials is discussed for materials and configuations to be evaluted with the fission-source plate, the testing of the prototype at high-power levels, and full-power tests on the actual reactor.

Tomlinson, R.L.

1959-08-07T23:59:59.000Z

288

10 CFR 830 Major Modification Determination for Advanced Test Reactor RDAS and LPCIS Replacement  

SciTech Connect

The replacement of the ATR Control Complex's obsolete computer based Reactor Data Acquisition System (RDAS) and its safety-related Lobe Power Calculation and Indication System (LPCIS) software application is vitally important to ensure the ATR remains available to support this national mission. The RDAS supports safe operation of the reactor by providing 'real-time' plant status information (indications and alarms) for use by the reactor operators via the Console Display System (CDS). The RDAS is a computer support system that acquires analog and digital information from various reactor and reactor support systems. The RDAS information is used to display quadrant and lobe powers via a display interface more user friendly than that provided by the recorders and the Control Room upright panels. RDAS provides input to the Nuclear Engineering ATR Surveillance Data System (ASUDAS) for fuel burn-up analysis and the production of cycle data for experiment sponsors and the generation of the Core Safety Assurance Package (CSAP). RDAS also archives and provides for retrieval of historical plant data which may be used for event reconstruction, data analysis, training and safety analysis. The RDAS, LPCIS and ASUDAS need to be replaced with state-of-the-art technology in order to eliminate problems of aged computer systems, and difficulty in obtaining software upgrades, spare parts, and technical support. The major modification criteria evaluation of the project design did not lead to the conclusion that the project is a major modification. The negative major modification determination is driven by the fact that the project requires a one-for-one equivalent replacement of existing systems that protects and maintains functional and operational requirements as credited in the safety basis.

David E. Korns

2012-05-01T23:59:59.000Z

289

Criticality Safety Evaluation for the Advanced Test Reactor U-Mo Demonstration Elements  

SciTech Connect

The Reduced Enrichment Research Test Reactors (RERTR) fuel development program is developing a high uranium density fuel based on a (LEU) uranium-molybdenum alloy. Testing of prototypic RERTR fuel elements is necessary to demonstrate integrated fuel performance behavior and scale-up of fabrication techniques. Two RERTR-Full Size Demonstration fuel elements based on the ATR-Reduced YA elements (all but one plate fueled) are to be fabricated for testing in the Advanced Test Reactor (ATR). The two fuel elements will be irradiated in alternating cycles such that only one element is loaded in the reactor at a time. Existing criticality analyses have analyzed Standard (HEU) ATR elements (all plates fueled) from which controls have been derived. This criticality safety evaluation (CSE) documents analysis that determines the reactivity of the Demonstration fuel elements relative to HEU ATR elements and shows that the Demonstration elements are bound by the Standard HEU ATR elements and existing HEU ATR element controls are applicable to the Demonstration elements.

Leland M. Montierth

2010-12-01T23:59:59.000Z

290

Sandia National Laboratories Electrochemical Storage System Abuse Test Procedure Manual  

DOE Green Energy (OSTI)

The series of tests described in this report are intended to simulate actual use and abuse conditions and internally initiated failures that may be experienced in electrochemical storage systems (ECSS). These tests were derived from Failure Mode and Effect Analysis, user input, and historical abuse testing. The tests are to provide a common framework for various ECSS technologies. The primary purpose of testing is to gather response information to external/internal inputs. Some tests and/or measurements may not be required for some ECSS technologies and designs if it is demonstrated that a test is not applicable, and the measurements yield no useful information.

Unkelhaeuser, Terry; Smallwood David

1999-07-01T23:59:59.000Z

291

Thermal Hydraulic Analysis of a Reduced Scale High Temperature Gas-Cooled Reactor Test Facility and its Prototype with MELCOR  

E-Print Network (OSTI)

Pursuant to the energy policy act of 2005, the High Temperature Gas-Cooled Reactor (HTGR) has been selected as the Very High Temperature Reactor (VHTR) that will become the Next Generation Nuclear Plant (NGNP). Although plans to build a demonstration plant at Idaho National Laboratories (INL) are currently on hold, a cooperative agreement on HTGR research between the U.S. Nuclear Regulatory Commission (NRC) and several academic investigators remains in place. One component of this agreement relates to validation of systems-level computer code modeling capabilities in anticipation of the eventual need to perform HTGR licensing analyses. Because the NRC has used MELCOR for LWR licensing in the past and because MELCOR was recently updated to include gas-cooled reactor physics models, MELCOR is among the system codes of interest in the cooperative agreement. The impetus for this thesis was a code-to-experiment validation study wherein MELCOR computer code predictions were to be benchmarked against experimental data from a reduced-scale HTGR testing apparatus called the High Temperature Test Facility (HTTF). For various reasons, HTTF data is not yet available from facility designers at Oregon State University, and hence the scope of this thesis was narrowed to include only computational studies of the HTTF and its prototype, General Atomics’ Modular High Temperature Gas-Cooled Reactor (MHTGR). Using the most complete literature references available for MHTGR design and using preliminary design information on the HTTF, MELCOR input decks for both systems were developed. Normal and off-normal system operating conditions were modeled via implementation of appropriate boundary and inititial conditions. MELCOR Predictions of system response for steady-state, pressurized conduction cool-down (PCC), and depressurized conduction cool-down (DCC) conditions were checked against nominal design parameters, physical intuition, and some computational results available from previous RELAP5-3D analyses at INL. All MELCOR input decks were successfully built and all scenarios were successfully modeled under certain assumptions. Given that the HTTF input deck is preliminary and was based on dated references, the results were altogether imperfect but encouraging since no indications of as yet unknown deficiencies in MELCOR modeling capability were observed. Researchers at TAMU are in a good position to revise the MELCOR models upon receipt of new information and to move forward with MELCOR-to-HTTF benchmarking when and if test data becomes available.

Beeny, Bradley 1988-

2012-12-01T23:59:59.000Z

292

Small Wind Turbine Testing Results from the National Renewable Energy Lab  

DOE Green Energy (OSTI)

The independent testing project was established at the National Renewable Energy Laboratory to help reduce the barriers of wind energy expansion. Among these barriers is a lack of independent testing results for small turbines.

Bowen, A.; Huskey, A.; Link, H.; Sinclair, K.; Forsyth, T.; Jager, D.; van Dam, J.; Smith, J.

2009-07-01T23:59:59.000Z

293

Initial confinement studies of ohmically heated plasmas in the tokamak fusion test reactor  

DOE Green Energy (OSTI)

Initial operation of the tokamak fusion test reactor has concentrated upon confinement studies of ohmically heated hydrogen and deuterium plasmas. Total energy confinement times (tau/sub E/) are 0.1--0.2 s for a line-average density range (n-bar/sub e/) of (1--2.5) x 10/sup 19/ m/sup -3/ with electron temperatures of T/sub e/(o)approx.1.2--2.2 keV, ion temperatures of T/sub i/(0)approx.0.9--1.5 keV, and Z/sub eff/approx.3. A comparison of Princeton large torus, poloidal divertor experiment, and tokamak fusion test reactor plasma confinement supports a dimension-cubed scaling law.

Efthimion, P.C.; Bell, M.; Blanchard, W.R.; Bretz, N.; Cecchi, J.L.; Coonrod, J.; Davis, S.; Dylla, H.F.; Fonck, R.; Furth, H.P.

1984-04-23T23:59:59.000Z

294

Test Results From The Idaho National Laboratory 15kW High Temperature Electrolysis Test Facility  

DOE Green Energy (OSTI)

A 15kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feed-stock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date.

Carl M. Stoots; Keith G. Condie; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

2009-07-01T23:59:59.000Z

295

Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report  

SciTech Connect

Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

1982-03-01T23:59:59.000Z

296

Light Water Reactor Sustainability Program Risk Informed Safety Margin Characterization (RISMC) Advanced Test Reactor Demonstration Case Study  

SciTech Connect

Safety is central to the design, licensing, operation, and economics of Nuclear Power Plants (NPPs). Consequently, the ability to better characterize and quantify safety margin holds the key to improved decision making about LWR design, operation, and plant life extension. A systematic approach to characterization of safety margins and the subsequent margins management options represents a vital input to the licensee and regulatory analysis and decision making that will be involved. The purpose of the RISMC Pathway R&D is to support plant decisions for risk-informed margins management with the aim to improve economics, reliability, and sustain safety of current NPPs. Goals of the RISMC Pathway are twofold: (1) Develop and demonstrate a risk-assessment method coupled to safety margin quantification that can be used by NPP decision makers as part of their margin recovery strategies. (2) Create an advanced “RISMC toolkit” that enables more accurate representation of NPP safety margin. This report describes the RISMC methodology demonstration where the Advanced Test Reactor (ATR) was used as a test-bed for purposes of determining safety margins. As part of the demonstration, we describe how both the thermal-hydraulics and probabilistic safety calculations are integrated and used to quantify margin management strategies.

Curtis Smith; David Schwieder; Cherie Phelan; Anh Bui; Paul Bayless

2012-08-01T23:59:59.000Z

297

Resolution of National Academy of Sciences technical issues at N Reactor; Revision 1  

Science Conference Proceedings (OSTI)

The objective of this report is to document the Westinghouse Hanford Company`s (Westinghouse Hanford) response documenting the scope required to address the 14 issues identified in the NAS/NAE technical recommendations that affect the N Reactor. The closure of the issues related to the N Reactor will provide the appropriate documentation to the DOE for certification of compliance.

Rainey, T.E.

1989-07-01T23:59:59.000Z

298

Testing of the Semikron Validation AIPM Unit at Oak Ridge National Laboratory: January 2005  

SciTech Connect

This report documents the electrical tests performed on the Semikron high-voltage automotive integrated power module (AIPM) at the Oak Ridge National Laboratory (ORNL). Testing was performed with an inductive/resistive load and with a motor load at the National Transportation Research Center (NTRC) during the second quarter of FY 2005.

Nelson, S.C.

2005-03-24T23:59:59.000Z

299

Use and Storage of Test and Operations Data from the High Temperature Test Reactor Acquired by the US Government from the Japan Atomic Energy Agency  

SciTech Connect

This document describes the use and storage of data from the High Temperature Test Reactor (HTTR) acquired from the Japan Atomic Energy Agency (JAEA) by the U.S. Government for high temperature reactor research under the Next Generation Nuclear Plant (NGNP) Project.

Hans Gougar

2010-02-01T23:59:59.000Z

300

Experimental Breeder Reactor I Preservation Plan  

SciTech Connect

Experimental Breeder Reactor I (EBR I) is a National Historic Landmark located at the Idaho National Laboratory, a Department of Energy laboratory in southeastern Idaho. The facility is significant for its association and contributions to the development of nuclear reactor testing and development. This Plan includes a structural assessment of the interior and exterior of the EBR I Reactor Building from a preservation, rather than an engineering stand point and recommendations for maintenance to ensure its continued protection.

Julie Braun

2006-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "national reactor testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Advances in Mechanical Testing - Programmaster.org  

Science Conference Proceedings (OSTI)

Feb 15, 2010 ... Testing of reactor irradiated materials for nuclear applications (fission .... Laboratory; 2Y-12 National Security Complex; 3University of Idaho

302

Materials Transportation Testing & Analysis at Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Testing Testing Doug Ammerman, (505) 845-8158 Type B packages that transport radioactive materials must survive a sequence of full-scale (actual physical size) impact, puncture, fire, and immersion tests designed to replicate transportation accident conditions. The Hypothetical Accident Conditions (six tests as defined in 10 CFR Part 71.73) tests 1 through 4 (Drop, Crush, Puncture and Fire) are sequential, test 5 (Immersion) is performed on either a previously tested or untested package. Free Drop Test Crush Test Puncture Test Thermal Test Immersion Test [drop] Click to view picture [crush] Click to view picture [puncture] Click to view picture [thermal] Click to view picture [immersion] Click to view picture Dropping a package from 30 feet onto an unyielding target. (the unyielding target forces all of the deformation to be in the package, none in the target). The speed on impact is 44 feet per second or 30 miles per hour. Dropping a 1100 pound steel plate from 30 feet onto a package. This test is only required for packages weighing less than 1100 pounds. The speed on impact is 44 feet per second or 30 miles per hour. Dropping a package from 40 inches onto a welded, 6 inch diameter, steel spike. The speed on impact is 14.6 feet per second or 10 miles per hour. Placing a package 40 inches above a pool of burning fuel for 30 minutes at 800 degrees Celsius (1475 degrees Fahrenheit). Placing a package under 50 feet of water for 8 hours. Fissile material packages are also immersed under 3 feet of water for 8 hours sequentially after tests 1 through 4

303

DOE - Office of Legacy Management -- Idaho National Engineering and  

Office of Legacy Management (LM)

Idaho National Engineering and Idaho National Engineering and Environmental Laboratory - 015 FUSRAP Considered Sites Site: Idaho National Engineering and Environmental Laboratory (015) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: In operation since 1949, the Idaho National Engineering and Environmental Laboratory (INEEL) is a Department of Energy multiprogram national laboratory that supports the DepartmentÂżs missions of environmental quality, energy resources, science, and national security. Originally named the National Reactor Testing Station, the INEEL was once the site of the worldÂżs largest concentration of nuclear reactors. 52 test reactors most

304

Tonopah test range - outpost of Sandia National Laboratories  

Science Conference Proceedings (OSTI)

Tonopah Test Range is a unique historic site. Established in 1957 by Sandia Corporation, Tonopah Test Range in Nevada provided an isolated place for the Atomic Energy Commission to test ballistics and non-nuclear features of atomic weapons. It served this and allied purposes well for nearly forty years, contributing immeasurably to a peaceful conclusion to the long arms race remembered as the Cold War. This report is a brief review of historical highlights at Tonopah Test Range. Sandia`s Los Lunas, Salton Sea, Kauai, and Edgewood testing ranges also receive abridged mention. Although Sandia`s test ranges are the subject, the central focus is on the people who managed and operated the range. Comments from historical figures are interspersed through the narrative to establish this perspective, and at the end a few observations concerning the range`s future are provided.

Johnson, L.

1996-03-01T23:59:59.000Z

305

Materials Transportation Testing & Analysis at Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

RMIR (Radioactive Materials Incident Report) Database Transportation RMIR (Radioactive Materials Incident Report) Database Transportation Accident and Incident Experience,1971-1999 Access Hazardous Materials Information System (HMIS) the primary source of national data for the Federal, state, and local governmental agencies responsible for the safety of hazardous materials transportation. Rail Transport Highway Transport Air Transport The Radioactive Material Incident Report (RMIR) Database was developed in 1981 at the Transportation Technology Center of Sandia National Laboratories (SNL) to support its research and development activities for the U.S. Department of Energy (DOE). This database contains information about radioactive materials transportation incidents that have occurred in the U.S. from 1971 through 1999. These data were drawn from the U.S.

306

Thomas Wallner | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne National Laboratory's Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Browse by Topic Energy Energy efficiency Vehicles Alternative fuels Automotive engineering Biofuels Diesel Fuel economy Fuel injection Heavy-duty vehicles Hybrid & electric vehicles Hydrogen & fuel cells Internal combustion Powertrain research Vehicle testing Building design Manufacturing Energy sources Renewable energy Bioenergy Solar energy Wind energy Fossil fuels Oil Nuclear energy Nuclear energy modeling & simulation Nuclear fuel cycle Geology & disposal Reactors Nuclear reactor safety Nuclear reactor materials Energy usage Energy life-cycle analysis Energy storage Batteries Lithium-ion batteries Lithium-air batteries Smart Grid

307

NUMERICAL SIMULATION FOR MECHANICAL BEHAVIOR OF U10MO MONOLITHIC MINIPLATES FOR RESEARCH AND TEST REACTORS  

Science Conference Proceedings (OSTI)

This article presents assessment of the mechanical behavior of U-10wt% Mo (U10Mo) alloy based monolithic fuel plates subject to irradiation. Monolithic, plate-type fuel is a new fuel form being developed for research and test reactors to achieve higher uranium densities within the reactor core to allow the use of low-enriched uranium fuel in high-performance reactors. Identification of the stress/strain characteristics is important for understanding the in-reactor performance of these plate-type fuels. For this work, three distinct cases were considered: (1) fabrication induced residual stresses (2) thermal cycling of fabricated plates; and finally (3) transient mechanical behavior under actual operating conditions. Because the temperatures approach the melting temperature of the cladding during the fabrication and thermal cycling, high temperature material properties were incorporated to improve the accuracy. Once residual stress fields due to fabrication process were identified, solution was used as initial state for the subsequent simulations. For thermal cycling simulation, elasto-plastic material model with thermal creep was constructed and residual stresses caused by the fabrication process were included. For in-service simulation, coupled fluid-thermal-structural interaction was considered. First, temperature field on the plates was calculated and this field was used to compute the thermal stresses. For time dependent mechanical behavior, thermal creep of cladding, volumetric swelling and fission induced creep of the fuel foil were considered. The analysis showed that the stresses evolve very rapidly in the reactor. While swelling of the foil increases the stress of the foil, irradiation induced creep causes stress relaxation.

Hakan Ozaltun & Herman Shen

2011-11-01T23:59:59.000Z

308

CALMOS: Innovative device for the measurement of nuclear heating in material testing reactors  

Science Conference Proceedings (OSTI)

An R and D program has been carried out since 2002 in order to improve gamma heating measurements in the 70 MWth OSIRIS Material Testing Reactor operated by CEA's Nuclear Energy Div. at the Saclay research center. Throughout this program an innovative calorimetric probe associated to a specific handling system has been designed in order to make measurements both along the fissile height and on the upper part of the core, where nuclear heating rates still remain high. Two mock-ups of the probe were manufactured and tested in 2005 and 2009 in ex-core area of OSIRIS reactor for the process validation, while a displacement system has been especially designed to move the probe axially. A final probe has been designed thanks to modeling results and to preliminary measurements obtained with mock-ups irradiated to a heating level of 2W/g, This paper gives an overview of the development, describes the calorimetric probe, and expected advantages such as the possibility to use complementary methods to get the nuclear heating measurement. Results obtained with mock-ups irradiated in ex-core area of the reactor are presented and discussed. (authors)

Carcreff, H. [Alternative Energies and Atomic Energy Commission CEA, Saclay Center, DEN/DANS/DRSN/SIREN, Gif Sur Yvette, 91191 (France)

2011-07-01T23:59:59.000Z

309

Assessment of Feasibility of the Beneficial Use of Waste Heat from the Advanced Test Reactor  

Science Conference Proceedings (OSTI)

This report investigates the feasibility of using waste heat from the Advanced Test Reactor (ATR). A proposed glycol waste heat recovery system was assessed for technical and economic feasibility. The system under consideration would use waste heat from the ATR secondary coolant system to preheat air for space heating of TRA-670. A tertiary coolant stream would be extracted from the secondary coolant system loop and pumped to a new plate and frame heat exchanger, where heat would be transferred to a glycol loop for preheating outdoor air in the heating and ventilation system. Historical data from Advanced Test Reactor operations over the past 10 years indicates that heat from the reactor coolant was available (when needed for heating) for 43.5% of the year on average. Potential energy cost savings by using the waste heat to preheat intake air is $242K/yr. Technical, safety, and logistics considerations of the glycol waste heat recovery system are outlined. Other opportunities for using waste heat and reducing water usage at ATR are considered.

Donna P. Guillen

2012-07-01T23:59:59.000Z

310

U.S. DOE/OE National SCADA Test Bed Supports | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. DOE/OE National SCADA Test Bed Supports U.S. DOE/OE National SCADA Test Bed Supports U.S. DOE/OE National SCADA Test Bed Supports To help advance the U.S. Department of Energy (DOE) National SCADA Test Bed's (NSTB) efforts to enhance control system security in the energy sector, DOE's Office of Electricity Delivery and Energy Reliability (OE) recently awarded a total of nearly $8 million to fund five industry-led projects: Hallmark Project. (PDF 789 KB) Will commercialize the Secure SCADA Communications Protocol (SSCP), which marks SCADA messages with a unique identifier that must be authenticated before the function is carried out, ensuring message integrity. (Lead: Schweitzer Engineering Laboratories; Partners: Pacific Northwest National Laboratories, CenterPoint Energy) Detection and Analysis of Threats to the Energy Sector (DATES) (PDF

311

Flow Test At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) |  

Open Energy Info (EERE)

Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown Notes Water samples were collected during nitrogen-stimulated flow tests in 1978, but no information was provided on sampling conditions. The well was flowed again for the last time in 1982, but the flow test lasted only 1 h (Thompson, 1985). References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two

312

Nevada National Security Site Nuclear Testing Artifacts Become Part of U.S.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nevada National Security Site Nuclear Testing Artifacts Become Part Nevada National Security Site Nuclear Testing Artifacts Become Part of U.S. Cultural Archive Nevada National Security Site Nuclear Testing Artifacts Become Part of U.S. Cultural Archive April 1, 2012 - 12:00pm Addthis Stanchions are among the remnants of Smoky Tower. Stanchions are among the remnants of Smoky Tower. LAS VEGAS, NV - The Nevada National Security Site's (NNSS) historic Smoky site may soon join a long list of former nuclear testing locations eligible for inclusion in the National Register of Historic Places. The Desert Research Institute (DRI) is currently working alongside the Nevada Site Office (NSO) to determine the eligibility of Smoky and a number of other EM sites slated for cleanup and closure. "In the last year, we've conducted assessments at over 30 EM sites,"

313

DOE/EA-1557; Final Envrionmental Assessment for the National Security Test Range  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment for the National Security Test Range DOE/EA-1557 April, 2007 CONTENTS 1. PURPOSE AND NEED ..................................................................................................................... 1 2. ALTERNATIVES .............................................................................................................................. 3 2.1. Consolidate Testing on a New National Security Test Range at the INL (Preferred Alternative)3 2.1.1 Construction Activities ................................................................................................. 6 2.1.2 Operational Activities................................................................................................... 6 2.2 Alternatives Considered, but Eliminated from Detailed Analysis................................................

314

Nuclear Detection and Sensor Testing Center | Y-12 National Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Detection and ... Detection and ... Nuclear Detection and Sensor Testing Center As part of our increased global nuclear nonproliferation efforts, Y-12 commissioned the Nuclear Detection and Sensor Testing Center, which offers dedicated facilities for the testing of radiation detection capabilities using enriched and highly enriched uranium. In addition to supporting measurements of instrumentation for detecting ionizing radiation, non-destructive measurements of both fissile and non-fissile materials may be deployed at NDSTC. The NDSTC supports proliferation detection, nuclear safeguards, emergency response, treaty verification, and university research. We can test devices with various forms and quantities of HEU, and the Center offers subject matter experts to assist in planning measurements, safely deploy material,

315

SLAC National Accelerator Laboratory - New Test Bed Probes the...  

NLE Websites -- All DOE Office Websites (Extended Search)

New Test Bed Probes the Origin of Pulses at LCLS By Glenn Roberts Jr. July 23, 2013 It all comes down to one tiny spot on a diamond-cut, highly pure copper plate. That's where...

316

Coupled hydrodynamic-structural analysis of an integral flowing sodium test loop in the TREAT reactor  

SciTech Connect

A hydrodynamic-structural response analysis of the Mark-IICB loop was performed for the TREAT (Transient Reactor Test Facility) test AX-1. Test AX-1 is intended to provide information concerning the potential for a vapor explosion in an advanced-fueled LMFBR. The test will be conducted in TREAT with unirradiated uranium-carbide fuel pins in the Mark-IICB integral flowing sodium loop. Our analysis addressed the ability of the experimental hardware to maintain its containment integrity during the reference accident postulated for the test. Based on a thermal-hydraulics analysis and assumptions for fuel-coolant interaction in the test section, a pressure pulse of 144 MPa maximum pressure and pulse width of 1.32 ms has been calculated as the reference accident. The response of the test loop to the pressure transient was obtained with the ICEPEL and STRAW codes. Modelling of the test section was completed with STRAW and the remainder of the loop was modelled by ICEPEL.

Zeuch, W.R.; A-Moneim, M.T.

1979-01-01T23:59:59.000Z

317

Sandia National Laboratories results for the 2010 criticality accident dosimetry exercise, at the CALIBAN reactor, CEA Valduc France.  

Science Conference Proceedings (OSTI)

This document describes the personal nuclear accident dosimeter (PNAD) used by Sandia National Laboratories (SNL) and presents PNAD dosimetry results obtained during the Nuclear Accident Dosimeter Intercomparison Study held 20-23 September, 2010, at CEA Valduc, France. SNL PNADs were exposed in two separate irradiations from the CALIBAN reactor. Biases for reported neutron doses ranged from -15% to +0.4% with an average bias of -7.7%. PNADs were also exposed on the back side of phantoms to assess orientation effects.

Ward, Dann C.

2011-09-01T23:59:59.000Z

318

Verification Survey of the Building 315 Zero Power Reactor-6 Facility, Argonne National Laboratory-East, Argonne, Illinois  

Science Conference Proceedings (OSTI)

Oak Ridge Institute for Science and Education (ORISE) conducted independent verification radiological survey activities at Argonne National Laboratory’s Building 315, Zero Power Reactor-6 facility in Argonne, Illinois. Independent verification survey activities included document and data reviews, alpha plus beta and gamma surface scans, alpha and beta surface activity measurements, and instrumentation comparisons. An interim letter report and a draft report, documenting the verification survey findings, were submitted to the DOE on November 8, 2006 and February 22, 2007, respectively (ORISE 2006b and 2007).

W. C. Adams

2007-05-25T23:59:59.000Z

319

Bench-scale reactor tests of low-temperature, catalytic gasification of wet, industrial wastes  

DOE Green Energy (OSTI)

Bench-scale reactor tests are under way at Pacific Northwest Laboratory to develop a low-temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES{reg sign}), is designed for to a wide variety of feedstocks ranging from dilute organics in water to waste sludges from food processing. The current research program is focused on the use of a continuous-feed, tubular reactor. The catalyst is nickel metal on an inert support. Typical results show that feedstocks such as solutions of 2% para-cresol or 5% and 10% lactose in water or cheese whey can be processed to >99% reduction of chemical oxygen demand (COD) at a rate of up to 2 L/hr. The estimated residence time is less than 5 min at 360{degree}C and 3000 psig, not including 1 to 2 min required in the preheating zone of the reactor. The liquid hourly space velocity has been varied from 1.8 to 2.9 L feedstock/L catalyst/hr depending on the feedstock. The product fuel gas contains 40% to 55% methane, 35% to 50% carbon dioxide, and 5% to 10% hydrogen with as much as 2% ethane, but less than 0.1% ethylene or carbon monoxide, and small amounts of higher hydrocarbons. The byproduct water stream carries residual organics amounting to less than 500 mg/L COD. 9 refs., 1 fig., 4 tabs.

Elliott, D.C.; Neuenschwander, G.G.; Baker, E.G.; Butner, R.S.; Sealock, L.J.

1990-04-01T23:59:59.000Z

320

Waste Heat Recovery from the Advanced Test Reactor Secondary Coolant Loop  

Science Conference Proceedings (OSTI)

This study investigated the feasibility of using a waste heat recovery system (WHRS) to recover heat from the Advanced Test Reactor (ATR) secondary coolant system (SCS). This heat would be used to preheat air for space heating of the reactor building, thus reducing energy consumption, carbon footprint, and energy costs. Currently, the waste heat from the reactor is rejected to the atmosphere via a four-cell, induced-draft cooling tower. Potential energy and cost savings are 929 kW and $285K/yr. The WHRS would extract a tertiary coolant stream from the SCS loop and pump it to a new plate and frame heat exchanger, from which the heat would be transferred to a glycol loop for preheating outdoor air supplied to the heating and ventilation system. The use of glycol was proposed to avoid the freezing issues that plagued and ultimately caused the failure of a WHRS installed at the ATR in the 1980s. This study assessed the potential installation of a new WHRS for technical, logistical, and economic feasibility.

Donna Post Guillen

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "national reactor testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

AGR-2: The first irradiation of French HTR fuel in Advanced Test Reactor  

SciTech Connect

AGR-2, the second irradiation of the US program for qualification of the NGNP fuel, is open to international participation within the scope of the Generation IV International Forum. In this frame, it includes in its multi-capsule irradiation rig an irradiation of French HTR fuel manufactured in the CAPRI line (GAIA facility at CEA/Cadarache and AREVA/CERCA compacting line at Romans). The AGR-2 irradiation is designed to place our first fabrications of HTR particles under operating conditions that are representative of ANTARES project while keeping close to the test range of the German fuel as much as possible, which is the reference in terms of irradiation behavior. A few batches of particles and 12 fuel compacts were produced and characterized in 2009 by CEA and CERCA. The fuel main characteristics are in conformity with our specifications and in compliance with INL requirements. The AGR-2 experiment is based on the design and devices used in the first experiment of the AGR program. The design makes it possible to monitor the irradiation conditions and in particular, the temperature, the power and the fission products released from fuel particles. The in pile equipment consists of a multi-capsule device designed to simultaneously irradiate six independent capsules with temperature control. The out-of-core part consists of the equipment for actively controlling temperature and measuring the fission products release on-line. The target conditions for the irradiation experiment were defined with the aim of comparing the results obtained under irradiation with German particles along with the objectives of reaching burn-up and fluence targets to validate the behavior of our fuel in a significant range (15% FIMA – 5 × 1025 n/m2 at 600 EFPD with centerline fuel temperature about 1100 degrees C). These conditions have to be representative of ANTARES project characteristics. These target conditions were compared with final results from neutron and thermal design studies performed by INL team, and preliminary thermal mechanical ATLAS calculations were carried out by CEA from this pre-design. Despite the mean burn-up achieved in approximately 600 EFPD being a little high (16.3% FIMA max. associated with a low fluence up to 2.85 × 1025 n/m2), this irradiation will nevertheless encompass the range of irradiation effects covered in our experimental objectives (maximum stress peak at start of irradiation then sign inversion of the stress in the SiC layer). In addition, the fluence and burn-up acceleration factors are very similar to those of the German reference experiments. This experimental irradiation began in July 2010 in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) and first results have been acquired.

T. Lambert; B. Grover; P. Guillermier; D. Moulinier; F. Imbault Huart

2012-10-01T23:59:59.000Z

322

Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices  

SciTech Connect

Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

1982-03-01T23:59:59.000Z

323

Measurements of Nonlinear Energy Transfer in Turbulence in the Tokamak Fusion Test Reactor  

SciTech Connect

The application of a new bispectral analysis technique to density fluctuation measurements in the core of the Tokamak Fusion Test Reactor indicates that the peak in the autopower spectrum usually lies in a region of linear stability. Large changes in the linear and nonlinear characteristics of the turbulence are observed as the plasma toroidal rotation and/or confinement properties are varied, while estimates of the turbulence-driven diffusivity varies only slightly with rotation. These observations are consistent with the operation of a global organizing property that may be related to the observation of Bohm-like scaling of ion thermal transport. {copyright} {ital 1997} {ital The American Physical Society}

Kim, J.S.; Fonck, R.J.; Durst, R.D. [Department of Nuclear Engineering and Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)] [Department of Nuclear Engineering and Engineering Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Fernandez, E.; Terry, P.W. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States)] [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Paul, S.F.; Zarnstorff, M.C. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)] [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

1997-08-01T23:59:59.000Z

324

A disposition strategy for highly enriched, aluminum-based fuel from research and test reactors  

SciTech Connect

The strategy proposed in this paper offers the Department of Energy an approach for disposing of aluminum-based, highly enriched uranium (HEU) spent fuels from foreign and domestic research reactors. The proposal is technically, socially, and economically sound. If implemented, it would advance US non-proliferation goals while also disposing of the spent fuel`s waste by timely and proven methods using existing technologies and facilities at SRS without prolonged and controversial storage of the spent fuel. The fuel would be processed through 221-H. The radioactive fission products (waste) would be treated along with existing SRS high level waste by vitrifying it as borosilicate glass in the Defense Waste Processing Facility (DWPF) for disposal in the national geological repository. The HEU would be isotopically diluted, during processing, to low-enriched uranium (LEU) which can not be used to make weapons, thus eliminating proliferation concerns. The LEU can be sold to fabricators of either research reactor fuel or commercial power fuel. This proposed processing-LEU recycle approach has several important advantages over other alternatives, including: Lowest capital investment; lowest net total cost; quickest route to acceptable waste form and final geologic disposal; and likely lowest safety, health, and environmental impacts.

McKibben, J.M.; Gould, T.H.; McDonell, W.R.; Bickford, W.E.

1994-11-01T23:59:59.000Z

325

National SCADA Test Bed Substation Automation Evaluation Report  

Science Conference Proceedings (OSTI)

Increased awareness of the potential for cyber attack has recently resulted in improved cyber security practices associated with the electrical power grid. However, the level of practical understanding and deployment of cyber security practices has not been evenly applied across all business sectors. Much of the focus has been centered on information technology business centers and control rooms. This report explores the current level of substation automation, communication, and cyber security protection deployed in electrical substations throughout existing utilities in the United States. This report documents the evaluation of substation automation implementation and associated vulnerabilities. This evaluation used research conducted by Newton-Evans Research Company for some of its observations and results. The Newton Evans Report aided in the determination of what is the state of substation automation in North American electric utilities. Idaho National Laboratory cyber security experts aided in the determination of what cyber vulnerabilities may pose a threat to electrical substations. This report includes cyber vulnerabilities as well as recommended mitigations. It also describes specific cyber issues found in typical substation automation configurations within the electric utility industry. The evaluation report was performed over a 5-month period starting in October 2008

Kenneth Barnes; Briam Johnson

2009-10-01T23:59:59.000Z

326

In-situ Creep Testing Capability Development for Advanced Test Reactor  

SciTech Connect

Creep is the slow, time-dependent strain that occurs in a material under a constant strees (or load) at high temperature. High temperature is a relative term, dependent on the materials being evaluated. A typical creep curve is shown in Figure 1-1. In a creep test, a constant load is applied to a tensile specimen maintained at a constant temperature. Strain is then measured over a period of time. The slope of the curve, identified in the figure below, is the strain rate of the test during Stage II or the creep rate of the material. Primary creep, Stage I, is a period of decreasing creep rate due to work hardening of the material. Primary creep is a period of primarily transient creep. During this period, deformation takes place and the resistance to creep increases until Stage II, Secondary creep. Stage II creep is a period with a roughly constant creep rate. Stage II is referred to as steady-state creep because a balance is achieved between the work hardening and annealing (thermal softening) processes. Tertiary creep, Stage III, occurs when there is a reduction in cross sectional area due to necking or effective reduction in area due to internal void formation; that is, the creep rate increases due to necking of the specimen and the associated increase in local stress.

B. G. Kim; J. L. Rempe; D. L. Knudson; K. G. Condie; B. H. Sencer

2010-08-01T23:59:59.000Z

327

Recent National Solar Thermal Test Facility activities, in partnership with industry  

DOE Green Energy (OSTI)

The National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories in Albuquerque, New Mexico, USA conducts testing of solar thermal components and systems, funded primarily by the US Department of Energy. Activities are conducted in support of Central Receiver Technology, Distributed Receiver Technology and Design Assistance projects. All activities are performed in support of various cost-shared government/industry joint ventures and, on a design assistance basis, in support of a number of other industry partners.

Ghanbari, C.; Cameron, C.P.; Ralph, M.E.; Pacheco, J.E.; Rawlinson, K.S. [Sandia National Labs., Albuquerque, NM (United States); Evans, L.R. [Ewing Technical Design, Albuquerque, NM (United States)

1994-10-01T23:59:59.000Z

328

Materials Transportation Testing & Analysis at Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis Analysis Doug Ammerman, (505) 845-8158 Structural analysis utilizes computer design and analysis tools to provide package designers and certifiers with the most accurate method of determining package response to transportation environments. Computer analysis is an application of known engineering principles that take advantage of high-power computing capabilities in solving the response of computer models to various environments with complex mathematical calculations. It can be used for package certification by generating a computer model of a test object (package) and subjecting it to an accident environment to understand its response. A computer model must be constructed with the same weights, dimensions, hardnesses, specific heat, conduction, etc. as an

329

Principles of Reactor Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Reactor Physics M A Smith Argonne National Laboratory Nuclear Engineering Division Phone: 630-252-9747, Email: masmith@anl.gov Abstract: Nuclear reactor physics deals with...

330

Department of Reactor Technology Ris#-H-2101 Ris National Laboratory SRE-7-78  

E-Print Network (OSTI)

. April 1978 Denmark NUCLEAR DISTRICT HEATING PLANT PRELIMINARY DESIGN CONCEPT by Kurt Hansen * Hans Erik-M-fnoi I Title and authors) NUCLEAR DISTRICT HEATING PLANT PRELIMINARY DESIGN CONCEPT by Kurt Hansen ft-7-78 16 0 tabtes + 2 fflvstrMnas Abstract A nuclear reactor for district heating is proposed

331

Hot-gas filter testing with the transport reactor demonstration unit  

Science Conference Proceedings (OSTI)

The objectives of the hot-gas cleanup (HGC) work on the transport reactor demonstration unit (TRDU) located at the Energy & Environmental Research Center (EERC) is to demonstrate acceptable performance of hot-gas filter elements in a pilot-scale system prior to long-term demonstration tests. The primary focus of the experimental effort in the 2-year project will be the testing of hot-gas filter element performance (particulate collection efficiency, filter pressure differential, filter cleanability, and durability) as a function of temperature and filter face velocity during short-term operation (100-200 hours). This filter vessel will be utilized in combination with the TRDU to evaluate the performance of selected hot-gas filter elements under gasification operating conditions. This work will directly support the power systems development facility (PSDF) utilizing the M.W. Kellogg transport reactor located at Wilsonville, Alabama and, indirectly, the Foster Wheeler advanced pressurized fluid-bed combustor, also located at Wilsonville.

Mann, M.D.; Swanson, M.L.; Ness, R.O.; Haley, J.S.

1995-11-01T23:59:59.000Z

332

Fuel development activities of the US RERTR Program. [Reduced Enrichment Research and Test Reactor  

SciTech Connect

Progress in the development and irradiation testing of high-density fuels for use with low-enriched uranium in research and test reactors is reported. Swelling and blister-threshold temperature data obtained from the examination of miniature fuel plates containing UAl/sub x/, U/sub 3/O/sub 8/, U/sub 3/Si/sub 2/, or U/sub 3/Si dispersed in an aluminum matrix are presented. Combined with the results of metallurgical examinations, these data show that these four fuel types will perform adequately to full burnup of the /sup 235/U contained in the low-enriched fuel. The exothermic reaction of the uranium-silicide fuels with aluminum has been found to occur at about the same temperature as the melting of the aluminum matrix and cladding and to be essentially quenched by the melting endotherm. A new series of miniature fuel plate irradiations is also discussed.

Snelgrove, J.L.; Domagala, R.F.; Wiencek, T.C.; Copeland, G.L.

1983-01-01T23:59:59.000Z

333

Hot-Gas Filter Testing with a Transport Reactor Development Unit  

Science Conference Proceedings (OSTI)

The objective of the hot-gas cleanup (HGC) work on the transport reactor demonstration unit (TRDU) located at the Environmental Research Center is to demonstrate acceptable performance of hot-gas filter elements in a pilot-scale system prior to long-term demonstration tests. The primary focus of the experimental effort in the 2-year project will be the testing of hot- gas filter elements as a function of particulate collection efficiency, filter pressure differential, filter cleanability, and durability during relatively short-term operation (100-200 hours). A filter vessel will be used in combination with the TRDU to evaluate the performance of selected hot- gas filter elements under gasification operating conditions. This work will directly support the Power Systems Development Facility utilizing the M.W. Kellogg transport reactor located at Wilsonville, Alabama and indirectly the Foster Wheeler advanced pressurized fluid-bed combustor, also located at Wilsonville and the Clean Coal IV Pinon Pine IGCC Power Project. This program has a phased approach involving modification and upgrades to the TRDU and the fabrication, assembly, and operation of a hot-gas filter vessel (HGFV) capable of operating at the outlet design conditions of the TRDU. Phase 1 upgraded the TRDU based upon past operating experiences. Additions included a nitrogen supply system upgrade, upgraded LASH auger and 1807 coal feed lines, the addition of a second pressurized coal feed hopper and a dipleg ash hopper, and modifications to spoil the performance of the primary cyclone. Phase 2 included the HGFV design, procurement, and installation. Phases 3 through 5 consist of 200-hour hot-gas filter tests under gasification conditions using the TRDU at temperatures of 540-650{degrees}C (1000-1200{degrees}F), 9.3 bar, and face velocities of 1.4, 2. and 3.8 cm/s, respectively. The increased face velocities are achieved by removing candles between each test.

Swanson, M.L.; Ness, R.O., Jr. [North Dakota Univ., Grand Forks, ND (United States). Energy and Environmental Research Center

1996-12-31T23:59:59.000Z

334

HWMA/RCRA CLOSURE PLAN FOR THE MATERIALS TEST REACTOR WING (TRA-604) LABORATORY COMPONENTS VOLUNTARY CONSENT ORDER ACTION PLAN VCO-5.8 D REVISION2  

SciTech Connect

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the laboratory components of the Test Reactor Area Catch Tank System (TRA-630) that are located in the Materials Test Reactor Wing (TRA-604) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan VCO-5.8.d. The TRA-604 laboratory components addressed in this closure plan were deferred from the TRA-630 Catch Tank System closure plan due to ongoing laboratory operations in the areas requiring closure actions. The TRA-604 laboratory components include the TRA-604 laboratory warm wastewater drain piping, undersink drains, subheaders, and the east TRA-604 laboratory drain header. Potentially contaminated surfaces located beneath the TRA-604 laboratory warm wastewater drain piping and beneath the island sinks located in Laboratories 126 and 128 (located in TRA-661) are also addressed in this closure plan. The TRA-604 laboratory components will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, Subparts G and J. This closure plan presents the closure performance standards and the methods for achieving those standards.

KIRK WINTERHOLLER

2008-02-25T23:59:59.000Z

335

Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limiters  

Science Conference Proceedings (OSTI)

Zenergy Power has successfully designed, built, tested, and installed in the US electrical grid a saturable reactor Fault Current Limiter. Beginning in 2007, first as SC Power Systems and from 2008 as Zenergy Power, Inc., ZP used DOE matching grant and ARRA funds to help refine the design of the saturated reactor fault current limiter. ZP ultimately perfected the design of the saturated reactor FCL to the point that ZP could reliably design a suitable FCL for most utility applications. Beginning with a very basic FCL design using 1G HTS for a coil housed in a LN2 cryostat for the DC bias magnet, the technology progressed to a commercial system that was offered for sale internationally. Substantial progress was made in two areas. First, the cryogenics cooling system progressed from a sub-cooled liquid nitrogen container housing the HTS coils to cryostats utilizing dry conduction cooling and reaching temperatures down to less than 20 degrees K. Large, round cryostats with â??warm boreâ?ť diameters of 1.7 meters enabled the design of large tanks to hold the AC components. Second, the design of the AC part of the FCL was refined from a six legged â??spiderâ?ť design to a more compact and lighter design with better fault current limiting capability. Further refinement of the flux path and core shape led to an efficient saturated reactor design requiring less Ampere-turns to saturate the core. In conclusion, the development of the saturable reactor FCL led to a more efficient design not requiring HTS magnets and their associated peripheral equipment, which yielded a more economical product in line with the electric utility industry expectations. The original goal for the DOE funding of the ZP project â??Design, Test and Demonstration of Saturable Reactor High-Temperature Superconductor Fault Current Limitersâ?ť was to stimulate the HTS wire industry with, first 1G, then 2G, HTS wire applications. Over the approximately 5 years of ZPâ??s product development program, the amount of HTS wire employed per FCL and its cost as a percentage of the total FCL product content had not dropped substantially from an unsustainable level of more than 50% of the total cost of the FCL, nor had the availability increased (today the availability of 2G wire for commercial applications outside of specific partnerships with the leading 2G wire manufacturers is extremely limited). ZP had projected a very significant commercial potential for FCLs with higher performance and lower costs compared to the initial models built with 1G wire, which would come about from the widespread availability of low-cost, high-performance 2G HTS wire. The potential for 2G wires at greatly reduced performance-based prices compared to 1G HTS conductor held out the potential for the commercial production of FCLs at price and performance levels attractive to the utility industry. However, the price of HTS wire did not drop as expected and today the available quantities of 2G wire are limited, and the price is higher than the currently available supplies of 1G wire. The commercial option for ZP to provide a reliable and reasonably priced FCL to the utility industry is to employ conventional resistive conductor DC electromagnets to bias the FCL. Since the premise of the original funding was to stimulate the HTS wire industry and ZP concluded that copper-based magnets were more economical for the foreseeable future, DOE and ZP decided to mutually terminate the project.

Frank Darmann; Robert Lombaerde; Franco Moriconi; Albert Nelson

2011-10-31T23:59:59.000Z

336

RESULTS OF TESTS TO DEMONSTRATE A SIX-INCH DIAMETER COATER FOR PRODUCTION OF TRISO-COATED PARTICLES FOR ADVANCED GAS REACTOR EXPERIMENTS  

DOE Green Energy (OSTI)

The Next Generation Nuclear Plant (NGNP)/Advanced Gas Reactor (AGR) Fuel Development and Qualification Program includes a series of irradiation experiments in Idaho National Laboratory's (INL's) Advanced Test Reactor. TRISOcoated particles for the first AGR experiment, AGR-1, were produced at Oak Ridge National Laboratory (ORNL) in a twoinch diameter coater. A requirement of the NGNP/AGR Program is to produce coated particles for later experiments in coaters more representative of industrial scale. Toward this end, tests have been performed by Babcock and Wilcox (B&W) in a six-inch diameter coater. These tests are expected to lead to successful fabrication of particles for the second AGR experiment, AGR-2. While a thorough study of how coating parameters affect particle properties was not the goal of these tests, the test data obtained provides insight into process parameter/coated particle property relationships. Most relationships for the six-inch diameter coater followed trends found with the ORNL two-inch coater, in spite of differences in coater design and bed hydrodynamics. For example the key coating parameters affecting pyrocarbon anisotropy were coater temperature, coating gas fraction, total gas flow rate and kernel charge size. Anisotropy of the outer pyrolytic carbon (OPyC) layer also strongly correlates with coater differential pressure. In an effort to reduce the total particle fabrication run time, silicon carbide (SiC) was deposited with methyltrichlorosilane (MTS) concentrations up to 3 mol %. Using only hydrogen as the fluidizing gas, the high concentration MTS tests resulted in particles with lower than desired SiC densities. However when hydrogen was partially replaced with argon, high SiC densities were achieved with the high MTS gas fraction.

Douglas W. Marshall

2008-09-01T23:59:59.000Z

337

RESULTS OF TESTS TO DEMONSTRATE A SIX-INCH-DIAMETER COATER FOR PRODUCTION OF TRISO-COATED PARTICLES FOR ADVANCED GAS REACTOR EXPERIMENTS  

DOE Green Energy (OSTI)

The Next Generation Nuclear Plant (NGNP)/Advanced Gas Reactor (AGR) Fuel Development and Qualification Program includes a series of irradiation experiments in Idaho National Laboratory’s (INL’s) Advanced Test Reactor. TRISOcoated particles for the first AGR experiment, AGR-1, were produced at Oak Ridge National Laboratory (ORNL) in a two inch diameter coater. A requirement of the NGNP/AGR Program is to produce coated particles for later experiments in coaters more representative of industrial scale. Toward this end, tests have been performed by Babcock and Wilcox (B&W) in a six-inch diameter coater. These tests are expected to lead to successful fabrication of particles for the second AGR experiment, AGR-2. While a thorough study of how coating parameters affect particle properties was not the goal of these tests, the test data obtained provides insight into process parameter/coated particle property relationships. Most relationships for the six-inch diameter coater followed trends found with the ORNL two-inch coater, in spite of differences in coater design and bed hydrodynamics. For example the key coating parameters affecting pyrocarbon anisotropy were coater temperature, coating gas fraction, total gas flow rate and kernel charge size. Anisotropy of the outer pyrolytic carbon (OPyC) layer also strongly correlates with coater differential pressure. In an effort to reduce the total particle fabrication run time, silicon carbide (SiC) was deposited with methyltrichlorosilane (MTS) concentrations up to 3 mol %. Using only hydrogen as the fluidizing gas, the high concentration MTS tests resulted in particles with lower than desired SiC densities. However when hydrogen was partially replaced with argon, high SiC densities were achieved with the high MTS gas fraction.

Charles M Barnes

2008-09-01T23:59:59.000Z

338

Production test IP-278-A: Verification of BPA loss bulk temperature surge at the DE-Reactor. Supplement A  

SciTech Connect

This report details planning to run a second outage test at the DR-Reactor using the same instrumentation and procedure as an earlier test but increasing the trip-out level from 800 MW up to a maximum of 1200 MW.

Jones, S.S.

1960-01-07T23:59:59.000Z

339

Process Knowledge Summary Report for Advanced Test Reactor Complex Contact-Handled Transuranic Waste Drum TRA010029  

SciTech Connect

This Process Knowledge Summary Report summarizes information collected to satisfy the transportation and waste acceptance requirements for the transfer of one drum containing contact-handled transuranic (TRU) actinide standards generated by the Idaho National Laboratory at the Advanced Test Reactor (ATR) Complex to the Advanced Mixed Waste Treatment Project (AMWTP) for storage and subsequent shipment to the Waste Isolation Pilot Plant for final disposal. The drum (i.e., Integrated Waste Tracking System Bar Code Number TRA010029) is currently stored at the Materials and Fuels Complex. The information collected includes documentation that addresses the requirements for AMWTP and applicable sections of their Resource Conservation and Recovery Act permits for receipt and disposal of this TRU waste generated from ATR. This Process Knowledge Summary Report includes information regarding, but not limited to, the generation process, the physical form, radiological characteristics, and chemical contaminants of the TRU waste, prohibited items, and packaging configuration. This report, along with the referenced supporting documents, will create a defensible and auditable record for this TRU waste originating from ATR.

B. R. Adams; R. P. Grant; P. R. Smith; J. L. Weisgerber

2013-09-01T23:59:59.000Z

340

Interim report VII, production test IP-549-A half-plant low alum feed water treatment at F Reactor  

SciTech Connect

A half-plant low alum water treatment test began at F Reactor on January 16, 1963. The test, which had been prompted by the analysis of ledge corrosion attack on fuel elements, will demonstrate whether or not high alum feed is responsible for increasing the frequency of ledge and groove corrosion attack on fuel element surfaces. The effect will be evaluated by comparing visual examination results obtained from the normal production fuel irradiated in process water treated with two different alum feed rates. Six 20-column fuel discharges, ten columns from each side of the reactor, have been taken during the test as follows: (1) One discharge prior to the start of the test. (2) One discharge such that the test side was exposed to coolant treated with both high and low alum feed. (3) Four discharges under test conditions. This report discusses the results obtained from the fifth discharge under test conditions.

Geier, R.G.

1964-03-18T23:59:59.000Z

Note: This page contains sample records for the topic "national reactor testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

National SCADA Test Bed Enhancing control systems security in the energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SCADA Test Bed Enhancing control systems security in the SCADA Test Bed Enhancing control systems security in the energy sector National SCADA Test Bed Enhancing control systems security in the energy sector Improving the security of energy control systems has become a national priority. Since the mid-1990's, security experts have become increasingly concerned about the threat of malicious cyber attacks on the vital supervisory control and data acquisition (SCADA) and distributed control systems (DCS) used to monitor and manage our energy infrastructure. Many of the systems still in use today were designed to operate in closed, proprietary networks. National SCADA Test Bed Enhancing control systems security in the energy sector More Documents & Publications NSTB Summarizes Vulnerable Areas Transmission and Distribution World March 2007: DOE Focuses on Cyber

342

Engineering considerations in the selection of the tokamak to follow the Tokamak Fusion Test Reactor (TFTR)  

SciTech Connect

The tokamak to follow the Tokamak Fusion Test Reactor (TFTR) should satisfy two important objectives. First, it should be a significant step in physics and engineering goals in order to maintain the level of progress which the US has established as the world leader in fusion energy development. The second objective should be to provide the information necessary to support the strategy and goals of the long-range Department of Energy (DOE) Fusion Program. In their Comprehensive Program Management Plan, the DOE identifies the need for a reactor technology program in the 1990s in which the major goal is to prove engineering feasibility. In this paper, the specific engineering needs are identified which have been developed through the tokamak design studies over the past decade. On the basis of these needs, it appears that several options are available for the next tokamak to follow TFTR. The final choice of the concept will involve consideration of the technical needs and the reality of the Fusion Program budget.

Shannon, T.E.

1983-01-01T23:59:59.000Z

343

Preparations for deuterium--tritium experiments on the Tokamak Fusion Test Reactor*  

Science Conference Proceedings (OSTI)

The final hardware modifications for tritium operation have been completed for the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. [bold 21], 1324 (1992)]. These activities include preparation of the tritium gas handling system, installation of additional neutron shielding, conversion of the toroidal field coil cooling system from water to a Fluorinert[sup TM] system, modification of the vacuum system to handle tritium, preparation, and testing of the neutral beam system for tritium operation and a final deuterium--deuterium (D--D) run to simulate expected deuterium--tritium (D--T) operation. Testing of the tritium system with low concentration tritium has successfully begun. Simulation of trace and high power D--T experiments using D--D have been performed. The physics objectives of D--T operation are production of [approx]10 MW of fusion power, evaluation of confinement, and heating in deuterium--tritium plasmas, evaluation of [alpha]-particle heating of electrons, and collective effects driven by alpha particles and testing of diagnostics for confined [alpha] particles. Experimental results and theoretical modeling in support of the D--T experiments are reviewed.

Hawryluk, R.J.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.L.; Anderson, J.W.; Arunasalam, V.; Ascione, G.; Aschroft, D.; Barnes, C.W.; Barnes, G.; Batchelor, D.B.; Bateman, G.; Batha, S.; Baylor, L.A.; Beer, M.; Bell, M.G.; Biglow, T.S.; Bitter, M.; Blanchard, W.; Bonoli, P.; Bretz, N.L.; Brunkhorst, C.; Budny, R.; Burgess, T.; Bush, H.; Bush, C.E.; Camp, R.; Caorlin, M.; Carnevale, H.; Chang, Z.; Chen, L.; Cheng, C.Z.; Chrzanowski, J.; Collazo, I.; Collins, J.; Coward, G.; Cowley, S.; Cropper, M.; Darrow, D.S.; Daugert, R.; DeLooper, J.; Duong, H.; Dudek, L.; Durst, R.; Efthimion, P.C.; Ernst, D.; Faunce, J.; Fonck, R.J.; Fredd, E.; Fredrickson, E.; Fromm, N.; Fu, G.Y.; Furth, H.P.; Garzotto, V.; Gentile, C.; Gettelfinger, G.; Gilbert, J.; Gioia, J.; Goldfinger, R.C.; Golian, T.; Gorelenkov, N.; Gouge, M.J.; Grek, B.; Grisham, L.R.; Hammett, G.; Hanson, G.R.; Heidbrink, W.; Hermann, H.W.; Hill, K.W.; Hirshman, S.; Hoffman, D.J.; Hosea, J.; Hulse, R.A.; Hsuan, H.; Ja

1994-05-01T23:59:59.000Z

344

Initial confinement studies of ohmically heated plasmas in the Tokamak Fusion Test Reactor  

DOE Green Energy (OSTI)

Initial operation of the Tokamak Fusion Test Reactor (TFTR) has concentrated upon confinement studies of ohmically heated hydrogen and deuterium plasmas. Total energy confinement times (tau/sub E/) are 0.1 to 0.2 s for a line-average density range (anti n/sub e/) of 1 to 2.5 x 10/sup 19/ m/sup -3/ with electron temperatures of T/sub e/(o) approx. 1.2 to 2.2 keV, ion temperatures of T/sub i/(o) approx. 0.9 to 1.5 keV, and Z/sub eff/ approx. 3. A comparison of PLT, PDX, and TFTR plasma confinement supports a dimension-cubed scaling law.

Efthimion, P.C.; Bell, M.; Blanchard, W.R.; Bretz, N.; Cecchi, J.L.; Coonrod, J.; Davis, S.; Dylla, H.F.; Fonck, R.; Furth, H.P.

1984-06-01T23:59:59.000Z

345

Short Term Irradiation Test of Fuel Containing Minor Actinides Using the Experimental Fast Reactor Joyo  

Science Conference Proceedings (OSTI)

A mixed oxide containing minor actinides (MA-MOX) fuel irradiation program is being conducted using the experimental fast rector Joyo of the Japan Atomic Energy Agency to research early thermal behavior of MA-MOX fuel. Two irradiation experiments were conducted as part of the short-term phase of this program in May and August 2006. Six prepared fuel pins included MOX fuel containing 3% or 5% americium (Am-MOX), and MOX fuel containing 2% americium and 2% neptunium (Np/Am-MOX). The first test was conducted with high linear heat rates of approximately 430 W/cm maintained during only 10 minutes. After 10 minutes irradiation test, the test subassembly was transferred to the hot cell facility and an Am-MOX pin and a Np/Am-MOX pin were replaced with dummy pins with neutron dosimeters. The test subassembly loaded with the remaining four fuel pins was re-irradiated in Joyo for 24-hours in August 2006 at nearly the same linear power to obtain re-distribution data on MA-MOX fuel. The linear heat rate for each MA-MOX test fuel pin was calculated using the Monte Carlo calculation code MCNP. The calculated fission rates were compared with the measured data based on the Nd-148 method. The maximum linear heat rate was approximately 444{+-}19 W/cm at the actual reactor power of 119.6 MWt. Post irradiation examination of these pins to confirm the absence of fuel melting and the local concentration under irradiation of NpO{sub 2-x} or AmO{sub 2-x}, in the (U,Pu)0{sub 2-x}, fuel are underway. The test results are expected to reduce uncertainties on the margin in the thermal design for MA-MOX fuel. (authors)

Sekine, Takashi; Soga, Tomonori; Koyama, Shin-ichi; Aoyama, Takafumi [Oarai Research and Development Center, Japan Atomic Energy Agency. 4002 Narita, Oarai, Ibaraki 311-1393 (Japan); Wootan, David [Pacific Northwest National Laboratoy, M/S K8-34, P.O. Box 999 Richland, WA 99352 (United States)

2007-07-01T23:59:59.000Z

346

Advanced Test Reactor LEU Fuel Conversion Feasibility Study -- 2006 Annual Report  

SciTech Connect

The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the U.S. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth with a maximum unperturbed thermal neutron flux rating of 1.0 x 1015 n/cm2–s. Because of these operating parameters, and the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuel cycle burnup comparison analysis. Using the current HEU U-235 enrichment of 93.0 % as a baseline, an analysis can be performed to determine the low-enriched uranium (LEU) density and U 235 enrichment required in the fuel meat to yield an equivalent Keff between the HEU core and a LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the U 235 loading in the LEU core, such that the differences in Keff and heat profile between the HEU and LEU core can be minimized for operation at 125 EFPD with a total core power of 115 MW. The Monte-Carlo coupled with ORIGEN2 (MCWO) depletion methodology was used to calculate Keff versus EFPDs. The MCWO-calculated results for the LEU case demonstrated adequate excess reactivity such that the Keff versus EFPDs plot is similar in shape to the reference ATR HEU case. The LEU core conversion feasibility study can also be used to optimize the U-235 content of each fuel plate, so that the relative radial fission heat flux profile is bounded by the reference ATR HEU case. The detailed radial, axial, and azimuthal heat flux profiles of the HEU and optimized LEU cases have been investigated. However, to demonstrate that the LEU core fuel cycle performance can meet the UFSAR safety requirements, additional studies will be necessary to evaluate and compare safety parameters such as void reactivity and Doppler coefficients, control components worth (OSCC, safety rods and regulating rod), and shutdown margins between the HEU and LEU cores.

G. S. Chang; R. G. Ambrosek

2006-10-01T23:59:59.000Z

347

Advanced Test Reactor LEU Fuel Conversion Feasibility Study (2006 Annual Report)  

SciTech Connect

The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth with a maximum unperturbed thermal neutron flux rating of 1.0 x 1015 n/cm2–s. Because of these operating parameters, and the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuel cycle burnup comparison analysis. Using the current HEU U 235 enrichment of 93.0 % as a baseline, an analysis can be performed to determine the low-enriched uranium (LEU) density and U-235 enrichment required in the fuel meat to yield an equivalent K-eff between the HEU core and the LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the U-235 loading in the LEU core, such that the differences in K-eff and heat profile between the HEU and LEU core can be minimized for operation at 125 EFPD with a total core power of 115 MW. The depletion methodology, Monte-Carlo coupled with ORIGEN2 (MCWO), was used to calculate K-eff versus EFPDs. The MCWO-calculated results for the LEU case demonstrated adequate excess reactivity such that the K-eff versus EFPDs plot is similar in shape to the reference ATR HEU case. The LEU core conversion feasibility study can also be used to optimize the U-235 content of each fuel plate, so that the relative radial fission heat flux profile is bounded by the reference ATR HEU case. The detailed radial, axial, and azimuthal heat flux profiles of the HEU and optimized LEU cases have been investigated. However, to demonstrate that the LEU core fuel cycle performance can meet the UFSAR safety requirements, additional studies will be necessary to evaluate and compare safety parameters such as void reactivity and Doppler coefficients, control components worth (outer shim control cylinders (OSCCs), safety rods and regulating rod), and shutdown margins between the HEU and LEU cores.

Gray S. Chang; Richard G. Ambrosek; Misti A. Lillo

2006-12-01T23:59:59.000Z

348

Last U.S. Underground Nuclear Test Conducted | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Underground Nuclear Test Conducted | National Nuclear Security U.S. Underground Nuclear Test Conducted | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Last U.S. Underground Nuclear Test Conducted Last U.S. Underground Nuclear Test Conducted September 23, 1992 USA Last U.S. Underground Nuclear Test Conducted

349

Last U.S. Underground Nuclear Test Conducted | National Nuclear Security  

National Nuclear Security Administration (NNSA)

U.S. Underground Nuclear Test Conducted | National Nuclear Security U.S. Underground Nuclear Test Conducted | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Last U.S. Underground Nuclear Test Conducted Last U.S. Underground Nuclear Test Conducted September 23, 1992 USA Last U.S. Underground Nuclear Test Conducted

350

Small Wind Turbine Testing Results from the National Renewable Energy Laboratory: Preprint  

DOE Green Energy (OSTI)

In 2008, the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) began testing small wind turbines (SWTs) through the Independent Testing project. Using competitive solicitation, five SWTs were selected for testing at the National Wind Technology Center (NWTC). NREL's NWTC is accredited by the American Association of Laboratory Accreditation (A2LA) to conduct duration, power performance, safety and function, power quality, and noise tests to International Electrotechnical Commission (IEC) standards. Results of the tests conducted on each of the SWTs are or will be available to the public on the NREL website. The results could be used by their manufacturers in the certification of the turbines or state agencies to decide which turbines are eligible for state incentives.

Bowen, A.; Huskey, A.; Link, H.; Sinclair, K.; Forsyth, T.; Jager, D.; van Dam, J.; Smith, J.

2010-04-01T23:59:59.000Z

351

ARMY GAS-COOLED REACTOR SYSTEMS PROGRAM. INITIAL FULL POWER AND LIMITED ENDURANCE TESTS OF THE ML-1 NUCLEAR POWER PLANT. Final Test Report  

SciTech Connect

The evaluation of the data generated during the full power and limited endurance tests of the ML-1 mobile nuclear power plant indicates that the reactor performs in accordance with the design specifications. During the 101 hr test period, the reactor attained a maximum power of 3.44 Mw( and 247 kw(e) was measured at the output shaft of the turbine-compressor set. No operating limits were exceeded during these tests and all systems performed satisfactorily Except for the known performance deficiency of the turbinecompressor set, which prevented the attainment of design output power, no operational, stability, or control problems were encountered. All test objectives were achieved and the tests were considered completely successful. (auth)

Kattchee, N.

1963-07-01T23:59:59.000Z

352

Reactor pressure vessel integrity research at the Oak Ridge National Laboratory  

Science Conference Proceedings (OSTI)

Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. The RPV is the only key safety-related component of the plant for which a duplicate or redundant backup system does not exist. It is therefore imperative to understand and be able to predict the integrity inherent in the RPV. For this reason, the U.S. Nuclear Regulatory Commission has established the related research programs at ORNL described herein to provide for the development and confirmation of the methods used for: (1) establishing the irradiation exposure conditions within the RPV in the Embrittlement Data Base and Dosimetry Evaluation Program, (2) assessing the effects of irradiation on the RPV materials in the Heavy-Section Steel Irradiation Program, and (3) developing overall structural and fracture analyses of RPVs in the Heavy-Section Steel Technology Program.

Corwin, W.R.; Pennell, W.E.; Pace, J.V.

1995-12-31T23:59:59.000Z

353

Testing of a 7-tube palladium membrane reactor for potential use in TEP  

SciTech Connect

A Palladium Membrane Reactor (PMR) consists of a palladium/silver membrane permeator filled with catalyst (catalyst may be inside or outside the membrane tubes). The PMR is designed to recover tritium from the methane, water, and other impurities present in fusion reactor effluent. A key feature of a PMR is that the total hydrogen isotope content of a stream is significantly reduced as (1) methane-steam reforming and/or water-gas shift reactions proceed on the catalyst bed and (2) hydrogen isotopes are removed via permeation through the membrane. With a PMR design matched to processing requirements, nearly complete hydrogen isotope removals can be achieved. A 3-tube PMR study was recently completed. From the results presented in this study, it was possible to conclude that a PMR is appropriate for TEP, perforated metal tube protectors function well, platinum on aluminum (PtA) catalyst performs the best, conditioning with air is probably required to properly condition the Pd/Ag tubes, and that CO/CO{sub 2} ratios maybe an indicator of coking. The 3-tube PMR had a permeator membrane area of 0.0247 m{sup 2} and a catalyst volume to membrane area ratio of 4.63 cc/cm{sup 2} (with the catalyst on the outside of the membrane tubes and the catalyst only covering the membrane tube length). A PMR for TEP will require a larger membrane area (perhaps 0.35 m{sup 2}). With this in mind, an intermediate sized PMR was constructed. This PMR has 7 permeator tubes and a total membrane area of 0.0851 m{sup 2}. The catalyst volume to membrane area ratio for the 7-tube PMR was 5.18 cc/cm{sup 2}. The total membrane area of the 7-tube PMR (0.0851 m{sup 2}) is 3.45 times larger than total membrane area of the 3-tube PMR (0.0247 m{sup 2}). The following objectives were identified for the 7-tube PMR tests: (1) Refine test measurements, especially humidity and flow; (2) Refine maintenance procedures for Pd/Ag tube conditioning; (3) Evaluate baseline PMR operating conditions; (4) Determine PMR scaling method; (5) Evaluate PMR with realistic feed compositions; (6) Evaluate PMR performance with varying permeate pressures; (7) Study coking-related issues; and (8) Identify any unexpected behavior that may require further investigation (used to study transient behavior). This report presents the tests results defined by these objectives.

Carlson, Bryan J [Los Alamos National Laboratory; Trujillo, Stephen [Los Alamos National Laboratory; Willms, R. Scott [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

354

MEASUREMENT OF THE NEUTRON SPECTRUM OF THE HB-4 COLD SOURCE AT THE HIGH FLUX ISOTOPE REACTOR AT OAK RIDGE NATIONAL LABORATORY  

DOE Green Energy (OSTI)

Measurements of the cold neutron spectrum from the super critical hydrogen cold source at the High Flux Isotope Reactor at Oak Ridge National Laboratory were made using time-of-flight spectroscopy. Data were collected at reactor power levels of 8.5MW, 42.5MW and 85MW. The moderator temperature was also varied. Data were collected at 17K and 25K while the reactor power was at 8.5MW, 17K and 25K while at 42.5MW and 18K and 22K while at 85MW. The purpose of these measurements was to characterize the brightness of the cold source and to better understand the relationship between reactor power, moderator temperature, and cold neutron production. The authors will discuss the details of the measurement, the changes observed in the neutron spectrum, and the process for determining the source brightness from the measured neutron intensity.

Robertson, Lee [ORNL; Iverson, Erik B [ORNL

2009-01-01T23:59:59.000Z

355

McClellan Nuclear Radiation Center (MNRC) TRIGA reactor: The national organization of test research and training reactors  

SciTech Connect

This year's TRTR conference is being hosted by the McClellan Nuclear Radiation Center. The conference will be held at the Red Lion Hotel in Sacramento, CA. The conference dates are scheduled for October 11-14, 1994. Deadlines for sponsorship commitment and papers have not been set, but are forthcoming. The newly remodeled Red Lion Hotel provides up-to-date conference facilities and one of the most desirable locations for dining, shopping and entertainment in the Sacramento area. While attendees are busy with the conference activities, a spouses program will be available. Although the agenda has not been set, the Sacramento area offers outings to San Francisco, Pier 39, Ghirardelli Square (famous for their chocolate), and a chance to discover 'El Dorado' in the gold country. Not to forget our own bit of history with visits to 'Old Sacramento and Old Folsom', where antiquities abound, to the world renown train museum and incredible eating establishments. (author)

Kiger, Kevin M. [SWI-ALC/TIR, 5335 Price Ave., McClellan Air Force Base Sacramento, CA 95652-2504 (United States)

1994-07-01T23:59:59.000Z

356

Deviation to the Test Program and Procedures for the 710 Critical Experiment Reactor Control Drum Mockup Experiment  

SciTech Connect

This document describes a deviation from the "Test Program and Procedures for the 710 Critical Experiment Reactor Control Drum Mockup Experiment," TM-64-3-706, which was made in accordance with ITS Standard Practice J80-81 on September 14, 1964. The deviation did not involve a significant change in the safety of the operation.

Sims, F.L.

1964-09-14T23:59:59.000Z

357

Final Site Specific Decommissioning Inspection Report #2 for the University of Washington Research and Test Reactor, Seattle, Washington  

SciTech Connect

During the period of August through November 2006, ORISE performed a comprehensive IV at the University of Washington Research and Test Reactor Facility. The objective of the ORISE IV was to validate the licensee’s final status survey processes and data, and to assure the requirements of the DP and FSSP were met.

S.J. Roberts

2007-03-20T23:59:59.000Z

358

System Engineering Program Applicability for the High Temperature Gas-Cooled Reactor (HTGR) Component Test Capability (CTC)  

SciTech Connect

This white paper identifies where the technical management and systems engineering processes and activities to be used in establishing the High Temperature Gas-cooled Reactor (HTGR) Component Test Capability (CTC) should be addressed and presents specific considerations for these activities under each CTC alternative

Jeffrey Bryan

2009-06-01T23:59:59.000Z

359

Cyber Security Audit and Attack Detection Toolkit: National SCADA Test Bed  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Audit and Attack Detection Toolkit: National SCADA Audit and Attack Detection Toolkit: National SCADA Test Bed May 2008 Cyber Security Audit and Attack Detection Toolkit: National SCADA Test Bed May 2008 This project of the cyber security audit and attack detection toolkit is adding control system intelligence to widely deployed enterprise vulnerability scanners and security event managers While many energy utilities employ vulnerability scanners and security event managers (SEM) on their enterprise systems, these tools often lack the intelligence necessary to be effective in control systems. This two-year project aims to integrate control system intelligence into widely deployed vulnerability scanners and SEM, and to integrate security incident detection intelligence into control system historians. These upgrades will

360

Monitoring and Control Research Using a University Reactor and SBWR Test-Loop  

Science Conference Proceedings (OSTI)

The existing hybrid simulation capability of the Penn State Breazeale nuclear reactor was expanded to conduct research for monitoring, operations and control. Hybrid simulation in this context refers to the use of the physical time response of the research reactor as an input signal to a real-time simulation of power-reactor thermal-hydraulics which in-turn provides a feedback signal to the reactor through positioning of an experimental changeable reactivity device. An ECRD is an aluminum tube containing an absorber material that is positioned in the central themble of the reactor kinetics were used to expand the hybrid reactor simulation (HRS) capability to include out-of-phase stability characteristics observed in operating BWRs.

Robert M. Edwards

2003-09-28T23:59:59.000Z

Note: This page contains sample records for the topic "national reactor testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NREL's National Wind Technology Center provides the world's only dedicated turbine controls testing platforms.  

E-Print Network (OSTI)

NREL's National Wind Technology Center provides the world's only dedicated turbine controls testing platforms. Today's utility-scale wind turbine structures are more complex and their compo- nents more of algorithms to control the dynamic systems of wind turbines must account for multiple complex, nonlinear

362

Environmental testing philosophy for a Sandia National Laboratories small satellite project  

SciTech Connect

Sandia National Laboratories is the system integrator on a small satellite project. Following the intent of the NASA GEVS document, an integrated test philosophy was formulated to certify the satellite for flight. The purpose of this paper is to present that philosophy.

Cap, J.S.; Rackley, N.G.

1996-03-01T23:59:59.000Z

363

National Poverty Center Working Paper Series The Black-White Test Score Gap  

E-Print Network (OSTI)

National Poverty Center Working Paper Series #05-09 June 2005 The Black-White Test Score Gap caregiver of a child. The final study sample in this paper is 1,794 children, 856 blacks and 938 whites" proxies are added to the model (VI), the black-white difference becomes non- significant at less than .2

Shyy, Wei

364

NREL's National Wind Technology Center provides the world's only dedicated turbine controls testing platforms.  

E-Print Network (OSTI)

NREL's National Wind Technology Center provides the world's only dedicated turbine controls testing platforms. Today's utility-scale wind turbine structures are more complex and their compo- nents more turbine designers is to capture the maximum amount of energy, with minimal structural loading, for minimal

365

Testing and evaluation aspects of integration of unmanned air systems into the national air space  

Science Conference Proceedings (OSTI)

Current developments show that the integration of Unmanned Aerial Systems (UAS) into the National Airspace System (NAS) is a process that will inevitably happen. Arguably, it may be viewed as one of the key milestones in the history of aviation. Whereas ... Keywords: NAS integration, modeling and simulation, test and evaluation, unmanned aerial systems, verification and validation

Mauricio Castillo-Effen; Nikita Visnevski

2010-09-01T23:59:59.000Z

366

Thermal analysis for a spent reactor fuel storage test in granite  

Science Conference Proceedings (OSTI)

A test is conducted in which spent fuel assemblies from an operating commercial nuclear power reactor are emplaced in the Climax granite at the US Department of Energy`s Nevada Test Site. In this generic test, 11 canisters of spent PWR fuel are emplaced vertically along with 6 electrical simulator canisters on 3 m centers, 4 m below the floor of a storage drift which is 420 m below the surface. Two adjacent parallel drifts contain electrical heaters, operated to simulate (in the vicinity of the storage drift) the temperature fields of a large repository. This test, planned for up to five years duration, uses fairly young fuel (2.5 years out of core) so that the thermal peak will occur during the time frame of the test and will not exceed the peak that would not occur until about 40 years of storage had older fuel (5 to 15 years out of core) been used. This paper describes the calculational techniques and summarizes the results of a large number of thermal calculations used in the concept, basic design and final design of the spent fuel test. The results of the preliminary calculations show the effects of spacing and spent fuel age. Either radiation or convection is sufficient to make the drifts much better thermal conductors than the rock that was removed to create them. The combination of radiation and convection causes the drift surfaces to be nearly isothermal even though the heat source is below the floor. With a nominal ventilation rate of 2 m{sup 3}/s and an ambient rock temperature of 23{sup 0}C, the maximum calculated rock temperature (near the center of the heat source) is about 100{sup 0}C while the maximum air temperature in the drift is around 40{sup 0}C. This ventilation (1 m{sup 3}/s through the main drift and 1/2 m{sup 3}/s through each of the side drifts) will remove about 1/3 of the heat generated during the first five years of storage.

Montan, D.N.

1980-09-01T23:59:59.000Z

367

Design of an Online Fission Gas Monitoring System for Post-irradiation Examination Heating Tests of Coated Fuel Particles for High-Temperature Gas-Cooled Reactors  

Science Conference Proceedings (OSTI)

A new Fission Gas Monitoring System (FGMS) has been designed at the Idaho National Laboratory (INL) for use of monitoring online fission gas-released during fuel heating tests. The FGMS will be used with the Fuel Accident Condition Simulator (FACS) at the Hot Fuels Examination Facility (HFEF) located at the Materials and Fuels Complex (MFC) within the INL campus. Preselected Advanced Gas Reactor (AGR) TRISO (Tri-isotropic) fuel compacts will undergo testing to assess the fission product retention characteristics under high temperature accident conditions. The FACS furnace will heat the fuel to temperatures up to 2,000şC in a helium atmosphere. Released fission products such as Kr and Xe isotopes will be transported downstream to the FGMS where they will accumulate in cryogenically cooledcollection traps and monitored with High Purity Germanium (HPGe) detectors during the heating process. Special INL developed software will be used to monitor the accumulated fission products and will report data in near real-time. These data will then be reported in a form that can be readily available to the INL reporting database. This paper describes the details of the FGMS design, the control and acqusition software, system calibration, and the expected performance of the FGMS. Preliminary online data may be available for presentation at the High Temperature Reactor (HTR) conference.

Dawn Scates

2010-10-01T23:59:59.000Z

368

Engineering Evaluation of Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiement for the Oak Ridge National Laboratory  

SciTech Connect

This evaluation was performed by Pro2Serve in accordance with the Technical Specification for an Engineering Evaluation of the Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiment at the Oak Ridge National Laboratory (BJC 2009b). The evaluators reviewed the Engineering Evaluation Work Plan for Molten Salt Reactor Experiment Residual Salt Removal, Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE 2008). The Work Plan (DOE 2008) involves installing a salt transfer probe and new drain line into the Fuel Drain Tanks and Fuel Flush Tank and connecting them to the new salt transfer line at the drain tank cell shield. The probe is to be inserted through the tank ball valve and the molten salt to the bottom of the tank. The tank would then be pressurized through the Reactive Gas Removal System to force the salt into the salt canisters. The Evaluation Team reviewed the work plan, interviewed site personnel, reviewed numerous documents on the Molten Salt Reactor (Sects. 7 and 8), and inspected the probes planned to be used for the transfer. Based on several concerns identified during this review, the team recommends not proceeding with the salt transfer via the proposed alternate salt transfer method. The major concerns identified during this evaluation are: (1) Structural integrity of the tanks - The main concern is with the corrosion that occurred during the fluorination phase of the uranium removal process. This may also apply to the salt transfer line for the Fuel Flush Tank. Corrosion Associated with Fluorination in the Oak Ridge National Laboratory Fluoride Volatility Process (Litman 1961) shows that this problem is significant. (2) Continued generation of Fluorine - Although the generation of Fluorine will be at a lower rate than experienced before the uranium removal, it will continue to be generated. This needs to be taken into consideration regardless of what actions are taken with the salt. (3) More than one phase of material - There are likely multiple phases of material in the salt (metal or compound), either suspended through the salt matrix, layered in the bottom of the tank, or both. These phases may contribute to plugging during any planned transfer. There is not enough data to know for sure. (4) Probe heat trace - The alternate transfer method does not include heat tracing of the bottom of the probe. There is a concern that this may cool the salt and other phases of materials present enough to block the flow of salt. (5) Stress-corrosion cracking - Additionally, there is a concern regarding moisture that may have been introduced into the tanks. Due to time constraints, this concern was not validated. However, if moisture was introduced into the tanks and not removed during heating the tanks before HF and F2 sparging, there would be an additional concern regarding the potential for stress-corrosion cracking of the tank walls.

Carlberg, Jon A.; Roberts, Kenneth T.; Kollie, Thomas G.; Little, Leslie E.; Brady, Sherman D.

2009-09-30T23:59:59.000Z

369

SITEWIDE CATEGORICAL EXCLUSION FOR OUTDOOR TESTS ON MATERIALS AND COMPONENTS, PACIFIC NORTHWEST NATIONAL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SITEWIDE CATEGORICAL EXCLUSION FOR OUTDOOR TESTS ON SITEWIDE CATEGORICAL EXCLUSION FOR OUTDOOR TESTS ON MATERIALS AND COMPONENTS, PACIFIC NORTHWEST NATIONAL LABORATORY, RICHLAND, WASHINGTON Proposed AetioD: The U.S. Department of Energy (DOE) Pacific Northwest Site Office (PNSO) proposes to conduct outdoor tests and experiments on materials and equipment components under controlled conditions. No source, special nuclear, or byproduct materials would be involved, but encapsulated radioactive sources manufactured to applicable standards or other radiological materials could be used in activities under this categorical exclusion (eX). LoeatioD of Action: The locations would include DOE property at the Pacific Northwest National Laboratory (PNNL) Site and other offsite outdoor locations. Description of the Proposed Action:

370

Test Results From The Idaho National Laboratory Of The NASA Bi-Supported Cell Design  

SciTech Connect

The Idaho National Laboratory has been researching the application of solid-oxide fuel cell technology for large-scale hydrogen production. As a result, the Idaho National Laboratory has been testing various cell designs to characterize electrolytic performance. NASA, in conjunction with the University of Toledo, has developed a new cell concept with the goals of reduced weight and high power density. This paper presents results of the INL's testing of this new solid oxide cell design as an electrolyzer. Gas composition, operating voltage, and other parameters were varied during testing. Results to date show the NASA cell to be a promising design for both high power-to-weight fuel cell and electrolyzer applications.

C Stoots; J O' Brien; T Cable

2009-11-01T23:59:59.000Z

371

Test Results From The Idaho National Laboratory Of The NASA Bi-Supported Cell Design  

DOE Green Energy (OSTI)

The Idaho National Laboratory has been researching the application of solid-oxide fuel cell technology for large-scale hydrogen production. As a result, the Idaho National Laboratory has been testing various cell designs to characterize electrolytic performance. NASA, in conjunction with the University of Toledo, has developed a new cell concept with the goals of reduced weight and high power density. This paper presents results of the INL's testing of this new solid oxide cell design as an electrolyzer. Gas composition, operating voltage, and other parameters were varied during testing. Results to date show the NASA cell to be a promising design for both high power-to-weight fuel cell and electrolyzer applications.

C Stoots; J O'Brien; T Cable

2009-11-01T23:59:59.000Z

372

Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Tests - 2011  

SciTech Connect

This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done at the request of National Security Technologies, LLC (NSTec) and supports the Department of Energy, National Nuclear Security Administration for the Nevada Site Office Borehole Management Program (BMP). The primary objective of this program is to close (plug) weapons program legacy boreholes that are deemed no longer useful. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Our statements on cavity collapse and crater formation are input into their safety decisions. The BMP is an on-going program to address hundreds of boreholes at the NTS. Each year NSTec establishes a list of holes to be addressed. They request the assistance of the Lawrence Livermore National Laboratory and Los Alamos National Laboratory Containment Programs to provide information related to the evolution of collapse history and make statements on completeness of collapse as relates to surface crater stability. These statements do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, ground motion, and radiological release information. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. The following unclassified summary statements describe collapse evolution and crater stability in response to a recent request to review 3 LLNL test locations in areas 2 and 12: Kennebec in U2af, Cumberland in U2e, and Yuba in U12b.10.

Pawloski, G A

2011-02-28T23:59:59.000Z

373

Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor  

SciTech Connect

The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

2012-02-01T23:59:59.000Z

374

Safety Design Strategy for the Advanced Test Reactor Primary Coolant Pump and Motor Replacement Project  

Science Conference Proceedings (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

Noel Duckwitz

2011-06-01T23:59:59.000Z

375

Safety Design Strategy for the Advanced Test Reactor Emergency Firewater Injection System Replacement Project  

Science Conference Proceedings (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

Noel Duckwitz

2011-06-01T23:59:59.000Z

376

Safety Design Strategy for the Advanced Test Reactor Diesel Bus (E-3) and Switchgear Replacement Project  

Science Conference Proceedings (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

Noel Duckwitz

2011-06-01T23:59:59.000Z

377

Investigation of global Alfven instabilities in the Tokamak Fusion Test Reactor  

SciTech Connect

Toroidal Alfven eigenmodes (TAE) were excited by the energetic neutral beam ions tangentially injected into plasmas at low magnetic field in the Tokamak Fusion Test Reactor (TFTR) ({ital Proceedings} {ital of} {ital the} 11{ital th} {ital International} {ital Conference} {ital on} {ital Plasma} {ital Physics} {ital and} {ital Controlled} {ital Fusion} {ital Research} (IAEA, Vienna, 1987), Vol. 1, p. 51). The injection velocities were comparable to the Alfven speed. The modes were identified by measurements from Mirnov coils and beam emission spectroscopy (BES). TAE modes appear in bursts whose repetition rate increases with beam power. The neutron emission rate exhibits sawtoothlike behavior and the crashes always coincide with TAE bursts. This indicates ejection of fast ions from the plasma until these modes are stabilized. The dynamics of growth and stabilization were investigated at various plasma currents and magnetic fields. The results indicate that the instability can effectively clamp the number of energetic ions in the plasmas. The observed instability threshold is discussed in light of recent theories. In addition to these TAE modes, intermittent oscillations at three times the fundamental TAE frequency were observed by Mirnov coils, but no corresponding signal was found in BES. It appears that these high-frequency oscillations do not have a direct effect on the plasma neutron source strength.

Wong, K.L.; Durst, R.; Fonck, R.J.; Paul, S.F.; Roberts, D.R.; Fredrickson, E.D.; Nazikian, R.; Park, H.K.; Bell, M.; Bretz, N.L.; Budny, R.; Cheng, C.Z.; Cohen, S.; Hammett, G.W.; Jobes, F.C.; Johnson, L.; Meade, D.M.; Medley, S.S.; Mueller, D.; Nagayama, Y.; Owens, D.K.; Sabbagh, S.; Synakowski, E.J. (Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States))

1992-07-01T23:59:59.000Z

378

Current status of the Run-Beyond-Cladding Breach (RBCB) tests for the Integral Fast Reactor (IFR). Metallic Fuels Program  

Science Conference Proceedings (OSTI)

This paper describes the results from the Integral Fast Reactor (IFR) metallic fuel Run-Beyond-Cladding-Breach (RBCB) experiments conducted in the Experimental Breeder Reactor II (EBR-II). Included in the report are scoping test results and the data collected from the prototypical tests as well as the exam results and discussion from a naturally occurring breach of one of the lead IFR fuel tests. All results showed a characteristic delayed neutron and fission gas release pattern that readily allows for identification and evaluation of cladding breach events. Also, cladding breaches are very small and do not propagate during extensive post breach operation. Loss of fuel from breached cladding was found to be insignificant. The paper will conclude with a brief description of future RBCB experiments planned for irradiation in EBR-II.

Batte, G.L.; Pahl, R.G. [Argonne National Lab., Idaho Falls, ID (United States); Hofman, G.L. [Argonne National Lab., IL (United States)

1993-09-01T23:59:59.000Z

379

EVALUATION OF ZERO-POWER, ELEVATED-TEMPERATURE MEASUREMENTS AT JAPAN’S HIGH TEMPERATURE ENGINEERING TEST REACTOR  

Science Conference Proceedings (OSTI)

The High Temperature Engineering Test Reactor (HTTR) of the Japan Atomic Energy Agency (JAEA) is a 30 MWth, graphite-moderated, helium-cooled reactor that was constructed with the objectives to establish and upgrade the technological basis for advanced high-temperature gas-cooled reactors (HTGRs) as well as to conduct various irradiation tests for innovative high-temperature research. The core size of the HTTR represents about one-half of that of future HTGRs, and the high excess reactivity of the HTTR, necessary for compensation of temperature, xenon, and burnup effects during power operations, is similar to that of future HTGRs. During the start-up core physics tests of the HTTR, various annular cores were formed to provide experimental data for verification of design codes for future HTGRs. The experimental benchmark performed and currently evaluated in this report pertains to the data available for two zero-power, warm-critical measurements with the fully-loaded HTTR core. Six isothermal temperature coefficients for the fully-loaded core from approximately 340 to 740 K have also been evaluated. These experiments were performed as part of the power-up tests (References 1 and 2). Evaluation of the start-up core physics tests specific to the fully-loaded core (HTTR-GCR-RESR-001) and annular start-up core loadings (HTTR-GCR-RESR-002) have been previously evaluated.

John D. Bess; Nozomu Fujimoto; James W. Sterbentz; Luka Snoj; Atsushi Zukeran

2011-03-01T23:59:59.000Z

380

Foreign Research Reactor/Domestic Research Reactor Receipt Coordinator...  

National Nuclear Security Administration (NNSA)

Research ReactorDomestic Research Reactor Receipt Coordinator, Savannah River Nuclear Solutions | National Nuclear Security Administration Our Mission Managing the Stockpile...

Note: This page contains sample records for the topic "national reactor testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Advanced Control Design and Field Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint  

DOE Green Energy (OSTI)

Utility-scale wind turbines require active control systems to operate at variable rotational speeds. As turbines become larger and more flexible, advanced control algorithms become necessary to meet multiple objectives such as speed regulation, blade load mitigation, and mode stabilization. At the same time, they must maximize energy capture. The National Renewable Energy Laboratory has developed control design and testing capabilities to meet these growing challenges.

Hand, M. M.; Johnson, K. E.; Fingersh, L. J.; Wright, A. D.

2004-05-01T23:59:59.000Z

382

Materials Reliability Program, Reactor Vessel Head Boric Acid Corrosion Testing (MRP-165)  

Science Conference Proceedings (OSTI)

Pressurized water reactor (PWR) coolant leakage from stress corrosion cracking of an Alloy 600 control rod drive mechanism (CRDM) penetration has led to one case of severe corrosion and cavity formation in a low-alloy steel reactor vessel head (RVH). The detailed progression of RVH wastage following initial leakage is complicated and probably involves several corrosion mechanisms. The Materials Reliability Program (MRP) has completed three tasks of a comprehensive program to examine postulated sequential...

2005-12-14T23:59:59.000Z

383

US Department of Energy National Lab Activities in Marine Hydrokinetics: Machine Performance Testing  

Science Conference Proceedings (OSTI)

Marine and hydrokinetic (MHK) technology performance testing in the laboratory and field supports the US Department of Energy s MHK program goals to advance the technology readiness levels of MHK machines, to ensure environmentally responsible designs, to identify key cost drivers, and to reduce the cost of energy of MHK technologies. Laboratory testing results from scaled model machine testing at the University of Minnesota s St. Anthony Falls Laboratory (SAFL) main channel flume are presented, including simultaneous machine power and inflow measurements for a 1:10 scale three-bladed axial flow turbine used to assess machine performance in turbulent flows, and detailed measurements of inflow and wake flow velocity and turbulence, including the assessment of the effects of large energetic organized vortex shedding on machine performance and wake turbulence downstream. Scaled laboratory testing provides accurate data sets for near- and far-field hydrodynamic models, and useful information on technology and environmental readiness levels before full-scale testing and demonstration in open water. This study validated turbine performance for a technology in order to advance its technology readiness level. Synchronized ADV measurements to calculate spatio-temporal characteristics of turbulence supported model development of the inflow turbulence model, Hydro-TurbSim, developed by the National Renewable Energy Laboratory (NREL) to evaluate unsteady loading on MHK machines. Wake flow measurements supported model development of the far-field model, SNL-EFDC, developed by Sandia National Laboratory (SNL) to optimize spacing for MHK machine arrays.

Neary, Vincent S [ORNL; Chamorro, Leonardo [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Hill, Craig [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Gunawan, Budi [Oak Ridge National Laboratory (ORNL); Sotiropoulos, Fotis [University of Minnesota

2012-01-01T23:59:59.000Z

384

EA-1965: Southeast National Marine Renewable Energy Center (SNMREC) Offshore Testing Facility  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy (DOE), through its Wind and Water Power Technologies Office (WWPTO), is proposing to provide federal funding to Florida Atlantic University’s South-East National Marine Renewable Energy Center (FAU SNMREC) to support the at sea testing of FAU SNMREC’s experimental current generation turbine and the deployment and operation of their Small-Scale Ocean Current Turbine Test Berth, sited on the outer continental shelf (OCS) in waters off the coast of Ft Lauderdale, Florida. SNMREC is proposing to demonstrate the test berth site readiness by testing their pilot-scale experimental ocean current turbine unit at that location. The Bureau of Ocean Energy Management (BOEM) is conducting an Environmental Assessment to analyze the impacts associated with leasing OCS lands to FAU SNMREC, per their jurisdictional responsibilities under the Outer Continental Shelf Lands Act. DOE is a cooperating agency in this process.

385

Analysis of removal alternatives for the Heavy Water Components Test Reactor at the Savannah River Site. Revision 1  

SciTech Connect

This engineering study evaluates different alternatives for decontamination and decommissioning of the Heavy Water Components Test Reactor (HWCTR). Cooled and moderated with pressurized heavy water, this uranium-fueled nuclear reactor was designed to test fuel assemblies for heavy water power reactors. It was operated for this purpose from march of 1962 until December of 1964. Four alternatives studied in detail include: (1) dismantlement, in which all radioactive and hazardous contaminants would be removed, the containment dome dismantled and the property restored to a condition similar to its original preconstruction state; (2) partial dismantlement and interim safe storage, where radioactive equipment except for the reactor vessel and steam generators would be removed, along with hazardous materials, and the building sealed with remote monitoring equipment in place to permit limited inspections at five-year intervals; (3) conversion for beneficial reuse, in which most radioactive equipment and hazardous materials would be removed and the containment building converted to another use such as a storage facility for radioactive materials, and (4) entombment, which involves removing hazardous materials, filling the below-ground structure with concrete, removing the containment dome and pouring a concrete cap on the tomb. Also considered was safe storage, but this approach, which has, in effect, been followed for the past 30 years, did not warrant detailed evaluation. The four other alternatives were evaluate, taking into account factors such as potential effects on the environment, risks, effectiveness, ease of implementation and cost. The preferred alternative was determined to be dismantlement. This approach is recommended because it ranks highest in the comparative analysis, would serve as the best prototype for the site reactor decommissioning program and would be most compatible with site property reuse plans for the future.

Owen, M.B.

1997-04-01T23:59:59.000Z

386

Full-length U-xPu-10Zr (x=0, 8, 19 wt%) Fast Reactor Fuel Test in FFTF  

SciTech Connect

The Integral Fast Reactor-1 (IFR-1) experiment performed in the Fast Flux Test Facility (FFTF) was the only U-Pu-10Zr (Pu-0, 8 and 19 wt%) metallic fast reactor test with commercial-length (91.4 cm active fuel column length) conducted to date. With few remaining test reactors there is little opportunity for performing another test with a long active fuel column. The assembly was irradiated to the goal burnup of 10 at.%. The beginning of life (BOL) peak cladding temperature of the hottest pin was 608?C, cooling to 522?C at end of life (EOL). Selected fuel pins were examined non destructively using neutron radiography, precision axial gamma scanning, and both laser and spiral contact cladding profilometry. Destructive exams included plenum gas pressure, volume, and gas composition determinations on a number of pins followed by optical metallography, electron probe microanalysis (EPMA), and alpha and beta gamma autoradiography on a single U-19Pu-10Zr pin. The post-irradiation examinations (PIEs) showed very few differences compared to the short-pin (34.3 cm fuel column) testing performed on fuels of similar composition in Experimental Breeder Reactor-II (EBR-II). The fuel column grew axially slightly less than observed in the short pins, but with the same pattern of decreasing growth with increasing Pu content. There was a difference in the fuel-cladding chemical interaction (FCCI) in that the maximum cladding penetration by interdiffusion with fuel/fission products did not occur at the top of the fuel column where the cladding temperature is highest, as observed in EBR-II tests. Instead, the more exaggerated fission-rate profile of the FFTF pins resulted in a peak FCCI at ~0.7 X/L axial location along the fuel column. This resulted from a lower production of rare earth fission products higher in the fuel column as well as a much smaller delta-T between fuel center and cladding, and therefore less FCCI, despite the higher cladding temperature. This behavior could actually help extend the life of a fuel pin in a “long pin” reactor design to a higher peak fuel burnup.

D. L. Porter; H.C. Tsai

2012-08-01T23:59:59.000Z

387

Underground Test Area Quality Assurance Project Plan Nevada National Security Site, Nevada, Revision 0  

SciTech Connect

This Quality Assurance Project Plan (QAPP) provides the overall quality assurance (QA) program requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) Sub-Project (hereafter the Sub-Project) activities. The requirements in this QAPP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). The QAPP Revision 0 supersedes DOE--341, Underground Test Area Quality Assurance Project Plan, Nevada Test Site, Nevada, Revision 4.

Irene Farnham

2011-05-01T23:59:59.000Z

388

Standard Test Method for Application and Analysis of Solid State Track Recorder (SSTR) Monitors for Reactor Surveillance, E706(IIIB)  

E-Print Network (OSTI)

1.1 This test method describes the use of solid-state track recorders (SSTRs) for neutron dosimetry in light-water reactor (LWR) applications. These applications extend from low neutron fluence to high neutron fluence, including high power pressure vessel surveillance and test reactor irradiations as well as low power benchmark field measurement. (1) This test method replaces Method E 418. This test method is more detailed and special attention is given to the use of state-of-the-art manual and automated track counting methods to attain high absolute accuracies. In-situ dosimetry in actual high fluence-high temperature LWR applications is emphasized. 1.2 This test method includes SSTR analysis by both manual and automated methods. To attain a desired accuracy, the track scanning method selected places limits on the allowable track density. Typically good results are obtained in the range of 5 to 800 000 tracks/cm2 and accurate results at higher track densities have been demonstrated for some cases. (2) Trac...

American Society for Testing and Materials. Philadelphia

2003-01-01T23:59:59.000Z

389

INFORMATION MEETING ON GAS-COOLED POWER REACTORS, OAK RIDGE NATIONAL LABORATORY, OCTOBER 21-22, 1958  

SciTech Connect

This meeting is one of a series of Civilian Power Reactor Conferences and was held colncident with an AEC invitation to industry to bid on the construction of a gas-cooled facility. Papers are presented on design studles, hazards, components, costs, materials, and design concepts for specific reactors. (W.D.M.)

1959-10-31T23:59:59.000Z

390

Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish: I-test and analysis  

DOE Green Energy (OSTI)

The concept of solar driven chemical reaction in a commercial-scale volumetric receiver/reactor on a parabolic concentrator was successfully demonstrated in the CAtalytically Enhanced Solar Absorption Receiver (CAESAR) test. Solar reforming of methane (CH[sub 4]) with carbon dioxide (CO[sub 2]) was achieved in a 64 cm diameter direct absorption reactor on a parabolic dish capable of 150 kW solar power. The reactor was a catalytic volumetric absorber consisting of a multilayered, porous alumina foam disk coated with rhodium (Rh) catalyst. The system was operated during both steady-state and solar transient (cloud passage) conditions. The total solar power absorbed reached values up to 97 kW and the maximum methane conversion was 70%. Receiver thermal efficiencies ranged up to 85% and chemical efficiencies peaked at 54%. The absorber performed satisfactorily in promoting the reforming reaction during the tests without carbon formation. However, problems of cracking and degradation of the porous matrix, nonuniform dispersion of the Rh through the absorber, the catalyst deactivation due to sintering and possible encapsulation, must be resolved to achieve long-term operation and eventual commercialization.

Muir, J.F.; Hogan, R.E. Jr.; Skocypec, R.D. (Sandia National Lab., Albuquerque, NM (United States)); Buck, R. (DLR-ITT, Stuttgart (Germany))

1994-06-01T23:59:59.000Z

391

Solar test of an integrated sodium reflux heat-pipe receiver/reactor for thermochemical energy transport  

DOE Green Energy (OSTI)

In October 1987, a chemical reactor integrated into a sodium reflux heat-pipe receiver was tested in the solar furnace at the Weizmann Institute of Science, Rehovot, Israel. The reaction carried out was the carbon dioxide reforming of methane. This reaction is one of the leading candidates for thermochemical energy transport either within a distributed solar receiver system or over long distances. The Schaeffer Solar Furnace consists of a 96 square meter heliostat and a 7.3 meter diameter dish concentrator with a 65-degree rim angle and a 3.5 meter focal length. Measurements have shown a peak concentration ratio of over 10,000 and a total power of 15 kW at an insolation of 800 w/square meter. The receiver/reactor contains seven catalyst-filled tubes inside an evacuated metal box containing sodium. The front surface of this box serves as the solar absorber of the receiver. In operation, concentrated sunlight heats the 1/8-inch Inconel plate and vaporizes sodium from the wire-mesh wick attached to the back of it. The sodium vapor condenses on the reactor tubes, releases its latent heat, and returns by gravity to the wick. Test results and areas for future development are discussed.

Diver, R.B.; Fish, J.D.; Levitan, R.; Levy, M.; Rosin, H.; Richardson, J.T.

1988-01-01T23:59:59.000Z

392

SUMMARY AND RESULTS LETTER REPORT – INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PROJECT, PHASE 3: TRENCHES 2, 3, AND 4 BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK  

SciTech Connect

5098-LR-02-0 SUMMARY AND RESULTS LETTER REPORT – INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PROJECT, PHASE 3 TRENCHES 2, 3, AND 4 BROOKHAVEN NATIONAL LABORATORY

E.M. Harpenau

2010-11-15T23:59:59.000Z

393

Groundwater Protection Group, Brookhaven National Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Long Term Surveillance & Maintenance High Flux Beam Reactor Long Term Surveillance & Maintenance The High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL)...

394

Lawrence Livermore National Laboratory underground coal gasification data base. [US DOE-supported field tests; data  

SciTech Connect

The Department of Energy has sponsored a number of field projects to determine the feasibility of converting the nation's vast coal reserves into a clean efficient energy source via underground coal gasification (UCG). Due to these tests, a significant data base of process information has developed covering a range of coal seams (flat subbituminous, deep flat bituminous and steeply dipping subbituminous) and processing techniques. A summary of all DOE-sponsored tests to data is shown. The development of UCG on a commercial scale requires involvement from both the public and private sectors. However, without detailed process information, accurate assessments of the commercial viability of UCG cannot be determined. To help overcome this problem the DOE has directed the Lawrence Livermore National Laboratory (LLNL) to develop a UCG data base containing raw and reduced process data from all DOE-sponsored field tests. It is our intent to make the data base available upon request to interested parties, to help them assess the true potential of UCG.

Cena, R. J.; Thorsness, C. B.

1981-08-21T23:59:59.000Z

395

How accurately can one test CPT conservation with reactor and solar neutrino experiments?  

E-Print Network (OSTI)

We show that the combined data from solar neutrino experiments and from the KamLAND reactor neutrino experiment can establish an upper limit on, or detect, potential CPT violation in the neutrino sector of order 10^{-20} GeV to 10^{-21} GeV.

John N. Bahcall; V. Barger; Danny Marfatia

2002-01-23T23:59:59.000Z

396

PROCEEDINGS OF THE AEC SYMPOSIUM FOR CHEMICAL PROCESSING OF IRRADIATED FUELS FROM POWER, TEST, AND RESEARCH REACTORS, RICHLAND, WASHINGTON, OCTOBER 20 AND 21, 1959  

SciTech Connect

A review is presented in this symposium of the technology currently available for processing spent fuels from research, test, and power reactors. Twenty-one papers are included. Separate abstracts have been prepared for each paper. (W.L.H.)

1960-01-01T23:59:59.000Z

397

Characteristics of potential repository wastes: Volume 4, Appendix 4A, Nuclear reactors at educational institutions of the United States; Appendix 4B, Data sheets for nuclear reactors at educational institutions; Appendix 4C, Supplemental data for Fort St. Vrain spent fuel; Appendix 4D, Supplemental data for Peach Bottom 1 spent fuel; Appendix 4E, Supplemental data for Fast Flux Test Facility  

Science Conference Proceedings (OSTI)

Volume 4 contains the following appendices: nuclear reactors at educational institutions in the United States; data sheets for nuclear reactors at educational institutions in the United States(operational reactors and shut-down reactors); supplemental data for Fort St. Vrain spent fuel; supplemental data for Peach Bottom 1 spent fuel; and supplemental data for Fast Flux Test Facility.

Not Available

1992-07-01T23:59:59.000Z

398

Storage of spent fuel from the nation's nuclear reactors: Status, technology, and policy options  

SciTech Connect

Since the beginning of the commercial nuclear electric power industry, it has been recognized that spent nuclear reactor fuel must be able to be readily removed from the reactor vessel in the plant and safely stored on-site. The need for adjacent ready storage is first for safety. In the event of an emergency, or necessary maintenance that requires the removal of irradiated fuel from the reactor vessel, cooled reserve storage capacity for the full amount of fuel from the reactor core must be available. Also, the uranium fuel in the reactor eventually reaches the point where its heat generation is below the planned efficiency for steam production which drives the turbines and generators. It then must be replaced by fresh uranium fuel, with the spent fuel'' elements being removed to a safe and convenient storage location near the reactor vessel. The federal nuclear waste repository program, even without delays in the current schedule of disposal becoming available in 2003, will result in a large percentage of the 111 existing operable commercial reactors requiring expansion of their spent fuel storage capacity. How that need can and will be met raises issues of both technology and policy that will be reviewed in this report.

1989-10-01T23:59:59.000Z

399

Decontamination and decommissioning of the Argonne Thermal Source Reactor at Argonne National Laboratory - East project final report.  

SciTech Connect

The ATSR D&D Project was directed toward the following goals: (1) Removal of radioactive and hazardous materials associated with the ATSR Reactor facility; (2) Decontamination of the ATSR Reactor facility to unrestricted use levels; and (3)Documentation of all project activities affecting quality (i.e., waste packaging, instrument calibration, audit results, and personnel exposure). These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the ATSR Reactor facility and to allow, upon completion of the project, unescorted and unmonitored access to the area. The reactor aluminum, reactor lead, graphite piles in room E-111, and the contaminated concrete in room E-102 were the primary areas of concern. NES, Incorporated (Danbury, CT) characterized the ATSR Reactor facility from January to March 1998. The characterization identified a total of thirteen radionuclides, with a total activity of 64.84 mCi (2.4 GBq). The primary radionuclides of concern were Co{sup 60}, Eu{sup 152}, Cs{sup 137}, and U{sup 238}. No additional radionuclides were identified during the D&D of the facility. The highest dose rates observed during the project were associated with the reactor tank and shield tank. Contact radiation levels of 30 mrem/hr (0.3 mSv/hr) were measured on reactor internals during dismantlement of the reactor. A level of 3 mrem/hr (0.03 mSv/hr) was observed in a small area (hot spot) in room E-102. DOE Order 5480.2A establishes the maximum whole body exposure for occupational workers at 5 rem/yr (50 mSv/yr); the administrative limit at ANL-E is 1 rem/yr (10 mSv/yr).

Fellhauer, C.; Garlock, G.; Mathiesen, J.

1998-12-02T23:59:59.000Z

400

Heat leak testing of a superconducting RHIC dipole magnet at Brookhaven National Laboratory  

SciTech Connect

Brookhaven National Laboratory is currently performing heat load tests on a superconducting dipole magnet. The magnet is a prototype of the 360, 8 cm bore, arc dipole magnets that will be used in the Relativistic Heavy Ion Collider (RMC). An accurate measurement of the heat load is needed to eliminate cumulative errors when determining the REUC cryogenic system load requirements. The test setup consists of a dipole positioned between two quadrupoles in a common vacuum tank and heat shield. Piping and instrumentation are arranged to facilitate measurement of the heat load on the primary 4.6 K magnet load and the secondary 55 K heat shield load. Initial results suggest that the primary heat load is well below design allowances. The secondary load was found to be higher than estimated, but remained close to the budgeted amount. Overall, the dipole performed to specifications.

DeLalio, J.T.; Brown, D.P.; Sondericker, J.H.

1993-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "national reactor testing" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

High Temperature Solid-Oxide Electrolyzer 2500 Hour Test Results At The Idaho National Laboratory  

DOE Green Energy (OSTI)

The Idaho National Laboratory (INL) has been developing the concept of using solid oxide fuel cells as electrolyzers for large-scale, high-temperature (efficient), hydrogen production. This program is sponsored by the U.S. Department of Energy under the Nuclear Hydrogen Initiative. Utilizing a fuel cell as an electrolyzer introduces some inherent differences in cell operating conditions. In particular, the performance of fuel cells operated as electrolyzers degrades with time faster. This issue of electrolyzer cell and stack performance degradation over time has been identified as a major barrier to technology development. Consequently, the INL has been working together with Ceramatec, Inc. (Salt Lake City, Utah) to improve the long-term performance of high temperature electrolyzers. As part of this research partnership, the INL conducted a 2500 hour test of a Ceramatec designed and produced stack operated in the electrolysis mode. This paper will provide a summary of experimental results to date for this ongoing test.

Carl Stoots; James O'Brien; Stephen Herring; Keith Condie; Lisa Moore-McAteer; Joseph J. Hartvigsen; Dennis Larsen

2009-11-01T23:59:59.000Z

402

Final Environmental Assessment for the Test Capabilities Revitalization at Sandia National Laboratories/New Mexico  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Final Environmental Assessment for the Test Capabilities Revitalization at Sandia National Laboratories/New Mexico D E P A R T M E N T O F E N E R G Y U N I T E D S T A T E S O F A M E R I C A January 2003 Department of Energy, Office of Kirtland Site Operations Kirtland Air Force Base, Albuquerque New Mexico Test Capabilities Revitalization Environmental Assessment January 2003 Department of Energy Office of Kirtland Site Operations i TABLE OF CONTENTS 1.0 PURPOSE AND NEED FOR AGENCY ACTION ........................................................... 1 2.0 NO ACTION AND PROPOSED ACTION ALTERNATIVES........................................ 2 2.1 EXISTING FACILITIES ...........................................................................................................

403

Idaho National Laboratory Lead or Lead-Bismuth Eutectic (LBE) Test Facility - R&D Requirements, Design Criteria, Design Concept, and Concept Guidance  

SciTech Connect

The Idaho National Laboratory Lead-Bismuth Eutectic Test Facility will advance the state of nuclear technology relative to heavy-metal coolants (primarily Pb and Pb-Bi), thereby allowing the U.S. to maintain the pre-eminent position in overseas markets and a future domestic market. The end results will be a better qualitative understanding and quantitative measure of the thermal physics and chemistry conditions in the molten metal systems for varied flow conditions (single and multiphase), flow regime transitions, heat input methods, pumping requirements for varied conditions and geometries, and corrosion performance. Furthering INL knowledge in these areas is crucial to sustaining a competitive global position. This fundamental heavy-metal research supports the National Energy Policy Development Group’s stated need for energy systems to support electrical generation.1 The project will also assist the Department of Energy in achieving goals outlined in the Nuclear Energy Research Advisory Committee Long Term Nuclear Technology Research and Development Plan,2 the Generation IV Roadmap for Lead Fast Reactor development, and Advanced Fuel Cycle Initiative research and development. This multi-unit Lead-Bismuth Eutectic Test Facility with its flexible and reconfigurable apparatus will maintain and extend the U.S. nuclear knowledge base, while educating young scientists and engineers. The uniqueness of the Lead-Bismuth Eutectic Test Facility is its integrated Pool Unit and Storage Unit. This combination will support large-scale investigation of structural and fuel cladding material compatibility issues with heavy-metal coolants, oxygen chemistry control, and thermal hydraulic physics properties. Its ability to reconfigure flow conditions and piping configurations to more accurately approximate prototypical reactor designs will provide a key resource for Lead Fast Reactor research and development. The other principal elements of the Lead-Bismuth Eutectic Test Facility (in addition to the Pool Unit and Storage Unit) are the Bench Scale Unit and Supporting Systems, principal of which are the O2 Sensor/Calibration System, Feed System, Transfer System, Off- Gas System, Purge and Evacuation System, Oxygen Sensor and Control System, Data Acquisition and Control System, and the Safety Systems. Parallel and/or independent corrosion studies and convective heat transfer experiments for cylindrical and annular geometries will support investigation of heat transfer phenomena into the secondary side. In addition, molten metal pumping concepts and power requirements will be measured for future design use.

Eric P. Loewen; Paul Demkowicz

2005-05-01T23:59:59.000Z

404

CRAD, Configuration Management - Oak Ridge National Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Configuration Management - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Configuration Management - Oak Ridge National Laboratory High Flux Isotope Reactor February...

405

FIRST SODIUM REACTOR EXPERIMENT (SRE) TEST OF HALLAM NUCLEAR POWER FACILITY (HNPF) CONTROL MATERIALS  

SciTech Connect

An experiment was conducted in the SRE to measure temperatures and neutron flux levels in and near a boron-containing simulated control rod. The data are being used to check analytical methods developed for prediction of control rod heat generation rates and maximum temperatures in this type of control rod in the Hallam Nuclear Power Facility. The maximum observed temperatures with a reactor power level of 20 Mw were 1363 deg F for a boron-- nickel alloy ring having a 0.105-in. radial clearance with the thimble and 1100 deg F for a boron -nickel alloy ring having a 0.020-in. radial clearance. The maximum temperature difference between the coolant and the control rod was 473 deg F. It is concluded that the expected greater heat generation rates in the Hallam reactor would prohibit the use of boron-containing absorber materials in a combined a him-safety rod. (auth)

Arneson, S.O.

1959-06-01T23:59:59.000Z

406

Variation of the magnetic susceptibility of artificial graphite with exposure in the materials testing reactor  

SciTech Connect

The magnetic susceptibility of artificial graphite was determined as a function of exposure in the MTR. Specimens were studied with exposures ranging from 0.07 to 82 {times} 10{sup18} nvt. Fluxes were determined by means of x-ray measurements and resistivity measurements. The dependence of the magnetic susceptibility on exposure in the MTR and also in a Hanford reactor are graphed, and an equivalence factor is calculated.

McCelland, J.D.

1955-02-23T23:59:59.000Z

407

Materials Reliability Program: Reactor Vessel Head Boric Acid Corrosion Testing (MRP-199)  

Science Conference Proceedings (OSTI)

PWR coolant leakage from stress corrosion cracking of an Alloy 600 control rod drive mechanism (CRDM) penetration has led to one case of severe corrosion and cavity formation in a low-alloy steel reactor vessel head (RVH). The detailed progression of RVH wastage following initial leakage is complicated and probably involves several corrosion mechanisms. The Materials Reliability Program (MRP) has completed three tasks of a comprehensive program to examine postulated sequential stages of boric acid corros...

2007-06-27T23:59:59.000Z

408

RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: SINGLE CELL TESTS  

DOE Green Energy (OSTI)

An experimental investigation on the performance and durability of single solid oxide electrolysis cells (SOECs) is under way at the Idaho National Laboratory. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOECs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. A new test apparatus has been developed for single cell and small stack tests from different vendors. Single cells from Ceramatec Inc. show improved durability compared to our previous stack tests. Single cells from Materials and Systems Research Inc. (MSRI) demonstrate low degradation both in fuel cell and electrolysis modes. Single cells from Saint Gobain Advanced Materials (St. Gobain) show stable performance in fuel cell mode, but rapid degradation in the electrolysis mode. Electrolyte-electrode delamination is found to have significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the microstructure help to mitigate degradation. Polarization scans and AC impedance measurements are performed during the tests to characterize the cell performance and degradation.

X. Zhang; J. E. O'Brien; R. C. O'Brien

2012-07-01T23:59:59.000Z

409

Brief summary of reactor core component welding for the Fast Flux Test Facility (FFTF)  

SciTech Connect

Included are descriptions of welding methods and joint design, welding equipment, and qualification tests. (DG)

Brown, W.F.

1974-04-15T23:59:59.000Z

410

ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE  

DOE Green Energy (OSTI)

The Idaho National Laboratory (INL) is preparing to fuel and test the Advanced Stirling Radioisotope Generator (ASRG), the next generation space power generator. The INL identified the thermal vacuum test chamber used to test past generators as inadequate. A second vacuum chamber was upgraded with a thermal shroud to process the unique needs and to test the full power capability of the new generator. The thermal vacuum test chamber is the first of its kind capable of testing a fueled power system to temperature that accurately simulate space. This paper outlines the new test and set up capabilities at the INL.

J. C. Giglio; A. A. Jackson

2012-03-01T23:59:59.000Z

411

Nevada Test Site National Emission Standards for Hazardous Air Pollutants Calendar Year 2007  

SciTech Connect

The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office. From 1951 through 1992, the NTS was operated as the nation's site for nuclear weapons testing. The release of man-made radionuclides from the NTS as a result of testing activities has been monitored since the first decade of atmospheric testing. After 1962, when nuclear tests were conducted only underground, the radiation exposure to the public surrounding the NTS was greatly reduced. After the 1992 moratorium on nuclear testing, radiation monitoring on the NTS focused on detecting airborne radionuclides which come from historically contaminated soi