Sample records for national primary drinking

  1. A National Direct Primary for the Presidency

    E-Print Network [OSTI]

    Crookham, Arthur L.

    1912-01-01T23:59:59.000Z

    sphere of acti vi ty left ''It-O : him~ ' ·In the caucus, primary or .( , .' conventi.on, ~ un~e'g\\{iated 'by law, he has realized his . ", ";. .,:., 'r, ~~.; ~ '>-- opportunit~·e~.~'ttci~\\ ~~~,. :fil,i.f.e~t degree. "Let me control , ,,;. .' 'I... if the defection was s.trong enough to threaten disaster, and then to bind all who stayed thr ough the caucus to its decision. When there is remembered, the added fact that Congress was conven- iently in session previous to the president'ial elect- ion (an item...

  2. Drinking Water Standards Drinking water from a local public supply must

    E-Print Network [OSTI]

    Dyer, Bill

    Drinking Water Standards Drinking water from a local public supply must meet federal and state standards for safe drink- ing water. Two sets of standards-primary drinking water and secondary drinking water- establish Maximum Contaminant Levels (MCLs) for a variety of contaminants. If the water sup- ply

  3. ESTABLISHING PUBLIC POLICY AS A PRIMARY CAUSE OF ENGINEERING FAILURE IN NATIONAL INFRASTRUCTURES

    E-Print Network [OSTI]

    Williamson, John

    and longer term vulnerabilities led to a domino-effect in which 50 million people had their power supplies disruptions to a national power distribution network. The causes of this infrastructure failure includedESTABLISHING PUBLIC POLICY AS A PRIMARY CAUSE OF ENGINEERING FAILURE IN NATIONAL INFRASTRUCTURES

  4. Evaluation of yield regulation options for primary forest in Tapajos National Forest, Brazil

    E-Print Network [OSTI]

    Evaluation of yield regulation options for primary forest in Tapajo´s National Forest, Brazil PaulJN, Scotland b Instituto do Homem e Meio Ambiente da Amazo^nia (IMAZON), CEP 66060-160 Bele´m, Brazil c Projeto Dendrogene, EMBRAPA, CEP 66095-100 Bele´m, Brazil Received 23 November 2005; received

  5. Radioactive isotopes in Danish drinking water

    E-Print Network [OSTI]

    Radioactive isotopes in Danish drinking water Sven P. Nielsen Risř National Laboratory Working OF INVESTIGATION 11 3 DESCRIPTION OF INVESTIGATION 12 4 RADIOACTIVITY IN DRINKING WATER 13 5 SAMPLING 15 6 27 #12;4 #12;5 Preface This project for investigation of radioactivity in drinking water shall

  6. Primary

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a evie _ =_ In7, 2011 atJohnPrices,2: PricesData33Net

  7. Underage Drinking Underage drinking is a serious public health problem in the

    E-Print Network [OSTI]

    Bandettini, Peter A.

    poses enormous health and safety risks. The consequences of underage drinking can affect everyone alcohol » By age 15, more than 50 percent of teens have had at least 1 drink.1 » By age 18, more than 70 on Drug Use and Health: Volume I. Summary of National Findings (Office of Applied Studies, NSDUH Series H

  8. Y-12 Groundwater Protection Program Extent Of The Primary Groundwater Contaminants At The Y-12 National Security Complex

    SciTech Connect (OSTI)

    none,

    2013-12-01T23:59:59.000Z

    This report presents data summary tables and maps used to define and illustrate the approximate lateral extent of groundwater contamination at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. The data tables and maps address the primary (i.e., most widespread and mobile) organic, inorganic, and radiological contaminants in the groundwater. The sampling locations, calculated contaminant concentrations, plume boundary values, and paired map format used to define, quantify, delineate, and illustrate the approximate extent of the primary organic, inorganic, and radiological contaminants in groundwater at Y-12 are described.

  9. Drinking Water Problems: Copper 

    E-Print Network [OSTI]

    Dozier, Monty; McFarland, Mark L.; Lesikar, Bruce J.

    2006-01-25T23:59:59.000Z

    High levels of copper in drinking water can cause health problems. This publication explains the effects of copper in water and methods of removing it. 4 pp....

  10. Drinking Water Problems: Copper

    E-Print Network [OSTI]

    Dozier, Monty; McFarland, Mark L.; Lesikar, Bruce J.

    2006-01-25T23:59:59.000Z

    High levels of copper in drinking water can cause health problems. This publication explains the effects of copper in water and methods of removing it. 4 pp....

  11. Drinking Water Problems: Nitrates

    E-Print Network [OSTI]

    Dozier, Monty; Melton, Rebecca; Hare, Michael; Hopkins, Janie; Lesikar, Bruce J.

    2008-03-28T23:59:59.000Z

    High levels of nitrates in drinking water can be harmful for very young infants and susceptible adults. This publication explains how people are exposed to nitrates, what health effects are caused by them in drinking water and how to remove them....

  12. Drinking Water Problems: Nitrates 

    E-Print Network [OSTI]

    Dozier, Monty; Melton, Rebecca; Hare, Michael; Hopkins, Janie; Lesikar, Bruce J.

    2008-03-28T23:59:59.000Z

    High levels of nitrates in drinking water can be harmful for very young infants and susceptible adults. This publication explains how people are exposed to nitrates, what health effects are caused by them in drinking water and how to remove them....

  13. Drinking Water Standards

    E-Print Network [OSTI]

    Dozier, Monty; McFarland, Mark L.

    2006-04-26T23:59:59.000Z

    This publication explains the federal safety standards for drinking water provided by public water supply systems. It discusses the legal requirements for public water supplies, the maximum level allowed for contaminants in the water...

  14. Drinking Water Problems: Radionuclides 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Melton, Rebecca; Hare, Michael; Hopkins, Janie; Dozier, Monty

    2006-08-04T23:59:59.000Z

    Radionuclides in drinking water can cause serious health problems for people. This publication explains what the sources of radionuclides in water are, where high levels have been found in Texas, how they affect health and how to treat water...

  15. Drinking Water Problems: Arsenic

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Melton, Rebecca; Hare, Michael; Hopkins, Janie; Dozier, Monty

    2005-12-02T23:59:59.000Z

    High levels of arsenic in drinking water can poison and even kill people. This publication explains the symptoms of arsenic poisoning and common treatment methods for removing arsenic from your water supply....

  16. Drinking Water Problems: Benzene 

    E-Print Network [OSTI]

    Dozier, Monty; Lesikar, Bruce J.

    2009-04-16T23:59:59.000Z

    Drinking water in Texas sometimes contains potentially harmful chemicals, including benzene. Well owners can learn how to treat their well water to remove these chemicals. 4 pages, 3 images...

  17. Drinking Water Problems: Corrosion

    E-Print Network [OSTI]

    Drinking Water Problems: Corrosion Mark L. McFarland, Tony L. Provin, and Diane E. Boellstorff and fail. Corrosion can cause three types of damage: · The entire metal surface gradually thins and red (Fig. 1). · Deep pits appear that can penetrate pipe or tank walls. This type of corrosion may not add

  18. Drinking Water Problems: Radionuclides

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Melton, Rebecca; Hare, Michael; Hopkins, Janie; Dozier, Monty

    2006-08-04T23:59:59.000Z

    can accumulate to harmful levels in drinking water. As radionuclides decay, they emit radioactive parti- cles such as alpha particles, beta particles and gamma rays. Each type of particle produces different effects on humans. Alpha particles... penetrating, alpha particles cause more damage per unit volume than do beta particles or gamma rays. Beta particles and gamma rays deposit their ener- gy over longer distances. Beta particles can be stopped by a piece of wood or a thin sheet of metal...

  19. Removing Arsenic from Drinking Water

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    See how INL scientists are using nanotechnology to remove arsenic from drinking water. For more INL research, visit http://www.facebook.com/idahonationallaboratory

  20. Drinking Water Problems: Lead

    E-Print Network [OSTI]

    Dozier, Monty; McFarland, Mark L.

    2004-02-20T23:59:59.000Z

    A lmost everyone knows that lead-based paint caused serious health problems (especially in children) before it was banned. But not everyone is aware that people can ingest lead from other sources such as contaminat- ed food and drinking water... sources of lead con- tamination. But if your water comes from a private well, it might contain enough lead to warrant action. How does lead affect health? Lead can be absorbed through the digestive tract, the lungs and the skin. It accumulates in the body...

  1. When alcohol-dependent people try to stop drink-

    E-Print Network [OSTI]

    Baker, Chris I.

    some form of treatment. If you or someone you care about may have an alcohol problem, help is available--so they may drink some more, and it becomes a vicious cycle. "Addiction has 3 major problems: You lose your researcher studying new alcoholism treatments. "People develop an alcohol disorder National Institutes

  2. Primary Prevention of Hypertension

    E-Print Network [OSTI]

    Bandettini, Peter A.

    Primary Prevention of Hypertension: Clinical and Public Health Advisory from the National High NIH PUBLICATION NO. 02-5076 NOVEMBER 2002 Primary Prevention of Hypertension: Clinical and Public OF HYPERTENSION CLINICAL AND PUBLIC HEALTH ADVISORY FROM THE NATIONAL HIGH BLOOD PRESSURE EDUCATION PROGRAM

  3. The Drinking Water Security and Safety Amendments of 2002: Is America's Drinking Water Infrastructure Safer Four Years Later?

    E-Print Network [OSTI]

    Shermer, Steven D.

    2006-01-01T23:59:59.000Z

    Threats to Drinking Water Security . a.The Drinking Water Security and Safety Amendments2002: Is America's Drinking Water Infrastructure Safer Four

  4. Abi Williams Drink and be merry

    E-Print Network [OSTI]

    Robertson, Stephen

    on a platter from John Lewis, cinnamon infused bread sauce and incongruous prosecco drink! to Christmas! and

  5. 20121114 Riverton drinking wa...

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -KWatertown Arsenal' TO:Sherwood,DOEWhere

  6. act fqpa drinking: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    furfural in alcoholic drink Alexandrion goes to the conclusion that the rate of distilled wine used to obtain this drink is very low. Simona Dobrinas; Gabriela Stanciu; Alina...

  7. Sector reform impact on rural drinking water schemes -A case study from Raigad district in Maharashtra

    E-Print Network [OSTI]

    Sohoni, Milind

    of India (GoI) policy and its influence on a subject, viz., water, which falls within the state's purview policy in Maharashtra. We observe that compared to what is reflected in the national rural drinking water unchanged in spite of the changes in policy regimes. We find that poor capacity and expertise of state

  8. Drinking Water State Revolving Loan Fund (New Mexico)

    Broader source: Energy.gov [DOE]

    The Drinking Water State Revolving Loan Fund provides low cost financial assistance to eligible public water systems to finance the cost of repair and replacement of drinking water infrastructure,...

  9. Addressing Nitrate in California's Drinking Water

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    for the California State Water Resources Control Board With a Focus on Tulare Lake Basin and Salinas Valley #12;Addressing Nitrate in California's Drinking Water With a Focus on Tulare Lake Basin and Salinas Lake Basin and Salinas Valley Groundwater. Report for the State Water Resources Control Board Report

  10. Ground water provides drinking water, irrigation for

    E-Print Network [OSTI]

    Saldin, Dilano

    Ground water provides drinking water, irrigation for crops and water for indus- tries. It is also connected to surface waters, and maintains the flow of rivers and streams and the level of wetlands- tion of those along Lake Michigan, most communi- ties, farms and industries still rely on ground water

  11. The Karjat Drinking Water Project GISE (CSE)-CTARA

    E-Print Network [OSTI]

    Sohoni, Milind

    2000-3000mm rainfall, frequent and severe drinking water shortage in many wadis. This year, about 25The Karjat Drinking Water Project GISE (CSE)-CTARA Milind Sohoni www.cse.iitb.ac.in/sohoni () May% literacy. 175 hamlets, 49 gram-panchayats, 3 towns. () May 24, 2010 2 / 11 #12;Drinking water Though about

  12. Program Objectives | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Objectives Program Objectives National Laser Users' Facility Grant Program Objectives The primary purpose of the National Laser Users' Facility (NLUF) is to provide facility time...

  13. National Laboratory Liaisons | Department of Energy

    Office of Environmental Management (EM)

    Laboratory Liaisons National Laboratory Liaisons The following U.S. Department of Energy national laboratory liaisons serve as primary contacts for the Federal Energy...

  14. alcohol drinking study: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12; Drinking Water Distribution Systems Hydraulics, Leakage, and Water Quality Issues Life Cycle Assessment for Different Piping Materials Water Demand Analysis due to Water...

  15. alcohol risk drinking: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12; Drinking Water Distribution Systems Hydraulics, Leakage, and Water Quality Issues Life Cycle Assessment for Different Piping Materials Water Demand Analysis due to Water...

  16. alcohol binge drinking: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12; Drinking Water Distribution Systems Hydraulics, Leakage, and Water Quality Issues Life Cycle Assessment for Different Piping Materials Water Demand Analysis due to Water...

  17. alcohol drinking patterns: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Brief Intervention and Referral Treatment ( 2013-01-01 20 Symposium: Drink and the Life Cycle Mathematics Websites Summary: and Alcohol in Ancient Rome." Ruth Cherrington...

  18. alcohol drinking individuals: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12; Drinking Water Distribution Systems Hydraulics, Leakage, and Water Quality Issues Life Cycle Assessment for Different Piping Materials Water Demand Analysis due to Water...

  19. alcohol drinking: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12; Drinking Water Distribution Systems Hydraulics, Leakage, and Water Quality Issues Life Cycle Assessment for Different Piping Materials Water Demand Analysis due to Water...

  20. alcohol drinking frequency: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12; Drinking Water Distribution Systems Hydraulics, Leakage, and Water Quality Issues Life Cycle Assessment for Different Piping Materials Water Demand Analysis due to Water...

  1. alcohol drinking cigarette: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12; Drinking Water Distribution Systems Hydraulics, Leakage, and Water Quality Issues Life Cycle Assessment for Different Piping Materials Water Demand Analysis due to Water...

  2. alcohol drinking behaviors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12; Drinking Water Distribution Systems Hydraulics, Leakage, and Water Quality Issues Life Cycle Assessment for Different Piping Materials Water Demand Analysis due to Water...

  3. Your Actions Can Help Protect Our Drinking Water

    E-Print Network [OSTI]

    Harris, Janie

    2004-06-29T23:59:59.000Z

    This publication offers advice on how to protect our drinking water supply by properly selecting, storing, using and disposing of household hazardous products....

  4. Arsenic in Drinking Water: Regulatory Developments and Issues

    National Nuclear Security Administration (NNSA)

    Order Code RS20672 Updated May 1, 2007 Arsenic in Drinking Water: Regulatory Developments and Issues Mary Tiemann Specialist in Environmental Policy Resources, Science, and...

  5. Hydrogen Sulfide in Drinking Water: Causes and Treatment Alternatives

    E-Print Network [OSTI]

    McFarland, Mark L.; Provin, Tony

    1999-06-15T23:59:59.000Z

    If drinking water has a nuisance "rotten egg odor, it contains hydrogen sulfide. This leaflet discusses how hydrogen sulfide is formed and how the problem can be corrected....

  6. Mouse inbred strain differences in ethanol drinking to intoxication

    E-Print Network [OSTI]

    Garland Jr., Theodore

    Mouse inbred strain differences in ethanol drinking to intoxication J. S. Rhodes*, , M. M. Ford , C described a simple procedure, Drinking in the Dark (DID), in which C57BL/6J mice self-administer ethanol to a blood ethanol concentration (BEC) above 1 mg/ml. The test consists of replacing the water with 20

  7. DRINKING WATER ON EMPTY RINK WATER ON EMPTY STOMACHD

    E-Print Network [OSTI]

    Srivastava, Kumar Vaibhav

    DRINKING WATER ON EMPTY STOMACH RINK WATER ON EMPTY STOMACHD It is popular in Japan today to drink water immediately after waking up every morning. Furthermore, scientific tests have proven its value.. We publish below a description of use of water for our readers. For old and serious diseases as well

  8. Addressing Nitrate in California's Drinking Water California Nitrate Project,

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    Control Board Report to the Legislature With a Focus on Tulare Lake Basin and Salinas Valley Groundwater Addressing Nitrate in California's Drinking Water With a Focus on Tulare Lake Basin and Salinas Valley: Addressing Nitrate in California's Drinking Water with a Focus on Tulare Lake Basin and Salinas Valley

  9. Lung Cancer and Arsenic Concentrations in Drinking Water in Chile

    E-Print Network [OSTI]

    California at Berkeley, University of

    Lung Cancer and Arsenic Concentrations in Drinking Water in Chile Catterina Ferreccio,1,2 Claudia- trations have since been reduced to 40 g/liter. We investi- gated the relation between lung cancer and arsenic in drinking water in northern Chile in a case-control study involving patients diagnosed with lung

  10. Apportionment of ambient primary and secondary fine particulate matter at the Pittsburgh National Energy Laboratory particulate matter characterization site using positive matrix factorization and a potential source contributions function analysis

    SciTech Connect (OSTI)

    Donald V. Martello; Natalie J. Pekney; Richard R. Anderson (and others) [U.S. Department of Energy, Pittsburgh, PA (United States). National Energy Technology Laboratory

    2008-03-15T23:59:59.000Z

    Fine particulate matter (PM2.5) concentrations associated with 202 24-hr samples collected at the National Energy Technology Laboratory particulate matter characterization site in south Pittsburgh from October 1999 through September 2001 were used to apportion PM2.5 into primary and secondary contributions using Positive Matrix Factorization (PMF2). Input included the concentrations of PM2.5 mass determined with a Federal Reference Method (FRM) sampler, semi-volatile PM2.5 organic material, elemental carbon (EC), and trace element components of PM2.5. A total of 11 factors were identified. The results of potential source contributions function analysis using PMF2 factors and HYSPLIT-calculated back-trajectories were used to identify those factors associated with specific meteorological transport conditions. The 11 factors were identified as being associated with emissions from various specific regions and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. Three sources associated with transport from coal-fired power plants to the southeast, a combination of point sources to the northwest, and a steel mill and associated sources to the west were identified. In addition, two secondary-material-dominated sources were identified, one was associated with secondary products of local emissions and one was dominated by secondary ammonium sulfate transported to the NETL site from the west and southwest. Of these 11 factors, the four largest contributors to PM2.5 were the secondary transported material, local secondary material, diesel combustion emissions, and gasoline combustion emissions. 26 refs., 10 figs., 1 tab.

  11. Comparing the Primary Electron Transfer Process in Organic Photovoltai...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Comparing the Primary Electron Transfer Process in Organic Photovoltaic Heterojunctions with Photosynthetic Reaction Centers October 4, 2011 at 3pm36-428 Garry Rumbles National...

  12. National Renewable Energy Laboratory Analysis Capabilities

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Analysis Capabilities Overview The National Renewable Energy Laboratory (NREL) is the nation's primary laboratory for renewable energy and energy efficiency research and development (R&D). NREL

  13. Apportionment of ambient primary and secondary fine particulate matter at the Pittsburgh National Energy Laboratory particulate matter characterization site using positive matrix factorization and a potential source contributions function analysis

    SciTech Connect (OSTI)

    Martello, D.V.; Pekney, N.J.; Anderson, R.R.; Davidson, C.I. (Carnegie Mellon U., Pittsburgh, PA); Hopke, P.K. (Clarkson University, Potsdam, NY); Kim, E. (Clarkson University, Potsdam, NY); Christensen, W.F. (Brigham Young Univ., Provo, UT); Mangelson, N.F. (Brigham Young Univ., Provo, UT); Eatough, D.J. (Brigham Young Univ., Provo, UT)

    2008-03-01T23:59:59.000Z

    Fine particulate matter (PM2.5) concentrations associated with 202 24-hr samples collected at the National Energy Technology Laboratory (NETL) particulate matter (PM) characterization site in south Pittsburgh from October 1999 through September 2001 were used to apportion PM2.5 into primary and secondary contributions using Positive Matrix Factorization (PMF2). Input included the concentrations of PM2.5 mass determined with a Federal Reference Method (FRM) sampler, semi-volatile PM2.5 organic material, elemental carbon (EC), and trace element components of PM2.5. A total of 11 factors were identified. The results of potential source contributions function (PSCF) analysis using PMF2 factors and HYSPLIT-calculated back-trajectories were used to identify those factors associated with specific meteorological transport conditions. The 11 factors were identified as being associated with emissions from various specific regions and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. Three sources associated with transport from coal-fired power plants to the southeast, a combination of point sources to the northwest, and a steel mill and associated sources to the west were identified. In addition, two secondary-material-dominated sources were identified, one was associated with secondary products of local emissions and one was dominated by secondary ammonium sulfate transported to the NETL site from the west and southwest. Of these 11 factors, the four largest contributors to PM2.5 were the secondary transported material (dominated by ammonium sulfate) (47%), local secondary material (19%), diesel combustion emissions (10%), and gasoline combustion emissions (8%). The other seven factors accounted for the remaining 16% of the PM2.5 mass. The findings are consistent with the major source of PM2.5 in the Pittsburgh area being dominated by ammonium sulfate from distant transport and so decoupled from local activity emitting organic pollutants in the metropolitan area. In contrast, the major local secondary sources are dominated by organic material.

  14. Apportionment of ambient primary and secondary fine particulate matter at the Pittsburgh National Energy Laboratory particulate matter characterization site using positive matrix factorization and a potential source contributions function analysis

    SciTech Connect (OSTI)

    Martello, DV [Martello, Donald V.; Pekney, NJ [Pekney, Natalie J.; Anderson, RR [Anderson, Richard; R,; Davidson, CI [Davidson, Cliff I.; Hopke, PK [Hopke, Philip K.; Kim, E [Kim, Eugene; Christensen, WF; (Christensen, William F.); Mangelson, NF [Mangelson, Nolan F.; Eatough, DJ [Eatough, Delbert J.

    2008-03-01T23:59:59.000Z

    Fine particulate matter (PM2.5) concentrations associated with 202 24-hr amples collected at the National Energy Technology Laboratory (NETL) particulate matter (PM) characterization site in south Pittsburgh from October 1999 through September 2001 were used to apportion PM2.5 into primary and secondary contributions using Positive Matrix Factorization (PMF2). Input included the concentrations of PM2.5 mass determined with a Federal Reference Method (FRM) sampler, semi-volatile PM2.5, organic material, elemental carbon (EC), and trace element components of PM2.5. A total of 11 factors were identified. The results of potential source contributions function (PSCF) analysis using PMF2 factors and HYSPLIT-calculated back-trajectories were used to identify those factors associated with specific meteorological transport conditions. The 11 factors were identified as being associated with emissions from various specific regions and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. Three sources associated with transport from coal-fired power plants to the southeast, a combination of point sources to the northwest, and a steel mill and associated sources to the west were identified. In addition, two secondary-material-dominated sources were identified, one was associated with secondary products of local emissions and one was dominated by secondary ammonium sulfate transported to the NETL site from the west and southwest. Of these 11 factors, the four largest contributors to PM2.5, were the secondary transported material (dominated by ammonium sulfate) (47%), local secondary material (19%), diesel combustion emissions (10%), and gasoline combustion emissions (8%). The other seven factors accounted for the remaining 16% of the PM2.5 mass. The findings are consistent with the major source of PM2.5 in the Pittsburgh area being dominated by ammonium sulfate from distant transport and so decoupled from local activity emitting organic pollutants in the metropolitan area. In contrast, the major local secondary sources are dominated by organic material.

  15. Apportionment of Ambient Primary and Secondary Fine Particulate Matter at the Pittsburgh National Energy Laboratory Particulate Matter Characterization Site Using Positive Matrix Factorization and a Potential Source Contributions Function Analysis

    SciTech Connect (OSTI)

    Martello, Donald [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Pekney, Natalie [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Anderson, Richard [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Davidson, Cliff [Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA; Hopke, Philip [Clarkson Univ., Potsdam, NY (United States). Center for Air Resources Engineering and Science, and Dept. of Chemical Engineering; Kim, Eugene [Clarkson Univ., Potsdam, NY (United States). Center for Air Resources Engineering and Science, and Dept. of Chemical Engineering; Christensen, William [Brigham Young Univ., Provo, UT (United States). Dept. of Statistics; Mangelson, Nolan [Brigham Young Univ., Provo, UT (United States). Dept. of Chemistry and Biochemistry; Eatough, Delbert [Brigham Young Univ., Provo, UT (United States). Dept. of Chemistry and Biochemistry

    2008-03-01T23:59:59.000Z

    Fine particulate matter (PM2.5) concentrations associated with 202 24-hr samples collected at the National Energy Technology Laboratory (NETL) particulate matter (PM) characterization site in south Pittsburgh from October 1999 through September 2001 were used to apportion PM2.5 into primary and secondary contributions using Positive Matrix Factorization (PMF2). Input included the concentrations of PM2.5 mass determined with a Federal Reference Method (FRM) sampler, semi-volatile PM2.5, organic material, elemental carbon (EC), and trace element components of PM2.5. A total of 11 factors were identified. The results of potential source contributions function (PSCF) analysis using PMF2 factors and HYSPLIT-calculated back-trajectories were used to identify those factors associated with specific meteorological transport conditions. The 11 factors were identified as being associated with emissions from various specific regions and facilities including crustal material, gasoline combustion, diesel combustion, and three nearby sources high in trace metals. Three sources associated with transport from coal-fired power plants to the southeast, a combination of point sources to the northwest, and a steel mill and associated sources to the west were identified. In addition, two secondary-material-dominated sources were identified, one was associated with secondary products of local emissions and one was dominated by secondary ammonium sulfate transported to the NETL site from the west and southwest. Of these 11 factors, the four largest contributors to PM2.5, were the secondary transported material (dominated by ammonium sulfate) (47%), local secondary material (19%), diesel combustion emissions (10%), and gasoline combustion emissions (8%). The other seven factors accounted for the remaining 16% of the PM2.5 mass. The findings are consistent with the major source of PM2.5 in the Pittsburgh area being dominated by ammonium sulfate from distant transport and so decoupled from local activity emitting organic pollutants in the metropolitan area. In contrast, the major local secondary sources are dominated by organic material.

  16. arsenical livestock drinking: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SONG. "Whoe'er would search the starry sky, Physics Websites Summary: want To drink his bottle a day, sir 1 12;"Cold water makes no lucky hits; On mysteries the head runsTHE...

  17. C:\\Users\\sesteven\\AppData\\Local\\Temp\\final food_drink policy_2011.doc 2011 W. K. Kellogg Health Sciences Library Food & Drink Policy

    E-Print Network [OSTI]

    Lotze, Heike K.

    in capped plastic or glass bottles water bottles Paper or Styrofoam cups with lids Containers and a drinking hole that can be closed Sports bottles with a drinking spout that can be closed Beverages

  18. Health Information Systems for Primary Health Care: Thinking About Participation

    E-Print Network [OSTI]

    Sahay, Sundeep

    Health Information Systems for Primary Health Care: Thinking About Participation Elaine Byrne in supporting primary health care functioning, the design, development and implementation of these systems information systems, human rights 1. Introduction: Primary health care is a crucial element of national health

  19. A study of English primary care trusts Research report

    E-Print Network [OSTI]

    Birmingham, University of

    Setting priorities in health A study of English primary care trusts Research report Suzanne priorities in health: a study of English primary care trusts Contents List of figures and tables 4 Glossary 6 priorities in health: a study of English primary care trusts 3. Priority setting: the national picture 21

  20. Assessing the Risk of Mercury in Drinking Water after UV Lamp Breaks Page 1 Assessing the Risk of Mercury in Drinking Water after UV Lamp Breaks

    E-Print Network [OSTI]

    energy through temperature and pressure to drive the mercury into a vapor phase. Mercury is a heavy metal, and is regulated in drinking water by the EPA through the Safe Drinking Water Act (SDWA). If an on-line lamp break historically the U.S. has been skeptical to implement UV into drinking water systems, many areas of Europe

  1. Primary enzyme quantitation

    DOE Patents [OSTI]

    Saunders, G.C.

    1982-03-04T23:59:59.000Z

    The disclosure relates to the quantitation of a primary enzyme concentration by utilizing a substrate for the primary enzyme labeled with a second enzyme which is an indicator enzyme. Enzyme catalysis of the substrate occurs and results in release of the indicator enzyme in an amount directly proportional to the amount of primary enzyme present. By quantifying the free indicator enzyme one determines the amount of primary enzyme present.

  2. Fisk-based criteria to support validation of detection methods for drinking water and air.

    SciTech Connect (OSTI)

    MacDonell, M.; Bhattacharyya, M.; Finster, M.; Williams, M.; Picel, K.; Chang, Y.-S.; Peterson, J.; Adeshina, F.; Sonich-Mullin, C.; Environmental Science Division; EPA

    2009-02-18T23:59:59.000Z

    This report was prepared to support the validation of analytical methods for threat contaminants under the U.S. Environmental Protection Agency (EPA) National Homeland Security Research Center (NHSRC) program. It is designed to serve as a resource for certain applications of benchmark and fate information for homeland security threat contaminants. The report identifies risk-based criteria from existing health benchmarks for drinking water and air for potential use as validation targets. The focus is on benchmarks for chronic public exposures. The priority sources are standard EPA concentration limits for drinking water and air, along with oral and inhalation toxicity values. Many contaminants identified as homeland security threats to drinking water or air would convert to other chemicals within minutes to hours of being released. For this reason, a fate analysis has been performed to identify potential transformation products and removal half-lives in air and water so appropriate forms can be targeted for detection over time. The risk-based criteria presented in this report to frame method validation are expected to be lower than actual operational targets based on realistic exposures following a release. Note that many target criteria provided in this report are taken from available benchmarks without assessing the underlying toxicological details. That is, although the relevance of the chemical form and analogues are evaluated, the toxicological interpretations and extrapolations conducted by the authoring organizations are not. It is also important to emphasize that such targets in the current analysis are not health-based advisory levels to guide homeland security responses. This integrated evaluation of chronic public benchmarks and contaminant fate has identified more than 200 risk-based criteria as method validation targets across numerous contaminants and fate products in drinking water and air combined. The gap in directly applicable values is considerable across the full set of threat contaminants, so preliminary indicators were developed from other well-documented benchmarks to serve as a starting point for validation efforts. By this approach, at least preliminary context is available for water or air, and sometimes both, for all chemicals on the NHSRC list that was provided for this evaluation. This means that a number of concentrations presented in this report represent indirect measures derived from related benchmarks or surrogate chemicals, as described within the many results tables provided in this report.

  3. Designing of a prototype heat-sealer to manufacture solar water sterilization pouches for use in developing nations

    E-Print Network [OSTI]

    Quinlan, Saundra S

    2005-01-01T23:59:59.000Z

    Water purification proves to be a difficult task in many developing nations. The SODIS (SOlar water DISinfection) process is a method which improves the microbiological quality of water making it safer for drinking and ...

  4. Reducing Disinfection By-Products in Small Drinking Water Systems

    E-Print Network [OSTI]

    not decrease the residual TOC by 0.3 mg/L. #12;Guidelines: Coagulant dosages for water supplies where NOMReducing Disinfection By-Products in Small Drinking Water Systems by M. Robin Collins, James P. Malley, Jr, & Ethan Brooke Water Treatment Technology Assistance Center Department of Civil Engineering

  5. Storing A Safe Emergency Drinking Water By Sharon Skipton,

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    . These water supplies may contain enough residual disinfectant to deactivate pathogens that might be introducedStoring A Safe Emergency Drinking Water Supply By Sharon Skipton, UNL Extension Water Quality and other property, loss of power, and in some cases an interruption in water supplies. Having a safe

  6. Addressing Nitrate in California's Drinking Water California Nitrate Project,

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    Control Board Report to the Legislature With a Focus on Tulare Lake Basin and Salinas Valley Groundwater and Salinas Valley Groundwater Report for the State Water Resources Control Board Report to the Legislature in California's Drinking Water with A Focus on Tulare Lake Basin and Salinas Valley Groundwater. Report

  7. Addressing Nitrate in California's Drinking Water California Nitrate Project,

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    Control Board Report to the Legislature With a Focus on Tulare Lake Basin and Salinas Valley Groundwater Report 6 Addressing Nitrate in California's Drinking Water With a Focus on Tulare Lake Basin and Salinas and Salinas Valley Groundwater. Report for the State Water Resources Control Board Report to the Legislature

  8. Making Drinking Water Safer from Bacterial Contamination in Emergency Situations

    E-Print Network [OSTI]

    . Avoid water having a dark color, an odor or containing floating materials since such things may indicate or floating matter. 2. Boil the water vigorously for at least 10 minutes. 3. After it cools, the waterMaking Drinking Water Safer from Bacterial Contamination in Emergency Situations Monty C. Dozier

  9. The water concept in the self-sufficient house Drinking rainwater and reusing wastewater

    E-Print Network [OSTI]

    Wehrli, Bernhard

    the chance to do just that. Lack of drinking water hygiene is one of the main sources of disease transmissionThe water concept in the self-sufficient house Drinking rainwater and reusing wastewater Decentralized systems for drinking water processing could make a significant contribution to the Millennium

  10. National Ambient Radiation Database

    SciTech Connect (OSTI)

    Dziuban, J.; Sears, R.

    2003-02-25T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) recently developed a searchable database and website for the Environmental Radiation Ambient Monitoring System (ERAMS) data. This site contains nationwide radiation monitoring data for air particulates, precipitation, drinking water, surface water and pasteurized milk. This site provides location-specific as well as national information on environmental radioactivity across several media. It provides high quality data for assessing public exposure and environmental impacts resulting from nuclear emergencies and provides baseline data during routine conditions. The database and website are accessible at www.epa.gov/enviro/. This site contains (1) a query for the general public which is easy to use--limits the amount of information provided, but includes the ability to graph the data with risk benchmarks and (2) a query for a more technical user which allows access to all of the data in the database, (3) background information on ER AMS.

  11. Education research Primary Science

    E-Print Network [OSTI]

    Rambaut, Andrew

    Education research Primary Science Survey Report December 2011 #12;Primary Science Survey Report, Wellcome Trust 1 Background In May 2009 Key Stage 2 science SATs (Standard Assessment Tests) were abolished fiasco might occur, where the results were delayed and their quality questioned. The loss of science SATs

  12. Master logo Primary version

    E-Print Network [OSTI]

    Bandara, Arosha

    Master logo Primary version The master logo is the most important visual representation practical, this primary version of the logo must be used. Need help with something? Contact: brand logos, trade marks, trade names, photographic and video images, sound recordings, audio tools

  13. Delta Drinking Water Quality and TreatmentDelta Drinking Water Quality and Treatment WeiWei--Hsiang ChenHsiang Chen

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    ­ ozonation use, ()- Under construction SOURCE: CALFED (2005) and MWDSC (http://www.mwdh2o.com/index.htm ) #1211 Delta Drinking Water Quality and TreatmentDelta Drinking Water Quality and Treatment CostsCosts · Treatments for Delta water quality conditions to minimize cost within technology limits. · Results using

  14. Primary Bilingual logo 02 Primary Unilingual Logo 02

    E-Print Network [OSTI]

    brand Visual identity guidelines #12;logos Primary Bilingual logo 02 Primary Unilingual Logo 02 Logo 08 Athletics 09 Contents brand Colours Primary + Secondary Brand Colour 10 typography 13 friendships. #12;2 logos primary bilingual Crest logo Use the bilingual crest logo for all communications

  15. Research | Children’s Health Thyroid Function and Perchlorate in Drinking Water: An Evaluation among California Newborns, 1998

    E-Print Network [OSTI]

    Patricia A. Buffler; Michael A. Kelsh; Edmund C. Lau; Charlotte H. Edinboro; Julie C. Barnard; George W. Rutherford; Jorge J. Daaboul; Lynn Palmer; Fred W. Lorey

    ) has been detected in groundwater sources in numerous communities in California and other parts of the United States, raising concerns about potential impacts on health. For California communities where ClO 4 was tested in 1997 and 1998, we evaluated the prevalence of primary congenital hypothyroidism (PCH) and high thyroid-stimulating hormone (TSH) levels among the 342,257 California newborns screened in 1998. We compared thyroid function results among newborns from 24 communities with average ClO 4 concentrations in drinking water> 5 µg/L (n = 50,326) to newborns from 287 communities with average concentrations ? 5 µg/L (n = 291,931). ClO 4 concentrations obtained from the California Drinking Water Program provided source-specific data for estimating weighted average concentrations in community water. Fifteen cases of PCH from communities with average concentration> 5 µg/L were observed, with 20.4 expected [adjusted prevalence odds ratio (POR) = 0.71; 95 % confidence interval (CI), 0.40–1.19]. Although only 36 % of all California newborns were screened before 24 hr of

  16. Safe Drinking Water Act: Environmental Guidance Program Reference Book. Revision 6

    SciTech Connect (OSTI)

    Not Available

    1992-09-15T23:59:59.000Z

    This report presents information on the Safe Drinking Water Act. Sections are presented on: Legislative history and statute; implementing regulations; and updates.

  17. addressing high-risk drinking: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12; Drinking Water Distribution Systems Hydraulics, Leakage, and Water Quality Issues Life Cycle Assessment for Different Piping Materials Water Demand Analysis due to Water...

  18. Mineral balances, including in drinking water, estimated for Merced County dairy herds

    E-Print Network [OSTI]

    Castillo, Alejandro R Dr.; Santos, Jose Eduardo P.; Tabone, Tom J.

    2007-01-01T23:59:59.000Z

    et al. (1994). TABLE 3. Estimates of daily mineral intake,drinking-water mineral contributionand net mineral excretion in lactating cows on Merced County

  19. NATURAL RADIONUCLIDES MEASUREMENTS IN DRINKING WATER BY LIQUID SCINTILLATION COUNTING. METHODS AND RESULTS

    E-Print Network [OSTI]

    procedure, standardized by International Standard Organization.4 On the contrary, total indicative dose in view of a large scale monitoring program. World Health Organization guidelines for drinking water

  20. Aluminum and copper in drinking water enhance inflammatory oroxidative events specifically in the brain

    E-Print Network [OSTI]

    Bondy, Stephen Bondy C

    2006-01-01T23:59:59.000Z

    effects of iron and aluminum on stress-related genelopathy syndrome. Possible aluminum intoxication. N. Engl.Chronic exposure to aluminum in drinking water increases

  1. STANDARD ADDITION METHOD FOR THE DETERMINATION OF1 PHARMACEUTICAL RESIDUES IN DRINKING WATER BY SPE-2

    E-Print Network [OSTI]

    Boyer, Edmond

    STANDARD ADDITION METHOD FOR THE DETERMINATION OF1 PHARMACEUTICAL RESIDUES IN DRINKING WATER BY SPE-MS/MS is a powerful23 analytical tool often used to determine pharmaceutical residues at trace level in water.24 compounds in drinking or waste22 water processes has become very popular in recent years. LC

  2. George Best I spent 90% of my money on women, drink, and fast

    E-Print Network [OSTI]

    Halligan, Daniel

    are listed below. The ethanol per drink shows the relative strength of typical servings of drinks. A natural definition for a unit of alcohol is 15 ml ethanol, which is the amount of ethanol contained in one-sixth of a bottle (a typical glass) of wine. A shot of spirits contains slightly more ethanol, 17 ml. A bottle

  3. Contamination levels of human pharmaceutical compounds in French surface and drinking water

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -west France. 98 samples were analysed from 63 stations (surface water and drinking water produced from surface. The removal rate of human pharmaceutical compounds at 11 water treatment units was also determined. Only caffeine proved to be resistant to drinking water treatment processes (with a minimum rate of 5%). Other

  4. Is Your Well Water Safe to Drink? Family, Home & Garden Education Center

    E-Print Network [OSTI]

    New Hampshire, University of

    Is Your Well Water Safe to Drink? Family, Home & Garden Education Center practical solutions health. According to Bernie Lucey, senior engineer with the state's Drinking Water Protection Program, 56 the state's suggested standard. Up to 15 percent would flunk the U.S. Environmental Protection Agency

  5. Decrements in Lung Function Related to Arsenic in Drinking Water in West Bengal, India

    E-Print Network [OSTI]

    California at Berkeley, University of

    Decrements in Lung Function Related to Arsenic in Drinking Water in West Bengal, India Ondine S­2000, the authors investigated relations between lung function, respiratory symptoms, and arsenic in drinking water, consumption of arsenic-contaminated water was associated with respiratory symptoms and reduced lung function

  6. A field-based study of alternative microbial indicator tests for drinking water quality in Northern Ghana

    E-Print Network [OSTI]

    O'Keefe, Samantha F

    2012-01-01T23:59:59.000Z

    Safe drinking water is essential for human survival, yet it is unavailable to over 1 billion of the world's people living in poverty (World Bank, 2009). The current methods used to identify drinking water sources are ...

  7. drinking water. On the basis of the volume of ZnS precipitated in the biofilm, we estimate

    E-Print Network [OSTI]

    Kurapov, Alexander

    drinking water. On the basis of the volume of ZnS precipitated in the biofilm, we estimate, 647 (1964). 6. W. J. Drury, Water Environ. Res. 71, 1244 (1999). 7. U.S. Environmental Protection Agency, Office of Ground Water and Drinking Water, Current Drinking Water Standards (2000). 8

  8. Comparison of Three Primary Surface Recuperator Alloys

    SciTech Connect (OSTI)

    Matthews, Wendy [Capstone Turbines; More, Karren Leslie [ORNL; Walker, Larry R [ORNL

    2010-01-01T23:59:59.000Z

    Extensive work performed by Capstone Turbine Corporation, Oak Ridge National Laboratory, and various others has shown that the traditional primary surface recuperator alloy, type 347 stainless steel, is unsuitable for applications above 650 C ({approx}1200 F). Numerous studies have shown that the presence of water vapor greatly accelerates the oxidation rate of type 347 stainless steel at temperatures above 650 C ({approx}1200 F). Water vapor is present as a product of combustion in the microturbine exhaust, making it necessary to find replacement alloys for type 347 stainless steel that will meet the long life requirements of microturbine primary surface recuperators. It has been well established over the past few years that alloys with higher chromium and nickel contents than type 347 stainless steel have much greater oxidation resistance in the microturbine environment. One such alloy that has replaced type 347 stainless steel in primary surface recuperators is Haynes Alloy HR-120 (Haynes and HR-120 are trademarks of Haynes International, Inc.), a solid-solution-strengthened alloy with nominally 33 wt % Fe, 37 wt % Ni and 25 wt % Cr. Unfortunately, while HR-120 is significantly more oxidation resistant in the microturbine environment, it is also a much more expensive alloy. In the interest of cost reduction, other candidate primary surface recuperator alloys are being investigated as possible alternatives to type 347 stainless steel. An initial rainbow recuperator test has been performed at Capstone to compare the oxidation resistance of type 347 stainless steel, HR-120, and the Allegheny Ludlum austenitic alloy AL 20-25+Nb (AL 20-25+Nb is a trademark of ATI Properties, Inc. and is licensed to Allegheny Ludlum Corporation). Evaluation of surface oxide scale formation and associated alloy depletion and other compositional changes has been carried out at Oak Ridge National Laboratory. The results of this initial rainbow test will be presented and discussed in this paper.

  9. 1998 Environmental Monitoring Program Report for the Idaho National Engineering and Environmental Laboratory

    SciTech Connect (OSTI)

    L. V. Street

    1999-09-01T23:59:59.000Z

    This report describes the calendar year 1998 compliance monitoring and environmental surveillance activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory. This report includes results of sampling performed by the Drinking Water, Effluent, Storm Water, Groundwater Monitoring, and Environmental Surveillance Programs. This report compares the 1998 results to program-specific regulatory guidelines and past data to evaluate trends. The primary purposes of the monitoring and surveillance activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of public health and the environment. Surveillance of environmental media did not identify any previously unknown environmental problems or trends, which would indicate a loss of control or unplanned releases from facility operations. The INEEL complied with permits and applicable regulations, with the exception of nitrogen samples in a disposal pond effluent stream and iron and total coliform bacteria in groundwater downgradient from one disposal pond. Data collected by the Environmental Monitoring Program demonstrate that the public health and environment were protected.

  10. Ethanol as Internal Standard for Quantitative Determination of Volatile Compounds in Spirit Drinks by Gas Chromatography

    E-Print Network [OSTI]

    Charapitsa, Siarhei V; Kulevich, Nikita V; Makoed, Nicolai M; Mazanik, Arkadzi L; Sytova, Svetlana N

    2012-01-01T23:59:59.000Z

    The new methodical approach of using ethanol as internal standard in gas chromatographic analysis of volatile compounds in spirit drinks in daily practice of testing laboratories is proposed. This method provides determination of volatile compounds concentrations in spirit drinks directly expressed in milligrams per liter (mg/L) of absolute alcohol according to official methods without measuring of alcohol strength of analyzed sample. The experimental demonstration of this method for determination of volatile compounds in spirit drinks by gas chromatography is described. Its validation was carried out by comparison with experimental results obtained by internal standard method and external standard method.

  11. January 2, 2002 Bayesian Prediction of National MultiContaminant Trends in Community

    E-Print Network [OSTI]

    of the US EPA Office of Ground Water and Drinking Water, Standards and Risk Management Division and heavy metals. The regulatory process begins by establishing a maximum contaminant level goal (MCLGJanuary 2, 2002 Bayesian Prediction of National Multi­Contaminant Trends in Community Water System

  12. Energy Conservation Opportunities in Carbonated Soft Drink Canning/Bottling Facilities 

    E-Print Network [OSTI]

    Ganji, A. R.; Hackett, B.; Chow, S.

    2002-01-01T23:59:59.000Z

    detailed energy audits of a few large soft drink plants in California are presented. Major savings identified are in process modification, lighting, refrigeration, compressed air and most importantly combined heat and power. Although each facility has...

  13. Alcohol Consumption in University Students: The Relationship Between Personality and Metacognition in Relation to Drinking 

    E-Print Network [OSTI]

    Clark, Ailsa

    2010-03-17T23:59:59.000Z

    There are growing concerns over the heavy drinking found in university students in the UK. Metacognitions; the cognitive processes that oversee, monitor and control, cognition, have been related to alcohol use. The personality ...

  14. Determining the removal effectiveness of flame retardants from drinking water treatment processes

    E-Print Network [OSTI]

    Lin, Joseph C. (Joseph Chris), 1981-

    2004-01-01T23:59:59.000Z

    Low concentrations of xenobiotic chemicals have recently become a concern in the surface water environment. The concern expands to drinking water treatment processes, and whether or not they remove these chemicals while ...

  15. The Effect of the 18-Year Old Drinking Age on Auto Accidents

    E-Print Network [OSTI]

    Cucchiaro, Stephen

    The effect of Massachusetts' reduced drinking age on auto accidents is examined by employing an interrupted time series analysis of monthly accident data covering the period January, 1969, through September 1973. The data ...

  16. For Immediate Release --Monday, March 18, 2013 From Glaciers to drinking water: University of Lethbridge

    E-Print Network [OSTI]

    Seldin, Jonathan P.

    change and increasing demands due to human population and industrial activity to drinking water: University of Lethbridge Water Resource Experts Available on World gone? - Pipeline oil spills and river systems ­ how fast do

  17. Perfluoroalkyl Acids in Drinking Water: Sources, Fate and Removal C. Eschauzier

    E-Print Network [OSTI]

    van Rooij, Robert

    for the production of drinking water, if PFAAs are present in the groundwater they will most certainly pass through shown in several papers. The different treatment steps used such as coagulation, pellet softening, sand

  18. Energy Conservation Opportunities in Carbonated Soft Drink Canning/Bottling Facilities

    E-Print Network [OSTI]

    Ganji, A. R.; Hackett, B.; Chow, S.

    The processes in carbonated soft drink production are discussed with an emphasis on energy consumption, current prevalent practices in the industry are outlined, and potential measures for energy use and cost savings are elaborated. The results from...

  19. Arsenic in your water?: Economists study perceptions of risks from drinking water high in arsenic

    E-Print Network [OSTI]

    Wythe, Kathy

    2010-01-01T23:59:59.000Z

    Arsenic in water?your tx H2O | pg. 27 Story by Kathy Wythe Economists study perceptions of risks from drinking water high in arsenic In several ?hot spots? across the United States people may be drinking water with high levels of naturally... occurring arsenic without understanding the associated risks, according to agricultural economists. ?Many households in arsenic ?hot spots? are in fact being exposed to harmful doses of arsenic,? said Dr. Douglass Shaw, professor of agricultural...

  20. A single fermentation tube method for the bacteriological analysis of drinking water

    E-Print Network [OSTI]

    Watts, John Wesley

    1980-01-01T23:59:59.000Z

    A SINGLE FERMENTATION 'ICE METHOD FOR THE BACTERIOLOGICAL ANALYSIS OF DRINKING WATER A Thesis by JOHN WESLEY WATTS Submitted to the Graduate College of Texas A lk M University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE August 1980 Major Subject: Civil Engineering A SINGLE FERMENTATION IIJBE METHOD FOR THE BACTERIOLOGICAL ANALYSIS OF DRINKING WATER A Thesis by JOHN WESLEY WATTS Approved as to style and content by: ( Chairman of Committee y...

  1. Responses of lactating Holstein cows to chilled drinking in the summer 

    E-Print Network [OSTI]

    Noel, Deborah Lee

    1988-01-01T23:59:59.000Z

    RESPONSES OF LACTATING HOLSTEIN COWS TO CHILLED DRINKING WATER IN THE SUMMER A Thesis by DEBORAH LEE NOEL Submitted to the Graduate College of Texas A8 M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May l988 Major Subject: Nutrition RESPONSES OF LACTATING HOLSTEIN COWS TO CHILLED DRINKING WATER IN THE SUMMER A Thesis by DEBORAH LEE NOEL Approved as to style and content by: Carl E. Coppock (Chair of Committee) Thomas H. Welsh Jr...

  2. The effect of chilled drinking water on heat-stressed lactating Holstein cows 

    E-Print Network [OSTI]

    Baker, Christopher Charles

    1987-01-01T23:59:59.000Z

    THE EFFECT OF CHILLED DRINKING WATER ON HEAT-STRESSED LACTATING HOLSTEIN COWS A Thesis by CHRISTOPHER CHARLES BAKER Submitted to the Graduate College of Texas A 5 M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1987 Major Subject: Nutrition THE EFFECT OF CHILLED DRINKING WATER ON HEAT-STRESSED LACTATING HOLSTEIN COWS A Thesis by CHRISTOPHER CHARLES BAKER Approved as to style and content: Carl E. Coppock (Chair of Committee...

  3. ORIGINAL ARTICLE Quantification of net primary production of Chinese

    E-Print Network [OSTI]

    Zhang, Tonglin

    Abstract Net primary production (NPP) of terrestrial ecosystems provides food, fiber, construction to rising population and biofuel uses. Assessing national forest NPP is of importance to best use forest resources in China. To date, most estimates of NPP are based on process-based ecosystem modeling, forestry

  4. Globalization Nationalized

    E-Print Network [OSTI]

    Mazlish, Bruce

    Globalism and globalization have been seen as competitors to other allegiances, namely regionalism and nationalism. A look at recent efforts at reconceptualizing global history in China, Korea and the U.S., however, suggests ...

  5. National Nuclear Security Administration | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  6. Office of National Infrastructure & Sustainability | National...

    National Nuclear Security Administration (NNSA)

    National Infrastructure & Sustainability | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  7. Pantex receives National Weather Service recognition | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    receives National Weather Service recognition | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  8. National Competitiveness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee theOilNRELTechnologies

  9. National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSeeNUCLEAR SCIENCE WEEKSecurity LLNL's

  10. NATIONAL LABORATORY

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamicsAspen Aerogels,AluminumApproved for

  11. NATIONAL LABORATORY

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment of Energy 3Services and LowersSafety andNASAand North

  12. Lead-free primary explosives

    DOE Patents [OSTI]

    Huynh, My Hang V.

    2010-06-22T23:59:59.000Z

    Lead-free primary explosives of the formula (cat).sub.Y[M.sup.II(T).sub.X(H.sub.2O).sub.6-X].sub.Z, where T is 5-nitrotetrazolate, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  13. Primary Health Faculty of Medicine,

    E-Print Network [OSTI]

    Albrecht, David

    School of Primary Health Care Faculty of Medicine, Nursing and Health Sciences Central Clinical Hospital Centre for Inflammatory Diseases School of Public Health & Preventive Medicine Australasian Disability Health Victoria School of Psychology and Psychiatry Centre for Rural Mental Health (in abeyance

  14. Arsenic in Drinking Water: Regulatory Developments and Issues

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 Chg 1KANSASVisit2

  15. The effect of chilled drinking water on heat-stressed lactating Holstein cows

    E-Print Network [OSTI]

    Baker, Christopher Charles

    1987-01-01T23:59:59.000Z

    20 consumption of non-lactating dairy cows. J. Daizy Scr. 47:382. 20 Dillon, R. D. and R. E. Nichols. 1955. Changes in temperature of reticulo-ruminal content following the drinking of water. Am. J. Vet. Res. 16:69. 21 DuBois, P. R. and D. J...

  16. Contamination of drinking-water by arsenic in Bangladesh: a public health emergency

    E-Print Network [OSTI]

    California at Berkeley, University of

    Contamination of drinking-water by arsenic in Bangladesh: a public health emergency Allan H. Smith,1 Elena O. Lingas,2 & Mahfuzar Rahman3 The contamination of groundwater by arsenic in Bangladesh contamination. Studies in other countries where the population has had long-term exposure to arsenic

  17. University of the District of Columbia District of Columbia Drinking Water Blind Taste

    E-Print Network [OSTI]

    District of Columbia, University of the

    University of the District of Columbia District of Columbia Drinking Water Blind Taste Testing for Nutrition, Diet and Health Cooperative Extension Service University of the District of Columbia Dawanna University of the District of Columbia Date: May 2005 Prepared for the DC Water Resources Research Institute

  18. The Factors of Chronic Kidney Disease: Diabetes, Hypertension, Smoking, Drinking, Betelnut Chewing

    E-Print Network [OSTI]

    Chen, Chaur-Chin

    The Factors of Chronic Kidney Disease: Diabetes, Hypertension, Smoking, Drinking, Betelnut Chewing CKD 75 CKD Abstract The risk factors of Chronic Kidney Disease (CKD), including diabetes risk factors in a population-based cohort. Compared with single risk factors, diabetes (odds ratio 1

  19. Methane contamination of drinking water accompanying gas-well drilling and

    E-Print Network [OSTI]

    Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing (received for review January 13, 2011) Directional drilling and hydraulic-fracturing technologies are dra use (1­5). Directional drilling and hydrau- lic-fracturing technologies are allowing expanded natural

  20. Methane contamination of drinking water accompanying gas-well drilling and

    E-Print Network [OSTI]

    Jackson, Robert B.

    Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing (received for review January 13, 2011) Directional drilling and hydraulic-fracturing technologies are dra of energy use (1­5). Directional drilling and hydrau- lic-fracturing technologies are allowing expanded

  1. Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas extraction

    E-Print Network [OSTI]

    Jackson, Robert B.

    Increased stray gas abundance in a subset of drinking water wells near Marcellus shale gas Pennsylvania, ex- amining natural gas concentrations and isotopic signatures with proximity to shale gas wells this transformation, with shale gas and other unconventional sources now yielding more than one- half of all US

  2. Untilrecently,thepointofusewatertreatmentindustry focused on improving the aesthetic quality of drinking

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    place? Questions to Ask When Purchasing Water Treatment Equipment www.ext.vt.edu Produced of drinking water. The industry has lately been thrust into the fore front of treatment of contaminated. The following are questions the consumer should ask a water treatment professional to determine the system

  3. An environmental sensor network to determine drinking water quality and security

    E-Print Network [OSTI]

    Ailamaki, Anastassia

    . Small Civil & Environmental Engineering and Engineering & Public Policy Carnegie Mellon University ms35@andrew.cmu.edu Jeanne VanBriesen Civil and Environmental Engineering and Biomedical Engineering CarnegieAn environmental sensor network to determine drinking water quality and security Anastassia

  4. THE ASTRONOMER'S DRINKING SONG. "Whoe'er would search the starry sky,

    E-Print Network [OSTI]

    Harrington, J. Patrick

    , Should take his glass | I mean, should try A glass or two of wine, sir! True virtue lies in golden mean, And man must wet his clay, sir, Join these two maxims, and 'tis seen He should drink his bottle a day, sir he our modern secret known, And drank a bottle a day, sir! "When Ptolemy, now long ago, Believed

  5. National System Templates: Building Sustainable National Inventory...

    Open Energy Info (EERE)

    Templates: Building Sustainable National Inventory Management Systems Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National System Templates: Building Sustainable...

  6. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated...

  7. Primary Components of Binomial Ideals

    E-Print Network [OSTI]

    Eser, Zekiye

    2014-07-11T23:59:59.000Z

    . . . . . . . . . . . . . . . . . . . . . . . . . 49 2.4 A band graph with an infinite component . . . . . . . . . . . . . . . . 50 2.5 The band graph G6pMq . . . . . . . . . . . . . . . . . . . . . . . . . 51 2.6 Slice graphs for IpBq #16; xx4z #1; y4, x7z #1; y7y . . . . . . . . . . . . . . 56 2... decomposition in charpkq #16; 0 and the primary components are Ii1,...,ir . The following example illustrates how the operations defined above work. All the computations are performed using the computer algebra system Singular, [16]. Example 1.45. Let D #16; #20...

  8. Time-frequency Study of Nearshore Wind and Wave Processes Primary Investigator: Paul Liu -NOAA GLERL (Emeritus)

    E-Print Network [OSTI]

    represent a primary driving force for dynamic processes in the oceans and lakes. As long as wind wavesTime-frequency Study of Nearshore Wind and Wave Processes Primary Investigator: Paul Liu - NOAA, Chen H. Tsai - National Taiwan Ocean University, Keelung Overview Surface wind-generated gravity waves

  9. Introduction: The California Top Two Primary

    E-Print Network [OSTI]

    Sinclair, Betsy

    2015-01-01T23:59:59.000Z

    with the adoption of the top two primary, and we lookIntroduction: The California Top Two Primary Betsy Sinclairfrequently asserted that the “top-two” would produce more

  10. Disinfection Procedure for Water Distribution Pipelines Drinking water contamination can be prevented by hydrostatic testing and disinfection of

    E-Print Network [OSTI]

    de Lijser, Peter

    Disinfection Procedure for Water Distribution Pipelines Drinking water contamination can be prevented by hydrostatic testing and disinfection of potable water distribution pipelines before connecting-921 3. Assess residual chlorine concentrations 4. Confirm that residual chlorine concentrations do

  11. Remote community drinking water supply : mechanisms of uranium retention and adsorption by ultrafiltration, nanofiltration and reverse osmosis 

    E-Print Network [OSTI]

    Schulte-Herbruggen, Helfrid Maria Albertina

    2012-11-29T23:59:59.000Z

    Worldwide, around 884 million people lack access to safe drinking water. To address this, groundwater sources such as boreholes and wells are often installed in remote locations especially in developing countries. However, ...

  12. TEEX tackles toxins: TEEX develops ECLOX protocols to detect toxins in drinking water

    E-Print Network [OSTI]

    Jordan, Leslie

    2010-01-01T23:59:59.000Z

    Specialist Keith McLeroy: The equipment came with minimal instructions and no protocols for establishing baseline data for comparing the ECLOX readings. TCEQ turned to the TEEX Water and Wastewater Program to establish baseline data for 24 public...,? said McLeroy of TEEX?s Infrastructure Training and Safety Institute. ?After many years of looking at every research paper with the word ?ECLOX? in it, we were the first to actually achieve this (developing the protocols) with drinking water...

  13. Effects of drinking water temperature on water consumption, respiration rates, and body temperatures of lactating Holstein cows in summer 

    E-Print Network [OSTI]

    Lanham, Jeffrey Kent

    1985-01-01T23:59:59.000Z

    EFFECTS OF DRINKING WATER TEMPERATURE ON WATER CONSUMPTION, RESPIRATION RATES, AND BODY TEMPERATURES OF LACTATING HOLSTEIN COWS IN SUMMER A Thesis by JEFFREY KENT LANHAM Submitted to the Graduate College of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1985 Major Subject: Nutrition EFFECTS OF DRINKING WATER TEMPERATURE ON WATER CONSUMPTION, RESPIRATION RATES, AND BODY TEMPERATURES OF LACTATING HOLSTEIN COWS IN SUMMER A Thesis...

  14. A review and rationale for studying the cardiovascular effects of drinking water arsenic in women of reproductive age

    SciTech Connect (OSTI)

    Kwok, Richard K., E-mail: rkwok@rti.org

    2007-08-01T23:59:59.000Z

    Drinking water arsenic has been shown to be associated with a host of adverse health outcomes at exposure levels > 300 {mu}g of As/L. However, the results are not consistent at exposures below this level. We have reviewed selected articles that examine the effects of drinking water arsenic on cardiovascular outcomes and present a rationale for studying these effects on women of reproductive age, and also over the course of pregnancy when they would potentially be more susceptible to adverse cardiovascular and reproductive outcomes. It is only recently that reproductive effects have been linked to drinking water arsenic. However, there is a paucity of information about the cardiovascular effects of drinking water arsenic on women of reproductive age. Under the cardiovascular challenge of pregnancy, we hypothesize that women with a slightly elevated exposure to drinking water arsenic may exhibit adverse cardiovascular outcomes at higher rates than in the general population. Studying sensitive clinical and sub-clinical indicators of disease in susceptible sub-populations may yield important information about the potentially enormous burden of disease related to low-level drinking water arsenic exposure.

  15. Cold War Context Statement: Sandia National Laboratories, California Site

    SciTech Connect (OSTI)

    ULLRICH, REBECCA A.

    2003-01-01T23:59:59.000Z

    This document was prepared to support the Department of Energy's compliance with Sections 106 and 110 of the National Historic Preservation Act. It provides an overview of the historic context in which Sandia National Laboratories/California was created and developed. Establishing such a context allows for a reasonable and reasoned historical assessment of Sandia National Laboratories/California properties. The Cold War arms race provides the primary historical context for the SNL/CA built environment.

  16. Brookhaven National Laboratory National Synchrotron Light Source

    E-Print Network [OSTI]

    Ohta, Shigemi

    Brookhaven National Laboratory National Synchrotron Light Source Number: Revision: LS-ESH-0027 06 copy of this file is the one on-line in the NSLS ESH website. Before using a printed copy, verify that it is the most current version by checking the document issue date on the NSLS ESH website. BROOKHAVEN NATIONAL

  17. Brookhaven National Laboratory National Synchrotron Light Source

    E-Print Network [OSTI]

    Ohta, Shigemi

    Brookhaven National Laboratory National Synchrotron Light Source Number: Revision: PS-ESH-0025 01 of this file is the one on-line in the NSLS ESH website. Before using a printed copy, verify that it is the most current version by checking the document issue date on the NSLS ESH website. BROOKHAVEN NATIONAL

  18. Brookhaven National Laboratory National Synchrotron Light Source

    E-Print Network [OSTI]

    Ohta, Shigemi

    Brookhaven National Laboratory National Synchrotron Light Source Number: Revision: LS-ESH-0026 4 of this file is the one on-line in the PS ESH website. Before using a printed copy, verify that it is the most current version by checking the document issue date on the PS ESH website. BROOKHAVEN NATIONAL LABORATORY

  19. CBDPP PRIMARY AND ALTERNATE MEMBERS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccess Stories Siteandscience, and8 FY0Link

  20. Consistent Query Answering Of Conjunctive Queries Under Primary Key Constraints

    E-Print Network [OSTI]

    Pema, Enela

    2014-01-01T23:59:59.000Z

    Queries and Primary Key Constraints . . . . . . . . . .of Employee w.r.t. the primary key SSN ? {name, salary} . .query answering under primary keys: a characterization of

  1. National Science Bowl Finals

    ScienceCinema (OSTI)

    None

    2010-09-01T23:59:59.000Z

    National Science Bowl finals and awards at the National Building Museum in Washington D.C. Monday 5/3/2010

  2. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

  3. Sandia National Laboratories: PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Sandia Corporation | Questions & Comments | Privacy & Security U.S. Department of Energy National Nuclear Security Administration Sandia National Laboratories is a...

  4. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility, News, News & Events, Partnership, Renewable Energy, Solar, Solar Newsletter On November 24, 2012 the National Solar Thermal Test...

  5. Sandia National Laboratories: ACEC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ACEC Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar...

  6. National Science Bowl Finals

    SciTech Connect (OSTI)

    2010-05-03T23:59:59.000Z

    National Science Bowl finals and awards at the National Building Museum in Washington D.C. Monday 5/3/2010

  7. National Nuclear Security Administration

    Broader source: Energy.gov (indexed) [DOE]

    and Related Structures within TA-3 at Los Alamos National Laboratory, Los Alamos, New Mexico U. S. Department of Energy National Nuclear Security Administration Los Alamos Area...

  8. Measurement of methyl-tert-butyl-ether (MTBE) in raw drinking water

    SciTech Connect (OSTI)

    Davisson, M L; Koester, C J; Moran, J E

    1999-10-14T23:59:59.000Z

    In order to assess the pathways for human exposure to methyl-tert-butyl-ether (MTBE) and to understand the extent of MTBE contamination in watersheds, a purge and trap gas chromatographic mass spectrometric method to measure part-per-trillion (ppt) concentrations of MTBE in environmental waters was developed. A variety of California's raw drinking waters were analyzed. No detectable MTBE was found in deep groundwater (>1000 feet). However shallow groundwater ({approx}250 feet) contained MTBE concentrations of non-detect to 1300 ppt. MTBE concentrations measured in rivers and lakes ranged from non-detect to 3500 ppt. East (San Francisco) Bay area rain water contained approximately 80 ppt MTBE.

  9. Risk Perception and Willingness to Pay for Removing Arsenic in Drinking Water

    E-Print Network [OSTI]

    Chen, Sihong

    2012-10-19T23:59:59.000Z

    , THMs, radon as Ill as PCBs, are similar. First, they can cause many diseases (the effects on the probability of mortality and morbidity are confounded) and the latency of diseases is long (this suggests a discount rate should be elicited). Second... of uncer- tainty in risk assessment. They got the results based on a multiplicative model for cancer risk from ingestion of radon in drinking water, where the risk R was the product of n risk 16 factors. These risk factors were assumed to follow a...

  10. National Renewable Energy Laboratory

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

  11. Sandia National Laboratories: Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  12. Sandia National Laboratories: National Rotor Testbed Functional...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the National Rotor Testbed: An Aeroelastically Relevant Research-Scale Wind Turbine Rotor." Approximately 60 researchers from various institutions and countries attended...

  13. Consent Order, Lawrence Livermore National National Security...

    Energy Savers [EERE]

    for deficiencies associated with the Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program On October 29, 2010, the U.S. Department of Energy (DOE)...

  14. Sandia National Laboratories: Jawaharlal Nehru Solar National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jawaharlal Nehru Solar National Solar Energy Mission Solar Energy Research Institute for India and the United States Kick-Off On November 27, 2012, in Concentrating Solar Power,...

  15. National Security Photo Gallery | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security Photo Gallery Richard Cirillo 1 of 10 Richard Cirillo RICHARD R. CIRILLO Dr. Richard R. Cirillo serves as Director of the Decision and Information Sciences...

  16. Sandia National Laboratories: national reliability database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    national reliability database Third Annual Continuous Reliability Enhancement for Wind (CREW) Database Report Now Available On October 17, 2013, in Energy, News, News & Events,...

  17. Argonne National Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Slip sliding away Graphene and diamonds prove a slippery combination Read More ACT-SO winners Argonne mentors students for the next generation of...

  18. Sandia National Laboratories: EC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    primary purpose is to model severe-accident progression in light-water-reactor (LWR) nuclear power plants. Sandia developed MELCOR for the US Nuclear Regulatory ... DOE OE...

  19. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    primary purpose is to model severe-accident progression in light-water-reactor (LWR) nuclear power plants. Sandia developed MELCOR for the US Nuclear Regulatory ... DOE OE...

  20. Sandia National Laboratories: News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    primary purpose is to model severe-accident progression in light-water-reactor (LWR) nuclear power plants. Sandia developed MELCOR for the US Nuclear Regulatory ... DOE OE...

  1. Anaerobic Digestion of Primary Sewage Effluent

    E-Print Network [OSTI]

    Anaerobic Digestion of Primary Sewage Effluent: Significant Energy Savings over Traditional Activated Sludge Treatment This report presents results for an anaerobic digestion system operated;Anaerobic Digestion of Primary Sewage Effluent Prepared for the U.S. Department of Energy Office

  2. Impacts of Minnesota's Primary Seat Belt Law

    E-Print Network [OSTI]

    Minnesota, University of

    for Excellence in Rural Safety Humphrey School of Public Affairs #12;CERS's "Safe Six Regardless of Residence Urban/Small City Suburban Rural/Small Town Primary Seat; . . AND IN MINNESOTA #12;Predicted Impact 2009 and 2010 CERS Reports: · Primary Seat Belt Laws

  3. EBR-II Primary Tank Wash-Water Alternatives Evaluation

    SciTech Connect (OSTI)

    Demmer, R. L.; Heintzelman, J. B.; Merservey, R. H.; Squires, L. N.

    2008-05-01T23:59:59.000Z

    The EBR-II reactor at Idaho National Laboratory was a liquid sodium metal cooled reactor that operated for 30 years. It was shut down in 1994; the fuel was removed by 1996; and the bulk of sodium metal coolant was removed from the reactor by 2001. Approximately 1100 kg of residual sodium remained in the primary system after draining the bulk sodium. To stabilize the remaining sodium, both the primary and secondary systems were treated with a purge of moist carbon dioxide. Most of the residual sodium reacted with the carbon dioxide and water vapor to form a passivation layer of primarily sodium bicarbonate. The passivation treatment was stopped in 2005 and the primary system is maintained under a blanket of dry carbon dioxide. Approximately 670 kg of sodium metal remains in the primary system in locations that were inaccessible to passivation treatment or in pools of sodium that were too deep for complete penetration of the passivation treatment. The EBR-II reactor was permitted by the Idaho Department of Environmental Quality (DEQ) in 2002 under a RCRA permit that requires removal of all remaining sodium in the primary and secondary systems by 2022. The proposed baseline closure method would remove the large components from the primary tank, fill the primary system with water, react the remaining sodium with the water and dissolve the reaction products in the wash water. This method would generate a minimum of 100,000 gallons of caustic, liquid, low level radioactive, hazardous waste water that must be disposed of in a permitted facility. On February 19-20, 2008, a workshop was held in Idaho Falls, Idaho, to look at alternatives that could meet the RCRA permit clean closure requirements and minimize the quantity of hazardous waste generated by the cleanup process. The workshop convened a panel of national and international sodium cleanup specialists, subject matter experts from the INL, and the EBR-II Wash Water Project team that organized the workshop. The workshop was conducted by a trained facilitator using Value Engineering techniques to elicit the most technically sound solutions from the workshop participants. The path forward includes developing the OBA into a well engineered solution for achieving RCRA clean closure of the EBR-II Primary Reactor Tank system. Several high level tasks are also part of the path forward such as reassigning responsibility of the cleanup project to a dedicated project team that is funded by the DOE Office of Environmental Management, and making it a priority so that adequate funding is available to complete the project. Based on the experience of the sodium cleanup specialists, negotiations with the DEQ will be necessary to determine a risk-based de minimus quantity for acceptable amount of sodium that can be left in the reactor systems after cleanup has been completed.

  4. Persistence and decontamination of surrogate radioisotopes in a model drinking water distribution system

    SciTech Connect (OSTI)

    Szabo, Jeffrey G.; Impellitteri, Christopher A.; Govindaswamy, Shekar; Hall, John S.; (EPA); (Lakeshore)

    2010-01-12T23:59:59.000Z

    Contamination of a model drinking water system with surrogate radioisotopes was examined with respect to persistence on and decontamination of infrastructure surfaces. Cesium and cobalt chloride salts were used as surrogates for cesium-137 and cobalt-60. Studies were conducted in biofilm annular reactors containing heavily corroded iron surfaces formed under shear and constantly submerged in drinking water. Cesium was not detected on the corroded iron surface after equilibration with 10 and 100 mg L{sup -1} solutions of cesium chloride, but cobalt was detected on corroded iron coupons at both initial concentrations. The amount of adhered cobalt decreased over the next six weeks, but was still present when monitoring stopped. X-ray absorption near-edge spectroscopy (XANES) showed that adhered cobalt was in the III oxidation state. The adsorbed cobalt was strongly resistant to decontamination by various physicochemical methods. Simulated flushing, use of free chlorine and dilute ammonia were found to be ineffective whereas use of aggressive methods like 14.5 M ammonia and 0.36 M sulfuric acid removed 37 and 92% of the sorbed cobalt, respectively.

  5. Creating a global engineering community through partnerships [Evaluation of the 1998 Wepan National Conference: Women in Engineering Program Advocates Network (WEPAN) - Final Report

    SciTech Connect (OSTI)

    Brainard, Suzanne G.

    1998-12-01T23:59:59.000Z

    The primary goal of the 1998 National WEPAN Conference was to further increase the participation of women and minorities and engineering.

  6. National Residential Efficiency Measures Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most cost-effective retrofit measures for improving energy efficiency of existing homes. Software developers who require residential retrofit performance and cost data for applications that evaluate residential efficiency measures are the primary audience for this database. In addition, home performance contractors and manufacturers of residential materials and equipment may find this information useful. The database offers the following types of retrofit measures: 1) Appliances, 2) Domestic Hot Water, 3) Enclosure, 4) Heating, Ventilating, and Air Conditioning (HVAC), 5) Lighting, 6) Miscellaneous.

  7. Reckoning with risk: a rhetorical analysis of the social construction of risk associated with Texas drinking water

    E-Print Network [OSTI]

    Friedrich, Cynthia Juanita Matthes

    1992-01-01T23:59:59.000Z

    of drinking water at a time when they assert that they are doing a "better job than ever before. " John B. Mannion, Executive Director of American Water Works Association, talks like a man besieged by enemy agents: "On the one hand, we' ve got... an assortment of special interests undermining public confidence in the safety of drinking water. On the other hand, we' ve got the federal government issuing truckloads of regulations ? some of them of dubious merit and all of them accompanied by enormous...

  8. Pacific Northwest National Laboratory

    E-Print Network [OSTI]

    Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy Northwest National Laboratory (PNNL) operated by Battelle Memorial Institute. Battelle has a unique contract

  9. Argonne National Laboratory's Nondestructive

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne National Laboratory's Nondestructive Evaluation Technologies NDE #12;Over45yearsexperienceinNondestructiveEvaluation... Argonne National Laboratory's world-renowned researchers have a proven the safe operationof advanced nuclear reactors. Argonne's World-Class Nondestructive Evaluation

  10. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As one of the largest laboratories in the nation for science and engineering research, Argonne National Laboratory is home to some of the most prolific and well-renowned scientists...

  11. National Energy Education Summit

    Broader source: Energy.gov [DOE]

    The National Energy Education Summit is organized by the Council of Energy Research and Education Leaders (CEREL) and will serve as a first-of-its-kind national forum for energy educators, subject...

  12. The Idealized Nation-State, Globalization, Critical Geopolitics and the Case of Morocco

    E-Print Network [OSTI]

    Struckman, Luke

    2009-01-01T23:59:59.000Z

    The Moroccan nation-state is a taken-for-granted geopolitical entity that is represented by the Moroccan government and the core of the world system in ways that are consonant with their visions of reality. The primary ...

  13. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (PSEL) National Supervisory Control and Data Acquisition (SCADA) Test Bed Center for Integrated Nanotechnologies (CINT) Distributed Energy Technologies Laboratory...

  14. National Hydropower Map

    Broader source: Energy.gov [DOE]

    High-resolution map produced by Oak Ridge National Laboratory showing hydropower resources throughout the United States.

  15. National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FROM: SUBJECT: USIUK Memorandum of Understanding between National Nuclear Security Administration's (NNSA) Associate Administrator for Defense Nuclear Security (AADNS)...

  16. Sandia National Laboratories: AREVA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility, News, News & Events, Partnership, Renewable Energy, Research &...

  17. Sandia National Laboratories: National Rotor Testbed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, SWIFT, Systems Analysis, Wind Energy The National Rotor Testbed (NRT) team is examining the effect of airfoil choice on the final design of the new rotor for the Scaled...

  18. Published by The University of Vermont College of Medicine Office of Primary Care Winter 2013 A Newsletter Dedicated to T hose Who Deliver & Teach P rimary Care

    E-Print Network [OSTI]

    Hayden, Nancy J.

    collaboration between primary care, mental health, substance abuse and behavioral health and was attended by 115 who would qualify for a substance abuse diagnosis. Fletcher Allen Health Care, Vermont National GuardPublished by The University of Vermont College of Medicine Office of Primary Care Winter 2013

  19. NATIONAL HYDROGEN ENERGY ROADMAP

    E-Print Network [OSTI]

    NATIONAL HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen Energy Roadmap Workshop to make it a reality. This Roadmap provides a framework that can make a hydrogen economy a reality

  20. LOGO, Mathematics and Upper Primary School Children 

    E-Print Network [OSTI]

    Finlayson, Helen M.

    1986-01-01T23:59:59.000Z

    This study was set up to assess the contribution that a computer modelling approach using the language LOGO could make to the quality of mathematics learning in primary school children. Following a constructivist theory ...

  1. Thomas Jefferson National Accelerator Facility

    SciTech Connect (OSTI)

    Joseph Grames, Douglas Higinbotham, Hugh Montgomery

    2010-09-01T23:59:59.000Z

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

  2. Addressing Nitrate in California's Drinking Water Report for the State Water Resources Control Board Report to the Legislature

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    for the California State Water Resources Control Board With a Focus on Tulare Lake Basin and Salinas Valley in California's Drinking Water With a Focus on Tulare Lake Basin and Salinas Valley Groundwater Report Tulare Lake Basin and Salinas Valley Pilot Studies Prepared for: California State Water Resources Control

  3. Addressing Nitrate in California's Drinking Water Report for the State Water Resources Control Board Report to the Legislature

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    for the California State Water Resources Control Board With a Focus on Tulare Lake Basin and Salinas Valley's Drinking Water With a Focus on Tulare Lake Basin and Salinas Valley Groundwater Report for the State Water and Salinas Valley Groundwater. Report for the State Water Resources Control Board Report to the Legislature

  4. Bottled drinking water: Water contamination from bottle materials (glass, hard PET, soft PET), the influence of colour and acidification

    E-Print Network [OSTI]

    Short, Daniel

    Bottled drinking water: Water contamination from bottle materials (glass, hard PET, soft PET in glass and PET bottles demonstrates significant (Wilcoxon rank sum test, a = 0.05) differences in median. 0.016 lg/L). Glass contaminates the water with Ce (19Â higher than in PET bottles), Pb (14Â), Al (7Â

  5. Bottled drinking water: water contamination from bottle materials (glass, hard PET, soft PET), the influence of colour and acidification

    E-Print Network [OSTI]

    Filzmoser, Peter

    Bottled drinking water: water contamination from bottle materials (glass, hard PET, soft PET in glass and PET bottles demonstrates significant (Wilcoxon rank sum test, =0.05) differences in median. 0.016 µg/L). Glass contaminates the water with Ce (19x higher than in PET bottles), Pb (14 x), Al (7

  6. Aluminum and silica intake in drinking water and the risk of Alzheimer's disease or cognitive decline: findings of the

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Aluminum and silica intake in drinking water and the risk of Alzheimer's disease or cognitive,2 , Commenges Daniel1,2 , Helmer Catherine2,3 , Jean-François Dartigues2,3 . Abbreviations: Al, Aluminum; AD, Alzheimer's Disease; MMSE, Mini Mental State Examination; Si, Silica Running head: Aluminum, silica in water

  7. Dopamine D2R DNA transfer in dopamine D2 receptor-deficient mice: Effects on ethanol drinking

    E-Print Network [OSTI]

    Homes, Christopher C.

    Dopamine D2R DNA transfer in dopamine D2 receptor-deficient mice: Effects on ethanol drinking), and receptor-deficient mice (Drd2Ă?/Ă?). Ethanol intake and preference were then determined using the two attenuated (58 %) their ethanol intake as well as reduced preference. Drd2+/Ă? and mutant mice showed

  8. The Criticality Safety Information Resource Center at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Henderson, B.D.; Meade, R.A. [Los Alamos National Lab., NM (United States); Pruvost, N.L. [Galaxy Computer Services, Inc., Santa Fe, NM (United States)

    1997-05-01T23:59:59.000Z

    The mission of the Criticality Safety Information Resource Center (CSIRC) at Los Alamos National Laboratory (LANL) is the preservation of primary documentation supporting criticality safety. In many cases, but not all, this primary documentation consists of experimentalists` logbooks. Experience has shown that the logbooks and other primary information are vulnerable to being discarded. Destruction of these logbooks results in a permanent loss to the criticality safety community.

  9. Study on radon and radium concentrations in drinking water in west region of Iran

    E-Print Network [OSTI]

    Forozani, Ghasem

    2011-01-01T23:59:59.000Z

    One of the most important characterizations of social health is existence the availability of safe drinking water. Since one of the sources of water contamination is nuclear contamination from radon gas, so in this research radon 222 concentration levels in water supplies in the Toyserkan (a region located in the west of Iran) is investigated. For measuring radon gas in water wells and springs Lucas chamber method is used. Review the results of these measurements that taken from 15th place show that, only five sites have radon concentrations above the limit dose. To reduce radon concentration, it is better to keep water in open pools in contact with air before the water is delivered to users.

  10. National and Regional Resources Substance Abuse and Mental Health Services Administration

    E-Print Network [OSTI]

    Acton, Scott

    to carry-out voucher programs for substance abuse clinical treatment and recovery support services. GoalRecovery National and Regional Resources Substance Abuse and Mental Health Services Administration SAMHSA: Recovery is a primary goal for behavioral health care Recovery has been identified as a primary

  11. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy, SWIFT, Wind Energy One of the primary roles of Sandia's Scaled Wind Farm Technology (SWiFT) facility will be to conduct detailed experiments on turbine wakes...

  12. National Aeronautics and Space Administration The J2X Engine

    E-Print Network [OSTI]

    by a small, internal combustion chamber separate from the primary combustion chamber producing engine thrustNational Aeronautics and Space Administration NASAfacts The J­2X Engine NASA's New Upper Stage Engine The next generation of space exploration has begun with the development of NASA's Space Launch

  13. NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia

    E-Print Network [OSTI]

    Groppi, Christopher

    NATIONAL RADIO ASTRONOMY OBSERVATORY Green Bank, West Virginia Electronics Division Internal Report line. A 12 V stor- e battery may be attached to the battery connector with pin 1 ground and pin 2 +12 V DC nominal. When the primary power fails, the battery will supply power to the clock. About 1 1/2 amp

  14. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2012, in Concentrating Solar Power, EC, National Solar Thermal Test Facility, Renewable Energy Dr. David Danielson visited Sandia National Laboratories and toured the National...

  15. Aerosol behavior experiments on light water reactor primary systems

    SciTech Connect (OSTI)

    Rahn, F.J.; Collen, J.; Wright, A.L.

    1988-05-01T23:59:59.000Z

    The results of three experimental programs relevant to the behavior of aerosols in the primary systems of light water reactors (LWRs) are presented. These are the Large-Scale Aerosol Transport Test programs performed at the Marviken test facility in Sweden, parts of the LWR Aerosol Containment Experiments (LACE) performed at the Hanford Engineering Development Laboratory, and the TRAP-MELT validation project performed at Oak Ridge National Laboratory. The Marviken experiments focused on the behavior of aerosols released from fuel and structural materials in a damaged core. Data on the transport of these aerosols and their physical characteristics were obtained in five experiments that simulated LWR primary systems. The LACE program data include results from the containment bypass accident tests, which focused on aerosol transport in pipes. The TRAP-MELT validation project data include results from two types of experiments: (a) aerosol transport tests to investigate aerosol wall plateout in a vertical pipe geometry and (b) aerosol resuspension tests to provide a data base from which analytical models can be developed. Typical results from these programs are presented and discussed.

  16. The Top Two Primary: What Can California Learn from Washington?

    E-Print Network [OSTI]

    Donovan, Todd

    2012-01-01T23:59:59.000Z

    Swanson Speaks Out against Top-Two Open Primary. ” BallotVery Partisan Non-Partisan Top Two Primary: Understanding2010/06/09/will- californias-top-two-primary-work/.

  17. Cognitive Informatics, Pacific Northwest National Laboratory | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of theNuclearNanotechnologies | NationalNuclear

  18. Sandia National Laboratories | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTART Signed | National|Operations /

  19. Sandia National Laboratories | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTART Signed | National|Operations /Allison

  20. Sandia National Laboratories | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTART Signed | National|Operations

  1. Sandia National Laboratories | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTART Signed | National|OperationsSandia

  2. Sandia National Laboratory | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTubeCenters:FacebookContractor/Bidder| National Nuclear

  3. IMPROVING ENERGY EFFICIENCY AND REDUCING COSTS IN THE DRINKING WATER SUPPLY INDUSTRY: An ENERGY STAR Resource Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Melody, Moya; Dunham Whitehead, Camilla; Brown, Richard

    2010-09-30T23:59:59.000Z

    As American drinking water agencies face higher production costs, demand, and energy prices, they seek opportunities to reduce costs without negatively affecting the quality of the water they deliver. This guide describes resources for cost-effectively improving the energy efficiency of U.S. public drinking water facilities. The guide (1) describes areas of opportunity for improving energy efficiency in drinking water facilities; (2) provides detailed descriptions of resources to consult for each area of opportunity; (3) offers supplementary suggestions and information for the area; and (4) presents illustrative case studies, including analysis of cost-effectiveness.

  4. Effect of Hydrophobic Primary Organic Aerosols on Secondary Organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrophobic Primary Organic Aerosols on Secondary Organic Aerosol Formation from Ozonolysis of ?-Pinene. Effect of Hydrophobic Primary Organic Aerosols on Secondary Organic...

  5. Morphology of Mixed Primary and Secondary Organic Particles and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Mixed Primary and Secondary Organic Particles and the Adsorption of Spectator Organic Gases during Aerosol Morphology of Mixed Primary and Secondary Organic Particles and the...

  6. Employment at National Laboratories

    SciTech Connect (OSTI)

    E. S. Peterson; C. A. Allen

    2007-04-01T23:59:59.000Z

    Scientists enter the National Laboratory System for many different reasons. For some, faculty positions are scarce, so they take staff-scientist position at national laboratories (i.e. Pacific Northwest, Idaho, Los Alamos, and Brookhaven). Many plan to work at the National Laboratory for 5 to 7 years and then seek an academic post. For many (these authors included), before they know it it’s 15 or 20 years later and they never seriously considered leaving the laboratory system.

  7. The `excess' of primary cosmic ray electrons

    E-Print Network [OSTI]

    Xiang Li; Zhao-Qiang Shen; Bo-Qiang Lu; Tie-Kuang Dong; Yi-Zhong Fan; Lei Feng; Si-Ming Liu; Jin Chang

    2014-12-04T23:59:59.000Z

    With the accurate cosmic ray (CR) electron and positron spectra (denoted as $\\Phi_{\\rm e^{-}}$ and $\\Phi_{\\rm e^{+}}$, respectively) measured by AMS-02 collaboration, the difference between the electron and positron fluxes (i.e., $\\Delta \\Phi=\\Phi_{\\rm e^{-}}-\\Phi_{\\rm e^{+}}$), dominated by the propagated primary electrons, can be reliably inferred. In the standard model, the spectrum of propagated primary CR electrons at energies $\\geq 30$ GeV softens with the increase of energy. The absence of any evidence for such a continuous spectral softening in $\\Delta \\Phi$ strongly suggests a significant `excess' of primary CR electrons and at energies of $100-400$ GeV the identified excess component has a flux comparable to that of the observed positron excess. Middle-age but `nearby' supernova remnants (e.g., Monogem and Geminga) are favored sources for such an excess.

  8. Sandia National Laboratories: AMI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Initiative (AMI) is a multiple-year, 3-way collaboration among TPI Composites, Iowa State University, and Sandia National Laboratories. The goal of this...

  9. Sandia National Laboratories: Microgrid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to solve many of the nation's most complex challenges in satisfying its electric energy needs. Initial focus has been on enabling resilient and reliable performance when...

  10. National Day of Remembrance

    ScienceCinema (OSTI)

    None

    2013-03-01T23:59:59.000Z

    Ames Laboratory observed the National Day of Remembrance for weapons workers from the Cold War era with a ceremony held Oct. 27, 2009 at the Ames Public Library.

  11. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security National Solar Thermal Test Facility NSTTF Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State...

  12. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 Inverter Reliability Workshop On May 31, 2013, in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project...

  13. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photovoltaic Microsystems Enabled Photovoltaics (MEPV) On April 14, 2011, in About MEPV Flexible MEPV MEPV Publications MEPV Awards Researchers at Sandia National Laboratories are...

  14. News | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers from Argonne National Laboratory modeled several scenarios to add more solar power to the electric grid, using real-world data from the southwestern power...

  15. Sandia National Laboratories: SPI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference, the Department of Energy (DOE), the Electric Power Research Instisute (EPRI), Sandia National Laboratories, ... Last Updated: September 10, 2012 Go To Top ...

  16. Sandia National Laboratories: IRED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid, Solar Sandia National Laboratories, the Electric Power Research Institute (EPRI) and European Distributed Energies Research Laboratories (DERlab) have organized a...

  17. Sandia National Laboratories: PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Photovoltaic Technology and Tour of PV Test Facilities On February 12, 2013, in The Photovoltaics and Distributed Systems Integration Department at Sandia National...

  18. Sandia National Laboratories: Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate, Customers & Partners, Energy, Energy Surety,...

  19. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summit and Technology Forum will convene the ... A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate,...

  20. Sandia National Laboratories: Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quallion Eaton Corp. Air Products ExxonTonen ... A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate,...

  1. Sandia National Laboratories: CETI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CETI A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate, Customers & Partners, Energy, Energy Surety,...

  2. Sandia National Laboratories: Vermont

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vermont A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate, Customers & Partners, Energy, Energy Surety,...

  3. Sandia National Laboratories: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This public benchmark represents analysis ... A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate,...

  4. Sandia National Laboratories: Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geoscience, Climate and Consequence Effect at Sandia National Laboratories presented on "Hydraulic Fracturing: Role of Government-Sponsored R&D." Marianne's presentation was part...

  5. The National Mission | JCESR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    place huge demand on the nation's electrical grid, while the increased use of wind and solar energy will challenge the grid's ability to provide a stable electrical supply...

  6. Sandia National Laboratories: publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories, August 2010. 2009 Adrian R. Chavez, Position Paper: Protecting Process Control Systems against Lifecycle Attacks Using Trust Anchors Sandia National ... Page 1...

  7. National Day of Remembrance

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Ames Laboratory observed the National Day of Remembrance for weapons workers from the Cold War era with a ceremony held Oct. 27, 2009 at the Ames Public Library.

  8. Transportation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patented technologies created by Argonne - which includes solutions for the smart grid, electric vehicles, emissions control and more - will help our nation conserve energy and...

  9. Sandia National Laboratories: performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance Photovoltaic (PV) Regional Test Center (RTC) Website Goes Live On February 26, 2013, in Energy, National Solar Thermal Test Facility, News, News & Events, Partnership,...

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the first results of joint work by scientists from Lawrence Berkeley, Pacific Northwest, Savannah River, and Los Alamos national laboratories at the Savannah River Site to model...

  11. Sandia National Laboratories: Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    security and economic prosperity. Energy security research at Sandia seeks to address key challenges facing our nation and the world. We work ... Page 2 of 212 Last...

  12. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  13. Discoveries | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nation's pressing scientific and technological challenges. Robert Fischetti and Janet Smith developed the first micro X-ray beam for structural biology at Argonne's Advanced...

  14. Sandia National Laboratories: Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic (PV) Regional Test Center (RTC) Website Goes Live On February 26, 2013, in Energy, National Solar Thermal Test Facility, News, News & Events, Partnership,...

  15. Sandia National Laboratories: photostability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated: May 23, 2013 Go To Top Exceptional service in the national interest EC About Energy and Climate (EC) Energy Security Climate Security Infrastructure Security Energy...

  16. Sandia National Laboratories: CCT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated: May 23, 2013 Go To Top Exceptional service in the national interest EC About Energy and Climate (EC) Energy Security Climate Security Infrastructure Security Energy...

  17. Sandia National Laboratories: QY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated: May 23, 2013 Go To Top Exceptional service in the national interest EC About Energy and Climate (EC) Energy Security Climate Security Infrastructure Security Energy...

  18. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23, 2013-Nearly 400 Los Alamos National Laboratory employees on 47 teams received Pollution Prevention awards for protecting the environment and saving taxpayers more than 8...

  19. Sandia National Laboratories: HRSAM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the National Renewable Energy Laboratory (NREL) announce the publication of two new Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) reports on...

  20. National Women's History Month

    Broader source: Energy.gov [DOE]

    NATIONAL WOMEN’S HISTORY MONTH is an annual declared month that highlights the contributions of women to events in history and contemporary society.

  1. Sandia National Laboratories: NASA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratories (partnering with Northrup Grumman Aerospace Systems and the University of Michigan) has developed a solar electric propulsion concept capable of a wide...

  2. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at a critical juncture where pressing issues in energy security, climate change, and economic competitiveness are converging. Aggressive national goals for reducing petroleum use...

  3. ARGONNE NATIONAL LABORATORY May

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARGONNE NATIONAL LABORATORY May 9, 1994 Light Source Note: LS234 Comparison of the APS and UGIMAG Helmholtz Coil Systems David W. Carnegie Accelerator Systems Division Advanced...

  4. Licensing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (TDC) Division negotiates and manages license agreements on behalf of UChicago Argonne, LLC, which operates Argonne National Laboratory for the U.S. Department of Energy....

  5. Procurement | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Procurement More than 150 attend second joint Argonne-Fermilab small business fairSeptember 2, 2014 On Thursday, Aug. 28, Illinois' two national laboratories - Argonne and Fermi...

  6. Procurement | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video "Doing business with Argonne and Fermi national labs" - Aug. 21, 2013 Procurement Argonne spends approximately 300,000,000 annually through procurements to a diverse group...

  7. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    our dependence on imported energy and to enhance our national security. In addition, Argonne provides many ways for researchers from academia, industry and other government...

  8. Sandia National Laboratories: NSTTF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events, Partnership, Renewable Energy, Solar, Solar Newsletter SolarReserve is testing engineering units at the National Solar Thermal Test Facility (NSTTF) operated by Sandia....

  9. Los Alamos National Laboratory

    National Nuclear Security Administration (NNSA)

    for national defense and homeland security programs; and U.S. Department of Energy (DOE) waste management activities. The Plutonium Facility at Technical Area 55 (TA-55) is...

  10. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Sectors in the United States View all EC Publications Related Topics Concentrating Solar Power CRF CSP EFRC Energy Energy Efficiency Energy Security National Solar Thermal...

  11. Sandia National Laboratories: Partnership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Armstrong using deep level optical spectroscopy to investigate defects in the m-plane GaN. Jim is a professor ... Vermont and Sandia National Laboratories Announce Energy...

  12. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this tenth member of our National Centers for Systems Biology program," said James Anderson, who oversees systems biology awards at NIGMS. "The new center will apply...

  13. National Park Service- Yellowstone National Park, Wyoming

    Broader source: Energy.gov [DOE]

    Yellowstone National Park, Wyoming, has many historical sites within its boundaries. One of these is the Lamar Buffalo Ranch, a ranch that was set up in the early 1900s to breed buffalo for replacement stock within the park during a time when their numbers were very low. The ranch buildings are currently being used by the Yellowstone Association Institute for ecology classes.

  14. Sandia Energy - National SCADA Testbed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National SCADA Testbed Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for Electric Infrastructure National...

  15. The National Renewable Energy Laboratory (NREL) is the U.S. Department of Energy's (DOE)

    E-Print Network [OSTI]

    The National Renewable Energy Laboratory (NREL) is the U.S. Department of Energy's (DOE) primary national laboratory for renewable energy and energy efficiency research and development. From scientific renewable energy and energy efficiency technologies from concept to the commercial marketplace through

  16. National Research Council Canada

    E-Print Network [OSTI]

    Fleming, Michael W.

    National Research Council Canada Institute for Information Technology Conseil national de recherches Canada Institut de technologie de l'information Determining Internet Users' Values for Private in The Second Annual Conference on Privacy, Security and Trust (PST'04). Fredericton, New Brunswick, Canada

  17. The National Cancer Institute,

    E-Print Network [OSTI]

    The National Cancer Institute, International Cancer Information Center Bldg. 82, Rm 123 Bethesda, MD 20892 The National Cancer Institute (NCI) is part of the Federal Government. NCI coordinates the government's cancer research program. It is the largest of the 17 biomedical research institutes and centers

  18. National Osteoporosis Prevention Month

    E-Print Network [OSTI]

    MAY National Osteoporosis Prevention Month JUNE National Dairy Month Texas AgriLife Extension - Bone Health Power Point # P4-1 Eat Smart for Bone Health # P4-2 Osteoporosis Disease Statistics # P4-3 Osteoporosis = Porous Bones # P4-4 Risk Factors # P4-5 Risk Factors (continued) # P4-6 Steps to Prevention # P4

  19. INDIAN NATIONAL SCIENCE ACADEMY

    E-Print Network [OSTI]

    Srinivasan, N.

    INDIAN NATIONAL SCIENCE ACADEMY Science academies play a crucial role in promoting, recognizing and bring out proceedings and monographs. The academies promote public awareness and understanding the country. In this section the growth of the Indian National Science Academy and its functions

  20. The Vermont Primary Care Workforce 2012 SNAPSHOT

    E-Print Network [OSTI]

    Hayden, Nancy J.

    T PrimArY cAre PerSiSTS #12;About vermont AHec The Vermont Area Health Education Centers (AHEC) Program, in collaboration with many partners, improves access to quality health care through its focus on workforce and residents at Fletcher Allen Health Care; and support to help recruit and retain a high-quality healthcare

  1. The Vermont Primary Care Workforce 2013 SNAPSHOT

    E-Print Network [OSTI]

    Hayden, Nancy J.

    with many partners, improves access to health care through its focus on workforce development. AHEC work at Fletcher Allen Health Care; and support to help recruit and retain an appropriate healthcare workforce programming to Vermont's primary care practitioners and supports community health education. AHEC believes

  2. Primary Cilia: Cellular Sensors for the Skeleton

    E-Print Network [OSTI]

    Stearns, Tim

    Primary Cilia: Cellular Sensors for the Skeleton CHARLES T. ANDERSON,1 * ALESHA B. CASTILLO,2 of microtubules and are thus called 910 cilia. The pri- mary cilium is enclosed in a specialized membrane (Vieira. Anderson, Department of Biological Sciences, Stanford University, Stanford, California. E-mail: ctanders

  3. Computational simulation is becoming a primary means of analysis and decision making in national laboratories and

    E-Print Network [OSTI]

    Fainman, Yeshaiahu

    efficiency of wind turbine blades to evaluating the surgical design for a bypass graft, complex engineering are Leading experts in finite eLement methods, high performance computing, and materiaL mechanics. Master

  4. United Nations Human Space Technology Initiative (HSTI)

    E-Print Network [OSTI]

    Ochiai, M; Steffens, H; Balogh, W; Haubold, H J; Othman, M; Doi, T

    2015-01-01T23:59:59.000Z

    The Human Space Technology Initiative was launched in 2010 within the framework of the United Nations Programme on Space Applications implemented by the Office for Outer Space Affairs of the United Nations. It aims to involve more countries in activities related to human spaceflight and space exploration and to increase the benefits from the outcome of such activities through international cooperation, to make space exploration a truly international effort. The role of the Initiative in these efforts is to provide a platform to exchange information, foster collaboration between partners from spacefaring and non-spacefaring countries, and encourage emerging and developing countries to take part in space research and benefit from space applications. The Initiative organizes expert meetings and workshops annually to raise awareness of the current status of space exploration activities as well as of the benefits of utilizing human space technology and its applications. The Initiative is also carrying out primary ...

  5. Removal mechanisms of organic and inorganic solutes in raw, upland drinking water by nanofiltration: influence of solute-solute and solute-membrane interactions 

    E-Print Network [OSTI]

    De Munari, Annalisa; Munari, Annalisa de

    2012-11-29T23:59:59.000Z

    Nanofiltration (NF) membranes have been applied successfully for the removal of inorganic and organic pollutants, including micropollutants, from drinking water for the past two decades. However, a complete and quantitative ...

  6. High density polyethylene (HDPE) containers as an alternative to polyethylene terephthalate (PET) bottles for solar disinfection of drinking water in northern region, Ghana

    E-Print Network [OSTI]

    Yazdani, Iman

    2007-01-01T23:59:59.000Z

    The purpose of this study is to investigate the technical feasibility of high density polyethylene (HDPE) containers as an alternative to polyethylene terephthalate (PET) bottles for the solar disinfection of drinking water ...

  7. Methyl tertiary butyl ether (MtBE) contamination of the City of Santa Monica drinking water supply

    SciTech Connect (OSTI)

    Brown, A.; Farrow, J.R.C. [Komex H2O Science, Huntington Beach, CA (United States); Rodriguez, R.A. [City of Santa Monica, CA (United States)] [and others

    1997-12-31T23:59:59.000Z

    In the summer of 1996, the City of Santa Monica ceased pumping groundwater from two Well Fields (Charnock and Arcadia) used for public drinking water supply due to persistent and increasing concentrations of MtBE in all seven municipal water supply wells. This lost production accounted for 50% of the City`s total drinking water supply. In late 1996, the City, in cooperation with State and Federal agencies, initiated an investigation of MtBE contamination at the two well fields. The objectives of the investigation were as follows: (1) Review available data on the production, use, chemical characteristics, fate and transport, toxicology, and remediation of MtBE; (2) Identify locations of potential sources of MtBE groundwater contamination at the well fields; (3) Develop an understanding of the hydrologic pathways from the potential sources to the drinking water wells; and (4) Evaluate alternative treatment technologies for the removal of MtBE from drinking water. In addition to a review of available information about MtBE, the investigation included an extensive review of literature and available data relevant to the well fields, including well field production histories, site and regional hydrogeology, all well logs and production in the groundwater basins, general groundwater quality, and the record of MtBE detection. Based upon the review of background information, conceptual hydrogeologic models were developed. A detailed review of agency files for over 45 potential source sites was conducted. The information from this review was summarized, and source site screening and ranking criteria were developed. A field program was conducted at the major well field (Charnock), including soil gas surveys, CPTs, soil borings and well installations, geophysics, and aquifer testing. The field program provided site data which allowed the conceptual hydrogeologic model to be refitted to actual site conditions.

  8. UIC permitting process for class IID and Class III wells: Protection of drinking water in New York State

    SciTech Connect (OSTI)

    Hillenbrand, C.J. [EPA, New York, NY (United States)

    1995-09-01T23:59:59.000Z

    The U.S. Environmental Protection Agency (EPA) Region II, Underground Injection Control (UIC) Program regulates injection wells in the State of New York to protect drinking water; UIC regulations can be found under Title 40 of the Code of Federal Regulations Parts 124, 144, 146 and 147. Operators of solution mining injection wells (UIC Class IIIG) and produced fluid disposal wells (UIC Class IID) are required to obtain an UIC permit for authorization to inject. The permitting process requires submittal of drinking water, geologic and proposed operational data in order to assure that pressure build-up within the injection zone will not compromise confining layers and allow vertical migration of fluid into Underground Sources of Drinking Water (USDW). Additional data is required within an Area of Review (AOR), defined as an area determined by the intersection of the adjusted potentiometric surface produced by injection and a depth 50 feet below the base of the lowermost USDW, or a radius of 1/4 mile around the injection well, whichever is greater. Locations of all wells in the AOR must be identified, and completion reports and plugging reports must be submitted. Requirements are set for maximum injection pressure and flow rates, monitoring of brine properties of the injection well and monitoring of water supply wells in the AOR for possible contamination. Any noncompliance with permit requirements constitutes a violation of the Safe Drinking Water Act and is grounds for enforcement action, including possible revocation of permit. Presently four Class IID wells are authorized under permit in New York State. The Queenston sandstone, Medina sandstone, Salina B, Akron dolomite and Oriskany sandstone have been used for brine disposal; the lower Ordovician-Cambrian section is currently being considered as an injection zone. Over one hundred Class IIIG wells are authorized under permit in New York State and all have been utilized for solution mining of the Syracuse salt.

  9. Effects of drinking water temperature on respiration rates, body temperatures, dry matter intake, and milk production in lactating Holstein cows in summer 

    E-Print Network [OSTI]

    Milam, Kyle Zohn

    1985-01-01T23:59:59.000Z

    EFFECTS OF DRINKING WATER TEMPERATURE ON RESPIRATION RATES, BODY TEMPERATURES, DRY MATTER INTAKE, AND MILK PRODUCTION IN LACTATING HOLSTEIN COWS IN SUMMER A Thesis by KYLE ZOHN MILAM Submitted to the Graduate College of Texas A&M University... in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1985 Major Subject: Nutrition EFFECTS OF DRINKING WATER TEMPERATURE ON RESPIRATION RATES, BODY TEMPERATURES, DRY MATTER INTAKE, AND MILK PRODUCTION IN LACTATING HOLSTEIN...

  10. Study of temporal variation of radon concentrations in public drinking water supplies

    SciTech Connect (OSTI)

    York, E.L. [Univ. of North Carolina, Chapel Hill, NC (United States). Dept. of Environmental Sciences and Engineering

    1995-12-31T23:59:59.000Z

    The Environmental Protection Agency (EPA) has proposed a Maximum Contaminant Level (MCL) for radon-222 in public drinking water supplies of 300 pCi/L. Proposed monitoring requirements include collecting quarterly grab samples for the first year, then annual samples for the remainder of the compliance cycle provided first year quarterly samples average below the MCL. The focus of this research was to study the temporal variation of groundwater radon concentrations to investigate how reliably one can predict an annual average radon concentration based on the results of grab samples. Using a {open_quotes}slow-flow{close_quotes} collection method and liquid scintillation analysis, biweekly water samples were taken from ten public water supply wells in North Carolina (6 month - 11 month sampling periods). Based on study results, temporal variations exist in groundwater radon concentrations. Statistical analysis performed on the data indicates that grab samples taken from each of the ten wells during the study period would exhibit groundwater radon concentrations within 30% of their average radon concentration.

  11. Review of potential technologies for the treatment of Methyl tertiary butyl Ether (MtBE) in drinking water

    SciTech Connect (OSTI)

    Brown, A.; Browne, T.E. [Komex H2O Science, Huntington Beach, CA (United States); Devinny, J.S. [Univ. of Southern California, Los Angeles, CA (United States)] [and others

    1997-12-31T23:59:59.000Z

    At present, the state of knowledge on effective treatment technologies for MtBE in drinking water, and groundwater in general, is limited. Research by others is focusing on the remediation of MtBE close to the point of release. The City of Santa Monica, MWD, Komex and USC are currently conducting research into different technologies that could be used to remove MtBE from drinking water supplies. The objectives of the research are to evaluate different treatment technologies to identify cost-effective and technically feasible alternatives for the removal of MtBE from drinking water. The evaluation is considering moderate to high water flow rates (100 to 2,000+ gpm) and low to moderate MtBE concentrations (<2,000 {mu}g/l). The research program includes four phases: (1) Literature Review; (2) Bench Scale Study; (3) Field Scale Pre-pilot Study; and (4) Summary Evaluation. This paper presents some preliminary information and findings from the first phase of this research - the literature review. The review discusses the chemical properties of MtBE and how they affect remediation and thus, an evaluation of alternative treatment technologies. The review of available literature, and the applicability and limitations of the following technologies are presented in detail.

  12. Executive Summary An emissions inventory that identifies and quantifies a country's primary anthropogenic1 sources and sinks of

    E-Print Network [OSTI]

    Little, John B.

    Executive Summary An emissions inventory that identifies and quantifies a country's primary emission sources and greenhouse gases to climate change. In 1992, the United States signed and ratified and make available...national inventories of anthropogenic emissions by sources and removals by sinks

  13. National Institutes of Health National Institute of Mental Health

    E-Print Network [OSTI]

    Baker, Chris I.

    National Institutes of Health National Institute of Mental Health Department of Health and HumanNational Institute of Mental Health Division of Intramural Research Programs http://intramural.nimh.nih.gov/ [NIMH of Fellowship Training] National Institutes of Health National Institute of Mental Health Department of Health

  14. Primary geologic controls on coalbed methane content

    SciTech Connect (OSTI)

    Thomas, W.A.; Hines, R.A.

    1985-12-12T23:59:59.000Z

    Three primary factors that control gas content in coal beds are present depth of coal, maximum original burial depth, and depositional environments of the coal. Complex distribution of gas content suggests an interplay between these primary factors, as well as other controls. Present depth can be predicted in terms of surface geology and structure. Four closely spaced core holes in the Tuscaloosa area provide detailed data for interpretation of depositional environments and for inference of relative original depth of burial. Gas content apparently is higher in bayfill and bay-margin coals than in coals that were deposited in other environments. Data from petrophysical logs of petroleum wells can be used for regional stratigraphic mapping to outline extent of depositional systems. Correlations show that the section in the Cahaba synclinorium is thicker and contains more coal beds than that in the Black Warrior basin. 15 refs., 22 figs., 5 tabs.

  15. Sandia National Laboratories: EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    region where sunlight is most concentrated and to which ... Overview On November 11, 2010, in Sandia National Laboratories is home to one of the 46 multi-million dollar Energy...

  16. Los Alamos National Laboratory's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    takes part in Blue Star Museums program May 16, 2012 Free admission for active duty military, their family members LOS ALAMOS, New Mexico, May 16, 2012-Los Alamos National...

  17. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, SWIFT, Systems Analysis, Wind Energy The National Rotor Testbed (NRT) team is examining the effect of airfoil choice on the final design of the new rotor for the Scaled...

  18. Sandia National Laboratories: News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, SWIFT, Systems Analysis, Wind Energy The National Rotor Testbed (NRT) team is examining the effect of airfoil choice on the final design of the new rotor for the Scaled...

  19. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, SWIFT, Systems Analysis, Wind Energy The National Rotor Testbed (NRT) team is examining the effect of airfoil choice on the final design of the new rotor for the Scaled...

  20. Sandia National Laboratories: EC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, SWIFT, Systems Analysis, Wind Energy The National Rotor Testbed (NRT) team is examining the effect of airfoil choice on the final design of the new rotor for the Scaled...

  1. Sandia National Laboratories: NRT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, SWIFT, Systems Analysis, Wind Energy The National Rotor Testbed (NRT) team is examining the effect of airfoil choice on the final design of the new rotor for the Scaled...

  2. National Bioenergy Day 2014

    Broader source: Energy.gov [DOE]

    Bioenergy, the use of agricultural waste and forestry byproducts to generate heat and energy, will be celebrated during the second annual National Bioenergy Day on October 22, 2014. This is an...

  3. AISES National Conference

    Office of Energy Efficiency and Renewable Energy (EERE)

    The AISES National Conference is a one-of-a-kind, three day event convening graduate, undergraduate, and high school junior and senior students, teachers, workforce professionals, corporate and...

  4. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    security research at Sandia seeks to address key challenges facing our nation and the world. We work with the energy industry to improve current hardware and develop the next...

  5. Sandia National Laboratories: Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    security research at Sandia seeks to address key challenges facing our nation and the world. We work with the energy industry to improve current hardware and develop the next...

  6. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    security research at Sandia seeks to address key challenges facing our nation and the world. We work ... About Energy and Climate (EC) On November 1, 2010, in Access to...

  7. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Wind Energy ALBUQUERQUE, N.M. - Sandia National Laboratories and Kirtland Air Force Base may soon share a wind farm that will provide as much as one-third of the...

  8. National Synchrotron Light Source

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  9. Brookhaven National Laboratory

    Broader source: Energy.gov [DOE]

    Site OverviewThe Brookhaven National Laboratory (BNL) was established in 1947 by the Atomic Energy Commission (AEC) (predecessor to U.S. Department of Energy [DOE]). Formerly Camp Upton, a U.S....

  10. Energy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne is poised to help our nation build an economy fueled by safe, clean, renewable energy and free from dependence on foreign oil. When achieved, this will have a tremendous...

  11. National Energy Policy (Complete)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Earth can also be used directly for heat. These direct-use applications include heat 6-5 NATIONAL ENERGY POLICY ing buildings, growing plants in green houses, drying...

  12. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On October 10, 2011, in This Web Demo model is a simplified "player" version of the Photovoltaic Reliability Performance Model (PV-RPM) currently in development at Sandia National...

  13. Perspectives on the National

    E-Print Network [OSTI]

    Johnson, Eric E.

    Perspectives on the National Electrical Code ® John Wiles Sponsored by the Photovoltaic Systems systems. Representatives from the photovoltaic (PV) industry, academic institutions, the inspector requirements does not guarantee high levels of performance, higher performance and reliability frequently

  14. Biosafety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Biosafety Biosafety Links Biosafety Contacts Biosafety Office Argonne National Laboratory 9700 S. Cass Ave. Bldg. 202, Room B333 Argonne, IL 60439 USA 630-252-5191 Committee...

  15. Contract | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prime Contract is the contract between the U.S. Department of Energy and UChicago Argonne, LLC that sets out the terms and conditions for the operation of Argonne National...

  16. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Argonne National Laboratory and the U.S. Department of Energy (DOE) are very concerned about the well-being of all employees. Students at the undergraduate and graduate...

  17. Submitting Organization Sandia National ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Center Sandia National Laboratories PO Box 969 MS 9405 Livermore, CA 94551-0969 USA Phone (925) 294-3375 Fax (925) 294-3403 kubiak@sandia.gov Joint Entry with U. S....

  18. Submitting Organization Sandia National ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bauer Sandia National Laboratories. P.O. Box 5800, MS 1077 Albuquerque, NM 87185-1077 USA Phone:: (505)-845-0086 Fax:: (505) 844-7833 tmbaue@sandia.gov Contact Person Glenn D....

  19. National Center Standardsfor

    E-Print Network [OSTI]

    American Free Trade Agreement (NAFTA) International Organization for Standardization Information Network and exports Standards organizations, experts, and publications NCSCI helps you with these tools . . . Full texts of standards Indexes to millions of industry, national, regional, and international standards U

  20. Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    HISTORYThe Argonne National Laboratory (ANL) site is approximately 27 miles southwest of downtown Chicago in DuPage County, Illinois.  The 1,500 acre ANL site is completely surrounded by the 2,240...

  1. Primary coal crushers grow to meet demand

    SciTech Connect (OSTI)

    Fiscor, S.

    2009-09-15T23:59:59.000Z

    Mine operators look for more throughput with less fines generation in primary crushers (defined here as single role crushers and two stage crushers). The article gives advice on crusher selection and application. Some factors dictating selection include the desired product size, capacity, Hard Grove grindability index, percentage of rock to be freed and hardness of that rock. The hardness of coal probably has greatest impact on product fineness. 2 refs., 1 fig., 1 tab.

  2. The Idaho National Engineering and Environmental Laboratory Source Water Assessment

    SciTech Connect (OSTI)

    Sehlke, G.

    2003-03-17T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 square miles and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL's drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey's Hydrological Unit scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency's Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a this vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL's Source Water Assessment. Of the INEEL's 12 public water systems, three systems rated as low susceptibility (EBR-1, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead protection areas that will protect the INEEL's public water systems yet not too conservative to inhibit the INEEL from carrying out its missions.

  3. Lawrence Livermore National Laboratory | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeatured VideosTechnologiesLatest

  4. Los Alamos National Lab: National Security Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) - CenterLinks BerkeleyLivingNewsroom

  5. National Ignition Facility | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1 JulyScience (SC)In99Security |

  6. Chemist, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of theNuclear SecurityNuclearAdministration

  7. Engineer, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office ofDepartment ofr EEO ComplaintSystemsEmergencyEnd

  8. Engineer, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office ofDepartment ofr EEO

  9. Lawrence Livermore National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov OfficeAdministrationSecurityimpactsW56Administration

  10. Manager, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.govSecurityMaintaining the Stockpile Maintaining

  11. Researcher, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica High Energy Density Laboratory PlasmasSecurity

  12. Researcher, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica High Energy Density Laboratory

  13. Researcher, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica High Energy DensityAdministration David

  14. Researcher, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica High Energy DensityAdministration

  15. Researcher, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica High Energy

  16. Sandia National Laboratory Performance Evaluations | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTART Signed |

  17. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTubeCenters:Facebook Twitter YouTube FlickrDefense

  18. National Security Campus | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSeeNUCLEAR SCIENCE WEEKSecurity|

  19. Sandia National Laboratories | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware

  20. Sandia National Laboratories: National Security Missions: International

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and Nuclear Security Programs International,

  1. Sandia National Laboratories: National Security Missions: International

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and Nuclear Security Programs

  2. Sandia National Laboratories: National Security Missions: International

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and Nuclear Security ProgramsHomeland and

  3. Sandia National Laboratories: National Security Missions: International

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and Nuclear Security ProgramsHomeland

  4. Sandia National Laboratories: National Security Missions: International

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and Nuclear Security ProgramsHomelandHomeland

  5. Sandia National Laboratories: National Security Missions: International

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and Nuclear Security

  6. Sandia National Laboratories: National Security Missions: International

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and Nuclear SecurityHomeland and Nuclear

  7. Sandia National Laboratories: National Security Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and Nuclear SecurityHomeland andSafety

  8. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland andEffects and High Energy Density

  9. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland andEffects and High Energy DensityDefense Systems

  10. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland andEffects and High Energy DensityDefense

  11. National System Templates: Building Sustainable National Inventory

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen Energy Information NationalNationalsourceOpen

  12. Previous Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andBHoneywell FM&T,

  13. Los Alamos National Lab: National Security Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are hereNews item$alt Trinity to

  14. National Nuclear Security Administration Los Alamos National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB -Reports| NationalryLawrence

  15. National Nuclear Security Administration | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB -Reports|

  16. National Postirradiation Examination Workshop Report

    SciTech Connect (OSTI)

    Schulthess, Jason L

    2011-06-01T23:59:59.000Z

    A National Post-Irradiation-Examination (PIE) Workshop was held March 29-30, 2011, in Washington D.C., stimulated by the DOE Acting Assistant Secretary for Nuclear Energy approval on January 31, 2011 of the “Mission Need Statement for Advanced Post-Irradiation Examination Capability”. As stated in the Mission Need, “A better understanding of nuclear fuels and material performance in the nuclear environment, at the nanoscale and lower, is critical to the development of innovative fuels and materials required for tomorrow’s nuclear energy systems.” (2011) Developing an advanced post-irradiation capability is the most important thing we can do to advance nuclear energy as an option to meeting national energy goals. Understanding the behavior of fuels and materials in a nuclear reactor irradiation environment is the limiting factor in nuclear plant safety, longevity, efficiency, and economics. The National PIE Workshop is part of fulfilling or addressing Department of Energy (DOE) missions in safe and publically acceptable nuclear energy. Several presentations were given during the opening of the workshop. Generally speaking, these presentations established that we cannot continue to rely on others in the world to provide the capabilities we need to move forward with nuclear energy technology. These presentations also generally identified the need for increased microstructural understanding of fuels and materials to be coupled with modeling and simulation, and increased accessibility and infrastructure to facilitate the interaction between national laboratories and participating organizations. The overall results of the work of the presenters and panels was distilled into four primary needs 1. Understanding material changes in the extreme nuclear environment at the nanoscale. Nanoscale studies have significant importance due to the mechanisms that cause materials to degrade, which actually occur on the nanoscale. 2. Enabling additional proficiency in experimentation and analysis through robust modeling coupled with advanced characterization. 3. Advancing the infrastructure and accessibility of physical and administrative systems needed to meet the needs of participating organizations that are subject to different time cycles and constraints that make working and collaborating the national laboratories challenging. 4. Pursuing in-situ analysis and instrumentation to support the examination of dynamic changes to materials’ microstructure, deformation, and surface effects as they occur with time scales rather than the static comparison offered by current PIE methods. This Workshop Report responds to the research challenges for advanced/future PIE needs for nuclear materials development outlined by Energy Secretary Chu and the DOE-NE Research and Development Roadmap report, which was delivered to Congress in April 2010, (DOE-NE, 2010) by identifying the technial needs for fuel and material development specifically related to PIE. The information from the panels address these research challenges by identifying specific needs related to each of the topical areas. The focus of the Workshop was to identify gaps in the enabling capabilities for nuclear energy research and to identify high-priority fundamental capabilities to enable research to be completed that would likely have high impact on enabling nuclear energy as a significant contributor to energy production portfolios.

  17. Sandia National Laboratories: A Model for the Nation: Promoting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateECClimateA Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector A Model for the Nation: Promoting Education and Innovation in Vermont's...

  18. Sandia National Laboratories: National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Solar, Solar Newsletter A team from Sandia National Laboratories' (SNL) National Solar Thermal Test Facility (NSTTF) recently won a first place Excellence Award in the...

  19. FY 2010 Los Alamos National Security, LLC, PER Summary | National...

    National Nuclear Security Administration (NNSA)

    Los Alamos National Security, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  20. FY 2008 Los Alamos National Security, LLC, PER Summary | National...

    National Nuclear Security Administration (NNSA)

    Los Alamos National Security, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  1. Sandia National Laboratories: National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility SolarReserve Is Testing Prototype Heliostats at NSTTF On March 3, 2015, in Concentrating Solar Power, Energy, Facilities, National Solar...

  2. FY 2007 National Security Technologies, LLC, PER Summary | National...

    National Nuclear Security Administration (NNSA)

    National Security Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  3. FY 2008 National Security Technologies, LLC, PER Summary | National...

    National Nuclear Security Administration (NNSA)

    National Security Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  4. FY 2009 National Security Technologies, LLC, PER Summary | National...

    National Nuclear Security Administration (NNSA)

    National Security Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  5. FY 2010 National Security Technologies, LLC, PER Summary | National...

    National Nuclear Security Administration (NNSA)

    National Security Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  6. FY 2006 National Security Technologies, LLC, PER Summary | National...

    National Nuclear Security Administration (NNSA)

    National Security Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  7. Drell receives National Medal of Science | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Drell receives National Medal of Science | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  8. National Wind Technology Center (Fact Sheet), National Wind Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NATIONAL WIND TECHNOLOGY CENTER www.nrel.govwind Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center...

  9. Removing Arsenic from Contaminated Drinking Water in Rural Bangladesh: Recent Fieldwork Results and Policy Implications

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Gadgil, Ashok J.; Kowolik, Kristin; Addy, Susan E.A.

    2009-09-17T23:59:59.000Z

    ARUBA (Arsenic Removal Using Bottom Ash) has proven effective at removing high concentrations of arsenic from drinking water in Bangladesh. During fieldwork in four sub-districts of the country, ARUBA reduced arsenic levels ranging from 200 to 900 ppb to below the Bangladesh standard of 50 ppb. The technology is cost-effective because the substrate--bottom ash from coal fired power plants--is a waste material readily available in South Asia. In comparison to similar technologies, ARUBA uses less media for arsenic removal due to its high surface area to volume ratio. Hence, less waste is produced. A number of experiments were conducted in Bangladesh to determine the effectiveness of various water treatment protocols. It was found that (1) ARUBA removes more than half of the arsenic from water within five minutes of treatment, (2) ARUBA, that has settled at the bottom of a treatment vessel, continues to remove arsenic for 2-3 days, (3) ARUBA's arsenic removal efficiency can be improved through sequential partial dosing (adding a given amount of ARUBA in fractions versus all at once), and (4) allowing water to first stand for two to three days followed by treatment with ARUBA produced final arsenic levels ten times lower than treating water directly out of the well. Our findings imply a number of tradeoffs between ARUBA's effective arsenic removal capacity, treatment system costs, and waste output. These tradeoffs, some a function of arsenic-related policies in Bangladesh (e.g., waste disposal regulations), must be considered when designing an arsenic removal system. We propose that the most attractive option is to use ARUBA in communityscale water treatment centers, installed as public-private partnerships, in Bangladeshi villages.

  10. Biomass Feedstock National User Facility

    Broader source: Energy.gov [DOE]

    Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

  11. Wildlife use of NPDES outfalls at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Foxx, T.; Blea-Edeskuty, B.

    1995-09-01T23:59:59.000Z

    From July through October of 1991, the Biological Resources Evaluation Team (BRET) surveyed 133 of the 140 National Pollutant Discharge and Elimination System outfalls at Los Alamos National Laboratory (LANL). The purpose of the survey was to determine the use of these wastewater outfalls by wildlife. BRET observed wildlife or evidence of wildlife (scat, tracks, or bedding) by 35 vertebrate species in the vicinity of the outfalls, suggesting these animals could be using water from outfalls. Approximately 56% of the outfalls are probably used or are suitable for use by large mammals as sources of drinking water. Additionally, hydrophytic vegetation grows in association with approximately 40% of the outfalls-a characteristic that could make these areas eligible for wetland status. BRET recommends further study to accurately characterize the use of outfalls by small and medium-sized mammals and amphibians. The team also recommends systematic aquatic macroinvertebrate studies to provide information on resident communities and water quality. Wetland assessments may be necessary to ensure compliance with wetland regulations if LANL activities affect any of the outfalls supporting hydrophytic vegetation.

  12. Sandia National Laboratories: Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nation's first solar storage facility that is ... A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate,...

  13. Intelligence team given national honor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intelligence team given national honor Intelligence team given national honor A team known as the LANL Field Intelligence Element is being honored with the Department of Energy...

  14. Sandia National Laboratories: Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Solar, Solar Newsletter A team from Sandia National Laboratories' (SNL) National Solar Thermal Test Facility (NSTTF) recently won a first place Excellence Award in the...

  15. UNIVERSITY OF CANADA FIRST NATIONS

    E-Print Network [OSTI]

    Argerami, Martin

    UNIVERSITY DRIVE NORTH UNIVERSITYDRIVEEAST LIFT STATION BASEBALL DIAMOND FIRST NATIONS WAY FIRST NATIONS WAY G UNIVERSITYDRIVEWEST ENGINEERING GARAGE ARTIFICIAL TURF FIELD EASTLOOPROAD PLAYING FIELD 1

  16. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

  17. Sandia National Laboratories: Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

  18. Sandia National Laboratories: Solar Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Sandia Corporation | Questions & Comments | Privacy & Security U.S. Department of Energy National Nuclear Security Administration Sandia National Laboratories is a...

  19. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Partnership Projects On April 14, 2011, in National Solar Thermal Test Facility (NSTTF) The Tower at the National Solar Thermal Test Facility (NSTTF) offers a complete...

  20. Climate Change and National Security

    E-Print Network [OSTI]

    Alyson, Fleming; Summer, Kelly; Summer, Martin; Lauren, Franck; Jonathan, Mark

    2015-01-01T23:59:59.000Z

    CLIMATE CHANGE Multiplying Threats to National Securityfor the impacts of climate change on national security. Pagea warming world. Page 11 “Climate change acts as a threat

  1. Computational geomechanics & applications at Sandia National Laboratories.

    SciTech Connect (OSTI)

    Arguello, Jose Guadalupe, Jr.

    2010-04-01T23:59:59.000Z

    Sandia National Laboratories (SNL) is a multi-program national laboratory in the business of national security, whose primary mission is nuclear weapons (NW). It is a prime contractor to the USDOE, operating under the NNSA and is one of the three NW national laboratories. It has a long history of involvement in the area of geomechanics, starting with the some of the earliest weapons tests at Nevada. Projects in which geomechanics support (in general) and computational geomechanics support (in particular) are at the forefront at Sandia, range from those associated with civilian programs to those in the defense programs. SNL has had significant involvement and participation in the Waste Isolation Pilot Plant (low-level defense nuclear waste), the Yucca Mountain Project (formerly proposed for commercial spent fuel and high-level nuclear waste), and the Strategic Petroleum Reserve (the nation's emergency petroleum store). In addition, numerous industrial partners seek-out our computational/geomechanics expertise, and there are efforts in compressed air and natural gas storage, as well as in CO{sub 2} Sequestration. Likewise, there have also been collaborative past efforts in the areas of compactable reservoir response, the response of salt structures associated with reservoirs, and basin modeling for the Oil & Gas industry. There are also efforts on the defense front, ranging from assessment of vulnerability of infrastructure to defeat of hardened targets, which require an understanding and application of computational geomechanics. Several examples from some of these areas will be described and discussed to give the audience a flavor of the type of work currently being performed at Sandia in the general area of geomechanics.

  2. Autonomous Demand Response for Primary Frequency Regulation

    SciTech Connect (OSTI)

    Donnelly, Matt; Trudnowski, Daniel J.; Mattix, S.; Dagle, Jeffery E.

    2012-02-28T23:59:59.000Z

    The research documented within this report examines the use of autonomous demand response to provide primary frequency response in an interconnected power grid. The work builds on previous studies in several key areas: it uses a large realistic model (i.e., the interconnection of the western United States and Canada); it establishes a set of metrics that can be used to assess the effectiveness of autonomous demand response; and it independently adjusts various parameters associated with using autonomous demand response to assess effectiveness and to examine possible threats or vulnerabilities associated with the technology.

  3. Property:Primary Organization | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag Jump to: navigation,ProjectStartDateProperty EditResultsUtilityPartOfPrimary

  4. National Renewable Energy Laboratory: 35 Years of Innovation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This brochure is an overview of NREL's innovations over the last 35 years. It includes the lab's history and a description of the laboratory of the future. The National Renewable Energy Laboratory (NREL) is the U.S. Department of Energy's (DOE) primary national laboratory for renewable energy and energy efficiency. NREL's work focuses on advancing renewable energy and energy efficiency technologies from concept to the commercial marketplace through industry partnerships. The Alliance for Sustainable Energy, LLC, a partnership between Battelle and MRIGlobal, manages NREL for DOE's Office of Energy Efficiency and Renewable Energy.

  5. National toxicology program chemical nomination and selection process

    SciTech Connect (OSTI)

    Selkirk, J.K. [National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States)

    1990-12-31T23:59:59.000Z

    The National Toxicology Program (NTP) was organized to support national public health programs by initiating research designed to understand the physiological, metabolic, and genetic basis for chemical toxicity. The primary mandated responsibilities of NTP were in vivo and vitro toxicity testing of potentially hazardous chemicals; broadening the spectrum of toxicological information on known hazardous chemicals; validating current toxicological assay systems as well as developing new and innovative toxicity testing technology; and rapidly communicating test results to government agencies with regulatory responsibilities and to the medical and scientific communities. 2 figs.

  6. National Security Initiatives | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1Resource forNational Cyber Security

  7. National Security Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1Resource forNational Cyber

  8. National Security Science Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1Resource forNational

  9. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERAL EMPLOYEEAdministrationSignedNational Nuclear|or

  10. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERAL EMPLOYEEAdministrationSignedNational

  11. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERAL EMPLOYEEAdministrationSignedNational19, 2001 Energy

  12. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERAL EMPLOYEEAdministrationSignedNational19, 2001

  13. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERAL EMPLOYEEAdministrationSignedNational19, 2001FOR

  14. Sandia National Laboratories

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andBHoneywell9/%2ARequest National

  15. Sandia National Laboratories

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andBHoneywell9/%2ARequest| National

  16. AMERICA'S NATIONAL LABS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNews Vol.AMERICA'S NATIONAL LABS by

  17. Documents for Foreign Nationals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers69 Federal Register /NATIONAL LABORATORY

  18. Documents for Foreign Nationals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers69 Federal Register /NATIONAL LABORATORYDocuments

  19. Why the Top Two Primary Fails California Voters

    E-Print Network [OSTI]

    Maviglio, Steven

    2015-01-01T23:59:59.000Z

    Why the Top Two Primary Fails California Voters Steven14, the proponents of the Top Two primary made some boldto voters. They said the Top Two would “reduce gridlock,” “

  20. California’s Top Two Primary and the Business Agenda

    E-Print Network [OSTI]

    McGhee, Eric

    2015-01-01T23:59:59.000Z

    Quinn, Tony. 2013. The “Top Two” System: Working Like ItAssessing California’s Top-Two Primary and RedistrictingCalifornia’s Top Two Primary and the Business Agenda Eric

  1. attending primary care: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a renaissance in, and a positive future for, primary care. The seven principles are 1) Health care must be organized to serve the needs of patients; 2) the goal of primary care...

  2. assist primary care: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a renaissance in, and a positive future for, primary care. The seven principles are 1) Health care must be organized to serve the needs of patients; 2) the goal of primary care...

  3. A review of "A Pleasing Sinne: Drink and Conviviality in 17th-Century England." by Adam Smyth ed. 

    E-Print Network [OSTI]

    Bryan N.S. Gooch

    2006-01-01T23:59:59.000Z

    links to Circean attractions and perils, and Susan J. Owen?s ?Drink, Sex and Power in Restoration Comedy??figuring here in detail are ?royalist? Aphra Behn?s The Rover (wine is once more attractive and dangerous and Willmore is both a predator and victim... instance a work of Aphra Behn?s. A few of the points in Lowenthal?s study are certainly interesting, but this poorly executed book undermines these few good points, making Performing Identities a frustrating and disappointing read. Lowenthal argues...

  4. Post-Soviet Kyrgyzstan: Between Nationalism and Nation-State

    E-Print Network [OSTI]

    Artman, Vincent

    2014-08-25T23:59:59.000Z

    Vincent M. Artman 1 Post-Soviet Kyrgyzstan: Between Nationalism and Nation-State In December of 2011, shortly after becoming the President of the Kyrgyz Republic, Almazbek Atambayev told a crowd of Kyrgyz and Uzbeks “only together are we... Kyrgyzstan,” adding “those who try to divide us according to nationality and region are enemies of the nation.”1 At other times, Atambayev has claimed that nationalism is the “main problem” in Kyrgyzstan.2 It is not difficult to see why this should...

  5. National Securities Technologies _NSTec_ Livermore Operations...

    Broader source: Energy.gov (indexed) [DOE]

    NAICS North American Industry Classification System NIF National Ignition Facility NNSA National Nuclear Security Administration NRTL Nationally Recognized Testing Laboratory...

  6. Ion source with improved primary arc collimation

    DOE Patents [OSTI]

    Dagenhart, William K. (Oak Ridge, TN)

    1985-01-01T23:59:59.000Z

    An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power, thereby preventing the exposure of the anode to the full arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.

  7. Ion source with improved primary arc collimation

    DOE Patents [OSTI]

    Dagenhart, W.K.

    1983-12-16T23:59:59.000Z

    An improved negative ion source is provided in which a self-biasing, molybdenum collimator is used to define the primary electron stream arc discharge from a filament operated at a negative potential. The collimator is located between the anode and the filament. It is electrically connected to the anode by means of an appropriate size resistor such that the collimator is biased at essentially the filament voltage during operation. Initially, the full arc voltage appears across the filament to collimator until the arc discharge strikes. Then the collimator biases itself to essentially filament potential due to current flow through the resistor thus defining the primary electron stream without intercepting any appreciable arc power. The collimator aperture is slightly smaller than the anode aperture to shield the anode from the arc power which, in the past, has caused overheating and erosion of the anode collimator during extended time pulsed-beam operation of the source. With the self-biasing collimator of this invention, the ion source may be operated from short pulse periods to steady-state without destroying the anode.

  8. Intense ultraviolet perturbations on aquatic primary producers

    E-Print Network [OSTI]

    Guimarais, Mayrene; Horvath, Jorge

    2010-01-01T23:59:59.000Z

    During the last decade, the hypothesis that one or more biodiversity drops in the Phanerozoic eon, evident in the geological record, might have been caused by the most powerful kind of stellar explosion so far known (Gamma Ray Bursts) has been discussed in several works. These stellar explosions could have left an imprint in the biological evolution on Earth and in other habitable planets. In this work we calculate the short-term lethality that a GRB would produce in the aquatic primary producers on Earth. This effect on life appears as a result of ultraviolet (UV) re-transmission in the atmosphere of a fraction of the gamma energy, resulting in an intense UV flash capable of penetrating ~ tens of meters in the water column in the ocean. We focus on the action of the UV flash on phytoplankton, as they are the main contributors to global aquatic primary productivity. Our results suggest that the UV flash could cause an hemispheric reduction of phytoplankton biomass in the upper mixed layer of the World Ocean o...

  9. Communication and Effectiveness in Primary Health Jean Carletta

    E-Print Network [OSTI]

    Carletta, Jean

    Communication and Effectiveness in Primary Health Care Teams Jean Carletta Human Communication.Carletta@edinburgh.ac.uk ABSTRACT Primary health care team members need to communicate effectively with each other in order of cross-disciplinary team meetings, we describe communication in primary health care teams, explore

  10. Numerical simulation of turbulent jet primary breakup in Diesel engines

    E-Print Network [OSTI]

    Helluy, Philippe

    Numerical simulation of turbulent jet primary breakup in Diesel engines Peng Zeng1 Marcus Herrmann" IRMA Strasbourg, 23.Jan.2008 #12;Introduction DNS of Primary Breakup in Diesel Injection Phase Transition Modeling Turbulence Modeling Summary Outline 1 Introduction 2 DNS of Primary Breakup in Diesel

  11. National Sea Grant Library

    E-Print Network [OSTI]

    National Sea Grant Library The New Library System and Publication Submittals Communications Staff;Publication Submittals · Publication types consolidated here for searching purposes · Editor field added Link Type · Document Is default Add link title · "View PDF" = PDFs · "View Document" = other docs

  12. Scholarship Fund (National Forestry

    E-Print Network [OSTI]

    Botea, Adi

    Forestry Scholarship Fund (National Forestry Master's Program (NFMP) The Forestry Scholarship Fund! 2014 Scholarship Offers A degree in forestry is a way of life. Trees, people, habitats, management that you will experience when you chose forestry as a career. #12;TRUSTEE FOR FORESTRY SCHOLARSHIP FUND ABN

  13. BROOKHAVEN NATIONAL Sealed Source

    E-Print Network [OSTI]

    Homes, Christopher C.

    BROOKHAVEN NATIONAL LABORATORY Sealed Source Contamination Incident October 13, 2011 #12;2 Cesium (Cs-137) Source Failure On September 28th @ ~1600 contamination event discovered · Two Radiological Contamination was from a Cs-137 (265 micro-curie) "sealed source" used to test area radiation monitors. · Source

  14. Pacific Northwest National Laboratory

    E-Print Network [OSTI]

    Science. Technology. Innovation. PNNL-SA-34741 Pacific Northwest National Laboratory (PNNL) is addressing cognition and learning to the development of student- centered, scenario-based training. PNNL's Pachelbel (PNNL) has developed a cognitive-based, student-centered approach to training that is being applied

  15. Comprehensive national energy strategy

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This Comprehensive National Energy Strategy sets forth a set of five common sense goals for national energy policy: (1) improve the efficiency of the energy system, (2) ensure against energy disruptions, (3) promote energy production and use in ways that respect health and environmental values, (4) expand future energy choices, and (5) cooperate internationally on global issues. These goals are further elaborated by a series of objectives and strategies to illustrate how the goals will be achieved. Taken together, the goals, objectives, and strategies form a blueprint for the specific programs, projects, initiatives, investments, and other actions that will be developed and undertaken by the Federal Government, with significant emphasis on the importance of the scientific and technological advancements that will allow implementation of this Comprehensive National Energy Strategy. Moreover, the statutory requirement of regular submissions of national energy policy plans ensures that this framework can be modified to reflect evolving conditions, such as better knowledge of our surroundings, changes in energy markets, and advances in technology. This Strategy, then, should be thought of as a living document. Finally, this plan benefited from the comments and suggestions of numerous individuals and organizations, both inside and outside of government. The Summary of Public Comments, located at the end of this document, describes the public participation process and summarizes the comments that were received. 8 figs.

  16. National Laboratory Dorene Price

    E-Print Network [OSTI]

    : price@bnl.gov ELECTROCHEMICAL ENHANCEMENT OF BIO-ETHANOL AND METABOLITE PRODUCTION Brookhaven National as a manufacturing step in their process to produce bio-ethanol or other commercially used metabolites can implement ApplicationFiled 61/042,867 TECHNOLOGY This method accelerates the production of ethanol and other metabolites

  17. National Renewable Energy Laboratory

    E-Print Network [OSTI]

    research and collaboration to improve the durability of photovoltaic cells for PEC hydrogen production Hydrogen-Production Technology Hydrogen offers great promise as a clean fuel in our nation's energy in hydrogen- production technology. Abundant on Earth, hydrogen is almost always found in combination

  18. National Laboratory Contacts

    Broader source: Energy.gov [DOE]

    Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge transportation research occurs at these facilities, funded by both DOE and cooperative research and development agreements (CRADAs) with industry

  19. National Security System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-03-08T23:59:59.000Z

    The manual provides baseline requirements and controls for the graded protection of the confidentiality, integrity, and availability of classified information and information systems used or operated by the Department of Energy (DOE), contractors, and any other organization on behalf of DOE, including the National Nuclear Security Administration. Cancels DOE M 471.2-2. Canceled by DOE O 205.1B.

  20. The national energy strategy

    SciTech Connect (OSTI)

    Stuntz, L.G. [Department of Energy, Washington, DC (United States)

    1991-12-31T23:59:59.000Z

    This article gives an over view of the National Energy Strategy as initiated by President Buss in 1989 and presented in February 1991 to Congress and the American people after US DOE worked on it intensively. Subsections include NES analytical Methodology; Increasing energy and economic efficiency; enhancing environmental quality; fortifying foundations; NES legislative report.

  1. Sandia National Laboratories: News & Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    primary purpose is to model severe-accident progression in light-water-reactor (LWR) nuclear power plants. Sandia developed MELCOR for the US Nuclear Regulatory ... DOE OE...

  2. Sandia National Laboratories: Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    primary purpose is to model severe-accident progression in light-water-reactor (LWR) nuclear power plants. Sandia developed MELCOR for the US Nuclear Regulatory ... Sandian...

  3. Sandia National Laboratories: Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Leakages and Consequences of Releases) is a fully integrated, engineering-level computer code whose primary purpose is to model severe-accident progression in...

  4. Secondary emission electron gun using external primaries

    DOE Patents [OSTI]

    Srinivasan-Rao, Triveni (Shoreham, NY); Ben-Zvi, Ilan (Setauket, NY)

    2009-10-13T23:59:59.000Z

    An electron gun for generating an electron beam is provided, which includes a secondary emitter. The secondary emitter includes a non-contaminating negative-electron-affinity (NEA) material and emitting surface. The gun includes an accelerating region which accelerates the secondaries from the emitting surface. The secondaries are emitted in response to a primary beam generated external to the accelerating region. The accelerating region may include a superconducting radio frequency (RF) cavity, and the gun may be operated in a continuous wave (CW) mode. The secondary emitter includes hydrogenated diamond. A uniform electrically conductive layer is superposed on the emitter to replenish the extracted current, preventing charging of the emitter. An encapsulated secondary emission enhanced cathode device, useful in a superconducting RF cavity, includes a housing for maintaining vacuum, a cathode, e.g., a photocathode, and the non-contaminating NEA secondary emitter with the uniform electrically conductive layer superposed thereon.

  5. Secondary emission electron gun using external primaries

    DOE Patents [OSTI]

    Srinivasan-Rao, Triveni (Shoreham, NY); Ben-Zvi, Ilan (Setauket, NY); Kewisch, Jorg (Wading River, NY); Chang, Xiangyun (Middle Island, NY)

    2007-06-05T23:59:59.000Z

    An electron gun for generating an electron beam is provided, which includes a secondary emitter. The secondary emitter includes a non-contaminating negative-electron-affinity (NEA) material and emitting surface. The gun includes an accelerating region which accelerates the secondaries from the emitting surface. The secondaries are emitted in response to a primary beam generated external to the accelerating region. The accelerating region may include a superconducting radio frequency (RF) cavity, and the gun may be operated in a continuous wave (CW) mode. The secondary emitter includes hydrogenated diamond. A uniform electrically conductive layer is superposed on the emitter to replenish the extracted current, preventing charging of the emitter. An encapsulated secondary emission enhanced cathode device, useful in a superconducting RF cavity, includes a housing for maintaining vacuum, a cathode, e.g., a photocathode, and the non-contaminating NEA secondary emitter with the uniform electrically conductive layer superposed thereon.

  6. Combustor with two stage primary fuel assembly

    DOE Patents [OSTI]

    Sharifi, Mehran (Winter Springs, FL); Zolyomi, Wendel (Oviedo, FL); Whidden, Graydon Lane (Orlando, FL)

    2000-01-01T23:59:59.000Z

    A combustor for a gas turbine having first and second passages for pre-mixing primary fuel and air supplied to a primary combustion zone. The flow of fuel to the first and second pre-mixing passages is separately regulated using a single annular fuel distribution ring having first and second row of fuel discharge ports. The interior portion of the fuel distribution ring is divided by a baffle into first and second fuel distribution manifolds and is located upstream of the inlets to the two pre-mixing passages. The annular fuel distribution ring is supplied with fuel by an annular fuel supply manifold, the interior portion of which is divided by a baffle into first and second fuel supply manifolds. A first flow of fuel is regulated by a first control valve and directed to the first fuel supply manifold, from which the fuel is distributed to first fuel supply tubes that direct it to the first fuel distribution manifold. From the first fuel distribution manifold, the first flow of fuel is distributed to the first row of fuel discharge ports, which direct it into the first pre-mixing passage. A second flow of fuel is regulated by a second control valve and directed to the second fuel supply manifold, from which the fuel is distributed to second fuel supply tubes that direct it to the second fuel distribution manifold. From the second fuel distribution manifold, the second flow of fuel is distributed to the second row of fuel discharge ports, which direct it into the second pre-mixing passage.

  7. National Synchrotron Light Source

    ScienceCinema (OSTI)

    BNL

    2009-09-01T23:59:59.000Z

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  8. National Energy Technology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar Energy Harvesting LosNationalAnnual

  9. National Nanotechnology Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar EnergyKambara /performancesequestrationNational

  10. Second United Nations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearchPhysicsDepartment of Energy MonizBiofuelsNations .

  11. Primary beam steering due to field leakage from superconducting SHMS magnets

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moore, M.H.; Waidyawansa, B.P.; Covrig, S.; Carlini, R.; Benesch, J.

    2014-11-01T23:59:59.000Z

    Simulations of the magnetic fields from the Super High Momentum Spectrometer in Hall C at Thomas Jefferson National Accelerator Facility show significant field leakage into the region of the primary beam line between the target and the beam dump. Without mitigation, these remnant fields will steer the unscattered beam enough to limit beam operations at small scattering angles. Presented here are magnetic field simulations of the spectrometer magnets and a solution using optimal placement of a minimal amount of shielding iron around the beam line.

  12. Worldwide estimates and bibliography of net primary productivity derived from pre-1982 publications

    SciTech Connect (OSTI)

    Esser, G. [Justus-Liebig-Univ., Giessen (Germany). Inst. for Plant Ecology; Lieth, H.F.H. [Univ. of Osnabrueck (Germany). Systems Research Group; Scurlock, J.M.O.; Olson, R.J. [Oak Ridge National Lab., TN (United States)

    1997-10-01T23:59:59.000Z

    An extensive compilation of more than 700 field estimates of net primary productivity of natural and agricultural ecosystems worldwide was synthesized in Germany in the 1970s and early 1980s. Although the Osnabrueck data set has not been updated since the 1980s, it represents a wealth of information for use in model development and validation. This report documents the development of this data set, its contents, and its recent availability on the Internet from the Oak Ridge National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics. Caution is advised in using these data, which necessarily include assumptions and conversions that may not be universally applicable to all sites.

  13. Primary Beam Steering Due to Field Leakage from Superconducting SHMS Magnets

    E-Print Network [OSTI]

    Michael H. Moore; Buddhini P. Waidyawansa; Silviu Covrig; Roger Carlini; Jay Benesch

    2014-08-26T23:59:59.000Z

    Simulations of the magnetic fields from the Super High Momentum Spectrometer in Hall C at Thomas Jefferson National Accelerator Facility show significant field leakage into the region of the primary beam line between the target and the beam dump. Without mitigation, these remnant fields will steer the unscattered beam enough to limit beam operations at small scattering angles. Presented here are magnetic field simulations of the spectrometer magnets and a solution using optimal placement of a minimal amount of shielding iron around the beam line.

  14. Microsoft Word - CR-091 Primary Basis of Cost Savings and Cost Savings Amount Custom Fields

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked Questions forCheneyNovember S. DEPARTMENTthe UseCR-091 Primary Basis of Cost

  15. Primary Contractors/Employers - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News, information andNet electricity trade index

  16. New Solicitations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    National Laser User Facilities Program New Solicitations New Solicitations National Laser Users' Facility Grant Program...

  17. Sandia National Laboratories: National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Power, Energy, Facilities, Materials Science, National Solar Thermal Test Facility, News, News & Events, Renewable Energy, Solar, Solar Newsletter, Systems...

  18. Nuclear Energy Research Brookhaven National

    E-Print Network [OSTI]

    Ohta, Shigemi

    Nuclear Energy Research Brookhaven National Laboratory William C. Horak, Chair Nuclear Science and Technology Department #12;BNL Nuclear Energy Research Brookhaven Graphite Research Reactor - 1948 National Nuclear Data Center - 1952* High Flux Beam Reactor - 1964 Technical Support for NRC - 1974

  19. Brookhaven National Laboratory Number: Revision

    E-Print Network [OSTI]

    Ohta, Shigemi

    NATIONAL LABORATORY LASER CONTROLLED AREA STANDARD OPERATING PROCEDURE (SOP) This document defines LASER OPERATIONS Operation Maintenance Service Specific Operation Fiber Optics LASER SYSTEM HAZARD the safety management program for the laser system listed below. All American National Standard Institute

  20. Sandia National Laboratories: TSPEAR toolkit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nation-al Air Space (NAS) radar system, which has led to a blanket rejection of several wind-farm developments. To improve the siting and ... Tool for Siting, Planning, and...

  1. Foreign-national Investigators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours, ProgramsFIRST CenterFor

  2. ARGONNE NATIONAL LABORATORY

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111 ~IIIIIIIIIIIIIIIIIHIIIIIJ~~ 0001 04 i2' 7/

  3. Level: National Data;

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet)Wellhead0 Capability to.5 First

  4. IDAHO NATIONAL LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen Storage inChang CurriculumScientificBrief History

  5. Diesel prices flat nationally

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDiesel prices continueU.S.Diesel prices flat

  6. Diesel prices increase nationally

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDiesel prices continueU.S.DieselDiesel prices

  7. Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportation Safety HomeWaterNanoscale EffectsXyce(tm) 4.0.2

  8. Sandia National Laboratories conducts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportation Safety HomeWaterNanoscaleProject

  9. Sandia National Laboratories: News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTube Flickr RSS TopLivermore Livermore2014News

  10. Sandia National Laboratories: Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTube Flickr RSSStrategic Plan Annual Report Economic

  11. Sandia National Laboratories: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTube Flickr RSSStrategicSynthetic

  12. 2012 National Electricity Forum

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) | Department1TheDepartmentFY12Separations and

  13. 2012 National Electricity Forum

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) | Department1TheDepartmentFY12Separations and1

  14. 2012 National Electricity Forum

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) | Department1TheDepartmentFY12Separations and1

  15. 2012 National Electricity Forum

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) | Department1TheDepartmentFY12Separations

  16. 2012 National Electricity Forum

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) | Department1TheDepartmentFY12SeparationsEastern

  17. 2012 National Electricity Forum

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) |

  18. LOS ALAMOS NATIONAL LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS Experimental Run SchedulesLNG Technology

  19. LOS ALAMOS NATIONAL LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS Experimental Run SchedulesLNG

  20. Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -of Energy Last DayLauraGasSecurityLawrence

  1. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking downDosimetry ReportLos

  2. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking downDosimetry ReportLosMay 14,

  3. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking downDosimetry ReportLosMay

  4. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking downDosimetry ReportLosMay

  5. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking downDosimetry

  6. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking downDosimetryand LANS partner to

  7. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking downDosimetryand LANS partner toApril

  8. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking downDosimetryand LANS partner

  9. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking downDosimetryand LANS partner3

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking downDosimetryand LANS

  11. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking downDosimetryand LANSHazmat Challenge

  12. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking downDosimetryand LANSHazmat

  13. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking downDosimetryand LANSHazmat30th

  14. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking downDosimetryand

  15. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking downDosimetryandparticipates in

  16. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking downDosimetryandparticipates

  17. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking downDosimetryandparticipatespurchases

  18. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking

  19. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million to local United Way

  20. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million to local United

  1. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million to local Unitedaccounts for

  2. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million to local Unitedaccounts

  3. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million to local Unitedaccounts5th

  4. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million to local

  5. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million to local6th Hazmat Challenge

  6. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million to local6th Hazmat

  7. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million to local6th Hazmatcelebrates

  8. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million to local6th

  9. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million to local6thExpress Licensing

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million to local6thExpress

  11. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million to local6thExpress70th

  12. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million to

  13. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million todescribes storm damage to

  14. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million todescribes storm damage

  15. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million todescribes storm

  16. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million todescribes stormresumes

  17. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million todescribes stormresumesnew

  18. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million todescribes

  19. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million todescribespledge $2.17

  20. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million todescribespledge $2.17Star

  1. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million todescribespledge $2.17Star4

  2. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million todescribespledge

  3. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million todescribespledgeLos Alamos

  4. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million todescribespledgeLos Alamos

  5. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 million todescribespledgeLos

  6. Los Alamos National Laboratory's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 millionmarksships last ofDARHTSafety

  7. Los Alamos National Laboratory's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 millionmarksships last

  8. Los Alamos National Laboratory's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 millionmarksships lastenvironmental

  9. Los Alamos National Laboratory's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 millionmarksships

  10. Los Alamos National Laboratory,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5LetLooking5 millionmarksshipsplants willows LANS

  11. National Service Activation Checklist

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagement ofConverDyn NOPRNancy SutleyNationalOverviewCybersecurityService

  12. National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee theOilNRELTechnologies |

  13. National Security, Weapons Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSeeNUCLEAR SCIENCE

  14. National User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSeeNUCLEAR SCIENCENational User

  15. Sandia National Laboratories: Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100 ResilientHistory ViewAgreements

  16. Sandia National Laboratories: Careers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100 ResilientHistory

  17. Sandia National Laboratories: Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100LifeAnnouncementsLocations

  18. Sandia National Laboratories: News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and Nuclear SecurityHomeland andSafetyNews

  19. Sandia National Laboratories: Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and NuclearReport PartnershipsNews People

  20. Oak Ridge National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access to scienceScientific and TechnicalTechnicalC088Home