Powered by Deep Web Technologies
Note: This page contains sample records for the topic "national park wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

National Park Service- Yellowstone National Park, Wyoming  

Broader source: Energy.gov [DOE]

Yellowstone National Park, Wyoming, has many historical sites within its boundaries. One of these is the Lamar Buffalo Ranch, a ranch that was set up in the early 1900s to breed buffalo for replacement stock within the park during a time when their numbers were very low. The ranch buildings are currently being used by the Yellowstone Association Institute for ecology classes.

2

National Park Service - Yellowstone National Park, Wyoming | Department of  

Broader source: Energy.gov (indexed) [DOE]

Yellowstone National Park, Wyoming Yellowstone National Park, Wyoming National Park Service - Yellowstone National Park, Wyoming October 7, 2013 - 10:15am Addthis Photo of Photovoltaic System at Lamar Buffalo Ranch in Yellowstone National Park Yellowstone National Park, Wyoming, has many historical sites within its boundaries. One of these is the Lamar Buffalo Ranch, a ranch that was set up in the early 1900s to breed buffalo for replacement stock within the park during a time when their numbers were very low. The ranch buildings are currently being used by the Yellowstone Association Institute for ecology classes. Since the ranch is located in the northeast corner of the park it is quite isolated from the commercial power grid, and power has been traditionally supplied by propane generators. The generators are now only a backup system

3

North Fork well, Shoshone National Forest, Park County, Wyoming  

SciTech Connect (OSTI)

A summary of the draft environmental impact statement for a proposed exploratory oil drilling operation in Shoshone National Forest in Wyoming describes the drilling equipment and support facilities required for the operation. Marathon Oil Company's purpose is to test the gas and oil potential of underlying geologic structures. Although Marathon plans a reclamation and revegetation program, there would be erosion during the operation. Noise from the drilling and helicopter activity would disrupt wildlife and vacationers in nearby Yellowstone Park. Confrontations with the grizzly bear population would increase. The legal mandate for the assessment was the Mineral Leasing Act of 1920.

Not Available

1984-01-01T23:59:59.000Z

4

Federal Energy Management Program: National Park Service - Yellowstone  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Park National Park Service - Yellowstone National Park, Wyoming to someone by E-mail Share Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Facebook Tweet about Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Twitter Bookmark Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Google Bookmark Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Delicious Rank Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on Digg Find More places to share Federal Energy Management Program: National Park Service - Yellowstone National Park, Wyoming on

5

Hydrothermal alteration in research drill hole Y-2, Lower Geyser Basin, Yellowstone National Park, Wyoming  

SciTech Connect (OSTI)

Y-2, a US Geological Survey research diamond-drill hole in Lower Geyser Basin, Yellowstone National Park, was drilled to a depth of 157.4 meters. The hole penetrated interbedded siliceous sinter and travertine to 10.2 m, glacial sediments of the Pinedale Glaciation interlayered with pumiceous tuff from 10.2 to 31.7 m, and rhyolitic lavas of the Elephant Back flow of the Central Plateau Member and the Mallard Lake Member of the Pleistocene Plateau Rhyolite from 31.7 to 157.4 m. Hydrothermal alteration is pervasive in most of the nearly continuous drill core. Rhyolitic glass has been extensively altered to clay and zeolite minerals (intermediate heulandite, clinoptilolite, mordenite, montmorillonite, mixed-layer illite-montmorillonite, and illite) in addition to quartz and adularia. Numerous veins, vugs, and fractures in the core contain these and other minerals: silica minerals (opal, ..beta..-cristobalite, ..cap alpha..-cristobalite, and chalcedony), zeolites (analcime, wairakite, dachiardite, laumontite, and yugawaralite), carbonates (calcite and siderite), clay (kaolinite and chlorite), oxides (hematite, goethite, manganite, cryptomelane, pyrolusite, and groutite), and sulfides (pyrhotite and pyrite) along with minor aegirine, fluorite, truscottite, and portlandite. Interbedded travertine and siliceous sinter in the upper part of the drill core indicate that two distinct types of thermal water are responsible for precipitation of the surficial deposits, and further that the water regime has alternated between the two thermal waters more than once since the end of the Pinedale Glaciation (approx. 10,000 years B.P.). Alternation of zones of calcium-rich and sodium- and potassium-rich hydrothermal minerals also suggests that the calcium-rich and sodium- and potassium-rich hydrothermal minerals also suggests that the water chemistry in this drill hole varies with depth.

Bargar, K.E.; Beeson, M.H.

1981-05-01T23:59:59.000Z

6

National Park Service - Yellowstone National Park, Wyoming |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

isolated from the commercial power grid, and power has been traditionally supplied by propane generators. The generators are now only a backup system for a 7kW photovoltaic (PV)...

7

MOTORWEEK YELLOWSTONE NATIONAL PARK  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MOTORWEEK MOTORWEEK YELLOWSTONE NATIONAL PARK JOHN DAVIS: Some of America's most precious treasures are our national parks. And the U.S. park service understands that keeping the parks pristine, while also allowing easy access by vacationers is a huge challenge. So, setting the pace on making the drive through the parks greener is not just a goal, it's a passion. JOHN DAVIS: The National Parks Service is entrusted with preserving and showcasing America's natural wonders and historical landmarks, maintaining 392 national parks covering million acres of land and water in all parts of the country, and plays host to more than 275 million visitors every year. No other place on earth has as much natural diversity and spectacular scenery in one accessible place than America's first national park, Yellowstone, so it's no surprise this

8

National Parks Clean Up with Alternative Fuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

National Parks Clean Up with Alternative Fuels National Parks Clean Up with Alternative Fuels National Parks Clean Up with Alternative Fuels March 1, 2011 - 11:38am Addthis Alternative fuel vehicles and advanced vehicle technologies are helping to keep National treasures like Yellowstone National Park in Cody, Wyoming pristine. | Photo by Jeff Gunn Alternative fuel vehicles and advanced vehicle technologies are helping to keep National treasures like Yellowstone National Park in Cody, Wyoming pristine. | Photo by Jeff Gunn Dennis A. Smith Director, National Clean Cities What does this mean for me? Pristine National Parks Less of your tax dollars spent on fuel Blue skies, pristine mountain vistas, endless open space and ... choking fumes from motor vehicles? Even though the latter clearly doesn't belong

9

National Parks Clean Up with Alternative Fuels | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Clean Up with Alternative Fuels Clean Up with Alternative Fuels National Parks Clean Up with Alternative Fuels March 1, 2011 - 11:38am Addthis Alternative fuel vehicles and advanced vehicle technologies are helping to keep National treasures like Yellowstone National Park in Cody, Wyoming pristine. | Photo by Jeff Gunn Alternative fuel vehicles and advanced vehicle technologies are helping to keep National treasures like Yellowstone National Park in Cody, Wyoming pristine. | Photo by Jeff Gunn Dennis A. Smith Director, National Clean Cities What does this mean for me? Pristine National Parks Less of your tax dollars spent on fuel Blue skies, pristine mountain vistas, endless open space and ... choking fumes from motor vehicles? Even though the latter clearly doesn't belong in our National Parks, maintaining their air quality has become a real

10

Review: Manufacturing National Park Nature  

E-Print Network [OSTI]

the Wilderness Industry of Jasper By J. Keri Cronin Reviewedthe Wilderness Industry of Jasper. Vancouver, BC: UBC Press,how photographic images of Jasper National Park in Alberta,

Mason, Fred

2012-01-01T23:59:59.000Z

11

National Parks in the U.S.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Parks National Parks are natural areas that are protected by the United States Government, and controlled by the National Park Service. These parks offer a great deal of information about different habitats, wildlife, and how to plan a trip. These parks also have many educational activities that are available to both teachers and students! All links below are provided by the National Park Service (http://www.nps.gov) Acadia National Park Acadia National Park Maine Home Page : http://www.nps.gov/acad/index.htm For Teachers! For Students! American Samoa National Park American Samoa National Park American Samoa, USA Home Page : http://www.nps.gov/npsa/index.htm For Teachers! For Students! Arches National Park Arches National Park Utah Home Page : http://www.nps.gov/arch/index.htm

12

South Park, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.4221501°, -110.793261° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4221501,"lon":-110.793261,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

13

National Park Service- Chickasaw, Oklahoma  

Broader source: Energy.gov [DOE]

The Chickasaw National Recreation Area is located 100 miles south of Oklahoma City, Oklahoma, on the Lake of the Arbuckles. To save taxpayers' money and minimize adverse impacts on the environment, the National Park Service (NPS) recently incorporated solar energy into the design of three new comfort stations.

14

Clean Cities: Clean Cities National Parks Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Cities National Parks Initiative Clean Cities National Parks Initiative to someone by E-mail Share Clean Cities: Clean Cities National Parks Initiative on Facebook Tweet about Clean Cities: Clean Cities National Parks Initiative on Twitter Bookmark Clean Cities: Clean Cities National Parks Initiative on Google Bookmark Clean Cities: Clean Cities National Parks Initiative on Delicious Rank Clean Cities: Clean Cities National Parks Initiative on Digg Find More places to share Clean Cities: Clean Cities National Parks Initiative on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum

15

Clean Cities: Clean Cities National Parks Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Parks Initiative National Parks Initiative Submit a Project, National Park Service logo Clean Cities partners with the National Park Service (NPS) through the Clean Cities National Parks Initiative to support transportation projects that educate park visitors on the benefits of reducing petroleum use and greenhouse gas emissions. This initiative complements the NPS Climate Friendly Parks program by demonstrating the environmental benefits of reducing petroleum use. Glacier Greater Yellowstone Area Rocky Mountain Denali National Mall and Memorial Park Mississippi River Sleeping Bear Dunes Yellowstone Grand Teton Mammoth Cave Zion Blue Ridge Parkway Great Smoky Mountains Shenandoah Acadia San Antonio Missions Grand Canyon Golden Gate Mesa Verde Project Locations - Photo of the snow-covered Teton Mountain range in Grand Teton National Park.

16

Seeking Mountains Field Trip Jasper National Park  

E-Print Network [OSTI]

Seeking Mountains Field Trip Jasper National Park December 14-15, 2012 Jasper National Park of Jasper is one of only four communities located in a Canadian national park. We have arranged a special. The field trip includes as follows: a welcome reception at the Jasper Yellowhead Museum and Archives

MacMillan, Andrew

17

Research into wildlife/vehicle collisions in Jasper National Park  

E-Print Network [OSTI]

that have been used in Jasper National Park is also providedVEHICLE COLLISIONS IN JASPER NATIONAL PARK Jim Bertwistle (M.Sc. , National Park Warden, Jasper National Park, Box 10

Bertwistle, Jim

2003-01-01T23:59:59.000Z

18

NERPs Definition | Savannah River National Environmental Park  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NERPS: Idaho, Hanford, Los Alamos, Oak Ridge, Fermilab, Nevada, and Savannah River. The Savannah River Site became the first NERP in 1972. Unlike National Parks, NERPs provide a...

19

Federal Energy Management Program: National Park Service - San Miguel  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Park National Park Service - San Miguel Island, California to someone by E-mail Share Federal Energy Management Program: National Park Service - San Miguel Island, California on Facebook Tweet about Federal Energy Management Program: National Park Service - San Miguel Island, California on Twitter Bookmark Federal Energy Management Program: National Park Service - San Miguel Island, California on Google Bookmark Federal Energy Management Program: National Park Service - San Miguel Island, California on Delicious Rank Federal Energy Management Program: National Park Service - San Miguel Island, California on Digg Find More places to share Federal Energy Management Program: National Park Service - San Miguel Island, California on AddThis.com... Energy-Efficient Products

20

Federal Energy Management Program: National Park Service - Chickasaw,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Park National Park Service - Chickasaw, Oklahoma to someone by E-mail Share Federal Energy Management Program: National Park Service - Chickasaw, Oklahoma on Facebook Tweet about Federal Energy Management Program: National Park Service - Chickasaw, Oklahoma on Twitter Bookmark Federal Energy Management Program: National Park Service - Chickasaw, Oklahoma on Google Bookmark Federal Energy Management Program: National Park Service - Chickasaw, Oklahoma on Delicious Rank Federal Energy Management Program: National Park Service - Chickasaw, Oklahoma on Digg Find More places to share Federal Energy Management Program: National Park Service - Chickasaw, Oklahoma on AddThis.com... Energy-Efficient Products Technology Deployment Renewable Energy Federal Requirements Renewable Resources & Technologies

Note: This page contains sample records for the topic "national park wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

National uranium resource evaluation: Sheridan Quadrangle, Wyoming and Montana  

SciTech Connect (OSTI)

The Sheridan Quadrangle of north-central Wyoming was evaluated for uranium favorability according to specific criteria of the National Uranium Resource Evaluation program. Procedures consisted of geologic and radiometric surveys; rock, water, and sediment sampling; studying well logs; and reviewing the literature. Five favorable environments were identified. These include portions of Eocene Wasatch and Upper Cretaceous Lance sandstones of the Powder River Basin and Lower Cretaceous Pryor sandstones of the Bighorn Basin. Unfavorable environments include all Precambrian, Cambrian, Ordovician, Permian, Triassic, and Middle Jurassic rocks; the Cretaceous Thermopolis, Mowry, Cody, Meeteetse, and Bearpaw Formations; the Upper Jurassic Sundance and Morrison, the Cretaceous Frontier, Meseverde, Lance, and the Paleocene Fort Union and Eocene Willwood Formations of the Bighorn Basin; the Wasatch Formation of the Powder River Basin, excluding two favorable areas and all Oligocene and Miocene rocks. Remaining rocks are unevaluated.

Damp, J N; Jennings, M D

1982-04-01T23:59:59.000Z

22

National Park Service- San Miguel Island, California  

Broader source: Energy.gov [DOE]

San Miguel Island is one of five islands that make up Channel Islands National Park on the coast of southern California. The islands comprise 249,353 acres (100,910 hectares) of land and ocean that teems with terrestrial and marine life. The National Park Service (NPS) protects the pristine resources at Channel Islands National Park by conserving, recycling, using alternative fuel vehicles, applying renewable energy, and using resources wisely. It also seeks to replace conventional fuels with renewable energy wherever possible. This applies especially to diesel fuel and petroleum, which must be shipped in from the mainland to generate electricity.

23

The nature of the Heart Mountain fault in the vicinity of Dead Indian Hill, Park County, Wyoming  

E-Print Network [OSTI]

of Madison cap hills of Chugwater (Triassic redbeds) to Carter Mountain on the south where he mapped Madison resting on Fort Union. The eastern- most exposure, Heart Mountain itself, Dake described as consisting of several hundred feet of Madison...THE NATURE OF THE HEART MOUNTAIN FAULT IN THE VICINITY OF DEAD INDIAN HILL, PARK COUNTY, WYOMING A Thesis by EUGENE DONALD SUNGY Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement...

Sungy, Eugene Donald

1977-01-01T23:59:59.000Z

24

Sustainable Housing for Park Rangers in Big Bend National Park, Texas  

E-Print Network [OSTI]

Service Center. Development Concept Plan-Panther Junction, National Park Service, 1979. 4. Denver Service Center, Guiding Princi~lm of Sustainable Design. National Park Service, 1993. ... Service Center. Development Concept Plan-Panther Junction, National Park Service, 1979. 4. Denver Service Center, Guiding Princi~lm of Sustainable Design. National Park Service, 1993. ...

Garrison, M.; Griswold, S.

1996-01-01T23:59:59.000Z

25

Driving the National Parks Forward | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Driving the National Parks Forward Driving the National Parks Forward Driving the National Parks Forward June 19, 2012 - 4:02pm Addthis Propane shuttle buses used to transport visitors at Mammoth Cave National Park. | Photo courtesy of the National Parks Service. Propane shuttle buses used to transport visitors at Mammoth Cave National Park. | Photo courtesy of the National Parks Service. Shannon Brescher Shea Communications Manager, Clean Cities Program What does this project do? The Energy Department is partnering with the National Park Service to increase alternative fuel use of vehicle fleets at national parks around the country. Describing America's National Parks, historian Wallace Stegnar once said they were "the best idea we ever had." But like any good idea, the parks are constantly adapting to meet the needs of the present. Clean Cities,

26

National Parks Roll on With Alternative Fuels | Department of...  

Energy Savers [EERE]

National Parks Roll on With Alternative Fuels National Parks Roll on With Alternative Fuels March 19, 2014 - 3:50pm Addthis A park ranger charges an electric vehicle at Golden Gate...

27

Clean Cities: Mammoth Cave National Park Coordinator Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mammoth Cave National Park Coordinator Mammoth Cave National Park Coordinator Meeting to someone by E-mail Share Clean Cities: Mammoth Cave National Park Coordinator Meeting on Facebook Tweet about Clean Cities: Mammoth Cave National Park Coordinator Meeting on Twitter Bookmark Clean Cities: Mammoth Cave National Park Coordinator Meeting on Google Bookmark Clean Cities: Mammoth Cave National Park Coordinator Meeting on Delicious Rank Clean Cities: Mammoth Cave National Park Coordinator Meeting on Digg Find More places to share Clean Cities: Mammoth Cave National Park Coordinator Meeting on AddThis.com... Coordinator Basics Outreach Education & Webinars Meetings Reporting Contacts Mammoth Cave National Park Coordinator Meeting The 2007 Clean Cities coordinator meeting at Mammoth Cave National Park

28

Jobs and Economic Development from New Transmission and Generation in Wyoming (Fact Sheet), NREL (National Renewable Energy Laboratory)  

Wind Powering America (EERE)

from New Transmission and Generation in Wyoming Introduction Wyoming is a significant energy exporter, producing nearly 40% of the nation's coal and 10% of the nation's natural gas. However, opportunities to add new energy exports in the form of power generation are limited by insufficient transmission capacity. This fact sheet summarizes results from a recent analysis conducted by NREL for the Wyoming Infrastructure Authority (WIA) that estimates jobs and economic development activity that could occur in Wyoming should the market support new investments in power generation and transmission in the state. Modeling Inputs New infrastructure projects considered in this analysis would be developed for the purpose of exporting Wyoming wind and natural gas

29

Some factors affecting the winter range of Jasper National Park.  

E-Print Network [OSTI]

??Recent studies by Dr. I. McT. Cowan in Jasper National Park have revealed that many of the winter game ranges of the Park are heavily (more)

Pfeiffer, Egbert Wheeler

2012-01-01T23:59:59.000Z

30

Isle Royale National Park Bibliography of Publications 1 Isle Royale National Park  

E-Print Network [OSTI]

). 14:1-63. Armentano, T. V. and O. L. Loucks. 1983. Air pollution threats to US National Parks of Publications From National Park Service NatureBib Abrams, T. 1931. Mapping Isle Royale by air. Magazine Royales forests-Rupley talks conservation. Skillings mining review. Author unknown. 1935. Isle Royale

31

National Park Service | Open Energy Information  

Open Energy Info (EERE)

Park Service Park Service Jump to: navigation, search Logo: National Park Service Name National Park Service Address 1849 C Street NW Place Washington, District of Columbia Zip 20240 Year founded 1916 Website http://www.nps.gov/index.htm Coordinates 38.8936749°, -77.0425236° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8936749,"lon":-77.0425236,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

32

Alternative Fuels Data Center: Propane Mowers Help National Park Cut  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Propane Mowers Help Propane Mowers Help National Park Cut Emissions to someone by E-mail Share Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Facebook Tweet about Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Twitter Bookmark Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Google Bookmark Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Delicious Rank Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Digg Find More places to share Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on AddThis.com... Aug. 8, 2013 Propane Mowers Help National Park Cut Emissions " We're very proud to be an example of what the National Park Service can

33

Alternative Fuels Data Center: Yellowstone National Park Commits to  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Yellowstone National Yellowstone National Park Commits to Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Delicious Rank Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on Digg Find More places to share Alternative Fuels Data Center: Yellowstone National Park Commits to Alternative Fuels on AddThis.com... Oct. 16, 2010 Yellowstone National Park Commits to Alternative Fuels

34

Environmental Impacts of Tourism in Khao Yai National Park, Thailand  

E-Print Network [OSTI]

Knowledge of visitor impacts is critical for sustainable tourism management in national parks. The focus of past tourism impact research on national parks is either on bio-physical impacts (conducted as recreation ecology research) or on social...

Phumsathan, Sangsan

2011-10-21T23:59:59.000Z

35

E-Print Network 3.0 - aketajawe-lolobata national park Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Forest Inyo National Forest Los Padres National Forest Los Angeles Yosemite National Park Kings Canyon... National Park Los Angeles San Diego Winema National Forest Nevada Arizona...

36

E-Print Network 3.0 - ankarafantsika national park Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Forest Inyo National Forest Los Padres National Forest Los Angeles Yosemite National Park Kings Canyon... National Park Los Angeles San Diego Winema National Forest Nevada Arizona...

37

Energy Department and National Park Service Announce Clean Cities  

Broader source: Energy.gov (indexed) [DOE]

National Park Service Announce Clean Cities National Park Service Announce Clean Cities Partnership to Drive Sustainable National Parks Energy Department and National Park Service Announce Clean Cities Partnership to Drive Sustainable National Parks June 19, 2012 - 11:05am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - As part of the Obama Administration's commitments to reducing America's reliance on imported oil and protecting our nation's air and water, the U.S. Energy Department and the National Park Service today announced that five national parks around the country will deploy fuel efficient and alternative fuel vehicles as part of an expanded partnership, helping to protect some of America's most prized natural environments. "Through the Clean Cities partnership, the Energy Department and the

38

Alternative Fuels Data Center: Mammoth Cave National Park Uses Only  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Mammoth Cave National Mammoth Cave National Park Uses Only Alternative Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Mammoth Cave National Park Uses Only Alternative Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Mammoth Cave National Park Uses Only Alternative Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Mammoth Cave National Park Uses Only Alternative Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Mammoth Cave National Park Uses Only Alternative Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Mammoth Cave National Park Uses Only Alternative Fuel Vehicles on Digg Find More places to share Alternative Fuels Data Center: Mammoth Cave National Park Uses Only Alternative Fuel Vehicles on AddThis.com...

39

National Park Service- Lake Powell, Utah  

Broader source: Energy.gov [DOE]

Lake Powell is part of Utah's Glen Canyon National Recreation Area. The Dangling Rope Marina operates by using diesel generators to supply power. They use 65,000 gallons of diesel fuel per year that has to be barged in over Lake Powell. The potential for environmental damage to the marina in the event of a fuel spill is significant, and the cost to the National Park Service (NPS) for transporting each fuel delivery is considerable. Consequently, the installation of a photovoltaic (PV) system presented many advantages.

40

MANHATTAN PROJECT NATIONAL HISTORICAL PARK | Department of Energy  

Energy Savers [EERE]

PARK MANHATTAN PROJECT NATIONAL HISTORICAL PARK Shift change at the Y-12 facility in Oak Ridge, TN, where uranium-235 was separated from uranium-238. August 1945. Shift change...

Note: This page contains sample records for the topic "national park wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Data Acquisition-Manipulation At Lassen Volcanic National Park Geothermal  

Open Energy Info (EERE)

Volcanic National Park Geothermal Volcanic National Park Geothermal Area (1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Lassen Volcanic National Park Geothermal Area (1982) Exploration Activity Details Location Lassen Volcanic National Park Geothermal Area Exploration Technique Data Acquisition-Manipulation Activity Date 1982 Usefulness useful DOE-funding Unknown Exploration Basis Develop parameters to identify geothermal region Notes Statistical methods are outlined to separate spatially, temporally, and magnitude-dependent portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson distribution. Temporally related

42

Mercury Vapor At Lassen Volcanic National Park Area (Varekamp...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lassen Volcanic National Park Area (Varekamp & Buseck, 1983) Exploration...

43

Sustainable Transportation and National Parks Initiative Featured in Magazine  

Broader source: Energy.gov [DOE]

The latest issue of Continuum Magazine, which focuses on sustainable transportation, includes an article that spotlights the Clean Cities National Parks Initiative.

44

Energy Department and National Park Service Announce Clean Cities...  

Energy Savers [EERE]

And there are multiple benefits - we use less petroleum which saves money and reduces air pollution in America's national parks. Some of these alternative fuel vehicles are...

45

Geothermometry At Lassen Volcanic National Park Area (Thompson...  

Open Energy Info (EERE)

Usefulness not indicated DOE-funding Unknown References J. Michael Thompson (1985) Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of Lassen Volcanic National Park...

46

Compound and Elemental Analysis At Lassen Volcanic National Park...  

Open Energy Info (EERE)

Usefulness not indicated DOE-funding Unknown References J. Michael Thompson (1985) Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of Lassen Volcanic National Park...

47

National Parks Move Transportation Forward in America's Great Outdoors |  

Broader source: Energy.gov (indexed) [DOE]

Parks Move Transportation Forward in America's Great Parks Move Transportation Forward in America's Great Outdoors National Parks Move Transportation Forward in America's Great Outdoors March 28, 2013 - 3:00pm Addthis Together, the five newest National Parks Initiative projects will save the equivalent of nearly 10,000 gallons of gasoline and 71 tons of greenhouse gas emissions per year. | Infographic by Sarah Gerrity, Energy Department. Together, the five newest National Parks Initiative projects will save the equivalent of nearly 10,000 gallons of gasoline and 71 tons of greenhouse gas emissions per year. | Infographic by Sarah Gerrity, Energy Department. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? The five new National Parks Initiative projects will save the

48

Fatal Chimpanzee Attack in Loango National Park, Gabon  

E-Print Network [OSTI]

Fatal Chimpanzee Attack in Loango National Park, Gabon Christophe Boesch & Josephine Head & Nikki a fatal attack on an adult male chimpanzee at a new research site in Loango National Park, Gabon. We found or habituation. Keywords chimpanzees . fatal attack . gabon . intergroup conflict Introduction Chimpanzee social

49

Sandia National Laboratories: Sandia Science & Technology Park  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure Security, News, News & Events Activities at CERL, located in the Sandia Science & Technology Park, are expected to marry computing expertise from across Sandia with...

50

Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren,  

Open Energy Info (EERE)

Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren, Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Analyses of eight well samples taken consecutively during the flow test showed an inverse correlation between NH3 and Cl_ concentrations. The last sample taken had a pH of 8.35 and contained 2100 ppm Cl_ and 0.55 ppm NH3. Ratios of Na+/K+ and Na+/Cl_ remained nearly constant throughout the flow test. Cation geothermometers (with inherent uncertainties of at least

51

Lassen Volcanic National Park Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lassen Volcanic National Park Geothermal Area Lassen Volcanic National Park Geothermal Area (Redirected from Lassen Volcanic National Park Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lassen Volcanic National Park Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

52

Manhattan Project National Historical Park | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Manhattan Project National Historical Park Manhattan Project National Historical Park Manhattan Project National Historical Park The Department, as the direct descendent of the Manhattan Engineer District, owns and manages the Federal properties at most of the major Manhattan Project sites, including Oak Ridge, Tennessee; Hanford, Washington; and Los Alamos, New Mexico. For over a decade, the Department, in cooperation with other Federal agencies, state and local governments, and other stakeholders, has pursued the possibility of including its most significant Manhattan Project properties within a Manhattan Project National Historical Park. A panel of distinguished historic preservation experts convened in 2001 by the Advisory Council on Historic Preservation at the request of the Department of Energy recommended that the "ultimate goal" for

53

National Park Service - San Miguel Island, California | Department of  

Broader source: Energy.gov (indexed) [DOE]

San Miguel Island, California San Miguel Island, California National Park Service - San Miguel Island, California October 7, 2013 - 10:00am Addthis Photo of Wind/Photovoltaic Power System at San Miguel Island San Miguel Island is one of five islands that make up Channel Islands National Park on the coast of southern California. The islands comprise 249,353 acres (100,910 hectares) of land and ocean that teems with terrestrial and marine life. The National Park Service (NPS) protects the pristine resources at Channel Islands National Park by conserving, recycling, using alternative fuel vehicles, applying renewable energy, and using resources wisely. It also seeks to replace conventional fuels with renewable energy wherever possible. This applies especially to diesel fuel and petroleum, which must

54

What is the purpose of our national parks?  

E-Print Network [OSTI]

to reserve forests on the headwaters of rivers to prevent seasonal flooding. This was done for conservation--not preservation-reasons, especially during the Teddy Roosevelt/Gifford Pinchot years. Sponsors of the National Park Service bill...

Manning, Orlinda D.

2012-06-07T23:59:59.000Z

55

Fatal Chimpanzee Attack in Loango National Park, Gabon  

Science Journals Connector (OSTI)

In some populations, chimpanzees engage in lethal aggression within and between social units. We report a fatal attack on an adult male chimpanzee at a new research site in Loango National Park, Gabon. We found a...

Christophe Boesch; Josephine Head; Nikki Tagg

2007-10-01T23:59:59.000Z

56

Description and analysis of vehicle and train collisions with wildlife in Jasper National Park, Alberta Canada, 1951-1999  

E-Print Network [OSTI]

measures that have been used in Jasper National Park is alsoCOLLISIONS WITH WILDLIFE IN JASPER NATIONAL PARK, ALBERTANational Park Warden, Jasper National Park, 780-852-6235,

Bertwistle, Jim

2001-01-01T23:59:59.000Z

57

Before the House Subcommittee on National Parks Committee on Energy and Commerce  

Broader source: Energy.gov [DOE]

Subject: Proposed Manhattan Project National Historical Park By: Ingrid Kolb, Director Office of Management

58

Before the House Subcommittee on National Parks, Forests and Public Lands- Committee on Natural Resources  

Broader source: Energy.gov [DOE]

Subject: Proposed Manhattan Project National Historical Park By: Ingrid Kolb, Director Office of Management

59

National Park Service - Chickasaw, Oklahoma | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Chickasaw, Oklahoma Chickasaw, Oklahoma National Park Service - Chickasaw, Oklahoma October 7, 2013 - 9:56am Addthis Photo of Comfort Station at the Chickasaw National Recreation Area The Chickasaw National Recreation Area is located 100 miles south of Oklahoma City, Oklahoma, on the Lake of the Arbuckles. To save taxpayers' money and minimize adverse impacts on the environment, the National Park Service (NPS) recently incorporated solar energy into the design of three new comfort stations. The decision to use solar water heating at the site was the result of a collaborative effort between the National Renewable Energy Laboratory (NREL) Federal Energy Management Program (FEMP) and Solar Process Heat Program in support of NPS. Chickasaw visitors wanted hot showers, and park personnel wanted an alternative to conventional water heaters. The facility

60

Clean Cities National Parks Initiative Project Success Story Form  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Parks Initiative Project Success Story Form National Parks Initiative Project Success Story Form Do you know about a successful petroleum-reduction activity or clean-transportation project that should be featured with the National Parks Initiative projects? In addition to being on the Clean Cities website, these success stories can be featured in U.S. Department of Energy and U.S. Department of Interior publications and in videos with potential national television coverage. These success stories should be related to alternative fuels, advanced vehicle technologies, and smart driving practices, and they must be projects at NPS units. To submit a success story idea, complete the form below and click the "Submit by E-Mail" button in the upper-right corner of this page or save the form and e-mail it to andrew.hudgins@nrel.gov.

Note: This page contains sample records for the topic "national park wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Visitor perceptions of alternative transportation systems and intelligent transportation systems in national parks  

E-Print Network [OSTI]

This dissertation examines the potential use of intelligent transportation systems (ITS) and alternative transportation systems (ATS) in national parks. Visitors at two of the national park units in California, Golden Gate National Recreation Area...

Dilworth, Virginia Ann

2004-09-30T23:59:59.000Z

62

Seismicity And Fluid Geochemistry At Lassen Volcanic National Park,  

Open Energy Info (EERE)

Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two Circulation Cells In The Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two Circulation Cells In The Hydrothermal System Details Activities (7) Areas (2) Regions (0) Abstract: Seismic analysis and geochemical interpretations provide evidence that two separate hydrothermal cells circulate within the greater Lassen hydrothermal system. One cell originates south to SW of Lassen Peak and within the Brokeoff Volcano depression where it forms a reservoir of hot fluid (235-270°C) that boils to feed steam to the high-temperature

63

Lassen Volcanic National Park Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lassen Volcanic National Park Geothermal Area Lassen Volcanic National Park Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lassen Volcanic National Park Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

64

Overview | Savannah River National Environmental Park  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ecology Laboratory (SREL), USDA Forest Service - Savannah River (USFS-SR), and Savannah River National Laboratory (SRNL). As a research unit of UGA, SREL's primary function is...

65

Complex tool sets for honey extraction among chimpanzees in Loango National Park, Gabon  

E-Print Network [OSTI]

Complex tool sets for honey extraction among chimpanzees in Loango National Park, Gabon Christophe. However, new observations on complex tool use by the chimpanzees of Loango National Park, Gabon, expand

66

The epidemiology and etiology of visitor injuries in Hawaii Volcanoes National Park  

E-Print Network [OSTI]

The U.S. National Park Service has recognized visitor health and safety as an important component of protected area management. Despite this recognition, research investigating visitor health and safety issues in national parks is lacking. In order...

Heggie, Travis Wade

2006-04-12T23:59:59.000Z

67

Riparian wetlands and visitor use management in Big Bend National Park, Texas'  

E-Print Network [OSTI]

to the Mexican States of Chihuahua and Coahuila. Big Bend National Park contains about 27,000 acres of wetland

68

Skeletal Pathology in Pan troglodytes schweinfurthii in Kibale National Park, Uganda  

E-Print Network [OSTI]

Skeletal Pathology in Pan troglodytes schweinfurthii in Kibale National Park, Uganda Melinda L Kibale National Park, Uganda. We compare these data with other East African populations, especially Gombe data from skele- tal remains from chimpanzees in Kibale National Park (KNP), Uganda, and compare

Pontzer, Herman

69

Historical GIS as a Platform for Public Memory at Mammoth Cave National Park  

E-Print Network [OSTI]

Historical GIS as a Platform for Public Memory at Mammoth Cave National Park Katie Algeo*, Western University, USA #12;Historical GIS as a Platform for Public Memory at Mammoth Cave National Park ABSTRACT The Mammoth Cave Historical GIS (MCHGIS) fosters new understandings of a national park landscape as a historic

Young, Terence

70

Going-to-the-Sun Road, Glacier National Park, MT, USA  

E-Print Network [OSTI]

Going-to-the-Sun Road, Glacier National Park, MT, USA Avalanche Path Atlas Erich H. Peitzsch Daniel..................................................................................................................................... 2 Overview of Red Rock Group avalanche paths, Going-to-the-Sun Road, Glacier National Park, MT................................................................................................................................................... 3 Overview of Lower GTSR group avalanche paths, Going-to-the-Sun Road, Glacier National Park, MT

71

National Park Service - Lake Powell, Utah | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Lake Powell, Utah Lake Powell, Utah National Park Service - Lake Powell, Utah October 7, 2013 - 9:58am Addthis Photo of the Photovoltaic System at Lake Powell, Utah Lake Powell is part of Utah's Glen Canyon National Recreation Area. The Dangling Rope Marina operates by using diesel generators to supply power. They use 65,000 gallons of diesel fuel per year that has to be barged in over Lake Powell. The potential for environmental damage to the marina in the event of a fuel spill is significant, and the cost to the National Park Service (NPS) for transporting each fuel delivery is considerable. Consequently, the installation of a photovoltaic (PV) system presented many advantages. This is the largest PV system the NPS has installed with 115 kilowatts of energy being produced. A 59% improvement in energy efficiency has been

72

Hot Springs National Park Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs National Park Space Heating Low Temperature Geothermal Facility Facility Hot Springs National Park Sector Geothermal energy Type Space Heating Location Hot Springs, Arkansas Coordinates 34.5037004°, -93.0551795° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

73

Compound and Elemental Analysis At Lassen Volcanic National Park Area  

Open Energy Info (EERE)

Janik & Mclaren, 2010) Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Analyses of eight well samples taken consecutively during the flow test showed an inverse correlation between NH3 and Cl_ concentrations. The last sample taken had a pH of 8.35 and contained 2100 ppm Cl_ and 0.55 ppm NH3. Ratios of Na+/K+ and Na+/Cl_ remained nearly constant throughout the flow test. Cation geothermometers (with inherent uncertainties of at least

74

Wildlife -- Oak Ridge National Environmental Research Park  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What's New What's New Wildlife Some of the links on this page lead to documents in Portable Document Format (PDF) and can only be viewed with Adobe Acrobat Reader. You can download a free copy from the Adobe site. WILDLIFE MANAGEMENT HUNTING ON THE OAK RIDGE RESERVATION OTHER WILDLIFE INFORMATION WILDLIFE MANAGEMENT Top of Page ORR Wildlife Management Update (Presentation - February 5, 2010) Goose Control. (Video - December 2009) Giffen, Neil R., James W. Evans, and Patricia D. Parr. 2007. Wildlife Management Plan for the Oak Ridge Reservation. ORNL/TM-2006/155. August. Giffen, Neil R. 2007. Nuisance Wildlife Education and Prevention Plan for the Oak Ridge National Laboratory ORNL/TM-2006/154. March. Wildlife Management Plan for the ORR (Presentation - November 2006) Wildlife Management Activities on the ORR (Presentation - September 2006)

75

Clean Cities: Submitting Project Ideas for the Clean Cities National Parks  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Submitting Project Ideas for the Clean Submitting Project Ideas for the Clean Cities National Parks Initiative to someone by E-mail Share Clean Cities: Submitting Project Ideas for the Clean Cities National Parks Initiative on Facebook Tweet about Clean Cities: Submitting Project Ideas for the Clean Cities National Parks Initiative on Twitter Bookmark Clean Cities: Submitting Project Ideas for the Clean Cities National Parks Initiative on Google Bookmark Clean Cities: Submitting Project Ideas for the Clean Cities National Parks Initiative on Delicious Rank Clean Cities: Submitting Project Ideas for the Clean Cities National Parks Initiative on Digg Find More places to share Clean Cities: Submitting Project Ideas for the Clean Cities National Parks Initiative on AddThis.com... Goals & Accomplishments

76

Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Great Smoky Mountains Great Smoky Mountains National Park Turns to Alternative Fuels to someone by E-mail Share Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Facebook Tweet about Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Twitter Bookmark Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Google Bookmark Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Delicious Rank Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on Digg Find More places to share Alternative Fuels Data Center: Great Smoky Mountains National Park Turns to Alternative Fuels on AddThis.com...

77

Lessons about parks and poverty from a decade of forest loss and economic growth around Kibale National Park, Uganda  

Science Journals Connector (OSTI)

...poor were more likely to risk illicit harvest of NTFPs...The greatest poverty risk, land abandonment...McSweeney K ( 2005 ) Natural insurance, forest access, and...parks and poverty: Political ecology and biodiversity...Schmidt-Soltau K ( 2006 ) Poverty risks and national parks: Policy issues in conservation...

Lisa Naughton-Treves; Jennifer Alix-Garcia; Colin A. Chapman

2011-01-01T23:59:59.000Z

78

AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Grand Canyon National Park  

SciTech Connect (OSTI)

This report focuses on the Grand Canyon National Park (GCNP) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively PEVs) can fulfill the mission requirements.

Stephen Schey; Jim Francfort; Ian Nienhueser

2014-08-01T23:59:59.000Z

79

Political Economy of Compensatory Conservation: A Case Study of proposed Omkareshwar National Park Complex, India  

E-Print Network [OSTI]

Proposed Omkareshwar National Park Complex (ONPC), is a planned park in Madhya Pradesh (central India) that is being designed as a compensatory conservation plan to overcome the loss of wildlife and forest by the construction and submergence from...

Goel, Abhineety

2013-08-08T23:59:59.000Z

80

The role of cemeteries in the development of municipal and national military parks: the cemetery-park connection  

E-Print Network [OSTI]

This thesis examines how cemeteries, both municipal and military, have developed in America based on internal and external influences and the role that they have played in the development of municipal and national military parks, respectively...

White, Carlton J

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "national park wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

MULTISCALE RESOURCE SELECTION OF RUFFED GROUSE IN THE BLACK HILLS NATIONAL FOREST OF SOUTH DAKOTA AND WYOMING  

E-Print Network [OSTI]

MULTISCALE RESOURCE SELECTION OF RUFFED GROUSE IN THE BLACK HILLS NATIONAL FOREST OF SOUTH DAKOTA) in the Black Hills National Forest (BHNF). Due to this status the U.S. Forest Service and the South Dakota and Parks, United States Forest Service Rocky Mountain Research Station, South Dakota State University

82

Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful DOE-funding Unknown References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two Circulation Cells In The Hydrothermal System Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Lassen_Volcanic_National_Park_Area_(Janik_%26_Mclaren,_2010)&oldid=425654"

83

Visitors' attitudes toward the maintenance, preservation and development of Ichkeul National Park, Tunisia  

E-Print Network [OSTI]

on citizens' attitudes and behaviors to support park maintenance. Ichkeul National Park includes a variety of natural resources. Individual resource use at Ichkeul today will determine whether or not resources will be available for all Tunisians... nearly tripled (International Union for the Conservation of Nature, 1971; 1985). In many nations, the concept of a national park is foreign, part of the inundation of ideas recently introduced to the society. Citizens who have traditional uses...

Nelson, Alanna Lee

2012-06-07T23:59:59.000Z

84

Surface Gas Sampling At Lassen Volcanic National Park Area (Janik &  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two

85

CSULB Department of Recreation and Leisure Studies Receives Academic Accreditation The National Recreation and Parks Association's Council on Accreditation for Parks, Recreation,  

E-Print Network [OSTI]

CSULB Department of Recreation and Leisure Studies Receives Academic Accreditation The National Recreation and Parks Association's Council on Accreditation for Parks, Recreation, Tourism and Related Professions (COAPRT) conferred Academic Accreditation with Commendation on CSULB's Department of Recreation

Sorin, Eric J.

86

BOTANICAL SURVEY OF WINTER PARK RESORT, ARAPAHO NATIONAL FOREST, GRAND COUNTY, COLORADO  

E-Print Network [OSTI]

BOTANICAL SURVEY OF WINTER PARK RESORT, ARAPAHO NATIONAL FOREST, GRAND COUNTY, COLORADO Colorado Natural Heritage Program College of Natural Resources, 8002 Campus Delivery Colorado State University Fort Collins, Colorado 80523-8002 #12;BOTANICAL SURVEY OF WINTER PARK RESORT, ARAPAHO NATIONAL FOREST, GRAND

87

Eighty years of change: vegetation in the montane ecoregion of Jasper National Park, Alberta,  

E-Print Network [OSTI]

Eighty years of change: vegetation in the montane ecoregion of Jasper National Park, Alberta and dis- tribution in the montane ecoregion of Jasper National Park, in the Rocky Mountains of Alberta parc natio- nal de Jasper, situé dans les Montagnes Rocheuses en Alberta, au Canada. Une approche

Macdonald, Ellen

88

A Publication of the Savannah River Ecology Laboratory National Environmental Research Park Program  

E-Print Network [OSTI]

A Publication of the Savannah River Ecology Laboratory National Environmental Research Park Program of the Savannah River Site National Environmental Research Park Program SRO-NERP-28 2005 Prepared under the auspices of The University of Georgia Savannah River Ecology Laboratory P.O. Drawer E Aiken, South Carolina

Georgia, University of

89

Himalayan Semnopithecus entellus at Langtang National Park, Nepal: Diet, Activity Patterns,  

E-Print Network [OSTI]

Himalayan Semnopithecus entellus at Langtang National Park, Nepal: Diet, Activity Patterns provide foraging data from a field study of Himalayan langurs in Langtang National Park, Nepal at 3000. Bishop (1975, 1979) investigated langur social behavior at Melemchi, north-central Nepal (2442­ 3050 m

Norconk, Marilyn A.

90

Predicting Incursion of Plant Invaders into Kruger National Park, South Africa: The Interplay of General  

E-Print Network [OSTI]

Predicting Incursion of Plant Invaders into Kruger National Park, South Africa: The Interplay, South African National Parks, Skukuza, South Africa, 4 Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa, 5 Department of Plant Science, University

Kratochvíl, Lukas

91

The objectives for deep scientific drilling in Yellowstone National Park  

SciTech Connect (OSTI)

The western area of the United Stated contains three young silicic calderas, all of which contain attractive targets for scientific drilling. Of the three, the Yellowstone caldera complex is the largest, has the most intense geothermal anomalies, and is the most seismically active. On the basis of scientific objectives alone. it is easily the first choice for investigating active hydrothermal processes. This report briefly reviews what is known about the geology of Yellowstone National Park and highlights unique information that could be acquired by research drilling only in Yellowstone. However, it is not the purpose of this report to recommend specific drill sites or to put forth a specific drilling proposal. 175 refs., 9 figs., 2 tabs.

Not Available

1987-01-01T23:59:59.000Z

92

Energy Department and National Park Service Announce Clean Cities...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

gas emissions. When visitors park their vehicles to enjoy the park by shuttle or bicycle, they can experience even more of the scenery, history and wildlife. Each of these...

93

Flow Test At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) |  

Open Energy Info (EERE)

Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown Notes Water samples were collected during nitrogen-stimulated flow tests in 1978, but no information was provided on sampling conditions. The well was flowed again for the last time in 1982, but the flow test lasted only 1 h (Thompson, 1985). References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two

94

Effects of Podcast Tours on Tourists' Experiences in a National Park  

E-Print Network [OSTI]

OF PHILOSOPHY December 2009 Major Subject: Recreation, Park, and Tourism Sciences EFFECTS OF PODCAST TOURS ON TOURISTS? EXPERIENCES IN A NATIONAL PARK A Dissertation by MYUNG HWA KANG Submitted to the Office of Graduate Studies of Texas A&M University in partial...: Recreation, Park, and Tourism Sciences iii ABSTRACT Effects of Podcast Tours on Tourists? Experiences in a National Park. (December 2009) Myung Hwa Kang, B.A., Yonsei University at Seoul, Korea; M.S., Purdue University Chair of Advisory Committee: Dr. Ulrike...

Kang, Myung Hwa

2011-02-22T23:59:59.000Z

95

The application of GIScience to Search and Rescue in Yosemite National Park  

E-Print Network [OSTI]

The application of GIScience to Search and Rescue in Yosemite National Park Paul Doherty UC Merced PhD Student Yosemite National Park GISS/Park Ranger NSF #1031914 What is a Park Ranger? NPS Mission: conserve the scenery the...Re?group Load assignments onto GPS units 3.6. Provide Ops and Search TeamsGPS unit download, OtiDbif with assignment mapsPlot GPS tracks and clues 4.5. OperationsDebr e Real?time GPS unit tracking Clue logging * The GISS falls...

Doherty, Paul

2010-11-18T23:59:59.000Z

96

Sandia National Laboratories: Sandia National Laboratories: Locations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regional Park District Joshua Tree National Park Lassen Volcanic National Park Sequoia & Kings Canyon National Parks Yosemite National Park Cave exploring Diablo Grotto Moaning...

97

Sandia National Laboratories: Sandia Science and Technology Park  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Technology Park Sandia and EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency On March 29, 2013, in Concentrating Solar Power, Energy, Partnership,...

98

Wyoming.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wyoming Wyoming www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

99

Wyoming.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wyoming Wyoming www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

100

Isotopic Analysis At Lassen Volcanic National Park Area (Janik & Mclaren,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Both fluid and gas isotopic analysis. References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two

Note: This page contains sample records for the topic "national park wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Integrated global background monitoring network. Preliminary results from Torres del Paine and Olympic National Parks  

SciTech Connect (OSTI)

During 1984, a pilot project was initiated for monitoring pollution at Torres del Paine National Park in southern Chile and Olympic National Park in the United States. These are two of three initial sites that are to be established as part of an integrated global backgound monitoring network. Eventually, the plan is to establish a world-wide system of such sites. We collected and analyzed samples of the soil, water, air, and two species of plants (moss and lichen). We also collected and analyzed samples of the forest litter. We compared the samples of soil and vegetation against reference samples. We also compared samples of soil, vegetation, and of organic material from Torres del Paine against similar samples from Olympic and Sequoia-Kings Canyon National Parks in the United States. Although the data is preliminary, it is in agreement with out initial hypothesis that Torres del Paine and Olympic National Parks are not a polluted sites.

Wiersma, G.B.; Kohler, A.; Boelcke, C.; Baker, G.; Harmon, M.; Weber, C.; Gonzales, J.

1985-10-01T23:59:59.000Z

102

Exploring Spatial Variations in the Relationship between National Park Visitation and Associated Factors in Texas Counties  

E-Print Network [OSTI]

within the Texas boundary. Specifically, this study developed a spatial regression model of national park visitation demand in Texas using Geographically Weighted Regression (GWR). This model estimated the strength of the relationship between visitation...

Lee, Kyung Hee

2013-11-07T23:59:59.000Z

103

Spatial Dynamics of Elephant Impacts on Trees in Chobe National Park, Botswana.  

E-Print Network [OSTI]

??SPATIAL DYNAMICS OF ELEPHANT IMPACTS ON TREES IN CHOBE NATIONAL PARK, BOTSWANA Timothy Jon Fullman 714-381-5337 School of Natural Resources and Environment Supervisory chair: Brian (more)

Fullman, Timothy

2009-01-01T23:59:59.000Z

104

Use of tool sets by chimpanzees for multiple purposes in Moukalaba-Doudou National Park, Gabon  

Science Journals Connector (OSTI)

...We report our recent findings on the use of tool sets by chimpanzees in Moukalaba-Doudou National Park, Gabon. Direct observations and evidences left by chimpanzees...Meliponula...sp.), which may correspond to...

Ebang Ella Ghislain Wilfried; Juichi Yamagiwa

2014-10-01T23:59:59.000Z

105

Marketing the Mountains: An Environmental History of Tourism in Rocky Mountain National Park  

E-Print Network [OSTI]

Marketing the Mountains explores the impact of tourism upon the natural world of Rocky Mountain National Park. Moving beyond culutral analysis of the development of tourism in the American West, this dissertation seeks to understand both...

Frank, Jerritt

2008-09-05T23:59:59.000Z

106

Surface Gas Sampling At Lassen Volcanic National Park Area (Janik &  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) (Redirected from Water-Gas Samples At Lassen Volcanic National Park Area (Janik & Mclaren, 2010)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid

107

How Much is Too Much ? Carrying capacity of National Parks and Protected Areas  

E-Print Network [OSTI]

Abstract: Increasing recreational use of national parks and protected areas can impact natural and cultural resources and the quality of the visitor experience. Determining how much recreational use can ultimately be accommodated in a park or protected area is often addressed through the concept of carrying capacity. Contemporary approaches to carrying capacity including the Visitor Experience and Resource Protection (VERP) framework developed by the U.S. National Park Service rely on formulation of indicators and standards of quality of natural/cultural resources and the visitor experience. This paper describes the VERP framework and its application in the U.S. national park system, including a program of research designed to help formulate indicators and standards of quality.

Robert E. Manning

2002-01-01T23:59:59.000Z

108

Assessment of Inundation Risk from Sea Level Rise and Storm Surge in Northeastern Coastal National Parks  

E-Print Network [OSTI]

Assessment of Inundation Risk from Sea Level Rise and Storm Surge in Northeastern Coastal National of inundation risk from sea level rise and storm surge in northeastern coastal national parks. Journal of Coastal Research, 00(0), 000­000. Coconut Creek (Florida), ISSN 0749-0208. Sea level rise and an increase

Wang, Y.Q. "Yeqiao"

109

The effect of elephant utilisation on the Sterculia rogersii and Adsonia digitata populations of the Kruger National Park.  

E-Print Network [OSTI]

??This study assesses elephant induced damage and mortality of baobab and common star-chestnut trees in the northern Kruger National Park. Comparisons are made between the (more)

Kelly, Henry Lyle Patrick

2006-01-01T23:59:59.000Z

110

Wyoming Recovery Act State Memo | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wyoming Recovery Act State Memo Wyoming Recovery Act State Memo Wyoming Recovery Act State Memo Wyoming has substantial natural resources including coal, natural gas, oil, and wind power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Wyoming are supporting a broad range of clean energy projects from energy efficiency and the smart grid to carbon capture and storage. Through these investments, Wyoming's businesses, the University of Wyoming, non-profits, and local governments are creating quality jobs today and positioning Wyoming to play an important role in the new energy economy of the future. Recovery_Act_Memo_Wyoming.pdf More Documents & Publications Slide 1

111

Activists protest National Parks proposal to profit from microbes National parks in the US are usually teeming  

E-Print Network [OSTI]

January. They expect to publish the final environmental impact statement in the spring and make a decision of the proposed projects' environmental impact. Over the next six years, the agency drafted an assessment of environmental impact for all the parks. The agency supports a plan that would allow companies to take samples

Cai, Long

112

Static Temperature Survey At Lassen Volcanic National Park Area (Janik &  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Static Temperature Survey At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes In 1978, the Walker "O" No. 1 well at Terminal Geyser was drilled to 1222 m, all in volcanic rocks (Beall, 1981). Temperature-log profiles made 10

113

Ground-water hydrology of the Panther Junction area of Big Bend National Park, Texas  

E-Print Network [OSTI]

GROUND-WATER HYDROLOGY OF THE PANTHER JUNCTION AREA OF BIG BEND NATIONAL PARK, TEXAS A Thesis by JOHN LAWRENCE GIBSON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1983 Major Subject: Geology GROUND-WATER HYDROLOGY OF THE PANTHER JUNCTION AREA OF BIG BEND NATIONAL PARK, TEXAS A Thesis by JOHN LAWRENCE GIBSON Approved as to style and content by: Melv'n C. Schroeder (Chairman...

Gibson, John Lawrence

2012-06-07T23:59:59.000Z

114

Wyomings Rosy Financial Picture  

E-Print Network [OSTI]

J. (2011b) Wyoming Clean Coal Efforts Advance, Casperadministra- tion pushes for clean-coal and carbon capture

Schuhmann, Robert A.; Skopek, Tracy A.

2012-01-01T23:59:59.000Z

115

Habitat Management -- Oak Ridge National Environmental Research Park  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Invasive Species Publications Wildlife What's New Invasive Species Publications Wildlife What's New Habitat Management Some of the documents on this page are in Portable Document Format (PDF) and can only be viewed with Adobe Acrobat Reader. You can download a free copy from the Adobe site. The Oak Ridge Reservation (ORR) is covered with mostly contiguous native eastern deciduous hardwood forest. Within that framework are found many ecological communities (e.g., cedar barrens, river bluffs, wetlands) with unique biota, often including rare species. Many research park habitats are managed to protect their ecosystem values, furnish food and shelter for wildlife, and provide sites for research and monitoring. Habitats that receive special attention include prairies, forests, and wetlands and riparian areas.

116

A PUBLICATION OF DOE'S SAVANNAH RIVER SITE NATIONAL ENVIRONMENTAL RESEARCH PARK  

E-Print Network [OSTI]

#12;A PUBLICATION OF DOE'S SAVANNAH RIVER SITE NATIONAL ENVIRONMENTAL RESEARCH PARK April 1990 River Ecology Laboratory Drawer E Aiken, SC 29802 USA #12;VEGETATION OF THE SAVANNAH RIVER SITE: MAJOR COMMUNITY TYPES Sarah W. Workman Kenneth W. McLeod Savannah River Ecology Laboratory A Publication

Georgia, University of

117

Culling and the dynamics of the Kruger National Park African elephant population  

E-Print Network [OSTI]

Culling and the dynamics of the Kruger National Park African elephant population INTRODUCTION For 30 years, managers have promoted culling as a man- agement tool for African elephant populations of elephant culling as a means of curtailing the anticipated destruction of the vegetation in the Kruger

Pretoria, University of

118

Effects of forestry practices on vegetation structure and bird community of Kibale National Park, Uganda  

E-Print Network [OSTI]

, Uganda Cagan H. Sekercioglu* Center for Conservation Biology, Department of Biological Sciences, Stanford on the vegetation structure and bird community of Kibale National Park, Uganda. I compared four forest treatments Ltd. All rights reserved. Keywords: Uganda; Tropical forestry; Selective logging; Vegetation structure

Sekercioglu, Cagan Hakki

119

Factors affecting leech parasitism on four turtle species in St. Lawrence Islands National Park  

E-Print Network [OSTI]

Factors affecting leech parasitism on four turtle species in St. Lawrence Islands National Park and body condition) in the host-parasite interaction between four turtle species found in St. Lawrence counted and measured to determine their prevalence and biomass respectively on a total of 324 turtles from

Blouin-Demers, Gabriel

120

In Cooperation with the National Park Service Water Quality Program Biogeochemical Processes in an Urban, Restored  

E-Print Network [OSTI]

In Cooperation with the National Park Service Water Quality Program Biogeochemical Processes in an Urban, Restored Wetland of San Francisco Bay, California, 2007­ 2009: Methods and Data for Plant, Sediment, and Water Parameters By Lisamarie Windham-Myers, Mark C. Marvin-DiPasquale, Jennifer L. Agee, Le

Note: This page contains sample records for the topic "national park wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

LONG-EARED OWLS NESTING IN BADLANDS NATIONAL PARK by Deborah D. Paulson  

E-Print Network [OSTI]

LONG-EARED OWLS NESTING IN BADLANDS NATIONAL PARK by Deborah D. Paulson and Carolyn Hull Sieg USDA Rocky Mountain Forest and Range Experiment Station Rapid City 57701 Long-eared Owls nest at high River, few nesting records have been reported. This paper reports the occurrence of Long-eared Owls

122

Energy Department and National Park Service Announce Clean Cities...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Book Updates INLs History, Documents a Decade of Transformation The U.S. Department of Energy is releasing an update to the history of the Idaho National Laboratory,...

123

Amphibians and reptiles of Nouabale-Ndoki National Park, Republic of Congo Rheinbach,20 August 2007 ISSN 0036-3375149-164343SALAMANDRA  

E-Print Network [OSTI]

149 Amphibians and reptiles of Nouabale-Ndoki National Park, Republic of Congo Rheinbach,20 AugustGesellschaftfürHerpetologieundTerrarienkundee.V.(DGHT) The amphibians and reptiles of Nouabale-Ndoki National Park, Republic of Congo (Brazzaville) Kate Jackson & David along the southern edge of Nouabale-Ndoki National Park in the Republic of Congo, which comprises

Jackson, Kate

124

Assessment of Nonnative Invasive Plants in the DOE Oak Ridge National Environmental Research Park  

SciTech Connect (OSTI)

The Department of Energy (DOE) National Environmental Research Park at Oak Ridge, Tennessee, is composed of second-growth forest stands characteristic of much of the eastern deciduous forest of the Ridge and Valley Province of Tennessee. Human use of natural ecosystems in this region has facilitated the establishment of at least 167 nonnative, invasive plant species on the Research Park. Our objective was to assess the distribution, abundance, impact, and potential for control of the 18 most abundant invasive species on the Research Park. In 2000, field surveys were conducted of 16 management areas on the Research Park (14 Natural Areas, 1 Reference Area, and Walker Branch Watershed) and the Research Park as a whole to acquire qualitative and quantitative data on the distribution and abundance of these taxa. Data from the surveys were used to rank the relative importance of these species using the ''Alien Plant Ranking System, Version 5.1'' developed by the U.S. Geological Survey. Microstegium (Microstegium vimineum) was ranked highest, or most problematic, for the entire Research Park because of its potential impact on natural systems, its tendency to become a management problem, and how difficult it is to control. Microstegium was present in 12 of the 16 individual sites surveyed; when present, it consistently ranked as the most problematic invasive species, particularly in terms of its potential impact on natural systems. Japanese honeysuckle (Lonicera japonica) and Chinese privet (Ligustrum sinense) were the second- and third-most problematic plant species on the Research Park; these two species were present in 12 and 9 of the 16 sites surveyed, respectively, and often ranked second- or third-most problematic. Other nonnative, invasive species, in decreasing rank order, included kudzu (Pueraria montma), multiflora rose (Rosa multiflora), Chinese lespedeza (Lespedeza cuneara), and other species representing a variety of life forms and growth forms. Results of this research can be used to prioritize management and research activities related to these invasive taxa on the Research Park as a whole and for specific Natural or Reference Areas. Additional research on the autecology and synecology of each species surveyed is suggested. In particular, research should focus on assessing the impacts of these species on the invaded plant and animal communities and ecosystems. Finally, this ranking system could be used to similarly rank the many other nonnative, invasive species present on the Research Park not included in this study.

Drake, S.J.

2002-11-05T23:59:59.000Z

125

Vehicle damage to vegetation of the Rangipo Desert, Tongariro National Park, National Park, New Zealand : a thesis presented in partial fulfillment of the requirements for the degree of MSc in Ecology, Massey University, Turitea, Palmerston North, New Zealand.  

E-Print Network [OSTI]

??Rangipo Desert, Tongariro National Park, Central North Island, New Zealand, contains one of New Zealands unique habitats due to the desert-like environment containing cushions, low (more)

Smith, Angelina Robyn

2014-01-01T23:59:59.000Z

126

Environmental isotope and geochemical investigation of groundwater in Big Bend National Park, Texas  

E-Print Network [OSTI]

in the Panther Junction and Rio Grande Village Areas of Big Bend National Park, Texas. The regional groundwater flow in the Panther Junction area is interpreted to occur in a radially outward direction away from the Chisos Mountain slopes. This interpretation... s Physiographic Setting Panther Junction Area. Rio Grande Village Area. Climate and Vegetation. Previous Work Geology. Hydrogeology 1 3 3 6 6 6 7 8 8 9 GEOLOGY. Regional Geology. Geology of the Panther Junction Geologv of the Rio Grande Village...

Lopez Sepulveda, Hector Javier

2012-06-07T23:59:59.000Z

127

Seismic mapping of alluvial fans and sub-fan bedrock in Big Bend National Park, Texas  

E-Print Network [OSTI]

Layered Models Anomalous Time-Distance Plots Error Analysis Geologic Interpretations of Results CONCLUSIONS RECOMMENDATIONS REFERENCES ~ APPENDIX VITA 7 8 10 11 16 16 18 23 29 32 32 45 47 50 52 LIST OF FIGURES Figure Page 1 Ground...-water resource investigation study area Big Bend National Park, Texas 2 Location of seismic surveys within the Big Bend study area 3 Comparison of seismic surveys to driller's logs 12 4 Hypothetical three-layer case with dipping layers 20 5 Representative...

Monti, Joseph

1984-01-01T23:59:59.000Z

128

Characterization of Habitat for Hawksbill Turtle (Eretmochelys imbricata) in Los Roques Archipelago National Park, Venezuela  

E-Print Network [OSTI]

CHARACTERIZATION OF HABITAT FOR HAWKSBILL TURTLE (Eretmochelys imbricata) IN LOS ROQUES ARCHIPELAGO NATIONAL PARK, VENEZUELA A Thesis by LUCIANA ESTELA HUNT Submitted to the Office of Graduate Studies of Texas A&M University..., VENEZUELA A Thesis by LUCIANA ESTELA HUNT Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, William D. Heyman...

Hunt, Luciana E.

2010-10-12T23:59:59.000Z

129

Food dropping as a food transfer mechanism among western lowland gorillas in Moukalaba-Doudou National Park, Gabon  

Science Journals Connector (OSTI)

In this paper, I describe the food-dropping behavior of western lowland gorillas observed in Moukalaba-Doudou National Park, Gabon. I collected observational data of gorillas eating...

Yuji Iwata

2014-07-01T23:59:59.000Z

130

Bed and bed-site reuse by western lowland gorillas (Gorilla g. gorilla) in Moukalaba-Doudou National Park, Gabon  

Science Journals Connector (OSTI)

In this paper we describe bed (nest) and bed-site reuse by western lowland gorillas (Gorilla g. gorilla...) in Moukalaba-Doudou National Park, south-eastern Gabon. During an eight-month study 44 bed...

Yuji Iwata; Chieko Ando

2007-01-01T23:59:59.000Z

131

Prevalence and genetic diversity of Oesophagostomum stephanostomum in wild lowland gorillas at Moukalaba-Doudou National Park, Gabon  

Science Journals Connector (OSTI)

Using a sedimentation method, the prevalence of the nodular worm Oesophagostomum stephanostomum...(Nematoda: Strongylida) in western lowland gorillas at Moukalaba-Doudou National Park (MDNP), Gabon, was determine...

P. Makouloutou; P. P. Mbehang Nguema; S. Fujita; Y. Takenoshita

2014-06-01T23:59:59.000Z

132

Estimating Biomass in the Mountain Regions of Bwindi Impenetrable National Park, Uganda using Radar and Optical Remote Sensing  

E-Print Network [OSTI]

Field measured estimates of aboveground biomass (AGB) for 15 transects in Bwindi Impenetrable National Park (BINP), Uganda were used to generate a number of prediction models for estimating aboveground biomass (AGB) over the full extent of BINP. AGB...

Fedrigo, Melissa

2009-11-26T23:59:59.000Z

133

No Evidence for Transmission of Antibiotic-Resistant Escherichia coli Strains from Humans to Wild Western Lowland Gorillas in Lop National Park, Gabon  

Science Journals Connector (OSTI)

...Lowland Gorillas in Lope National Park, Gabon Julio Andre Benavides a b Sylvain Godreuil...France e Zoological Society of London Gabon, Regent's Park, London, United Kingdom...mammals in Lope National Park (LNP), Gabon, and we tested whether the observed pattern...

Julio Andre Benavides; Sylvain Godreuil; Rebecca Bodenham; Sandra Ratiarison; Cline Devos; Marie-Odile Petretto; Michel Raymond; Patricia Escobar-Pramo

2012-04-06T23:59:59.000Z

134

Free Parking Free Parking  

E-Print Network [OSTI]

Free Parking Free Parking Free Parking Free Parking Free Parking FreeParking(9.15-4.30) Free (sites marked P above) is by permit only. Free parking is available on surrounding roads (on Mayfield

Millar, Andrew J.

135

Renewable Energy at Channel Islands National Park; Federal Energy Management Program: Technical Assistance, Case Study (Fact sheet)  

Broader source: Energy.gov (indexed) [DOE]

Visitors to Channel Islands National Visitors to Channel Islands National Park enjoy hiking, snorkeling, scuba diving, bird watching, and fishing. And now they'll also enjoy the benefits of renewable energy systems. The park is located off the coast of southern California and comprises Anacapa, Santa Barbara, Santa Cruz, San Miguel, and Santa Rosa Islands, and the surrounding mile of ocean. It has 249,353 acres (100,910 hectares) that teem with terrestrial and marine life. The park boasts more than 2000 species of land flora and fauna (145 of which are unique to the area), and is on a migration lane for gray, blue, and humpback whales. The National Park Service (NPS) pro- tects the pristine resources at Channel Islands by conserving, recycling, using alternative fuel vehicles, applying renewable energy, and using resources

136

National parking  

E-Print Network [OSTI]

The mobility afforded by the rise of the information era solicits a reexamination of possible modes of mobile living. Mobility has always been closely tied to American life. Westwaid expansion defined United States history ...

Ihara, Toshiro, M. Arch. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

137

Sources and Deposition of Polycyclic Aromatic Hydrocarbons to Western U.S. National Parks  

Science Journals Connector (OSTI)

Sources and Deposition of Polycyclic Aromatic Hydrocarbons to Western U.S. National Parks ... Department of Chemistry and Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, Department of Chemistry, University of Otago, Dunedin 9014 New Zealand, United States Department of Agriculture - Forest Service, Pacific Northwest Region Air Program, Corvallis, Oregon 97330, US Geological Survey - Water Resources Division, Denver Federal Center, Lakewood, Colorado, Environmental Radioactivity Research Centre, University of Liverpool, Liverpool L69 3BX, U.K., United States Environmental Protection Agency - Western Ecology Division, Corvallis, Oregon 97333 ...

Sascha Usenko; Staci L. Massey Simonich; Kimberly J. Hageman; Jill E. Schrlau; Linda Geiser; Don H. Campbell; Peter G. Appleby; Dixon H. Landers

2010-05-14T23:59:59.000Z

138

Aerial photographic monitoring of spruce damage in Bayerischer Wald National Park, Federal Republic of Germany  

E-Print Network [OSTI]

) August, 1989 Forest damage or '%aldschaden" has became a matter of increasing ~ in ~ ~. In 1983, 34 ~ of the forests of the F~ ~lic of ~ were found to be affected. In Southern ~'s state of Bavaria, 45 percent of the forests were found... to be In an attempt to detecnine the rate at which the forest ~ phenomenon ? particularly with ~ to Norway spruce (Picea abies Karst. ) ? is wo~ in Bayerischer Weld National Park, an air photo interpretation study was conducted utilizing large scale 1:3000 color...

Goebel, John Martin

1989-01-01T23:59:59.000Z

139

Long-term impacts of deer exclosures on mixed-oak forest composition at the Valley Forge National Historical Park,  

E-Print Network [OSTI]

Long-term impacts of deer exclosures on mixed-oak forest composition at the Valley Forge National 16802). Long-term impacts of deer exclosures on mixed-oak forest composition at the Valley Forge virginianus, Quercus, Valley Forge National Historical Park. Long-term studies of forest dynamics indi- cate

Abrams, Marc David

140

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

July 30, 2012 July 30, 2012 CX-009090: Categorical Exclusion Determination Line Switch Replacements at Guernsey Rural, Worland, Refinery, Box Butte, and Morrill Taps CX(s) Applied: B4.6, B4.11 Date: 07/30/2012 Location(s): Wyoming, Nebraska Offices(s): Western Area Power Administration-Rocky Mountain Region July 23, 2012 CX-008784: Categorical Exclusion Determination License Outgrant to Owl Creek Water District Town of Thermopolis, Hot Springs County, Wyoming CX(s) Applied: B4.9 Date: 07/23/2012 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region July 23, 2012 CX-008496: Categorical Exclusion Determination Interstate Electrification Improvement CX(s) Applied: B5.1 Date: 07/23/2012 Location(s): Wyoming Offices(s): National Energy Technology Laboratory

Note: This page contains sample records for the topic "national park wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 11, 2010 August 11, 2010 CX-006735: Categorical Exclusion Determination Hyperspectral Survey CX(s) Applied: B3.8, B3.11 Date: 08/11/2010 Location(s): Casper, Wyoming Office(s): RMOTC August 4, 2010 CX-003231: Categorical Exclusion Determination Wyoming American Recovery and Reinvestment Act State Energy Program CX(s) Applied: A1, A9, B5.1 Date: 08/04/2010 Location(s): Wyoming Office(s): Energy Efficiency and Renewable Energy, Golden Field Office July 13, 2010 CX-003032: Categorical Exclusion Determination Pacific Northwest Smart Grid Demonstration CX(s) Applied: A1, A9, A11, B1.7, B3.6, B4.4, B5.1 Date: 07/13/2010 Location(s): Jackson Hole, Wyoming Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory July 9, 2010 CX-006699: Categorical Exclusion Determination

142

Climate Change Scenario Planning in Alaska's National Parks: Stakeholder Involvement in the Decision-Making Process  

SciTech Connect (OSTI)

This article studies the participation of stakeholders in climate change decision-making in Alaska s National Parks. We place stakeholder participation within literatures on environmental and climate change decision-making. We conducted participant observation and interviews in two planning workshops to investigate the decision-making process, and our findings are three-fold. First, the inclusion of diverse stakeholders expanded climate change decision-making beyond National Park Service (NPS) institutional constraints. Second, workshops of the Climate Change Scenario Planning Project (CCSPP) enhanced institutional understandings of participants attitudes towards climate change and climate change decision-making. Third, the geographical context of climate change influences the decision-making process. As the first regional approach to climate change decision-making within the NPS, the CCSPP serves as a model for future climate change planning in public land agencies. This study shows how the participation of stakeholders can contribute to robust decisions, may move climate change decision-making beyond institutional barriers, and can provide information about attitudes towards climate change decision-making.

Ernst, Kathleen M [ORNL] [ORNL; Van Riemsdijk, Dr. Micheline [University of Tennessee (UT)] [University of Tennessee (UT)

2013-01-01T23:59:59.000Z

143

Climate change scenario planning in Alaska's National Parks: Stakeholder involvement in the decision-making process  

SciTech Connect (OSTI)

This article studies the participation of stakeholders in climate change decision-making in Alaska s National Parks. We place stakeholder participation within literatures on environmental and climate change decision-making. We conducted participant observation and interviews in two planning workshops to investigate the decision-making process, and our findings are three-fold. First, the inclusion of diverse stakeholders expanded climate change decision-making beyond National Park Service (NPS) institutional constraints. Second, workshops of the Climate Change Scenario Planning Project (CCSPP) enhanced institutional understandings of participants attitudes towards climate change and climate change decision-making. Third, the geographical context of climate change influences the decisionmaking process. As the first regional approach to climate change decision-making within the NPS, the CCSPP serves as a model for future climate change planning in public land agencies. This study shows how the participation of stakeholders can contribute to robust decisions, may move climate change decision-making beyond institutional barriers, and can provide information about attitudes towards climate change decision-making.

Ernst, Kathleen M [ORNL] [ORNL; Van Riemsdijk, Dr. Micheline [University of Tennessee (UT)] [University of Tennessee (UT)

2013-01-01T23:59:59.000Z

144

Wyoming State Regulations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wyoming Wyoming State Regulations: Wyoming State of Wyoming The Wyoming Oil and Gas Conservation Commission (WOGCC) is the state agency authorized to regulate oil and gas exploration and production waste. The Wyoming Department of Environmental Quality (DEQ) administers general environmental protection regulations. Contact Wyoming Oil and Gas Conservation Commission 2211 King Blvd. Casper, WY 82602 (street address) P.O. Box 2640 Casper, WY 82602 (mailing address) (307) 234-7147 (phone) (307) 234-5306 (fax) Wyoming Department of Environmental Quality 122 West 25th Street, Herscheler Building Cheyenne, WY 82002 (307) 777-7937 (phone) (307) 777-7682 (fax) Disposal Practices and Applicable Regulations Document # 4855, Agency (Oil and Gas Conservation Commission), General Agency, Board or Commission Rules, Chapter 4 (Environmental Rules, Including Underground Injection Control Program Rules for Enhanced Recovery and Disposal Projects), Section 1. Pollution and Surface Damage (Forms 14A and 14B) of the Wyoming Rules and Regulations contains the environmental rules administered by the WOGCC with respect to management options for exploration and production waste.

145

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

December 8, 2010 December 8, 2010 CX-004682: Categorical Exclusion Determination Novel Sorbents for Emission Control from Coal Combustion CX(s) Applied: A9, B3.6 Date: 12/08/2010 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory December 8, 2010 CX-004680: Categorical Exclusion Determination Pilot Scale Demonstration of Cowboy Coal Upgrading Process CX(s) Applied: B3.6 Date: 12/08/2010 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory December 8, 2010 CX-004667: Categorical Exclusion Determination Alternate Environmental Processes/Sorbents to Reduce Emissions and Recover Water for Power Plant Use CX(s) Applied: B3.6 Date: 12/08/2010 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory

146

Detailed compositional analysis of gas seepage at the National Carbon Storage Test Site, Teapot Dome, Wyoming, USA  

Science Journals Connector (OSTI)

A baseline determination of CO2 and CH4 fluxes and soil gas concentrations of CO2 and CH4 was made over the Teapot Dome oil field in the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, USA. This was done in anticipation of experimentation with CO2 sequestration in the Pennsylvanian Tensleep Sandstone underlying the field at a depth of 1680m. The baseline data were collected during the winter, 2004 in order to minimize near-surface biological activity in the soil profile. The baseline data were used to select anomalous locations that may be the result of seeping thermogenic gas, along with background locations. Five 10-m holes were drilled, 3 of which had anomalous gas microseepage, and 2 were characterized as background. These were equipped for nested gas sampling at depths of 10-, 5-, 3-, 2-, and 1-m depths. Methane concentrations as high as 170,000ppmv (17%) were found, along with high concentrations of C2H6, C3H8, n-C4H10, and i-C4H10. Much smaller concentrations of C2H4 and C3H6 were observed indicating the beginning of hydrocarbon oxidation in the anomalous holes. The anomalous 10-m holes also had high concentrations of isotopically enriched CO2, indicating the oxidation of hydrocarbons. Concentrations of the gases decreased upward, as expected, indicating oxidation and transport into the atmosphere. The ancient source of the gases was confirmed by 14C determinations on CO2, with radiocarbon ages approaching 38ka within 5m of the surface. Modeling was used to analyze the distribution of hydrocarbons in the anomalous and background 10-m holes. Diffusion alone was not sufficient to account for the hydrocarbon concentration distributions, however the data could be fit with the addition of a consumptive reaction. First-order rate constants for methanotrophic oxidation were obtained by inverse modeling. High rates of oxidation were found, particularly near the surface in the anomalous 10-m holes, demonstrating the effectiveness of the process in the attenuation of CH4 microseepage. The results also demonstrate the importance of CH4 measurements in the planning of a monitoring and verification program for geological CO2 sequestration in sites with significant remaining hydrocarbons (i.e. spent oil reservoirs).

Ronald W. Klusman

2006-01-01T23:59:59.000Z

147

,"Wyoming Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

3","N3050WY3","N3010WY3","N3020WY3","N3035WY3","NA1570SWY3","N3045WY3" "Date","Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)","Wyoming Natural Gas...

148

AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Golden Gate National Recreation Area  

SciTech Connect (OSTI)

Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy's Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity's Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the utilization of advanced electric drive vehicle transportation. This report focuses on the Golden Gate National Recreation Area (GGNRA) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies' fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. GGNRA identified 182 vehicles in its fleet, which are under the management of the U.S. General Services Administration. Fleet vehicle mission categories are defined in Section 4, and while the GGNRA vehicles conduct many different missions, only two (i.e., support and law enforcement missions) were selected by agency management to be part of this fleet evaluation. The selected vehicles included sedans, trucks, and sport-utility vehicles. This report will show that battery electric vehicles and/or PHEVs are capable of performing the required missions and providing an alternative vehicle for support vehicles and PHEVs provide the same for law enforcement, because each has a sufficient range for individual trips and time is available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle home base, high-use work areas, or intermediately along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in the emission of greenhouse gases and petroleum use, while also reducing fuel costs. The San Francisco Bay Area is a leader in the adoption of PEVs in the United States. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the GGNRA facility would be a benefit for both GGNRA fleets and general public use. Fleet drivers and park visitors operating privately owned PEVs benefit by using the charging infrastructure. ITSNA recommends location analysis of the GGNRA site to identify the optimal placement of the electric vehicle supply equipment station. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and GGNRA for participation in the study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and GGNRA personnel.

Stephen Schey; Jim Francfort

2014-03-01T23:59:59.000Z

149

AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Fort Vancouver National Historic Site  

SciTech Connect (OSTI)

Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energys Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energys Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activitys Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the use of advanced electric drive vehicle transportation. This report focuses on the Fort Vancouver National Historic Site (FVNHS) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of electric vehicles (EVs) into the agencies fleet. Individual observations of the selected vehicles provided the basis for recommendations related to EV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles) could fulfill the mission requirements. FVNHS identified three vehicles in its fleet for consideration. While the FVNHS vehicles conduct many different missions, only two (i.e., support and pool missions) were selected by agency management to be part of this fleet evaluation. The logged vehicles included a pickup truck and a minivan. This report will show that BEVs and PHEVs are capable of performing the required missions and providing an alternative vehicle for both mission categories, because each has sufficient range for individual trips and time available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicles home base, high-use work areas, or in intermediate areas along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in emission of greenhouse gases and petroleum use, while also reducing fuel costs. The Vancouver, Washington area and neighboring Portland, Oregon are leaders in adoption of PEVs in the United States1. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the FVNHS facility would be a benefit for both FVNHS fleets and general public use. Fleet drivers and park visitors operating privately owned plug-in electric vehicles benefit by using the charging infrastructure. ITSNA recommends location analysis of the FVNHS site to identify the optimal station placement for electric vehicle supply equipment. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and FVNHS for participation in this study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and FVNHS personnel

Stephen Schey; Jim Francfort

2014-03-01T23:59:59.000Z

150

Tenant Guidelines National Park Service and the U.S. Department of Energy, Federal Energy Management Program  

E-Print Network [OSTI]

Tenant Guidelines National Park Service and the U.S. Department of Energy, Federal Energy Management Program for Energy-Efficient Renovation of Buildings at the Presidio of San Francisco #12 like to thank the following reviewers for their comments: Anne Sprunt Crawley, Federal Energy

Diamond, Richard

151

The investment made in serving at-risk children and youth by a national sample of recreation and park agencies  

E-Print Network [OSTI]

This study was intended to contribute to a better understanding of the problems, needs, and efforts that are underway in the area of at-risk children and youth programming in a large sample of recreation and park agencies across the nation...

Espericueta, Lorina

2012-06-07T23:59:59.000Z

152

Wyoming/Incentives | Open Energy Information  

Open Energy Info (EERE)

Wyoming/Incentives Wyoming/Incentives < Wyoming Jump to: navigation, search Contents 1 Financial Incentive Programs for Wyoming 2 Rules, Regulations and Policies for Wyoming Download All Financial Incentives and Policies for Wyoming CSV (rows 1 - 42) Financial Incentive Programs for Wyoming Download Financial Incentives for Wyoming CSV (rows 1 - 34) Incentive Incentive Type Active Black Hills Power - Commercial Energy Efficiency Programs (Wyoming) Utility Rebate Program Yes Black Hills Power - Residential Customer Rebate Program (Wyoming) Utility Rebate Program Yes Black Hills Power - Residential Energy Efficiency Rebate Program (Wyoming) Utility Rebate Program No Carbon Power & Light - Energy Conservation Home Improvement Loan (Wyoming) Utility Loan Program No

153

Please cite this article in press as: Hart, S.J., Laroque, C.P., Searching for thresholds in climateradial growth rela-tionships of Engelmann spruce and subalpine fir, Jasper National Park, Alberta, Canada. Dendrochronologia (2012),  

E-Print Network [OSTI]

in climate­radial growth rela- tionships of Engelmann spruce and subalpine fir, Jasper National Park, Alberta for thresholds in climate­radial growth relationships of Engelmann spruce and subalpine fir, Jasper National Park

Walters, Bradley B.

154

EM SSAB NATIONAL CHAIRS MEETING Deer Creek State Park, Mt. Sterling, Ohio  

Broader source: Energy.gov (indexed) [DOE]

EM SSAB NATIONAL CHAIRS MEETING EM SSAB NATIONAL CHAIRS MEETING Deer Creek State Park, Mt. Sterling, Ohio November 5-7, 2013 DAY 1 - Tuesday, November 5, 2013 8:00 a.m. - 8:20 a.m. Welcome and Opening Remarks Cate Alexander, EM SSAB Designated Federal Officer Will Henderson, Chair, Portsmouth Site Specific Advisory Board William Murphie, Manager, Portsmouth Paducah Project Office, DOE-EM 8:20 a.m. - 8:30 a.m. Overview of Meeting Eric Roberts, Facilitator 8:30 a.m. - 9:30 a.m. EM Program Update Alice Williams, Associate Principal Deputy Assistant Secretary for Environmental Management 9:30 a.m. - 10:20 a.m. Round Robin (Chairs' Site Reports) 5 minutes each 10:20 a.m. - 10:30 a.m. Recognition of Departing Chairs 10:30 a.m. - 10:45 a.m. Break 10:45 a.m. - 12:00

155

Wyoming Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Wyoming Regions Wyoming Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Regionals Wyoming Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Wyoming Coaches can review the middle school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

156

Wyoming Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Wyoming Regions Wyoming Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals Wyoming Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Wyoming Coaches can review the high school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your school's state, county, city, or district.

157

Wyoming Regional Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Wyoming Regions » Wyoming Regional Science Wyoming Regions » Wyoming Regional Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Wyoming Regions Wyoming Regional Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Anne Theriault Email: anne@wyrsb.org Regional Event Information Date: February 8, 2014 Maximum Number of Teams: 16 Maximum Number of Teams per School: 3

158

Wyoming Regional Middle School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Wyoming Regions » Wyoming Regional Middle Wyoming Regions » Wyoming Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Wyoming Regions Wyoming Regional Middle School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Anne Theriault Email: anneo.t@gmail.com Regional Event Information Date: Saturday, March 1, 2014 Maximum Number of Teams: 16

159

Concentrations and activity ratios of uranium isotopes in groundwater from Donana National Park, South of Spain  

SciTech Connect (OSTI)

The levels and distribution of natural radionuclides in groundwaters from the unconfined Almonte-Marismas aquifer, upon which Donana National Park is located, have been analysed. Most sampled points were multiple piezometers trying to study the vertical distribution of the hydrogeochemical characteristics in the aquifer. Temperature, pH, electrical conductivity, dissolved oxygen and redox potential were determined in the field. A large number of parameters, physico-chemical properties, major and minor ions, trace elements and natural radionuclides (U-isotopes, Th-isotopes, Ra-isotopes and {sup 210}Po), were also analysed. In the southern zone, where aeolian sands crop out, water composition is of the sodium chloride type, and the lower U-isotopes concentrations have been obtained. As water circulates through the aquifer, bicarbonate and calcium concentrations increase slightly, and higher radionuclides concentrations were measured. Finally, we have demonstrated that {sup 234}U/{sup 238}U activity ratios can be used as markers of the type of groundwater and bedrock, as it has been the case for old waters with marine origin confined by a marsh in the south-east part of aquifer.

Bolivar, J. P.; Olias, M.; Gonzalez-Garcia, F. [Department of Applied Physics, University of Huelva, Campus de El Carmen, 21071-Huelva (Spain); Garcia-Tenorio, R. [Department of Applied Physics II, University of Sevilla, ETSA Arquitectura, 41012-Sevilla (Spain)

2008-08-07T23:59:59.000Z

160

The Western Airborne Contaminant Assessment Project (WACAP): An Interdisciplinary Evaluation of the Impacts of Airborne Contaminants in Western U.S. National Parks  

Science Journals Connector (OSTI)

The Western Airborne Contaminant Assessment Project (WACAP): An Interdisciplinary Evaluation of the Impacts of Airborne Contaminants in Western U.S. National Parks ... U.S. Geological Survey, Denver, Colorado ...

Dixon H. Landers; Staci Massey Simonich; Daniel Jaffe; Linda Geiser; Donald H. Campbell; Adam Schwindt; Carl Schreck; Michael Kent; Will Hafner; Howard E. Taylor; Kimberly Hageman; Sascha Usenko; Luke Ackerman; Jill Schrlau; Neil Rose; Tamara Blett; Marilyn Morrison Erway

2010-01-05T23:59:59.000Z

Note: This page contains sample records for the topic "national park wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A Seasonal Storage Solar Heating System for the Charlestown, Boston Navy Yard National Historic Park  

Science Journals Connector (OSTI)

This paper concerns the design and analysis of a solar energy system using seasonal heat storage for ... Park in the Charlestown Navy Yard, Boston, Massachusetts. The system uses two existing underground concrete...

D. S. Breger; A. I. Michaels

1984-01-01T23:59:59.000Z

162

Laramie, Wyoming December, 1999  

E-Print Network [OSTI]

://www.wsgsweb.uwyo.edu Front cover: Coalbed methane drilling rig on location, southeastern edge of the Washakie Basin, southern Wyoming. This rig is exploring for coalbed methane in coals of the Almond Formation, Mesaverde Group ........................................................... 28 Coalbed methane developments...................................................... 28 Regulatory

Laughlin, Robert B.

163

Ecological risk assessment of elemental pollution in sediment from Tunku Abdul Rahman National Park, Sabah  

SciTech Connect (OSTI)

Eleven (11) surface sediment samples were collected from Tunku Abdul Rahman National Park, Sabah. The neutron activation analysis (NAA) and inductively coupled plasma-mass spectrometry (ICP-MS) techniques were applied for the determinations metal contents and their distributions in sediment samples. The results shown that Arsenic (As) concentrations are enriched at all sampling stations except for station TAR 09, with enrichment factor (EF) values ranged from 1.1 to 7.2. The elements such as Cd, Cr, Sb and U showed enrichment at a few stations and other elements (Cr, Cu, Pb, Th, Zn) shown as background levels in all stations. Degrees of contamination in this study were calculated base on concentrations of six elements (As, Cd, Cr, Cu, Pb, and Zn). TAR 11 station can be categorized as very high degree of contamination with degree of contamination value of 43.2. TAR 07 station can be categorized as a considerable degree of contamination (contamination value of 16.9). Six stations (TAR 01, 03, 04, 05, 06, 08, 10) showed moderate degree of contamination, with contamination values ranging from 8.0 to 16.0. TAR 02 and TAR 09 stations showed low degree of contaminations (< 8.0). TAR 11 showed very high ecological risk index (R{sub I}) with RI value is 916. TAR 07 and TAR 10 showed moderate ecological risk index with R{sub I} value 263 and 213, respectively. Other stations showed low ecological risk with RI values ranging from 42.3 to 117 (< 150). Very high ecological risk index could give an adverse effect to the benthic organism. The data obtained from the enrichment factor, degree of contamination and ecological risk index provided vital information, which can be used for future comparison. Information from the present study will be useful to the relevant government agencies and authorities in preparing preventive action to control direct discharge of heavy metals from industries, agro-base activities and domestic waste to the rivers and the sea.

Elias, Md Suhaimi; Hamzah, Mohd Suhaimi; Rahman, Shamsiah Ab; Salim, Nazaratul Ashifa Abdullah; Siong, Wee Boon; Sanuri, Ezwiza [Analytical Chemistry Application Group, Waste and Environmental Technology Division, Malaysian Nuclear Agency, Bangi 43000, Kajang, Selangor (Malaysia)

2014-02-12T23:59:59.000Z

164

Riparian mammals in Big Bend National Park and their interrelationships with visitor usages and impacts  

E-Print Network [OSTI]

patterns. Although the average yearly temperature is 20o Centigrade (C), the range is from -22o to 48 C with temperatures along the Rio Grande (564 m) averaging 5 to 10 degrees higher than those at Panther Junction (1, 128 m), the park headquarters... patterns. Although the average yearly temperature is 20o Centigrade (C), the range is from -22o to 48 C with temperatures along the Rio Grande (564 m) averaging 5 to 10 degrees higher than those at Panther Junction (1, 128 m), the park headquarters...

Boeer, William Jacob

2012-06-07T23:59:59.000Z

165

A hydrogeological evaluation of alluvial fans in northern Big Bend National Park, Texas, using geophysical methods  

E-Print Network [OSTI]

OF THE SEISMIC AND RESISTIVITY DATA INTERPRETATIONS CONCLUSIONS REFERENCES. APPENDIX. VITA. Page viii ix 9 11 11 15 16 17 17 19 24 28 35 40 46 46 48 52 52 54 55 59 92 97 100 104 106 LIST OF TABLES Table Page True seism1c... Representative four-layer case from the Big Bend Park study area 33 Frequency distribution of seismic velocities. . 34 10 Anomalous time-distance plots from the Bio Bend Park study area 37 Comparison of results from seismic sounding to driller's logs from...

Archer, Jerry Alan

1982-01-01T23:59:59.000Z

166

Wyoming/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Wyoming/Wind Resources/Full Version Wyoming/Wind Resources/Full Version < Wyoming‎ | Wind Resources Jump to: navigation, search Print PDF Wyoming Wind Resources WyomingMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

167

Wildlife conservation and reduced emissions from deforestation in a case study of Nantu National Park,  

E-Print Network [OSTI]

more effective than the PAs without international investment. In contrast with the recent hopes Park, Sulawesi 1. The effectiveness of forest protection--many measures, one goal Ewan A. Macdonald a o Published on line 3 April 2011 Keywords: Protected area Sulawesi REDD Wildlife conservation

Malhi, Yadvinder

168

Green Energy Parks  

Broader source: Energy.gov (indexed) [DOE]

Green Energy Parks Steve Butterworth National Park Service 60 National Parks 2007 30,000 MWH $3,700,000 6,400,000 GSF 139 MWH Green 495 MWH RE 2 Green Energy Parks PARTNERSHIP Department of Interior - National Park Service Department of Energy - Office of Energy Efficiency and Renewable Energy Partnership established by  Established by Interagency MOU  Signed September 2007  Guided by interagency task force co-chaired by DOI/NPS and DOE/FEMP 3 Green Energy Parks GOALS  Serve as proving ground for emerging green energy technologies  Meet or exceed EPACT 2005 and E.O. 13423 Federal energy management mandates 4 Green Energy Parks Drivers  Improve the energy efficiency of facilities and vehicle fleets in advance of the NPS 2016

169

STRATEGIC PLAN FOR COORDINATING RURAL INTELLIGENT TRANSPORTATION SYSTEM (ITS) TRANSIT DEVELOPMENT IN THE GREAT SMOKY MOUNTAINS NATIONAL PARK  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

256 256 STRATEGIC PLAN FOR COORDINATING RURAL INTELLIGENT TRANSPORTATION SYSTEM (ITS) TRANSIT DEVELOPMENT IN THE GREAT SMOKY MOUNTAINS NATIONAL PARK L. F. Truett (TRUETTLF@ORNL.GOV) S. M. Chin (CHINS@ORNL.GOV) E. C. P. Chang (ECC2005@ORNL.GOV) November 2002 Prepared for the FEDERAL TRANSIT ADMINISTRATION U.S. DEPARTMENT OF TRANSPORTATION Washington, D.C. 20590 Prepared by the Center for Transportation Analysis OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6073 managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under Contract No. DE-AC05-00OR22725 Coordination of Transit Concepts in GSMNP page iii, 11/12/02 STRATEGIC PLAN FOR COORDINATING RURAL INTELLIGENT TRANSPORTATION SYSTEM (ITS) TRANSIT DEVELOPMENT IN THE

170

Bedrock acquifer geometry in the Panther Junction area of Big Bend National Park, Texas  

E-Print Network [OSTI]

for Permeability Testing and Data APPENDIX C 76 Gravity Survey Data 87 APPENDIX D Well Logs VITA 103 113 LIST OP TABLES Table 1. Phases of Well Development Page 2. Dry Density and Porosity of Rock Samples Determined by Laboratory Tests , 19 3... throughout the entire park. Hydrogeological data, drillers logs and geophysical logs, were included in the report. Figure 2 illustrates the location of the wells that are within the study area. The water-bearing bedrock formations in the area...

Abbott, Caroline Lownes

1983-01-01T23:59:59.000Z

171

Microsoft Word - wyoming.doc  

Gasoline and Diesel Fuel Update (EIA)

Wyoming Wyoming NERC Region(s) ....................................................................................................... WECC Primary Energy Source........................................................................................... Coal Net Summer Capacity (megawatts) ....................................................................... 7,986 37 Electric Utilities ...................................................................................................... 6,931 31 Independent Power Producers & Combined Heat and Power ................................ 1,056 41 Net Generation (megawatthours) ........................................................................... 48,119,254 31

172

Microsoft Word - wyoming.doc  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming Wyoming NERC Region(s) ....................................................................................................... WECC Primary Energy Source........................................................................................... Coal Net Summer Capacity (megawatts) ....................................................................... 7,986 37 Electric Utilities ...................................................................................................... 6,931 31 Independent Power Producers & Combined Heat and Power ................................ 1,056 41 Net Generation (megawatthours) ........................................................................... 48,119,254 31

173

Options for National Parks and Reserves for Adapting to Climate Change  

E-Print Network [OSTI]

the transition to ecosystem-based management of the Greattransition toward sustainability. National Academy Press, Washington, DC Environmental Management (

2009-01-01T23:59:59.000Z

174

Wyoming Water Resources Center Annual Technical Report  

E-Print Network [OSTI]

by the United States Geological Survey, State Water Resources Research Institute Program allowed the Wyoming and Natural Resources, and at Wyoming State Water Plan meetings. We attended conferences hosted by the WyomingWyoming Water Resources Center Annual Technical Report FY 1999 Introduction Research Program

175

Alternative Fuels Data Center: Wyoming Information  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Wyoming Information to Wyoming Information to someone by E-mail Share Alternative Fuels Data Center: Wyoming Information on Facebook Tweet about Alternative Fuels Data Center: Wyoming Information on Twitter Bookmark Alternative Fuels Data Center: Wyoming Information on Google Bookmark Alternative Fuels Data Center: Wyoming Information on Delicious Rank Alternative Fuels Data Center: Wyoming Information on Digg Find More places to share Alternative Fuels Data Center: Wyoming Information on AddThis.com... Wyoming Information This state page compiles information related to alternative fuels and advanced vehicles in Wyoming and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

176

Monitoring of Olympic National Park Beaches to determine fate and effects of spilled bunker C fuel oil  

SciTech Connect (OSTI)

On December 23, 1988, the barge Nestucca was accidentally struck by its tow, a Souse Brothers Towing Company tug, releasing approximately 230,000 gallons of Bunker C fuel oil and fouling beaches from Grays Harbor north to Vancouver Island. Affected beaches in Washington included a 40-mile-long strip that has been recently added to Olympic National Park. The purpose of the monitoring program documented in this report was to determine the fate of spilled Bunker C fuel oil on selected Washington coastal beaches. We sought to determine (1) how much oil remained in intertidal and shallow subtidal habitats following clean-up and weathering, (2) to what extent intertidal and/or shallow subtidal biotic assemblages have been contaminated, and (3) how rapidly the oil has left the ecosystem. 45 refs., 18 figs., 8 tabs.

Strand, J.A.; Cullinan, V.I.; Crecelius, E.A.; Fortman, T.J.; Citterman, R.J.; Fleischmann, M.L.

1990-10-01T23:59:59.000Z

177

Y-12 and the Great Smoky Mountains National Park ? a grand partnershi...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lockheed Martin Energy Research, Inc. was formed in 1996 to manage and operate the Oak Ridge National Laboratory. So forming a volunteer effort to help the Smokies required...

178

Case Study: Mobile Photovoltaic System at Bechler Meadows Ranger Station, Yellowstone National Park (Brochure)  

SciTech Connect (OSTI)

The mobile PV/generator hybrid system deployed at Bechler Meadows provides a number of advantages. It reduces on-site air emissions from the generator. Batteries allow the generator to operate only at its rated power, reducing run-time and fuel consumption. Energy provided by the solar array reduces fuel consumption and run-time of the generator. The generator is off for most hours providing peace and quiet at the site. Maintenance trips from Mammoth Hot Springs to the remote site are reduced. The frequency of intrusive fuel deliveries to the pristine site is reduced. And the system gives rangers a chance to interpret Green Park values to the visiting public. As an added bonus, the system provides all these benefits at a lower cost than the basecase of using only a propane-fueled generator, reducing life cycle cost by about 26%.

Not Available

2014-03-01T23:59:59.000Z

179

Energy SmartPARKS Retrofitting Parks, Landmarks | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Energy SmartPARKS Retrofitting Parks, Landmarks Energy SmartPARKS Retrofitting Parks, Landmarks Energy SmartPARKS Retrofitting Parks, Landmarks March 19, 2010 - 3:45pm Addthis Joshua DeLung Energy SmartPARKS is a program formed through collaboration between the U.S. Departments of Energy and the Interior to help the National Park Service make America's parks and landmarks more energy-efficient. Several examples are already in place, including one just down the street from Energy's Washington, D.C., home - that example is the prominent Washington Monument, towering up 555 feet from the heart of our nation's capital. An advanced new lighting system for the Washington Monument greatly improves the monument's lighting, and it also decreases the energy used to light the obelisk while increasing security in the area. Through the

180

Wyoming | Building Energy Codes Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wyoming Wyoming Last updated on 2013-06-03 Commercial Residential Code Change Current Code None Statewide Amendments / Additional State Code Information The International Conference of Building Officials (ICBO) Uniform Building Code, which is based on the 1989 Model Energy Code (MEC), may be adopted and enforced by local jurisdictions. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE Standard 90.1-2007 for Commercial Buildings in the State of Wyoming (BECP Report, Sept. 2009) Approximate Energy Efficiency Less energy efficient than 2003 IECC Effective Date 08/13/2008 Code Enforcement Voluntary DOE Determination ASHRAE Standard 90.1-2007: No ASHRAE Standard 90.1-2010: No Wyoming DOE Determination Letter, May 31, 2013 Current Code None Statewide

Note: This page contains sample records for the topic "national park wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Recovery Act State Memos Wyoming  

Broader source: Energy.gov (indexed) [DOE]

Wyoming Wyoming For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 ELECTRIC GRID ........................................................................................................ 4

182

Heavy element radionuclides (Pu, Np, U) and {sup 137}Cs in soils collected from the Idaho National Engineering and Environmental Laboratory and other sites in Idaho, Montana, and Wyoming  

SciTech Connect (OSTI)

The isotopic composition of Pu in soils on and near the Idaho National Engineering and Environmental Laboratory (INEEL) has been determined in order to apportion the sources of the Pu into those derived from stratospheric fallout, regional fallout from the Nevada Test Site (NTS), and facilities on the INEEL site. Soils collected offsite in Idaho, Montana, and Wyoming were collected to further characterize NTS fallout in the region. In addition, measurements of {sup 237}Np and {sup 137}Cs were used to further identify the source of the Pu from airborne emissions at the Idaho Chemical Processing Plant (ICPP) or fugitive releases from the Subsurface Disposal Area (SDA) in the Radioactive Waste Management Complex (RWMC). There is convincing evidence from this study that {sup 241}Am, in excess of that expected from weapons-grade Pu, constituted a part of the buried waste at the SDA that has subsequently been released to the environment. Measurements of {sup 236}U in waters from the Snake River Plain aquifer and a soil core near the ICPP suggest that this radionuclide may be a unique interrogator of airborne releases from the ICPP. Neptunium-237 and {sup 238}Pu activities in INEEL soils suggest that airborne releases of Pu from the ICPP, over its operating history, may have recently been overestimated.

Beasley, T.M.; Rivera, W. Jr. [Dept. of Energy, New York, NY (United States). Environmental Measurements Lab.; Kelley, J.M.; Bond, L.A. [Pacific Northwest National Lab., Richland, WA (United States); Liszewski, M.J. [Bureau of Reclamation (United States); Orlandini, K.A. [Argonne National Lab., IL (United States)

1998-10-01T23:59:59.000Z

183

SIZE DISTRIBUTION MEASUREMENTS OF WILDFIRE SMOKE-INFLUENCED AEROSOL AT YOSEMITE NATIONAL PARK  

E-Print Network [OSTI]

THESIS SIZE DISTRIBUTION MEASUREMENTS OF WILDFIRE SMOKE-INFLUENCED AEROSOL AT YOSEMITE NATIONAL of the requirements For the Degree of Master of Science Colorado State University Fort Collins, Colorado June 2004 #12;ii COLORADO STATE UNIVERSITY July 26, 2004 WE HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER OUR

Pierce, Jeffrey

184

EA-1975: LINAC Coherent Light Source-Il, SLAC National Accelerator Laboratory, Menlo Park, California  

Broader source: Energy.gov [DOE]

DOE is preparing an EA on the potential environmental impacts of a proposal to upgrade the existing LINAC Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. The proposed LCLS-II would extend the photon energy range, increase control over photon pulses, and enable two-color pump-probe experiments. The X-ray laser beams generated by LCLS-II would enable a new class of experiments: the simultaneous investigation of a materials electronic and structural properties.

185

AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Sleeping Bear Dunes National Lakeshore  

SciTech Connect (OSTI)

This report focuses on the Sleeping Bear Dunes National Lakeshore (SLBE) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

Stephen Schey; Jim Francfort

2014-11-01T23:59:59.000Z

186

Insights into archaeal evolution and symbiosis from the genomes of a Nanoarchaeon and its crenarchaeal host from Yellowstone National Park  

SciTech Connect (OSTI)

A hyperthemophilic member of the Nanoarchaeota from Obsidian Pool, a thermal feature in Yellowstone National Park was characterized using single cell isolation and sequencing, together with its putative host, a Sulfolobales archaeon. This first representative of a non-marine Nanoarchaeota (Nst1) resembles Nanoarchaeum equitans by lacking most biosynthetic capabilities, the two forming a deep-branching archaeal lineage. However, the Nst1 genome is over 20% larger, encodes a complete gluconeogenesis pathway and a full complement of archaeal flagellum proteins. Comparison of the two genomes suggests that the marine and terrestrial Nanoarchaeota lineages share a common ancestor that was already a symbiont of another archaeon. With a larger genome, a smaller repertoire of split protein encoding genes and no split non-contiguous tRNAs, Nst1 appears to have experienced less severe genome reduction than N. equitans. The inferred host of Nst1 is potentially autotrophic, with a streamlined genome and simplified central and energetic metabolism as compared to other Sulfolobales. The two distinct Nanoarchaeota-host genomic data sets offer insights into the evolution of archaeal symbiosis and parasitism and will further enable studies of the cellular and molecular mechanisms of these relationships.

Podar, Mircea [ORNL] [ORNL; Graham, David E [ORNL] [ORNL; Reysenbach, Anna-Louise [Portland State University] [Portland State University; Koonin, Eugene [National Center for Biotechnology Information] [National Center for Biotechnology Information; Wolf, Yuri [National Center for Biotechnology Information] [National Center for Biotechnology Information; Makarova, Kira S. [National Center for Biotechnology Information] [National Center for Biotechnology Information

2013-01-01T23:59:59.000Z

187

Semi-Continuous Measurements of Aerosol Chemical Composition During the Summer 2002 Yosemite National Park Special Study  

SciTech Connect (OSTI)

Semi-continuous measurements of fine particle composition were made over a period of several weeks in summer 2002 in Yosemite National Park, California. These included measurement of aerosol ionic composition (by PILS- Particle-Into-Liquid System) and aerosol carbon (by dual wavelength aethalometer and an R&P particulate carbon monitor). The data reveal that aerosol composition at the site is highly :variable in time, with a strong diurnal cycle. Interestingly, however, different diurnal cycles were sometimes observed for different chemical constituents of the particles. Organic carbon was observed to dominate fine particle mass, with some periods apparently associated with influx of smoke from wildfires in the western U.S. Measurements of fine particle carbon isotopes revealed the fraction of carbon from biogenic sources to range from approximately 73 to 95%. The ionic fraction of the aerosol was usually dominated by ammoniated sulfate. During most periods, PM{sub 2.5} nitrate was found primarily in sea salt particles from which chloride had been displaced. Strong variations in the extent of ammonia neutralization of sulfate were also observed. The ability to observe rapid changes in aerosol composition using these semi-continuous aerosol composition measurements is helpful for understanding the dynamic chemical composition of fine particles responsible for regional haze.

Collette, J; Lee, T; Heath, J; Carrico, C; Herckes, P; Engling, G; McMeeking, G; Kreidenweis, S; Day, D; Malm, W; Cahill, T

2003-02-16T23:59:59.000Z

188

Determining the best source of renewable electricity to power a remote site for the National Park Service  

SciTech Connect (OSTI)

Renewable energy technologies have economic and environmental advantages in many remote applications. They can provide most of the power to off-grid loads, where batteries and another power source such as a generator or a fuel cell may be required to ensure availability and feasibility. In support of the National Park Service, the Federal Energy Management Program Team at the National Renewable Energy Laboratory has evaluated several methods for providing a renewable source of electricity to a beach campsite at Kirby Cove, Marin County, California. This site requires 2 kWh per day to power a campground host in a motor home five months power year. The existing electricity line to the site is in need of replacement and the NPS is interested in evaluating more cost-effective and environmentally sensitive alternatives. Photovoltaics, tidal current, and wind power systems in combination with a back-up electric system (standard, thermoelectric, and Stirling generator and fuel cell) and an energy storage medium (battery, flywheel, and hydrogen) were analyzed. Multi-objective optimization criteria include initial cost, operating cost, emissions, maintenance requirements, and to be consistent with the NPS requirements, the system must be clean, silent, and sustainable. The best system combination was designed according to these evaluation criteria and a demonstration system is to be constructed. This paper describes the optimization procedure and design. Results indicate that a 800 Watt photovoltaic array with a hydrogen fuel cell best serves the requirements for clean, silent power. Since fuel cells are developmental, a propane generator is recommended as an alternative.

Azerbegl, R.; Mas, C.; Walker, A.; Morris, R.; Christensen, J.

1999-07-01T23:59:59.000Z

189

On the Border in Everglades and Dry Tortugas: Identifying Federal Law Enforcement Perspectives on Response to Cuban Immigrant Landings in South Florida's National Parks  

E-Print Network [OSTI]

of national park studies includes literature on law enforcement and encroaching urban activities such as gang violence and break-ins, as well as increasing international activities such as drug smuggling, human smuggling and trafficking, legal and illegal....) people moved by migrant smugglers or human trafficking, 4.) people who deliberately abuse the asylum system. Human smugglers are paid to help migrants gain illegal entry into a country while human traffickers take control over the persons...

Bentley, Amanda

2012-10-19T23:59:59.000Z

190

Recommended integrated monitoring system for pollutants on US national parks designated as biosphere reserves. [Biosphere reserves  

SciTech Connect (OSTI)

Biosphere reserves have been established worldwide as part of the United Nations' Man and the Biosphere Program. A portion of this program involves the development of an inexpensive pollutant monitoring system that can be used in a variety of biosphere reserves and that can produce data that are comparable between reserves. This report discusses the design of a pollutant monitoring system that has been successfully used in the United States and provides detailed instructions for its application and use. Mathematical models were applied to help determine the optimum monitoring system design. The modeling technique is briefly described, and results are shown using lead as an example. Analytical procedures were chosen for sample analyses because of their ability to detect suspected pollutants and for their cost effectiveness. Multielemental analytical techniques were used whenever possible, and multiorganic analytical techniques were used when available. Samples of air, water, soil, vegetation, and forest litter were collected. The sampling design is discussed, including the layout of sampling blocks, subsampling, sample handling, and sample preservation. Detailed instructions are provided for obtaining samples and operating the necessary equipment. Finally, the maintenance of field log books and the timing of sample collections are discussed, and conclusions regarding the use of an integrated pollutant monitoring system for biosphere reserves are presented. 27 references, 25 figures.

Wiersma, G.B.

1985-01-01T23:59:59.000Z

191

Sang-Jae Park  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sang-Jae Park Sang-Jae Park Electrochemical Technologies Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 70R0108B Berkeley CA 94720 Office Location: 70-0128 (510) 495-8161 SangJaePark@lbl.gov Sang-Jae Park is a Postdoctoral Researcher at Environmental Energy Technology Division in Lawrence Berkeley National Laboratory. He received his BS and MS degrees in Chemical Engineering from Seoul National University and his PhD degree in Chemistry from University of Pennsylvania in the study of conducting polymers. In the graduate works, he studied a novel class of amphiphilic conducting block-copolymers composed of a widely studied conjugated polymer. His current research in LBNL is focused on the development of conductive polymer binders for lithium ion batteries. By

192

Fire regimes and forest structure in a sky island mixed conifer forest, Guadalupe Mountains National Park, Texas, USA  

Science Journals Connector (OSTI)

Fire is a key disturbance agent in the fire-prone mixed conifer and ponderosa pine forests of the southwestern United States. Human activities (i.e., livestock grazing, logging, and fire suppression) have resulted in the exclusion of fire from these forests for the past century and fire exclusion has caused changes in forest structure and composition. This study quantifies spatial and temporal variability in fire regimes and forest change in a 1000-ha area of mixed conifer forest in Guadalupe Mountains National Park (GMNP), an area with an uncommon history of grazing and fire suppression. Dendroecological methods were used to quantify fire frequency, season, severity, and extent, as well as forest structural and compositional change. The mean composite fire return interval (CFI) for the study area was 4 years. Widespread fires were less frequent. The mean CFI for fires recorded in at least 10% of the samples collected was 9.2 years, and mean CFI for fires scarring at least 25% of samples was 16.3 years. Many of these widespread fires occurred in the 19th century. The mean point fire return interval (PFI) was longer at 24 years. Fire scars were primarily formed in the earliest portion of earlywood in annual rings, indicating that fires burned mainly in the spring, at the beginning of the growing season. The onset of grazing in the 1920s dramatically reduced fire frequency. An increase in tree density and a compositional shift from southwestern white pine (Pinus strobiformis Engelm.) to Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) coincides with the grazing era. In addition, the pre-ranching era was characterized by low-severity fires, while structural changes have resulted in a contemporary forest that is prone to high severity fire, as evidenced by two stand-replacing wildfires in GMNP in the 1990s.

John Sakulich; Alan H. Taylor

2007-01-01T23:59:59.000Z

193

Wyoming/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Wyoming Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Wyoming Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Wyoming No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Wyoming No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Wyoming Mean Capacity (MW) Number of Plants Owners Geothermal Region Huckleberry Hot Springs Geothermal Area 38.744 MW38,744.243 kW 38,744,243.17 W 38,744,243,170 mW 0.0387 GW 3.874424e-5 TW Yellowstone Caldera Geothermal Region Seven Mile Hole Geothermal Area Yellowstone Caldera Geothermal Region GRR-logo.png Geothermal Regulatory Roadmap for Wyoming Overview Flowchart The flowcharts listed below were developed as part of the Geothermal

194

Wyoming/Transmission | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Wyoming/Transmission < Wyoming Jump to: navigation, search WyomingTransmissionHeader.png Roadmap Agency Links Local Regulations State Regulations Summary General Transmission Dashboard Permitting Atlas Compare States Arizona California Colorado Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming Resource Library NEPA Database The electrical grid in Wyoming is part of the WestConnect Transmission Planning area, and covers the southwest of the United States. Within the WestConnect system, Wyoming is part of the Colorado Coordinated Planning Group (CCPG) power grid that covers Colorado and portions of Wyoming.

195

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wyoming Wyoming Categorical Exclusion Determinations: Wyoming Location Categorical Exclusion Determinations issued for actions in Wyoming. DOCUMENTS AVAILABLE FOR DOWNLOAD July 26, 2013 CX-010688: Categorical Exclusion Determination Optimization Project #3 CX(s) Applied: B2.5, B5.2, B5.4, B5.5 Date: 07/26/2013 Location(s): Wyoming Offices(s): RMOTC July 26, 2013 CX-010687: Categorical Exclusion Determination Optimization Project Area #1 CX(s) Applied: B2.5, B5.2, B5.4, B5.5 Date: 07/26/2013 Location(s): Wyoming Offices(s): RMOTC July 2, 2013 CX-010686: Categorical Exclusion Determination Cheyenne Substation KV2A 115-kilovolt Tie Line Installation CX(s) Applied: B4.6 Date: 07/02/2013 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region June 28, 2013

196

Propagation of errors associated with scaling foliage biomass from field measurements to remote sensing data over a northern Canadian national park  

Science Journals Connector (OSTI)

Abstract If a change detection result based on time series of remote sensing data indicates that there was a 10% increase in an ecosystem property between two years over a specific land area, does it mean there was a real change in the ecosystem property, or could it be merely an estimation error? This question must be addressed before ecosystem managers or policy makers can use the result with confidence for addressing related environmental or natural resource management issues. One means of answering this question is through systematic error propagation analysis. In this study, we analyzed error propagation for detecting inter-annual changes in foliage biomass over Wapusk National Park, Canada. Specifically, we first estimated uncertainties in all input data, including sampling errors in foliage and random errors in AVHRR and Landsat data. Secondly, we evaluated the error propagation from inputs to the remote sensing-derived foliage biomass estimates (including the Landsat-based foliage biomass, AVHRR-derived foliage biomass, and the inter-annual changes in foliage biomass), and determined the threshold of detectable change in foliage biomass. Finally, we investigated approaches that can reduce the threshold. Our results indicated that over Wapusk National Park during 19852006, the threshold for a clear-sky AVHRR pixel between two single years was ~40% with a confidence level of 84%, and can be reduced to 10% for a land cover class with more than 10 clear-sky AVHRR pixels between two 5-year State of Park reporting periods.

W. Chen; P. Zorn; Z. Chen; R. Latifovic; Y. Zhang; J. Li; J. Quirouette; I. Olthof; R. Fraser; D. Mclennan; J. Poitevin; H.M. Stewart; R. Sharma

2013-01-01T23:59:59.000Z

197

NAME M/YEAR MASTERS THESES TITLES SCOPEL, ROBERT B Jun49 The Volcanic History of Jackson Hole, Wyoming  

E-Print Network [OSTI]

, Park County, Wyoming GOSSER, CHARLES F. Jun60 Petrography and Metamorphism of the Star Lake Area of the Keewatin Province, Ontario RUBEL, DANIEL N Apr59 Tertiary volcanic rocks of the Cooke city - pilot peak, Montana BRUEHL, DONALD H. Jun61 The Petrography and Structure of an area North of Cooke City, Montana #12

Baskaran, Mark

198

Won Young Park  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Won Park Won Park Won Young Park International Energy Studies Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 90R2002 Berkeley CA 94720 Office Location: 90-2144 (510) 495-2252 WYPark@lbl.gov Won Young Park is a senior research associate at Lawrence Berkeley National Laboratory (LBNL). He is working on technical analysis for televisions, computer monitors, and lighting for the Super-efficient Equipment and Appliance Deployment (SEAD) Initiative. In the studies, he assesses energy savings potential in efficiency improvement options, evaluates cost effectiveness of key technologies, and provides technical information and recommendations for policies and programs designed to accelerate the adoption of efficient technologies. He also supports a Korea project that

199

DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming |  

Broader source: Energy.gov (indexed) [DOE]

Technology Enhances Recovery of Natural Gas in Technology Enhances Recovery of Natural Gas in Wyoming DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming March 26, 2009 - 1:00pm Addthis Washington, DC --Research sponsored by the U.S. Department of Energy (DOE) Oil and Natural Gas Program has found a way to distinguish between groundwater and the water co-produced with coalbed natural gas, thereby boosting opportunities to tap into the vast supply of natural gas in Wyoming as well as Montana. In a recently completed project, researchers at the University of Wyoming used the isotopic carbon-13 to carbon-12 ratio to address environmental issues associated with water co-produced with coalbed natural gas. The research resulted in a patent application for this unique use of the ratio. An added benefit of the project, which was managed by the National Energy

200

PacifiCorp (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming) Wyoming) (Redirected from Rocky Mountain Power (Wyoming)) Jump to: navigation, search Name PacifiCorp Place Wyoming Service Territory Wyoming Website www.rockymountainpower.ne Green Button Reference Page www.rockymountainpower.ne Green Button Implemented Yes Utility Id 14354 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. PacifiCorp consists of three business units. Rocky Mountain Power is a subsidiary of PacifiCorp which delivers electricity to customers in Utah, Wyoming and Idaho, it is headquartered in Salt Lake City, UT. Utility Rate Schedules Grid-background.png 2 Residential 25 (Small General Service - Three Phase Secondary) Commercial

Note: This page contains sample records for the topic "national park wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Wyoming's Economic Future: Planning for Sustained Prosperity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Highest-Priority the Highest-Priority Geological CO 2 Storage Sites and Formations in Wyoming Ronald C. Surdam Director, Carbon Management Institute Modified from Surdam, R.C., Jiao, Z., Stauffer, P., & Miller, T., 2009, An integrated strategy for carbon management combining geological CO 2 sequestration, displaced fluid production, and water treatment: Wyoming State Geological Survey Challenges in Geologic Resource Development No. 8, 25 p. WSGS, UW, State, and DOE- funded research identified two high-capacity sites in southwest Wyoming: Rock Springs Uplift & Moxa Arch Carbon Capture Potential In Southwest Wyoming Surdam, R.C. & Jiao, Z., 2007, The Rock Springs Uplift: An outstanding geological CO 2 sequestration site in southwest Wyoming: Wyoming State Geological Survey Challenges in Geologic Resource

202

Wyoming DOE EPSCoR  

SciTech Connect (OSTI)

All of the research and human resource development projects were systemic in nature with real potential for becoming self sustaining. They concentrated on building permanent structure, such as faculty expertise, research equipment, the SEM Minority Center, and the School of Environment and Natural Resources. It was the intent of the DOE/EPSCoR project to permanently change the way Wyoming does business in energy-related research, human development for science and engineering careers, and in relationships between Wyoming industry, State Government and UW. While there is still much to be done, the DOE/EPSCoR implementation award has been successful in accomplishing that change and enhancing UW's competitiveness associated with coal utilization, electrical energy efficiency, and environmental remediation.

Gern, W.A.

2004-01-15T23:59:59.000Z

203

Staff Parking Crewe Green  

E-Print Network [OSTI]

Green Road A534Crewe Railway Station 1 2 3 4 5 6 7 8 10 1112 13 14 15 16 17 9 18 Manchester Metropolitan Crewe Green Road, Crewe CW1 5DU Reception tel: 0161 247 5003 #12;Parking Parking Parking Parking Visitor Parking Staff Parking Parking Parking Visitor Parking Parking Crewe Green Road A534Crewe Railway Station

204

,"Wyoming Natural Gas Gross Withdrawals and Production"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Gross Withdrawals and Production",10,"Monthly","92014","1151989" ,"Release...

205

,"Wyoming Coalbed Methane Proved Reserves, Reserves Changes,...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Coalbed Methane Proved Reserves, Reserves Changes, and Production",10,"Annual",2013,"630...

206

TEMPORAL AND SPATIAL VARIATION OF ATMOSPHERICALLY DEPOSITED ORGANIC CONTAMINANTS AT HIGH ELEVATION IN YOSEMITE NATIONAL PARK, CALIFORNIA, USA  

E-Print Network [OSTI]

be transported tens of kilometers and deposited in adjacent mountains in many parts of the world. Atmospherically guidelines or critical thresholds in both parks. A general pattern of difference between Yosemite and Sequoia to organophosphorus and carbamate pesticides. Variability of chemical concentrations among sites, between sampling

Knapp, Roland

207

Montana-Dakota Utilities Co (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

MDU Resources Group Inc (Wyoming)) Jump to: navigation, search Name: Montana-Dakota Utilities Co Place: Wyoming References: Energy Information Administration.1 EIA Form 861 Data...

208

Ecology of the Riffle Insects of the Firehole River, Wyoming  

E-Print Network [OSTI]

Science Foundation fellowship which enabled the author to spend several months in the field in early spring and late fall. A grant from the Gans Fund, Bethany College, W. Va., helped defray some of the expenses involved in the field operations.... The author owes a great debt to the National Park Service and to the personnel of Yellowstone National Park for their cooperation in establishing this study and for providing facilities during the late fall and early spring. Special thanks are due...

Armitage, Kenneth

1958-10-01T23:59:59.000Z

209

Green Energy Parks Program  

Broader source: Energy.gov (indexed) [DOE]

Energy Parks Program Energy Parks Program Terry Brennan NPS Green Energy Parks Coordinator Federal Utility Partnership Working Group Meeting April 15 th , 2008 Overview  Energy Consumption in the NPS  Green Energy Parks Program  Questions and Discussion NPS Energy Consumption NPS Assets by Type and Region - The NPS is comprised of 391 units encompassing more than 8 million acres-with tens of thousands of assets within seven regions - 2,000 4,000 6,000 8,000 10,000 12,000 14,000 Intermountain 13,793 (24%) Pacific West 12,450 (21%) Southeast 10,877 (19%) Northeast 9,036 (16%) Midwest 6,351 (11%) National Capital 3,708 (6%) Alaska 1,745 (3%) Count of Assets All Other Paved/Unpaved Roads Wastewater System Water System Campgrounds Trails Housing Buildings - - - - NPS Inventory Summary

210

Complete Genome Sequence of Paenibacillus strain Y4.12MC10, a Novel Paenibacillus lautus strain Isolated from Obsidian Hot Spring in Yellowstone National Park  

SciTech Connect (OSTI)

Paenibacillus speciesY412MC10 was one of a number of organisms initially isolated from Obsidian Hot Spring, Yellowstone National Park, Montana, USA. The isolate Y412MC10 was initially classified as a Geobacillus sp. based on its isolation conditions and similarity to other organisms isolated from hot springs at Yellowstone National Park. Comparison of 16 S rRNA sequences within the Bacillales indicated that Geobacillus sp.Y412MC10 clustered with Paenibacillus species and not Geobacillus; the 16S rRNA analysis indicated the organism was a strain of Paenibacillus lautus. Lucigen Corp. prepared genomic DNA and the genome was sequenced, assembled, and annotated by the DOE Joint Genome Institute. The genome of Paenibacillus lautus strain Y412MC10 consists of one circular chromosome of 7,121,665 bp with an average G+C content of 51.2%. The Paenibacillus sp.Y412MC10 genome sequence was deposited at the NCBI in October 2009 (NC{_}013406). Comparison to other Paenibacillus species shows the organism lacks nitrogen fixation, antibiotic production and social interaction genes reported in other Paenibacilli. Over 25% of the proteins predicted by the Y412MC10 genome share no identity with the closest sequenced Paenibacillus species; most of these are predicted hypothetical proteins and their specific function in the environment is unknown.

Mead, David [University of Wisconsin, Madison; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Zhang, Xiaojing [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Chang, Yun-Juan [ORNL; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Ovchinnikova, Galina [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Brumm, Catherine [United States Department of Energy Joint Genome Institute; Hochstein, Rebecca [Lucigen Corporation, Middleton, Wisconsin; Schoenfeld, Thomas [Lucigen Corporation, Middleton, Wisconsin; Brumm, Phillip [University of Wisconsin, Madison

2012-01-01T23:59:59.000Z

211

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

March 7, 2012 March 7, 2012 CX-008379: Categorical Exclusion Determination Archer Communications Building CX(s) Applied: B4.6 Date: 03/07/2012 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region January 24, 2012 CX-008675: Categorical Exclusion Determination Sustainable Energy Solutions LLC - Cryogenic Carbon Capture (Phase 2) CX(s) Applied: B3.6, B3.9 Date: 01/24/2012 Location(s): Utah, Wyoming Offices(s): Advanced Research Projects Agency-Energy January 12, 2012 CX-007755: Categorical Exclusion Determination Routine and Proposed Actions at the Riverton, Wyoming, Processing Site CX(s) Applied: B1.3, B3.1 Date: 01/12/2012 Location(s): Wyoming Offices(s): Legacy Management December 15, 2011 CX-007515: Categorical Exclusion Determination Bucknam Temporary Tap, Natrona County, Wyoming

212

Report: EM Energy Park Initiative  

Broader source: Energy.gov (indexed) [DOE]

EM Energy Park Initiative EM Energy Park Initiative September 30, 2009 Submitted by the EMAB Energy Park Initiative Subcommittee Background: The Energy Park Initiative (EPI) aims to convert the Office of Environmental Management's (EM) liabilities - its contaminated sites, facilities, and materials - into reusable assets focused on providing solutions to critical national energy and environmental issues. These assets include the sites' natural resources, infrastructure, institutional controls, and human and economic capital. The EPI is a high priority for EMAB since the initiative is still in the formative planning and implementation phases. The EPI Subcommittee members are Paul Dabbar (lead), James Ajello, Lessie Price, and Robert Thompson. Recommendations:

213

Interpreting Fracture Patterns in Sandstones Interbedded with Ductile Strata at the Salt Valley Anticline, Arches National Park, Utah  

SciTech Connect (OSTI)

Sandstones that overlie or that are interbedded with evaporitic or other ductile strata commonly contain numerous localized domains of fractures, each covering an area of a few square miles. Fractures within the Entrada Sandstone at the Salt Valley Anticline are associated with salt mobility within the underlying Paradox Formation. The fracture relationships observed at Salt Valley (along with examples from Paleozoic strata at the southern edge of the Holbrook basin in northeastern Arizona, and sandstones of the Frontier Formation along the western edge of the Green River basin in southwestern Wyoming), show that although each fracture domain may contain consistently oriented fractures, the orientations and patterns of the fractures vary considerably from domain to domain. Most of the fracture patterns in the brittle sandstones are related to local stresses created by subtle, irregular flexures resulting from mobility of the associated, interbedded ductile strata (halite or shale). Sequential episodes of evaporite dissolution and/or mobility in different directions can result in multiple, superimposed fracture sets in the associated sandstones. Multiple sets of superimposed fractures create reservoir-quality fracture interconnectivity within restricted localities of a formation. However, it is difficult to predict the orientations and characteristics of this type of fracturing in the subsurface. This is primarily because the orientations and characteristics of these fractures typically have little relationship to the regional tectonic stresses that might be used to predict fracture characteristics prior to drilling. Nevertheless, the high probability of numerous, intersecting fractures in such settings attests to the importance of determining fracture orientations in these types of fractured reservoirs.

LORENZ, JOHN C.; COOPER, SCOTT P.

2001-12-01T23:59:59.000Z

214

Alternative Fuels Data Center: Wyoming Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Wyoming Points of Wyoming Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Wyoming Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Wyoming Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Wyoming Points of Contact on Google Bookmark Alternative Fuels Data Center: Wyoming Points of Contact on Delicious Rank Alternative Fuels Data Center: Wyoming Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Wyoming Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Points of Contact The following people or agencies can help you find more information about Wyoming's clean transportation laws, incentives, and funding opportunities.

215

Alternative Fuels Data Center: Wyoming Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Wyoming Laws and Wyoming Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Wyoming. Your Clean Cities coordinator at

216

Urban Parks: Constraints on Park Visitation  

E-Print Network [OSTI]

in a Recreation research shows that there are marked inequalities among population groups in terms of their participation in different leisure activities and their use of local, regional and national park and recre- ation services. Those who do... studies focused primarily on factors that are physical and external to the individual, such as disabilities or lack of facilities. But there are also intrapersonal constraints, which have to do with people?s personality needs, prior socialization...

Scott, David

2006-12-19T23:59:59.000Z

217

Relation of park types and visitors' expenditure patterns: an analysis  

E-Print Network [OSTI]

and Alderdice, 1979) . Increased awareness of national parks has developed two contrasting views (Nelson, 1973, as cited by Smith and Alderdice, 1979). According to the first view preservation of natural and historical features should be the main mandate... and texts will be discussed in the framework of this study. 15 Park Classification In 1951, Charles Sauers prepared a paper "The Order of Parks" at the National Conference on State Parks. In this paper he noted that in defining park types...

Currie, Russell Roger

1992-01-01T23:59:59.000Z

218

Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0759678,"lon":-107.2902839,"alt":0,"address":"Wyoming","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

219

PacifiCorp (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming Wyoming Service Territory Wyoming Website www.rockymountainpower.ne Green Button Reference Page www.rockymountainpower.ne Green Button Implemented Yes Utility Id 14354 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. PacifiCorp consists of three business units. Rocky Mountain Power is a subsidiary of PacifiCorp which delivers electricity to customers in Utah, Wyoming and Idaho, it is headquartered in Salt Lake City, UT. Utility Rate Schedules Grid-background.png 2 Residential 25 (Small General Service - Three Phase Secondary) Commercial 28 (General Service - Three Phase Secondary) Commercial 46 (Time Of Use Three Phase Secondary) Commercial

220

Wyoming/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming/Wind Resources Wyoming/Wind Resources < Wyoming Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Wyoming Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid?

Note: This page contains sample records for the topic "national park wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Wyoming Municipal Power Agency | Open Energy Information  

Open Energy Info (EERE)

Wyoming Municipal Power Agency Wyoming Municipal Power Agency Place Wyoming Utility Id 40603 Utility Location Yes Ownership A NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Wyoming_Municipal_Power_Agency&oldid=412214

222

Wyoming Wind Power Project (generation/wind)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

223

Wyoming Coalbed Methane Production (Billion Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Production (Billion Cubic Feet) Wyoming Coalbed Methane Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 133 278...

224

Wyoming Coalbed Methane Proved Reserves Acquisitions (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

225

Wyoming Coalbed Methane Proved Reserves Adjustments (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Adjustments (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

226

Post-1935 changes in forest vegetation of Grand Canyon National Park, Arizona, USA: Part 2Mixed conifer, spruce-fir, and quaking aspen forests  

Science Journals Connector (OSTI)

This study examined changes in never-harvested mixed conifer (MCF), spruce-fir (SFF), and quaking aspen forests (QAF) in Grand Canyon National Park (GCNP), Arizona, USA based on repeat sampling of two sets of vegetation study plots, one originally sampled in 1935 and the other in 1984. The 1935 plots are the earliest-known, sample-intensive, quantitative documentation of forest vegetation over a Southwest USA landscape. Findings documented that previously described increases in densities and basal areas attributed to fire exclusion were followed by decreases in 19352004 and 19842005. Decreases in MCF were attributable primarily to quaking aspen (Populus tremuloides) and white fir (Abies concolor), but there were differences between dry-mesic and moist-mesic MCF subtypes. Decreases in SFF were attributable to quaking aspen, spruce (Picea engelmannii+Picea pungens), and subalpine fir (Abies lasiocarpa). Decreases in QAF resulted from the loss of quaking aspen during succession. Changes in ponderosa pine forest (PPF) are described in a parallel paper (Vankat, J.L., 2011. Post-1935 changes in forest vegetation of Grand Canyon National Park, Arizona, USA: part 1 ponderosa pine forest. Forest Ecology and Management 261, 309325). Graphical synthesis of historical and modern MCF data sets for GCNP indicated tree densities and basal areas increased from the late 19th to the mid 20th century and then decreased to the 21st century. Changes began earlier, occurred more rapidly, and/or were larger at higher elevation. Plot data showed that basal area decreased earlier and/or more rapidly than density and that decreases from 1935 to 2004 resulted in convergence among MCF, SFF, and PPF. If GCNP coniferous forests are trending toward conditions present before fire exclusion, this implies density and basal area were more similar among these forests in the late 19th century than in 1935. Changes in MCF and SFF can be placed in a general framework of forest accretion, inflection, and recession in which increases in tree density and basal area are followed by an inflection point and decreases. Accretion was triggered by the exogenous factor of fire exclusion, and inflection and recession apparently were driven by the endogenous factor of density-dependent mortality combined with exogenous factors such as climate. Although the decreases in density and basal area could be unique to GCNP, it is likely that the historical study plots provided a unique opportunity to quantitatively determine forest trends since 1935. This documentation of post-1935 decreases in MCF and SFF densities and basal areas indicates a shift in perspective on Southwestern forests is needed.

John L. Vankat

2011-01-01T23:59:59.000Z

227

Alternative Fuels Data Center: Wyoming Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Other The list below contains summaries of all Wyoming laws and incentives

228

Alternative Fuels Data Center: Wyoming Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives Listed below are the summaries of all current Wyoming laws, incentives, regulations, funding opportunities, and other initiatives related to

229

Alternative Fuels Data Center: Wyoming Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Other The list below contains summaries of all Wyoming laws and incentives

230

Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Ethanol The list below contains summaries of all Wyoming laws and incentives

231

Reaching an agreement to build a new coal-fired power plant near a national park by mitigating potential environmental impacts  

SciTech Connect (OSTI)

This paper presents an interesting example of compromise through comprehensive environmental analysis and intensive negotiation to build a coal-fired power plant near an environmentally sensitive area. In December 1993, the US Department of Energy (DOE) completed the final environmental impact statement (EIS) for the Healy Clean Coal Project (HCCP), a proposed demonstration project that would be cost-shared by DOE and the Alaska Industrial Development and Export Authority (AIDEA). The HCCP would be built adjacent to the existing coal-fired Golden Valley Electric Association, Inc. (GVEA) Unit No. 1 in Healy, Alaska, about 4 miles north of Denali National Park and Preserve (DNPP). In response to US Department of the Interior (DOI) concerns about potential air quality related impacts on DNPP, DOE facilitated negotiations among DOI, AIDEA, and GVEA which overcame a ``stalemate`` situation. A Memorandum of Agreement was signed by all four parties, enabling DOI to withdraw its objections. The cornerstone of the Agreement is the planned retrofit of Unit No. 1 to reduce emissions of sulfur dioxide and oxides of nitrogen. if the demonstration technologies operate as expected, combined emissions from the Healy site would increase by only about 8% but electrical generation would triple. The Agreement is a ``win/win`` outcome: DOE can demonstrate the new technologies, AIDEA can build a new power plant for GVEA to operate, and DOI can safeguard the pristine environment of DNPP.

Miller, R.L. [Oak Ridge National Lab., TN (United States); Ruppel, T.C.; Evans, E.W.; Heintz, S.J. [USDOE Pittsburgh Energy Technology Center, PA (United States)

1994-12-31T23:59:59.000Z

232

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

December 30, 2009 December 30, 2009 CX-006683: Categorical Exclusion Determination Geothermal Technologies Program CX(s) Applied: B3.1, B5.2 Date: 12/30/2009 Location(s): Casper, Wyoming Office(s): RMOTC December 29, 2009 CX-001292: Categorical Exclusion Determination Training Programs, Lighting Upgrades, Hire a Consultant, Energy Efficient Boiler Installation CX(s) Applied: A9, A11, B5.1 Date: 12/29/2009 Location(s): Cheyenne, Wyoming Office(s): Energy Efficiency and Renewable Energy December 23, 2009 CX-006679: Categorical Exclusion Determination Geothermal Technologies Program CX(s) Applied: B5.2 Date: 12/23/2009 Location(s): Casper, Wyoming Office(s): RMOTC December 23, 2009 CX-006681: Categorical Exclusion Determination New Drilling Location in Section 29 CX(s) Applied: B3.1 Date: 12/23/2009

233

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

May 26, 2011 May 26, 2011 CX-006716: Categorical Exclusion Determination New B-1-3 Pit and Box Construction CX(s) Applied: B1.3, B6.1 Date: 05/26/2011 Location(s): Casper, Wyoming Office(s): RMOTC May 17, 2011 CX-006719: Categorical Exclusion Determination Casing Drilling Test CX(s) Applied: B1.3, B3.7, B5.12 Date: 05/17/2011 Location(s): Casper, Wyoming Office(s): RMOTC May 5, 2011 CX-005852: Categorical Exclusion Determination Stegall-Wayside 230 Kilovolt Access Road Extension CX(s) Applied: B1.13 Date: 05/05/2011 Location(s): Dawes County, Wyoming Office(s): Western Area Power Administration-Rocky Mountain Region April 29, 2011 CX-005664: Categorical Exclusion Determination Development and Testing of Compact Heat Exchange Reactors (CHER) for Synthesis of Liquid Fuels CX(s) Applied: B3.6

234

POLICE, PARKING AND TRANSPORTATION Parking Services  

E-Print Network [OSTI]

" Staff/Faculty, "G" General, and "DP" Discovery Park (Car and Motorcycle) permits o Select the "Parking Staff Permit - $180.00 o "G" General Permit - $115.00 o "MC" Motorcycle Permit - $93.00 o "DP" Discovery Park lots 3 & 4 ­ $36.00 (Both car and Discovery Park motorcycle permits) · If you currently do

Mohanty, Saraju P.

235

Alternative Fuels Data Center: Wyoming Laws and Incentives for Idle  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Idle Reduction to someone by E-mail Idle Reduction to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Idle Reduction on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Idle Reduction on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Idle Reduction on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Idle Reduction on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Idle Reduction on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Idle Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Idle Reduction

236

Wyoming's Appliance Rebate Program Surges Ahead | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wyoming's Appliance Rebate Program Surges Ahead Wyoming's Appliance Rebate Program Surges Ahead Wyoming's Appliance Rebate Program Surges Ahead October 19, 2010 - 12:43pm Addthis Wyoming residents can receive rebates on ENERGY STAR appliances such as clothes washers. | File photo Wyoming residents can receive rebates on ENERGY STAR appliances such as clothes washers. | File photo Lindsay Gsell What does this mean for me? Wyoming received $511,000 in Recovery Act funding for its appliance rebate program. The program has already distributed 60% of rebate funding. Wyoming's appliance rebate program, which opened in April, continues through this fall. Residents of the Equality State can receive rebates on ENERGY STAR certified clothes washers, dishwashers, water heaters and gas furnaces ranging from $50 to $250.

237

Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Driving / Idling

238

Wyoming's Appliance Rebate Program Surges Ahead | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wyoming's Appliance Rebate Program Surges Ahead Wyoming's Appliance Rebate Program Surges Ahead Wyoming's Appliance Rebate Program Surges Ahead October 19, 2010 - 12:43pm Addthis Wyoming residents can receive rebates on ENERGY STAR appliances such as clothes washers. | File photo Wyoming residents can receive rebates on ENERGY STAR appliances such as clothes washers. | File photo Lindsay Gsell What does this mean for me? Wyoming received $511,000 in Recovery Act funding for its appliance rebate program. The program has already distributed 60% of rebate funding. Wyoming's appliance rebate program, which opened in April, continues through this fall. Residents of the Equality State can receive rebates on ENERGY STAR certified clothes washers, dishwashers, water heaters and gas furnaces ranging from $50 to $250.

239

Motorcycle and Moped Parking Map Moped Parking Only  

E-Print Network [OSTI]

Motorcycle and Moped Parking Map Moped Parking Only Motorcycle and Moped Parking All motorcycles and mopeds are required to have a valid UVa Parking Permit to park in designated motorcycle and/or moped parking spaces. Motorcycles and Mopeds may also park in BLUE parking areas, such as the commuter parking

Acton, Scott

240

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

October 22, 2009 October 22, 2009 CX-006666: Categorical Exclusion Determination Geothermal Technologies Program CX(s) Applied: Date: 01/00/1900 Location(s): Casper, Wyoming Office(s): RMOTC October 20, 2009 CX-006645: Categorical Exclusion Determination T-6-10 Abandonment and Storage Relocation CX(s) Applied: B1.3, B1.22, B5.3 Date: 10/20/2009 Location(s): Casper, Wyoming Office(s): RMOTC October 20, 2009 CX-006653: Categorical Exclusion Determination B-1-3 Heat Trace CX(s) Applied: B1.3 Date: 10/20/2009 Location(s): Casper, Wyoming Office(s): RMOTC October 14, 2009 CX-006647: Categorical Exclusion Determination Move Contaminated Soil From North Water Flood to East Side Land Farm CX(s) Applied: B5.3, B5.6 Date: 10/14/2009 Location(s): Casper, Wyoming Office(s): RMOTC October 14, 2009 CX-006649: Categorical Exclusion Determination

Note: This page contains sample records for the topic "national park wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Wyoming Water Resources Center Annual Technical Report  

E-Print Network [OSTI]

of America, Boulder, CO. #12;Problem and Research Objectives: Coal bed methane (CBM) development, 2001). CBM extraction involves pumping methane and ground water out of coal seams. The gas and water://wwweng.uwyo.edu/civil/research/water/epmodeler.html. University of Wyoming, Laramie. 4. Wilkerson, G. V., 2002. A GIS model for evaluating the impacts of coal bed

242

Categorical Exclusion Determinations: Wyoming | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

March 3, 2010 March 3, 2010 CX-006667: Categorical Exclusion Determination Restoration of 73-SX-10H CX(s) Applied: B6.1 Date: 03/07/2010 Location(s): Casper, Wyoming Office(s): RMOTC February 24, 2010 CX-006661: Categorical Exclusion Determination Repair Flowline at 83-AX-4 CX(s) Applied: B5.2, B5.4 Date: 02/24/2010 Location(s): Casper, Wyoming Office(s): RMOTC February 24, 2010 CX-006655: Categorical Exclusion Determination Coal Bed Methane Gas Separator CX(s) Applied: B3.7, B3.11 Date: 02/24/2010 Location(s): Casper, Wyoming Office(s): RMOTC February 24, 2010 CX-006651: Categorical Exclusion Determination Water Haul Permit Location CX(s) Applied: B1.3, B1.6 Date: 02/11/2010 Location(s): Casper, Wyoming Office(s): RMOTC February 13, 2010 CX-006734: Categorical Exclusion Determination

243

Spatial patch patterns and altered forest structure in middle elevation versus upper ecotonal mixed-conifer forests, Grand Canyon National Park, Arizona, USA  

Science Journals Connector (OSTI)

In the American Southwest, mixed-conifer forest experienced altered disturbance regimes with the exclusion of fire since the early 1900s. This research analyzes patch development and tree spatial patterns in the middle versus upper mixed-conifer forests at Grand Canyon National Park in Arizona (USA). The methods used include: (1) sizestructure analyses, to compare species patch development; (2) dendrochronological dating of tree establishment and fire history; (3) tree ring master chronology, to determine periods of suppressed growth, compared to a palmer drought severity index; (4) spatial analyses by size and age, with univariate and bivariate analyses of spatial association as well as spatial autocorrelation. Results show that unlike the lower ecotone of the mixed-conifer zone, both the middle elevation and upper ecotone were mixed-conifer forests before Euro-American settlement. At the upper ecotone, two decades (1870s and 1880s) had no successful conifer establishment but instead aspen cohorts, corresponding to the fire history of synchronized fires. Overall, the upper ecotone has shifted in composition in the absence of surface fires from mixed conifer to encroachment of subalpine species, particularly Engelmann spruce. Spatial patterns of tree sizes and tree ages imply development of a size hierarchy in an aging patch. In addition, shifts in species composition from ponderosa pine and white fir overstory to Engelmann spruce and Douglas-fir understory affected within-patch spatial patterns. These results provide quantitative evidence of past and present forest conditions for the development of restoration strategies for Southwestern mixed-conifer forests.

Joy Nystrom Mast; Joy J. Wolf

2006-01-01T23:59:59.000Z

244

Valuing the Invaluable: An Investigation of Outdoor Recreation Behavior, Perceived Values of Ecosystem Services, and Biophysical Conditions on Channel Islands National Park  

E-Print Network [OSTI]

Impacts on parks and protected areas are modifying ecosystems that provide benefits to sustain human health and well-being. Compelling evidence of ecological and economic values has been gathered to better understand the implications...

van Riper, Carena J

2014-05-06T23:59:59.000Z

245

Jobs and Economic Development from New Transmission and Generation in Wyoming  

Wind Powering America (EERE)

Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 Jobs and Economic Development from New Transmission and Generation in Wyoming Eric Lantz and Suzanne Tegen Technical Report NREL/TP-6A20-50577 March 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Jobs and Economic Development from New Transmission and Generation in Wyoming Eric Lantz and Suzanne Tegen Prepared under Task No. WTQ1.1000

246

Department of Parks, Recreation, and Tourism  

E-Print Network [OSTI]

Department of Parks, Recreation, and Tourism Therapeutic Recreation ............................................................................................................ 10 National Council for Therapeutic Recreation Certification (NCTRC) Statement ... 10 Form 3: PRT 5828 Therapeutic Recreation BiWeekly Report ............................... 16 Form 4

Tipple, Brett

247

MANHATTAN PROJECT NATIONAL HISTORICAL PARK  

Broader source: Energy.gov [DOE]

The Department, as the direct descendent of the Manhattan Engineer District, owns and manages the Federal properties at most of the major Manhattan Project sites, including Oak Ridge, Tennessee;...

248

Science parks: theory and background  

Science Journals Connector (OSTI)

The core concept driving the development of science parks has been the perception that, if an industrial area was in close geographical proximity to a research and development organisation, then it might benefit from that research environment. This was one of the basic concepts surrounding the establishment in the early 1950s of an industrial park close to Stanford University in Palo Alto, California. In this case, even the industrial or technology/science park area was owned by the university so that Stanford University benefited not only by the commercialisation of its research, but also through the rents collected from the tenants of the park. The Stanford University experience, which became the foundation for the Silicon Valley, was not rooted in any particular economic theory. Indeed, the originators of these and related concepts of economic development for the entire northern California region were engineers, not economists, urban planners or politicians. What they foresaw however, was the need to link basic and theoretical research to the real world the world of commerce, trade and business. This link was good for R&D and was equally good for the placement of students directly into industry. And in many cases, the students formed their own firms and hence become ''self-employed''. Today, science parks are seen as a solution to the complex problems of economic development, under-employment, job creation, corporate downsizing, and new business development. Thus, science parks receive considerable attention and financial support from local, regional and national governments. Science parks in themselves had no real economic or business theoretical basis. However, as the years saw them emerge from practical needs into more institutionalised practice, theoretical concepts were needed. This paper explores the theoretical areas and paradigms that explain science parks and their impact on local communities. The paper provides some guidance on the theoretical concepts that grew from the practical levels of scientific exploration, business creation and therefore economic development.

Woodrow W. Clark Jr.

2003-01-01T23:59:59.000Z

249

Alternative Fuels Data Center: Wyoming Laws and Incentives for Aftermarket  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Aftermarket Conversions to someone by E-mail Aftermarket Conversions to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Aftermarket Conversions on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Aftermarket Conversions on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Aftermarket Conversions on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Aftermarket Conversions on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Aftermarket Conversions on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Aftermarket Conversions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

250

Alternative Fuels Data Center: Wyoming Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Alternative Fuel Dealer to someone by E-mail Alternative Fuel Dealer to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Alternative Fuel Dealer on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Alternative Fuel Dealer on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Alternative Fuel Dealer on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Alternative Fuel Dealer on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Alternative Fuel Dealer on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Alternative Fuel Dealer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

251

EA-1581: Sand Hills Wind Project, Wyoming | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

81: Sand Hills Wind Project, Wyoming 81: Sand Hills Wind Project, Wyoming EA-1581: Sand Hills Wind Project, Wyoming Location of the proposed Sand Hills Wind Project, near Laramie, Wyoming Location of the proposed Sand Hills Wind Project, near Laramie, Wyoming Summary The Bureau of Land Management, with DOE's Western Area Power Administration as a cooperating agency, is preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action is implemented, Western would interconnect the proposed facility to an existing transmission line. Public Comment Opportunities No public comment opportunities available at this time. List of Available Documents

252

Wyoming's At-large congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Wyoming's At-large congressional district: Energy Resources Wyoming's At-large congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Wyoming. US Recovery Act Smart Grid Projects in Wyoming's At-large congressional district Cheyenne Light, Fuel and Power Company Smart Grid Project Powder River Energy Corporation Smart Grid Project Registered Energy Companies in Wyoming's At-large congressional district Blue Sky Batteries Inc Blue Sky Group Inc HTH Wind Energy Inc LappinTech LLC Nacel Energy Nanomaterials Discovery Corporation NDC Pathfinder Renewable Wind Energy PowerSHIFT Energy Company Inc TMA Global Wind Energy Systems TriLateral Energy LLC Utility Companies in Wyoming's At-large congressional district

253

LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in  

Broader source: Energy.gov (indexed) [DOE]

Conducts Groundwater and Soil Investigation at Riverton, Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood October 16, 2012 - 10:50am Addthis LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood LM Conducts Groundwater and Soil Investigation at Riverton, Wyoming, in Response to 2010 Flood What does this project do? Goal 1. Protect human health and the environment A team representing two Federal agencies-U.S. Department of Energy (DOE) Office of Legacy Management and U.S. Geological Survey-is evaluating

254

Alternative Fuels Data Center: Wyoming Laws and Incentives for Acquisition  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

255

Alternative Fuels Data Center: Wyoming Laws and Incentives for Fueling /  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fueling / TSE Infrastructure Owner to someone by E-mail Fueling / TSE Infrastructure Owner to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Fueling / TSE Infrastructure Owner on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Fueling / TSE Infrastructure Owner on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Fueling / TSE Infrastructure Owner on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Fueling / TSE Infrastructure Owner on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Fueling / TSE Infrastructure Owner on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Fueling / TSE Infrastructure Owner on

256

Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

257

Alternative Fuels Data Center: Wyoming Laws and Incentives for Vehicle  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Vehicle Owner/Driver to someone by E-mail Vehicle Owner/Driver to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Vehicle Owner/Driver on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Vehicle Owner/Driver on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Vehicle Owner/Driver on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Vehicle Owner/Driver on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Vehicle Owner/Driver on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Vehicle Owner/Driver on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

258

Cheyenne, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.1399814°, -104.8202462° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1399814,"lon":-104.8202462,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

259

Midwest, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Midwest, Wyoming: Energy Resources Midwest, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.4113604°, -106.2800242° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.4113604,"lon":-106.2800242,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

260

Hoback, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hoback, Wyoming: Energy Resources Hoback, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.2818713°, -110.7838117° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.2818713,"lon":-110.7838117,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "national park wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Sundance, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sundance, Wyoming: Energy Resources Sundance, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.4063746°, -104.3757816° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.4063746,"lon":-104.3757816,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

262

Meeteetse, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Meeteetse, Wyoming: Energy Resources Meeteetse, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.1571766°, -108.8715193° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.1571766,"lon":-108.8715193,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

263

Wyoming Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Volumes Delivered to Consumers

264

Wyoming Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Rhode Island Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Natural Gas in Storage 90,464 90,588 89,999 89,825 91,028 93,007 1990-2013

265

Frannie, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Frannie, Wyoming: Energy Resources Frannie, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 44.9691175°, -108.6215163° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.9691175,"lon":-108.6215163,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

266

Wyoming Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

267

Hartrandt, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hartrandt, Wyoming: Energy Resources Hartrandt, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8874654°, -106.3475273° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8874654,"lon":-106.3475273,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

268

Alcova, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alcova, Wyoming: Energy Resources Alcova, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.5521842°, -106.7164296° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5521842,"lon":-106.7164296,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

269

Casper, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Casper, Wyoming: Energy Resources Casper, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.866632°, -106.313081° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.866632,"lon":-106.313081,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

270

Wyoming Underground Natural Gas Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Connecticut Delaware Georgia Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska New Jersey New Mexico New York North Carolina Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina Tennessee Texas Utah Virginia Washington West Virginia Wisconsin Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes

271

Cheyenne, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cheyenne, Wyoming: Energy Resources Cheyenne, Wyoming: Energy Resources (Redirected from Cheyenne, WY) Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.1399814°, -104.8202462° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.1399814,"lon":-104.8202462,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

272

Wyoming Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Center Center Jump to: navigation, search Name Wyoming Wind Energy Center Facility Wyoming Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer Orion Energy Energy Purchaser PPM Energy Inc Location Evanston WY Coordinates 41.304414°, -110.793904° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.304414,"lon":-110.793904,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

273

Wyoming Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Storage Capacity 114,067 111,167 111,120 111,120 106,764 124,937 1988-2012

274

Wyoming Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Alaska Lower 48 States Alabama Arkansas California Colorado Illinois Indiana Iowa Kansas Kentucky Louisiana Maryland Michigan Minnesota Mississippi Missouri Montana Nebraska New Mexico New York Ohio Oklahoma Oregon Pennsylvania Tennessee Texas Utah Virginia Washington West Virginia Wyoming AGA Producing Region AGA Eastern Consuming Region AGA Western Consuming Region Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View

275

Evansville, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8599653°, -106.2683566° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8599653,"lon":-106.2683566,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

Brookhurst, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brookhurst, Wyoming: Energy Resources Brookhurst, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8574654°, -106.2364105° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8574654,"lon":-106.2364105,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

277

SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING  

E-Print Network [OSTI]

;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C·Existing Uranium Mine Permit 381C ·Historical Operation ·Western Nuclear Crooks Gap Project ·Mined 1956 ­ 1988 and Open Pit Mining ·Current Mine Permit (381C) ·Updating POO, Reclamation Plan & Bond ·Uranium Recovery

278

EA-1581: Sand Hills Wind Project, Wyoming  

Broader source: Energy.gov [DOE]

The Bureau of Land Management, with DOEs Western Area Power Administration as a cooperating agency, is preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action is implemented, Western would interconnect the proposed facility to an existing transmission line.

279

COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA  

E-Print Network [OSTI]

in the Powder River Basin in Wyoming and Montana (fig. PQ-1) is considered to be "clean coal." For the location

280

,"Wyoming Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

Note: This page contains sample records for the topic "national park wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Chapter 2 of the Wyoming Public Service Commission Regulations...  

Open Energy Info (EERE)

the Wyoming Public Service Commission Regulations: General Regulations Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation:...

282

Chapter 1 of the Wyoming Public Service Commission Regulations...  

Open Energy Info (EERE)

of the Wyoming Public Service Commission Regulations: Rules of Practice and Procedure Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

283

Chapter 9 of the Wyoming Public Service Commission Regulations...  

Open Energy Info (EERE)

Wyoming Public Service Commission Regulations: General Forms Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Chapter 9 of...

284

Wyoming Crude Oil + Lease Condensate Estimated Production from...  

U.S. Energy Information Administration (EIA) Indexed Site

Estimated Production from Reserves (Million Barrels) Wyoming Crude Oil + Lease Condensate Estimated Production from Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

285

Wyoming Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0...

286

,"Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2013 ,"Release...

287

Guide to Permitting Electric Transmission Lines in Wyoming |...  

Open Energy Info (EERE)

Permitting Electric Transmission Lines in Wyoming Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Guide to...

288

University Park Data Dashboard  

Broader source: Energy.gov [DOE]

The data dashboard for University Park, Maryland, a partner in the Better Buildings Neighborhood Program.

289

Environmental Survey preliminary report, Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming, Casper, Wyoming  

SciTech Connect (OSTI)

This report presents the preliminary environmental findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Naval Petroleum and Oil Shale Reserves in Colorado, Utah, and Wyoming (NPOSR-CUW) conducted June 6 through 17, 1988. NPOSR consists of the Naval Petroleum Reserve No. 3 (NPR-3) in Wyoming, the Naval Oil Shale Reserves No. 1 and 3 (NOSR-1 and NOSR-3) in Colorado and the Naval Oil Shale Reserve No. 2 (NOSR-2) in Utah. NOSR-2 was not included in the Survey because it had not been actively exploited at the time of the on-site Survey. The Survey is being conducted by an interdisciplinary team of environmental specialists, lead and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with NPOSR. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at NPOSR and interviews with site personnel. The Survey team has developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified at NOSR-3 during the on-site Survey. There were no findings associated with either NPR-3 or NOSR-1 that required Survey-related sampling and Analysis. The Sampling and Analysis Plan will be executed by Idaho National Engineering Laboratory. When completed, the results will be incorporated into the Environmental Survey Summary report. The Summary Report will reflect the final determinations of the NPOSR-CUW Survey and the other DOE site-specific Surveys. 110 refs., 38 figs., 24 tabs.

Not Available

1989-02-01T23:59:59.000Z

290

SUSTAINABLE AGROECOSYSTEMS ENTOMOLOGIST, UNIVERSITY OF MARYLAND, COLLEGE PARK The Department of Entomology at the University of Maryland, College Park, seeks a tenuretrack  

E-Print Network [OSTI]

SUSTAINABLE AGROECOSYSTEMS ENTOMOLOGIST, UNIVERSITY OF MARYLAND, COLLEGE PARK The Department will build a nationally prominent, externally funded research program committed to developing sustainable of Entomology at the University of Maryland, College Park, seeks a tenuretrack Assistant Professor

Gruner, Daniel S.

291

Wyoming Oil and Gas Conservation Commission | Open Energy Information  

Open Energy Info (EERE)

Wyoming Oil and Gas Conservation Commission Wyoming Oil and Gas Conservation Commission Jump to: navigation, search State Wyoming Name Wyoming Oil and Gas Conservation Commission Address 2211 King Blvd City, State Casper, Wyoming Zip 82602 Website http://wogcc.state.wy.us/ Coordinates 42.8433001°, -106.3511243° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8433001,"lon":-106.3511243,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

292

Local Option - Energy Improvement Loan Program (Wyoming) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Local Option - Energy Improvement Loan Program (Wyoming) Local Option - Energy Improvement Loan Program (Wyoming) Local Option - Energy Improvement Loan Program (Wyoming) < Back Savings Category Energy Sources Buying & Making Electricity Other Program Info Start Date 7/1/2011 State Wyoming Program Type PACE Financing '''''Note: The Federal Housing Financing Agency (FHFA) issued a [http://www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf statement] in July 2010 concerning the senior lien status associated with most PACE programs.''''' Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed is typically repaid via a special assessment on the property over a period of years. Wyoming has authorized local governments to establish such

293

Wyoming Carbon Capture and Storage Institute  

SciTech Connect (OSTI)

This report outlines the accomplishments of the Wyoming Carbon Capture and Storage (CCS) Technology Institute (WCTI), including creating a website and online course catalog, sponsoring technology transfer workshops, reaching out to interested parties via news briefs and engaging in marketing activities, i.e., advertising and participating in tradeshows. We conclude that the success of WCTI was hampered by the lack of a market. Because there were no supporting financial incentives to store carbon, the private sector had no reason to incur the extra expense of training their staff to implement carbon storage. ii

Nealon, Teresa

2014-06-30T23:59:59.000Z

294

Urban Parks: Responding to Changing Racial and Ethnic Composition  

E-Print Network [OSTI]

im- plications for park and recreation agencies. Hispanics and other ethnic minorities visit state and national parks and national forests at a rate far lower than Anglos. They also are far less likely than Anglos to participate in wildlife... information Allison, M.T. (2000). Leisure and Social Justice. Journal of Leisure Research, 32:2-6. Bureau of the Census. (2002). 2001 National Survey of Fishing, Hunting and Wildlife-Associated Recre- ation: National Overview. Washington, D.C.: U...

Scott, David

2006-11-27T23:59:59.000Z

295

Lighting Energy Efficiency in Parking Campaign  

Broader source: Energy.gov (indexed) [DOE]

Lighting Energy Efficiency in Parking Lighting Energy Efficiency in Parking (LEEP) Campaign Linda Sandahl Pacific Northwest National Laboratory linda.sandahl@pnnl.gov (503) 417-7554 April 2, 2013 LEEP Campaign 2 | Building Technologies Office eere.energy.gov Purpose & Objectives: Problem Statement While new lighting technologies such as LEDs have the potential for energy savings of 75%, or more when paired with controls, there are both technology and market-related challenges. Technology Challenges

296

Lighting Energy Efficiency in Parking Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lighting Energy Efficiency in Parking Lighting Energy Efficiency in Parking (LEEP) Campaign Linda Sandahl Pacific Northwest National Laboratory linda.sandahl@pnnl.gov (503) 417-7554 April 2, 2013 LEEP Campaign 2 | Building Technologies Office eere.energy.gov Purpose & Objectives: Problem Statement While new lighting technologies such as LEDs have the potential for energy savings of 75%, or more when paired with controls, there are both technology and market-related challenges. Technology Challenges

297

Gravity interpretation of the northern Overthrust Belt, Idaho and Wyoming  

E-Print Network [OSTI]

sequence thickness westward from about 15 miles (2a. l km) east of the Idaho-Wyoming State line, to a site of maximum deposition somewhere in the west (Armstrong and Oriel, 1965). In western Wyoming, Drdovic-ian rocks are represented by the Upper... 1n southeastern Idaho by the Laketown Dolomite. The lim1ted geoqraph1c extent of the Silurian is considered to be the result of subsequent erosion rather than non-deposition (Armstrong and Oriel, 1965). In western Wyoming, the Devonian age rocks...

Silver, Wendy Ilene

1979-01-01T23:59:59.000Z

298

Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

State Park Pool & Spa Low Temperature Geothermal Facility State Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs State Park Pool & Spa Low Temperature Geothermal Facility Facility Hot Springs State Park Sector Geothermal energy Type Pool and Spa Location Thermopolis, Wyoming Coordinates 43.6460672°, -108.2120432° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

299

Paynes Fountain of Youth RV Park Pool & Spa Low Temperature Geothermal  

Open Energy Info (EERE)

Fountain of Youth RV Park Pool & Spa Low Temperature Geothermal Fountain of Youth RV Park Pool & Spa Low Temperature Geothermal Facility Jump to: navigation, search Name Paynes Fountain of Youth RV Park Pool & Spa Low Temperature Geothermal Facility Facility Paynes Fountain of Youth RV Park Sector Geothermal energy Type Pool and Spa Location Thermopolis, Wyoming Coordinates 43.6460672°, -108.2120432° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

300

Women @ Energy: Hye-Sook Park | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hye-Sook Park Hye-Sook Park Women @ Energy: Hye-Sook Park March 12, 2013 - 1:17pm Addthis Dr. Hye-Sook Park has developed experimental techniques in plasma physics, materials science, nuclear physics, and astrophysics that have significantly enriched fundamental science, applied science, and national security science. Dr. Hye-Sook Park has developed experimental techniques in plasma physics, materials science, nuclear physics, and astrophysics that have significantly enriched fundamental science, applied science, and national security science. Check out other profiles in the Women @ Energy series and share your favorites on Pinterest. Dr. Hye-Sook Park has developed experimental techniques in plasma physics, materials science, nuclear physics, and astrophysics that have

Note: This page contains sample records for the topic "national park wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

GEOTHERMAL RESOURCES AT NPR-3, WYOMING  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RESOURCES AT NPR-3 Mark Milliken March 2006 The Naval Petroleum Reserves NPR-3 Teapot Dome NPR-3 LOCATION Salt Creek Anticline Trend NPR-3 WHY CONSIDER GEOTHERMAL ASSETS IN A STRIPPER OIL FIELD? RMOTC will partner with industry and academia to provide a test site for technologies that to reduce energy-related operational costs. * Energy efficiency * Energy conservation * Alternative energy sources KEY CHALLENGES * Acceptance by Industry * Creation of a Joint Industry Partnership (JIP) * Consensus on best technologies * Funding for infrastructure support * Funding of Projects Teapot Dome Wyoming Depositional Basin Settings NPR-3 STRATIGRAPHY 1000 2000 3000 4000 5000 6000 7000 DEPTH PRECAMBRIAN BASEMENT CAMBRIAN SS MISSISSIPPIAN MADSION LS PENNSYLVANIAN TENSLEEP PERMIAN GOOSE EGG TRIASSIC CHUGWATER

302

Overview of Energy Development Opportunities for Wyoming  

SciTech Connect (OSTI)

An important opportunity exists for the energy future of Wyoming that will Maintain its coal industry Add substantive value to its indigenous coal and natural gas resources Improve dramatically the environmental impact of its energy production capability Increase its Gross Domestic Product These can be achieved through development of a carbon conversion industry that transforms coal and natural gas to synthetic transportation fuels, chemical feedstocks, and chemicals that are the building blocks for the chemical industry. Over the longer term, environmentally clean nuclear energy can provide the substantial energy needs of a carbon conversion industry and be part of the mix of replacement technologies for the current fleet of aging coal-fired electric power generating stations.

Larry Demick

2012-11-01T23:59:59.000Z

303

Wyoming's Economic Future: Planning for Sustained Prosperity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Zunsheng Jiao Zunsheng Jiao Senior Geologist WSGS Future Work * Refine the geological framework required for 3-D rock fluid modeling of the Rock Springs Uplift (RSU). * Construct a 3-D numerical model of CO 2 injection into the RSU. * Build a Performance Assessment (PA) model that includes uncertainty and that can be utilized to construct a Probabilistic Risk Analysis (PRA) for CO 2 sequestration at the RSU. A SYSTEM MODEL FOR GEOLOGIC SEQUESTRATION OF CARBON DIOXIDE CO2_PENS, Los Alamos/Goldsim Rock Springs Uplift: an outstanding geological CO 2 sequestration site in southwestern Wyoming * Thick saline aquifer sequence overlain by thick sealing lithologies. * Doubly-plunging anticline characterized by more than 10,000 ft of closed structural relief. * Huge area (50 x 35 mile).

304

Town of Lusk, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Lusk, Wyoming (Utility Company) Lusk, Wyoming (Utility Company) Jump to: navigation, search Name Town of Lusk Place Wyoming Utility Id 11330 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial- Single-Phase Commercial Commercial- Three-Phase Commercial Residential Residential Average Rates Residential: $0.0838/kWh Commercial: $0.0481/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Town_of_Lusk,_Wyoming_(Utility_Company)&oldid=411770

305

City of Pine Bluffs, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Bluffs, Wyoming (Utility Company) Bluffs, Wyoming (Utility Company) Jump to: navigation, search Name City of Pine Bluffs Place Wyoming Utility Id 15051 Utility Location Yes Ownership M NERC Location WECC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png All Electrical Household Residential General Electrical Commercial Average Rates Residential: $0.1250/kWh Commercial: $0.1050/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Pine_Bluffs,_Wyoming_(Utility_Company)&oldid=410

306

NorthWestern Energy LLC (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming) Wyoming) Jump to: navigation, search Name NorthWestern Energy LLC Place Wyoming Utility Id 12825 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for NorthWestern Energy LLC (Wyoming). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-01 19.46 199.099 171 106.025 923.771 168 125.485 1,122.87 339

307

City of Cody, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Cody, Wyoming (Utility Company) Cody, Wyoming (Utility Company) Jump to: navigation, search Name City of Cody Place Wyoming Utility Id 3881 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes ISO Other Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Commercial Demand Commercial Optional Commercial Commercial Residential Residential Average Rates Residential: $0.1040/kWh Commercial: $0.0748/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Cody,_Wyoming_(Utility_Company)&oldid=409457

308

Wyoming Natural Gas Processed in Colorado (Million Cubic Feet...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Colorado (Million Cubic Feet) Wyoming Natural Gas Processed in Colorado (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's...

309

Microsoft Word - Nuclear_hybrid_systems_for_Wyoming_-__final...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of primary energy resources in the forms of coal, natural gas, wind, uranium, and oil shale. Most of Wyoming's coal and gas resources are exported from the state in unprocessed...

310

Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

(Million Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

311

Wyoming Dry Natural Gas Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

312

Wyoming Dry Natural Gas Reserves Sales (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,780...

313

Wyoming Natural Gas Liquids Proved Reserves (Million Barrels...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Proved Reserves (Million Barrels) Wyoming Natural Gas Liquids Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's...

314

Wyoming Dry Natural Gas Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

315

Wyoming Dry Natural Gas Reserves Acquisitions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquisitions (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

316

Wyoming Dry Natural Gas Reserves Extensions (Billion Cubic Feet...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's...

317

Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Adjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

318

Wyoming Dry Natural Gas Reserves New Field Discoveries (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

New Field Discoveries (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

319

Wyoming Coalbed Methane Proved Reserves Revision Decreases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Decreases (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

320

Wyoming Coalbed Methane Proved Reserves Extensions (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Extensions (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

Note: This page contains sample records for the topic "national park wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

(Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,540 2,297...

322

Wyoming Coalbed Methane Proved Reserves Revision Increases (Billion...  

U.S. Energy Information Administration (EIA) Indexed Site

Increases (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

323

Wyoming Coalbed Methane Proved Reserves Sales (Billion Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Sales (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's...

324

Wyoming Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

Gasoline and Diesel Fuel Update (EIA)

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

325

Black Hills Power Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming) Wyoming) Jump to: navigation, search Name Black Hills Power Inc Place Wyoming Utility Id 19545 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0867/kWh Commercial: $0.0948/kWh Industrial: $0.0627/kWh The following table contains monthly sales and revenue data for Black Hills Power Inc (Wyoming). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

326

Low-Level Airflow in Southern Wyoming during Wintertime  

Science Journals Connector (OSTI)

A number of low-level flights were conducted with an instrumented aircraft to investigate wind characteristics in the planetary boundary layer over the low regions of the continental divide in southern Wyoming. The airflow upwind of the ...

John D. Marwitz; Paul J. Dawson

1984-06-01T23:59:59.000Z

327

Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming  

SciTech Connect (OSTI)

In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOEs Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

Eckerle, William; Hall, Stephen

2005-12-30T23:59:59.000Z

328

East Tennessee Technology Park | Department of Energy  

Office of Environmental Management (EM)

East Tennessee Technology Park East Tennessee Technology Park East Tennessee Technology Park | September 2012 Aerial View East Tennessee Technology Park | September 2012 Aerial...

329

Sandia Science & Technology Park  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search this site Sandia Science & Technology Park An internationally recognized technology community Home Properties Center for Collaboration & Commercialization (C3) Available...

330

Environmental Research Park  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area Attractions and Events Area Geography Area History Area Links Driving Directions Idaho Falls Attractions and Events INL History INL Today Research Park Sagebrush Steppe...

331

Alternative Fuels Data Center: Wyoming Laws and Incentives for Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Natural Gas to someone by E-mail Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Natural Gas on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Natural Gas on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Natural Gas on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Natural Gas The list below contains summaries of all Wyoming laws and incentives

332

Sodium-Copper Exchange on Wyoming Montmorillonite in Chloride, Perchlorate, Nitrate, and Sulfate Solutions  

E-Print Network [OSTI]

Sodium-Copper Exchange on Wyoming Montmorillonite in Chloride, Perchlorate, Nitrate, and Sulfate. The copper exchange capacity (CuEC) and Na-Cu exchange reactions on Wyoming montmo- rillonite were studied

Sparks, Donald L.

333

Wyoming Natural Gas Processed (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Processed (Million Cubic Feet) Processed (Million Cubic Feet) Wyoming Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 261,478 259,227 269,921 1970's 276,926 292,434 298,439 303,519 263,684 215,104 251,846 262,801 255,760 1980's 366,530 393,027 432,313 579,479 624,619 506,241 512,579 560,603 591,472 1990's 635,922 681,266 728,113 750,853 821,689 895,129 845,253 863,052 870,518 902,889 2000's 993,702 988,595 1,083,860 1,101,425 1,249,309 1,278,087 1,288,124 1,399,570 1,278,439 1,507,142 2010's 1,642,190 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014

334

Forrestal Garage Parking Procedures, Revised August 12, 2010  

Broader source: Energy.gov (indexed) [DOE]

Updated August 12, 2010 Updated August 12, 2010 FORRESTAL FACILITY PARKING PROCEDURES The Forrestal Facility Parking Guide was created to define policies and procedures governing the assignment, use, and management of parking spaces controlled by the Department of Energy (DOE) in the Forrestal Facility. This guide applies to DOE Federal employees, including National Nuclear Security Administration (NNSA) Federal employees, parking at DOE Headquarters in the Forrestal Building. Requirements General. It is the policy of DOE that its parking facility be operated in a manner responsive to the needs of the Department, and for the maximum benefit of its employees. The following rules apply: a) The Office of Administration must centrally manage all Forrestal parking facilities

335

The Technical and Economic Feasibility of Siting Synfuels Plants in Wyoming  

SciTech Connect (OSTI)

A comprehensive study has been completed to determine the feasibility of constructing and operating gasification and reforming plants which convert Wyoming fossil resources (coal and natural gas) into the higher value products of power, transportation fuels, and chemical feedstocks, such as ammonia and methanol. Detailed plant designs, simulation models, economic models and well-to-wheel greenhouse gas models were developed, validated by national-level engineering firms, which were used to address the following issues that heretofore have prevented these types of projects from going forward in Wyoming, as much as elsewhere in the United States: 1. Quantification of plant capital and operating expenditures 2. Optimization of plant heat integration 3. Quantification of coal, natural gas, electricity, and water requirements 4. Access to raw materials and markets 5. Requirements for new infrastructure, such as electrical power lines and product pipelines 6. The possible cost-benefit tradeoffs of using natural gas reforming versus coal gasification 7. The extent of labor resources required for plant construction and for permanent operations 8. Options for managing associated CO2 emissions, including capture and uses in enhanced oil recovery and sequestration 9. Options for reducing water requirements such as recovery of the high moisture content in Wyoming coal and use of air coolers rather than cooling towers 10. Permitting requirements 11. Construction, and economic impacts on the local communities This paper will summarize the analysis completed for two major synfuels production pathways, methanol to gasoline and Fischer-Trosph diesel production, using either coal or natural gas as a feedstock.

Anastasia M Gandrik; Rick A Wood; David Bell; William Schaffers; Thomas Foulke; Richard D Boardman

2011-09-01T23:59:59.000Z

336

Hacking Millennium Park  

Science Journals Connector (OSTI)

It was to be one of the best-kept secrets of the late 20th century. Code name: Millennium Park. A networked virtual theme park due to open in 2001. If a defector, Searchbot Ver Mela Parka, hadnt prematurely disc...

1998-01-01T23:59:59.000Z

337

PARKING MAP Sales Office  

E-Print Network [OSTI]

PARKING MAP BayDr. Main Entrance Parking Sales Office Main Entrance Kiosk East Remote Lot, B, C111, MC, N, NC, , Medical M 2hr 112 Core West Structure A, B, EV, MC, N, NC, , Medical P 2hr 113

Wilmers, Chris

338

DOE-Sponsored Project Shows Huge Potential for Carbon Storage in Wyoming  

Broader source: Energy.gov [DOE]

The Wyoming Rock Springs Uplift could potentially store 14 to 17 billion metric tons of carbon dioxide, according to results from a Department of Energy-sponsored study. This is equal to 250 to 300 years worth of CO2 emissions produced by the Wyomings coal-fired power plants and other large regional anthropogenic CO2 sources at current emission levels.

339

PARKS, RECREATION & TOURISM Concentration in  

E-Print Network [OSTI]

PARKS, RECREATION & TOURISM Concentration in Conservation Law Enforcement School Experience in Parks, Recreation, and Tourism 1 Semester 5 Semester 6 SFR 434/534 - Recreation Site Planning

Thomas, Andrew

340

Dead Mans Run parking for  

E-Print Network [OSTI]

@unlnotes.unl.edu or telephone: at (402) 472-1800. Current as of August 27, 2012 Motorcycle Parking Motorcycle Parking 32 5 6 5 5

Farritor, Shane

Note: This page contains sample records for the topic "national park wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Town of Basin, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Wyoming (Utility Company) Wyoming (Utility Company) Jump to: navigation, search Name Town of Basin Place Wyoming Utility Id 1779 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial General Demand Service Industrial General Service Commercial Industrial Demand Service Industrial Noncommercial Service Commercial Nongeneral Demand Service Industrial Nongeneral Service Commercial Nonindustrial Demand Service Industrial Nonresidential Service Residential Residential Residential Security Lighting Service Lighting

342

City of Gillette, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Gillette, Wyoming (Utility Company) Gillette, Wyoming (Utility Company) Jump to: navigation, search Name Gillette City of Place Wyoming Utility Id 7222 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial & Misc Service Commercial Demand Meter Industrial Residential Residential Residential All Electric Residential Average Rates Residential: $0.0894/kWh Commercial: $0.0692/kWh

343

Wyoming - Seds - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Wyoming - Seds - U.S. Energy Information Administration (EIA) Wyoming - Seds - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The page does not exist for . To view this page, please select a state: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida

344

Town of Lingle, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Lingle, Wyoming (Utility Company) Lingle, Wyoming (Utility Company) Jump to: navigation, search Name Town of Lingle Place Wyoming Utility Id 11099 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Athletic Field Commercial Commercial Single Phase Commercial Commercial Single Phase B Commercial Commercial Three Phase Commercial Residential B Residential Residential Single Phase Residential Average Rates Residential: $0.1200/kWh Commercial: $0.1060/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

345

Solar and Wind Powering Wyoming Home | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar and Wind Powering Wyoming Home Solar and Wind Powering Wyoming Home Solar and Wind Powering Wyoming Home March 17, 2010 - 4:41pm Addthis Solar panels at Terry Sandstrom's home in Wheatland, Wyo. | Photo courtesy of Terry Sandstrom Solar panels at Terry Sandstrom's home in Wheatland, Wyo. | Photo courtesy of Terry Sandstrom Stephen Graff Former Writer & editor for Energy Empowers, EERE Terry Sandstrom never thought he would run his house entirely on renewable energy, but when faced with a $100,000 price tag to get connected to the grid, he had to look at alternative options. The man who spent his entire life in houses pulling energy from the grid now has 12 solar panels on his front lawn and a wind turbine in the backyard."I had no involvement in the renewable energy process until I got up here," says Terry, who moved from

346

Town of Guernsey, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Guernsey, Wyoming (Utility Company) Guernsey, Wyoming (Utility Company) Jump to: navigation, search Name Town of Guernsey Place Wyoming Utility Id 7759 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial - Billing Demand Equal to or Greater Than 25KW Commercial Commercial - Billing Demand Less Than 25KW Commercial Residential Residential Average Rates Residential: $0.0890/kWh Commercial: $0.1280/kWh Industrial: $0.0979/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

347

Solar and Wind Powering Wyoming Home | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar and Wind Powering Wyoming Home Solar and Wind Powering Wyoming Home Solar and Wind Powering Wyoming Home March 17, 2010 - 4:41pm Addthis Solar panels at Terry Sandstrom's home in Wheatland, Wyo. | Photo courtesy of Terry Sandstrom Solar panels at Terry Sandstrom's home in Wheatland, Wyo. | Photo courtesy of Terry Sandstrom Stephen Graff Former Writer & editor for Energy Empowers, EERE Terry Sandstrom never thought he would run his house entirely on renewable energy, but when faced with a $100,000 price tag to get connected to the grid, he had to look at alternative options. The man who spent his entire life in houses pulling energy from the grid now has 12 solar panels on his front lawn and a wind turbine in the backyard."I had no involvement in the renewable energy process until I got up here," says Terry, who moved from

348

Montana-Dakota Utilities Co (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming Wyoming Utility Id 12199 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0890/kWh Commercial: $0.0630/kWh Industrial: $0.0711/kWh The following table contains monthly sales and revenue data for Montana-Dakota Utilities Co (Wyoming). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 1,001 12,569 12,440 728 11,267 2,349 17 257 19 1,746 24,093 14,808

349

High West Energy, Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming) Wyoming) Jump to: navigation, search Name High West Energy, Inc Place Wyoming Utility Id 27058 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1]Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png A F Industrial Commercial & Small Power Commercial Farm and Home Residential Irrigation Industrial Large Power Industrial Security Lighting-150 - 175 watt M V/ HPS Lighting Security Lighting-200 - 250 watt M V/ HPS Lighting Security Lighting-400 watt M V/ HPS Lighting Street Lighting-200 - 250 watt M V/ HPS Lighting

350

City of Torrington, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Torrington, Wyoming (Utility Company) Torrington, Wyoming (Utility Company) Jump to: navigation, search Name City of Torrington Place Wyoming Utility Id 19032 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial General Service Demand Commercial General Service Heat Commercial Irrigation and Non-Potable Pumps Commercial Large Power Industrial Resident Electric Heat Rate (ALL Electric) Residential Residential Residential Street Lights Lighting Average Rates Residential: $0.0857/kWh Commercial: $0.1030/kWh

351

Town of Wheatland, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Wyoming (Utility Company) Wyoming (Utility Company) Jump to: navigation, search Name Town of Wheatland Place Wyoming Utility Id 20512 Utility Location Yes Ownership M NERC Location WECC Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 175W Mercury Vapor Lighting 400W Mercury Vapor Lighting 700W Mercury Vapor Lighting Electric Home Heating Residential Energy Development Commercial General Service Time-of-Day- Single-Phase Commercial General Service Time-of-Day- Three-Phase Commercial General Service- Single-Phase Commercial General Service- Three-Phase Commercial

352

A case study of the implementation of a parking fee at R. A. Apffel Park in Galveston, Texas  

E-Print Network [OSTI]

and Atmospheric Administration 1978). Through this effort, Cape Hatteras National Seashore was established. In 1955 the National Park Service (NPS ) issued a report entitled, A Re ort on a Seashore Recreation Area Surve ~ This report inventoried the amount...A CASF. STUDY OF THE IMFLEMENTAT ION OF A PARKING FEE AT R. A. APFFEL FARY. IN GALVESTON, TEXAS A Thesis by SHERYL DRUGGAN ALBERS Su'bmitted to the Graduate College of Texas A&M University in partial fulfillment of the reouirement...

Albers, Sheryl Druggan

1982-01-01T23:59:59.000Z

353

SBOT WYOMING ROCKY MOUNTAIN OILFIELD CENTER POC Jenny Krom Telephone  

Broader source: Energy.gov (indexed) [DOE]

WYOMING WYOMING ROCKY MOUNTAIN OILFIELD CENTER POC Jenny Krom Telephone (307) 233-4818 Email jenny.krom@rmotc.doe.gov ADMINISTATIVE / WASTE / REMEDIATION Office Administrative Services 561110 Facilities Support Services 561210 Security Guards and Patrol Services 561612 Security Systems Services (except Locksmiths) 561621 Locksmiths 561622 Exterminating and Pest Control Services 561710 Janitorial Services 561720 Solid Waste Collection 562111 Hazardous Waste Collection 562112 Other Waste Collection 562119 Hazardous Waste Treatment and Disposal 562211 Solid Waste Landfill 562212 Solid Waste Combustors and Incinerators 562213 Other Nonhazardous Waste Treatment and Disposal 562219 Remediation Services 562910 Materials Recovery Facilities 562920 All Other Miscellaneous Waste Management Services 562998

354

Counting Defective Parking Functions  

E-Print Network [OSTI]

Suppose that $n$ drivers each choose a preferred parking space in a linear car park with $m$ spaces. Each driver goes to the chosen space and parks there if it is free, and otherwise takes the first available space with larger number (if any). If all drivers park successfully, the sequence of choices is called a parking function. In general, if $k$ drivers fail to park, we have a \\emph{defective parking function} of \\emph{defect} $k$. Let $\\cp(n,m,k)$ be the number of such functions. In this paper, we establish a recurrence relation for the numbers $\\cp(n,m,k)$, and express this as an equation for a three-variable generating function. We solve this equation using the kernel method, and extract the coefficients explicitly: it turns out that the cumulative totals are partial sums in Abel's binomial identity. Finally, we compute the asymptotics of $\\cp(n,m,k)$. In particular, for the case $m=n$, if choices are made independently at random, the limiting distribution of the defect (the number of drivers who fail t...

Cameron, Peter J; Prellberg, Thomas; Schweitzer, Pascal

2008-01-01T23:59:59.000Z

355

Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.  

SciTech Connect (OSTI)

In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar sands resource development.

O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

2007-11-01T23:59:59.000Z

356

Alternative Fuels Data Center: Wyoming Laws and Incentives for Loans and  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Loans and Leases to someone by E-mail Loans and Leases to someone by E-mail Share Alternative Fuels Data Center: Wyoming Laws and Incentives for Loans and Leases on Facebook Tweet about Alternative Fuels Data Center: Wyoming Laws and Incentives for Loans and Leases on Twitter Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Loans and Leases on Google Bookmark Alternative Fuels Data Center: Wyoming Laws and Incentives for Loans and Leases on Delicious Rank Alternative Fuels Data Center: Wyoming Laws and Incentives for Loans and Leases on Digg Find More places to share Alternative Fuels Data Center: Wyoming Laws and Incentives for Loans and Leases on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Wyoming Laws and Incentives for Loans and Leases

357

NREL: Sustainable NREL - Parking Garage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Parking Garage Parking Garage A photo of a grey, five-story, above-ground parking garage. Solar panels are seen installed on the roof of the structure. NREL's multi-story parking garage. NREL's parking garage proves that large garages can be designed and built sustainably-at no additional cost. And although parking garages don't qualify for the U.S. Green Building Council's Leadership in Energy and Environmental Design (LEED®) certification, NREL designed the parking garage to LEED Platinum standards to maximize energy savings and environmental stewardship. The structure is expected to perform 90% better than a standard garage built just to code. Fast Facts Cost: $14,172 per parking space Cost is typically $15,500 to $24,500 per parking space Square Feet: 578,320 Parking Spaces: 1,800

358

California-Wyoming Grid Integration Study: Phase 1?Economic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Replaced by Wyoming Wind Power (Share of 12,000 GWhyear) Technology CA33% CA35% Biogas 0.4% 0.2% Biomass 0.1% 1.1% Geothermal 29.8% 28.6% Large-Scale Solar PV 43.5% 43.1%...

359

COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING  

E-Print Network [OSTI]

Chapter GQ COAL QUALITY AND GEOCHEMISTRY, GREATER GREEN RIVER BASIN, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

360

COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING  

E-Print Network [OSTI]

Chapter HQ COAL QUALITY AND GEOCHEMISTRY, HANNA AND CARBON BASINS, WYOMING By G.D. Stricker and M coal beds and zones in the Northern RockyMountains and Great Plains region, U.S. Geological Survey of selected Tertiary coal beds and zones in the Northern Rocky Mountains and Great Plains region, U

Note: This page contains sample records for the topic "national park wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Independent Oversight Inspection, East Tennessee Technology Park - November  

Broader source: Energy.gov (indexed) [DOE]

East Tennessee Technology Park - East Tennessee Technology Park - November 2008 Independent Oversight Inspection, East Tennessee Technology Park - November 2008 November 2008 Inspection of Environment, Safety, and Health Programs at the East Tennessee Technology Park The U.S. Department of Energy (DOE) Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), inspected environment, safety, and health (ES&H) programs at the DOE East Tennessee Technology Park (ETTP) during August through September 2008. HSS reports directly to the Office of the Secretary of Energy, and the ES&H inspection was performed by Independent Oversight's Office of Environment, Safety and Health Evaluations. The inspection was performed concurrently with an inspection of emergency management at the Oak Ridge National Laboratory,

362

Fruit and Spice Park Park n r a n  

E-Print Network [OSTI]

1 Fruit and Spice Park Park n r a n 24801 S.W. 187th Avenue Homestead, Florida 33031 Main: 305 with disa ili es. Tr pical Fruit & Vegetable S ciety the Redland The Tropical Fruit & Vegeta le Societ of the Redland is a non-pro t group formed to promote exo c fruits and the Miami- ade Count Fruit & Spice Park

Koptur, Suzanne

363

Transforming Parks and Protected Areas  

E-Print Network [OSTI]

Transforming Parks and Protected Areas Policy and governance in a changing world Edited by Kevin S from the British Library Library of Congress Cataloging In Publication Data Transforming parks

Bolch, Tobias

364

Economic Development from New Generation and Transmission in Wyoming and Colorado (Fact Sheet)  

SciTech Connect (OSTI)

This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

Not Available

2013-03-01T23:59:59.000Z

365

Economic Development from New Generation and Transmission in Wyoming and Colorado  

SciTech Connect (OSTI)

This report analyzes the potential economic impacts in Colorado and Wyoming of a 225 MW natural gas fired electricity generation facility and a 900 MW wind farm constructed in Wyoming as well as a 180 mile, 345 kV transmission line that runs from Wyoming to Colorado. This report and analysis is not a forecast, but rather an estimate of economic activity associated with a hypothetical scenario.

Keyser, D.; Lantz, E.

2013-03-01T23:59:59.000Z

366

Weston County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Weston County, Wyoming: Energy Resources Weston County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9270224°, -104.4723301° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9270224,"lon":-104.4723301,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

NorthWestern Corporation (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name NorthWestern Corporation Place Wyoming Utility Id 12825 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0975/kWh Commercial: $0.1380/kWh The following table contains monthly sales and revenue data for NorthWestern Corporation (Wyoming). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 14.42 146.703 173 99.874 849.906 170 114.294 996.609 343

368

Antelope Hills, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0816341°, -106.3241933° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0816341,"lon":-106.3241933,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

369

Rafter J Ranch, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rafter J Ranch, Wyoming: Energy Resources Rafter J Ranch, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.426248°, -110.79844° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.426248,"lon":-110.79844,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

Hot Springs County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County, Wyoming: Energy Resources County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.658734°, -108.326784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.658734,"lon":-108.326784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

371

Homa Hills, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Homa Hills, Wyoming: Energy Resources Homa Hills, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.9799661°, -106.3608619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.9799661,"lon":-106.3608619,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

372

Uinta County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Uinta County, Wyoming: Energy Resources Uinta County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.2107397°, -110.6168921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2107397,"lon":-110.6168921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

373

City of Powell, Wyoming (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

City of Powell City of Powell Place Wyoming Utility Id 15294 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Rate Commercial Large Power Demand Service Industrial Residential Rate Residential Security Lighting (150W HPS) Lighting Average Rates Residential: $0.0986/kWh Commercial: $0.0956/kWh Industrial: $0.0692/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Powell,_Wyoming_(Utility_Company)&oldid=410131

374

Vista West, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8599962°, -106.4346979° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8599962,"lon":-106.4346979,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

375

Red Butte, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Butte, Wyoming: Energy Resources Butte, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8060757°, -106.4341976° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8060757,"lon":-106.4341976,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

376

Sublette County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sublette County, Wyoming: Energy Resources Sublette County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8138723°, -109.7591675° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8138723,"lon":-109.7591675,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

377

Powder River, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0321863°, -106.9872785° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0321863,"lon":-106.9872785,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

378

Laramie County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Laramie County, Wyoming: Energy Resources Laramie County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4269559°, -104.8454619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4269559,"lon":-104.8454619,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

379

Converse County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Converse County, Wyoming: Energy Resources Converse County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.0489425°, -105.4068079° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0489425,"lon":-105.4068079,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

Distributed Generation Study/Wyoming County Community Hospital | Open  

Open Energy Info (EERE)

Wyoming County Community Hospital Wyoming County Community Hospital < Distributed Generation Study Jump to: navigation, search Study Location Warsaw, New York Site Description Institutional-Hospital/Health Care Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Waukesha VGF L36GSID Heat Recovery Systems Built-in Fuel Natural Gas System Installer Gerster Trane System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability Seamless Power Rating 560 kW0.56 MW 560,000 W 560,000,000 mW 5.6e-4 GW 5.6e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1000000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2001/09/26

Note: This page contains sample records for the topic "national park wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Airport Road, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Road, Wyoming: Energy Resources Road, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.9932901°, -107.9492606° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9932901,"lon":-107.9492606,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

382

Bar Nunn, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.9135767°, -106.3433606° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.9135767,"lon":-106.3433606,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

383

Sweetwater County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County, Wyoming: Energy Resources County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.8519395°, -109.1880047° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8519395,"lon":-109.1880047,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

Washakie County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Washakie County, Wyoming: Energy Resources Washakie County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.8347829°, -107.7037626° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.8347829,"lon":-107.7037626,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

Natrona County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Natrona County, Wyoming: Energy Resources Natrona County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.8313837°, -106.912251° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8313837,"lon":-106.912251,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

386

Teton Village, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.587984°, -110.827989° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.587984,"lon":-110.827989,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

387

Goshen County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Goshen County, Wyoming: Energy Resources Goshen County, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.0334428°, -104.3791912° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.0334428,"lon":-104.3791912,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

388

Moose Wilson Road, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Road, Wyoming: Energy Resources Road, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 43.5252053°, -110.844655° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.5252053,"lon":-110.844655,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

389

Lower Valley Energy Inc (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Place Wyoming Place Wyoming Utility Id 11273 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes ISO Other Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1]Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png C-1 Small Commercial Commercial C-2 Large Power Service Commercial I-1 Small Irrigation Service Commercial I-2 Large Irrigation Service Commercial

390

Casper Mountain, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mountain, Wyoming: Energy Resources Mountain, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7330199°, -106.3266921° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7330199,"lon":-106.3266921,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

391

Albany County, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wyoming: Energy Resources Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.638448°, -105.5943388° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.638448,"lon":-105.5943388,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

392

Bessemer Bend, Wyoming: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bessemer Bend, Wyoming: Energy Resources Bessemer Bend, Wyoming: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.7580196°, -106.5203123° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.7580196,"lon":-106.5203123,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

393

SciTech Connect: Conversion of Low-Rank Wyoming Coals into Gasoline...  

Office of Scientific and Technical Information (OSTI)

Under the cooperative agreement program of DOE and funding from Wyoming State's Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct...

394

Stag Hill Campus Manor Park,  

E-Print Network [OSTI]

­44) UNIVERSITY COURT (45­66) SCS HC Yorkie's Bridge Rising Barrier Path to Ridgemount MILLENNIUMHOUSE SE AQA Car Park AQA Car Park PM Barrier Entrance Exit IAC LLC SenateCarPark Guildford Railway Station Pedestrians R Chancellors SU Mole 23 W Bourne 22 Black Water 21 Wey 27 Thames 24 Wandle 26Tilling Bourne 25

Doran, Simon J.

395

National Parks: and the Heritage of Scenery  

Science Journals Connector (OSTI)

... the Heritage of Scenery. By Dr.VaughanCornish. Pp. xi + 139. (London: Sifton Praed and Co., Ltd., 1930.) 5s. net.J.R.J. ...

J. R.

1930-09-13T23:59:59.000Z

396

Sandia National Laboratories: Sandia Science & Technology Park...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Exhibition (EU PVSC) EC Top Publications Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter Experimental Wave Tank Test for Reference Model 3 Floating- Point...

397

Power Parks System Simulation Sandia National Laboratories  

E-Print Network [OSTI]

. Electricity from the renewable source can be used to generate hydrogen by electrolysis and stored for use to efficiency and cost. 1 Proceedings of the 2002 U.S. DOE Hydrogen Program Review NREL/CP-610-32405 #12 at a steady rate to produce hydrogen, feeding a fuel cell stack to supply electricity to a transient load

398

Bacillus anthracis Diversity in Kruger National Park  

Science Journals Connector (OSTI)

...S. Department of Energy (NN20-CBNP...Klevytska L. B. Price J. M. Schupp G...P. Keim L. B. Price A. M. Klevytska...Klevytska L. B. Price P. Keim D. T...has a recorded history of periodic anthrax...Arizona 86011-5640, USA. Kimothy.Smith...

K. L. Smith; V. DeVos; H. Bryden; L. B. Price; M. E. Hugh-Jones; P. Keim

2000-10-01T23:59:59.000Z

399

Sustainable Transportation and National Parks Initiative Featured...  

Office of Environmental Management (EM)

and performance while reducing costs. Research and development is helping create biofuels indistinguishable from conventional petroleum-based fuels. Research, development, and...

400

EA-1212: Lease of Land for the Development of a Research Park at Los Alamos  

Broader source: Energy.gov (indexed) [DOE]

1212: Lease of Land for the Development of a Research Park at 1212: Lease of Land for the Development of a Research Park at Los Alamos National Laboratory, Los Alamos, New Mexico EA-1212: Lease of Land for the Development of a Research Park at Los Alamos National Laboratory, Los Alamos, New Mexico SUMMARY This EA evaluates the environmental impacts for the proposal to lease undeveloped land that is part of the U.S. Department of Energy's Los Alamos National Laboratory in Los Alamos, New Mexico, to the County for private sector use as a research park. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD October 15, 1997 EA-1212: Mitigation Action Plan Lease of Land for the Development of a Research Park at Los Alamos National Laboratory, Los Alamos, NM October 8, 1997 EA-1212: Finding of No Significant Impact

Note: This page contains sample records for the topic "national park wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

MYUNGHWAN PARK 6200 Westchester Park Drive, APT 1510, College Park, Maryland 20740  

E-Print Network [OSTI]

MYUNGHWAN PARK 6200 Westchester Park Drive, APT 1510, College Park, Maryland 20740 MOBILE : (+1, and RF PA). · Designed Class D and E RF power amplifier with variable load-pull analysis. Smart Imaging for the high frequency devices (HEMT) Yonsei University, Electronic Device and Materials Laboratory Dec 2005

Lathrop, Daniel P.

402

Paleontological overview of oil shale and tar sands areas in Colorado, Utah, and Wyoming.  

SciTech Connect (OSTI)

In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the ''Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005,'' Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. In addition, Congress declared that both research- and commercial-scale development of oil shale and tar sands should (1) be conducted in an environmentally sound manner using management practices that will minimize potential impacts, (2) occur with an emphasis on sustainability, and (3) benefit the United States while taking into account concerns of the affected states and communities. To support this declaration of policy, Congress directed the Secretary of the Interior to undertake a series of steps, several of which are directly related to the development of a commercial leasing program for oil shale and tar sands. One of these steps was the completion of a programmatic environmental impact statement (PEIS) to analyze the impacts of a commercial leasing program for oil shale and tar sands resources on public lands, with an emphasis on the most geologically prospective lands in Colorado, Utah, and Wyoming. For oil shale, the scope of the PEIS analysis includes public lands within the Green River, Washakie, Uinta, and Piceance Creek Basins. For tar sands, the scope includes Special Tar Sand Areas (STSAs) located in Utah. This paleontological resources overview report was prepared in support of the Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and PEIS, and it is intended to be used by Bureau of Land Management (BLM) regional paleontologists and field office staff to support future projectspecific analyses. Additional information about the PEIS can be found at http://ostseis.anl.gov.

Murphey, P. C.; Daitch, D.; Environmental Science Division

2009-02-11T23:59:59.000Z

403

PEABODY PARK TAYLOR GARDEN  

E-Print Network [OSTI]

BOOTH BELL TOWER ·MAP BY RBS- GPS/GIS PROJECT MANAGER Trail Golf Course Loop- 1.0 Mi. Lori's Long Walk-2.1 Mi Lori's Short Walk-1.7 Mi NorthDriveLoop -.85 Mi Peabody Park Walk- .70 Mi. TheQuadLoop- .75 Mi WestDriveLoop -1.05 Mi 1 inch = 150 feet #12;

Saidak, Filip

404

Science parks: practical and successful cases  

Science Journals Connector (OSTI)

The Stanford University experience in California, which became the foundation for the Silicon Valley, was not rooted in any particular economic theory. Indeed, the originators of these and related concepts of economic development for the entire northern California region were engineers, not economists, urban planners or politicians. But that was in the 1950s. From these practical experiences, economic theory developed (see ''Science Parks theory and background''). What the founders of science parks foresaw, however, was the need to link basic and theoretical research to the real world that is, the world of commerce, trade and business. This link was good for R&D and was equally good for the placement of students directly into industry. And in many cases, the students formed their own firms and hence become ''self-employed''. Today, science parks are seen as a solution to the complex problems of economic development, under-employment, job creation, corporate downsizing, and new business development. Thus, science parks receive considerable attention and financial support from local, regional and national governments. Over the decades, research, technology, industrial and science parks were established close to universities in various US cities as well as in other industrialised nations. For the most part, theory followed or mimicked practice. As a report from Twente University in Holland put it, ''The knowledge-intensive entrepreneurship flourishing in the Twente region did not develop as the result of a master plan. Nobody ever sat down and plotted out how it would all come together. The Twente Concept is the result of an organic development process - not a ''revolution'', but an ''evolution'' - that retained everything that was good and discarded what was wrong''. It is precisely this issue of economic development that will be explored in this paper. The hypothesis is made that we now know enough about economic and business development to formulate a theoretical perspective on science parks. With that understanding, we can, therefore, explore and formulate strategies, plans and policies on how research and development can be converted into new businesses, support and assist entrepreneurship, provide programs that connect regional economic development while being concerned for the environment, and expand networks into international collaborations. This paper explores all the commercialisation of new technologies and provides some guidance into the further practical levels of business creation and therefore economic development for regions and communities.

Woodrow W. Clark Jr.

2003-01-01T23:59:59.000Z

405

Moors Valley Play Trail Moors Valley Country Park is a very popular attraction  

E-Print Network [OSTI]

visitors to Moors Valley Country Park use the play trail. · Sport England's South West Regional PlanMoors Valley Play Trail objectives Moors Valley Country Park is a very popular attraction welcoming more than 750,000 visitors a year. Ranked in the top 20 national attractions Moors Valley is deemed

406

Directions to Douglass Parking Deck (Parking for Home Gardeners School)  

E-Print Network [OSTI]

left onto George Street (at first light) At next light, turn right onto Nichol Avenue Make your first Drive (one-way street) 11. The Douglas parking deck will be on your left After parking in the deck left onto Lipman Drive (one-way street) Follow New Jersey Turnpike directions above ­ from #11 From

407

Wyoming Dry Natural Gas Proved Reserves (Billion Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Proved Reserves (Billion Cubic Feet) Proved Reserves (Billion Cubic Feet) Wyoming Dry Natural Gas Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6,305 7,211 7,526 1980's 9,100 9,307 9,758 10,227 10,482 10,617 9,756 10,023 10,308 10,744 1990's 9,944 9,941 10,826 10,933 10,879 12,166 12,320 13,562 13,650 14,226 2000's 16,158 18,398 20,527 21,744 22,632 23,774 23,549 29,710 31,143 35,283 2010's 35,074 35,290 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Dry Natural Gas Proved Reserves as of Dec. 31 Wyoming Dry Natural Gas Proved Reserves

408

Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Wellhead Price (Dollars per Thousand Cubic Feet) Wellhead Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 0.15 1970's 0.15 0.15 0.16 0.18 0.25 0.34 0.41 0.64 0.79 1.13 1980's 1.92 2.77 3.22 3.18 3.32 3.01 2.52 1.76 1.53 1.24 1990's 1.16 1.06 1.13 1.99 2.05 1.78 2.57 2.42 1.78 1.97 2000's 3.34 3.49 2.70 4.13 4.96 6.86 5.85 4.65 6.86 3.40 2010's 4.30 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 1/7/2014 Next Release Date: 1/31/2014 Referring Pages: Natural Gas Wellhead Price Wyoming Natural Gas Prices

409

Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.16 0.16 1970's 0.17 0.17 0.18 0.24 0.24 0.51 0.65 0.69 1.36 1.59 1980's 2.05 2.51 2.91 3.05 2.99 2.76 2.56 2.36 2.06 1.88 1990's 1.95 1.85 2.48 1.92 1.52 1.31 1.54 1.84 1.86 1.87 2000's 3.21 3.04 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Wyoming Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

410

Wyoming chemical flood test for oil recovery shows promise  

SciTech Connect (OSTI)

This project was begun in 1978 to provide data to promote surfactant chemical flooding on a commercial scale in the low-permeability reservoirs of eastern Wyoming and Colorado. The Big Muddy Field in Wyoming was selected because of the large resource, potential net pay, and high oil saturation. Injection began on February 20, 1980 with a surfactant flooding process. Water mixed with salt (brine) was injected as a preflush which was completed on January 20, 1981. This produced 12,122 bbl of oil. The next step involves injecting a surfactant, co-surfactant (alcohol), and polymer. When the injection of the surfactant is completed in the summer of 1982, polymer alone will be injected. Polymer injection will be completed sometime in 1984. The final phase will be a followup water drive scheduled for 1984-1987. As of February 1, 1982, 36,683 bbl of oil had been produced. About 88 bbl of oil per day is being produced, compared to only about 41 bbl per day in February 1981. (ATT)

Not Available

1981-01-01T23:59:59.000Z

411

Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Fuel Consumption (Million Cubic Feet) Fuel Consumption (Million Cubic Feet) Wyoming Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 12,572 16,185 17,090 13,633 16,249 17,446 19,820 1990's 12,182 14,154 13,217 13,051 13,939 14,896 15,409 15,597 16,524 19,272 2000's 20,602 20,991 25,767 28,829 24,053 24,408 23,868 25,276 23,574 25,282 2010's 27,104 28,582 29,157 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Natural Gas Plant Fuel Consumption Wyoming Natural Gas Consumption by End Use Plant Fuel Consumption of Natural Gas (Summary)

412

2012 National Electricity Forum  

Broader source: Energy.gov (indexed) [DOE]

National Electric Transmission Congestion Study Workshop - December 13, 2011 Sheraton Portland Airport Hotel, 8235 Northeast Airport Way, Portland, OR 97220 Agenda 8:00 am - 9:00 am Registration 9:00 am - 9:20 am DOE Welcome and Presentation David Meyer, US Department of Energy, Session Moderator 9:20 am - 10:15 am Panel I - Regulators * John Savage, Commissioner, Oregon Public Utilities Commission * Marsha Smith, Commissioner, Idaho Public Utilities Commission * Steve Oxley, Deputy Chairman, Wyoming Public Service Commission * Philip B. Jones, Commissioner, Washington Utilities and Transportation Commission 10:15 am - 10:30 am Break

413

Independent Oversight Inspection, East Tennessee Technology Park...  

Broader source: Energy.gov (indexed) [DOE]

East Tennessee Technology Park - November 2008 November 2008 Inspection of Environment, Safety, and Health Programs at the East Tennessee Technology Park This report...

414

University Park Data Dashboard | Department of Energy  

Energy Savers [EERE]

Data Dashboard University Park Data Dashboard The data dashboard for University Park, Maryland, a partner in the Better Buildings Neighborhood Program. bbnpbban0003809pmcdashb...

415

Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation,  

Gasoline and Diesel Fuel Update (EIA)

Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,038 1980's 1,374 1,228 1,060 959 867 710 691 691 616 581 1990's 573 572 624 502 611 879 824 850 794 713 2000's 652 488 561 450 362 384 347 365 223 362 2010's 334 318 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

416

Gel conformance treatments increase oil production in Wyoming  

SciTech Connect (OSTI)

Chromic-carboxylate acrylamide-polymer gels have been applied successfully as conformance treatments in a number of fields in Wyoming's Big Horn basin. This paper reports that as a result of these treatments, significant amounts of incremental oil will be recovered in a profitable manner. The gels were applied to naturally fractured reservoirs of intermediate fracture intensity. The gel treatments improved sweep efficiency of oil-recovery drive fluids in fields that were under either primary production, waterflooding, or polymer-augmented waterflooding. Ultimate incremental oil production from the 29 gel treatments is projected to be 3.72 million st-tk bbl, or on average, 128,000 bbl/treatment. An average 13 bbl of incremental production are projected to be recovered for every 1 lb of polymer injected.

Sydansk, R.D.; Moore, P.E. (Marathon Oil Co., Littleton, CO (US))

1992-01-20T23:59:59.000Z

417

California-Wyoming Grid Integration Study: Phase 1 -- Economic Analysis  

SciTech Connect (OSTI)

This study presents a comparative analysis of two different renewable energy options for the California energy market between 2017 and 2020: 12,000 GWh per year from new California in-state renewable energy resources; and 12,000 GWh per year from Wyoming wind delivered to the California marketplace. Either option would add to the California resources already existing or under construction, theoretically providing the last measure of power needed to meet (or to slightly exceed) the state's 33% renewable portfolio standard. Both options have discretely measurable differences in transmission costs, capital costs (due to the enabling of different generation portfolios), capacity values, and production costs. The purpose of this study is to compare and contrast the two different options to provide additional insight for future planning.

Corbus, D.; Hurlbut, D.; Schwabe, P.; Ibanez, E.; Milligan, M.; Brinkman, G.; Paduru, A.; Diakov, V.; Hand, M.

2014-03-01T23:59:59.000Z

418

DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming |  

Broader source: Energy.gov (indexed) [DOE]

Sponsored Technology Enhances Recovery of Natural Gas in Sponsored Technology Enhances Recovery of Natural Gas in Wyoming DOE-Sponsored Technology Enhances Recovery of Natural Gas in Wyoming March 26, 2009 - 1:00pm Addthis Washington, DC --Research sponsored by the U.S. Department of Energy (DOE) Oil and Natural Gas Program has found a way to distinguish between groundwater and the water co-produced with coalbed natural gas, thereby boosting opportunities to tap into the vast supply of natural gas in Wyoming as well as Montana. In a recently completed project, researchers at the University of Wyoming used the isotopic carbon-13 to carbon-12 ratio to address environmental issues associated with water co-produced with coalbed natural gas. The research resulted in a patent application for this unique use of the ratio.

419

Wyoming Energy and Cost Savings for New Single- and Multifamily Homes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Wyoming Wyoming Energy and Cost Savings for New Single- and Multifamily Homes: 2009 and 2012 IECC as Compared to the 2006 IECC BUILDING TECHNOLOGIES PROGRAM 2 2009 AND 2012 IECC AS COMPARED TO THE 2006 IECC The 2009 and 2012 International Energy Conservation Codes (IECC) yield positive benefits for Wyoming homeowners. Moving to either the 2009 or 2012 IECC from the 2006 IECC is cost-effective over a 30-year life cycle. On average, Wyoming homeowners will save $1,809 over 30 years under the 2009 IECC, with savings still higher at $6,441 under the 2012 IECC. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 2 years for the 2009 and 2 years with the 2012 IECC. Average

420

EA-1008: Continued Development of Naval Petroleum Reserve No. 3 (Sitewide), Natrona County, Wyoming  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to continue development of the U.S. Department of Energy's Naval Petroleum Reserve No. 3 located in Natrona County, Wyoming over the next...

Note: This page contains sample records for the topic "national park wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Weatherization: Wyoming's Hidden Resource; Weatherization Assistance Close-Up Fact Sheet  

SciTech Connect (OSTI)

Wyoming demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

D& R International

2001-10-10T23:59:59.000Z

422

Economic Development from Gigawatt-Scale Wind Deployment in Wyoming (Presentation)  

SciTech Connect (OSTI)

This presentation provides an overview of economic development in Wyoming from gigawatt-scale wind development and includes a discussion of project context, definitions and caveats, a deployment scenario, modeling inputs, results, and conclusions.

Lantz, E.

2011-05-23T23:59:59.000Z

423

Tidal Deposits of the Campanian Western Interior Seaway, Wyoming, Utah and Colorado, USA  

Science Journals Connector (OSTI)

The large-scale effects of tidal waves entering the Cretaceous Western Interior Seaway from the Gulf of Mexico ... southwestern margin of the seaway, in Utah, Colorado and Wyoming are documented. Tidal currents d...

Ronald J. Steel; Piret Plink-Bjorklund

2012-01-01T23:59:59.000Z

424

Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas and Gas Condensate Wells (Number of Elements) Wyoming Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

425

Wyoming State Briefing Book for low-level radioactive waste management  

SciTech Connect (OSTI)

The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.

Not Available

1981-10-01T23:59:59.000Z

426

Hydrocarbon trapping mechanisms in the Miller Creek area of the Powder River Basin, Wyoming  

E-Print Network [OSTI]

'' 1975 43'W'79 ABSTRACT Hydrocarbon Trapoing Mechanisms in the Miller Creek Area of the Powder River Basin, Wyoming. (May 1975) Jennifer Ann Armstrong, B. S. , University of Texas at Austin Chairman of Advisory Committee: 17r. Robert. R. Berg...

Armstrong, Jennifer Ann

1975-01-01T23:59:59.000Z

427

EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

428

Parke Panda Corporation aka Parke Industries | Open Energy Information  

Open Energy Info (EERE)

Panda Corporation aka Parke Industries Panda Corporation aka Parke Industries Jump to: navigation, search Name Parke Panda Corporation (aka Parke Industries) Place Glendora, California Zip 91740 Product A licensed, bonded, and fully insured C-10 design/build contractor. Coordinates 39.83977°, -75.074694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.83977,"lon":-75.074694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

429

Park and chill : redesign parking garage in Hong Kong  

E-Print Network [OSTI]

What are the aesthetics of urban infrastructure? Urban infrastructure has remained isolated to human activities. We all share memory and experience with urban infrastructure, e.g. we drive on the same roads and park our ...

Ting, Sze Ngai

2011-01-01T23:59:59.000Z

430

Jobs and Economic Development from New Transmission and Generation in Wyoming  

SciTech Connect (OSTI)

This report is intended to inform policymakers, local government officials, and Wyoming residents about the jobs and economic development activity that could occur should new infrastructure investments in Wyoming move forward. The report and analysis presented is not a projection or a forecast of what will happen. Instead, the report uses a hypothetical deployment scenario and economic modeling tools to estimate the jobs and economic activity likely associated with these projects if or when they are built.

Lantz, E.; Tegen, S.

2011-03-01T23:59:59.000Z

431

Sustainability of Ganesha Park Pomona, California  

E-Print Network [OSTI]

1 Sustainability of Ganesha Park Pomona, California Professor Terry Young Parks and Protected Areas will begin to explore the relationship between sustainability and Ganesha Park in Pomona, California as well such as solar power systems and rain water reuse for irrigation purposes. In addition, sustainable parks employ

Young, Terence

432

University Park Summary of Reported Data  

Broader source: Energy.gov [DOE]

Summary of data reported by Better Buildings Neighborhood Program partner Town of University Park, Maryland.

433

South Parking Garage SAN SALVADOR STREET  

E-Print Network [OSTI]

FOB YUH SPXC SPXE West Parking Garage DH South Parking Garage UPD MQH SH SAN SALVADOR STREET SAN Salvador Street · Once you enter, if you are Disabled, proceed to park in the Disabled parking area Salvador St. · Proceed to the West Garage (4th St.) entrance on right hand side · Once you enter, if you

Su, Xiao

434

Community Renewable Energy Success Stories Webinar: Renewable Energy Parks  

Broader source: Energy.gov (indexed) [DOE]

Renewable Renewable Energy Parks (text version) Community Renewable Energy Success Stories Webinar: Renewable Energy Parks (text version) Below is the text version of the webinar titled "Renewable Energy Parks," originally presented on March 19, 2013. Operator: The broadcast is now starting. All attendees are in Listen Only mode. Sarah Busche: Good afternoon, everyone, and welcome to today's webinar. It is sponsored by the U.S. Department of Energy (DOE) . Sorry. We're moving some slides around. We'll go right back to the front one there. Thanks, Devin. This is Sarah Busche and I'm here with Devin Egan, and we're broadcasting live from the National Renewable Energy Laboratory. We'll give folks a few more minutes to call in and log on, but while we do this Devin is going to run

435

Climate Leadership in Parks (CLIP) | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Climate Leadership in Parks (CLIP) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Leadership in Parks (CLIP) Agency/Company /Organization: National Park Service Phase: Determine Baseline, "Evaluate Options and Determine Feasibility" is not in the list of possible values (Bring the Right People Together, Create a Vision, Determine Baseline, Evaluate Options, Develop Goals, Prepare a Plan, Get Feedback, Develop Finance and Implement Projects, Create Early Successes, Evaluate Effectiveness and Revise as Needed) for this property.

436

Renovation proposal for Fenway Park  

E-Print Network [OSTI]

As the oldest stadium in baseball history, the existing structure of Fenway Park presents problems such as limiting seating capacity and obstructed views, caused by the columns supporting the second level. Opened in 1912, ...

Aldana Urrutia, Luis Pedro

2009-01-01T23:59:59.000Z

437

East Tennessee Technology Park Cleanup  

Broader source: Energy.gov [DOE]

This fact sheet provides an update on all of the current cleanup projects at the site, and it also lists the major projects that were completed at the East Tennessee Technology Park.

438

JOHNSON PARK RUTGERS GOLF COURSE  

E-Print Network [OSTI]

JOHNSON PARK RUTGERS GOLF COURSE MITCHELL AVE TOOLANST HOES LN MARIONCT HOES LN W GATES AVE RIVER McCormick Hall Richardson Apartments Russell Apartments Johnson Apartments Waksman Greenhouse Civil

Hanson, Stephen José

439

Genesis Park | Open Energy Information  

Open Energy Info (EERE)

Genesis Park LP Genesis Park LP Name Genesis Park LP Address 2131 San Felipe Place Houston, Texas Zip 77019 Region Texas Area Product Private equity firm. Year founded 2000 Phone number (713) 521-1980 Website http://www.genesis-park.com/ Coordinates 29.74873°, -95.412815° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.74873,"lon":-95.412815,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

440

Public Parking > Agriculture Building Parkade**  

E-Print Network [OSTI]

P P P P P P P P P P M M M 1 C 3 2 B A R O O 9 L 5 Y Q T U U 16 15 4 P 18 17 7 H Public Parking > Agriculture Building Parkade** > Pay Parking Lots** > Stadium Parkade** > Diefenbaker Lot > Health Sciences Lots Buildings Place Riel Student Centre - PH 306-966-6988 1 Campus Drive Royal University Hospital

Saskatchewan, University of

Note: This page contains sample records for the topic "national park wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Information Resources: Using the Street and Parking Facility Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool This August 22, 2013 webinar provided a guided walk-through of the Street and Parking Facility Lighting Retrofit Financial Analysis Tool. Developed by a partnership of the DOE Municipal Solid-State Street Lighting Consortium, the Clinton Climate Initiative/C40, and the DOE Federal Energy Management Program, the Excel-based tool assists with the financial analysis of retrofitting street and parking facility lighting with more efficient alternatives. During the webinar, Doug Elliott of Pacific Northwest National Laboratory discussed how the tool can be used to evaluate costs and benefits associated with converting to more efficient street and parking facility lighting and how property owners, city and other government agencies, utilities, and energy efficiency organizations can use the tool to compute annualized energy and energy-cost savings, maintenance savings, greenhouse gas reductions, net present value, and simple payback associated with potential lighting upgrades.

442

Volume 26, Number 1, Spring 2009 Published: 10 July 2009  

E-Print Network [OSTI]

of scientific knowledge is ... explicit in basic legislation. National Parks, preserved as natural comparatively with the opportunity to appreciate natural scenery and wildlife, national parks have a long history of scientific research, dating back to the establishment of Yellowstone National Park (Wyoming, Montana, Idaho) in 1872

Suarez, Andrew V.

443

BLACK THUNDER COAL MINE AND LOS ALAMOS NATIONAL LABORATORY EXPERIMENTAL STUDY  

E-Print Network [OSTI]

BLACK THUNDER COAL MINE AND LOS ALAMOS NATIONAL LABORATORY EXPERIMENTAL STUDY OF SEISMIC ENERGY of Explosive Engineers, 2-5 Feb 97, Las Vegas, NV #12;BLACK THUNDER COAL MINE AND LOS ALAMOS NATIONAL and David Gross Thunder Basin Coal Company Post Office Box 406 Wright, Wyoming 82732 D. Craig Pearson

444

DOE Order 344.1A, Parking at the Forrestal Facility  

Broader source: Energy.gov (indexed) [DOE]

344.1A 344.1A Approved: 11-2-01 Admin Chg 1: 11-19-04 This directive was reviewed and certified as current and necessary by Susan J. Grant, Director, Office of Management, Budget and Evaluation/Chief Financial Officer, 11-19-04. SUBJECT: PARKING 1. OBJECTIVES. To define policies and procedures governing the assignment, use, and management of parking spaces controlled by the Department of Energy (DOE) in the Forrestal Facility. 2. CANCELLATION. This Order cancels HQ O 344.1, Parking, dated 3-5-97. 3. APPLICABILITY. This Order applies to DOE Federal employees, including National Nuclear Security Administration (NNSA) Federal employees, parking at DOE Headquarters in the Forrestal Building. 4. REQUIREMENTS. a. General. It is the policy of DOE that its parking facility be operated in a manner

445

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Broader source: Energy.gov (indexed) [DOE]

8, 2011 8, 2011 CX-006042: Categorical Exclusion Determination Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction CX(s) Applied: B3.6 Date: 06/08/2011 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory June 7, 2011 CX-006050: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B3.6, B5.1 Date: 06/07/2011 Location(s): Kansas City, Missouri Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 7, 2011 CX-006054: Categorical Exclusion Determination San Diego Gas & Electric Borrego Springs Microgrid Demo (Utility Integration of Distributed Energy Storage Systems) CX(s) Applied: A1, A9, B3.11, B4.4 Date: 06/07/2011 Location(s): Borrego Springs, California

446

Million Cu. Feet Percent of National Total  

Gasoline and Diesel Fuel Update (EIA)

80 80 Wyoming - Natural Gas 2011 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2007-2011 2007 2008 2009 2010 2011 Number of Producing Gas Wells at End of Year 27,350 28,969 25,710 26,124 26,180 Production (million cubic feet) Gross Withdrawals From Gas Wells R 1,649,284 R 1,764,084 R 1,806,807 R 1,787,599 1,709,218 From Oil Wells 159,039 156,133 135,269 151,871 152,589

447

Million Cu. Feet Percent of National Total  

U.S. Energy Information Administration (EIA) Indexed Site

2 2 Wyoming - Natural Gas 2012 Million Cu. Feet Percent of National Total Million Cu. Feet Percent of National Total Total Net Movements: - Industrial: Dry Production: Vehicle Fuel: Deliveries to Consumers: Residential: Electric Power: Commercial: Total Delivered: Table S52. Summary statistics for natural gas - Wyoming, 2008-2012 2008 2009 2010 2011 2012 Number of Producing Gas Wells at End of Year 28,969 25,710 26,124 26,180 22,171 Production (million cubic feet) Gross Withdrawals From Gas Wells 1,764,084 1,806,807 1,787,599 1,709,218 1,762,095 From Oil Wells 156,133 135,269 151,871 152,589 24,544

448

Oak Ridge Science and Technology Park | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Economic Development | Oak Ridge Science and Technology Park SHARE Oak Ridge Science and Technology Park The Oak Ridge Science and Technology Park is ideal for companies that want...

449

Forrestal Garage Parking Procedures, Revised August 12, 2010  

Broader source: Energy.gov [DOE]

Forrestal Garage Parking Procedures - The Forrestal Facility Parking Guide was created to define policies and procedures governing the assignment, use, and management of parking spaces controlled...

450

Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion  

Gasoline and Diesel Fuel Update (EIA)

Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Wyoming Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 7,834 1980's 9,413 9,659 10,155 10,728 11,014 11,229 10,393 10,572 10,903 11,276 1990's 10,433 10,433 11,305 11,387 11,351 12,712 13,084 14,321 14,371 14,809 2000's 17,211 19,399 21,531 22,716 23,640 24,722 24,463 30,896 32,399 36,748 2010's 36,526 36,930 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages: Natural Gas Proved Reserves, Wet After Lease Separation, as of Dec.

451

Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Proved  

Gasoline and Diesel Fuel Update (EIA)

Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Wyoming Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 6,796 1980's 8,039 8,431 9,095 9,769 10,147 10,519 9,702 9,881 10,287 10,695 1990's 9,860 9,861 10,681 10,885 10,740 11,833 12,260 13,471 13,577 14,096 2000's 16,559 18,911 20,970 22,266 23,278 24,338 24,116 30,531 32,176 36,386 2010's 36,192 36,612 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/1/2013 Next Release Date: 8/1/2014 Referring Pages:

452

Wyoming Quantity of Production Associated with Reported Wellhead Value  

Gasoline and Diesel Fuel Update (EIA)

Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Wyoming Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 395,656 447,615 416,565 352,858 407,863 471,095 623,915 1990's 690,356 711,799 765,254 63,667 14,283 12,449 27,821 719,933 1,004,020 1,079,375 2000's 1,240,038 1,359,868 1,533,724 1,561,322 1,724,725 1,729,760 1,811,992 1,916,238 2,116,818 2,239,778 2010's 2,318,486 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages:

453

Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 53,604 51,563 52,120 53,225 54,581 56,980 58,990 61,428 62,487 60,867 1991 54,085 53,423 53,465 53,581 54,205 56,193 58,416 60,163 61,280 61,366 59,373 57,246 1992 30,371 28,356 27,542 27,461 27,843 28,422 29,588 29,692 30,555 29,505 27,746 23,929 1993 20,529 18,137 17,769 18,265 19,253 21,322 23,372 24,929 26,122 27,044 24,271 21,990 1994 21,363 18,661 19,224 20,115 21,689 22,447 23,568 25,072 26,511 27,440 26,978 25,065 1995 22,086 20,762 19,352 18,577 19,027 20,563 22,264 23,937 25,846 27,025 26,298 24,257

454

Thermal analysis of the southern Powder River Basin, Wyoming  

SciTech Connect (OSTI)

Temperature and geologic data from over 3,000 oil and gas wells within a 180 km x 30 km area that transect across the southern Powder River Basin in Wyoming, U.S.A., were used to determine the present thermal regime of the basin. Three-dimensional temperature fields within the transect, based on corrected bottom-hole temperatures (BHTs) and other geologic information, were assessed using: (1) A laterally constant temperature gradient model in conjunction with an L{sub 1} norm inversion method, and (2) a laterally variable temperature gradient model in conjunction with a stochastic inversion technique. The mean geothermal gradient in the transect is 29 C/km, but important lateral variations in the geothermal gradient exist. The average heat flow for the southern Powder River Basin is 52 mW/m{sup 2} with systematic variations between 40 mW/m{sup 2} and 60 mW/m{sup 2} along the transect. Extremely high local heat flow (values up to 225 mW/m{sup 2}) in the vicinity of the Teapot Dome and the Salt Creek Anticline and low heat flow of 25 mW/m{sup 2} occurring locally near the northeast end of the transect are likely caused by groundwater movement.

McPherson, B.J.O.L.; Chapman, D.S. [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Geology and Geophysics] [Univ. of Utah, Salt Lake City, UT (United States). Dept. of Geology and Geophysics

1996-11-01T23:59:59.000Z

455

Research on traffic impact analysis and organisation design optimisation for logistics park  

Science Journals Connector (OSTI)

This paper describes domestic and international research results and proposes a method system of logistics park traffic impact analysis and organisation design optimisation. Firstly, the basis of logistics park traffic impact analysis is studied, project position and impact scope are analysed. Secondly, we forecast logistics park traffic demand and analyse the adaptability of road section and logistics park. Moreover, on the basis of these, the paper confirms the implemental principle of traffic organisation design optimisation, put forward logistics park traffic organisation design optimisation model based on multi-agent and corresponding algorithm based on evolutionary algorithm. Finally, it uses traffic simulation to simulate the traffic flow of logistics park and gives quantitative traffic impact assessment by visual animation, based on these, traffic organisation advices are put forward so that the traffic problems can be effectively resolved. This paper, by using the proposed method before, takes Zhengzhou National Arterial Highway Logistics Park for empirical studies, combines macro planning software TransCAD and micro traffic simulation platform VISSIM to demonstrate the feasibility and workability of the method, it get good results; this can offer the reference to logistics park planning and design.

Wei Wang; Xuejun Feng; Jianyu Zhang

2010-01-01T23:59:59.000Z

456

The function of interpretation as perceived by park visitors and interpreters  

E-Print Network [OSTI]

in the National Park Service was studied by Clark (1949) and in state park systems by Weaver (1952). These writi ngs identify i nterpretati on and nature study as the same activity. Merriam (1972) used the term educat1on synonymously with interpretat1on 1n... to the resource. Due to the nature of the activity, settings of interpreation are often organizationally based, that is, occurring within an organizational jurisdiction, not alone. In this case, one park system was selected for sampling: Texas...

Silvy, Valeen Adams

2012-06-07T23:59:59.000Z

457

Handicapped Parking Procedures (HQ) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Handicapped Parking Procedures (HQ) Handicapped Parking Procedures (HQ) Handicapped Parking Procedures (HQ) It is the policy of the Department of Energy (DOE) that its parking facility be operated in a manner responsive to the needs of the Department, and for the maximum benefit of its employees. Individuals with temporary or permanent mobility impairment who, because of their condition, have a need to request a handicapped parking permit for the Forrestal or Germantown facilities, should use the following procedures: Complete a Parking Application Complete the Permit Application form DOE F 1400.12. In instances when the Parking Management personnel can visually assess an applicant's mobility impairment (i.e. use of crutches, walker, etc.), a temporary parking permit may be granted. At the time of application, the

458

GAO-14-369, NATIONAL ENVIRONMENTAL POLICY ACT: Little Information...  

Energy Savers [EERE]

10 or more, including the National Park Service (21 draft and final EISs) and the Fish and Wildlife Service (19), both within the Department of the Interior; the National...

459

DOE Preparing for Sale of Unique RMOTC Property and Equipment in Wyoming |  

Broader source: Energy.gov (indexed) [DOE]

Preparing for Sale of Unique RMOTC Property and Equipment in Preparing for Sale of Unique RMOTC Property and Equipment in Wyoming DOE Preparing for Sale of Unique RMOTC Property and Equipment in Wyoming October 24, 2013 - 8:59am Addthis DOE Preparing for Sale of Unique RMOTC Property and Equipment in Wyoming Did you know? RMOTC's mission is to ensure America's energy security and prosperity by assisting its partners in developing and commercializing energy efficient and environmentally friendly technologies to address critical global energy challenges. NPR-3, the site of RMOTC, is the only remaining Naval Petroleum Reserve administered by DOE and the government's only operating oilfield. The government's sale of NPR-3 by the end of 2014 will include the sale of all RMOTC-owned equipment and materials. In the eastern Rocky Mountains about 40 miles north of Casper, Wyo., is a

460

Parking Functions And Generalized Catalan Numbers  

E-Print Network [OSTI]

Parking Functions and Labeled Schr?oder Paths . . 28 C. p-ParkingFunctions...................... 29 D. p-Parking Functions With k Blocked ............ 30 E. Linear Probes in PB (n,k) ................... 31 IV LEFT WEIGHTED CATALAN STRUCTURES ......... 40 A... ............................. 64 vii CHAPTER Page REFERENCES ................................... 65 VITA ........................................ 68 viii LIST OF FIGURES FIGURE Page 1 Parking function distribution for n =6 ................. 8 2 T3 4...

Schumacher, Paul R.

2010-01-14T23:59:59.000Z

Note: This page contains sample records for the topic "national park wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Creating Standards for Winter Terrain Parks  

E-Print Network [OSTI]

involvement in litigation. http://USTerrainParkCouncil.org #12;Muller, et al.(1995)- used EFH* to quantify

462

Car Parking Permit Eligibility 1. Eligible Groups  

E-Print Network [OSTI]

the Site Security Staff on arrival and allow parking in loading areas when longer than one hour is required

Martin, Ralph R.

463

The relationship between coal quality and coal resource parameters of Powder River and Williston Basin coal, Wyoming, Montana, and North Dakota  

SciTech Connect (OSTI)

Clean, compliant coal from mines in the Northern Rocky Mountain and Great Plains region is utilized as fuel for coal-fired power plants in 26 states. More than 30 percent of the nation`s 1997 production was from Montana, North Dakota, and Wyoming. Production of clean, compliant coal from the region is estimated to increase to 415 million short tons by the year 2015. Studies in this region indicate a relationship between percent sulfur and ash and pounds of SO{sub 2} per million Btu and the resource parameters of coal thickness and overburden. The trends that the authors have observed indicate that both coal quality and the thickness of the coal and associated rocks are controlled by paleoenvironment and depositional setting.

Ellis, M.S.; Stricker, G.D.; Gunther, G.; Ochs, A.M.; Flores, R.M.

1998-12-31T23:59:59.000Z

464

Data from selected Almond Formation outcrops -- Sweetwater County, Wyoming  

SciTech Connect (OSTI)

The objectives of this research program are to: (1) determine the reservoir characteristics and production problems of shoreline barrier reservoirs; and (2) develop methods and methodologies to effectively characterize shoreline barrier reservoirs to predict flow patterns of injected and produced fluids. Two reservoirs were selected for detailed reservoir characterization studies -- Bell Creek field, Carter County, Montana, that produces from the Lower Cretaceous (Albian-Cenomanian) Muddy Formation, and Patrick Draw field, Sweetwater County, Wyoming that produces from the Upper Cretaceous (Campanian) Almond Formation of the Mesaverde Group. An important component of the research project was to use information from outcrop exposures of the producing formations to study the spatial variations of reservoir properties and the degree to which outcrop information can be used in the construction of reservoir models. A report similar to this one presents the Muddy Formation outcrop data and analyses performed in the course of this study (Rawn-Schatzinger, 1993). Two outcrop localities, RG and RH, previously described by Roehler (1988) provided good exposures of the Upper Almond shoreline barrier facies and were studied during 1990--1991. Core from core well No. 2 drilled approximately 0.3 miles downdip of outcrop RG was obtained for study. The results of the core study will be reported in a separate volume. Outcrops RH and RG, located about 2 miles apart were selected for detailed description and drilling of core plugs. One 257-ft-thick section was measured at outcrop RG, and three sections {approximately}145 ft thick located 490 and 655 feet apart were measured at the outcrop RH. Cross-sections of these described profiles were constructed to determine lateral facies continuity and changes. This report contains the data and analyses from the studied outcrops.

Jackson, S.R.; Rawn-Schatzinger, V.

1993-12-01T23:59:59.000Z

465

Diagenesis of upper Cretaceous Teapot sandstones, Powder River basin, Wyoming  

SciTech Connect (OSTI)

The Upper Cretaceous Teapot sandstones of Well Draw field, Converse County, Wyoming, are turbidite fan deposits bounded stratigraphically by marine shales. They presently occur from 6360 to 7200 ft (1920 to 2195 m), dipping to the northwest. Cored samples selected from nonbioturbated A bedsets show that the sandstones are fine to very fine-grained feldspathic litharenites. Major authigenic minerals include carbonate cement, quartz overgrowths, and clay minerals. The clay minerals originated either as alteration rims on detrital silicates or as precipitated from pore fluids. Alteration rims typically consist of illite, smectite, mixed layer illite/smectite, and lesser chlorite. Feldspars are altered to kaolinite. Precipitated clays occur as thin, unoriented, grain coating chlorite and kaolinite; pore lining mixed layer illite/smectite and lesser chlorite oriented with (001) normal to the pore wall; and unoriented, poorly crystalline, pore filling chlorite. The diagenetic sequence is: compaction and limited quartz overgrowth development; complete calcite cementation and precipitation of grain-coating clays; dissolution of carbonate cement; precipitation of pore lining and later pore filling clays; and development of second stage quartz overgrowths. Development of silicate alteration rims occurred throughout the diagenetic history. Dissolution of carbonate cement produced the majority of present-day porosity; however, this secondary porosity was reduced by precipitation of clays minerals. In the downdip sandstones, hydrodynamic flow and an increase in the abundance of detrital labile grains have caused an increased abundance of clay mineral precipitates, reducing the reservoir potential. The pore fluids which controlled sandstones diagenesis were likely provided by dewatering and diagenesis of enclosing shales.

Conner, S.P.; Tieh, T.T.

1984-04-01T23:59:59.000Z

466

Counting Defective Parking Functions Peter J Cameron, Daniel Johannsen,  

E-Print Network [OSTI]

parking function of defect k. Suppose that m cars attempt to park in a linear car park with n spacesCounting Defective Parking Functions Peter J Cameron, Daniel Johannsen, Thomas Prellberg, Pascal each choose a preferred parking space in a linear car park with n spaces. Each driver goes

Prellberg, Thomas

467

Counting Defective Parking Functions Peter J Cameron, Daniel Johannsen,  

E-Print Network [OSTI]

the corresponding assignments a defective parking function of defect k. Suppose that m cars attempt to parkCounting Defective Parking Functions Peter J Cameron, Daniel Johannsen, Thomas Prellberg, Pascal a preferred parking space in a linear car park with n spaces. Each driver goes to the chosen space and parks

468

Permit Parking Emergency Blue Light  

E-Print Network [OSTI]

P P P P P P P P P P P P P P P P P PP P P P P P Permit Parking Food P P Emergency Blue Light underground Emergency Blue Light outdoors Wheelchair Wheelchair prior arrangements necessary Telephone Visitor 144 Albert Street 21 152 Albert Street 20 154 Albert Street 94 34 Barrie Street 91 68 Barrie Street 90

Abolmaesumi, Purang

469

HOURGLASS FIRE Pingree Park Vicinity  

E-Print Network [OSTI]

needles). Fuel moistures were extremely low throughout Colorado during spring/early summer of 1994 firefighters in a blowup near Glenwood Springs. Table 1 indicates dead fuel moistures in the Pingree Park). Spotting was occurring 1/2 mile in advance of the fire. By this time personnel/engines from Colorado State

470

An exploration of the relationship between use of parks and access, park appeal, and communication effectiveness  

E-Print Network [OSTI]

AN EXPLORATION OF THE RELATIONSHIP BETWEEN USE OF PARKS AND ACCESS, PARK APPEAL, AND COMMUNICATION EFFECTIVENESS A Dissertation by JAMIE RAE WALKER Submitted to the Office of Graduate Studies of Texas A&M University in partial... fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2008 Major Subject: Recreation, Park and Tourism Sciences AN EXPLORATION OF THE RELATIONSHIP BETWEEN USE OF PARKS AND ACCESS, PARK APPEAL, AND COMMUNICATION...

Walker, Jamie Rae

2009-05-15T23:59:59.000Z

471

The potential for coalbed gas exploration and production in the Greater Green River Basin, southwest Wyoming and northwest Colorado  

SciTech Connect (OSTI)

Coalbed gas is an important source of natural gas in the United States. In 1993, approximately 740 BCF of coalbed gas was produced in the United States, or about 4.2% of the nation`s total gas production. Nearly 96% of this coalbed gas is produced from just two basins, the San Juan (615.7 BCF; gas in place 84 TCF) and Black Warrior (105 BCF; gas in place 20 TCF), and current production represents only a fraction of the nation`s estimated 675 TCF of in-place coalbed gas. Coal beds in the Greater Green River Basin in southwest Wyoming and northwest Colorado hold almost half of the gas in place (314 TCF) and are an important source of gas for low-permeability Almond sandstones. Because total gas in place in the Greater Green River Basin is reported to exceed 3,000 TCF (Law et al., 1989), the basin may substantially increase the domestic gas resource base. Therefore, through integrated geologic and hydrologic studies, the coalbed gas potential of the basin was assessed where tectonic, structural, and depositional setting, coal distribution and rank, gas content, coal permeability, and ground-water flow are critical controls on coalbed gas producibility. Synergism between these geologic and hydrologic controls determines gas productivity. High productivity is governed by (1) thick, laterally continuous coals of high thermal maturity, (2) basinward flow of ground water through fractured and permeable coals, down the coal rank gradient toward no-flow boundaries oriented perpendicular to the regional flow direction, and (3) conventional trapping of gas along those boundaries to provide additional sources of gas beyond that sorbed on the coal surface.

Tyler, R.; Kaiser, W.R.; Scott, A.R.; Hamilton, D.S. [Univ. of Texas, Austin, TX (United States)

1997-01-01T23:59:59.000Z

472

An evaluation of known remaining oil resources in the state of New Mexico and Wyoming. Volume 4, Project on Advanced Oil Recovery and the States  

SciTech Connect (OSTI)

The Interstate Oil and Gas Compact Commission (IOGCC) has conducted a series of studies to evaluate the known, remaining oil resource in twenty-three (23) states. The primary objective of the IOGCC`s effort is to examine the potential impact of an aggressive and focused program of research, development, and demonstration (RD&D) and technology transfer on future oil recovery in the United States. As part of a larger effort by the IOGCC, this report focuses on the potential economic benefits of improved oil recovery in the states of New Mexico and Wyoming. Individual reports for six other oil producing states and a national report have been separately published by the IOGCC. The analysis presented in this report is based on the databases and models available in the Tertiary Oil Recovery Information System (TORIS). Overall, well abandonments and more stringent environmental regulations could limit economic access to New Mexico`s known, remaining oil resource. The high risk of near-term abandonment and the significant benefits of future application of improved oil recovery technology, clearly point to a need for more aggressive transfer of currently available technologies to domestic oil producers. Development and application of advanced oil recovery technologies could have even greater benefits to the state and the nation. A collaborative, focused RD&D effort, integrating the resources and expertise of industry, state and local governments, and the Federal government, is clearly warranted. With effective RD&D and a program of aggressive technology transfer to widely disseminate its results, oil production could be maximized. The resulting increase in production rates, employment, operator profits, state and Federal tax revenues, and energy security will benefit both the states of New Mexico and Wyoming and the nation as a whole.

Not Available

1994-11-01T23:59:59.000Z

473

The 2012 Drought in Colorado, Utah and Wyoming A July 2012 update from the  

E-Print Network [OSTI]

The 2012 Drought in Colorado, Utah and Wyoming A July 2012 update from the Western Water Assessment, included many of the key mountain headwaters in western and northern Colorado, and in Utah. But as dry.gov/psd/data/usclimdivs/) Spring and Early SummerTemperatures 2012 2002 #12;Contacts: Jeff Lukas, Western Water Assessment (Lukas@Colorado

Neff, Jason

474

EIS-0267: BPA/Lower Valley Transmission System Reinforcement Project, Wyoming  

Broader source: Energy.gov [DOE]

This EIS analyzes BPA and LVPL proposal to construct a new 115-kV line from BPAs Swan Valley Substation near Swan Valley in Bonneville County, Idaho about 58 km (36 miles) east to BPAs Teton Substation near Jackson in Teton County, Wyoming.

475

FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS  

E-Print Network [OSTI]

...................................................................................PS-18 Coal-Bed Methane ResourceChapter PS FORT UNION COAL IN THE POWDER RIVER BASIN, WYOMING AND MONTANA: A SYNTHESIS By R of selected Tertiary coal beds and zones in the Northern RockyMountains and Great Plains region, U

476

Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction  

SciTech Connect (OSTI)

Under the cooperative agreement program of DOE and funding from Wyoming States Clean Coal Task Force, Western Research Institute and Thermosolv LLC studied the direct conversion of Wyoming coals and coal-lignin mixed feeds into liquid fuels in conditions highly relevant to practice. During the Phase I, catalytic direct liquefaction of sub-bituminous Wyoming coals was investigated. The process conditions and catalysts were identified that lead to a significant increase of desirable oil fraction in the products. The Phase II work focused on systematic study of solvothermal depolymerization (STD) and direct liquefaction (DCL) of carbonaceous feedstocks. The effect of the reaction conditions (the nature of solvent, solvent/lignin ratio, temperature, pressure, heating rate, and residence time) on STD was investigated. The effect of a number of various additives (including lignin, model lignin compounds, lignin-derivable chemicals, and inorganic radical initiators), solvents, and catalysts on DCL has been studied. Although a significant progress has been achieved in developing solvothermal depolymerization, the side reactions formation of considerable amounts of char and gaseous products as well as other drawbacks do not render aqueous media as the most appropriate choice for commercial implementation of STD for processing coals and lignins. The trends and effects discovered in DCL point at the specific features of liquefaction mechanism that are currently underutilized yet could be exploited to intensify the process. A judicious choice of catalysts, solvents, and additives might enable practical and economically efficient direct conversion of Wyoming coals into liquid fuels.

Polyakov, Oleg

2013-12-31T23:59:59.000Z

477

Teapot Dome: Characterization of a CO2-enhanced oil recovery and storage site in Eastern Wyoming  

Science Journals Connector (OSTI)

...storage, and underground coal gasification. Vicki Stamp has more than...unparalleled opportunity for industry and others to use the site...projects are intimately linked to industry-driven enhanced oil recovery...three-dimensional models United States waste disposal Wyoming GeoRef...

S. Julio Friedmann; Vicki W. Stamp

478

An Australian Icon - Planning and Construction of the Parkes Telescope  

E-Print Network [OSTI]

By almost any measure, the Parkes Radio Telescope is the most successful scientific instrument ever built in Australia. The telescope is unsurpassed in terms of the number of astronomers, both national and international, who have used the instrument, the number of research papers that have flowed from their research, and the sheer longevity of its operation (now over fifty years). The original planners and builders could not have envisaged that the telescope would have such an extraordinarily long and productive future. From the start, it was an international project by CSIRO that in the 1950s launched Australia into the world of `big science'. Partly funded by the US Carnegie and Rockefeller foundations, it was designed in England by Freeman Fox & Partners, and built by the German firm MAN. This article will give an overview of the origins of the idea for the telescope and the funding, planning and construction of the Parkes dish over the period 1954 to 1961.

Robertson, Peter

2012-01-01T23:59:59.000Z

479

Renewable Energy Parks Webinar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Renewable Energy Parks Webinar Renewable Energy Parks Webinar Renewable Energy Parks Webinar March 19, 2013 1:00PM MDT Webinar This free DOE webinar on "Community Renewable Energy Success Stories: Renewable Energy Parks," will take place on Tuesday, March 19, from 1:00 p.m. to 2:15 p.m. Mountain Daylight Time. The webinar will highlight how the city of Ellensburg, Washington, and the Town of Hempstead, New York, created renewable energy parks in their areas by integrating multiple renewable energy technologies. Ellensburg's Renewable Energy Park In 2006, Ellensburg, Washington, built the first community solar project in the United States. Then, as part of the Pacific Northwest Smart Grid Demonstration Project, the city expanded the original solar installation and added a variety of small wind systems and a MET tower. At the

480

GAL.CHERNEY.DOC 5/31/2011 6:46 PM SECURING THE FREE MOVEMENT OF WILDLIFE: LESSONS  

E-Print Network [OSTI]

) migration between Grand Teton National Park and the Upper Green River Basin in western Wyoming. This case .........................................................................................................606 * Research Affiliate, Center for Science and Technology Policy Research, University of Colorado

Colorado at Boulder, University of

Note: This page contains sample records for the topic "national park wyoming" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

The Wyodak-Anderson coal assessment, Powder River Basin, Wyoming and Montana -- An ArcView project  

SciTech Connect (OSTI)

In 1997, more than 305 million short tons of clean and compliant coal were produced from the Wyodak-Anderson and associated coal beds and zones of the Paleocene Fort Union Formation in the Powder River Basin, Wyoming and Montana. To date, all coal produced from the Wyodak-Anderson, which averages 0.47 percent sulfur and 6.44 percent ash, has met regulatory compliance standards. Twenty-eight percent of the total US coal production in 1997 was from the Wyodak-Anderson coal. Based on the current consumption rates and forecast by the Energy Information Administration (1996), the Wyodak-Anderson coal is projected to produce 413 million short tons by the year 2016. In addition, this coal deposit as well as other Fort Union coals have recently been targeted for exploration and development of methane gas. New US Geological Survey (USGS) digital products could provide valuable assistance in future mining and gas development in the Powder River Basin. An interactive format, with querying tools, using ArcView software will display the digital products of the resource assessment of Wyodak-Anderson coal, a part of the USGS National Coal Resource Assessment of the Powder River Basin. This ArcView project includes coverages of the data point distribution; land use; surface and subsurface ownerships; coal geology, stratigraphy, quality and geochemistry; and preliminary coal resource calculations. These coverages are displayed as map views, cross sections, tables, and charts.

Flores, R.M.; Gunther, G.; Ochs, A.; Ellis, M.E.; Stricker, G.D.; Bader, L.R. [Geological Survey, Denver, CO (United States)

1998-12-31T23:59:59.000Z

482

Craig Thomas Discovery & Visitor Center  

High Performance Buildings Database

Moose, WY Grand Teton National Park's rugged landscape and stunning array of wildlife attract nearly three million visitors every year, making it one of our most popular national parks. A new Grand Teton National Park visitor center near the park's headquarters north of Jackson, Wyoming, replaces an outdated building, educates an increased number of visitors, and inspires further exploration of this extraordinary landscape. The project site is located along the Snake River, between a riparian forest and a sagebrush meadow.

483

Secretary Moniz Announces Travel to Alaska, Idaho, Wyoming, Missouri to Discuss Energy Opportunities and Attend Dedication of Kansas City Plant  

Broader source: Energy.gov [DOE]

Energy Secretary Ernest Moniz will speak at two events in Alaska, host a meeting on the Quadrennial Energy Review in Wyoming, and attend the dedication ceremony at the opening of the Kansas City Plant in Missouri.

484

University Park STEP-UP Proposal  

Broader source: Energy.gov [DOE]

University Park STEP-UP Proposal: DE-FOA-0000148, from the Tool Kit Framework: Small Town University Energy Program (STEP).

485

Klamath and Lake Counties Agricultural Industrial Park  

Broader source: Energy.gov (indexed) [DOE]

Park Betty Riley South Central Oregon Economic Development District Engineered Geothermal Systems Demonstration Projects May 19, 2010 This presentation does not contain any...

486

DRI Research Parks Ltd | Open Energy Information  

Open Energy Info (EERE)

Sector: Services Product: General Financial & Legal Services ( Academic Research foundation ) References: DRI Research Parks Ltd1 This article is a stub. You can help OpenEI...

487

Technology Development Park PADETEC | Open Energy Information  

Open Energy Info (EERE)

Sector: Services Product: General Financial & Legal Services ( Academic Research foundation ) References: Technology Development Park (PADETEC)1 This article is a stub. You...

488

Solar Parks of Extremadura | Open Energy Information  

Open Energy Info (EERE)

Extremadura Jump to: navigation, search Name: Solar Parks of Extremadura Place: Spain Sector: Solar Product: A joint venture by Spanish Solar company Econenergias and Deutsche Bank...

489

An analysis of Utah State Park visitors  

E-Print Network [OSTI]

(camping) use, activities in the parks, group type and state or country of origin, nature of the decision to visit the park, and visitor attitudes. Average Length of Stay For the first two question discussions (average length of stay and day... Yl Ct O O 0 4 0 ttl 0I ID 0 0 Z 31 Nature of the Decision to Visit State Parks In order to better understand the visitor to Utah's State Park areas, four questions will be analyzed in this section. These questions are: 1. Have you been...

Burns, Dennis C.

2012-06-07T23:59:59.000Z

490

Burris Park, California, Site Fact Sheet  

Office of Legacy Management (LM)

and History The Burris Park, California, Site is located at 6500 Clinton Avenue, Kings County, California, in the Central Valley south of Fresno. Kings County owns the...

491

City of Ellensburg Renewable Energy Park  

Office of Energy Efficiency and Renewable Energy (EERE)

This presentation was given at the March 19, 2013, CommRE webinar on Renewable Energy Parks by Robert Titus, City of Ellensburg, Washington special projects manager.

492

PSE Science Park | Open Energy Information  

Open Energy Info (EERE)

General Financial & Legal Services ( Private family-controlled ) References PSE Science Park1 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one...

493

Area Science Park | Open Energy Information  

Open Energy Info (EERE)

General Financial & Legal Services ( Government Public sector ) References Area Science Park1 LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one...

494

UH Parking Access & Mid-Pacific Institute  

E-Print Network [OSTI]

Pacific Ocean Science & Technology Kuykendall Annex Information Technology Center Krauss Hall Holmes HallStairs Pond UH Parking Access & Mid-Pacific Institute Exit Dole Street Offices Multipurpose

495

Independent Oversight Inspection, East Tennessee Technology Park...  

Office of Environmental Management (EM)

East Tennessee Technology Park, Summary Report - May 2003 May 2003 Inspection of Environment, Safety, and Health and Emergency Management at the Oak Ridge Operations Office and...

496

Parking Infrastructure and the Environment  

E-Print Network [OSTI]

Costs and Benefits of Energy Production and Consumption.Unpriced Consequences of Energy Production and Use, National

Chester, Mikhail; Horvath, Aprad; Madanat, Samer

2011-01-01T23:59:59.000Z

497

Clean Cities: National Clean Fleets Partner: Staples  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Staples Staples to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Staples on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Staples on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Staples on Google Bookmark Clean Cities: National Clean Fleets Partner: Staples on Delicious Rank Clean Cities: National Clean Fleets Partner: Staples on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Staples on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame

498

Clean Cities: National Clean Fleets Partner: Verizon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Verizon Verizon to someone by E-mail Share Clean Cities: National Clean Fleets Partner: Verizon on Facebook Tweet about Clean Cities: National Clean Fleets Partner: Verizon on Twitter Bookmark Clean Cities: National Clean Fleets Partner: Verizon on Google Bookmark Clean Cities: National Clean Fleets Partner: Verizon on Delicious Rank Clean Cities: National Clean Fleets Partner: Verizon on Digg Find More places to share Clean Cities: National Clean Fleets Partner: Verizon on AddThis.com... Goals & Accomplishments Partnerships National Clean Fleets Partnership National Parks Initiative Electric Vehicle Infrastructure Training Program Advanced Vehicle Technology Competitions Natural Gas Transit & School Bus Users Group Natural Gas Vehicle Technology Forum Hall of Fame

499

Structure of the eastern Red Rocks and Wind Ridge thrust faults, Wyoming: how a thrust fault gains displacement along strike  

E-Print Network [OSTI]

STRUCTURE OF THE EASTERN RED ROCKS AND WIND RIDGE THRUST FAULTS, WYOMING: HOW A THRUST FAULT GAINS DISPLACEMENT ALONG STRIKE A Thesis by BRENT STANLEY HUNTSMAN Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1983 Major Subject: Geology STRUCTURE OF THE EASTERN RED ROCKS AND WIND RIDGE THRUST FAULTS, WYOMING: HOW A THRUST FAULT GAINS DISPLACEMENT ALONG STRIKE A Thesis by BRENT STANLEY HUNTSMAN...

Huntsman, Brent Stanley

1983-01-01T23:59:59.000Z

500

Basement/cover rock relations of the Dry Fork Ridge Anticline termination, northeastern Bighorn Mountains, Wyoming and Montana  

E-Print Network [OSTI]

BASEMENT/COVER ROCK RELATIONS OF THE DRY FORK RIDGE ANTICLINE TERMINATION, NORTHEASTERN BIGHORN MOUNTAINS, WYOMING AND MONTANA A Thesis by PETER HILL HENNINGS Submitted to the Graduate College of Texas ARM University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1986 Major Subject: Geology BASEMENT/COVER ROCK RELATIONS OF THE DRY FORK RIDGE ANTICLINE TERMINATION, NORTHEASTERN BIGHORN MOUNTAINS, WYOMING AND MONTANA A Thesis by PETER HILL HENNINGS Approved...

Hennings, Peter Hill

1986-01-01T23:59:59.000Z