National Library of Energy BETA

Sample records for national laboratory waste

  1. Shipping Radioactive Waste by Rail from Brookhaven National Laboratory...

    Office of Environmental Management (EM)

    Shipping Radioactive Waste by Rail from Brookhaven National Laboratory Shipping Radioactive Waste by Rail from Brookhaven National Laboratory Shipping Radioactive Waste by Rail ...

  2. Oak Ridge National Laboratory Waste Management Plan

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  3. Los Alamos National Laboratory Transuranic Waste Program Exceeds...

    Office of Environmental Management (EM)

    National Laboratory Transuranic Waste Program Exceeds Planned Shipping Goal Los Alamos National Laboratory Transuranic Waste Program Exceeds Planned Shipping Goal May 1, 2012 - ...

  4. Oak Ridge National Laboratory Waste Management Plan

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  5. Los Alamos National Laboratory Accelerates Transuranic Waste Shipments:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spurred by a major wildfire in 2011, Los Alamos National Laboratory's TRU Waste Program accelerates shipments of transuranic waste stored aboveground to the Waste Isolation Pilot Plan | Department of Energy Los Alamos National Laboratory Accelerates Transuranic Waste Shipments: Spurred by a major wildfire in 2011, Los Alamos National Laboratory's TRU Waste Program accelerates shipments of transuranic waste stored aboveground to the Waste Isolation Pilot Plan Los Alamos National Laboratory

  6. Los Alamos National Laboratory TRU Waste Update | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TRU Waste Update Los Alamos National Laboratory TRU Waste Update Topic: David Nickless presented the members with information on the status of the remaining transuranic waste at...

  7. Los Alamos National Laboratory opens new waste repackaging facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL opens new waste repackaging facility Los Alamos National Laboratory opens new waste repackaging facility The Laboratory has brought a third waste repackaging facility online to increase its capability to process nuclear waste for permanent disposal. March 7, 2013 A view of the new box line facility where transuranic waste will be repackaged at Los Alamos National Laboratory. A view of the new box line facility where transuranic waste will be repackaged at Los Alamos National Laboratory.

  8. Sandia National Laboratories: Pollution Prevention: EPA WasteWise

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EPA WasteWise EPA WasteWise Logo Sandia National Laboratories has been an EPA WasteWise partner through Pollution Prevention (P2) since 1997. P2 participates in the annual waste...

  9. Oak Ridge National Laboratory Analysis of Waste Isolation Pilot...

    Office of Environmental Management (EM)

    This document corresponds to Appendix C: Analysis Integrated Summary Report of the Technical Assessment Team Report. Oak Ridge National Laboratory Analysis of Waste Isolation Pilot ...

  10. Los Alamos National Laboratory resumes transuranic waste shipments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL resumes transuranic waste shipments Los Alamos National Laboratory resumes transuranic waste shipments The waste was received at Waste Control Specialists in Andrews, Texas, where it will be temporarily staged until it can be shipped to the Waste Isolation Pilot Plant. April 2, 2014 Los Alamos sent the first shipment to Waste Control Specialists on April 1. Los Alamos sent the first shipment to Waste Control Specialists on April 1. Contact Patti Jones Communications Office (505) 665-7748

  11. Sandia National Laboratories: No More Green Waste in the Landfill

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    No More Green Waste in the Landfill June 09, 2011 Dump Truck Image On the heels of Sandia National Laboratories' successful food waste composting program, Pollution Prevention (P2)...

  12. Los Alamos National Laboratory celebrates 1000th transuranic waste shipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL celebrates 1000th transuranic waste shipment Los Alamos National Laboratory celebrates 1000th transuranic waste shipment LANL has sent record breaking numbers of shipments to WIPP each of the past three years and is on track to further surpass its record in 2012. June 26, 2012 The Los Alamos National Laboratory's 1000th shipment of transuranic waste leaves the Laboratory on its way to the Waste Isolation Pilot Plant near Carlsbad, N.M. The Los Alamos National Laboratory's 1000th shipment of

  13. Sandia National Laboratories Hazardous Waste (RCRA) Information Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Index Permit Documents in this category include the RCRA Facility Operating Permit, applications, modification requests, and correspondence. Some of these documents are also available through the New Mexico Environment Department (NMED) Hazardous Waste Bureau. Hazardous and mixed wastes are generated during ongoing operations at Sandia National Laboratories (SNL). These wastes are stored or treated in one of nine on-site Permitted Units. The wastes and treatment residues are then packaged

  14. Sandia National Laboratories: 2011's Second Zero Waste Lunch Event

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2011's Second Zero Waste Lunch Event June 22, 2011 zero waste station Zero Waste Station In collaboration with Sandia National Laboratories' New Mexico catering crew from Sodexo and composting vendor Soilutions, Pollution Prevention (P2) led a successful "Zero Waste" Lunch Event at Hardin Field during the Student Internship Program's summer welcome event. Replacing the forest of trash cans that usually appear at picnic events, three stations were strategically arranged to divert as

  15. Sandia National Laboratories: No More Green Waste in the Landfill

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    No More Green Waste in the Landfill June 09, 2011 Dump Truck Image On the heels of Sandia National Laboratories' successful food waste composting program, Pollution Prevention (P2) has teamed with the Facilities' Grounds and Roads team and the Solid Waste Transfer Facility to implement green waste composting. Previously, branches and logs were being diverted and mulched by Kirtland Air Force Base at their Construction & Demolition Landfill that is on base and utilized under contract by

  16. Los Alamos National Laboratory selects small businesses for nuclear waste

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    services LANL selects small businesses for nuclear waste services LANL selects small businesses for nuclear waste services Environmental Dimensions, Inc.; North Wind, Inc.; Navarro Research and Engineering, Inc.; and Portage, Inc. selected to bid for a number of individual tasks. February 16, 2012 Aerial view of Los Alamos National Laboratory Aerial view of Los Alamos National Laboratory. Contact Colleen Curran Communications Office (505) 664-0344 Email Subcontract worth up to $200 million

  17. Waste Reduction plan for Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    Oak Ridge National Laboratory (ORNL) is a multipurpose research and development (R&D) facility owned and operated by the Department of Energy (DOE) and managed under subcontract by Martin Marietta Energy Systems (Energy Systems), Inc. ORNL R&D activities generate numerous small waste streams. In the hazardous waste category alone, over 300 streams of a diverse nature exist. Generation avoidance, reduction or recycling of wastes is an important goal in maintaining efficiency of ORNL R&D activities and protection of workers, the public, and the environment. Waste minimization is defined as any action that minimizes or eliminates the volume or toxicity of waste by avoiding its generation or recycling. This is accomplished by material substitution and inventory management, process modification, or recycling wastes for reuse. Waste reduction is defined as waste minimization plus treatment which results in volume or toxicity reduction. The ORNL Waste Reduction Program will include both waste minimization and waste reduction activities.

  18. Waste Reduction plan for Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    Oak Ridge National Laboratory (ORNL) is a multipurpose research and development (R D) facility owned and operated by the Department of Energy (DOE) and managed under subcontract by Martin Marietta Energy Systems (Energy Systems), Inc. ORNL R D activities generate numerous small waste streams. In the hazardous waste category alone, over 300 streams of a diverse nature exist. Generation avoidance, reduction or recycling of wastes is an important goal in maintaining efficiency of ORNL R D activities and protection of workers, the public, and the environment. Waste minimization is defined as any action that minimizes or eliminates the volume or toxicity of waste by avoiding its generation or recycling. This is accomplished by material substitution and inventory management, process modification, or recycling wastes for reuse. Waste reduction is defined as waste minimization plus treatment which results in volume or toxicity reduction. The ORNL Waste Reduction Program will include both waste minimization and waste reduction activities.

  19. Oak Ridge National Laboratory Analysis of Waste Isolation Pilot Plant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Samples: Integrated Summary Report | Department of Energy Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report Oak Ridge National Laboratory Analysis of Waste Isolation Pilot Plant Samples: Integrated Summary Report This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. The Technical Assessment Team (TAT) has undertaken a

  20. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    SciTech Connect (OSTI)

    Salzman, Sonja L.; English, Charles J.

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  1. Los Alamos National Laboratory Hazardous Waste Permit

    Office of Environmental Management (EM)

    ATTACHMENTS Attachment A Technical Area Unit Descriptions Attachment B Part A Application Attachment C Waste Analysis Plan Attachment D Contingency Plan Attachment E Inspection...

  2. Oak Ridge National Laboratory Waste Management Plan. Revision 1

    SciTech Connect (OSTI)

    Forgy, Jr., J. R.

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  3. Los Alamos National Laboratory TRU waste sampling projects

    SciTech Connect (OSTI)

    Yeamans, D.; Rogers, P.; Mroz, E.

    1997-02-01

    The Los Alamos National Laboratory (LANL) has begun characterizing transuranic (TRU) waste in order to comply with New Mexico regulations, and to prepare the waste for shipment and disposal at the Waste Isolation Pilot Plant (WIPP), near Carlsbad, New Mexico. Sampling consists of removing some head space gas from each drum, removing a core from a few drums of each homogeneous waste stream, and visually characterizing a few drums from each heterogeneous waste stream. The gases are analyzed by GC/MS, and the cores are analyzed for VOC`s and SVOC`s by GC/MS and for metals by AA or AE spectroscopy. The sampling and examination projects are conducted in accordance with the ``DOE TRU Waste Quality Assurance Program Plan`` (QAPP) and the ``LANL TRU Waste Quality Assurance Project Plan,`` (QAPjP), guaranteeing that the data meet the needs of both the Carlsbad Area Office (CAO) of DOE and the ``WIPP Waste Acceptance Criteria, Rev. 5,`` (WAC).

  4. Los Alamos National Laboratory TRU Waste Status

    Broader source: Energy.gov [DOE]

    At the July 9, 2014 Committee meeting Lee Bishop DOE, Provided Information on the 3706 Campaign and Nitrate Salt Waste Storage at LANL. Information on the Administrative Order Issued by the New Mexico Environment Department was also Discussed.

  5. Sandia National Laboratories, California Waste Management Program annual report.

    SciTech Connect (OSTI)

    Brynildson, Mark E.

    2010-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  6. Oak Ridge National Laboratory Transuranic Waste Certification Program

    SciTech Connect (OSTI)

    Smith, J.H.; Bates, L.D.; Box, W.D.; Aaron, W.S.; Setaro, J.A.

    1988-08-01

    The US Department of Energy (DOE) has requested that all DOE facilities handling defense transuranic (TRU) waste develop and implement a program whereby all TRU waste will be contained, stored, and shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in the DOE certification documents WIPP-DOE-069, 114, 120, 137, 157, and 158. The program described in this report describes how Oak Ridge National Laboratory (ORNL) intends to comply with these requirements and the techniques and procedures used to ensure that ORNL TRU wastes are certifiable for shipment to WIPP. This document describes the program for certification of newly generated (NG) contact-handled transuranic (CH-TRU) waste. Previsions have been made for addenda, which will extend the coverage of this document to include certification of stored CH-TRU and NG and stored remote-handled transuranic (RH-TRU) waste, as necessary. 24 refs., 11 figs., 4 tabs.

  7. The value of assessments in Lawrence Livermore National Laboratory`s Waste Certification Programs

    SciTech Connect (OSTI)

    Ryan, E.M.

    1995-05-01

    This paper will discuss the value of assessments in Lawrence Livermore National Laboratory`s Waste Certification Programs by: introducing the organization and purpose of the LLNL Waste Certification Programs for transuranic, low-level, and hazardous waste; examining the differences in internal assessment/audit requirements for these programs; discussing the values and costs of assessments in a waste certification program; presenting practical recommendations to maximize the value of your assessment programs; and presenting improvements in LLNL`s waste certification processes that resulted from assessments.

  8. Lawrence Livermore National Laboratory (LLNL) Waste Minimization Program Plan

    SciTech Connect (OSTI)

    Heckman, R.A. ); Tang, W.R. )

    1989-08-04

    This Program Plan document describes the background of the Waste Minimization field at Lawrence Livermore National Laboratory (LLNL) and refers to the significant studies that have impacted on legislative efforts, both at the federal and state levels. A short history of formal LLNL waste minimization efforts is provided. Also included are general findings from analysis of work to date, with emphasis on source reduction findings. A short summary is provided on current regulations and probable future legislation which may impact on waste minimization methodology. The LLN Waste Minimization Program Plan is designed to be dynamic and flexible so as to meet current regulations, and yet is able to respond to an everchanging regulatory environment. 19 refs., 12 figs., 8 tabs.

  9. Sandia National Laboratories Hazardous Waste (RCRA) Information Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Index Reports The Department of Energy (DOE) and Sandia Corporation (Sandia) prepare notifications, reports, and other correspondence about waste management activities under the Resource Conservation and Recovery Act (RCRA) Facility Operating Permit at Sandia National Laboratories (SNL) in Albuquerque, New Mexico. DOE and Sandia submit the documents to the New Mexico Environment Department (NMED). Documents in this category include reports, notifications, and correspondence between the DOE,

  10. Sandia National Laboratories Hazardous Waste (RCRA) Information Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Index Permit Information Repository Index The Information Repository is a collection of documents concerning hazardous and mixed waste management under the RCRA Facility Operating Permit at Sandia National Laboratories (SNL), located in Albuquerque New Mexico. Hard copies of the documents are available for review at Zimmerman Library, located near Roma Avenue and Yale Boulevard on the University of New Mexico main campus in Albuquerque. Electronic copies will be available at a later date.

  11. Reuse of waste cutting sand at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Mathews, S., LLNL

    1998-02-25

    Lawrence Livermore National Laboratory (LLNL) examined the waste stream from a water jet cutting operation, to evaluate the possible reuse of waste garnet sand. The sand is a cutting agent used to shape a variety of materials, including metals. Nearly 70,000 pounds of waste sand is generated annually by the cutting operation. The Environmental Protection Department evaluated two potential reuses for the spent garnet sand: backfill in utility trenches; and as a concrete constituent. In both applications, garnet waste would replace the sand formerly purchases by LLNL for these purposes. Findings supported the reuse of waste garnet sand in concrete, but disqualified its proposed application as trench backfill. Waste sand stabilized in ac concrete matrix appeared to present no metals-leaching hazard; however, unconsolidated sand in trenches could potentially leach metals in concentrations high enough to threaten ground water quality. A technical report submitted to the San Francisco Bay Regional Water Quality Control Board was reviewed and accepted by that body. Reuse of waste garnet cutting sand as a constituent in concrete poured to form walkways and patios at LLNL was approved.

  12. Los Alamos National Laboratory opens new waste repackaging facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos to repackage transuranic (TRU) waste stored in large boxes. Built inside a dome once used to house containers of waste at the Laboratory, the facility is the largest...

  13. Idaho National Engineering Laboratory Waste Management Operations Roadmap Document

    SciTech Connect (OSTI)

    Bullock, M.

    1992-04-01

    At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.

  14. ACCELERATION OF LOS ALAMOS NATIONAL LABORATORY TRANSURANIC WASTE DISPOSITION

    SciTech Connect (OSTI)

    O'LEARY, GERALD A.

    2007-01-04

    One of Los Alamos National Laboratory's (LANL's) most significant risks is the site's inventory of transuranic waste retrievably stored above and below-ground in Technical Area (TA) 54 Area G, particularly the dispersible high-activity waste stored above-ground in deteriorating facilities. The high activity waste represents approximately 50% (by activity) of the total 292,000 PE-Ci inventory remaining to be disposed. The transuramic waste inventory includes contact-handled and remote-handled waste packaged in drums, boxes, and oversized containers which are retrievably stored both above and below-ground. Although currently managed as transuranic waste, some of the inventory is low-level waste that can be disposed onsite or at approved offsite facilities. Dispositioning the transuranic waste inventory requires retrieval of the containers from above and below-ground storage, examination and repackaging or remediation as necessary, characterization, certification and loading for shipment to the Waste Isolation Pilot Plant in Carlsbad New Mexico, all in accordance with well-defined requirements and controls. Although operations are established to process and characterize the lower-activity contact-handled transuranic waste containers, LAN L does not currently have the capability to repack high activity contact-handled transuranic waste containers (> 56 PE-Ci) or to process oversized containers with activity levels over 0.52 PE-Ci. Operational issues and compliance requirements have resulted in less than optimal processing capabilities for lower activity contact-handled transuranic waste containers, limiting preparation and reducing dependability of shipments to the Waste Isolation Pilot Plant. Since becoming the Los Alamos National Laboratory contract in June 2006, Los Alamos National Security (LANS) L.L.C. has developed a comprehensive, integrated plan to effectively and efficiently disposition the transuranic waste inventory, working in concert with the Department of

  15. Waste characterization for radioactive liquid waste evaporators at Argonne National Laboratory - West.

    SciTech Connect (OSTI)

    Christensen, B. D.

    1999-02-15

    Several facilities at Argonne National Laboratory - West (ANL-W) generate many thousand gallons of radioactive liquid waste per year. These waste streams are sent to the AFL-W Radioactive Liquid Waste Treatment Facility (RLWTF) where they are processed through hot air evaporators. These evaporators remove the liquid portion of the waste and leave a relatively small volume of solids in a shielded container. The ANL-W sampling, characterization and tracking programs ensure that these solids ultimately meet the disposal requirements of a low-level radioactive waste landfill. One set of evaporators will process an average 25,000 gallons of radioactive liquid waste, provide shielding, and reduce it to a volume of six cubic meters (container volume) for disposal. Waste characterization of the shielded evaporators poses some challenges. The process of evaporating the liquid and reducing the volume of waste increases the concentrations of RCIU regulated metals and radionuclides in the final waste form. Also, once the liquid waste has been processed through the evaporators it is not possible to obtain sample material for characterization. The process for tracking and assessing the final radioactive waste concentrations is described in this paper, The structural components of the evaporator are an approved and integral part of the final waste stream and they are included in the final waste characterization.

  16. Successful Waste Treatment Methods at Sandia National Laboratories

    SciTech Connect (OSTI)

    Rast, D.M.; Thompson, J.J.; Cooper, T.W.; Stockham, D.J

    2007-07-01

    During the remediation of the waste landfills at Sandia National Laboratory in Albuquerque, New Mexico nine drums of mock high explosives were generated. This mixed waste stream was proposed to several offsite vendors for treatment and prices ranged from $2.50 to $10 per gram a total cost estimated to be in excess of $2 million dollars. This cost represents more than 30 percent of the annual budget for the Sandia Waste Management Operations. Concentrated solutions of common oxidizers, such as nitrates, nitrites, and peroxides, will also act as oxidizers and will give positive results in the Hazard Categorization oxidizer test. These solutions carry an EPA Hazardous Waste Number D001, Ignitable Waste, and Oxidizer as defined in 49 CFR 173.151. Sandia decided that given budget and time constraints to meet a Federal Facilities Compliance Act milestone, a process for onsite treatment should be evaluated. Clean samples of mock high explosive materials were obtained from Pantex excess inventory and treatability studies initiated to develop a treatment formula and process. The following process was developed and implemented in the summer of 2006: - Size reduction to allow for dissolution of the barium nitrate in water; - Dissolution of the Mock HE in water; - Deactivation of the oxidizer; - Stabilization of the barium and the cadmium contamination present as an underlying hazardous constituent. This project was completed and the treatment milestone achieved for less than $300,000. The Disassembly Sanitization Operation (DSO) is a process that was implemented to support weapon disassembly and disposition using recycling and waste minimization while achieving the demilitarization mission. The Department of Energy is faced with disassembling and disposition of a huge inventory of retired weapons, components, training equipment, spare parts, and weapon maintenance equipment. Environmental regulations have caused a dramatic increase for information needed to support the

  17. Microsoft Word - Los Alamos National Laboratory ships remote-handled transuranic waste to WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Ships Remote-Handled Transuranic Waste to WIPP CARLSBAD, N.M., June 3, 2009 - Cleanup of the nation's defense-related transuranic (TRU) waste has reached an important milestone. Today, the first shipment of remote-handled (RH) TRU waste from Los Alamos National Laboratory (LANL) in New Mexico arrived safely at the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP) in the southeast corner of the state. "Shipping this waste to WIPP is important

  18. DOE Awards Small Business Contract for Los Alamos National Laboratory Waste

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Handling Services | Department of Energy Los Alamos National Laboratory Waste Handling Services DOE Awards Small Business Contract for Los Alamos National Laboratory Waste Handling Services September 28, 2012 - 12:00pm Addthis Media Contact Bill Taylor bill.taylor@srs.gov 803-952-8564 Cincinnati - The Department of Energy (DOE) today awarded a contract to Terranear PMC of Irving, TX, a small-disadvantaged business under the Small Business Administration's 8(a) Program for waste handling

  19. Final remote-handled waste canister leaves Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remote-handled waste canister leaves LANL Final remote-handled waste canister leaves Los Alamos National Laboratory The Laboratory began shipping the canisters exactly one month ago and averaged four shipments per week. July 2, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los

  20. Idaho National Engineering Laboratory nonradiological waste management information for 1994 and record to date

    SciTech Connect (OSTI)

    French, D.L.; Lisee, D.J.; Taylor, K.A.

    1995-08-01

    This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1994. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

  1. DOE Awards Task Order for Disposal of Los Alamos National Laboratory Waste

    Broader source: Energy.gov [DOE]

    Cincinnati - The Department of Energy (DOE) today awarded a task order in support of the Los Alamos National Laboratory Legacy Waste Project to Waste Control Specialists (WCS) of Andrews, Texas under the Environmental Management (EM) Low-Level and Mixed Low-Level Waste Disposal Indefinite Delivery/Indefinite Quantity (ID/IQ) Master Contract.

  2. Idaho National Engineering Laboratory Nonradiological Waste Management Information for 1992 and record to date

    SciTech Connect (OSTI)

    Randall, V.C.; Sims, A.M.

    1993-08-01

    This document provides detailed data and graphics on airborne and liquid effluent releases, fuel oil and coal consumption, water usage, and hazardous and mixed waste generated for calendar year 1992. This report summarizes industrial waste data records compiled since 1971 for the Idaho National Engineering Laboratory (INEL). The data presented are from the INEL Nonradiological Waste Management Information System.

  3. Radiological, physical, and chemical characterization of transuranic wastes stored at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Apel, M.L.; Becker, G.K.; Ragan, Z.K.; Frasure, J.; Raivo, B.D.; Gale, L.G.; Pace, D.P.

    1994-03-01

    This document provides radiological, physical and chemical characterization data for transuranic radioactive wastes and transuranic radioactive and hazardous (i.e., mixed) wastes stored at the Idaho National Engineering Laboratory and considered for treatment under the Private Sector Participation Initiative Program (PSPI). Waste characterization data are provided in the form of INEL Waste Profile Sheets. These documents provide, for each content code, information on waste identification, waste description, waste storage configuration, physical/chemical waste composition, radionuclide and associated alpha activity waste characterization data, and hazardous constituents present in the waste. Information is provided for 139 waste streams which represent an estimated total volume of 39,380{sup 3} corresponding to a total mass of approximately 19,000,000 kg. In addition, considerable information concerning alpha, beta, gamma, and neutron source term data specific to Rocky Flats Plant generated waste forms stored at the INEL are provided to assist in facility design specification.

  4. Customer service model for waste tracking at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Dorries, Alison M; Montoya, Andrew J; Ashbaugh, Andrew E

    2010-11-10

    The deployment of any new software system in a production facility will always face multiple hurtles in reaching a successful acceptance. However, a new waste tracking system was required at the plutonium processing facility at Los Alamos National Laboratory (LANL) where waste processing must be integrated to handle Special Nuclear Materials tracking requirements. Waste tracking systems can enhance the processing of waste in production facilities when the system is developed with a focus on customer service throughout the project life cycle. In March 2010 Los Alamos National Laboratory Waste Technical Services (WTS) replaced the aging systems and infrastructure that were being used to support the plutonium processing facility. The Waste Technical Services (WTS) Waste Compliance and Tracking System (WCATS) Project Team, using the following customer service model, succeeded in its goal to meet all operational and regulatory requirements, making waste processing in the facility more efficient while partnering with the customer.

  5. EA-0843: Idaho National Engineering Laboratory Low-Level and Mixed Waste Processing, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to (1) reduce the volume of the U.S. Department of Energy's Idaho National Engineering Laboratory's (INEL) generated low-level waste (LLW)...

  6. Los Alamos National Laboratory transuranic waste quality assurance project plan. Revision 1

    SciTech Connect (OSTI)

    NONE

    1997-04-14

    This Transuranic (TRU) Waste Quality Assurance Project Plan (QAPjP) serves as the quality management plan for the characterization of transuranic waste in preparation for certification and transportation. The Transuranic Waste Characterization/Certification Program (TWCP) consists of personnel who sample and analyze waste, validate and report data; and provide project management, quality assurance, audit and assessment, and records management support, all in accordance with established requirements for disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP) facility. This QAPjP addresses how the TWCP meets the quality requirements of the Carlsbad Area Office (CAO) Quality Assurance Program Description (QAPD) and the technical requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP). The TWCP characterizes and certifies retrievably stored and newly generated TRU waste using the waste selection, testing, sampling, and analytical techniques and data quality objectives (DQOs) described in the QAPP, the Los Alamos National Laboratory Transuranic Waste Certification Plan (Certification Plan), and the CST Waste Management Facilities Waste Acceptance Criteria and Certification [Los Alamos National Laboratory (LANL) Waste Acceptance Criteria (WAC)]. At the present, the TWCP does not address remote-handled (RH) waste.

  7. EIS-0133: Decontamination and Waste Treatment Facility for the Lawrence Livermore National Laboratory, Livermore, California

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy’s San Francisco Operations Office developed this draft environmental impact statement to analyze the potential environmental and socioeconomic impacts of alternatives for constructing and operating a Decontamination and Waste Treatment Facility for nonradioactive (hazardous and nonhazardous) mixed and radioactive wastes at Lawrence Livermore National Laboratory.

  8. Development and pilot demonstration program of a waste minimization plan at Argonne National Laboratory

    SciTech Connect (OSTI)

    Peters, R.W.; Wentz, C.A.; Thuot, J.R.

    1991-01-01

    In response to US Department of Energy directives, Argonne National Laboratory (ANL) has developed a waste minimization plan aimed at reducing the amount of wastes at this national research and development laboratory. Activities at ANL are primarily research- oriented and as such affect the amount and type of source reduction that can be achieved at this facility. The objective of ANL's waste minimization program is to cost-effectively reduce all types of wastes, including hazardous, mixed, radioactive, and nonhazardous wastes. The ANL Waste Minimization Plan uses a waste minimization audit as a systematic procedure to determine opportunities to reduce or eliminate waste. To facilitate these audits, a computerized bar-coding procedure is being implemented at ANL to track hazardous wastes from where they are generated to their ultimate disposal. This paper describes the development of the ANL Waste Minimization Plan and a pilot demonstration of the how the ANL Plan audited the hazardous waste generated within a selected divisions of ANL. It includes quantitative data on the generation and disposal of hazardous waste at ANL and describes potential ways to minimize hazardous wastes. 2 refs., 5 figs., 8 tabs.

  9. Preparing Los Alamos National Laboratory's Waste Management Program for the Future - 12175

    SciTech Connect (OSTI)

    Jones, Scotty W.; Dorries, Alison M.; Singledecker, Steven [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545 (United States); Henckel, George [Los Alamos Site Office, MS-A316, Los Alamos, NM 87544 (United States)

    2012-07-01

    The waste management program at Los Alamos National Laboratory (LANL) is undergoing significant transition to establish a lean highly functioning waste management program that will succeed the large environmental cleanup waste management program. In the coming years, the environmental cleanup activities will be mostly completed and the effort will change to long-term stewardship. What will remain in waste management is a smaller program focused on direct off-site shipping to cost-effectively enable the enduring mission of the laboratory in support of the national nuclear weapons program and fundamental science and research. It is essential that LANL implement a highly functioning efficient waste management program in support of the core missions of the national weapons program and fundamental science and research - and LANL is well on the way to that goal. As LANL continues the transition process, the following concepts have been validated: - Business drivers including the loss of onsite disposal access and completion of major environmental cleanup activities will drive large changes in waste management strategies and program. - A well conceived organizational structure; formal management systems; a customer service attitude; and enthusiastic managers are core to a successful waste management program. - During times of organizational transition, a project management approach to managing change in a complex work place with numerous complex deliverables is successful strategy. - Early and effective engagement with waste generators, especially Project Managers, is critical to successful waste planning. - A well-trained flexible waste management work force is vital. Training plans should include continuous training as a strategy. - A shared fate approach to managing institutional waste decisions, such as the LANL Waste Management Recharge Board is effective. - An efficient WM program benefits greatly from modern technology and innovation in managing waste data and

  10. Oak Ridge National Laboratory TRU Waste Processing Center Tank...

    Office of Environmental Management (EM)

    ... BVEST W-Tank System Control Trailer Off-Gas Skid Pipe bridge Jet Pump Skid Charge Vessels W-21 W-22 W-23 Valve Skid SL Mobilization ORNL TRU Waste Processing Center Questions 242 A ...

  11. Environmental Assessment Idaho National Engineering Laboratory, low-level and mixed waste processing

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0843, for the Idaho National Engineering Laboratory (INEL) low-level and mixed waste processing. The original proposed action, as reviewed in this EA, was (1) to incinerate INEL`s mixed low-level waste (MLLW) at the Waste Experimental Reduction Facility (WERF); (2) reduce the volume of INEL generated low-level waste (LLW) through sizing, compaction, and stabilization at the WERF; and (3) to ship INEL LLW to a commercial incinerator for supplemental LLW volume reduction.

  12. Options assessment report: Treatment of nitrate salt waste at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Robinson, Bruce Alan; Stevens, Patrice Ann

    2015-09-16

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognized that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and the a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL's preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  13. Los Alamos National Laboratory transuranic waste characterization and certification program - an overview of capabilities and capacity

    SciTech Connect (OSTI)

    Rogers, P.S.Z.; Sinkule, B.J.; Janecky, D.R.; Gavett, M.A. [and others

    1997-02-01

    The Los Alamos National Laboratory (LANL) has full capability to characterize transuranic (TRU) waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) for its projected opening. LANL TRU waste management operations also include facilities to repackage both drums of waste found not to be certifiable for WIPP and oversized boxes of waste that must be size reduced for shipment to WIPP. All characterization activities and repackaging are carried out under a quality assurance program designed to meet Carlsbad Area Office (CAO) requirements. The flow of waste containers through characterization operations, the facilities used for characterization, and the electronic data management system used for data package preparation and certification of TRU waste at LANL are described.

  14. Sorbent Testing for the Solidification of Unidentified Rocky Flats Laboratory Waste Stored at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Bickford, J.; Kimmitt, R.

    2007-07-01

    At the request of the U.S. Department of Energy (DOE), MSE Technology Applications, Inc. (MSE) evaluated various commercially available sorbents to solidify unidentified laboratory liquids from Rocky Flats that are stored at the Idaho National Laboratory (INL). The liquids are a collection of laboratory wastes that were generated from various experiments and routine analytical laboratory activities carried out at Rocky Flats. The liquids are in bottles discovered inside of buried waste drums being exhumed from the subsurface disposal area at the Radioactive Waste Management Complex (RWMC) by the contractor, CH2M Hill Washington International (CWI). Free liquids are unacceptable at the Waste Isolation Pilot Plant (WIPP), and some of these liquids cannot be returned to the retrieval pit. Stabilization of the liquids into a solid mass will allow these materials to be sent to an appropriate disposal location. The selected sorbent or sorbent combinations should produce a stabilized mass that is capable of withstanding conditions similar to those experienced during storage, shipping, and burial. The final wasteform should release less than 1% liquid by volume per the WIPP Waste Acceptance Criteria (WAC). The absence or presence of free liquid in the solidified waste-forms was detected when tested by SW-846, Method 9095B, Paint Filter Free Liquids, and the amount of liquid released from the wasteform was determined by SW-846, Method 9096, Liquid Release Test. Reactivity testing was also conducted on the solidified laboratory liquids. (authors)

  15. The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory OAS-L-13-15 September 2013 Department of Energy Washington, DC 20585 September 26, 2013 MEMORANDUM FOR THE ASSOCIATE ADMINISTRATOR FOR ACQUISITION AND PROJECT MANAGEMENT MANAGER LOS ALAMOS FIELD OFFICE FROM: David Sedillo Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos

  16. Sandia National Laboratories, California Waste Management Program annual report : February 2009.

    SciTech Connect (OSTI)

    Brynildson, Mark E.

    2009-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System rogram Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  17. Sandia National Laboratories California Waste Management Program Annual Report February 2008.

    SciTech Connect (OSTI)

    Brynildson, Mark E.

    2008-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  18. Sandia National Laboratories Hazardous Waste (RCRA) Information Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Index Hazardous Waste (RCRA) Information Repository Index Reading List Subject / Description Zimmerman ID There are no items on your reading list Print Instructions for Zimmerman Library Zimmerman Library is located near Roma Avenue and Yale Boulevard on the University of New Mexico main campus in Albuquerque. We strongly recommend making an appointment for document review, but you are not required to do so. To make an appointment, please contact Monica Dorame in the Government Information

  19. CRAD, Conduct of Operations- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Conduct of Operations Program portion of an Operational Readiness Review at the Los Alamos National Laboratory, Waste Characterization, Reduction, and Repackaging Facility.

  20. CRAD, Environmental Protection- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Environmental Compliance Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  1. CRAD, Quality Assurance- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Quality Assurance Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  2. CRAD, Fire Protection- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Fire Protection Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  3. CRAD, Emergency Management- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Emergency Management Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  4. CRAD, Training- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Training Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  5. CRAD, Radiological Controls- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Radiation Protection Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  6. CRAD, DOE Oversight- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Conduct of Operations Program portion of an Operational Readiness Review at the Los Alamos National Laboratory, Waste Characterization, Reduction, and Repackaging Facility.

  7. CRAD, Engineering- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Engineering Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  8. CRAD, Occupational Safety & Health- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Occupational and Industrial Safety and Hygiene Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  9. CRAD, Maintenance- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Maintenance Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  10. CRAD, Safety Basis- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Safety Basis portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  11. CRAD, Management- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Management portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  12. Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994. Revision 3

    SciTech Connect (OSTI)

    Turner, J.W.

    1993-12-01

    US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, {open_quotes}Waste Management Plan Outline.{close_quotes} These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES&H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY) 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are documented.

  13. DOE Awards Task Order for Disposal of Los Alamos National Laboratory Waste

    Broader source: Energy.gov [DOE]

    Cincinnati - The Department of Energy (DOE) today awarded a task order in support of the Los Alamos National Laboratory Legacy Waste Project to Waste Control Specialists (WCS) of Andrews, Texas under the Environmental Management (EM) Low-Level and Mixed Low-Level Waste Disposal Indefinite Delivery/Indefinite Quantity (ID/IQ) Master Contract. The award is a firm, fixed-price task order, based on pre-established rates with a $1.29 million value and has a one-year performance period.

  14. An Effective Waste Management Process for Segregation and Disposal of Legacy Mixed Waste at Sandia National Laboratories/New Mexico

    SciTech Connect (OSTI)

    Hallman, Anne K.; Meyer, Dann; Rellergert, Carla A.; Schriner, Joseph A.

    1998-06-01

    Sandia National Laboratories/New Mexico (SNL/NM) is a research and development facility that generates many highly diverse, low-volume mixed waste streams. Under the Federal Facility Compliance Act, SNL/NM must treat its mixed waste in storage to meet the Land Disposal Restrictions treatment standards. Since 1989, approximately 70 cubic meters (2500 cubic feet) of heterogeneous, poorly characterized and inventoried mixed waste was placed in storage that could not be treated as specified in the SNL/NM Site Treatment Plan. A process was created to sort the legacy waste into sixteen well- defined, properly characterized, and precisely inventoried mixed waste streams (Treatability Groups) and two low-level waste streams ready for treatment or disposal. From June 1995 through September 1996, the entire volume of this stored mixed waste was sorted and inventoried through this process. This process was planned to meet the technical requirements of the sorting operation and to identify and address the hazards this operation presented. The operations were routinely adapted to safely and efficiently handle a variety of waste matrices, hazards, and radiological conditions. This flexibility was accomplished through administrative and physical controls integrated into the sorting operations. Many Department of Energy facilities are currently facing the prospect of sorting, characterizing, and treating a large inventory of mixed waste. The process described in this paper is a proven method for preparing a diverse, heterogeneous mixed waste volume into segregated, characterized, inventoried, and documented waste streams ready for treatment or disposal.

  15. Key regulatory drivers affecting shipments of mixed transuranic waste from Los Alamos National Laboratory to the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Schumann, P.B.; Bacigalupa, G.A.; Kosiewicz, S.T.; Sinkule, B.J.

    1997-02-01

    A number of key regulatory drivers affect the nature, scope, and timing of Los Alamos National Laboratory`s (LANL`s) plans for mixed transuranic (MTRU) waste shipments to the Waste Isolation Pilot Plant (WIPP), which are planned to commence as soon as possible following WIPP`s currently anticipated November, 1997 opening date. This paper provides an overview of some of the key drivers at LANL, particularly emphasizing those associated with the hazardous waste component of LANL`s MTRU waste (MTRU, like any mixed waste, contains both a radioactive and a hazardous waste component). The key drivers discussed here derive from the federal Resource Conservation and Recovery Act (RCRA) and its amendments, including the Federal Facility Compliance Act (FFCAU), and from the New Mexico Hazardous Waste Act (NMHWA). These statutory provisions are enforced through three major mechanisms: facility RCRA permits; the New Mexico Hazardous Waste Management Regulations, set forth in the New Mexico Administrative Code, Title 20, Chapter 4, Part 1: and compliance orders issued to enforce these requirements. General requirements in all three categories will apply to MTRU waste management and characterization activities at both WIPP and LANL. In addition, LANL is subject to facility-specific requirements in its RCRA hazardous waste facility permit, permit conditions as currently proposed in RCRA Part B permit applications presently being reviewed by the New Mexico Environment Department (NNED), and facility-specific compliance orders related to MTRU waste management. Likewise, permitting and compliance-related requirements specific to WIPP indirectly affect LANL`s characterization, packaging, record-keeping, and transportation requirements for MTRU waste. LANL must comply with this evolving set of regulatory requirements to begin shipments of MTRU waste to WIPP in a timely fashion.

  16. Innovative environmental restoration and waste management technologies at Argonne National Laboratory

    SciTech Connect (OSTI)

    Helt, J.E.

    1993-09-01

    Cleanup of contaminated sites and management of wastes have become major efforts of the US Department of Energy. Argonne National Laboratory (ANL) is developing several new technologies to meet the needs of this national effort. Some of these efforts are being done in collaboration with private sector firms. An overview of the ANL and private sector efforts will be presented. The following four specific technologies will be discussed in detail: (1) a minimum additive waste stabilization (MAWS) system for treating actinide-contaminated soil and groundwater; (2) a magnetic separation system, also for cleanup of actinide-contaminated soil and groundwater; (3) a mobile evaporator/concentrator system for processing aqueous radioactive and mixed waste; and (4) a continuous emission monitor for ensuring that waste incineration meets environmental goals.

  17. Final environmental assessment: TRU waste drum staging building, Technical Area 55, Los Alamos National Laboratory

    SciTech Connect (OSTI)

    1996-02-09

    Much of the US Department of Energy`s (DOE`s) research on plutonium metallurgy and plutonium processing is performed at Los Alamos National Laboratory (LANL), in Los Alamos, New Mexico. LANL`s main facility for plutonium research is the Plutonium Facility, also referred to as Technical Area 55 (TA-55). The main laboratory building for plutonium work within the Plutonium Facility (TA-55) is the Plutonium Facility Building 4, or PF-4. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if DOE were to stage sealed containers of transuranic (TRU) and TRU mixed waste in a support building at the Plutonium Facility (TA-55) that is adjacent to PF-4. At present, the waste containers are staged in the basement of PF-4. The proposed project is to convert an existing support structure (Building 185), a prefabricated metal building on a concrete foundation, and operate it as a temporary staging facility for sealed containers of solid TRU and TRU mixed waste. The TRU and TRU mixed wastes would be contained in sealed 55-gallon drums and standard waste boxes as they await approval to be transported to TA-54. The containers would then be transported to a longer term TRU waste storage area at TA-54. The TRU wastes are generated from plutonium operations carried out in PF-4. The drum staging building would also be used to store and prepare for use new, empty TRU waste containers.

  18. Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program

    SciTech Connect (OSTI)

    Connolly, M.J.; Sayer, D.L.

    1993-11-01

    EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.

  19. Update of the management strategy for Oak Ridge National Laboratory Liquid Low-Level Waste

    SciTech Connect (OSTI)

    Robinson, S.M.; Abraham, T.J.; DePaoli, S.M.; Walker, A.B.

    1995-04-01

    The strategy for management of the Oak Ridge National Laboratory`s (ORNL) radioactively contaminated liquid waste was reviewed in 1991. The latest information available through the end of 1990 on waste characterization, regulations, US Department of Energy (DOE) budget guidance, and research and development programs was evaluated to determine how the strategy should be revised. Few changes are needed to update the strategy to reflect new waste characterization, research, and regulatory information. However, recent budget guidance from DOE indicates that minimum funding will not be sufficient to accomplish original objectives to upgrade the liquid low-level waste (LLLW) system to comply with the Federal Facilities Agreement, provide long-term LLLW treatment capability, and minimize environmental, safety, and health risks. Options are presented that might allow the ORNL LLLW system to continue operations temporarily, but they would significantly reduce its capabilities to handle emergency situations, provide treatment for new waste streams, and accommodate waste from the Environmental Restoration Program and from decontamination and decommissioning of surplus facilities. These options are also likely to increase worker radiation exposure, risk of environmental insult, and generation of solid waste for on-site and off-site disposal/storage beyond existing facility capacities. The strategy will be fully developed after receipt of additional guidance. The proposed budget limitations are too severe to allow ORNL to meet regulatory requirements or continue operations long term.

  20. leaves Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Milestone reached: Waste shipment leaves Los Alamos National Laboratory June 2, 2009 Remote-handled transuranic waste will go to WIPP LOS ALAMOS, New Mexico, June 2, 2009 - Los Alamos National Laboratory officials today announced the departure of the Laboratory's first shipment of a special type of radioactive waste destined for the Waste Isolation Pilot Plant in Carlsbad, New Mexico. The material, known as "remote-handled transuranic waste" (RH-TRU), has been stored at the Laboratory

  1. Lawrence Livermore National Laboratory low-level waste systems performance assessment

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    This Low-Level Radioactive Waste (LLW) Systems Performance Assessment (PA) presents a systematic analysis of the potential risks posed by the Lawrence Livermore National Laboratory (LLNL) waste management system. Potential risks to the public and environment are compared to established performance objectives as required by DOE Order 5820.2A. The report determines the associated maximum individual committed effective dose equivalent (CEDE) to a member of the public from LLW and mixed waste. A maximum annual CEDE of 0.01 mrem could result from routine radioactive liquid effluents. A maximum annual CEDE of 0.003 mrem could result from routine radioactive gaseous effluents. No other pathways for radiation exposure of the public indicated detectable levels of exposure. The dose rate, monitoring, and waste acceptance performance objectives were found to be adequately addressed by the LLNL Program. 88 refs., 3 figs., 17 tabs.

  2. Inspection Report - Radiological Waste Operations in Area G at Los Alamos National Laboratory, INS-O-13-03

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inspection Report Radiological Waste Operations in Area G at Los Alamos National Laboratory INS-O-13-03 March 2013 Department of Energy Washington, DC 20585 March 20, 2013 MEMORANDUM FOR THE MANAGER, LOS ALAMOS FIELD OFFICE, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: Sandra D. Bruce Assistant Inspector General for Inspections Office of Inspector General SUBJECT: INFORMATION: Inspection Report on "Radiological Waste Operations in Area G at Los Alamos National Laboratory"

  3. Options Assessment Report: Treatment of Nitrate Salt Waste at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Robinson, Bruce Alan; Stevens, Patrice Ann

    2015-12-17

    This report documents the methodology used to select a method of treatment for the remediated nitrate salt (RNS) and unremediated nitrate salt (UNS) waste containers at Los Alamos National Laboratory (LANL). The method selected should treat the containerized waste in a manner that renders the waste safe and suitable for transport and final disposal in the Waste Isolation Pilot Plant (WIPP) repository, under specifications listed in the WIPP Waste Acceptance Criteria (DOE/CBFO, 2013). LANL recognizes that the results must be thoroughly vetted with the New Mexico Environment Department (NMED) and that a modification to the LANL Hazardous Waste Facility Permit is a necessary step before implementation of this or any treatment option. Likewise, facility readiness and safety basis approvals must be received from the Department of Energy (DOE). This report presents LANL’s preferred option, and the documentation of the process for reaching the recommended treatment option for RNS and UNS waste, and is presented for consideration by NMED and DOE.

  4. Laboratory Waste | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Waste Sharps Broken Glass Containment Hazardous Waste All waste produced in the Sample Prep Labs should be appropriately disposed of at SLAC. You are prohibited to transport waste back to your home institution. Designated areas exist in the labs for sharps, broken glass, and hazardous waste. Sharps, broken glass, and hazardous waste must never be disposed of in the trash cans or sink drains. Containment Bottles, jars, and plastic bags are available for containing chemical waste. Place

  5. Siting study for a consolidated waste capability at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Booth, Steven Richard

    2011-01-26

    Decision analysis was used to rank alternative sites for a new Consolidated Waste Capability (CWC) to replace current hazardous solid waste operations (hazardous/chemical, mixed lowlevel, transuranic, and low-level waste) at Los Alamos National Laboratory's TA-54 Area G. An original list of 21 site alternatives was pre-screened to ten sites that were assessed using the analytical hierarchy process with five top-level criteria and fifteen sub-criteria. Three passes of the analysis were required to assess different site scenarios: 1) a fully consolidated CWC with both transfer/storage and LL W disposal in one location (45 acre minimum), 2) CWC transfer/storage only (12 acre minimum), and 3) LLW disposal only (33 acre minimum). The top site choice for all three options is TA-63/52/46; the second choice is TA-18/36. TA-54 East, Zone 4 also deserves consideration as a LLW disposal site.

  6. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputing Challenge draws more than 200 students to Los Alamos National Laboratory April 16, 2015 NOTE TO EDITORS: Media are welcome to attend the awards ceremony from 9 a.m. to noon a.m., April 21 at the Church of Christ, 2323 Diamond Drive, Los Alamos. Student teams from around New Mexico showcase year-long research projects April 20-21 LOS ALAMOS, N.M., April 16, 2015-More than 200 New Mexico students and their teachers are at Los Alamos National Laboratory April 20-21 for the 25th

  7. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community invited to learn about emerging technologies July 6, 2016 DisrupTech showcases innovation from Los Alamos National Laboratory LOS ALAMOS, N.M., July 6, 2016-New technologies emerging from Los Alamos National Laboratory that address everything from fusion energy to medical testing will be on display for members of the community, investors and business leaders at the DisrupTech showcase, Thursday, July 14, starting at 1:00 p.m. at the Los Alamos Golf Course Event Center. "We call it

  8. Application of geographic information systems to waste minimization efforts at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Lyttle, T.W.; Smith, D.M.; Burns, M.; Weinrach, J.B.

    1993-01-01

    At Los Alamos National Laboratory (LANL), facility waste streams tend to be small but highly diverse. Initial characterization of such waste streams is often difficult in part due to a lack of tools to assist the generators themselves in completing such assessments. A methodology has been developed at LANL to allow process knowledgeable field personnel to develop baseline waste generation assessments and to evaluate potential waste minimization technology. This Process Waste Assessment (PWA) system is an application constructed within the Process Modeling System and currently being integrated with the InFoCAD Geographic Information System (GIS) . The Process Modeling System (PMS) is an object-oriented, mass balance-based, discrete-event simulation framework written using the Common Lisp Object System (CLOS) . Analytical capabilities supported within the PWA system include: complete mass balance specifications, historical characterization of selected waste streams and generation of facility profiles for materials consumption, resource utilization and worker exposure. Development activities include integration with the LANL facilities management Geographic Information System (GIS) and provisions for a Best Available Technologies (BAT) database. The environments used to develop these assessment tools will be discussed in addition to a review of initial implementation results.

  9. Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

    2012-05-01

    This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

  10. Reengineering of waste management at the Oak Ridge National Laboratory. Volume 2

    SciTech Connect (OSTI)

    Myrick, T.E.

    1997-08-01

    A reengineering evaluation of the waste management program at the Oak Ridge National Laboratory (ORNL) was conducted during the months of February through July 1997. The goal of the reengineering was to identify ways in which the waste management process could be streamlined and improved to reduce costs while maintaining full compliance and customer satisfaction. A Core Team conducted preliminary evaluations and determined that eight particular aspects of the ORNL waste management program warranted focused investigations during the reengineering. The eight areas included Pollution Prevention, Waste Characterization, Waste Certification/Verification, Hazardous/Mixed Waste Stream, Generator/WM Teaming, Reporting/Records, Disposal End Points, and On-Site Treatment/Storage. The Core Team commissioned and assembled Process Teams to conduct in-depth evaluations of each of these eight areas. The Core Team then evaluated the Process Team results and consolidated the 80 process-specific recommendations into 15 overall recommendations. Volume 2 consists of nine appendices which contain the Process Team reports and Benchmarking reports.

  11. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Wilson, R. C.; Lewis, K. K.

    1991-09-01

    This report presents data and information related to remedial investigation studies for Oak Ridge National Laboratory (ORNL). Information is included on a soil gas survey, surface radiological investigations of waste areas, and well installation for ground water monitoring. (CBS)

  12. Brookhaven National Laboratory | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Brookhaven National Laboratory

  13. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU's) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment and baseline human health evaluation including a toxicity assessment, and a baseline environmental evaluation.

  14. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU'S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data. (CBS)

  15. Radioactive Solid Waste Storage and Disposal at Oak Ridge National Laboratory, Description and Safety Analysis

    SciTech Connect (OSTI)

    Bates, L.D.

    2001-01-30

    Oak Ridge National Laboratory (ORNL) is a principle Department of Energy (DOE) Research Institution operated by the Union Carbide Corporation - Nuclear Division (UCC-ND) under direction of the DOE Oak Ridge Operations Office (DOE-ORO). The Laboratory was established in east Tennessee, near what is now the city of Oak Ridge, in the mid 1940s as a part of the World War II effort to develop a nuclear weapon. Since its inception, disposal of radioactively contaminated materials, both solid and liquid, has been an integral part of Laboratory operations. The purpose of this document is to provide a detailed description of the ORNL Solid Waste Storage Areas, to describe the practice and procedure of their operation, and to address the health and safety impacts and concerns of that operation.

  16. Environmental assessment for the Radioactive and Mixed Waste Management Facility: Sandia National Laboratories/New Mexico

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0466) under the National Environmental Policy Act (NEPA) of 1969 for the proposed completion of construction and subsequent operation of a central Radioactive and Mixed Waste Management Facility (RMWMF), in the southeastern portion of Technical Area III at Sandia National Laboratory, Albuquerque (SNLA). The RMWMF is designed to receive, store, characterize, conduct limited bench-scale treatment of, repackage, and certify low-level waste (LLW) and mixed waste (MW) (as necessary) for shipment to an offsite disposal or treatment facility. The RMWMF was partially constructed in 1989. Due to changing regulatory requirements, planned facility upgrades would be undertaken as part of the proposed action. These upgrades would include paving of road surfaces and work areas, installation of pumping equipment and lines for surface impoundment, and design and construction of air locks and truck decontamination and water treatment systems. The proposed action also includes an adjacent corrosive and reactive metals storage area, and associated roads and paving. LLW and MW generated at SNLA would be transported from the technical areas to the RMWMF in containers approved by the Department of Transportation. The RMWMF would not handle nonradioactive hazardous waste. Based on the analysis in the EA, the proposed completion of construction and operation of the RMWMF does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, preparation of an environmental impact statement for the proposed action is not required.

  17. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Reneau, S.L.; Raymond, R. Jr.

    1995-12-01

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau.

  18. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignition Facility Former Army Ranger wins Sandia-sponsored student of the year award Former Army Ranger Damon Alcorn recently received the Sandia National Laboratories-Livermore Chamber of Commerce Student of the Year Award. Presented at the Chamber's State of the City Luncheon last month, the annual award highlights a Las Positas College student with exemplary academic... NNSA makers and hackers engage innovation and partnerships NNSA's labs change the world everyday through cutting-edge

  19. Commercial disposal options for Idaho National Engineering Laboratory low-level radioactive waste

    SciTech Connect (OSTI)

    Porter, C.L.; Widmayer, D.A.

    1995-09-01

    The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE)-owned, contractor-operated site. Significant quantities of low-level radioactive waste (LLW) have been generated and disposed of onsite at the Radioactive Waste Management Complex (RWMC). The INEL expects to continue generating LLW while performing its mission and as aging facilities are decommissioned. An on-going Performance Assessment process for the RWMC underscores the potential for reduced or limited LLW disposal capacity at the existing onsite facility. In order to properly manage the anticipated amount of LLW, the INEL is investigating various disposal options. These options include building a new facility, disposing the LLW at other DOE sites, using commercial disposal facilities, or seeking a combination of options. This evaluation reports on the feasibility of using commercial disposal facilities.

  20. Hazardous waste site assessment: Inactive landfill, Site 300, Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    This report presents the results of an investigation of an inactive landfill (Pit 6) at Lawrence Livermore National Laboratory's (LLNL) Site 300. The primary objectives were to: collect and review background information pertaining to past waste disposal practices and previous environmental characterization studies; conduct a geophysical survey of the landfill area to locate the buried wastes; conduct a hydrogeologic investigation to provide additional data on the rate and direction of groundwater flow, the extent of any groundwater contamination, and to investigate the connection, if any, of the shallow groundwater beneath the landfill with the local drinking water supply; conduct a risk assessment to identify the degree of threat posed by the landfill to the public health and environment; compile a preliminary list of feasible long-term remedial action alternatives for the landfill; and develop a list of recommendations for any interim measures necessary at the landfill should the long-term remedial action plan be needed.

  1. leaves Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Final remote-handled waste canister leaves Los Alamos National Laboratory July 2, 2009 Sixteen canisters shipped in one month Los Alamos, New Mexico, July 2, 2009 - Los Alamos National Laboratory officials today announced the safe departure of the Laboratory's 16th and final canister of "remote-handled" radioactive waste destined for the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. The Laboratory began shipping the canisters exactly one month ago and averaged four

  2. Cost benefit analysis of waste compaction alternatives at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    This report presents a cost benefit analysis of the potential procurement and operation of various solid waste compactors, or, of the use of commercial compaction services, for compaction of solid transuranic (TRU), low-level radioactive, hazardous, and mixed wastes at Lawrence Livermore National Laboratory (LLNL) Hazardous Waste Management (HWM) facilities. The cost benefit analysis was conducted to determine if increased compaction capacity at HWM might afford the potential for significant waste volume reduction and annual savings in material, shipping, labor, and disposal costs. In the following cost benefit analysis, capital costs and recurring costs of increased HWM compaction capabilities are considered. Recurring costs such as operating and maintenance costs are estimated based upon detailed knowledge of system parameters. When analyzing the economic benefits of enhancing compaction capabilities, continued use of the existing HWM compaction units is included for comparative purposes. In addition, the benefits of using commercial compaction services instead of procuring a new compactor system are evaluated. 31 refs., 1 fig., 6 tabs.

  3. Draft environmental assessment -- Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Braun, J.B.; Irving, J.S.; Staley, C.S.; Stanley, N.

    1996-04-01

    The DOE-Idaho Operations Office has prepared an environmental assessment (EA) to analyze the environmental impacts of closing the Waste Calcining Facility (WCF) at the Idaho National Engineering Laboratory (INEL). The purpose of the action is to reduce the risk of radioactive exposure and release of radioactive and hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce these risks to human health and the environment and to comply with Resource Conservation and Recovery Act requirements. The WCF closure project is described in the DOE Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact Statement (Programmatic EIS). DOE determined in the Programmatic EIS Record of Decision (ROD) that certain actions would be implemented and other actions deferred. The EA examined the potential environmental impacts of the proposed action and evaluated reasonable alternatives, including the no action alternative in accordance with the Council on Environmental Quality Regulations. Based on the analysis in the EA, the action will not have a significant effect on the human environment.

  4. Groundwater quality assessment report for Solid Waste Storage Area 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee -- 1997

    SciTech Connect (OSTI)

    1998-02-01

    Solid Waste Storage Area (SWSA) 6, located at the US Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) facility, is a shallow land burial site for low-level radioactive waste (LLW) and other waste types. Wastes were disposed of in unlined trenches and auger holes from 1969 until May 1986, when it was determined that Resource Conservation and Recovery Act (RCRA) regulated wastes were being disposed of there. DOE closed SWSA 6 until changes in operating procedures prevented the disposal of RCRA wastes at SWSA 6. The site, which reopened for waste disposal activities in July 1986, is the only currently operating disposal area for low-level radioactive waste at ORNL. In addition to SWSA 6, it was determined that hazardous wastes were treated at the Explosives Detonation Trench (EDT). Explosives and shock-sensitive chemicals such as picric acid, phosphorus, and ammonium nitrate were detonated; debris from the explosions was backfilled into the trench.

  5. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Dorries, Alison M

    2010-11-09

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledge (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.

  6. EIS-0290: Idaho National Engineering and Environmental Laboratory Advanced Mixed Waste Treatment Project (AMWTP)

    Broader source: Energy.gov [DOE]

    The AMWTP Final EIS assesses the potential environmental impacts associated with alternatives related to the construction and operation of a proposed waste treatment facility at the Idaho National...

  7. Preliminary siting activities for new waste handling facilities at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Taylor, D.D.; Hoskinson, R.L.; Kingsford, C.O.; Ball, L.W.

    1994-09-01

    The Idaho Waste Processing Facility, the Mixed and Low-Level Waste Treatment Facility, and the Mixed and Low-Level Waste Disposal Facility are new waste treatment, storage, and disposal facilities that have been proposed at the Idaho National Engineering Laboratory (INEL). A prime consideration in planning for such facilities is the selection of a site. Since spring of 1992, waste management personnel at the INEL have been involved in activities directed to this end. These activities have resulted in the (a) identification of generic siting criteria, considered applicable to either treatment or disposal facilities for the purpose of preliminary site evaluations and comparisons, (b) selection of six candidate locations for siting,and (c) site-specific characterization of candidate sites relative to selected siting criteria. This report describes the information gathered in the above three categories for the six candidate sites. However, a single, preferred site has not yet been identified. Such a determination requires an overall, composite ranking of the candidate sites, which accounts for the fact that the sites under consideration have different advantages and disadvantages, that no single site is superior to all the others in all the siting criteria, and that the criteria should be assigned different weighing factors depending on whether a site is to host a treatment or a disposal facility. Stakeholder input should now be solicited to help guide the final selection. This input will include (a) siting issues not already identified in the siting, work to date, and (b) relative importances of the individual siting criteria. Final site selection will not be completed until stakeholder input (from the State of Idaho, regulatory agencies, the public, etc.) in the above areas has been obtained and a strategy has been developed to make a composite ranking of all candidate sites that accounts for all the siting criteria.

  8. Environmental assessment for the Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    1995-11-01

    Lawrence Livermore National Laboratory proposes to build, permit, and operate the Explosive Waste Treatment Facility (EWTF) to treat explosive waste at LLNL`s Experimental Test Site, Site 300. It is also proposed to close the EWTF at the end of its useful life in accordance with the regulations. The facility would replace the existing Building 829 Open Burn Facility (B829) and would treat explosive waste generated at the LLNL Livermore Site and at Site 300 either by open burning or open detonation, depending on the type of waste. The alternatives addressed in the 1992 sitewide EIS/EIR are reexamined in this EA. These alternatives included: (1) the no-action alternative which would continue open burning operations at B829; (2) continuation of only open burning at a new facility (no open detonation); (3) termination of open burning operations with shipment of explosive waste offsite; and (4) the application of alternative treatment technologies. This EA examines the impact of construction, operation, and closure of the EWTF. Construction of the EWTF would result in the clearing of a small amount of previously disturbed ground. No adverse impact is expected to any state or federal special status plant or animal species (special status species are classified as threatened, endangered, or candidate species by either state or federal legislation). Operation of the EWTF is expected to result in a reduced threat to involved workers and the public because the proposed facility would relocate existing open burning operations to a more remote area and would incorporate design features to reduce the amount of potentially harmful emissions. No adverse impacts were identified for activities necessary to close the EWTF at the end of its useful life.

  9. Lawrence Livermore National Laboratory Federal Facility Compliance...

    Office of Environmental Management (EM)

    Federal Facility Compliance Act Order for Lawrence Livermore National Laboratory ... treatment of mixed waste at Lawrence Livermore National Laboratory Parties DOE; State ...

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resumes transuranic waste shipments April 2, 2014 Shipments keep Lab on track to complete 3706 Campaign on schedule LOS ALAMOS, N.M., April 2, 2014-Los Alamos National Laboratory resumed shipments of transuranic waste yesterday from Technical Area 54 Area G. The shipments are part of an accelerated shipping campaign to remove 3,706 cubic meters of transuranic waste stored aboveground at Area G by June 30, 2014. Nearly 3,200 cubic meters of the waste have already been removed since the 3706

  11. Environmental assessment: Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    1996-07-01

    The U.S. Department of Energy (DOE) proposes to close the Waste Calcining Facility (WCF). The WCF is a surplus DOE facility located at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering Laboratory (INEL). Six facility components in the WCF have been identified as Resource Conservation and Recovery Ace (RCRA)-units in the INEL RCRA Part A application. The WCF is an interim status facility. Consequently, the proposed WCF closure must comply with Idaho Rules and Standards for Hazardous Waste contained in the Idaho Administrative Procedures Act (IDAPA) Section 16.01.05. These state regulations, in addition to prescribing other requirements, incorporate by reference the federal regulations, found at 40 CFR Part 265, that prescribe the requirements for facilities granted interim status pursuant to the RCRA. The purpose of the proposed action is to reduce the risk of radioactive exposure and release of hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce potential risks to human health and the environment, and to comply with the Idaho Hazardous Waste Management Act (HWMA) requirements.

  12. Remote systems for waste retrieval from the Oak Ridge National Laboratory gunite tanks

    SciTech Connect (OSTI)

    Falter, D.D.; Babcock, S.M.; Burks, B.L.; Lloyd, P.D.; Randolph, J.D.; Rutenber, J.E.; Van Hoesen, S.D.

    1995-12-31

    As part of a Comprehensive Environmental Response, Compensation, and Liability Act Treatability Study funded by the Department of Energy, the Oak Ridge National Laboratory (ORNL) is preparing to demonstrate and evaluate two approaches for the remote retrieval of wastes in underground storage tanks. This work is being performed to identify the most cost-effective and efficient method of waste removal before full-scale remediation efforts begin in 1998. System requirements are based on the need to dislodge and remove sludge wastes ranging in consistency from broth to compacted clay from Gunite (Shotcrete) tanks that are approaching fifty years in age. Systems to be deployed must enter and exit through the existing 0.6 m (23.5 in.) risers and conduct retrieval operations without damaging the layered concrete walls of the tanks. Goals of this project include evaluation of confined sluicing techniques and successful demonstration of a telerobotic arm-based system for deployment of the sluicing system. As part of a sister project formed on the Old Hydrofracture Facility tanks at ORNL, vehicle-based tank remediation will also be evaluated.

  13. Los Alamos National Laboratory opens

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    opens new waste repackaging facility March 7, 2013 Box line facility is largest of its kind ever built LOS ALAMOS, N. M., March 7, 2013-Los Alamos National Laboratory has brought a third waste repackaging facility online to increase its capability to process nuclear waste for permanent disposal. The "375 box line facility" enables Los Alamos to repackage transuranic (TRU) waste stored in large boxes. Built inside a dome once used to house containers of waste at the Laboratory, the

  14. The National Nuclear Laboratory's Approach to Processing Mixed Wastes and Residues - 13080

    SciTech Connect (OSTI)

    Greenwood, Howard; Docrat, Tahera; Allinson, Sarah J.; Coppersthwaite, Duncan P.; Sultan, Ruqayyah; May, Sarah

    2013-07-01

    The National Nuclear Laboratory (NNL) treats a wide variety of materials produced as by-products of the nuclear fuel cycle, mostly from uranium purification and fuel manufacture but also including materials from uranium enrichment and from the decommissioning of obsolete plants. In the context of this paper, treatment is defined as recovery of uranium or other activity from residues, the recycle of uranium to the fuel cycle or preparation for long term storage and the final disposal or discharge to the environment of the remainder of the material. NNL's systematic but flexible approach to residue assessment and treatment is described in this paper. The approach typically comprises up to five main phases. The benefits of a systematic approach to waste and residue assessments and processing are described in this paper with examples used to illustrate each phase of work. Benefits include early identification of processing routes or processing issues and the avoidance of investment in inappropriate and costly plant or processes. (authors)

  15. Source document for waste area groupings at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Osborne, P.L.; Kuhaida, A.J., Jr.

    1996-09-01

    This document serves as a source document for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and other types of documents developed for and pertaining to Environmental Restoration (ER) Program activities at Oak Ridge National Laboratory (ORNL). It contains descriptions of the (1) regulatory requirements for the ORR ER Program, (2) Oak Ridge Reservation (ORR) ER Program, (3) ORNL site history and characterization, and (4) history and characterization of Waste Area Groupings (WAGS) 1-20. This document was created to save time, effort, and money for persons and organizations drafting documents for the ER Program and to improve consistency in the documents prepared for the program. By eliminating the repetitious use of selected information about the program, this document will help reduce the time and costs associated with producing program documents. By serving as a benchmark for selected information about the ER Program, this reference will help ensure that information presented in future documents is accurate and complete.

  16. The Excavation and Remediation of the Sandia National Laboratories Chemical Waste Landfill

    SciTech Connect (OSTI)

    KWIECINSKI,DANIEL ALBERT; METHVIN,RHONDA KAY; SCHOFIELD,DONALD P.; YOUNG,SHARISSA G.

    1999-11-23

    The Chemical Waste Landfill (CWL) at Sandia National Laboratories/New Mexico (SNL/NM) is a 1.9-acre disposal site that was used for the disposal of chemical wastes generated by many of SNL/NM research laboratories from 1962 until 1985. These laboratories were primarily involved in the design, research and development of non-nuclear components of nuclear weapons and the waste generated by these labs included small quantities of a wide assortment of chemical products. A Resource Conservation and Recovery Act (RCRA) Closure Plan for the Chemical Waste Landfill was approved by the New Mexico Environment Department (NMED) in 1992. Subsequent site characterization activities identified the presence of significant amounts of chromium in the soil as far as 80 feet below ground surface (fbgs) and the delineation of a solvent plume in the vadose zone that extends to groundwater approximately 500 fbgs. Trichloroethylene (TCE) was detected in some groundwater samples at concentrations slightly above the drinking water limit of 5 parts per billion. In 1997 an active vapor extraction system reduced the size of the TCE vapor plume and for the last six quarterly sampling events groundwater samples have not detected TCE above the drinking water standard. A source term removal, being conducted as a Voluntary Corrective Measure (VCM), began in September 1998 and is expected to take up to two years. Four distinct disposal areas were identified from historical data and the contents of disposal pits and trenches in these areas, in addition to much of the highly contaminated soil surrounding the disposal cells, are currently being excavated. Buried waste and debris are expected to extend to a depth of 12 to 15 fbgs. Excavation will focus on the removal of buried debris and contaminated soil in a sequential, area by area manner and will proceed to whatever depth is required in order to remove all pit contents. Up to 50,000 cubic yards of soil and debris will be removed and managed during

  17. National Laboratory Impact Initiative

    Broader source: Energy.gov [DOE]

    The National Laboratory Impact Initiative supports the relationship between the Office of Energy Efficiency & Renewable Energy and the national laboratory enterprise.  The national laboratories...

  18. Quality assurance plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This Quality Assurance Plan (QAP) is concerned with design and construction (Sect. 2) and characterization and monitoring (Sect. 3). The basis for Sect. 2 is the Quality Assurance Plan for the Design and Construction of Waste Area Grouping 6 Closure at Oak Ridge National Laboratory, Oak Ridge, Tennessee, and the basis for Sect. 3 is the Environmental Restoration Quality Program Plan. Combining the two areas into one plan gives a single, overall document that explains the requirements and from which the individual QAPs and quality assurance project plans can be written. The Waste Area Grouping (WAG) 6 QAP establishes the procedures and requirements to be implemented for control of quality-related activities for the WAG 6 project. Quality Assurance (QA) activities are subject to requirements detailed in the Martin Marietta Energy Systems, Inc. (Energy Systems), QA Program and the Environmental Restoration (ER) QA Program, as well as to other quality requirements. These activities may be performed by Energy Systems organizations, subcontractors to Energy Systems, and architect-engineer (A-E) under prime contract to the US Department of Energy (DOE), or a construction manager under prime contract to DOE. This plan specifies the overall Energy Systems quality requirements for the project. The WAG 6 QAP will be supplemented by subproject QAPs that will identify additional requirements pertaining to each subproject.

  19. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recognizes employee teams with 2015 Pollution Prevention Awards April 22, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32 teams received Pollution Prevention awards during an Earth Day awards ceremony on Wednesday, saving taxpayers $5.6 million while also reusing, recycling, re-tasking and re-routing waste. "The goal of the Laboratory's pollution prevention

  20. Summary of available waste forecast data for the Environmental Restoration Program at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This report identifies patterns of Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) waste generation that are predicted by the current ER Waste Generation Forecast data base. It compares the waste volumes to be generated with the waste management capabilities of current and proposed treatment, storage, or disposal (TSD) facilities. The scope of this report is limited to wastes generated during activities funded by the Office of the Deputy Assistant Secretary for Environmental Restoration (EM-40) and excludes wastes from the decontamination and decommissioning of facilities. Significant quantities of these wastes are expected to be generated during ER activities. This report has been developed as a management tool supporting communication and coordination of waste management activities at ORNL. It summarizes the available data for waste that will be generated as a result of remediation activities under the direction of the U.S. Department of Energy Oak Ridge Operations Office and identifies areas requiring continued waste management planning and coordination. Based on the available data, it is evident that most remedial action wastes leaving the area of contamination can be managed adequately with existing and planned ORR waste management facilities if attention is given to waste generation scheduling and the physical limitations of particular TSD facilities. Limited use of off-site commercial TSD facilities is anticipated, provided the affected waste streams can be shown to satisfy the requirements of the performance objective for certification of non-radioactive hazardous waste and the waste acceptance criteria of the off-site facilities. Ongoing waste characterization will be required to determine the most appropriate TSD facility for each waste stream.

  1. Mission Need Statement for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego

    2009-06-01

    The Idaho National Laboratory proposes to establish replacement remote-handled low-level waste disposal capability to meet Nuclear Energy and Naval Reactors mission-critical, remote-handled low-level waste disposal needs beyond planned cessation of existing disposal capability at the end of Fiscal Year 2015. Remote-handled low-level waste is generated from nuclear programs conducted at the Idaho National Laboratory, including spent nuclear fuel handling and operations at the Naval Reactors Facility and operations at the Advanced Test Reactor. Remote-handled low-level waste also will be generated by new programs and from segregation and treatment (as necessary) of remote-handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex. Replacement disposal capability must be in place by Fiscal Year 2016 to support uninterrupted Idaho operations. This mission need statement provides the basis for the laboratory’s recommendation to the Department of Energy to proceed with establishing the replacement remote-handled low-level waste disposal capability, project assumptions and constraints, and preliminary cost and schedule information for developing the proposed capability. Without continued remote-handled low-level waste disposal capability, Department of Energy missions at the Idaho National Laboratory would be jeopardized, including operations at the Naval Reactors Facility that are critical to effective execution of the Naval Nuclear Propulsion Program and national security. Remote-handled low-level waste disposal capability is also critical to the Department of Energy’s ability to meet obligations with the State of Idaho.

  2. Documentation of acceptable knowledge for Los Alamos National Laboratory Plutonium Facility TRU waste stream

    SciTech Connect (OSTI)

    Montoya, A.J.; Gruetzmacher, K.M.; Foxx, C.L.; Rogers, P.Z.

    1998-03-01

    Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the TRU waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility`s mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC.

  3. Independent Oversight Review of the Los Alamos National Laboratory Transuranic Waste Facility Safety Basis and Design Development, July 2014

    Office of Environmental Management (EM)

    Los Alamos National Laboratory Transuranic Waste Facility Safety Basis and Design Development July 2014 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and Health Assessments Office of Independent Enterprise Assessments U.S. Department of Energy Table of Contents 1.0 Purpose ................................................................................................................................................ 1 2.0 Scope ...

  4. Enterprise Assessments Review of the Los Alamos National Laboratory Transuranic Waste Facility Construction Quality … January 2016

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review of the Los Alamos National Laboratory Transuranic Waste Facility Construction Quality January 2016 Office of Nuclear Safety and Environmental Assessments Office of Environment, Safety and Health Assessments Office of Enterprise Assessments U.S. Department of Energy i Table of Contents Acronyms ...................................................................................................................................................... ii Executive Summary

  5. Special Analysis for the Disposal of the Idaho National Laboratory...

    Office of Scientific and Technical Information (OSTI)

    National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste ... National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste ...

  6. Environmental surveillance for EG&G Idaho Waste Management facilities at the Idaho National Engineering Laboratory. 1993 annual report

    SciTech Connect (OSTI)

    Wilhelmsen, R.N.; Wright, K.C.; McBride, D.W.; Borsella, B.W.

    1994-08-01

    This report describes calendar year 1993 environmental surveillance activities of Environmental Monitoring of EG&G Idaho, Inc., performed at EG&G Idaho operated Waste Management facilities at the Idaho National Engineering Laboratory (INEL). The major facilities monitored include the Radioactive Waste Management Complex, the Waste Experimental Reduction Facility, the Mixed Waste Storage Facility, and two surplus facilities. Included are results of the sampling performed by the Radiological and Environmental Sciences Laboratory and the United States Geological Survey. The primary purposes of monitoring are to evaluate environmental conditions, to provide and interpret data, to ensure compliance with applicable regulations or standards, and to ensure protection of human health and the environment. This report compares 1993 environmental surveillance data with US Department of Energy derived concentration guides and with data from previous years.

  7. Best available technology for the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility

    SciTech Connect (OSTI)

    Midkiff, W.S.; Romero, R.L.; Suazo, I.L.; Garcia, R.; Parsons, R.M.

    1993-10-15

    The existing Los Alamos National Laboratory TA-50 liquid radioactive waste treatment plant RLWP has been in service for over thirty years, during this period many technical, regulatory, and processing changes have occurred. The existing facility can no longer comply with the demands and requirements for continued operation, and would not be able to comply with anticipated stringent future contaminant discharge limitations. Either a major upgrading or replacement of the existing facility is required. In order to assess the most appropriate means of providing an adequate facility to comply with predicted requirements for Ta-50, this Best Available Technology (BAT) Study was conducted to compare feasible technical and economic alternatives in order to define the most favorable technology configuration. This report consists of eleven sections. Section 1 provides a general introduction and background of the TA-50 operations and the basis for this study. Section 2 provides a technical discussion of the unit processes at TA-50 and several other comparable operations at other DOE sites. Section 3 addresses the evaluation and selection of appropriate treatment processes. Section 4 provides an analysis of environmental issues and concerns. Section 5 presents the rationale for the selection of preferred process configurations. Section 6 is the evaluation of operational issues. Section 7 addresses energy and resource use topics. Section 8 provides an economic analysis, and Section 9 summarizes the evaluation and the identification of the BAT. These sections are augmented by appendices. The report identifies the construction of a new radioactive liquid waste treatment facility as the BAT. Based on the information analyzed for this study, this option appears to provide the best combination of environmental compliance, operability, and economic value.

  8. Remediation of a Classified Waste Landfill at Sandia National Laboratories, NM

    SciTech Connect (OSTI)

    Ward, D.C.

    1998-10-20

    The Sandia National Laboratory es/New Mexico (SNLiNM) Environmental Restoration Project is currently excavating the Classified Waste Landfill in Technical Area II (TA-H), which consists of disposal pits and trenches with discrete disposal cells. TA-11 is a secure, controlled assess, research facility managed by SNIJNM for the US Department of Energy (DOE). The 45-acre facility was established in 1948 for the assembly and maintenance of nuclear weapons. The assembly of weapons was discontinued in 1954. Since that time, TA-11 has been used primarily for explosive research and testing. Beginning is 1984, the DOE Er,vironmental Restoration Program conducted several environmental investigations across TA-11 and SNMNM. These investigations identified sites requiring firther study and possible corrective action. The majority of these sites were grouped into operable units (OUS). The TA-11 OU included 13 sites, one of which is identified as the Classified Waste Landfill (CWLF). The CWLF covers about 2.5 acres and was operated from approximately 1947 through 1987. It was the site for disposal of classified weapon components, s ome of which are potentially explosive, hazardous, ardor radioactively contarninatod. Until about 1958, no records were maintained for material disposed of in the CWLF. Information on the CWLF has been assembled horn interview notes, delivery to reckmation records and other sources. Items disposed of included security containers, hoppers, skids, missiles, wooden boxes, deactivated heat sources, tntium boosters, scintillation cocktails, weapons cases, shells, lasers, radar equipment and accountable mata-ials. Potential contaminants include tritium, thorium, cesium-137, strontium-90, uraniun, plutonium, beryllium, cadmium, lithium, chloroform, toluene, benzene ad other solvents.

  9. Preliminary siting criteria for the proposed mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Jorgenson-Waters, M.

    1992-09-01

    The Mixed and Low-Level Waste Treatment Facility project was established in 1991 by the US Department of Energy Idaho Field Office. This facility will provide treatment capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This report identifies the siting requirements imposed on facilities that treat and store these waste types by Federal and State regulatory agencies and the US Department of Energy. Site selection criteria based on cost, environmental, health and safety, archeological, geological and service, and support requirements are presented. These criteria will be used to recommend alternative sites for the new facility. The National Environmental Policy Act process will then be invoked to evaluate the alternatives and the alternative sites and make a final site determination.

  10. Passive soil venting at the Chemical Waste Landfill Site at Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    Phelan, J.M.; Reavis, B.; Cheng, W.C.

    1995-05-01

    Passive Soil Vapor Extraction was tested at the Chemical Waste Landfill (CWL) site at Sandia National Laboratories, New Mexico (SNLIW). Data collected included ambient pressures, differential pressures between soil gas and ambient air, gas flow rates into and out of the soil and concentrations of volatile organic compounds (VOCS) in vented soil gas. From the differential pressure and flow rate data, estimates of permeability were arrived at and compared with estimates from other studies. Flow, differential pressure, and ambient pressure data were collected for nearly 30 days. VOC data were collected for two six-hour periods during this time. Total VOC emissions were calculated and found to be under the limit set by the Resource Conservation and Recovery Act (RCRA). Although a complete process evaluation is not possible with the data gathered, some of the necessary information for designing a passive venting process was determined and the important parameters for designing the process were indicated. More study is required to evaluate long-term VOC removal using passive venting and to establish total remediation costs when passive venting is used as a polishing process following active soil vapor extraction.

  11. Environmental monitoring plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1995-09-01

    This document presents an Environmental Monitoring Plan (EMP) for Waste Area Grouping (WAG 6) at Oak Ridge National Laboratory (ORNL). This document updates a draft monitoring plan developed in 1993. The draft plan was never finalized awaiting resolution of the mechanisms for addressing RCRA concerns at a site where the CERCLA process resulted in a decision to defer action, i.e., postpone closure indefinitely. Over the past two years the Tennessee Department of Environment and Conservation (TDEC), US Department of Energy (DOE), and US Environmental Protection Agency (EPA) Region IV, have agreed that RCRA authority at the site will be maintained through a post- closure permit; ``closure`` in this case referring to deferred action. Both a Revised Closure Plan (DOE 1995a) and a Post-Closure Permit Application (DOE 1995b) have been developed to document this agreement; relevant portions of the EMP will be included in the RCRA Post-Closure Permit Application. As the RCRA issues were being negotiated, DOE initiated monitoring at WAG 6. The purpose of the monitoring activities was to (1) continue to comply with RCRA groundwater quality assessment requirements, (2) install new monitoring equipment, and (3) establish the baseline conditions at WAG 6 against which changes in contaminant releases could be measured. Baseline monitoring is scheduled to end September 30, 1995. Activities that have taken place over the past two years are summarized in this document.

  12. Siting study for a consolidated waste capability at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Booth, Steven Richard

    2010-11-05

    Decision analysis was used to rank alternative sites for a potential Consolidated Waste Capability (CWC) to replace current hazardous solid waste operations (hazardous/chemical, mixed low-level, transuranic, and low-level waste) at Los Alamos National Laboratory's Technical Area (TA)-54. An original list of 21 site alternatives was pre-screened to seven sites that were assessed using the analytical hierarchy process with five top-level criteria and fifteen sub-criteria. The top site choice is TA-63/52/46; the second choice is TA-18/36. The seven sites are as follows. TA-18/36 (62 acres) is located on Potrillo Drive that intersects Pajarito Road at the bottom of a steep grade. It has some blast zone issues on its southwest side and some important archeological sites on the southeast section. TA-60 (50 acres) is located at the end of Eniwetok Road off Diamond Drive, east of TA-3. Most of the site is within a fifty foot-deep ravine (that may have contamination in the drainage), with a small section on the mesa above. TA-63/52/46 (110 acres) lies to the north of Pajarito Road along Puye Road. It is centrally located in a brown field industrial area, with good access to generators on a controlled road. TA-46 (22 acres) is a narrow site on the south side of Pajarito Road across from TA-46 office buildings. TA-48 (14 acres) is also narrow, and is located on the north side of Pajarito Road near the west vehicle access portal (VAP). TA-51 (19 acres) is located on the south side of Pajarito Road at the top of the hill above TA-18 near the current entrance to the TA-54. TA-54 West (16 acres) is just north of the entrance to TA-54 at Pajarito Road and is close to Zone 4. Although it is near the San Ildefonso Pueblo property line, there may be adequate set-back for sight screening.

  13. NATIONAL LABORATORY

    Office of Environmental Management (EM)

    N E W U T I L I T Y B U S I N E S S M O D E L S : Utility and Regulatory Models for the Modern Era Ronald Lehr former Public Utilities Commissioner A M E R I C A ' S POWER PLAN A m e r i c a ' s P o w e r P l a n Ralph Cavanagh, Natural Resources Defense Council Peter Fox-Penner, Brattle Group Tom King, National Grid Richard Sedano, Regulatory Assistance Project Alison Silverstein, former Federal Energy Regulatory Lisa Wood, Edison Foundation's Institute for Electric Efficiency We would like to

  14. Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography

    SciTech Connect (OSTI)

    Larson, D.E.

    1996-09-01

    This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Melter Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling

  15. Sandia National Laboratories performance assessment methodology for long-term environmental programs : the history of nuclear waste management.

    SciTech Connect (OSTI)

    Marietta, Melvin Gary; Anderson, D. Richard; Bonano, Evaristo J.; Meacham, Paul Gregory

    2011-11-01

    Sandia National Laboratories (SNL) is the world leader in the development of the detailed science underpinning the application of a probabilistic risk assessment methodology, referred to in this report as performance assessment (PA), for (1) understanding and forecasting the long-term behavior of a radioactive waste disposal system, (2) estimating the ability of the disposal system and its various components to isolate the waste, (3) developing regulations, (4) implementing programs to estimate the safety that the system can afford to individuals and to the environment, and (5) demonstrating compliance with the attendant regulatory requirements. This report documents the evolution of the SNL PA methodology from inception in the mid-1970s, summarizing major SNL PA applications including: the Subseabed Disposal Project PAs for high-level radioactive waste; the Waste Isolation Pilot Plant PAs for disposal of defense transuranic waste; the Yucca Mountain Project total system PAs for deep geologic disposal of spent nuclear fuel and high-level radioactive waste; PAs for the Greater Confinement Borehole Disposal boreholes at the Nevada National Security Site; and PA evaluations for disposal of high-level wastes and Department of Energy spent nuclear fuels stored at Idaho National Laboratory. In addition, the report summarizes smaller PA programs for long-term cover systems implemented for the Monticello, Utah, mill-tailings repository; a PA for the SNL Mixed Waste Landfill in support of environmental restoration; PA support for radioactive waste management efforts in Egypt, Iraq, and Taiwan; and, most recently, PAs for analysis of alternative high-level radioactive waste disposal strategies including repositories deep borehole disposal and geologic repositories in shale and granite. Finally, this report summarizes the extension of the PA methodology for radioactive waste disposal toward development of an enhanced PA system for carbon sequestration and storage systems

  16. Groundwater quality assessment report for Solid Waste Storage Area 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1998-12-31

    Solid Waste Storage Area (SWSA) 6, located at the US Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) facility, is a shallow land burial site for low-level radioactive waste (LLW) and other waste types. Wastes were disposed of in unlined trenches and auger holes from 1969 until May 1986, when it was determined that Resource Conservation and Recovery Act (RCRA) regulated wastes were being disposed of there. DOE closed SWSA 6 until changes in operating procedures prevented the disposal of RCRA wastes at SWSA 6. The site, which reopened for waste disposal activities in July 1986, is the only currently operated disposal area for low-level radioactive waste at ORNL. This report provides the results of the 1998 RCRA groundwater assessment monitoring. The monitoring was performed in accordance with the proposed routine monitoring plan recommended in the 1996 EMP. Section 2 provides pertinent background on SWSA 6. Section 3 presents the 1998 monitoring results and discusses the results in terms of any significant changes from previous monitoring efforts. Section 4 provides recommendations for changes in monitoring based on the 1998 results. References are provided in Section 5. Appendix A provides the 1998 RCRA Sampling Data and Appendix B provides a summary of 1998 Quality Assurance results.

  17. Independent Oversight Review, Los Alamos National Laboratory- January 2012

    Broader source: Energy.gov [DOE]

    Review of the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility Fire Suppression System

  18. Hazardous Waste Management - University of California style, part II: Lawrence Livermore National Laboratory's joint venture TSDF Audit Program

    SciTech Connect (OSTI)

    Pearson, H E

    1998-07-22

    Lawrence Livermore National Laboratory's (LLNL's) management assigned the responsibility of conducting TSDF audits to the Waste Certification Office in August of 1994. Prior to this date, there was no mandate for LLNL to audit waste facilities, nor was there a structured program in place for conducting the audits Program development took approximately 10 months. This included writing a TSDF Audit Procedure, writing a Quality Assurance (QA) Plan, developing the required audit check lists, and using the documentation on a trial basis. A typical TSDF audit lasted one full day using three hazardous waste specialists The QA Plan is based on the quality assurance and management system requirements of DOE Order 5700.6C (Quality Assurance) and ASME NQA-1 (Quality Assurance Program Requirements for Nuclear Facilities).

  19. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3, Appendixes 1 through 8: Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU`S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data. (CBS)

  20. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2, Sections 4 through 9: Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU`s) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment and baseline human health evaluation including a toxicity assessment, and a baseline environmental evaluation.

  1. Waste management plan for inactive LLLW tanks 3001-B, 3004-B, 3013, and T-30 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    1995-07-01

    This Project Waste Management Plan identifies the waste that is expected to be generated in connection with the removal and disposition of inactive liquid low-level radioactive waste tanks 3001-B, 3004-B, and T-30, and grouting of tank 3013 at the Oak Ridge National Laboratory and the isolation of these tanks` associated piping systems. The plan also identifies the organization, responsibilities, and administrative controls that will be followed to ensure proper handling of the waste.

  2. Site characterization plan for groundwater in Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Lee, R.R.; Curtis, A.H.; Houlberg, L.M.; Purucker, S.T.; Singer, M.L.; Tardiff, M.F.; Wolf, D.A.

    1994-07-01

    The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization to identify environmental contamination that may be present. This document, Site Characterization Report for Groundwater in Waste Area Grouping I at Oak Ridge National Laboratory, Oak Ridge, Tennessee, identifies areas of concern with respect to WAG 1 groundwater and presents the rationale, justification, and objectives for conducting this continuing site characterization. This report summarizes the operations that have taken place at each of the areas of concern in WAG 1, summarizes previous characterization studies that have been performed, presents interpretations of previously collected data and information, identifies contaminants of concern, and presents an action plan for further site investigations and early actions that will lead to identification of contaminant sources, their major groundwater pathways, and reduced off-site migration of contaminated groundwater to surface water. Site characterization Activities performed to date at WAG I have indicated that groundwater contamination, principally radiological contamination, is widespread. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to an unknown extent. The general absence of radiological contamination in surface water at the perimeter of WAG 1 is attributed to the presence of pipelines and underground waste storage tank sumps and dry wells distributed throughout WAG 1 which remove more than about 40 million gal of contaminated groundwater per year.

  3. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory EnergyX Macroencapsulated Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory J.

    2015-06-01

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) EnergyX Macroencapsulated waste stream (B LAMACRONCAP, Revision 1) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL EnergyX Macroencapsulated waste stream is macroencapsulated mixed waste generated during research laboratory operations and maintenance (LLNL 2015). The LLNL EnergyX Macroencapsulated waste stream required a special analysis due to tritium (3H), cobalt-60 (60Co), cesium-137 (137Cs), and radium-226 (226Ra) exceeding the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015).The results indicate that all performance objectives can be met with disposal of the waste stream in a SLB trench. Addition of the LLNL EnergyX Macroencapsulated inventory slightly increases multiple performance assessment results, with the largest relative increase occurring for the all-pathways annual total effective dose (TED). The maximum mean and 95th percentile 222Rn flux density remain less than the performance objective throughout the compliance period. The LLNL EnergyX Macroencapsulated waste stream is suitable for disposal by SLB at the Area 5 RWMS. The waste stream is recommended for approval without conditions.

  4. National Laboratory's Weapons Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security, LLC, began managing the Laboratory. Prior to joining the Laboratory, McMillan served in a variety of research and management positions at Lawrence Livermore...

  5. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2012-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance and other issues Discussion of the facility's environmental impacts During the 2011 permit year, approximately 166 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  6. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance issues Discussion of the facility’s environmental impacts During the 2012 permit year, approximately 183 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  7. 2014 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    Lewis, Mike

    2015-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2013 through October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Groundwater monitoring data; Status of special compliance conditions; Noncompliance issues; and Discussion of the facility’s environmental impacts During the 2014 reporting year, an estimated 10.11 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.

  8. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2012 reporting year, an estimated 11.84 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  9. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    David Frederick

    2012-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA-000160-01), for the wastewater reuse site at the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: (1) Facility and system description; (2) Permit required effluent monitoring data and loading rates; (3) Groundwater monitoring data; (4) Status of special compliance conditions; and (5) Discussion of the facility's environmental impacts. During the 2011 reporting year, an estimated 6.99 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. Using the dissolved iron data, the concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  10. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    David B. Frederick

    2011-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  11. Final Environmental Impact Statement for Treating Transuranic (TRU)/Alpha Low-level Waste at the Oak Ridge National Laboratory Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    N /A

    2000-06-30

    The DOE proposes to construct, operate, and decontaminate/decommission a TRU Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste. This document analyzes the potential environmental impacts associated with five alternatives--No Action, the Low-Temperature Drying Alternative (Preferred Alternative), the Vitrification Alternative, the Cementation Alternative, and the Treatment and Waste Storage at Oak Ridge National Laboratory (ORNL) Alternative.

  12. Waste Area Grouping 4 Site Investigation Sampling and Analysis Plan, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1994-12-01

    Waste Area Grouping (WAG) 4 is one of 17 WAGs within and associated with Oak Ridge National Laboratory (ORNL), on the Oak Ridge Reservation in Oak Ridge, Tennessee. WAG 4 is located along Lagoon Road south of the main facility at ORNL. WAG 4 is a shallow-waste burial site consisting of three separate areas: (1) Solid Waste Storage Area (SWSA) 4, a shallow-land burial ground containing radioactive and potentially hazardous wastes; (2) an experimental Pilot Pit Area, including a pilot-scale testing pit; and (3) sections of two abandoned underground pipelines formerly used for transporting liquid, low-level radioactive waste. In the 1950s, SWSA 4 received a variety of low-and high-activity wastes, including transuranic wastes, all buried in trenches and auger holes. Recent surface water data indicate that a significant amount of {sup 90}Sr is being released from the old burial trenches in SWSA 4. This release represents a significant portion of the ORNL off-site risk. In an effort to control the sources of the {sup 90}Sr release and to reduce the off-site risk, a site investigation is being implemented to locate the trenches containing the most prominent {sup 90}Sr sources. This investigation has been designed to gather site-specific data to confirm the locations of {sup 90}Sr sources responsible for most off-site releases, and to provide data to be used in evaluating potential interim remedial alternatives prepared to direct the site investigation of the SWSA 4 area at WAG 4.

  13. Idaho National Engineering Laboratory code assessment of the Rocky Flats transuranic waste

    SciTech Connect (OSTI)

    1995-07-01

    This report is an assessment of the content codes associated with transuranic waste shipped from the Rocky Flats Plant in Golden, Colorado, to INEL. The primary objective of this document is to characterize and describe the transuranic wastes shipped to INEL from Rocky Flats by item description code (IDC). This information will aid INEL in determining if the waste meets the waste acceptance criteria (WAC) of the Waste Isolation Pilot Plant (WIPP). The waste covered by this content code assessment was shipped from Rocky Flats between 1985 and 1989. These years coincide with the dates for information available in the Rocky Flats Solid Waste Information Management System (SWIMS). The majority of waste shipped during this time was certified to the existing WIPP WAC. This waste is referred to as precertified waste. Reassessment of these precertified waste containers is necessary because of changes in the WIPP WAC. To accomplish this assessment, the analytical and process knowledge available on the various IDCs used at Rocky Flats were evaluated. Rocky Flats sources for this information include employee interviews, SWIMS, Transuranic Waste Certification Program, Transuranic Waste Inspection Procedure, Backlog Waste Baseline Books, WIPP Experimental Waste Characterization Program (headspace analysis), and other related documents, procedures, and programs. Summaries are provided of: (a) certification information, (b) waste description, (c) generation source, (d) recovery method, (e) waste packaging and handling information, (f) container preparation information, (g) assay information, (h) inspection information, (i) analytical data, and (j) RCRA characterization.

  14. Management | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Sciences & Engineering Focus: Understanding & Control of Interfacial Processes Web Site Michael Thackeray Michael Thackeray (Deputy Director) Argonne National Laboratory...

  15. National Renewable Energy Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribal Energy Program Review Roger Taylor Manger State, Local & Tribal Integrated Application Group National Renewable Energy Laboratory November 5-8, 2007 Major DOE National Laboratories Brookhaven Brookhaven Pacific Northwest Pacific Northwest Lawrence Berkeley Lawrence Berkeley Lawrence Livermore Lawrence Livermore h h h h h INEL INEL National Renewable National Renewable Energy Laboratory Energy Laboratory Los Alamos Los Alamos Sandia Sandia Argonne Argonne Oak Ridge Oak Ridge Defense

  16. In-situ containment of buried waste at Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Dwyer, B.P.; Heiser, J.; Stewart, W.; Phillips, S.

    1997-12-31

    The primary objective of this project was to further develop close-coupled barrier technology for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and chemically resistant polymer layer. The technology has matured from a regulatory investigation of issues concerning barriers and barrier materials to a pilot-scale, multiple individual column injections at Sandia National Labs (SNL) to full scale demonstration. The feasibility of this barrier concept was successfully proven in a full scale {open_quotes}cold test{close_quotes} demonstration at Hanford, WA. Consequently, a full scale deployment of the technology was conducted at an actual environmental restoration site at Brookhaven National Lab (BNL), Long Island, NY. This paper discusses the installation and performance of a technology deployment implemented at OU-1 an Environmental Restoration Site located at BNL.

  17. Development of a waste dislodging and retrieval system for use in the Oak Ridge National Laboratory gunite tank

    SciTech Connect (OSTI)

    Randolph, J.D.; Lloyd, P.D.; Burks, B.L.

    1997-03-01

    As part of the Gunite And Associated Tanks (GAAT) Treatability Study the Oak Ridge National Laboratory (ORNL) has developed a tank waste retrieval system capable of removing wastes varying from liquids to thick sludges. This system is also capable of scarifying concrete walls and floors. The GAAT Treatability Study is being conducted by the Department of Energy Oak Ridge Environmental Restoration Program. Much of the technology developed for this project was cosponsored by the DOE Office of Science and Technology through the Tanks Focus Area (TFA) and the Robotics Technology Development Program. The waste dislodging and conveyance (WD&C) system was developed jointly by ORNL and participants from the TFA. The WD&C system is comprised of a four degree-of-freedom arm with back driveable motorized joints. a cutting and dislodging tool, a jet pump and hose management system for conveyance of wastes, confined sluicing end-effector, and a control system, and must be used in conjunction with a robotic arm or vehicle. Other papers have been submitted to this conference describing the development and operation of the arm and vehicle positioning systems. This paper will describe the development of the WD&C system and its application for dislodging and conveyance of ORNL sludges from the GAAT tanks. The confined sluicing end-effector relies on medium pressure water jets to dislodge waste that is then pumped by the jet pump through the conveyance system out of the tank. This paper will describe the results of cold testing of the integrated system. At the conference presentation there will also be results from the field deployment. ORNL has completed fabrication of the WD&C system for waste removal and is full-scale testing, including testing of the confined sluicing end-effector.

  18. Special Analysis for the Disposal of the Idaho National Laboratory Unirradiated Light Water Breeder Reactor Rods and Pellets Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory

    2014-08-31

    The purpose of this special analysis (SA) is to determine if the Idaho National Laboratory (INL) Unirradiated Light Water Breeder Reactor (LWBR) Rods and Pellets waste stream (INEL103597TR2, Revision 2) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS). The INL Unirradiated LWBR Rods and Pellets waste stream consists of 24 containers with unirradiated fabricated rods and pellets composed of uranium oxide (UO2) and thorium oxide (ThO2) fuel in zirconium cladding. The INL Unirradiated LWBR Rods and Pellets waste stream requires an SA because the 229Th, 230Th, 232U, 233U, and 234U activity concentrations exceed the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC) Action Levels.

  19. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory i Table of Contents Letter from the Division Director 1 Innovation Prize Nominations 2 Innovation Prize Winner 5 About the Feynman Center for Innovation 6 Innovation Assets 7 Strategic Sponsored Work 8 National High Magnetic Field Laboratory 9 Licensing 10 SOLVE 11 Economic Development 12 STAR Cryoelectronics 13 Partnership 14 Verdesian Life Sciences 15 R&D 100 Awards 16 Federal Laboratory Consortium Awards 17 Los Alamos National Laboratory 1 As scientists and

  20. Alamos National Laboratory's 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    $2 million pledged during Los Alamos National Laboratory's 2014 employee giving campaign December 17, 2013 "I Give Because..." theme focuses on unique role Lab plays in local communities LOS ALAMOS, N.M., Dec. 17, 2013-Nearly $2 million has been pledged by Los Alamos National Laboratory employees to United Way and other eligible nonprofit programs during the Laboratory's 2014 Employee Giving Campaign. Los Alamos National Security, LLC, which manages and operates the Laboratory for the

  1. Oak Ridge National Laboratory Old Hydrofracture Facility Waste Remediation Using the Borehole-Miner Extendible-Nozzle Sluicer

    SciTech Connect (OSTI)

    Bamberger, J.A.; Boris, G.F.

    1999-10-07

    A borehole-miner extendible-nozzle sluicing system was designed, constructed, and deployed at Oak Ridge National Laboratory to remediate five horizontal underground storage tanks containing sludge and supernate at the ORNL Old Hydrofracture Facility site. The tanks were remediated in fiscal year 1998 to remove {approx}98% of the waste, {approx}3% greater than the target removal of >95% of the waste. The tanks contained up to 18 in. of sludge covered by supernate. The 42,000 gal of low level liquid waste were estimated to contain 30,000 Ci, with 97% of this total located in the sludge. The retrieval was successful. At the completion of the remediation, the State of Tennessee Department of Environment and Conservation agreed that the tanks were cleaned to the maximum extent practicable using pumping technology. This deployment was the first radioactive demonstration of the borehole-miner extendible-nozzle water-jetting system. The extendible nozzle is based on existing bore hole-miner technology used to fracture and dislodge ore deposits in mines. Typically borehole-miner technology includes both dislodging and retrieval capabilities. Both dislodging, using the extendible-nozzle water-jetting system, and retrieval, using a jet pump located at the base of the mast, are deployed as an integrated system through one borehole or riser. Note that the extendible-nozzle system for Oak Ridge remediation only incorporated the dislodging capability; the retrieval pump was deployed through a separate riser. The borehole-miner development and deployment is part of the Retrieval Process Development and Enhancements project under the direction of the US Department of Energy's EM-50 Tanks Focus Area. This development and deployment was conducted as a partnership between RPD and E and the Oak Ridge National Laboratory's US DOE EM040 Old Hydrofracture Facility remediation project team.

  2. Alamos National Laboratory's 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    .1 million pledged during Los Alamos National Laboratory's 2013 employee giving campaign December 17, 2012 LOS ALAMOS, NEW MEXICO, December 17, 2012-Los Alamos National Laboratory employees have again demonstrated concern for their communities and those in need by pledging a record $2.13 million to United Way and other eligible nonprofit programs. Los Alamos National Security, LLC, which manages and operates the Laboratory for the National Nuclear Security Administration, plans to prorate its $1

  3. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 1, Waste streams and treatment technologies

    SciTech Connect (OSTI)

    Neupauer, R.M.; Thurmond, S.M.

    1992-09-01

    This report describes health and safety concerns associated with the Mixed and Low-level Waste Treatment Facility at the Idaho National Engineering Laboratory. Various hazards are described such as fire, electrical, explosions, reactivity, temperature, and radiation hazards, as well as the potential for accidental spills, exposure to toxic materials, and other general safety concerns.

  4. Idaho_National_Laboratory

    Office of Environmental Management (EM)

    Stacey Francis Small Business Program Manager Idaho National Laboratory 2 Idaho National Laboratory Prime Contractors * Idaho National Laboratory - Managed and Operated by Battelle Energy Alliance, LLC - Office of Nuclear Energy * Idaho Cleanup Project - Managed by Fluor Idaho, LLC - Office of Environmental Management * Naval Reactor Facility - Managed by Bechtel Marine Propulsion Corporation - Naval Nuclear Propulsion Program Department of Energy - Idaho 3 We Maintain: * 890 square miles * 111

  5. National Renewable Energy Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Annual Review Roger Taylor November 17, 2008 National Renewable Energy Laboratory Innovation for Our Energy Future Major DOE National Laboratories Brookhaven Pacific Northwest Lawrence Berkeley Lawrence Livermore          INEL National Renewable Energy Laboratory Los Alamos Sandia Argonne Oak Ridge   Defense Program Labs  Office of Science Labs  Energy Efficiency and Renewable Energy Lab  Environmental Management Lab  Fossil Energy Lab NETL 

  6. Sandia National Laboratories: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facebook Twitter YouTube Flickr RSS Pathfinder Airborne ISR Systems Publications Sandia National Laboratories: Synthetic Aperature Radar (SAR): Publications Reports authored by Sandia National Laboratories 63 results OSTI ID Report No. Type Title Authors Pub. Date Researcher Sponsor 1121978 Full Text Available SAND2013-10619 Technical Report Window taper functions for subaperture processing. Doerry, Armin Walter Dec. 2013 Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

  7. Savannah River National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savannah River National Laboratory srnl.doe.gov SRNL is a DOE National Laboratory operated by Savannah River Nuclear Solutions. At a glance 'Tin whiskers' suppression method Researchers at the Savannah River National Laboratory (SRNL) have identified a treatment method that slows or prevents the formation of whiskers in lead-free solder. Tin whiskers spontaneously grow from thin films of tin, often found in microelectronic devices in the form of solders and platings. Background This problem was

  8. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mentoring Why mentoring? As one of the largest laboratories in the nation for science and engineering research, Argonne National Laboratory is home to some of the most prolific and well-renowned scientists and engineers. To maintain an environment that fosters innovative research, we are committed to ensuring the success of our major players on the frontlines of our research-our Postdoctoral Scientists. The Argonne National Laboratory has a long-standing reputation as a place that offers

  9. Characterization, minimization and disposal of radioactive, hazardous, and mixed wastes during cleanup and rransition of the Tritium Research Laboratory (TRL) at Sandia National Laboratories/California (SNL/CA)

    SciTech Connect (OSTI)

    Garcia, T.B.; Gorman, T.P.

    1996-12-01

    This document provides an outline of waste handling practices used during the Sandia National Laboratory/California (SNL/CA), Tritium Research Laboratory (TRL) Cleanup and Transition project. Here we provide background information concerning the history of the TRL and the types of operations that generated the waste. Listed are applicable SNL/CA site-wide and TRL local waste handling related procedures. We describe personnel training practices and outline methods of handling and disposal of compactible and non-compactible low level waste, solidified waste water, hazardous wastes and mixed wastes. Waste minimization, reapplication and recycling practices are discussed. Finally, we provide a description of the process followed to remove the highly contaminated decontamination systems. This document is intended as both a historical record and as a reference to other facilities who may be involved in similar work.

  10. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    short-pulse laser, scientists from Los Alamos, the Technical University of Darmstadt, Germany, and Sandia National Laboratories focus high-intensity light on an ultra-thin...

  11. Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of, or supplemental to, this entry is a fair and accurate representation of this ... Sandia National Laboratories' (Sandia) Xyce Parallel Circuit Simulator is the world's ...

  12. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32...

  13. National Laboratory Photovoltaics Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  14. Awards | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance Award, 2013 (with two other researchers) U.S. Department of Energy Vehicle Technologies Office R&D Award, 2013 Argonne National Laboratory Distinguished...

  15. National Laboratory Geothermal Publications

    Broader source: Energy.gov [DOE]

    You can find publications, including technical papers and reports, about geothermal technologies, research, and development at the following U.S. Department of Energy national laboratories.

  16. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne Careers Apply ...

  17. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sustainability award October 14, 2010 LOS ALAMOS, New Mexico, October 14, 2010-Los Alamos National Laboratory recently received an Environmental Sustainability (EStar) ...

  18. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6th Hazmat Challenge July 31, 2012 Competition tests skills of hazardous materials response teams LOS ALAMOS, New Mexico, July 31, 2012 What: Los Alamos National Laboratory (LANL)...

  19. Cultural Resource Protection Plan for the Remote-Handled Low-Level Waste Disposal Facility at the Idaho National Laboratory

    SciTech Connect (OSTI)

    Pace, Brenda Ringe; Gilbert, Hollie Kae

    2015-05-01

    This plan addresses cultural resource protection procedures to be implemented during construction of the Remote Handled Low Level Waste project at the Idaho National Laboratory. The plan proposes pre-construction review of proposed ground disturbing activities to confirm avoidance of cultural resources. Depending on the final project footprint, cultural resource protection strategies might also include additional survey, protective fencing, cultural resource mapping and relocation of surface artifacts, collection of surface artifacts for permanent curation, confirmation of undisturbed historic canal segments outside the area of potential effects for construction, and/or archaeological test excavations to assess potential subsurface cultural deposits at known cultural resource locations. Additionally, all initial ground disturbing activities will be monitored for subsurface cultural resource finds, cultural resource sensitivity training will be conducted for all construction field personnel, and a stop work procedure will be implemented to guide assessment and protection of any unanticipated discoveries after initial monitoring of ground disturbance.

  20. Remedial investigation report on Waste Area Group 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Technical summary

    SciTech Connect (OSTI)

    1995-03-01

    A remedial investigation (RI) was performed to support environmental restoration activities for Waste Area Grouping (WAG) 5 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The WAG 5 RI made use of the observational approach, which concentrates on collecting only information needed to assess site risks and support future cleanup work. This information was interpreted and is presented using the framework of the site conceptual model, which relates contaminant sources and release mechanisms to migration pathways and exposure points that are keyed to current and future environmental risks for both human and ecological receptors. The site conceptual model forms the basis of the WAG 5 remedial action strategy and remedial action objectives. The RI provided the data necessary to verify this model and allows recommendations to be made to accomplish those objectives.

  1. Los Alamos National Laboratory ships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ships last of high-activity drums to WIPP November 25, 2008 LOS ALAMOS, New Mexico, November 25, 2008- The last group of unvented high- activity drums left Los Alamos National Laboratory for the Waste Isolation Pilot Plant (WIPP) near Carlsbad earlier this month. "This is a significant achievement for the Laboratory," said Mark Shepard of Los Alamos's Waste Disposition Project. "It closes a chapter on the February 2007 commitment to the Defense Nuclear Facilities Safety Board to

  2. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated research facilities. As a U.S. Department of Energy national laboratory, Argonne offers access to the facilities listed below through a variety of arrangements. Advanced Powertrain Research Facility Center for Transportation Research Materials Engineering Research Facility Distributed Energy Research Center

  3. WIPP WAC Equivalence Support Measurements for Low-Level Sludge Waste at Los Alamos National Laboratory - 12242

    SciTech Connect (OSTI)

    Gruetzmacher, Kathleen M.; Bustos, Roland M.; Ferran, Scott G.; Gallegos, Lucas E.; Lucero, Randy P.

    2012-07-01

    Los Alamos National Laboratory (LANL) uses the Nevada National Security Site (NNSS) as an off-site disposal facility for low-level waste (LLW), including sludge waste. NNSS has issued a position paper that indicates that systems that are not certified by the Carlsbad Field Office (CBFO) for Waste Isolation Pilot Plant (WIPP) disposal of Transuranic (TRU) waste must demonstrate equivalent practices to the CBFO certified systems in order to assign activity concentration values to assayed items without adding in the Total Measurement Uncertainty (TMU) when certifying waste for NNSS disposal. Efforts have been made to meet NNSS requirements to accept sludge waste for disposal at their facility. The LANL LLW Characterization Team uses portable high purity germanium (HPGe) detector systems for the nondestructive assay (NDA) of both debris and sludge LLW. A number of performance studies have been conducted historically by LANL to support the efficacy and quality of assay results generated by the LANL HPGe systems, and, while these detector systems are supported by these performance studies and used with LANL approved procedures and processes, they are not certified by CBFO for TRU waste disposal. Beginning in 2009, the LANL LLW Characterization Team undertook additional NDA measurements of both debris and sludge simulated waste containers to supplement existing studies and procedures to demonstrate full compliance with the NNSS position paper. Where possible, Performance Demonstration Project (PDP) drums were used for the waste matrix and PDP sources were used for the radioactive sources. Sludge drums are an example of a matrix with a uniform distribution of contaminants. When attempting to perform a gamma assay of a sludge drum, it is very important to adequately simulate this uniform distribution of radionuclides in order to accurately model the assay results. This was accomplished by using a spiral radial source tube placement in a sludge drum rather than the standard

  4. Waste Stream Generated and Waste Disposal Plans for Molten Salt Reactor Experiment at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Haghighi, M. H.; Szozda, R. M.; Jugan, M. R.

    2002-02-26

    The Molten Salt Reactor Experiment (MSRE) site is located in Tennessee, on the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR), south of the Oak Ridge National Laboratory (ORNL) main plant across Haw Ridge in Melton Valley. The MSRE was run by ORNL to demonstrate the desirable features of the molten-salt concept in a practical reactor that could be operated safely and reliably. It introduced the idea of a homogeneous reactor using fuel salt media and graphite moderation for power and breeder reactors. The MSRE reactor and associated components are located in cells beneath the floor in the high-bay area of Building 7503 (Figure 1). The reactor was operated from June 1965 to December 1969. When the reactor was shut down, fuel salt was drained from the reactor circuit to two drain tanks. A ''clean'' salt was then circulated through the reactor as a decontamination measure and drained to a third drain tank. When operations ceased, the fuel and flush salts were allowed t o cool and solidify in the drain tanks. At shutdown, the MSRE facility complex was placed in a surveillance and maintenance program. As a result of the S&M program, it was discovered in 1994 that gaseous uranium (233U/232U) hexafluoride (UF6) had moved throughout the MSRE process systems. The UF6 was generated when radiolysis of the fluorine salts caused the individual constituents to dissociate to their component atoms, including free fluorine.Some of the free fluorine combined with uranium fluorides (UF4) in the salt to form UF6. UF6 is gaseous at slightly above ambient temperatures; thus, periodic heating of the fuel salts (which was intended to remedy the radiolysis problems) and simple diffusion had allowed the UF6 to move out of the salt and into the process systems of MSRE.

  5. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results

    SciTech Connect (OSTI)

    Rechard, R.P.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  6. Idaho National Engineering and Environmental Laboratory, Old Waste Calcining Facility, Scoville vicinity, Butte County, Idaho -- Photographs, written historical and descriptive data. Historical American engineering record

    SciTech Connect (OSTI)

    1997-12-31

    This report describes the history of the Old Waste Calcining Facility. It begins with introductory material on the Idaho National Engineering and Environmental Laboratory, the Materials Testing Reactor fuel cycle, and the Idaho Chemical Processing Plant. The report then describes management of the wastes from the processing plant in the following chapters: Converting liquid to solid wastes; Fluidized bed waste calcining process and the Waste Calcining Facility; Waste calcining campaigns; WCF gets a new source of heat; New Waste Calcining Facility; Last campaign; Deactivation and the RCRA cap; Significance/context of the old WCF. Appendices contain a photo key map for HAER photos, a vicinity map and neighborhood of the WCF, detailed description of the calcining process, and chronology of WCF campaigns.

  7. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory Low Activity Beta/Gamma Sources Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Shott, Gregory J.

    2015-06-01

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) Low Activity Beta/Gamma Sources waste stream (BCLALADOEOSRP, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL Low Activity Beta/Gamma Sources waste stream consists of sealed sources that are no longer needed. The LLNL Low Activity Beta/Gamma Sources waste stream required a special analysis because cobalt-60 (60Co), strontium-90 (90Sr), cesium-137 (137Cs), and radium-226 (226Ra) exceeded the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office [NNSA/NFO] 2015). The results indicate that all performance objectives can be met with disposal of the LLNL Low Activity Beta/Gamma Sources in a SLB trench. The LLNL Low Activity Beta/Gamma Sources waste stream is suitable for disposal by SLB at the Area 5 RWMS. However, the activity concentration of 226Ra listed on the waste profile sheet significantly exceeds the action level. Approval of the waste profile sheet could potentially allow the disposal of high activity 226Ra sources. To ensure that the generator does not include large 226Ra sources in this waste stream without additional evaluation, a control is need on the maximum 226Ra inventory. A limit based on the generator’s estimate of the total 226Ra inventory is recommended. The waste stream is recommended for approval with the control that the total 226Ra inventory disposed shall not exceed 5.5E10 Bq (1.5 Ci).

  8. Demolition of the waste evaporator facility at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Mandry, G.J. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Becker, C.L. [Allied Technology Group, Inc., Oak Ridge, TN (United States)

    1997-08-01

    Lockheed Martin Energy Systems, in conjunction with Allied Technology Group, Inc., successfully executed the decommissioning of a former waste evaporator facility at ONRL. This project was conducted as a non-time critical removal action under CERCLA. The decommissioning alternative selected for the Waste Evaporator Facility was partial dismantlement. This alternative provided for the demolition of all above-grade structures; concrete which did not exceed pre-established radiological levels were eligible for placement in the below-grade portion of the facility. This project demonstrated a coordinated team approach that allowed the successful completion of one of the first full-scale decommissioning projects at ORNL.

  9. Idaho National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Snake River Geothermal Consortium (SRGC) is a research partnership focused on advancing geothermal energy. Hosted by the Idaho National Laboratory (INL), SRGC proposes establishing FORGE as a resource for technology development, deployment, and validation. Their team includes members from national laboratories, universities, industry, and state and federal agencies. The technical team consists of members from Baker Hughes, the Center for Advanced Energy Studies (CAES) – Idaho National Laboratory, University of Idaho, Idaho State University, Boise State University, University of Wyoming - Campbell Scientific, Chena Power, Geothermal Resources Group, Idaho Department of Water Resources, Idaho Geologic Survey, Lawrence Livermore National Laboratory, Mink GeoHydro, National Renewable Energy Laboratory, University of Oklahoma, University of Utah, U.S. Geothermal, and the U.S. Geological Survey (USGS).

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70th anniversary app for iPhone, iPads June 5, 2013 LOS ALAMOS, N.M., June 4, 2013-Los Alamos National Laboratory has launched its first app for iPhones and iPads as part of the Laboratory's yearlong celebration of 70 years serving the nation. The free application is available from the Apple Store (search for Los Alamos National Lab). The app enables users to learn more about the Laboratory's national security mission, cutting edge research, unique history, top-flight scientists and the many

  11. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Defense Systems & Assessments: About Us Defense Systems About Defense Systems & Assessments Program Areas Accomplishments Cybersecurity Programs About Defense Systems & Assessments soldier silhouetted by a sunset Defense Systems & Assessments supports guardians of peace and freedom on the battlefield and in the laboratory by applying engineering, science, and technology solutions to deter, detect, defeat, and defend threats to our national security. We analyze and exploit the

  12. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons: About About Nuclear Weapons at Sandia Weapons Researcher World-class scientists and engineers come to Sandia to conduct breakthrough research in nuclear weapons. Sandia designs more than 6,300 parts of a modern nuclear weapon's 6,500 components. Our state-of-the-art laboratories facilitate large-scale testing and computer simulation. Sandia's work is of the highest consequence and those doing the work face awesome responsibilities. Unlike other national labs, which focus on

  13. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices

    SciTech Connect (OSTI)

    Rechard, R.P.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  14. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2012 through October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2013 reporting year, an estimated 9.64 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.

  15. C-tank transfers: Transuranic sludge removal from the C-1, C-2, and W-23 waste storage tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Dahl, T.L.; Lay, A.C.; Taylor, S.A.; Moore, J.W.

    1999-05-01

    Two fluidic pulse jet mixing systems were used to successfully mobilize remote-handled transuranic sludge for retrieval from three 50,000-gal horizontal waste storage tanks at Oak Ridge National Laboratory (ORNL). The results of this operation indicate that the pulse jet system should be considered for mixing and bulk retrieval of sludges in other vertical and horizontal waste tanks at ORNL and at other U.S. Department of Energy sites.

  16. Pacific Northwest National Laboratory,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration Pacific Northwest National Laboratory NNSA deputy visits PNNL to see radiochemistry and threat detection capabilities NNSA Principal Deputy Administrator Madelyn Creedon visited the Pacific Northwest National Laboratory (PNNL) in Washington this month to see the work it does for the agency, focusing on radiochemistry and threat detection. NNSA hosts international CTBT on-site inspection experts at Nevada National Security Site This month, NNSA hosted a Comprehensive

  17. Los Alamos National Laboratory Hazardous Waste Facility Permit Draft Community Relations Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous Waste Facility Permit Draft Community Relations Plan Comment/Suggestion Form Instructions for completing the form: Please reference the section in the plan that your comments and suggestions address. Example: Section 1.0. General comments are also useful to plan improvment. Please include ideas for implementation of your suggestion, and your contact information for further discussion. Public comments and suggestions are received year round. A summary of comments are posted each year at

  18. Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram. Volume 3

    SciTech Connect (OSTI)

    O`Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Volume III (this volume) provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are reference by a TEDS code number in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II. Data sheets are arranged alphanumerically by the TEDS code number in the upper right corner of each sheet.

  19. Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram. Volume 2

    SciTech Connect (OSTI)

    O`Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

    1993-09-01

    The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II (this volume) describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Specific INEL problem areas/contaminants are identified along with technology solutions, the status of the technologies, precise science and technology needs, and implementation requirements. Volume III provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are referenced by a TEDS codenumber in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II.

  20. Hydrology of the Melton Valley radioactive-waste burial grounds at Oak Ridge National Laboratory, Tennessee

    SciTech Connect (OSTI)

    Webster, D.A.; Bradley, M.W.

    1988-12-31

    Burial grounds 4, 5, and 6 were used sequentially from 1951 to the present for the disposal of solid, low-level radioactive waste by burial in shallow trenches and auger holes. Abundant rainfall, a generally thin unsaturated zone, geologic media of inherently low permeability, and the operational practices employed have contributed to partial saturation of the buried waste, leaching of radionuclides, and transport of dissolved matter from the burial areas. Two primary methods of transport from these sites are by dissolution in circulating ground water, and the overflow of fluids in trenches and subsequent flow across land surface. The waste-disposal areas are underlain by the Conasauga Group (Cambrian age), a complex sequence of mudstone, siltstone, and limestone interbeds grading from one lithotype to the other, both laterally and vertically. Compressional forces that caused regional thrust faulting also caused much internal deformation of the beds. Folds, bedding-plane faults, and joints are widespread. Small solution openings have developed in some areas where the structurally-related openings have provided ingress to ground water.

  1. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    remembers former director Harold Agnew September 30, 2013 Manhattan Project pioneer was LANL director from 1970-1979 LOS ALAMOS, N.M., Sept. 30, 2013-Los Alamos National Laboratory Director Charlie McMillan today remembered Harold Agnew as a national treasure who transformed the Laboratory into what it is in the 21st century. "His contributions to the Laboratory made us the institution we are today," McMillan said. "It was his vision - decades ago - that recognized that national

  2. Sandia National Laboratories

    National Nuclear Security Administration (NNSA)

    National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582 P. ENERGY U.S. DEPARTMENT OF Albuquerque N e w M e x i c o Sandia Mountains Q Q ApproximatelyQ8,800QacresQQ ofQDOE-ownedQandQQ permittedQland Q Q LocatedQwithinQtheQQ KirtlandQAirQForceQQ

  3. 3001 canal radiological characterization and waste removal report, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Ritchie, M.G.

    1996-12-01

    An underground steel reinforced concrete transfer and storage canal was built in 1943 and operated as an integral part of the Oak Ridge Graphite Reactor Building (3001) until 1963 when the reactor was shutdown. During operation, the canal was used for under water transfer of irradiated materials and other metals from the reactor in Building 3001 to the Building 3019 hot cell for further processing. After shutdown of the reactor, the canal was used for storage of irradiated materials and fission products until 1990 when the larger materials were removed and stored in the Department of Energy (DOE) approved solid waste management storage facilities. At that time it was discovered that a considerable amount of sludge had accumulated over the intervening years and subsequent analysis showed that the sludge contained Resource Conservation and Recovery Act (RCRA) materials that violated quantities allowed by the RCRA regulations. It was also recognized in 1990 that the canal was losing water to evaporation and the ground at the rate of approximately 400 gallons per day. To maintain water quality; i.e., radionuclide content at or near DOE derived concentration guidelines (DCG), the water in the canal is constantly demineralized using a demineralizer in the Building 3001 and demineralized make up water is supplied from the Building 3004 demineralizer. This report summarizes the 301 Canal Cleanup Task and the solid waste removed from the 3001 Canal in 1996.

  4. Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part C, Robotics/automation, Waste management

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

  5. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientists will codirect $14.5 million National Center for Systems Biology July 28, 2009 Lab contributes computer modeling, antibody engineering capabilities Los Alamos, New Mexico, July 28, 2009- Los Alamos National Laboratory scientists will codirect a new National Center for Systems Biology located at the University of New Mexico in Albuquerque. The new Spatiotemporal Modeling Center (STMC) is funded by a $14.5 million, five- year grant from the National Institute for General Medical Sciences

  6. Probabilistic performance-assessment modeling of the mixed waste landfill at Sandia National Laboratories.

    SciTech Connect (OSTI)

    Peace, Gerald L.; Goering, Timothy James; Miller, Mark Laverne; Ho, Clifford Kuofei

    2007-01-01

    A probabilistic performance assessment has been conducted to evaluate the fate and transport of radionuclides (americium-241, cesium-137, cobalt-60, plutonium-238, plutonium-239, radium-226, radon-222, strontium-90, thorium-232, tritium, uranium-238), heavy metals (lead and cadmium), and volatile organic compounds (VOCs) at the Mixed Waste Landfill (MWL). Probabilistic analyses were performed to quantify uncertainties inherent in the system and models for a 1,000-year period, and sensitivity analyses were performed to identify parameters and processes that were most important to the simulated performance metrics. Comparisons between simulated results and measured values at the MWL were made to gain confidence in the models and perform calibrations when data were available. In addition, long-term monitoring requirements and triggers were recommended based on the results of the quantified uncertainty and sensitivity analyses.

  7. Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    HISTORYThe Argonne National Laboratory (ANL) site is approximately 27 miles southwest of downtown Chicago in DuPage County, Illinois.  The 1,500 acre ANL site is completely surrounded by the 2,240...

  8. Los Alamos National Laboratory ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division I N S I D E 2 From ...

  9. sandia national laboratory

    National Nuclear Security Administration (NNSA)

    %2A en Sandia National Laboratories http:nnsa.energy.govaboutusourlocationssandia

    Page...

  10. Sandia National Laboratories

    Broader source: Energy.gov [DOE]

    The Sandia National Laboratories (SNL) is comprised of 2,820 acres within the boundaries of the 118 square miles Kirtland Air Force Base, and is located 6.5 miles east of downtown Albuquerque, New...

  11. Los Alamos National Laboratory

    Broader source: Energy.gov [DOE]

    HISTORYLos Alamos National Laboratory (LANL) is located in Los Alamos County in north central New Mexico (NM). LANL, founded in 1943 during World War II as Project Y, served as a secret facility...

  12. Brookhaven National Laboratory

    Broader source: Energy.gov [DOE]

    Site OverviewThe Brookhaven National Laboratory (BNL) was established in 1947 by the Atomic Energy Commission (AEC) (predecessor to U.S. Department of Energy [DOE]). Formerly Camp Upton, a U.S....

  13. Students | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interested in exploring what it would be like to work at a national laboratory? If you are a student in science, technology, engineering or math, you can find out more at Argonne. ...

  14. National Laboratory Contacts

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Office works closely with several DOE national laboratories in managing and contributing to research and development projects. Below are the primary contacts at these...

  15. Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PHOTOVOLTAIC ARRAY PERFORMANCE MODEL D. L. King, W. E. Boyson, J. A. Kratochvil Sandia National Laboratories Albuquerque, New Mexico 87185-0752 2 SAND2004-3535 Unlimited Release Printed August 2004 Photovoltaic Array Performance Model David L. King, William E. Boyson, Jay A. Kratochvil Photovoltaic System R&D Department Sandia National Laboratories P. O. Box 5800 Albuquerque, New Mexico 87185-0752 Abstract This document summarizes the equations and applications associated with the

  16. News | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Researchers with the Argonne Center for Collaborative Energy Storage Science (ACCESS) will partner with industry to improve lead-acid battery performance. (Photo: Shutterstock) Lead-acid battery companies join forces with Argonne National Laboratory to enhance battery performance Full Story » Exploring the unrealized potential of lead batteries is the goal of a new collaboration between Argonne National Laboratory and two leading lead recycling and lead battery manufacturing companies, RSR

  17. SANDIA NATIONAL LABORATORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009 Highlights 2 SANDIA NATIONAL LABORATORIES From the Chief Technology O cer The Laboratory Directed Research and Development (LDRD) program is the sole discretionary research and development (R&D) investment program at Sandia. LDRD provides the opportunity for our technical sta to contribute to our Nation's future, to our collective ability to address and nd solutions to a range of daunting scienti c and technological challenges. The results of their work will shape the course of science

  18. Los Alamos NATIONAL LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    / Los Alamos NATIONAL LABORATORY - - - - EST.1943 ....,,..... _ _ _ memorandum E ter Management ' . McMillan, DIR, AIOO -5101/Fax 7-2997 Office of the Director DIR-15-094 July 23, 2015 SUBJECT: SUBCONTRACTING OPPORTUNITIES WITH SMALL BUSINESS Los Alamos National Laboratory has maintained a strong institutional commitment to small business subcontracting over the years. It is my intention that we continue this commitment, which was formalized in the Prime Contract Appendix M provision for a

  19. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and LANS partner to record $2 million in pledges for local United Way programs November 20, 2008 LOS ALAMOS, New Mexico, November 20, 2008- Los Alamos National Laboratory employees once again demonstrated concern for their communities and those in need by pledging a record $1 million to United Way programs in Northern New Mexico and Santa Fe. With a dollar-for-dollar match by Los Alamos National Security, LLC, which operates the Laboratory, the total contribution is more than $2 million.

  20. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    captures eight NNSA Pollution Prevention awards April 15, 2009 LOS ALAMOS, New Mexico, April 15, 2009-Los Alamos National Laboratory employee teams and organizations earned eight 2009 Pollution Prevention awards from the National Nuclear Security Administration (NNSA). The awards are based on an NNSA-wide competition that acknowledges pollution prevention, recycling, and affirmative procurement accomplishments. The Laboratory also received a Department of Energy "E Star" award for its

  1. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 million to local United Way organizations, other nonprofits December 1, 2009 Los Alamos, New Mexico, December 1, 2009-Los Alamos National Laboratory employees once more demonstrated concern for their communities and those in need by pledging a record $1.3 million to United Way and other eligible nonprofit programs.Los Alamos National Security, LLC, which operates the Laboratory, plans to prorate its $1 million match among the selected nonprofit organizations, bringing the total donation to

  2. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    communicators capture numerous awards from Society for Technical Communication April 15, 2010 Recognizing outstanding technical communications products LOS ALAMOS, New Mexico, April 15, 2010-Los Alamos National Laboratory employees received a number of awards in the 2009 Technical Publications and Online Communication competition sponsored by the East Tennessee chapter of the Society for Technical Communication (STC). Laboratory entries competed at a regional, national and international level

  3. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 million to local United Way organizations, other nonprofits November 18, 2010 LOS ALAMOS, New Mexico, November 18, 2010-Los Alamos National Laboratory employees have again demonstrated concern for their communities and those in need by pledging a record $1.5 million to United Way and other eligible nonprofit programs. Los Alamos National Security, LLC, which operates the Laboratory, plans to prorate its $1 million match among the selected nonprofit organizations, bringing the total donation to

  4. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    strategy for long-term environmental sustainability March 1, 2013 Blueprint for planning work activities with the environment in mind LOS ALAMOS, N.M., March 1, 2013-The Department of Energy and Los Alamos National Laboratory have developed a long-term strategy for environmental stewardship and sustainability that provides a blueprint for protecting the environment while accomplishing the Laboratory's national security missions. "This plan represents a significant amount of effort on the

  5. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory has been at the forefront of high-explosives research since the Manhattan Project in 1943. The science of high-explosive performance is central to stockpile stewardship. Yet, explosives science at the Laboratory isn't simply about maintaining and certifying the aging U.S. nuclear deterrent; it's also about developing novel applications of that science to other national security challenges. In 2015, Los Alamos executed more than 400 high-explosive-driven experiments

  6. Workshops | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshops Photos Videos Career Opportunities CNM Intranet CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale Materials About Research Capabilities For Users People Publications News & Events News & Events RESEARCH HIGHLIGHTS COLLOQUIUM SERIES SEMINAR SERIES Argonne Press Releases Feature Stories In the News Users Meetings Workshops Photos Videos Workshops September 17-18, 2015 Argonne National Laboratory and the

  7. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economic development in Northern New Mexico focus of new podcast from Los Alamos National Laboratory November 25, 2013 Podcast part of Lab's new multi-channel effort to better engage with the community LOS ALAMOS, N.M., Nov. 27, 2013-Podcasts and webinars are among the new communications tools being rolled out by Los Alamos National Laboratory's Community Programs Office to reach a broader audience. The first podcast discusses economic development and the Northern New Mexico 20/20 Campaign, a

  8. Sandia National Laboratories: Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Locations Locations Sandia California CINT photo A national and international presence Sandia operates laboratories, testing facilities, and offices in multiple sites around the United States and participates in research collaborations around the world. Sandia's executive management offices and larger laboratory complex are located in Albuquerque, New Mexico. Our second principal laboratory is located in Livermore, California. Although most of our 9,840 employees work at these two locations,

  9. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    purchases nearly $1 billion in goods and services last fiscal year December 6, 2010 Surpasses goals for small business procurements LOS ALAMOS, New Mexico, December 6, 2010-Los Alamos National Laboratory purchased nearly $1 billion in goods and services in the 2010 fiscal year ending September 30, 2010. The $925 million in purchases was helped in part by funding from the American Reinvestment and Recovery Act the Laboratory received for environmental remediation and basic research.The Laboratory

  10. CASL - Idaho National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Idaho National Laboratory Idaho Falls, ID INL is the lead nuclear energy (NE) laboratory for the U.S. Department of Energy. The laboratory has designed and operated 52 test reactors, including EBR-1, the world's first nuclear power plant Key Contributions System safety analysis Multiscale fuel performance simulation Multiphysics coupling framework (MOOSE) Reactor physics Multiphase flow Validation Nuclear Science User Facilities Key Outcomes Test stand for NE programs Virtual Environment for

  11. Oak Ridge National Laboratory Review

    SciTech Connect (OSTI)

    Krause, C.; Pearce, J.; Zucker, A.

    1992-01-01

    This report presents brief descriptions of the following programs at Oak Ridge National Laboratory: The effects of pollution and climate change on forests; automation to improve the safety and efficiency of rearming battle tanks; new technologies for DNA sequencing; ORNL probes the human genome; ORNL as a supercomputer research center; paving the way to superconcrete made with polystyrene; a new look at supercritical water used in waste treatment; and small mammals as environmental monitors.

  12. Site characterization program at the radioactive waste management complex of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    McElroy, D.L.; Rawson, S.A.; Hubbell, J.M.; Minkin, S.C.; Baca, R.G.; Vigil, M.J.; Bonzon, C.J.; Landon, J.L.; Laney, P.T.

    1989-07-01

    The Radioactive Waste Management Complex (RWMC) Site Characterization Program is a continuation of the Subsurface Investigation Program (SIP). The scope of the SIP has broadened in response to the results of past work that identified hazardous as well as radionuclide contaminants in the subsurface environment and in response to the need to meet regulatory requirements. Two deep boreholes were cored at the RWMC during FY-1988. Selected sediment samples were submitted for Appendix IX of 40 CFR Part 264 and radionuclide analyses. Detailed geologic logging of archived core was initiated. Stratigraphic studies of the unsaturated zone were conducted. Studies to determine hydrologic properties of sediments and basalts were conducted. Geochemical studies and analyses were initiated to evaluate contaminant and radionuclide speciation and migration in the Subsurface Disposal Area (SDA) geochemical environment. Analyses of interbed sediments in boreholes D15 and 8801D did not confirm the presence of radionuclide contamination in the 240-ft interbed. Analyses of subsurface air and groundwater samples identified five volatile organic compounds of concern: carbon tetrachloride, trichloroethylene, 1,1,1-trichloroethane, chloroform, and tetrachloroethylene. 33 refs., 5 figs., 2 tabs.

  13. Sandia National Laboratories beginnings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia National Laboratories beginnings focus of Los Alamos' 70th anniversary lecture March 6, 2013 LOS ALAMOS, N.M., March 6, 2013-Sandia National Laboratories historian Rebecca Ullrich discusses Sandia's transition from a Los Alamos division to an independent organization during a talk at 5:30 p.m., March 13 at the Bradbury Science Museum in Los Alamos. The talk is part of the Laboratory's 70th anniversary lecture series. Sandia Labs' origins are in Los Alamos' Z Division, the engineering

  14. Deployment of an alternative cover and final closure of the Mixed Waste Landfill, Sandia National Laboratories, Albuquerque, New Mexico.

    SciTech Connect (OSTI)

    Peace, Gerald L.; Goering, Timothy James; McVey, Michael David (GRAM, Inc., Albuquerque, NM); Borns, David James

    2003-06-01

    An alternative cover design consisting of a monolithic layer of native soil is proposed as the closure path for the Mixed Waste Landfill at Sandia National Laboratories, New Mexico. The proposed design would rely upon soil thickness and evapotranspiration to provide long-term performance and stability, and would be inexpensive to build and maintain. The proposed design is a 3-ft-thick, vegetated soil cover. The alternative cover meets the intent of RCRA Subtitle C regulations in that: (a) water migration through the cover is minimized; (b) maintenance is minimized by using a monolithic soil layer; (c) cover erosion is minimized by using erosion control measures; (d) subsidence is accommodated by using a ''soft'' design; and (e) the permeability of the cover is less than or equal to that of natural subsurface soil present. Performance of the proposed cover is integrated with natural site conditions, producing a ''system performance'' that will ensure that the cover is protective of human health and the environment. Natural site conditions that will produce a system performance include: (a) extremely low precipitation and high potential evapotranspiration; (b) negligible recharge to groundwater; (c) an extensive vadose zone; (d) groundwater approximately 500 ft below the surface; and (e) a versatile, native flora that will persist indefinitely as a climax ecological community with little or no maintenance.

  15. Los Alamos National Laboratory's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NNSA) Los Alamos National Laboratory Los Alamos National Laboratory DE-AC52-06NA25396 Operated by Los Alamos National Security, LLC Conformed to Modification 0341 dated 02/29/2016 BASIC Contract (Official) Modifications (Official) Funding Mods Available Upon Request Conformed Contract (Unofficial) LANL Basic Contract dated 12/21/05 (pdf, 5,501KB) LANL A004 (8/11/06) (pdf, 501KB) LANL Conformed Contract (Conformed to to Modification 0341 dated 02/29/2016) LANL A008 (9/29/06) (pdf, 485KB)

  16. Probabilistic performance-assessment modeling of the mixed waste landfill at Sandia National Laboratories.

    SciTech Connect (OSTI)

    Peace, Gerald L.; Goering, Timothy James; Miller, Mark Laverne; Ho, Clifford Kuofei

    2005-11-01

    A probabilistic performance assessment has been conducted to evaluate the fate and transport of radionuclides (americium-241, cesium-137, cobalt-60, plutonium-238, plutonium-239, radium-226, radon-222, strontium-90, thorium-232, tritium, uranium-238), heavy metals (lead and cadmium), and volatile organic compounds (VOCs) at the Mixed Waste Landfill (MWL). Probabilistic analyses were performed to quantify uncertainties inherent in the system and models for a 1,000-year period, and sensitivity analyses were performed to identify parameters and processes that were most important to the simulated performance metrics. Comparisons between simulated results and measured values at the MWL were made to gain confidence in the models and perform calibrations when data were available. In addition, long-term monitoring requirements and triggers were recommended based on the results of the quantified uncertainty and sensitivity analyses. At least one-hundred realizations were simulated for each scenario defined in the performance assessment. Conservative values and assumptions were used to define values and distributions of uncertain input parameters when site data were not available. Results showed that exposure to tritium via the air pathway exceeded the regulatory metric of 10 mrem/year in about 2% of the simulated realizations when the receptor was located at the MWL (continuously exposed to the air directly above the MWL). Simulations showed that peak radon gas fluxes exceeded the design standard of 20 pCi/m{sup 2}/s in about 3% of the realizations if up to 1% of the containers of sealed radium-226 sources were assumed to completely degrade in the future. If up to 100% of the containers of radium-226 sources were assumed to completely degrade, 30% of the realizations yielded radon surface fluxes that exceeded the design standard. For the groundwater pathway, simulations showed that none of the radionuclides or heavy metals (lead and cadmium) reached the groundwater during

  17. SANDIA NATIONAL LABORATORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impacts on Sandia and the Nation 2 SANDIA NATIONAL LABORATORIES 3 LDRD Impacts on Sandia and the Nation For further information, contact: Wendy R. Cieslak Senior Manager, Science, Technology, and Engineering Strategic Initiatives wrciesl@sandia.gov (505) 844-8633 or Henry R. Westrich LDRD Program Manager hrwestr@sandia.gov 505-844-9092 LDRD Impacts on Sandia and the Nation ABOUT THE COVER: Images from some of the case studies in this brochure: a near-UV light- emitting diode (LED), a cell

  18. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Argonne National Laboratory and the U.S. Department of Energy (DOE) are very concerned about the well-being of all employees. Students at the undergraduate and graduate level as well as postdoctoral appointees form an essential component of the research endeavor at the laboratory. However, research does not stand alone but must be integrated into a program of environment, safety, and security. From time to time, incidents regarding students and postdocs occur across the DOE complex. It is

  19. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Careers Education Community Diversity Directory Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne Safety Biosafety Safety Safety is integral to Argonne's scientific research and engineering technology mission. As a leading U.S. Department of Energy multi-program research laboratory, our obligation to the American people demands that we conduct our research and operations safely

  20. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 13 construction forum in Albuquerque April 7, 2009 LOS ALAMOS, New Mexico, April 7, 2009- Companies big and small can learn about upcoming construction projects and procurement opportunities at Los Alamos National Laboratory by attending a construction forum April 13 at the Hotel Albuquerque, 800 Rio Grande Blvd. N.W., in Albuquerque's Old Town. "The forum is designed to provide key information about Laboratory construction business opportunities. We want interested businesses to have

  1. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy environmental sustainability award October 14, 2010 LOS ALAMOS, New Mexico, October 14, 2010-Los Alamos National Laboratory recently received an Environmental Sustainability (EStar) award from the Department of Energy for integrating sustainable practices in its design for the Radiological Laboratory/ Utility/Office Building (RLUOB). The RLUOB is part of the Lab's Chemistry and Metallurgy Research Replacement (CMRR) Project. The Lab ultimately expects to achieve Leadership

  2. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 14, 2013 Value of up to $150 million over five years LOS ALAMOS, N.M., May 14, 2013-Los Alamos National Laboratory has awarded a master task order agreement in which three small businesses will compete for environmental work worth up to $150 million over five years. The businesses each have offices in northern New Mexico. The agreement is for technical services for the Laboratory's Environmental Programs directorate and includes work such as environmental engineering design, regulatory

  3. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new student app July 15, 2014 Job searching tool for students, postdocs LOS ALAMOS, N.M., July 15, 2014-Los Alamos National Laboratory recently launched its new student mobile app that students and postdoctoral candidates can use to learn about employment opportunities, science research, education programs and more. The Los Alamos Students mobile app is free and can be downloaded from iTunes and Google Play (for android platforms). "The Laboratory's new Student App is a great way for

  4. Enterprise Assessments Review of the Los Alamos National Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transuranic Waste Facility Construction Quality - January 2016 | Department of Energy Los Alamos National Laboratory Transuranic Waste Facility Construction Quality - January 2016 Enterprise Assessments Review of the Los Alamos National Laboratory Transuranic Waste Facility Construction Quality - January 2016 January 2016 Review of the Transuranic Waste Facility Construction Quality at the Los Alamos National Laboratory The U.S. Department of Energy (DOE) Office of Environment, Safety and

  5. DATA SHARING REPORT CHARACTERIZATION OF POPULATION 7: PERSONAL PROTECTIVE EQUIPMENT, DRY ACTIVE WASTE, AND MISCELLANEOUS DEBRIS, SURVEILLANCE AND MAINTENANCE PROJECT OAK RIDGE NATIONAL LABORATORY OAK RIDGE, TENNESSEE

    SciTech Connect (OSTI)

    Harpenau, Evan M

    2013-10-10

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested that ORAU plan and implement a sampling and analysis campaign targeting certain URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing to determine a final pathway for disposal. Population 7 (POP 7) consists of 56 containers of aged, low-level and potentially mixed S&M waste that has been staged in various locations around ORNL. Several of these POP 7 containers primarily contain personal protective equipment (PPE) and dry active waste (DAW), but may contain other miscellaneous debris. This data sharing report addresses the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) specified waste in a 13-container subpopulation (including eight steel boxes, three 55-gal drums, one sealand, and one intermodal) that lacked sufficient characterization data for possible disposal at the Environmental Management Waste Management Facility (EMWMF) using the approved Waste Lot (WL) 108.1 profile.

  6. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On a broad mesquite plain in central New Mexico, a small crew fits a metal cylinder into a rocket the size of a baseball bat, then slips the rocket onto guide rods on a platform. A "Los Alamos" logo on the fuselage certifies this launch as official science by the world-famous national laboratory, not a weekend outing with the kids. Bryce Tappan and a handful of scientists, engineers, and students from Los Alamos National Laboratory and New Mexico Tech stand back as another crew member

  7. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Around 10 a.m. Pyongyang Time on Wednesday, January 6, 2016, seismic analysts around the world picked up something unusual-a 5.1-magnitude seismic event in the northeast corner of North Korea. Earthquakes of this size aren't common on the Korean Peninsula, which likely meant the violent shaking was caused by something else: an explosion. Enter Los Alamos National Laboratory. Los Alamos isn't just in the business of developing, testing, and maintaining explosives. A

  8. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous devices teams showcase skills at Robot Rodeo June 24-27 June 18, 2014 Bomb squads compete in timed scenarios at Los Alamos National Laboratory LOS ALAMOS, N.M., June 19, 2014-Hazardous devices teams from around the Southwest will wrangle their bomb squad robots at the eighth annual Robot Rodeo beginning Tuesday, June 24 at Los Alamos National Laboratory. "The Robot Rodeo gives bomb squad teams the opportunity to practice and hone their skills in a lively but low-risk

  9. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous-devices teams showcase skills at Robot Rodeo June 14-17 June 9, 2016 Bomb squads compete in timed scenarios at Los Alamos National Laboratory LOS ALAMOS, N.M., June 9, 2016-Hazardous-devices teams from around the Southwest will wrangle their bomb-squad robots at the tenth annual Robot Rodeo beginning Tuesday, June 14, at Los Alamos National Laboratory. "The Robot Rodeo gives bomb-squad teams the opportunity to practice and hone their skills in a lively but low-risk setting,"

  10. Treatment of EBR-I NaK mixed waste at Argonne National Laboratory and subsequent land disposal at the Idaho National Engineering and Environmental Laboratory.

    SciTech Connect (OSTI)

    Herrmann, S. D.; Buzzell, J. A.; Holzemer, M. J.

    1998-02-03

    Sodium/potassium (NaK) liquid metal coolant, contaminated with fission products from the core meltdown of Experimental Breeder Reactor I (EBR-I) and classified as a mixed waste, has been deactivated and converted to a contact-handled, low-level waste at Argonne's Sodium Component Maintenance Shop and land disposed at the Radioactive Waste Management Complex. Treatment of the EBR-I NaK involved converting the sodium and potassium to its respective hydroxide via reaction with air and water, followed by conversion to its respective carbonate via reaction with carbon dioxide. The resultant aqueous carbonate solution was solidified in 55-gallon drums. Challenges in the NaK treatment involved processing a mixed waste which was incompletely characterized and difficult to handle. The NaK was highly radioactive, i.e. up to 4.5 R/hr on contact with the mixed waste drums. In addition, the potential existed for plutonium and toxic characteristic metals to be present in the NaK, resultant from the location of the partial core meltdown of EBR-I in 1955. Moreover, the NaK was susceptible to degradation after more than 40 years of storage in unmonitored conditions. Such degradation raised the possibility of energetic exothermic reactions between the liquid NaK and its crust, which could have consisted of potassium superoxide as well as hydrated sodium/potassium hydroxides.