National Library of Energy BETA

Sample records for national laboratory oak

  1. Independent Oversight Review, Oak Ridge National Laboratory ...

    Energy Savers [EERE]

    National Laboratory - January 2013 Independent Oversight Review, Oak Ridge National Laboratory - January 2013 January 2013 Review of the Oak Ridge National Laboratory High Flux...

  2. Oak Ridge National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge National Laboratory Oak Ridge National Laboratory Oak Ridge National Laboratory | April 2013 Aerial View Oak Ridge National Laboratory | April 2013 Aerial View Oak Ridge National Laboratory (ORNL) conducts research and development to create scientific knowledge and solutions that strengthen the nation's leadership in key areas of science; increase the availability of clean, abundant energy; restore and protect the environment; and contribute to national security. ORNL also performs

  3. Secretary Moniz Visits Oak Ridge National Laboratory

    Broader source: Energy.gov [DOE]

    Check out highlights from Secretary Moniz's visit to Oak National Laboratory, where he talked about science, innovation and national security.

  4. OAK RIDGE NATIONAL LABORATORY

    Office of Legacy Management (LM)

    r a ' ' c - POST OFFICE BCX 20ce k,,, L . . ;- :..I J) OAK RIaGF T E N N Z S S i i 1 7 8 2 ' U N A C L O I V Y A m W Y A l l m l E N E n G V S V S T E M S I N C April 21. 1995 Dr. W. Alexander Willlams Designation and Cenificatlon Manager EM-42 1 Depanrnent of Energy Cloverleaf Buildlng 19901 Germantown Road Germantown, Maryland 10874-1290 Dear Dr. Williams: Independent Verification Survey of the Former.C. H. Schnoor Size, Springdale, Pennsylvania The Measurement ~ ~ ~ l i c a t i o n s and

  5. OAK RIDGE NATIONAL LABORATORY

    Office of Legacy Management (LM)

    Dr. Williams: Trip Report of ORNL Health Physics Support at the Uniroyal Chemical Company ... Laboratory (ORNL) provided health physics support for the Uniroyal Chemical Company. ...

  6. OAK RIDGE NATIONAL LABORATORY

    Office of Legacy Management (LM)

    Results of the Independent Radiological Verification Survey L O C K W R R D M A R T I N of the Remedial Action Performed at the Former Alba Craft Laboratory Site Oxford, Ohio (0x0001) K. R. Kleinhans M. E. Murray R. F. Camer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi-

  7. Oak Ridge National Laboratory Review

    SciTech Connect (OSTI)

    Krause, C.; Pearce, J.; Zucker, A.

    1992-01-01

    This report presents brief descriptions of the following programs at Oak Ridge National Laboratory: The effects of pollution and climate change on forests; automation to improve the safety and efficiency of rearming battle tanks; new technologies for DNA sequencing; ORNL probes the human genome; ORNL as a supercomputer research center; paving the way to superconcrete made with polystyrene; a new look at supercritical water used in waste treatment; and small mammals as environmental monitors.

  8. Oak Ridge National Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Tool 4 References 4.1 References Overview "Oak Ridge National Laboratory (ORNL) is a science and technology laboratory managed for the United States Department of Energy by...

  9. Independent Oversight Inspection, Oak Ridge National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    8 Inspection of Nuclear Safety at the Oak Ridge National Laboratory Radiochemical Engineering Development Center, Building 7920 This report provides the results of an inspection of...

  10. Oak Ridge National Laboratory DOE Oak Ridge Environmental Management Program

    Office of Environmental Management (EM)

    National Laboratory DOE Oak Ridge Environmental Management Program Background The U.S. Department of Energy's (DOE) Oak Ridge Reservation includes several contaminated areas that are a result of years of operation at Oak Ridge National Laboratory (ORNL). To better address the restoration of ORNL, the Environmental Management program has divided ORNL into two major areas: Bethel Valley and Melton Valley. The Bethel Valley area includes the principal research facilities. The Melton Valley Area was

  11. Michael Starke, Oak Ridge National Laboratory

    Energy Savers [EERE]

    Starke, Oak Ridge National Laboratory starkemr@ornl.gov Team: Sachin Nimbalkar, Brandon Johnson Oak Ridge National Laboratory Prashant More, Carlos Silva ENBALA Power Networks Anna Shipley SRA September 17, 2014 Berkeley, CA DOE/OE Transmission Reliability R&D Load as a Resource (LaaR) Objectives * ORNL is examining potential for manufacturing processes to provide regulation service. This includes: ▪ Conducting modeling analysis (more detailed understanding on impact of industrial

  12. Independent Oversight Review, Oak Ridge National Laboratory- January 2013

    Broader source: Energy.gov [DOE]

    Review of the Oak Ridge National Laboratory High Flux Isotope Reactor Implementation Verification Review Processes

  13. Michelle Buchanan > Oak Ridge National Laboratory > Scientific Advisory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Board > The Energy Materials Center at Cornell Michelle Buchanan Oak Ridge National Laboratory

  14. Independent Oversight Inspection, Oak Ridge National Laboratory- October 2008

    Broader source: Energy.gov [DOE]

    Inspection of Nuclear Safety at the Oak Ridge National Laboratory Radiochemical Engineering Development Center, Building 7920

  15. Enforcement Letter, Oak Ridge National Laboratory- May 31, 2002

    Broader source: Energy.gov [DOE]

    Issued to UT-Battelle, LLC related to Unplanned Radiation Exposures at Oak Ridge National Laboratory

  16. Workplace Charging Challenge Partner: Oak Ridge National Laboratory |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Oak Ridge National Laboratory Workplace Charging Challenge Partner: Oak Ridge National Laboratory Workplace Charging Challenge Partner: Oak Ridge National Laboratory Joined the Challenge: November 2014 Headquarters: Oak Ridge, TN Charging Location: Oak Ridge, TN Domestic Employees: 4,400 Oak Ridge National Laboratory's (ORNL's) Sustainable Campus Initiative contains a roadmap for development of electric vehicle charging stations, indicating that plug-in electric vehicle

  17. John Hsu, Oak Ridge National Laboratory, Flux Coupling Machines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    John Hsu, Oak Ridge National Laboratory, Flux Coupling Machines and Switched Reluctance Motors to Replace Permanent Magnets in Electric Vehicles John Hsu, Oak Ridge National...

  18. Human Resources at Oak Ridge National Laboratory | Critical Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Oak Ridge National Laboratory Contact Information The main contact for human resources for CMI at Oak Ridge National Laboratory: David Lett Phone: 865-576-5675 Email: lettdg@ornl.gov Link to ORNL's career website

  19. Follow-up Review, Oak Ridge National Laboratory - December 2001 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Follow-up Review, Oak Ridge National Laboratory - December 2001 Follow-up Review, Oak Ridge National Laboratory - December 2001 December 2001 Follow-up Review of the Oak Ridge National Laboratory Health Services Division This report summarizes the results of a follow-up evaluation to an occupational medicine program review that was performed at the Department of Energy's (DOE) Oak Ridge National Laboratory Health Services Division in September 1998. The follow-up review

  20. Independent Oversight Environment, Oak Ridge National Laboratory - June

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2006 | Department of Energy Environment, Oak Ridge National Laboratory - June 2006 Independent Oversight Environment, Oak Ridge National Laboratory - June 2006 June 2006 Inspection of the Environmental Management Program at the Oak Ridge National Laboratory This report documents the results of an inspection of the environment, safety, and health programs for the environmental management program activities at the Department of Energy's (DOE) Oak Ridge National Laboratory. The inspection was

  1. 2013 Annual Planning Summary for the Oak Ridge National Laboratory

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Oak Ridge National Laboratory.

  2. Oak Ridge National Laboratory Waste Management Plan

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  3. Oak Ridge National Laboratory Waste Management Plan

    SciTech Connect (OSTI)

    Not Available

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  4. Oak Ridge National Laboratory Analysis of Waste Isolation Pilot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This document corresponds to Appendix C: Analysis Integrated Summary Report of the Technical Assessment Team Report. PDF icon Oak Ridge National Laboratory Analysis of Waste ...

  5. Inspection, Oak Ridge National Laboratory - July 2004 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    4 Inspection of Environment, Safety, and Health Management at the Oak Ridge National Laboratory This report provides the results of an inspection of environment, safety, and health...

  6. Oak Ridge National Laboratory Evaluation for Drum Characterization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation for Drum Characterization and Source Term Report Oak Ridge National Laboratory Evaluation for Drum Characterization and Source Term Report This document was used to ...

  7. NREL: MIDC/Oak Ridge National Laboratory Rotating Shadowband Radiometer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (35.93 N, 84.31 W, 245 m, GMT-5) Oak Ridge National Laboratory Irradiance Inc. Rotating Shadowband

  8. Independent Oversight Targeted Review, Oak Ridge National Laboratory- April 2014

    Broader source: Energy.gov [DOE]

    Targeted Review of Radiological Controls Activity-Level Implementation at the Oak Ridge National Laboratory Radiochemical Engineering Development Center and High Flux Isotope Reactor Facilities

  9. Independent Oversight Targeted Review, Oak Ridge National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    Controls Activity-Level Implementation at the Oak Ridge National Laboratory Radiochemical Engineering Development Center and High Flux Isotope Reactor Facilities The U.S....

  10. Enforcement Letter, Oak Ridge National Laboratory LLC- May 13, 2009

    Broader source: Energy.gov [DOE]

    Issued to UT-Battelle, LLC related to a Radioactive Material Release at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory

  11. Addressing Challenging Materials at Oak Ridge National Laboratory...

    Office of Scientific and Technical Information (OSTI)

    Title: Addressing Challenging Materials at Oak Ridge National Laboratory No abstract prepared. Authors: Jubin, Robert Thomas 1 ; Patton, Bradley D 1 ; Robinson, Sharon M 1 ; ...

  12. ORISE: Recruiting students and faculty to Oak Ridge National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL Recruitment ORISE helps bring the next generation of student and faculty researchers to Oak Ridge National Laboratory Research laboratory at ORNL Since 1992 when it was established as an official U.S. Department of Energy (DOE) institute, the Oak Ridge Institute for Science and Education (ORISE) has operated research participation and science education activities for Oak Ridge National Laboratory (ORNL). How ORISE is Making a Difference ORNL, which is recognized as DOE's largest science and

  13. 60 Years of Great Science (Oak Ridge National Laboratory)

    DOE R&D Accomplishments [OSTI]

    2003-01-01

    This issue of Oak Ridge National Laboratory Review (vol. 36, issue 1) highlights Oak Ridge National Laboratory's contributions in more than 30 areas of research and related activities during the past 60 years and provides glimpses of current activities that are carrying on this heritage.

  14. EA-1044: Melton Valley Storage Tanks Capacity Increase Project- Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to construct and maintain additional storage capacity at the U.S. Department of Energy's Oak Ridge National Laboratory, Oak Ridge,...

  15. Energy Department's Oak Ridge National Laboratory Unveils New

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Crowdsourcing Website for Building Technologies | Department of Energy Department's Oak Ridge National Laboratory Unveils New Crowdsourcing Website for Building Technologies Energy Department's Oak Ridge National Laboratory Unveils New Crowdsourcing Website for Building Technologies March 2, 2015 - 3:30pm Addthis As part of the Energy Department's efforts to improve the energy efficiency of the nation's homes and buildings, lower energy costs, and enhance U.S. competitiveness in

  16. Oak Ridge National Laboratory Institutional Plan, FY 1995--FY 2000

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years (1995-2000). Included in this report are the: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; and resource projections.

  17. Oak Ridge National Laboratory | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Oak Ridge National Laboratory Sandia's ice sheet modeling of Greenland, Antarctica helps predict sea-level rise The Greenland and Antarctic ice sheets will make a dominant contribution to 21st century sea-level rise if current climate trends continue. However, predicting the expected loss of ice sheet mass is difficult due to the complexity of modeling ice sheet behavior. To better understand this loss, a... NNSA and IAEA Hold the 20th International Training Course on Nuclear Material Accounting

  18. 60 years of great science [Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    2003-01-01

    This issue highlights Oak Ridge National Laboratory's contributions in more than 30 areas of research and related activities during the past 60 years and provides glimpses of current activities that are carrying on this heritage.

  19. Oak Ridge National Laboratory Analysis of Waste Isolation Pilot Plant

    Energy Savers [EERE]

    Facilities » Oak Ridge Manufacturing Demonstration Facility (MDF) Oak Ridge Manufacturing Demonstration Facility (MDF) The Manufacturing Demonstration Facility (MDF) is a collabora-tive manufacturing community that shares a common RD&D infrastructure. This shared infrastructure provides affordable access to advanced physical and virtual tools for rapidly demonstrating new manufacturing technologies and optimizing critical processes. Oak Ridge National Laboratory is home to AMO's MDF focused

  20. Thorium Fuel Cycle Pilot Experiences at Oak Ridge National Laboratory

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Thorium Fuel Cycle Pilot Experiences at Oak Ridge National Laboratory Citation Details In-Document Search Title: Thorium Fuel Cycle Pilot Experiences at Oak Ridge National Laboratory Authors: Collins, Emory D [1] ; Patton, Bradley D [1] ; Krichinsky, Alan M [1] ; Williams, David F [1] + Show Author Affiliations ORNL Publication Date: 2014-01-01 OSTI Identifier: 1185559 DOE Contract Number: AC05-00OR22725 Resource Type: Conference Resource Relation:

  1. Addressing Challenging Materials at Oak Ridge National Laboratory

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Addressing Challenging Materials at Oak Ridge National Laboratory Citation Details In-Document Search Title: Addressing Challenging Materials at Oak Ridge National Laboratory No abstract prepared. Authors: Jubin, Robert Thomas [1] ; Patton, Bradley D [1] ; Robinson, Sharon M [1] ; Van Hoesen, Stephen Dirk [1] + Show Author Affiliations ORNL Publication Date: 2010-01-01 OSTI Identifier: 973839 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Conference

  2. EERE Success Story-Tennessee: Oak Ridge National Laboratory Optimizes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon Fiber Production, Reduces Carbon Fiber Costs by 30% | Department of Energy Tennessee: Oak Ridge National Laboratory Optimizes Carbon Fiber Production, Reduces Carbon Fiber Costs by 30% EERE Success Story-Tennessee: Oak Ridge National Laboratory Optimizes Carbon Fiber Production, Reduces Carbon Fiber Costs by 30% January 24, 2014 - 12:00am Addthis The high cost of aerospace-grade carbon fiber (CF) is currently a barrier to widespread commercialization of light-weight, high-pressure

  3. Californium Electrodepositions at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Boll, Rose Ann

    2015-01-01

    Electrodepositions of californium isotopes were successfully performed at Oak Ridge National Laboratory (ORNL) during the past year involving two different types of deposition solutions, ammonium acetate (NH4C2H3O2) and isobutanol ((CH3)2CHCH2OH). A californium product that was decay enriched in 251Cf was recovered for use in super-heavy element (SHE) research. This neutron-rich isotope, 251Cf, provides target material for SHE research for the potential discovery of heavier isotopes of Z=118. The californium material was recovered from aged 252Cf neutron sources in storage at ORNL. These sources have decayed for over 30 years, thus providing material with a very high 251Cf-to-252Cf ratio. After the source capsules were opened, the californium was purified and then electrodeposited using the isobutanol method onto thin titanium foils for use in an accelerator at the Joint Institute for Nuclear Research in Dubna, Russia. Another deposition method, ammonium acetate, was used to produce a deposition containing 1.7 0.1 Ci of 252Cf onto a stainless steel substrate. This was the largest single electrodeposition of 252Cf ever prepared. The 252Cf material was initially purified using traditional ion exchange media, such as AG50-AHIB and AG50-HCl, and further purified using a TEVA-NH4SCN system to remove any lanthanides, resulting in the recovery of 3.6 0.1 mg of purified 252Cf. The ammonium acetate deposition was run with a current of 1.0 amp, resulting in a 91.5% deposition yield. Purification and handling of the highly radioactive californium material created additional challenges in the production of these sources.

  4. Enterprise Assessments, Oak Ridge National Laboratory Irradiated Fuels Examination Laboratory – April 2015

    Broader source: Energy.gov [DOE]

    Review of the Safety-Significant Ventilation Systems at the Irradiated Fuels Examination Laboratory Operated by UT-Battelle for the Oak Ridge National Laboratory Office of Science

  5. Oak Ridge National Laboratory: Recent Accomplishments and Challenges in the Environmental Management Program

    Office of Environmental Management (EM)

    Oak Ridge National Laboratory Oak Ridge National Laboratory Oak Ridge National Laboratory | April 2013 Aerial View Oak Ridge National Laboratory | April 2013 Aerial View Oak Ridge National Laboratory (ORNL) conducts research and development to create scientific knowledge and solutions that strengthen the nation's leadership in key areas of science; increase the availability of clean, abundant energy; restore and protect the environment; and contribute to national security. ORNL also performs

  6. Oak Ridge National Laboratory institutional plan, FY 1996--FY 2001

    SciTech Connect (OSTI)

    1995-12-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years. Included in the report are: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory strategic plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; resource projections; appendix which contains data for site and facilities, user facility, science and mathematic education and human resources; and laboratory organization chart.

  7. Unclassified Foreign National Visits and Assignments at Oak Ridge National Laboratory

    Energy Savers [EERE]

    Unclassified Foreign National Visits and Assignments at Oak Ridge National Laboratory INS-O-13-05 September 2013 Department of Energy Washington, DC 20585 September 16, 2013 MEMORANDUM FOR THE MANAGER, OAK RIDGE NATIONAL LABORATORY SITE OFFICE FROM: Sandra D. Bruce Assistant Inspector General for Inspections Office of Inspector General SUBJECT: INFORMATION: Inspection Report on "Unclassified Foreign National Visits and Assignments at Oak Ridge National Laboratory" BACKGROUND In support

  8. Oak Ridge National Laboratory Wins DOE Mentor of the Year Award at Small Business Forum & Expo

    Broader source: Energy.gov [DOE]

    Oak Ridge National Laboratory of Oak Ridge, TN, won the DOE Mentor Award at the Small Business Forum & Expo in Tampa, FL, on July 12, 2014

  9. Enterprise Assessments, Oak Ridge National Laboratory Irradiated...

    Office of Environmental Management (EM)

    Fuels Examination Laboratory - April 2015 April 2015 Review of the Safety-Significant Ventilation Systems at the Irradiated Fuels Examination Laboratory Operated by UT-Battelle...

  10. CRAD, Maintenance- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Maintenance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  11. CRAD, Engineering- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  12. CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Management in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  13. CRAD, Training- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Training Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  14. CRAD, Management- Oak Ridge National Laboratory TRU ALPHA LLWT Project

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a November 2003 assessment of the Management Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory TRU ALPHA LLWT Project.

  15. CRAD, Training- Oak Ridge National Laboratory TRU ALPHA LLWT Project

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a November 2003 assessment of the Training Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory TRU ALPHA LLWT Project.

  16. ITER movie created by Oak Ridge National Laboratory, National Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Sciences | Princeton Plasma Physics Lab ITER movie created by Oak Ridge National Laboratory, National Center for Computational Sciences American Fusion News Category: U.S. ITER Link: ITER movie created by Oak Ridge National Laboratory, National Center for Computational Sciences

  17. Oak Ridge National Laboratory | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY ... FY 2015 SC Laboratory Performance Report Cards Oak Ridge National Laboratory Print Text ...

  18. Oak Ridge National Laboratory | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Oak Ridge National Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card Archives ...

  19. Oak Ridge National Laboratory Technologies Available for Licensing - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal ORNL Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Oak Ridge National Laboratory Technologies Available for

  20. Oak Ridge National Laboratory Review. Volume 25, No. 1, 1992

    SciTech Connect (OSTI)

    Krause, C.; Pearce, J.; Zucker, A.

    1992-10-01

    This report presents brief descriptions of the following programs at Oak Ridge National Laboratory: The effects of pollution and climate change on forests; automation to improve the safety and efficiency of rearming battle tanks; new technologies for DNA sequencing; ORNL probes the human genome; ORNL as a supercomputer research center; paving the way to superconcrete made with polystyrene; a new look at supercritical water used in waste treatment; and small mammals as environmental monitors.

  1. Oak Ridge National Laboratory Site Office CX Determinations | U.S. DOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low-Cost Carbon Fiber Process | Department of Energy Oak Ridge National Laboratory Seeking U.S. Manufacturers to License Low-Cost Carbon Fiber Process Oak Ridge National Laboratory Seeking U.S. Manufacturers to License Low-Cost Carbon Fiber Process March 23, 2016 - 12:46pm Addthis News release from Oak Ridge National Laboratory. OAK RIDGE, Tenn., March 22, 2016 - Researchers at the Department of Energy's Oak Ridge National Laboratory (ORNL) have demonstrated a production method they estimate

  2. Oak Ridge National Laboratory Seeking U.S. Manufacturers to License

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Carbon Fiber Process | Department of Energy Oak Ridge National Laboratory Seeking U.S. Manufacturers to License Low-Cost Carbon Fiber Process Oak Ridge National Laboratory Seeking U.S. Manufacturers to License Low-Cost Carbon Fiber Process March 23, 2016 - 12:46pm Addthis News release from Oak Ridge National Laboratory. OAK RIDGE, Tenn., March 22, 2016 - Researchers at the Department of Energy's Oak Ridge National Laboratory (ORNL) have demonstrated a production method they estimate

  3. Oak Ridge National Laboratory Institutional Plan, FY 1991--FY 1996

    SciTech Connect (OSTI)

    Not Available

    1991-02-01

    The Oak Ridge National Laboratory -- one of DOE's major multiprogram laboratories -- focuses its resources on energy research and development (R D). To be able to meet these R D challenges, the Laboratory must achieve excellence in its operations relative to environmental, safety, and health (ES H) protection and to restore its aging facility infrastructure. ORNL's missions are carried out in compliance with all applicable ES H regulations. The Laboratory conducts applied R D in energy technologies -- in conservation; fission; magnetic fusion; health and environmental protection; waste management; renewable resources; and fossil energy. Experimental and theoretical research is undertaken to investigate fundamental problems in physical, chemical, materials, computational, biomedical, earth, and environmental sciences; to advance scientific knowledge; and to support energy technology R D. ORNL designs, builds, and operates unique research facilities for the benefit of university, industrial, and national laboratory researchers. The Laboratory serves as a catalyst in bringing national and international research elements together for important scientific and technical collaborations. ORNL helps to prepare the scientific and technical work force of the future by offering innovative and varied learning and R D experiences at the Laboratory for students and faculty from preschool level through postdoctoral candidates. The transfer of science and technology to US industries and universities is an integral component of ORNL's R D missions. ORNL also undertakes research and development for non-DOE sponsors when such work is synergistic with DOE mission. 66 figs., 55 tabs.

  4. OAK RIDGE NATIONAL LABORATORY RESULTS OF THE INDEPENDENT RADIOLOGICAL

    Office of Legacy Management (LM)

    ornl<^~~ ~~ORNL/RASA-86/64 (MJ18V) orni OAK RIDGE NATIONAL LABORATORY RESULTS OF THE INDEPENDENT RADIOLOGICAL EZ-BBBB - *VERIFICATION SURVEY AT THE BALLOD ASSOCIATES PROPERTY, ROCHELLE PARK, NEW JERSEY (MJ18V) M. G. Yalcintas C. A. Johnson Access to the information in this report is limited to those indicated on the distribution list and to Department of Energy and Department of Energy Contractors OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY

  5. The development of an aquatic spill model for the White Oak Creek watershed, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Johnson, R.O.

    1996-05-01

    This study develops an aquatic spill model applicable to the White Oak Creek watershed draining the Oak Ridge National Laboratory. Hazardous, toxic, and radioactive chemicals are handled and stored on the laboratory reservation. An accidental spill into the White Oak Creek watershed could contaminate downstream water supplies if insufficient dilution did not occur. White Oak Creek empties into the Clinch River, which flows into the Tennessee River. Both rivers serve as municipal water supplies. The aquatic spill model provides estimates of the dilution at sequential downstream locations along White Oak creek and the Clinch River after an accidental spill of a liquid containing a radioactively decaying constituent. The location of the spill on the laboratory is arbitrary, while hydrologic conditions range from drought to extreme flood are simulated. The aquatic spill model provides quantitative estimates with which to assess water quality downstream from the site of the accidental spill, allowing an informed decision to be made whether to perform mitigating measures so that the integrity of affected water supplies is not jeopardized.

  6. Remote Systems Experience at the Oak Ridge National Laboratory--A Summary

    Office of Scientific and Technical Information (OSTI)

    of Lessons Learned (Conference) | SciTech Connect Conference: Remote Systems Experience at the Oak Ridge National Laboratory--A Summary of Lessons Learned Citation Details In-Document Search Title: Remote Systems Experience at the Oak Ridge National Laboratory--A Summary of Lessons Learned Oak Ridge National Laboratory (ORNL) has a long history in the development of remote systems to support the nuclear environment. ORNL, working in conjunction with Central Research Laboratories, created

  7. Oak Ridge National Laboratory Waste Management Plan. Revision 1

    SciTech Connect (OSTI)

    Forgy, Jr., J. R.

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  8. Science and Technology at Oak Ridge National Laboratory

    ScienceCinema (OSTI)

    Mason, Thomas

    2013-02-25

    ORNL Director Thom Mason explains the groundbreaking work in neutron sciences, supercomputing, clean energy, advanced materials, nuclear research, and global security taking place at the Department of Energy's Office of Science laboratory in Oak Ridge, Tenn.

  9. Science and Technology at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Mason, Thomas

    2012-11-01

    ORNL Director Thom Mason explains the groundbreaking work in neutron sciences, supercomputing, clean energy, advanced materials, nuclear research, and global security taking place at the Department of Energy's Office of Science laboratory in Oak Ridge, Tenn.

  10. Photo of the Week: RoHAWKtics at Oak Ridge National Laboratory | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy RoHAWKtics at Oak Ridge National Laboratory Photo of the Week: RoHAWKtics at Oak Ridge National Laboratory April 1, 2013 - 3:40pm Addthis Tennessee Governor Bill Haslam signs the robot of Hardin Valley Academy's FIRST robotics team during the dedication of DOE's Carbon Fiber Technology Facility, located at Oak Ridge National Laboratory. The RoHAWKtics team (named after their school mascot) spent an intense six weeks constructing the robot, using design, engineering, and

  11. 2014 Annual Planning Summary for the Oak RIdge National Laboratory Site Office

    Broader source: Energy.gov [DOE]

    The Oak Ridge National Laboratory Site Office has determined that no new EAs or EISs are expected to commence during the next 12 to 24-month period.

  12. Oak Ridge National Laboratory institutional plan, FY 1990--FY 1995

    SciTech Connect (OSTI)

    Not Available

    1989-11-01

    The Oak Ridge National Laboratory is one of DOE's major multiprogram energy laboratories. ORNL's program missions are (1) to conduct applied research and engineering development in support of DOE's programs in fusion, fission, fossil, renewables (biomass), and other energy technologies, and in the more efficient conversion and use of energy (conservation) and (2) to perform basic scientific research in selected areas of the physical and life sciences. These missions are to be carried out in compliance with environmental, safety, and health regulations. Transfer of science and technology is an integral component of our missions. A complementary mission is to apply the Laboratory's resources to other nationally important tasks when such work is synergistic with the program missions. Some of the issues addressed include education, international competitiveness, hazardous waste research and development, and selected defense technologies. In addition to the R D missions, ORNL performs important service roles for DOE; these roles include designing, building, and operating user facilities for the benefit of university and industrial researchers and supplying radioactive and stable isotopes that are not available from private industry. Scientific and technical efforts in support of the Laboratory's missions cover a spectrum of activities. In fusion, the emphasis is on advanced studies of toroidal confinement, plasma heating, fueling systems, superconducting magnets, first-wall and blanket materials, and applied plasma physics. 69 figs., 49 tabs.

  13. OAK RIDGE NATIONAL LABORATORY ORNLyRStC'45

    Office of Scientific and Technical Information (OSTI)

    ... Assessments", U.S. Dept. of Energy, DOETIC-1I026 (1981), 18.75 from NTIS. The data ... 149-150. Technical Information Center (TIC) DOE, Oak Ridge, TN 37830 151. National ...

  14. Oak Ridge National Laboratory to be Fueled by Biomass

    Broader source: Energy.gov [DOE]

    When construction is complete in 2011, Oak Ridge National Laboratory’s biomass steam plant will be fueled by roughly 50,000 tons of waste wood per year.

  15. Site descriptions of environmental restoration units at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Kuhaida, A.J. Jr.; Parker, A.F.

    1997-02-01

    This report provides summary information on Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) sites as listed in the Oak Ridge Reservation Federal Facility Agreement (FFA), dated January 1, 1992, Appendix C. The Oak Ridge National Laboratory was built in 1943 as part of the World War II Manhattan Project. The original mission of ORNL was to produce and chemically separate the first gram-quantities of plutonium as part of the national effort to produce the atomic bomb. The current mission of ORNL is to provide applied research and development in support of the U.S. Department of Energy (DOE) programs in nuclear fusion and fission, energy conservation, fossil fuels, and other energy technologies and to perform basic scientific research in selected areas of the physical, life, and environmental sciences. ER is also tasked with clean up or mitigation of environmental impacts resulting from past waste management practices on portions of the approximately 37,000 acres within the Oak Ridge Reservation (ORR). Other installations located within the ORR are the Gaseous Diffusion Plant (K-25) and the Y-12 plant. The remedial action strategy currently integrates state and federal regulations for efficient compliance and approaches for both investigations and remediation efforts on a Waste Area Grouping (WAG) basis. As defined in the ORR FFA Quarterly Report July - September 1995, a WAG is a grouping of potentially contaminated sites based on drainage area and similar waste characteristics. These contaminated sites are further divided into four categories based on existing information concerning whether the data are generated for scoping or remedial investigation (RI) purposes. These areas are as follows: (1) Operable Units (OU); (2) Characterization Areas (CA); (3) Remedial Site Evaluation (RSE) Areas; and (4) Removal Site Evaluation (RmSE) Areas.

  16. An inventory of wells of Oak Ridge National Laboratory 1992

    SciTech Connect (OSTI)

    Rush, R.M.; Gryder, R.K.; Baxter, F.P.

    1993-02-01

    The well inventory described in this report is a database of well information being developed for the Oak Ridge National Laboratory (ORNL) Groundwater Coordinator and the ORNL Groundwater Protection Program. Data are presented on 2071 ORNL wells as maps and as tabular data. A table of well identification aliases is given to permit correlation with earlier reports. Information is incomplete for many of the wells, and a form is provided for readers to provide missing or updated data. The goal of the developers of this data base is to produce a comprehensive inventory of wells at ORNL. This data base is being maintained to provide current information for the operational management of the ORNL groundwater monitoring system and for various users of groundwater data at ORNL.

  17. A History of Classified Activities at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Quist, A.S.

    2001-01-30

    The facilities that became Oak Ridge National Laboratory (ORNL) were created in 1943 during the United States' super-secret World War II project to construct an atomic bomb (the Manhattan Project). During World War II and for several years thereafter, essentially all ORNL activities were classified. Now, in 2000, essentially all ORNL activities are unclassified. The major purpose of this report is to provide a brief history of ORNL's major classified activities from 1943 until the present (September 2000). This report is expected to be useful to the ORNL Classification Officer and to ORNL's Authorized Derivative Classifiers and Authorized Derivative Declassifiers in their classification review of ORNL documents, especially those documents that date from the 1940s and 1950s.

  18. Source document for waste area groupings at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Osborne, P.L.; Kuhaida, A.J., Jr.

    1996-09-01

    This document serves as a source document for Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and other types of documents developed for and pertaining to Environmental Restoration (ER) Program activities at Oak Ridge National Laboratory (ORNL). It contains descriptions of the (1) regulatory requirements for the ORR ER Program, (2) Oak Ridge Reservation (ORR) ER Program, (3) ORNL site history and characterization, and (4) history and characterization of Waste Area Groupings (WAGS) 1-20. This document was created to save time, effort, and money for persons and organizations drafting documents for the ER Program and to improve consistency in the documents prepared for the program. By eliminating the repetitious use of selected information about the program, this document will help reduce the time and costs associated with producing program documents. By serving as a benchmark for selected information about the ER Program, this reference will help ensure that information presented in future documents is accurate and complete.

  19. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    SciTech Connect (OSTI)

    Rosenthal, Murray Wilford

    2009-08-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  20. Oak Ridge National Laboratory Institutional Plan FY 1984-FY 1989

    SciTech Connect (OSTI)

    Not Available

    1983-11-01

    In this plan, Oak Ridge National Laboratory (ORNL) continues to be committed to scientific and technological research that is based on technical excellence and innovation and that provides a foundation for and a stimulus to broader and more sustained economic growth. DOE is being asked to assist in establishing a new program for Laboratory cooperation with industry, beginning with an initial focus on materials science. The current Institutional Plan thus projects growth in the materials science area as well as in other basic physical science areas and suggests a new initiative designed to extend the various technology transfer activities and to make them more effective by using ORNL as the trial Laboratory for some of these different approaches. This Institutional Plan projects a stable future for ORNL, with only modest amounts of growth in selected areas of research for the FY 1984-FY 1989 planning cycle. Summaries of the overall picture of the proposed budget and personnel levels for the current planning cycle are included. Scientific programs, laboratory resource development, and private sector interactions are discussed.

  1. DOE/EA-1651: Final Environmental Assessment for U-233 Material Downblending and Disposition Project at the Oak Ridge National Laboratory Oak Ridge, Tennessee (January 2010)

    Office of Environmental Management (EM)

    651 Final Environmental Assessment for U-233 Material Downblending and Disposition Project at the Oak Ridge National Laboratory Oak Ridge, Tennessee U. S. Department of Energy Oak Ridge Office Oak Ridge, Tennessee January 2010 FINDING OF NO SIGNIFICANT IMPACT URANIUM-233 MATERIAL DOWNBLENDING AND DISPOSITION PROJECT AT THE OAK RIDGE NATIONAL LABORATORY, OAK RIDGE, TENNESSEE AGENCY: U.S. Department of Energy (DOE) ACTION: Finding of No Significant Impact (FONSI) SUMMARY: DOE has completed the

  2. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Wilson, R. C.; Lewis, K. K.

    1991-09-01

    This report presents data and information related to remedial investigation studies for Oak Ridge National Laboratory (ORNL). Information is included on a soil gas survey, surface radiological investigations of waste areas, and well installation for ground water monitoring. (CBS)

  3. Advancing Materials Science using Neutrons at Oak Ridge National Laboratory

    ScienceCinema (OSTI)

    Carpenter, John

    2014-06-03

    Jack Carpenter, pioneer of accelerator-based pulsed spallation neutron sources, talks about neutron science at Oak Ridge National Laboratory (ORNL) and a need for a second target station at the Spallation Neutron Source (SNS). ORNL is the Department of Energy's largest multiprogram science and energy laboratory, and is home to two scientific user facilities serving the neutron science research community: the High Flux Isotope Reactor (HFIR) and SNS. HFIR and SNS provide researchers with unmatched capabilities for understanding the structure and properties of materials, macromolecular and biological systems, and the fundamental physics of the neutron. Neutrons provide a window through which to view materials at a microscopic level that allow researchers to develop better materials and better products. Neutrons enable us to understand materials we use in everyday life. Carpenter explains the need for another station to produce long wavelength neutrons, or cold neutrons, to answer questions that are addressed only with cold neutrons. The second target station is optimized for that purpose. Modern technology depends more and more upon intimate atomic knowledge of materials, and neutrons are an ideal probe.

  4. Hydrologic data summary for the White Oak Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, October 1990--December 1991

    SciTech Connect (OSTI)

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Watts, J.A.

    1992-06-01

    This report summarizes for the 15-month period of October 1990-- December 1991 the available dynamic hydrologic data collected, primarily on the White Oak Creek (WOC) watershed, along with information collected on the surface flow systems that affect the quality or quantity of surface water. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to: (1) characterize the quantity and quality of water in the flow systems; (2) assist with the planning and assessment of remedial action activities; and, (3) provide long-term availability of data and quality assurance. Characterization of the hydrology of the WOC watershed is critical for understanding the processes that drive contaminant transport in the watershed. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data activities that contribute to the Site Investigations component of the ERP. (White Oak Creek is also referred to as ``Whiteoak`` Creek).

  5. Hydrologic data summary for the White Oak Watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, October 1990--December 1991

    SciTech Connect (OSTI)

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Watts, J.A.

    1992-06-01

    This report summarizes for the 15-month period of October 1990-- December 1991 the available dynamic hydrologic data collected, primarily on the White Oak Creek (WOC) watershed, along with information collected on the surface flow systems that affect the quality or quantity of surface water. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to: (1) characterize the quantity and quality of water in the flow systems; (2) assist with the planning and assessment of remedial action activities; and, (3) provide long-term availability of data and quality assurance. Characterization of the hydrology of the WOC watershed is critical for understanding the processes that drive contaminant transport in the watershed. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data activities that contribute to the Site Investigations component of the ERP. (White Oak Creek is also referred to as Whiteoak'' Creek).

  6. Oak Ridge National Laboratory's philosophy and approach to NEPA

    SciTech Connect (OSTI)

    Van Hook, R.I.; Braunstein, H.M.; Sigal, L.L.; Trettin, C.C.

    1991-01-01

    At Oak Ridge National Laboratory (ORNL), the overall responsibility for compliance with the National Environmental Policy Act (NEPA) resides with Environmental Review and Documentations Section that is within the Office of Environmental Compliance and Documentation (OECD). Organizationally, OECD is a line-management division reporting to the Director for Environmental, Safety and Health Compliance. The cornerstone for NEPA compliance at ORNL is the Internal Environmental Assessment (IEA), which is designed to provide a basis for NEPA review and documentation. The Standard Operating Procedures provide for evaluation and documentation records management and training, and auditing. The IEA provides a project description and a review of environmental, health and safety issues. The completed IEA is used to make recommendations to DOE regarding the appropriate level of NEPA documentation required for the action. NEPA documents which may be prepared include the Categorical Exclusion, Abbreviated Environmental Assessment, and Environmental Assessment; actions requiring Environmental Impact Statements are prepared by US Department of Energy (US DOE). The relatively recent DOE initiative for agency-wide compliance with NEPA has created areas in which ORNL has found itself lacking adequate resources and expertise. These are discussed in this paper. Throughout ORNL, there is strong management support for compliance with NEPA which has resulted in enhanced awareness and implementation of the NEPA requirements. Guidance is being provided and Laboratory divisions are factoring early integration of NEPA into their project planning with the goal of ensuring that their activities are carried out in full compliance with the letter and the spirit of NEPA and the other environmental statutes and regulations.

  7. RCRA Facilities Assessment (RFA)---Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1987-03-01

    US Department of Energy (DOE) facilities are required to be in full compliance with all federal and state regulations. In response to this requirement, the Oak Ridge National Laboratory (ORNL) has established a Remedial Action Program (RAP) to provide comprehensive management of areas where past and current research, development, and waste management activities have resulted in residual contamination of facilities or the environment. This report presents the RCRA Facility Assessment (RFA) required to meet the requirements of RCRA Section 3004(u). Included in the RFA are (1) a listing of all sites identified at ORNL that could be considered sources of releases or potential releases; (2) background information on each of these sites, including location, type, size, period of operation, current operational status, and information on observed or potential releases (as required in Section II.A.1 of the RCRA permit); (3) analytical results obtained from preliminary surveys conducted to verify the presence or absence of releases from some of the sites; and (4) ORNL`s assessment of the need for further remedial attention.

  8. RCRA Facilities Assessment (RFA)---Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1987-03-01

    US Department of Energy (DOE) facilities are required to be in full compliance with all federal and state regulations. In response to this requirement, the Oak Ridge National Laboratory (ORNL) has established a Remedial Action Program (RAP) to provide comprehensive management of areas where past and current research, development, and waste management activities have resulted in residual contamination of facilities or the environment. This report presents the RCRA Facility Assessment (RFA) required to meet the requirements of RCRA Section 3004(u). Included in the RFA are (1) a listing of all sites identified at ORNL that could be considered sources of releases or potential releases; (2) background information on each of these sites, including location, type, size, period of operation, current operational status, and information on observed or potential releases (as required in Section II.A.1 of the RCRA permit); (3) analytical results obtained from preliminary surveys conducted to verify the presence or absence of releases from some of the sites; and (4) ORNL's assessment of the need for further remedial attention.

  9. Data Sharing Report Characterization of Isotope Row Facilities Oak Ridge National Laboratory Oak Ridge TN

    SciTech Connect (OSTI)

    Weaver, Phyllis C

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort was designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D&D). The process for D&D and final dismantlement of facilities requires that the known contaminants of concern (COCs) be evaluated and quantified and to identify and quantify any additional contaminants in order to satisfy the waste acceptance criteria requirements for the desired disposal pathway. Known facility contaminants include, but are not limited to, asbestos-containing material (ACM), radiological contaminants, and chemical contaminants including polychlorinated biphenyls (PCBs) and metals.

  10. Quality assurance plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    This Quality Assurance Plan (QAP) is concerned with design and construction (Sect. 2) and characterization and monitoring (Sect. 3). The basis for Sect. 2 is the Quality Assurance Plan for the Design and Construction of Waste Area Grouping 6 Closure at Oak Ridge National Laboratory, Oak Ridge, Tennessee, and the basis for Sect. 3 is the Environmental Restoration Quality Program Plan. Combining the two areas into one plan gives a single, overall document that explains the requirements and from which the individual QAPs and quality assurance project plans can be written. The Waste Area Grouping (WAG) 6 QAP establishes the procedures and requirements to be implemented for control of quality-related activities for the WAG 6 project. Quality Assurance (QA) activities are subject to requirements detailed in the Martin Marietta Energy Systems, Inc. (Energy Systems), QA Program and the Environmental Restoration (ER) QA Program, as well as to other quality requirements. These activities may be performed by Energy Systems organizations, subcontractors to Energy Systems, and architect-engineer (A-E) under prime contract to the US Department of Energy (DOE), or a construction manager under prime contract to DOE. This plan specifies the overall Energy Systems quality requirements for the project. The WAG 6 QAP will be supplemented by subproject QAPs that will identify additional requirements pertaining to each subproject.

  11. Characterization plan for the Oak Ridge National Laboratory Area-Wide Groundwater Program, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This characterization plan has been developed as part of the U.S. Department of Energy`s (DOE`s) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the characterization plan is intended to serve as a strategy document to guide subsequent GWOU remedial investigations. The plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It is important to note that the characterization plan for the ORNL GWOU is not a prototypical work plan. As such, remedial investigations will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This characterization plan outlines the overall strategy for the remedial investigations and defines tasks that are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow.

  12. Oak Ridge National Laboratory Evaluation for Drum Characterization and

    Office of Environmental Management (EM)

    News ORSSAB News Advocate Newsletters April 1, 2016 Advocate - Issue 62 - April 2016 Special topics include the FY 2018 budget, the April 2016 Spring Chairs Meeting in Oak Ridge, and recent updates on board member activities. December 23, 2015 Advocate - Issue 61 - Jan. 2016 Here are some of the topics in this issue: DOE Launches K-25 Virtual Museum, Manhattan Project National Park Established, ORSSAB Celebrates 20 Years. September 25, 2015 Advocate - Issue 60 - October 2015 Here are some of the

  13. Environmental Survey preliminary report, Oak Ridge National Laboratory (X-10), Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Oak Ridge National Laboratory (ORNL), X-10 site, conducted August 17 through September 4, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team specialists are outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with ORNL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ORNL, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for ORNL. The Interim Report will reflect the final determinations of the ORNL Survey. 120 refs., 68 figs., 71 tabs.

  14. Nuclear Energy Advisory Committee Facility Subcommittee visit to Oak Ridge National Laboratory

    Broader source: Energy.gov [DOE]

    The NEAC Facilities Subcommittee made a site visit to Oak Ridge National Laboratory (ORNL) on August 26, 2010. Subcommittee members included John Ahearne (Vice Chairman of NEAC and Facilities...

  15. Oak Ridge National Laboratory | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Oak Ridge National Laboratory A Mission Accomplishment (Quality and Productivity of R&D) A- Construction and Operation of Research Facilities A S&T ProjectProgram Management A- ...

  16. Oak Ridge National Laboratory | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Oak Ridge National Laboratory A- Mission Accomplishment (Quality and Productivity of R&D) A- Construction and Operation of Research Facilities A- S&T ProjectProgram Management A- ...

  17. Oak Ridge National Laboratory | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Oak Ridge National Laboratory A- Mission Accomplishment (Quality and Productivity of R&D) B+ Construction and Operation of Research Facilities A- S&T ProjectProgram Management B+ ...

  18. Site characterization report for the Old Hydrofracture Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1995-01-01

    Several Old Hydrofracture Facility (OHF) structures (i.e., Building 7852, the bulk storage bins, the pump house, water tank T-5, and pump P-3) are surplus facilities at Oak Ridge National Laboratory (ORNL) slated for decontamination and decommissioning (D and D). OHF was constructed in 1963 to allow experimentation and operations with an integrated solids storage, handling, mixing, and grout injection facility. It was shut down in 1980 and transferred to ORNL`s Surveillance and Maintenance Program. The hydrofracture process was a unique disposal method that involved injecting waste materials mixed with grout and additives under pumping pressures of 2,000 psi or greater into a deep, low-permeability shale formation. The injected slurry spread along fractures and bedding planes for hundreds of feet from the injection points, forming thin grout sheets (often less than 1/8 in. thick). The grout ostensibly immobilized and solidified the liquid wastes. Site characterization activities were conducted in the winter and spring of 1994 to collect information necessary to plan the D and D of OHF structures. This site characterization report documents the results of the investigation of OHF D and D structures, presenting data from the field investigation and laboratory analyses in the form of a site description, as-built drawings, summary tables of radiological and chemical contaminant concentrations, and a waste volume estimate. 25 refs., 54 figs., 17 tabs.

  19. Proud to Be a Girl - A Visit to Oak Ridge National Laboratory | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Girls from Martha O'Bryan Community Center and Maryville Christian School visiting Director Dot Harris at Oak Ridge National Laboratory discussed STEM careers, educational opportunities, and exploring science this August. Girls from Martha O'Bryan Community Center and Maryville Christian School visiting Director Dot Harris at Oak Ridge National Laboratory discussed STEM careers, educational opportunities, and exploring science this August. Dot Harris Dot Harris Director, Office of

  20. Oak Ridge National Laboratory site data for safety-analysis report

    SciTech Connect (OSTI)

    Fitzpatrick, F.C.

    1982-12-01

    The Oak Ridge National Laboratory site data contained herein were compiled in support of the United States Department of Energy (USDOE) Oak Ridge Operations Office Order OR 5481.1. That order sets forth assignment of responsibilities for safety analysis and review responsibilities and provides guidance relative to the content and format of safety analysis reports. The information presented in this document is intended for use by reference in individual safety analysis reports where applicable to support accident analyses or the establishment of design bases of significance to safety, and it is applicable only to Oak Ridge National Laboratory facilities in Bethel and Melton Valleys. This information includes broad descriptions of the site characteristics, radioactive waste handling and monitoring practices, and the organization and operating policies at Oak Ridge National Laboratory. The historical background of the Laboratory is discussed briefly and the overall physical situation of the facilities is described in the following paragraphs.

  1. Removal site evaluation report for the Isotope Facilities at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1996-07-01

    This removal site evaluation (RmSE) report of the Isotope Facilities at Oak Ridge National Laboratory (ORNL) was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the Isotopes Facility pose a substantial risk to human health or the environment and if remedial site evaluations (RSEs) or removal actions are required. The scope of the project included: (1) a review of historical evidence regarding operations and use of the facility; (2) interviews with facility personnel concerning current and past operating practices; (3) a site inspection; and (4) identification of hazard areas requiring maintenance, removal, or remedial actions. The results of RmSE indicate that no substantial risks exist from contaminants present in the Isotope Facilities because adequate controls and practices exist to protect human health and the environment. The recommended correction from the RmSE are being conducted as maintenance actions; accordingly, this RmSE is considered complete and terminated.

  2. Environmental monitoring plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1995-09-01

    This document presents an Environmental Monitoring Plan (EMP) for Waste Area Grouping (WAG 6) at Oak Ridge National Laboratory (ORNL). This document updates a draft monitoring plan developed in 1993. The draft plan was never finalized awaiting resolution of the mechanisms for addressing RCRA concerns at a site where the CERCLA process resulted in a decision to defer action, i.e., postpone closure indefinitely. Over the past two years the Tennessee Department of Environment and Conservation (TDEC), US Department of Energy (DOE), and US Environmental Protection Agency (EPA) Region IV, have agreed that RCRA authority at the site will be maintained through a post- closure permit; ``closure`` in this case referring to deferred action. Both a Revised Closure Plan (DOE 1995a) and a Post-Closure Permit Application (DOE 1995b) have been developed to document this agreement; relevant portions of the EMP will be included in the RCRA Post-Closure Permit Application. As the RCRA issues were being negotiated, DOE initiated monitoring at WAG 6. The purpose of the monitoring activities was to (1) continue to comply with RCRA groundwater quality assessment requirements, (2) install new monitoring equipment, and (3) establish the baseline conditions at WAG 6 against which changes in contaminant releases could be measured. Baseline monitoring is scheduled to end September 30, 1995. Activities that have taken place over the past two years are summarized in this document.

  3. Technology study of Gunite tank sludge mobilization at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    DeVore, J.R.; Herrick, T.J.; Lott, K.E.

    1994-12-01

    The Oak Ridge National Laboratory (ORNL) Gunite Tank Sludge Mobilization Technology Study was initiated to support the Gunite Tank Treatability Study effort. The technology study surveyed the methods and technologies available for tank cleaning and sludge mobilization in a radioactive environment. Technologies were identified and considered for applicability to the Gunite and Associated Tanks (GAAT) problems. These were then either accepted for further study or rejected as not applicable. Technologies deemed applicable to the GAAT sludge removal project were grouped for evaluation according to (1) deployment method, (2) types of remotely operated end effector equipment applicable to removal of sludge, (3) methods for removing wastes from the tanks, and (4) methods for concrete removal. There were three major groups of deployment technologies: ``past practice`` technologies, mechanical arm-based technologies, and vehicle-based technologies. The different technologies were then combined into logical sequences of deployment platform, problem, end effector, conveyance, post-removal treatment required (if any), and disposition of the waste. Many waste removal options are available, but the best technology in one set of circumstances at one site might not be the best type to use at a different site. No single technology is capable of treating the entire spectrum of wastes that will be encountered in GAAT. None of the systems used in other industries appears to be suitable, primarily because of the nature of the sludges in the GAAT Operable Unit (OU), their radiation levels, and tank geometries. Other commercial technologies were investigated but rejected because the authors did not believe them to be applicable.

  4. Evaluation of Side Stream Filtration Technology at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Boyd, Brian K.

    2014-08-01

    This technology evaluation was performed by Pacific Northwest National Laboratory and Oak Ridge National Laboratory on behalf of the Federal Energy Management Program. The objective was to quantify the benefits side stream filtration provides to a cooling tower system. The evaluation assessed the performance of an existing side stream filtration system at a cooling tower system at Oak Ridge National Laboratory’s Spallation Neutron Source research facility. This location was selected because it offered the opportunity for a side-by-side comparison of a system featuring side stream filtration and an unfiltered system.

  5. Recent Demolition Makes Oak Ridge National Laboratory Cleaner...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ben Williams , (865) 576-0885, http:www.oakridge.doe.gov OAK RIDGE, Tenn. - U.S. Department of Energy (DOE) cleanup contractor Safety and Ecology Corporation recently removed ...

  6. Oak Ridge National Laboratory R. A. Boll, J.G. Ezold, L.K. Felker,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronics System iModeling and Simulation Jih-Sheng (Jason) Lai* Oak Ridge National Laboratory PO Box 2003. -VS 7280 Oak Ridge. Tennessee 3783 1-7280 Abstract - This paper introduces control system design based sohvares. SIMNON and MATLAB!SIMULWK. for power electronics system simulation. A complete power electronics system typically consists of a rectifier bridge along with its smoothing capacitor. an inverter. and a motor. The system components. featuring discrete or continuous. linear or

  7. Site characterization plan for groundwater in Waste Area Grouping 1 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Lee, R.R.; Curtis, A.H.; Houlberg, L.M.; Purucker, S.T.; Singer, M.L.; Tardiff, M.F.; Wolf, D.A.

    1994-07-01

    The Waste Area Grouping (WAG) 1 Groundwater Operable Unit (OU) at Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee, is undergoing a site characterization to identify environmental contamination that may be present. This document, Site Characterization Report for Groundwater in Waste Area Grouping I at Oak Ridge National Laboratory, Oak Ridge, Tennessee, identifies areas of concern with respect to WAG 1 groundwater and presents the rationale, justification, and objectives for conducting this continuing site characterization. This report summarizes the operations that have taken place at each of the areas of concern in WAG 1, summarizes previous characterization studies that have been performed, presents interpretations of previously collected data and information, identifies contaminants of concern, and presents an action plan for further site investigations and early actions that will lead to identification of contaminant sources, their major groundwater pathways, and reduced off-site migration of contaminated groundwater to surface water. Site characterization Activities performed to date at WAG I have indicated that groundwater contamination, principally radiological contamination, is widespread. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to an unknown extent. The general absence of radiological contamination in surface water at the perimeter of WAG 1 is attributed to the presence of pipelines and underground waste storage tank sumps and dry wells distributed throughout WAG 1 which remove more than about 40 million gal of contaminated groundwater per year.

  8. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU's) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment and baseline human health evaluation including a toxicity assessment, and a baseline environmental evaluation.

  9. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU'S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data. (CBS)

  10. OAK RIDGE NATIONAL LABORATORY OPERATED BY MARTIN MARIETTA ENERGY...

    Office of Legacy Management (LM)

    OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. POST OFFICE BOX X OAK RIOGE. TENNSS 3780I 0ctober 8, 1984 M r . A r t h u r J . W h l t m a n D i v i s l o n o f R e m e ...

  11. Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect (OSTI)

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Blaylock, B.G.; Boston, H.L.; Huston, M.A.; Kimmel, B.L.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Kitchings, J.T.; Olsen, C.R.

    1991-09-01

    On April 1, 1986, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge National Laboratory (ORNL) (EPA 1986). As specified in Part 3: Special Conditions (Item H) of the permit, a plan for biological monitoring of the Clinch River, White Oak Creek (WOC), Northwest Tributary (NWT) of WOC, Melton Branch (MB), Fifth Creek, and First Creek shall be submitted for approval to the US Environmental Protection Agency (EPA) and the Tennessee Department of Health and Environment (TDHE) within 90 days of the effective date of the permit. The plan, which is referred to in Part 3 (H) of the permit as the Biological Monitoring Plan and Abatement Program (BMPAP), describes characterization monitoring studies to be conducted for the duration of the permit (5 years). In order to be consistent with the terminology used for the Biological Monitoring and Abatement Programs for the Oak Ridge Y-12 Plan and the Oak Ridge K-25 Plant, BMPAP will subsequently be referred to as the Biological Monitoring and Abatement Program (BMAP). The proposed BMAP outlined in this document is based on preliminary discussions held on December 9, 1985, between staff of Martin Marietta Energy Systems, Inc. (ORNL and Central Management), the US Department of Energy (DOE), EPA, and TDHE. 232 refs., 11 figs., 7 tabs.

  12. CRAD, Safety Basis- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Safety Basis in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  13. CRAD, Safety Basis- Oak Ridge National Laboratory TRU ALPHA LLWT Project

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a November 2003 assessment of the Safety Basis portion of an Operational Readiness Review of the Oak Ridge National Laboratory TRU ALPHA LLWT Project.

  14. CRAD, Safety Basis- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Safety Basis portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  15. CRAD, Quality Assurance- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Quality Assurance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  16. CRAD, Occupational Safety & Health- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Industrial Safety and Hygiene Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  17. CRAD, Configuration Management- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Configuration Management Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory, High Flux Isotope Reactor.

  18. CRAD, Engineering- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  19. CRAD, Conduct of Operations- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February, 2007 assessment of the Conduct of Operations Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory, High Flux Isotope Reactor.

  20. CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Management portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  1. CRAD, DOE Oversight- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a DOE independent oversight assessment of the Oak Ridge National Laboratory programs for oversight of its contractors.

  2. CRAD, Maintenance- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Maintenance Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  3. CRAD, Emergency Management- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Emergency Management Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  4. CRAD, Training- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Training Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  5. CRAD, Emergency Management- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Emergency Management Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  6. CRAD, Occupational Safety & Health- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Occupational Safety and Health Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  7. CRAD, Configuration Management- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Configuration Management Program in preparation for restart of the Oak Ridge National Laboratory, High Flux Isotope Reactor.

  8. CRAD, Environmental Protection- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Environmental Compliance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  9. CRAD, Conduct of Operations- Oak Ridge National Laboratory TRU ALPHA LLWT Project

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a November, 2003 assessment of the Conduct of Operations Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory, TRU ALPHA LLWT Project.

  10. CRAD, Nuclear Safety- Oak Ridge National Laboratory High Flux Isotope Reactor

    Office of Energy Efficiency and Renewable Energy (EERE)

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Nuclear Safety Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  11. CRAD, Radiological Controls- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Radiation Protection Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  12. CRAD, Radiological Controls- Oak Ridge National Laboratory TRU ALPHA LLWT Project

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a November 2003 assessment of the Radiation Protection Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory TRU ALPHA LLWT Project.

  13. CRAD, Conduct of Operations- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February, 2007 assessment of the Conduct of Operations Program in preparation for restart of the Oak Ridge National Laboratory, High Flux Isotope Reactor.

  14. CRAD, Quality Assurance- Oak Ridge National Laboratory TRU ALPHA LLWT Project

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a November 2003 assessment of the Quality Assurance Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory TRU ALPHA LLWT Project.

  15. Work plan for the High Ranking Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1996-03-01

    The High Ranking Facilities Deactivation Project (HRFDP), commissioned by the US Department of Energy Nuclear Materials and Facility Stabilization Program, is to place four primary high-risk surplus facilities with 28 associated ancillary facilities at Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition as rapidly and economically as possible. The facilities will be deactivated and left in a condition suitable for an extended period of minimized surveillance and maintenance (S and M) prior to decontaminating and decommissioning (D and D). These four facilities include two reactor facilities containing spent fuel. One of these reactor facilities also contains 55 tons of sodium with approximately 34 tons containing activated sodium-22, 2.5 tons of lithium hydride, approximately 100 tons of potentially contaminated lead, and several other hazardous materials as well as bulk quantities of contaminated scrap metals. The other two facilities to be transferred include a facility with a bank of hot cells containing high levels of transferable contamination and also a facility containing significant quantities of uranyl nitrate and quantities of transferable contamination. This work plan documents the objectives, technical requirements, and detailed work plans--including preliminary schedules, milestones, and conceptual FY 1996 cost estimates--for the Oak Ridge National Laboratory (ORNL). This plan has been developed by the Environmental Restoration (ER) Program of Lockheed Martin Energy Systems (Energy Systems) for the US Department of Energy (DOE) Oak Ridge Operations Office (ORO).

  16. Independent Activity Report, Oak Ridge National Laboratory- October 2011

    Broader source: Energy.gov [DOE]

    Operational Awareness Tour of Building 3525 Irradiated Fuels Examination Hot Cell Laboratory [HIAR OR-2011-10-21

  17. IO6264 OAK RIDGE NATIONAL LABORATORY POST OFFICE BOX 2008 WEMTED Sv MARTIN MARIETTA ENERGY SVPEUS. INC

    Office of Legacy Management (LM)

    IO6264 OAK RIDGE NATIONAL LABORATORY POST OFFICE BOX 2008 - WEMTED Sv MARTIN MARIETTA ENERGY SVPEUS. INC OAK RIDGE. TENNESSEE 37031 July 16, 1993 Dr. W. A Williams Department of Energy Trevion II Building EM-421 Washington, D. C. 205850002 Dear Dr. Williams: IndcperrdentVerihiatianoftbc~ConditioDofthtOId~~B~gOwnedbytht Gmnite city steel c2ltpmatiw, Gr8nite city, Illinois A team from the Measurement Applications and Development (MAD) group, Oak Ridge National Laboratory (ORNL), at the request of

  18. Remedial investigation report on Waste Area Group 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Technical summary

    SciTech Connect (OSTI)

    1995-03-01

    A remedial investigation (RI) was performed to support environmental restoration activities for Waste Area Grouping (WAG) 5 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The WAG 5 RI made use of the observational approach, which concentrates on collecting only information needed to assess site risks and support future cleanup work. This information was interpreted and is presented using the framework of the site conceptual model, which relates contaminant sources and release mechanisms to migration pathways and exposure points that are keyed to current and future environmental risks for both human and ecological receptors. The site conceptual model forms the basis of the WAG 5 remedial action strategy and remedial action objectives. The RI provided the data necessary to verify this model and allows recommendations to be made to accomplish those objectives.

  19. Oak Ridge National Laboratory Review: Volume 24, Nos. 3 and 4, 1991

    SciTech Connect (OSTI)

    Krause, C.

    1991-12-31

    Oak Ridge National Laboratory (ORNL) is a multiprogram, multipurpose laboratory that conducts research in the physical, chemical, and life sciences; in fusion, fission, and fossil energy; and in energy conservation and other energy-related technologies. This review contains articles on chemical extraction techniques, electron transport in gases and liquids, diamond films, the contribution of fossil fuels to the greenhouse effect, various sensors for safety applications, and temperature measurement with fluorescing paints. (GHH)

  20. Oak Ridge National Laboratory Review: Volume 24, Nos. 3 and 4, 1991

    SciTech Connect (OSTI)

    Krause, C.

    1991-01-01

    Oak Ridge National Laboratory (ORNL) is a multiprogram, multipurpose laboratory that conducts research in the physical, chemical, and life sciences; in fusion, fission, and fossil energy; and in energy conservation and other energy-related technologies. This review contains articles on chemical extraction techniques, electron transport in gases and liquids, diamond films, the contribution of fossil fuels to the greenhouse effect, various sensors for safety applications, and temperature measurement with fluorescing paints. (GHH)

  1. Oak Ridge National Laboratory Institutional Plan, FY 1997--FY 2002

    SciTech Connect (OSTI)

    1996-10-01

    Three major initiatives are described, which are proposed to strengthen ORNL`s ability to support the missions of the Department: neutron science, functional genomics, and distributed computing at teraflop speeds. The laboratory missions, strategic plan, scientific and technical programs, enterprise activities, laboratory operations, and resource projections are also described.

  2. Results of 1995 characterization of Gunite and Associated Tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1996-02-01

    This technical memorandum (TM) documents the 1995 characterization of eight underground radioactive waste tanks at Oak Ridge National Laboratory (ORNL). These tanks belong to the Gunite and Associated Tanks (GAAT) operable unit, and the characterization is part of the ongoing GAAT remedial investigation/feasibility study (RI/FS) process. This TM reports both field observations and analytical results; analytical results are also available from the Oak Ridge Environmental Information System (OREIS) data base under the project name GAAT (PROJ-NAME = GAAT). This characterization effort (Phase II) was a follow-up to the {open_quotes}Phase I{close_quotes} sampling campaign reported in Results of Fall 1994 Sampling of Gunite and Associated Tanks at the Oak Ridge National Laboratory, Oak Ridge, Tennessee, ORNL/ER/Sub/87-99053/74, June 1995. The information contained here should be used in conjunction with that in the previous TM. The sampling plan is documented in ORNL Inactive Waste Tanks Sampling and Analysis Plan, ORNL/RAP/LTR-88/24, dated April 1988, as amended by Addendum 1, Revision 2: ORNL Inactive Tanks Sampling and Analysis Plan, DOE/OR/02-1354&D2, dated February 1995. Field team instructions are found in ORNL RI/FS Project Field Work Guides 01-WG-20, Field Work Guide for Sampling of Gunite and Associated Tanks, and 01-WG-21, Field Work Guide for Tank Characterization System Operations at ORNL. The field effort was conducted under the programmatic and procedural umbrella of the ORNL RI/FS Program, and the analysis was in accordance with ORNL Chemical and Analytical Sciences Division (CASD) procedures. The characterization campaign is intended to provide data for criticality safety, engineering design, and waste management as they apply to the GAAT treatability study and remediation. The Department of Energy (DOE) Carlsbad office was interested in results of this sampling campaign and provided funding for certain additional sample collection and analysis.

  3. The remedial investigation/feasibility study process at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    Martin Marietta Energy Systems, Inc. (Energy Systems), manages and operates the Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, under a cost-plus-award-fee contract administered by the Department of Energy`s (DOE) Oak Ridge Operations Office (Operations Office). Energy Systems` environmental restoration program is responsible for eliminating or reducing the risk posed by inactive and surplus sites and facilities that have been contaminated with radioactive, hazardous, or mixed wastes. The remedial investigation and feasibility study (RI/FS) is being conducted as part of Energy Systems` environmental restoration program. The objective of the audit was to determine if the proposed interim source control action identified in the ``Proposed Plan for the Oak Ridge National Laboratory Waste Area Grouping 6 Interim Remedial Action`` had been adequately justified. The audit disclosed that the proposed source control interim remedial action, three flexible membrane caps estimated to cost $140 million for waste area grouping 6, was not adequately justified. We recommended that DOE justify the proposed action before agreeing to proceed. The Manager, Oak Ridge Operations Office, generally concurred with the audit recommendations.

  4. SLIDESHOW: Secretary Moniz Visits Oak Ridge National Laboratory |

    Energy Savers [EERE]

    SLED-Fact-Sheet.pdf SLED-Fact-Sheet.pdf PDF icon SLED-Fact-Sheet.pdf More Documents & Publications Clean Energy Ministerial Press Fact Sheet CEM_Metrics_and_Technical_Note_7_14_10.pdf Deliverables from U.S.-Africa Energy Ministerial 2014

    America's Wind Testing Facilities SLIDESHOW: America's Wind Testing Facilities July 17, 2012 - 4:51pm Addthis National Wind Technology Center - Colorado 1 of 7 National Wind Technology Center - Colorado The first of 4 towers is lifted as work continues on

  5. Memorandum, Request for Concurrence on fire Temporary Variance Applications Regarding Fire Protection and Pressure Safety at the Oak Ridge National Laboratory

    Broader source: Energy.gov [DOE]

    Request for Concurrence on Three Temporary Variance Applications Regarding Fire Protection and Pressure Safety at the Oak Ridge National Laboratory

  6. Oak Ridge National Laboratory review: Volume 20, No. 2, 1987

    SciTech Connect (OSTI)

    Krause, C.; Zucker, A.; Corrill, L.

    1987-01-01

    After a brief statement on the 1986 state of the laboratory, science highlights in collaborative research are presented: an attempt to recreate the first moments of the Big Bang, surface modification techniques in electronics, assessing home radon levels in five states, managing international integrated forest study, US-Japan joint breeder reprocessing project, optical components for SDI, evaluating the Chernobyl reactor accident, fusion superconducting magnet and fueling, scanning tunneling microscope, laser-processed solar cells, explosive trace detector, parallel computer processing algorithms, risk of fertilized egg to teratogens, trees for biomass energy, toxic waste leaching test, corn fermentation, and electricity distribution automation at Athens, TN. Milestones, other programs, the HFIR situation, book publications, and news are finally given. (DLC)

  7. INSPECTION REPORT Allegations Regarding Personnel Security Concerns at Oak Ridge National Laboratory

    Energy Savers [EERE]

    Personnel Security Concerns at Oak Ridge National Laboratory INS-O-14-02 June 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 June 4, 2014 MEMORANDUM FOR THE DIRECTOR, OFFICE OF INTELLIGENCE AND COUNTERINTELLIGENCE DEPUTY DIRECTOR FOR FIELD OPERATIONS, OFFICE OF SCIENCE FROM: Sandra D. Bruce Assistant Inspector General for Inspections Office of Inspector General SUBJECT: INFORMATION: Inspection Report on

  8. Safety Analysis Report for Packaging (SARP) of the Oak Ridge National Laboratory TRU Californium Shipping Container

    SciTech Connect (OSTI)

    Box, W.D.; Shappert, L.B.; Seagren, R.D.; Klima, B.B.; Jurgensen, M.C.; Hammond, C.R.; Watson, C.D.

    1980-01-01

    An analytical evaluation of the Oak Ridge National Laboratory TRU Californium Shipping Container was made in order to demonstrate its compliance with the regulations governing off-site shipment of packages that contain radioactive material. The evaluation encompassed five primary categories: structural integrity, thermal resistance, radiation shielding, nuclear criticality safety, and quality assurance. The results of this evaluation demonstrate that the container complies with the applicable regulations.

  9. Publications of the Oak Ridge National Laboratory Fossil Energy Program, October 1, 1991--March 31, 1993

    SciTech Connect (OSTI)

    Carlson, P.T.

    1993-06-01

    The Oak Ridge National Laboratory (ORNL) Fossil Energy Program, organized in FY 1974 as the Coal Technology Program, involves research and development activities for the Department of Energy (DOE) Assistant Secretary for Fossil Energy that cover a wide range of fossil energy technologies. The principal focus of the Laboratory`s fossil energy activities relates to coal, with current emphasis on materials research and development; environmental, health, and safety research; and the bioprocessing of coal to produce liquid or gaseous fuels. This bibliography covers the period of October 1, 1991, through March 31, 1993.

  10. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C

    SciTech Connect (OSTI)

    1996-11-01

    This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy`s Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings.

  11. Hydrologic data summary for the White Oak Creek watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, January--December 1994

    SciTech Connect (OSTI)

    Borders, D.M.; Ziegler, K.S.; Reece, D.K.; Watts, J.A.; Frederick, B.J.; McCalla, W.L.; Pridmore, D.J.

    1995-08-01

    This report summarizes, for the 12-month period January through December 1994, the available dynamic hydrologic data collected on the White Oak Creek (WOC) watershed as well as information collected on surface flow systems in the surrounding vicinity that may affect the quality or quantity of surface water in the watershed. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to characterize the quantity and quality of water in the surface flow system, assist with the planning and assessment of remedial action activities, provide long-term availability of data and quality assurance of these data, and support long-term measures of contaminant fluxes at a spatial scale to provide a comprehensive picture of watershed performance that is commensurate with future remedial actions.

  12. In-Process Analysis Program for the Isolock sampler at the Gunite and Associated Tanks, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1998-05-01

    The In-Process Analysis Program documents the requirements for handling, transporting, and analyzing waste slurry samples gathered by the Bristol Isolock slurry sampler from the Gunite and Associated Tanks at Oak Ridge National Laboratory in Oak Ridge, Tennessee. Composite samples will be gathered during sludge retrieval operations, labeled, transported to the appropriate laboratory, and analyzed for physical and radiological characteristics. Analysis results will be used to support occupational exposure issues, basic process control management issues, and prediction of radionuclide flow.

  13. INDEPENDENT VERIFICATION OF THE BUILDING 3550 SLAB AT OAK RIDGE NATIONAL LABORATORY OAK RIDGE, TENNESSEE

    SciTech Connect (OSTI)

    Weaver, Phyllis C.

    2012-05-08

    The Oak Ridge Institute for Science and Education (ORISE) has completed the independent verification survey of the Building 3550 Slab. The results of this effort are provided. The objective of this verification survey is to provide independent review and field assessment of remediation actions conducted by Safety and Ecology Corporation (SEC) to document that the final radiological condition of the slab meets the release guidelines. Verification survey activities on the Building 3550 Slab that included scans, measurements, and the collection of smears. Scans for alpha, alpha plus beta, and gamma activity identified several areas that were investigated.

  14. Final deactivation project report on the Integrated Process Demonstration Facility, Building 7602 Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1997-09-01

    The purpose of this report is to document the condition of the Integrated Process Demonstration Facility (Building 7602) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities by the High Ranking Facilities Deactivation Project (HRFDP). This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the U.S. Department of Energy (DOE) Environmental Restoration EM-40 Program. This report provides a history and description of the facility prior to commencing deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S&M) Plan, remaining hazardous and radioactive materials inventory, radiological controls, Safeguards and Security, and supporting documentation provided in the Office of Nuclear Material and Facility Stabilization Program (EM-60) Turnover package are discussed.

  15. Waste Area Grouping 4 Site Investigation Sampling and Analysis Plan, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1994-12-01

    Waste Area Grouping (WAG) 4 is one of 17 WAGs within and associated with Oak Ridge National Laboratory (ORNL), on the Oak Ridge Reservation in Oak Ridge, Tennessee. WAG 4 is located along Lagoon Road south of the main facility at ORNL. WAG 4 is a shallow-waste burial site consisting of three separate areas: (1) Solid Waste Storage Area (SWSA) 4, a shallow-land burial ground containing radioactive and potentially hazardous wastes; (2) an experimental Pilot Pit Area, including a pilot-scale testing pit; and (3) sections of two abandoned underground pipelines formerly used for transporting liquid, low-level radioactive waste. In the 1950s, SWSA 4 received a variety of low-and high-activity wastes, including transuranic wastes, all buried in trenches and auger holes. Recent surface water data indicate that a significant amount of {sup 90}Sr is being released from the old burial trenches in SWSA 4. This release represents a significant portion of the ORNL off-site risk. In an effort to control the sources of the {sup 90}Sr release and to reduce the off-site risk, a site investigation is being implemented to locate the trenches containing the most prominent {sup 90}Sr sources. This investigation has been designed to gather site-specific data to confirm the locations of {sup 90}Sr sources responsible for most off-site releases, and to provide data to be used in evaluating potential interim remedial alternatives prepared to direct the site investigation of the SWSA 4 area at WAG 4.

  16. Remedial investigation work plan for the Groundwater Operable Unit at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This Remedial Investigation (RI) Work Plan has been developed as part of the US Department of Energy`s (DOE`s) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the GWOU RI Work Plan is intended to serve as a strategy document to guide the ORNL GWOU RI. The Work Plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It Is important to note that the RI Work Plan for the ORNL GWOU is not a prototypical work plan. The RI will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This Work Plan outlines the overall strategy for the RI and defines tasks which are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow.

  17. Oak Ridge National Laboratory Corrective Action Plan in response to Tiger Team assessment

    SciTech Connect (OSTI)

    Kuliasha, Michael A.

    1991-08-23

    This report presents a complete response to the Tiger Team assessment that was conducted at Oak Ridge National Laboratory (ORNL) and at the US Department of Energy (DOE) Oak Ridge Operations Office (ORO) from October 22, 1990, through November 30, 1990. The action plans have undergone both a discipline review and a cross-cutting review with respect to root cause. In addition, the action plans have been integrated with initiatives being pursued across Martin Marietta Energy Systems, Inc., in response to Tiger Team findings at other DOE facilities operated by Energy Systems. The root cause section is complete and describes how ORNL intends to address the root causes of the findings identified during the assessment. The action plan has benefited from a complete review by various offices at DOE Headquarters as well as review by the Tiger Team that conducted the assessment to ensure that the described actions are responsive to the observed problems.

  18. INDEPENDENT VERIFICATION OF THE CENTRAL CAMPUS AND SOUTHEAST LABORATORY COMPLEX BUILDING SLABS AT OAK RIDGE NATIONAL LABORATORY, OAK RIDGE, TENNESSEE

    SciTech Connect (OSTI)

    Weaver, Phyllis C.

    2012-07-24

    Oak Ridge Associated Universities/Oak Ridge Institute for Science and Education (ORAU/ORISE) has completed the independent verification survey of the Central Campus and Southeast Lab Complex Building Slabs. The results of this effort are provided. The objective of this verification survey was to provide independent review and field assessment of remediation actions conducted by SEC, and to independently assess whether the final radiological condition of the slabs met the release guidelines.

  19. CHP Research and Development - Presentation by Oak Ridge National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Development - Presentation by Oak Ridge National Laboratory, June 2011 CHP Research and Development - Presentation by Oak Ridge National Laboratory, June 2011 ...

  20. Oak Ridge National Laboratory Institutional Plan for FY 1999 Through FY 2003

    SciTech Connect (OSTI)

    Trivelpiece, A.W.

    1998-01-01

    In January 1996, when the management and operation (M and O) contract for the Oak Ridge National Laboratory (ORNL) was awarded to Lockheed Martin Energy Research Corporation, they were presented with the opportunity to develop and implement a management structure tailored to the Laboratory's needs and functions. In response, they launched a Laboratory-wide reengineering effort and undertook other work with the goal of fostering excellence, relevance, and stewardship in all aspects of the Laboratory's operations. This effort is paying off in improvements in their ability to meet the expectations established for ORNL as a Department of Energy laboratory overseen by the Office of Science: delivering advances in science and technology, securing new capabilities, improving the ability to operate safely and efficiently at reasonable cost, and being a good neighbor. The development of critical outcomes and objectives, now under way in partnership with the Department's Oak Ridge Operations Office, is aimed at providing a performance-based means of determining how ORNL measures up to these expectations.

  1. First annual report on the Biological Monitoring and Abatement Program at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Loar, J.M.; Adams, S.M.; Blaylock, B.G.; Boston, H.L.; Frank, M.L.; Garten, C.T.; Houston, M.A.; Kimmel, B.L.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Berry, J.B.; Talmage, S.S. ); Amano, H. ); Jimenez, B.D. ); Kitchings, J.T.

    1992-08-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the first of a series of annual reports presenting the results of BMAP, describes studies that were conducted from March through December 1986.

  2. OAK RIDGE NATIONAL LABORATORY OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS, INC.

    Office of Legacy Management (LM)

    ' ! ,' c;. I' , . ad OAK RIDGE NATIONAL LABORATORY OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS, INC. FOR THE UNITE0 STATES DEPARTMENT OF ENERGY 0 1; , : 3 ., q (-g.lis oRNL/TM-11182 Results of the Preliminary Radiological Survey at the Former Diamond Magnesium Company Site, Luckey, Ohio (DMLOOI) R. D. Foley J. W. Crutcher b-1 ORNLKM-11182 HEALTH AND SAFEIY RESEARCH DIVISION Nuclear and Chemical Waste Programs (Activity No. AT3 10 05 00 0; ONLWCOl) RESULTS OFTHE PRELIMIN ARY RADIOLOGICAL SURVEY AT

  3. Oak Ridge National Laboratory [ORNL] Review, Vol. 25, Nos. 3 and 4, 1992 [The First Fifty Years

    DOE R&D Accomplishments [OSTI]

    Krause, C.(ed.)

    1992-01-01

    In observation of the 50th anniversary of Oak Ridge National Laboratory, this special double issue of the Review contains a history of the Laboratory, complete with photographs, drawings, and short accompanying articles. Table of contents include: Wartime Laboratory; High-flux Years; Accelerating Projects; Olympian Feats; Balancing Act; Responding to Social Needs; Energy Technologies; Diversity and Sharing; Global Outreach; Epilogue

  4. Type B Accident Investigation of the Subcontractor Employee Injuries from a November 15, 2000, Fall Accident at the Oak Ridge National Laboratory

    Broader source: Energy.gov [DOE]

    On November 15, 2000, an accident occurred at the U. S. Department of Energy (DOE) Oak Ridge National Laboratory located in Oak Ridge, Tennessee. An employee of Decon and Recovery Services of Oak Ridge, LLC (DRS), working on an Oak Ridge Operations Office (ORO) Environmental Management decommissioning and demolition project received serious injuries from a fall (approximately 13 feet) from a fixed ladder.

  5. Summary of available waste forecast data for the Environmental Restoration Program at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This report identifies patterns of Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) waste generation that are predicted by the current ER Waste Generation Forecast data base. It compares the waste volumes to be generated with the waste management capabilities of current and proposed treatment, storage, or disposal (TSD) facilities. The scope of this report is limited to wastes generated during activities funded by the Office of the Deputy Assistant Secretary for Environmental Restoration (EM-40) and excludes wastes from the decontamination and decommissioning of facilities. Significant quantities of these wastes are expected to be generated during ER activities. This report has been developed as a management tool supporting communication and coordination of waste management activities at ORNL. It summarizes the available data for waste that will be generated as a result of remediation activities under the direction of the U.S. Department of Energy Oak Ridge Operations Office and identifies areas requiring continued waste management planning and coordination. Based on the available data, it is evident that most remedial action wastes leaving the area of contamination can be managed adequately with existing and planned ORR waste management facilities if attention is given to waste generation scheduling and the physical limitations of particular TSD facilities. Limited use of off-site commercial TSD facilities is anticipated, provided the affected waste streams can be shown to satisfy the requirements of the performance objective for certification of non-radioactive hazardous waste and the waste acceptance criteria of the off-site facilities. Ongoing waste characterization will be required to determine the most appropriate TSD facility for each waste stream.

  6. Surface radiological investigations at the proposed SWSA 7 Site, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    McKenzie, S.P.; Murray, M.E.; Uziel, M.S.

    1995-08-01

    A surface radiological investigation was conducted intermittently from June 1994 to June 1995 at the proposed site for Solid Waste Storage Area (SWSA) 7. The stimulus for this survey was the observation in June 1992 of a man`s trousers became contaminated with {sup 9O}Sr while he was reviewing work on top of the High Flux Isotope Reactor (HFIR) cooling tower. Radiation surveys identified {sup 9O}Sr on the roofs of older buildings at the HFIR site. Since no {sup 9O}Sr was found on buildings built between 1988 and 1990, the {sup 9O}Sr was thought to have been deposited prior to 1988. Later in 1992, beta particles were identified on a bulldozer that had been used in a wooded area southwest of the Health Physics Research Reactor (HPRR) Access Road. More recently in April 1995, {sup 9O}Sr particles were identified on the top side of ceiling tiles in the overhead area of a building in the HFIR Complex. Considering that the proposed SWSA 7 site was located between the HFIR complex and the HPRR Access Road, it was deemed prudent to investigate the possibility that beta particles might also be present at the SWSA 7 site. A possible explanation for the presence of these particles has been provided by long-time ORNL employees and retirees. Strontium-90 as the titanate was developed in the early 1960s as part of the Systems for Nuclear Auxiliary Power (SNAP) Program. Strontium titanate ({sup 90}SrTiO{sub 3}) was produced at the Fission Product Development Laboratory (Building 3517) in the ORNL main plant area. Waste from the process was loaded into a 1-in. lead-lined dumpster, which was transferred to SWSA 5 where it was dumped into a trench. Dumping allowed some articles to become airborne.

  7. Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part A, Decontamination and Decommissioning

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Strategic Roadmap for the Oak Ridge Reservation is a generalized planning document that identifies broad categories of issues that keep ORNL outside full compliance with the law and other legally binding agreements. Possible generic paths to compliance, issues, and the schedule for resolution of the issues one identified. The role of the Oak Ridge National Laboratory Technology Logic Diagram (TLD) is then to identify specific site issues (problems), identify specific technologies that can be brought to bear on the issues, and assess the current status and readiness of these remediation technologies within the constraints of the schedule commitment. Regulatory requirements and commitments contained in the Strategic Roadmap for the Oak Ridge Reservation are also included in the TLD as constraints to the application of immature technological solutions. Some otherwise attractive technological solutions may not be employed because they may not be deployable on the schedule enumerated in the regulatory agreements. The roadmap for ORNL includes a list of 46 comprehensive logic diagrams for WM of low-level, radioactive-mixed, hazardous, sanitary and industrial. and TRU waste. The roadmapping process gives comparisons of the installation as it exists to the way the installation should exist under full compliance. The identification of the issues is the goal of roadmapping. This allows accurate and timely formulation of activities.

  8. Oak Ridge National Laboratory Wireless Power Transfer Development for Sustainable Campus Initiative

    SciTech Connect (OSTI)

    Onar, Omer C; Miller, John M; Campbell, Steven L; Coomer, Chester; White, Cliff P; Seiber, Larry Eugene

    2013-01-01

    Wireless power transfer (WPT) is a convenient, safe, and autonomous means for electric and plug-in hybrid electric vehicle charging that has seen rapid growth in recent years for stationary applications. WPT does not require bulky contacts, plugs, and wires, is not affected by dirt or weather conditions, and is as efficient as conventional charging systems. This study summarizes some of the recent Sustainable Campus Initiative activities of Oak Ridge National Laboratory (ORNL) in WPT charging of an on-campus vehicle (a Toyota Prius plug-in hybrid electric vehicle). Laboratory development of the WPT coils, high-frequency power inverter, and overall systems integration are discussed. Results cover the coil performance testing at different operating frequencies, airgaps, and misalignments. Some of the experimental results of insertion loss due to roadway surfacing materials in the air-gap are presented. Experimental lessons learned are also covered in this study.

  9. Implementation plan for liquid low-level radioactive waste systems under the FFA for fiscal years 1996 and 1997 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1996-06-01

    This document is the fourth annual revision of the plans and schedules for implementing the Federal Facility Agreement (FFA) compliance program, originally submitted in 1992 as ES/ER-17&D1, Federal Facility Agreement Plans and Schedules for Liquid Low-Level Radioactive Waste Tank Systems at Oak Ridge National Laboratory, Oak Ridge, Tennessee. This document summarizes the progress that has been made to date implementing the plans and schedules for meeting the FFA commitments for the Liquid Low-Level Waste (LLLW) System at Oak Ridge National Laboratory (ORNL). In addition, this document lists FFA activities planned for FY 1997. Information presented in this document provides a comprehensive summary to facilitate understanding of the FFA compliance program for LLLW tank systems and to present plans and schedules associated with remediation, through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process, of LLLW tank systems that have been removed from service.

  10. Performance of a feasibility study for remediation of WAG 6 at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Kubarewicz, J.; Pfeffer, J. [CH2M Hill, Oak Ridge, TN (United States); Garland, S.B. II [Oak Ridge National Lab., TN (United States); Riddle, S.P. [USDOE Oak Ridge Field Office, TN (United States); Branscom, K.S. [Radian Corp., Oak Ridge, TN (United States)

    1992-10-01

    This paper describes the process of preparing a feasibility study (FS) for remediation of a low-level radioactive waste (LLW) disposal site at Oak Ridge National Laboratory (ORNL). ORNL conducts research and development and is one of three DOE-owned facilities on the Oak Ridge Reservation (ORR). Waste Area Grouping (WAG) 6 is located in Melton Valley, approximately 2 miles southwest of the plant in Roane County, Tennessee. WAG 6 includes Solid Waste Storage Area (SWSA) 6, which is still used for shallow land burial of LLW and nonradioactive materials and was the primary focus of the FS. SWSA 6 covers 68 acres, 19 of which contain wastes such as low-level radioactive liquids, solids, sludges, asbestos, and biological and associated laboratory wastes. During the first 15 years of operation, the site also received chemical wastes, but since 1986, it has been used only for LLW. Until 1986, wastes were placed in unlined trenches and auger holes, but since then, wastes have been disposed in greater confinement disposal silos, lined pipe wells and auger holes, and above-ground tumulus units. A list of the sitewide alternatives initially developed for WAG 6 remediation is presented. The alternatives combined capping, structural stabilization (dynamic compaction/grouting), waste consolidation, and groundwater collection/treatment components. In situ vitrification was also considered for areas with significant long-life source inventories.

  11. Memorandum Request for Concurrence on firee Temporary Variance Applications Regarding Fire Protection and Pressure Safety at the Oak Ridge National Laboratory

    Broader source: Energy.gov [DOE]

    Memorandum Request for Concurrence on firee Temporary Variance Applications Regarding Fire Protection and Pressure Safety at the Oak Ridge National Laboratory

  12. The Oak Ridge National Laboratory Automobile Heat Pump Model: User's Guide

    SciTech Connect (OSTI)

    Kyle, D.M.

    1993-01-01

    A computer program has been developed to predict the steady-state performance of vapor compression automobile air conditioners and heat pumps. The code is based on the residential heat pump model developed at Oak Ridge National Laboratory. Most calculations are based on fundamental physical principles, in conjunction with generalized correlations available in the research literature. Automobile air conditioning components that can be specified as inputs to the program include open and hermetic compressors; finned tube condensers; finned tube and plate-fin style evaporators; thermal expansion valve, capillary tube and short tube expansion devices; refrigerant mass; evaporator pressure regulator; and all interconnecting tubing. The program can be used with a variety of refrigerants, including R134a. Methodologies are discussed for using the model as a tool for designing all new systems or, alternatively, as a tool for simulating a known system for a variety of operating conditions.

  13. COMSOL-Related Activities within the Research Reactors Division of Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Freels, James D

    2015-01-01

    Our group at Oak Ridge National Laboratory (ORNL) started using COMSOL shortly after version 3.0 was released in the Spring of 2004. Over 11 years later and several new releases of the code, the application usage has grown along with the number of licenses we are responsible for. This paper focuses not on details of results and modeling methods, but instead, takes a look at our past and present applications, and evaluates where we are headed with COMSOL in the future. In doing so, we reveal some lessons learned along our pathway, provide some insight on how best to use COMSOL in a group setting, and perhaps help both users and developers to improve how the code is utilized.

  14. Oak Ridge National Laboratory Corrective Action Plan in response to Tiger Team assessment

    SciTech Connect (OSTI)

    Kuliasha, Michael A.

    1991-08-23

    This report presents a complete response to the Tiger Team assessment that was conducted to Oak Ridge National Laboratory (ORNL) and at the US Department of Energy (DOE) Oak Ridge Operations Office (ORO) from October 2, 1990, through November 30, 1990. The action plans have undergone both a discipline review and a cross-cutting review with respect to root cause. In addition, the action plans have been integrated with initiatives being pursued across Martin Marietta Energy Systems, Inc., in response to Tiger Team findings at other DOE facilities operated by Energy Systems. The root cause section is complete and describes how ORNL intends to address the root cause of the findings identified during the assessment. This report is concerned with reactors safety and health findings, responses, and planned actions. Specific areas include: organization and administration; quality verification; operations; maintenance; training and certification; auxiliary systems; emergency preparedness; technical support; nuclear criticality safety; security/safety interface; experimental activities; site/facility safety review; radiological protection; personnel protection; fire protection; management findings, responses, and planned actions; self-assessment findings, responses, and planned actions; and summary of planned actions, schedules, and costs.

  15. Alternatives evaluation and decommissioning study on shielded transfer tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    DeVore, J.R.; Hinton, R.R.

    1994-08-01

    The shielded transfer tanks (STTs) are five obsolete cylindrical shipping casks which were used to transport high specific activity radioactive solutions by rail during the 1960s and early 1970s. The STTs are currently stored at the Oak Ridge National Laboratory under a shed roof. This report is an evaluation to determine the preferred alternative for the final disposition of the five STTs. The decommissioning alternatives assessed include: (1) the no action alternative to leave the STTs in their present location with continued surveillance and maintenance; (2) solidification of contents within the tanks and holding the STTs in long term retrievable storage; (3) sale of one or more of the used STTs to private industry for use at their treatment facility with the remaining STTs processed as in Alternative 4; and (4) removal of tank contents for de-watering/retrievable storage, limited decontamination to meet acceptance criteria, smelting the STTs to recycle the metal through the DOE contaminated scrap metal program, and returning the shielding lead to the ORNL lead recovery program because the smelting contractor cannot reprocess the lead. To completely evaluate the alternatives for the disposition of the STTs, the contents of the tanks must be characterized. Shielding and handling requirements, risk considerations, and waste acceptance criteria all require that the radioactive inventory and free liquids residual in the STTs be known. Because characterization of the STT contents in the field was not input into a computer model to predict the probable inventory and amount of free liquid. The four alternatives considered were subjected to a numerical scoring procedure. Alternative 4, smelting the STTs to recycle the metal after removal/de-watering of the tank contents, had the highest score and is, therefore, recommended as the preferred alternative. However, if a buyer for one or more STT could be found, it is recommended that Alternative 3 be reconsidered.

  16. Removal site evaluation report on the bulk shielding facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1996-09-01

    This removal site evaluation report on the Bulk Shielding Facility (BSF) at Oak Ridge National Laboratory was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around BSF buildings pose a substantial risk to human health or the environment (i.e., a high probability of adverse effects) and whether remedial site evaluations or removal actions are, therefore, required. A removal site evaluation was conducted at nine areas associated with the BSF. The scope of each evaluation included (1) a search for, and review of, readily available historical records regarding operations and use of the facility (including hazardous substance usage and existing contamination); (2) interviews with facility personnel concerning current and past practices; and (3) a brief walk-through to visually inspect the facility and identify existing hazard areas requiring maintenance actions or remedial evaluation. The results of the removal site evaluation indicate that no substantial risks exist from contaminants present because adequate efforts are being made to contain and control existing contamination and hazardous substances and to protect human health and the environment. At Building 3004, deteriorated and peeling exterior paint has a direct pathway to the storm water drainage system and can potentially impact local surface water during periods of storm water runoff. The paint is assumed to be lead based, thus posing a potential problem. The paint should be sampled and analyzed to determine its lead content and to assess whether a hazard exists. If so, a maintenance action will be necessary to prevent further deterioration and dislodging of the paint. In addition, if the paint contains lead, then a remedial site evaluation should be conducted to determine whether lead from fallen chips has impacted soils in the immediate area of the building.

  17. Fourth report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect (OSTI)

    Loar, J.M.

    1994-04-01

    In response to a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC) and selected tributaries. BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake. The ecological characterization of the WOC watershed will provide baseline data that can be used to document the ecological effects of the water pollution control program and the remedial action program. The long-term nature of BMAP ensures that the effectiveness of remedial measures will be properly evaluated.

  18. Second report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect (OSTI)

    Loar, J.M.; Adams, S.M.; Bailey, R.D.; Blaylock, B.G.; Boston, H.L.; Cox, D.K.; Huston, M.A.; Kimmel, B.L.; Loar, J.M.; Olsen, C.R.; Ryon, M.G.; Shugart, L.R.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Talmage, S.S.; Murphy, J.B.; Valentine, C.K.; Appellanis, S.M.; Jimenez, B.D.; Huq, M.V.; Meyers-Schone, L.J.; Mohrbacher, D.A.; Olsen, C.R.; Stout, J.G.

    1992-12-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the second of a series of annual reports, described the results of BMAP studies conducted in 1987.

  19. Hydraulic manipulator design, analysis, and control at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Kress, R.L.; Jansen, J.F.; Love, L.J.; Basher, A.M.H.

    1996-09-01

    To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned to hydraulics as a means of actuation. Hydraulics have always been the actuator of choice when designing heavy-life construction and mining equipment such as bulldozers, backhoes, and tunneling devices. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem) sophisticated modeling, analysis, and control experiments are usually needed. To support the development and deployment of new hydraulic manipulators Oak Ridge National Laboratory (ORNL) has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The hydraulics laboratory at ORNL has three different manipulators. First is a 6-Degree-of-Freedom (6-DoF), multi-planer, teleoperated, flexible controls test bed used for the development of waste tank clean-up manipulator controls, thermal studies, system characterization, and manipulator tracking. Finally, is a human amplifier test bed used for the development of an entire new class of teleoperated systems. To compliment the hardware in the hydraulics laboratory, ORNL has developed a hydraulics simulation capability including a custom package to model the hydraulic systems and manipulators for performance studies and control development. This paper outlines the history of hydraulic manipulator developments at ORNL, describes the hydraulics laboratory, discusses the use of the equipment within the laboratory, and presents some of the initial results from experiments and modeling associated with these hydraulic manipulators. Included are some of the results from the development of the human amplifier/de-amplifier concepts, the characterization of the thermal sensitivity of hydraulic systems, and end-point tracking accuracy studies. Experimental and analytical results are included.

  20. Extended Cold Testing of a Russian Pulsating Mixer Pump at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Lewis, BE

    2002-12-23

    The effectiveness of a mixer is dependent on the size of the tank to be mixed, the characteristics of the waste, and the operating conditions. Waste tanks throughout the U.S. Department of Energy Complex require mixing and mobilization systems capable of (1) breaking up and suspending materials that are difficult to mix and pump, without introducing additional liquids into the tank; (2) complementing and augmenting the performance of other remotely operated and/or robotic waste retrieval systems; and (3) operating in tanks with various quantities of waste. The Oak Ridge Russian pulsating mixer pump (PMP) system was designed with the flexibility to permit deployment in a variety of cylindrical tanks. The PMP was installed at the Tanks Technology Cold Test Facility at the Oak Ridge National Laboratory (ORNL) to assess the performance of the system over an extended range of operating conditions, including supply pressures up to 175 psig. Previously conducted cold tests proved the applicability of the PMP for deployment in ORNL gunite tank TH-4. The previous testing and hot demonstrations had been limited to operating at air supply pressures of <100 psig. The extended cold testing of the Russian PMP system showed that the system was capable of mobilizing waste simulants in tanks in excess of 20-ft diam. The waste simulant used in these tests was medium-grain quartz sand. The system was successfully installed, checked out, and operated for 406 pulse discharge cycles. Only minor problems (i.e., a sticking air distributor valve and a few system lockups) were noted. Some improvements to the design of the air distributor valve may be needed to improve reliability. The air supply requirements of the PMP during the discharge cycle necessitated the operation of the system in single pulse discharge cycles to allow time for the air supply reservoir to recharge to the required pressure. During the test program, the system was operated with sand depths of 2, 4, and 4.5 in.; at operating pressures from 100 to 175 psig; and elevations of 1 to 10 in. off the floor of the mock tank. The higher operating pressures resulted in larger values for the effective cleaning radius (ECR). The maximum observed ECR value, 144 in., occurred with the PMP elevated {approx}4 in. off the floor of the mock tank; a 2-in. layer of sand as the waste simulant, and 175-psig air supply pressure. Tests were conducted both within the confines of the 20-ft diam mock tank (confined) and with a portion of the tank wall removed (unconfined). The mixing mode during the confined tests changed from direct to indirect as the PMP was elevated above 4 in. off the floor of the mock tank. The direct mode of mixing pushes solids toward the wall of the waste tank, while the indirect mode tends to push solids toward the center of the tank. The mixing mode did not change during tests conducted in the unconfined tank. Changing the mode of mixing from direct to indirect should have a beneficial effect on the amount of solids mobilized and retrieved from a waste tank.

  1. DATA SHARING REPORT CHARACTERIZATION OF POPULATION 7: PERSONAL PROTECTIVE EQUIPMENT, DRY ACTIVE WASTE, AND MISCELLANEOUS DEBRIS, SURVEILLANCE AND MAINTENANCE PROJECT OAK RIDGE NATIONAL LABORATORY OAK RIDGE, TENNESSEE

    SciTech Connect (OSTI)

    Harpenau, Evan M

    2013-10-10

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested that ORAU plan and implement a sampling and analysis campaign targeting certain URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing to determine a final pathway for disposal. Population 7 (POP 7) consists of 56 containers of aged, low-level and potentially mixed S&M waste that has been staged in various locations around ORNL. Several of these POP 7 containers primarily contain personal protective equipment (PPE) and dry active waste (DAW), but may contain other miscellaneous debris. This data sharing report addresses the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) specified waste in a 13-container subpopulation (including eight steel boxes, three 55-gal drums, one sealand, and one intermodal) that lacked sufficient characterization data for possible disposal at the Environmental Management Waste Management Facility (EMWMF) using the approved Waste Lot (WL) 108.1 profile.

  2. Annual Report on Environmental Monitoring Activities for FY 1995 (Baseline Year) at Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1996-06-01

    This report describes baseline contaminant release conditions for Waste Area Grouping (WAG) 6 at Oak Ridge National Laboratory (ORNL). The sampling approach and data analysis methods used to establish baseline conditions were presented in ``Environmental Monitoring Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee (EMP).`` As outlined in the EMP, the purpose of the baseline monitoring year at WAG 6 was to determine the annual contaminant releases from the site during fiscal year 1995 (FY95) against which any potential changes in releases over time could be compared. The baseline year data set provides a comprehensive understanding of release conditions from all major waste units in the WAG through each major contaminant transport pathway. Due to a mandate to reduce all monitoring work, WAG 6 monitoring was scaled back and reporting efforts on the baseline year results are being minimized. This report presents the quantified baseline year contaminant flux conditions for the site and briefly summarizes other findings. All baseline data cited in this report will reside in the Oak Ridge Environmental Information system (OREIS) database, and will be available for use in future years as the need arises to identify potential release changes.

  3. C-tank transfers: Transuranic sludge removal from the C-1, C-2, and W-23 waste storage tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Dahl, T.L.; Lay, A.C.; Taylor, S.A.; Moore, J.W.

    1999-05-01

    Two fluidic pulse jet mixing systems were used to successfully mobilize remote-handled transuranic sludge for retrieval from three 50,000-gal horizontal waste storage tanks at Oak Ridge National Laboratory (ORNL). The results of this operation indicate that the pulse jet system should be considered for mixing and bulk retrieval of sludges in other vertical and horizontal waste tanks at ORNL and at other U.S. Department of Energy sites.

  4. Final report on the waste area grouping perimeter groundwater quality monitoring well installation program at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Greene, J.A.

    1991-06-01

    A groundwater quality monitoring well installation program was conducted at Oak Ridge National Laboratory (ORNL) to meet the requirements of environmental regulations, including the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). A total of 173 wells were installed and developed at 11 different waste area groupings (WAGs) between June 1986 and November 1990. A location map of the wells is included.

  5. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2, Sections 4 through 9: Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU`s) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment and baseline human health evaluation including a toxicity assessment, and a baseline environmental evaluation.

  6. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3, Appendixes 1 through 8: Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU`S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data. (CBS)

  7. Waste management plan for inactive LLLW tanks 3001-B, 3004-B, 3013, and T-30 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    1995-07-01

    This Project Waste Management Plan identifies the waste that is expected to be generated in connection with the removal and disposition of inactive liquid low-level radioactive waste tanks 3001-B, 3004-B, and T-30, and grouting of tank 3013 at the Oak Ridge National Laboratory and the isolation of these tanks` associated piping systems. The plan also identifies the organization, responsibilities, and administrative controls that will be followed to ensure proper handling of the waste.

  8. Biological and Environmental Research Program at Oak Ridge National Laboratory, FY 1992--1994

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This report is the 1992--1994 Program Director`s Overview Report for Oak Ridge National Laboratory`s (ORNL`s) Biological and Environmental Research (BER) Program, and as such it addresses KP-funded work at ORNL conducted during FY 1991 and in progress during FY 1992; it also serves as a planning document for the remainder of FY 1992 through FY 1994. Non-BER funded work at ORNL relevant to the mission of OHER is also discussed. The second section of the report describes ORNL facilities and resources used by the BER program. The third section addresses research management practices at ORNL. The fourth, fifth, and sixth sections address BER-funded research in progress, program accomplishments and research highlights, and program orientation for the remainder of FY 1992 through FY 1994, respectively. Work for non-BER sponsors is described in the seventh section, followed by a discussion of significant near and long-term issues facing BER work at ORNL in the eighth section. The last section provides a statistical summary of BER research at ORNL. Appendices supplement the above topics with additional detail.

  9. Update of the management strategy for Oak Ridge National Laboratory Liquid Low-Level Waste

    SciTech Connect (OSTI)

    Robinson, S.M.; Abraham, T.J.; DePaoli, S.M.; Walker, A.B.

    1995-04-01

    The strategy for management of the Oak Ridge National Laboratory`s (ORNL) radioactively contaminated liquid waste was reviewed in 1991. The latest information available through the end of 1990 on waste characterization, regulations, US Department of Energy (DOE) budget guidance, and research and development programs was evaluated to determine how the strategy should be revised. Few changes are needed to update the strategy to reflect new waste characterization, research, and regulatory information. However, recent budget guidance from DOE indicates that minimum funding will not be sufficient to accomplish original objectives to upgrade the liquid low-level waste (LLLW) system to comply with the Federal Facilities Agreement, provide long-term LLLW treatment capability, and minimize environmental, safety, and health risks. Options are presented that might allow the ORNL LLLW system to continue operations temporarily, but they would significantly reduce its capabilities to handle emergency situations, provide treatment for new waste streams, and accommodate waste from the Environmental Restoration Program and from decontamination and decommissioning of surplus facilities. These options are also likely to increase worker radiation exposure, risk of environmental insult, and generation of solid waste for on-site and off-site disposal/storage beyond existing facility capacities. The strategy will be fully developed after receipt of additional guidance. The proposed budget limitations are too severe to allow ORNL to meet regulatory requirements or continue operations long term.

  10. Remote Systems Experience at the Oak Ridge National Laboratory--A Summary of Lessons Learned

    SciTech Connect (OSTI)

    Noakes, Mark W; Burgess, Thomas W; Rowe, John C

    2011-01-01

    Oak Ridge National Laboratory (ORNL) has a long history in the development of remote systems to support the nuclear environment. ORNL, working in conjunction with Central Research Laboratories, created what is believed to be the first microcomputer-based implementation of dual-arm master-slave remote manipulation. As part of the Consolidated Fuel Reprocessing Program, ORNL developed the dual-arm advanced servomanipulator focusing on remote maintainability for systems exposed to high radiation fields. ORNL also participated in almost all of the various technical areas of the U.S. Department of Energy s Robotics Technology Development Program, while leading the Decontamination and Decommissioning and Tank Waste Retrieval categories. Over the course of this involvement, ORNL has developed a substantial base of working knowledge as to what works when and under what circumstances for many types of remote systems tasks as well as operator interface modes, control bandwidth, and sensing requirements to name a few. By using a select list of manipulator systems that is not meant to be exhaustive, this paper will discuss history and outcome of development, field-testing, deployment, and operations from a lessons learned perspective. The final outcome is a summary paper outlining ORNL experiences and guidelines for transition of developmental remote systems to real-world hazardous environments.

  11. Oak Ridge National Laboratory Waste Management Plan, fiscal year 1994. Revision 3

    SciTech Connect (OSTI)

    Turner, J.W.

    1993-12-01

    US Department of Energy (DOE) Order 5820.2A was promulgated in final form on September 26, 1988. The order requires heads of field organizations to prepare and to submit updates on the waste management plans for all operations under their purview according to the format in Chap. 6, {open_quotes}Waste Management Plan Outline.{close_quotes} These plans are to be submitted by the DOE Oak Ridge Operations Office (DOE-ORO) in December of each year and distributed to the DP-12, ES&H-1, and other appropriate DOE Headquarters (DOE-HQ) organizations for review and comment. This document was prepared in response to this requirement for fiscal year (FY) 1994. The Oak Ridge National Laboratory (ORNL) waste management mission is reduction, collection, storage, treatment, and disposal of DOE wastes, generated primarily in pursuit of ORNL missions, in order to protect human health and safety and the environment. In carrying out this mission, waste management staff in the Waste Management and Remedial Action Division (WMRAD) will (1) guide ORNL in optimizing waste reduction and waste management capabilities and (2) conduct waste management operations in a compliant, publicly acceptable, technically sound, and cost-efficient manner. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of this document is compilation and consolidation of information on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what activities are planned for FY 1994, and how all of the activities are documented.

  12. Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Wu, Weimin; Criddle, Craig S.

    2015-11-16

    We (the Stanford research team) were invited as external collaborators to contribute expertise in environmental engineering and field research at the ORNL IFRC, Oak Ridge, TN, for projects carried out at the Argonne National Laboratory and funded by US DOE. Specifically, we assisted in the design of batch and column reactors using ORNL IFRC materials to ensure the experiments were relevant to field conditions. During the funded research period, we characterized ORNL IFRC groundwater and sediments in batch microcosm and column experiments conducted at ANL, and we communicated with ANL team members through email and conference calls and face-to-face meetings at the annual ERSP PI meeting and national meetings. Microcosm test results demonstrated that U(VI) in sediments was reduced to U(IV) when amended with ethanol. The reduced products were not uraninite but unknown U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. Due to budget reductions at ANL, Stanford contributions ended in 2011.

  13. WUFI (Wärme and Feuchte Instationär)-Oak Ridge National Laboratory (ORNL)/Fraunhofer IBP

    Energy Science and Technology Software Center (OSTI)

    2014-05-20

    WUFI - Oak Ridge National Laboratory (ORNL)/Fraunhofer IBP is a menu-driven PC program which allows realistic calculation of the transient coupled one-dimensional heat and moisture transport in multi-layer building components exposed to natural weather. It is based on the newest findings regarding vapor diffusion and liquid transport in building materials and has been validated by detailed comparison with measurements obtained in the laboratory and on outdoor testing fields. Together with Oak Ridge National Laboratory (ORNL)more » Fraunhofer IBP has developed a special version of WUFI ® for North America. WUFI® ORNL is a functionally limited free version of WUFI® Pro for non-commercial purposes. It contains climate data for 62 cities in the USA and Canada which are all available in the free version. http://web.ornl.gov/sci/ees/etsd/btric/wufi/ http://www.WUFI.com/ORNL« less

  14. Third report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect (OSTI)

    Loar, J.M.; Adams, S.M.; Bailey, R.D.

    1994-03-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. The BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs at ORNL. These are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake (WOL). The investigation of contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system was originally a task of the BMAP but, in 1988, was incorporated into the Resource Conservation and Recovery Act Facility Investigation for the Clinch River, a separate study to assess offsite contamination from all three Department of Energy facilities in Oak Ridge.

  15. Biological and Environmental Research Program at Oak Ridge National Laboratory, FY 1992--1994

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This report is the 1992--1994 Program Director's Overview Report for Oak Ridge National Laboratory's (ORNL's) Biological and Environmental Research (BER) Program, and as such it addresses KP-funded work at ORNL conducted during FY 1991 and in progress during FY 1992; it also serves as a planning document for the remainder of FY 1992 through FY 1994. Non-BER funded work at ORNL relevant to the mission of OHER is also discussed. The second section of the report describes ORNL facilities and resources used by the BER program. The third section addresses research management practices at ORNL. The fourth, fifth, and sixth sections address BER-funded research in progress, program accomplishments and research highlights, and program orientation for the remainder of FY 1992 through FY 1994, respectively. Work for non-BER sponsors is described in the seventh section, followed by a discussion of significant near and long-term issues facing BER work at ORNL in the eighth section. The last section provides a statistical summary of BER research at ORNL. Appendices supplement the above topics with additional detail.

  16. Reengineering of waste management at the Oak Ridge National Laboratory. Volume 2

    SciTech Connect (OSTI)

    Myrick, T.E.

    1997-08-01

    A reengineering evaluation of the waste management program at the Oak Ridge National Laboratory (ORNL) was conducted during the months of February through July 1997. The goal of the reengineering was to identify ways in which the waste management process could be streamlined and improved to reduce costs while maintaining full compliance and customer satisfaction. A Core Team conducted preliminary evaluations and determined that eight particular aspects of the ORNL waste management program warranted focused investigations during the reengineering. The eight areas included Pollution Prevention, Waste Characterization, Waste Certification/Verification, Hazardous/Mixed Waste Stream, Generator/WM Teaming, Reporting/Records, Disposal End Points, and On-Site Treatment/Storage. The Core Team commissioned and assembled Process Teams to conduct in-depth evaluations of each of these eight areas. The Core Team then evaluated the Process Team results and consolidated the 80 process-specific recommendations into 15 overall recommendations. Volume 2 consists of nine appendices which contain the Process Team reports and Benchmarking reports.

  17. RCRA Facilities Assessment (RFA) Oak Ridge National Laboratory addendum August 25, 1987

    SciTech Connect (OSTI)

    Not Available

    1987-08-01

    The RCRA Facilities Assessment (RFA) report identified approximately 250 Solid Waste Management Units (SWMUs) that were grouped into 20 Waste Area Groupings (WAGs) at Oak Ridge National Laboratory. Identification of each SWMU included information as to location, type, size, dates of operation, type of waste handled, and evidence of releases. Preliminary sampling studies were performed around each WAG to determine if there was evidence of releases beyond its perimeter. Analytical results from the surveys and historical information were the basis for recommendations concerning further actions for each WAG. Remedial investigations (RIs) were recommended for WAGs 1--10 and 17; for WAGs 14, 16, 18, and 20, it was suggested that they be removed from further consideration for remedial action. For the remaining WAGs (11, 12, 13, 15, and 19) the evidence concerning the possible release of contaminants was inconclusive and additional sampling was recommended. The purpose of this Addendum is to report the analytical data obtained from the additional surveys, to make recommendations concerning future remedial actions within these WAGs, and to provide descriptive information for additional sites listed in Table 1.2 of the RFA. Since information concerning the rationale for identifying releases, the sampling survey methodology, and background information for each WAG is presented in the RFA, it is not repeated in this Addendum.

  18. Remote systems for waste retrieval from the Oak Ridge National Laboratory gunite tanks

    SciTech Connect (OSTI)

    Falter, D.D.; Babcock, S.M.; Burks, B.L.; Lloyd, P.D.; Randolph, J.D.; Rutenber, J.E.; Van Hoesen, S.D.

    1995-12-31

    As part of a Comprehensive Environmental Response, Compensation, and Liability Act Treatability Study funded by the Department of Energy, the Oak Ridge National Laboratory (ORNL) is preparing to demonstrate and evaluate two approaches for the remote retrieval of wastes in underground storage tanks. This work is being performed to identify the most cost-effective and efficient method of waste removal before full-scale remediation efforts begin in 1998. System requirements are based on the need to dislodge and remove sludge wastes ranging in consistency from broth to compacted clay from Gunite (Shotcrete) tanks that are approaching fifty years in age. Systems to be deployed must enter and exit through the existing 0.6 m (23.5 in.) risers and conduct retrieval operations without damaging the layered concrete walls of the tanks. Goals of this project include evaluation of confined sluicing techniques and successful demonstration of a telerobotic arm-based system for deployment of the sluicing system. As part of a sister project formed on the Old Hydrofracture Facility tanks at ORNL, vehicle-based tank remediation will also be evaluated.

  19. Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015

    SciTech Connect (OSTI)

    Wiffen, F. W.; Katoh, Yutai; Melton, Stephanie G.

    2015-12-01

    The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusion power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.

  20. Cross-connection control of the potable water lines at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Moore, R.M.

    1996-04-01

    A 1991 independent U.S. Department of Energy (DOE) audit of Oak Ridge National Laboratory (ORNL) identified the need for establishing a cross-connection control program for the potable and nonpotable water systems at the facility. An informal cross-connection policy had been in place for some time, but the formal implementation of a cross-connection program brought together individuals from the Quality Engineering and Inspection Section of the Office of Quality Programs and Inspection, Industrial Hygiene, Health Physics, Plant and Equipment Division, and the Atomic Trade and Labor Council. In January 1994 a Cross-Connection Control Committee was established at ORNL to identify potential and actual cross connections between potable and nonpotable water systems. Potable water is safe to drink, and nonpotable or process water (e.g., sewage, laboratory wastewater, cooling water, and tower water) is not intended for human consumption, washing of the body, or food preparation. The program is intended to conform with the Federal Safe Drinking Water Act Amendment of 1986 and with state and local regulations. Although the Occupational Safety and Health Administration addresses cross-connection functions, it does not define specific program requirements. The program at ORNL is designed to ensure that necessary recommendations are implemented to safeguard all internal and external potable water distribution lines. Program responsibilities include a thorough engineering assessment to (1) identify the potable water lines, (2) identify any existing or potential cross connections, and (3) inspect the integrity of the water lines. If any cross-connection deficiencies are found, corrective actions are initiated according to industry standards.

  1. Phase 1 environmental report for the Advanced Neutron Source at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Blasing, T.J.; Brown, R.A.; Cada, G.F.; Easterly, C.; Feldman, D.L.; Hagan, C.W.; Harrington, R.M.; Johnson, R.O.; Ketelle, R.H.; Kroodsma, R.L.; McCold, L.N.; Reich, W.J.; Scofield, P.A.; Socolof, M.L.; Taleyarkhan, R.P.; Van Dyke, J.W.

    1992-02-01

    The US Department of Energy (DOE) has proposed the construction and operation of the Advanced Neutron Source (ANS), a 330-MW(f) reactor, at Oak Ridge National Laboratory (ORNL) to support neutron scattering and nuclear physics experiments. ANS would provide a steady-state source of neutrons that are thermalized to produce sources of hot, cold, and very coal neutrons. The use of these neutrons in ANS experiment facilities would be an essential component of national research efforts in basic materials science. Additionally, ANS capabilities would include production of transplutonium isotopes, irradiation of potential fusion and fission reactor materials, activation analysis, and production of medical and industrial isotopes such as {sup 252}Cf. Although ANS would not require licensing by the US Nuclear Regulatory Commission (NRC), DOE regards the design, construction, and operation of ANS as activities that would produce a licensable facility; that is, DOE is following the regulatory guidelines that NRC would apply if NRC were licensing the facility. Those guidelines include instructions for the preparation of an environmental report (ER), a compilation of available data and preliminary analyses regarding the environmental impacts of nuclear facility construction and operation. The ER, described and outlined in NRC Regulatory Guide 4.2, serves as a background document to facilitate the preparation of environmental impact statements (EISs). Using Regulatory Guide 4.2 as a model, this ANS ER provides analyses and information specific to the ANS site and area that can be adopted (and modified, if necessary) for the ANS EIS. The ER is being prepared in two phases. Phase 1 ER includes many of the data and analyses needed to prepare the EIS but does not include data or analyses of alternate sites or alternate technologies. Phase 2 ER will include the additional data and analyses stipulated by Regulatory Guide 4.2.

  2. DATA SHARING REPORT CHARACTERIZATION OF THE SURVEILLANCE AND MAINTENANCE PROJECT MISCELLANEOUS PROCESS INVENTORY WASTE ITEMS OAK RIDGE NATIONAL LABORATORY, Oak Ridge TN

    SciTech Connect (OSTI)

    Weaver, Phyllis C

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, to provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a sampling and analysis campaign to target certain items associated with URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing for final disposal. This waste was generated during processing, surveillance, and maintenance activities associated with the facilities identified in the process knowledge (PK) provided in Appendix A. A list of items for sampling and analysis were generated from a subset of materials identified in the WHP populations (POPs) 4, 5, 6, 7, and 8, plus a small number of items not explicitly addressed by the WHP. Specifically, UCOR S&M project personnel identified 62 miscellaneous waste items that would require some level of evaluation to identify the appropriate pathway for disposal. These items are highly diverse, relative to origin; composition; physical description; contamination level; data requirements; and the presumed treatment, storage, and disposal facility (TSDF). Because of this diversity, ORAU developed a structured approach to address item-specific data requirements necessary for acceptance in a presumed TSDF that includes the Environmental Management Waste Management Facility (EMWMF)—using the approved Waste Lot (WL) 108.1 profile—the Y-12 Sanitary Landfill (SLF) if appropriate; EnergySolutions Clive; and the Nevada National Security Site (NNSS) (ORAU 2013b). Finally, the evaluation of these wastes was more suited to a judgmental sampling approach rather than a statistical design, meaning data were collected for each individual item, thereby providing information for item-byitem disposition decisions. ORAU prepared a sampling and analysis plan (SAP) that outlined data collection strategies, methodologies, and analytical guidelines and requirements necessary for characterizing targeted items (ORAU 2013b). The SAP described an approach to collect samples that allowed evaluation as to whether or not the waste would be eligible for disposal at the EMWMF. If the waste was determined not to be eligible for EMWMF disposal, then there would be adequate information collected that would allow the waste to be profiled for one of the alternate TSDFs listed above.

  3. Annual report of the Environmental Restoration Monitoring and Assessment Program at Oak Ridge National Laboratory for FY 1992

    SciTech Connect (OSTI)

    Clapp, R.B.

    1992-09-01

    This report summarizes the salient features of the annual efforts of the investigations and monitoring, conducted to support the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL). The results presented can be used to develop a conceptual understanding of the key contaminants and the sources, fluxes, and processes affecting their distribution and movement. This information forms a basis for prioritizing sites and for selecting, implementing, and evaluating remedial actions. Groundwater, soils, sediments, and surface water monitoring results are described.

  4. Final Environmental Impact Statement for Treating Transuranic (TRU)/Alpha Low-level Waste at the Oak Ridge National Laboratory Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    N /A

    2000-06-30

    The DOE proposes to construct, operate, and decontaminate/decommission a TRU Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste. This document analyzes the potential environmental impacts associated with five alternatives--No Action, the Low-Temperature Drying Alternative (Preferred Alternative), the Vitrification Alternative, the Cementation Alternative, and the Treatment and Waste Storage at Oak Ridge National Laboratory (ORNL) Alternative.

  5. Quality Assurance Project Plan for the Environmental Monitoring Program in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    Waste Area Grouping (WAG) 6 is a hazardous and low-level radioactive waste disposal site at Oak Ridge National Laboratory (ORNL). Extensive site investigations have revealed contaminated surface water, sediments, groundwater, and soils. Based on the results of the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) conducted from 1989--1991 and on recent interactions with the US Environmental Protection Agency (EPA) and the Tennessee Department of Environment and Conservation (TDEC), a decision was made to defer implementing source control remedial measures at the WAG. The information shows WAG 6 contributes < 2% of the total off-site contaminant risk released over White Oak Dam (WOD). The alternative selected to address hazards at WAG 6 involves maintenance of site access controls to prevent public exposure to on-site contaminants, continued monitoring of contaminant releases to determine if source control measures will be required in the future, and development of technologies to support final remediation of WAG 6. This Quality Assurance Project Plan (QAPjP) has been developed as part of the Environmental Monitoring Plan for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE/OR/01-1192&D1). Environmental monitoring will be conducted in two phases: the baseline monitoring phase and the routine annual monitoring phase. The baseline monitoring phase will be conducted to establish the baseline contaminant release conditions at the Waste Area Grouping (WAG), to confirm the site-related chemicals of concern (COC), and to gather data to confirm the site hydrologic model. The baseline monitoring phase is expected to begin in 1994 and continue for 12-18 months. The routine annual monitoring phase will consist of continued sampling and analyses of COC to determine off-WAG contaminant flux, to identify trends in releases, and to confirm the COC. The routine annual monitoring phase will continue for {approximately}4 years.

  6. Utilization of the High Flux Isotope Reactor at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Selby, Douglas L; Bilheux, Hassina Z; Meilleur, Flora; Jones, Amy; Bailey, William Barton; Vandergriff, David H

    2015-01-01

    This paper addresses several aspects of the scientific utilization of the Oak Ridge National Laboratory High Flux Isotope Reactor (HFIR). Topics to be covered will include: 1) HFIR neutron scattering instruments and the formal instrument user program; 2) Recent upgrades to the neutron scattering instrument stations at the reactor, and 3) eMod a new tool for addressing instrument modifications and providing configuration control and design process for scientific instruments at HFIR and the Spallation Neutron Source (SNS). There are 15 operating neutron instrument stations at HFIR with 12 of them organized into a formal user program. Since the last presentation on HFIR instruments at IGORR we have installed a Single Crystal Quasi-Laue Diffractometer instrument called IMAGINE; and we have made significant upgrades to HFIR neutron scattering instruments including the Cold Triple Axis Instrument, the Wide Angle Neutron Diffractometer, the Powder Diffractometer, and the Neutron Imaging station. In addition, we have initiated upgrades to the Thermal Triple Axis Instrument and the Bio-SANS cold neutron instrument detector system. All of these upgrades are tied to a continuous effort to maintain a high level neutron scattering user program at the HFIR. For the purpose of tracking modifications such as those mentioned and configuration control we have been developing an electronic system for entering instrument modification requests that follows a modification or instrument project through concept development, design, fabrication, installation, and commissioning. This system, which we call eMod, electronically leads the task leader through a series of questions and checklists that then identifies such things as ES&H and radiological issues and then automatically designates specific individuals for the activity review process. The system has been in use for less than a year and we are still working out some of the inefficiencies, but we believe that this will become a very effective tool for achieving the configuration and process control believed to be necessary for scientific instrument systems.

  7. Health and safety plan for the Environmental Restoration Program at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Clark, C. Jr.; Burman, S.N.; Cipriano, D.J. Jr.; Uziel, M.S.; Kleinhans, K.R.; Tiner, P.F.

    1994-08-01

    This Programmatic Health and Safety plan (PHASP) is prepared for the U.S. Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Program. This plan follows the format recommended by the U.S. Environmental Protection Agency (EPA) for remedial investigations and feasibility studies and that recommended by the EM40 Health and Safety Plan (HASP) Guidelines (DOE February 1994). This plan complies with the Occupational Safety and Health Administration (OSHA) requirements found in 29 CFR 1910.120 and EM-40 guidelines for any activities dealing with hazardous waste operations and emergency response efforts and with OSHA requirements found in 29 CFR 1926.65. The policies and procedures in this plan apply to all Environmental Restoration sites and activities including employees of Energy Systems, subcontractors, and prime contractors performing work for the DOE ORNL ER Program. The provisions of this plan are to be carried out whenever activities are initiated that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and best management practices to minimize hazards to human health and safety and to the environment from event such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to air, soil, or surface water.

  8. Environmental analysis of the operation of Oak Ridge National Laboratory (X-10 site)

    SciTech Connect (OSTI)

    Boyle, J.W.; Blumberg, R.; Cotter, S.J.

    1982-11-01

    An environmental analysis of the operation of the Oak Ridge National Laboratory (ORNL) facilities in Bethel Valley and Melton Valley was conducted to present to the public information concerning the extent to which recognizable effects, or potential effects, on the environment may occur. The analysis addresses current operations of the ORNL X-10 site and completed operations that may continue to have residual effects. Solid wastes from ORNL operations at the Y-12 site which are transported to the X-10 site for burial (e.g., Biology Division animal wastes) are included as part of X-10 site operation. Socioeconomic effects are associated primarily with the communities where employees live and with the Knoxville Bureau of Economic Analysis economic area as a whole. Therefore, ORNL employees at both Y-12 and X-10 sites are included in the ORNL socioeconomic impact analysis. An extensive base of environmental data was accumulated for this report. Over 80 reports related to ORNL facilities and/or operations are cited as well as many open-literature citations. Environmental effects of the operation of ORNL result from operational discharges from the onsite facilities; construction and/or modification of facilities, transportation to and from the site of persons, goods and services; socioeconomic impacts to the local, regional, and general population; and accidental discharges if they should occur. Operational discharges to the environnment are constrained by federal, state, and local regulations and by criteria established by the US Department of Energy to minimize adverse impacts. It is the purpose of this document to evaluate the operation of the ORNL insofar as impacts beyond the site boundary may occur or have the potential for occurrence.

  9. Disposition of Radioisotope Thermoelectric Generators Currently Located at the Oak Ridge National Laboratory - 12232

    SciTech Connect (OSTI)

    Glenn, J.; Patterson, J.; DeRoos, K.; Patterson, J.E.; Mitchell, K.G.

    2012-07-01

    Under the American Recovery and Reinvestment Act (ARRA), the U.S. Department of Energy (DOE) awarded SEC Federal Services Corporation (SEC) a 34-building demolition and disposal (D and D) project at the Oak Ridge National Laboratory (ORNL) that included the disposition of six Strontium (Sr-90) powered Radioisotope Thermoelectric Generators (RTGs) stored outside of ORNL Building 3517. Disposition of the RTGs is very complex both in terms of complying with disposal facility waste acceptance criteria (WAC) and U.S. Department of Transportation (DOT) requirements for packaging and transportation in commerce. Two of the RTGs contain elemental mercury which requires them to be Land Disposal Restrictions (LDR) compliant prior to disposal. In addition, all of the RTGs exceed the Class C waste concentration limits under Nuclear Regulatory Commission (NRC) Waste Classification Guidelines. In order to meet the LDR requirements and Nevada National Security Site (NNSS) WAC, a site specific treatability variance for mercury was submitted to the U.S. Environmental Protection Agency (EPA) to allow macro-encapsulation to be an acceptable treatment standard for elemental mercury. By identifying and confirming the design configuration of the mercury containing RTGs, the SEC team proved that the current configuration met the macro-encapsulation standard of 40 Code of Federal Regulations (CFR) 268.45. The SEC Team also worked with NNSS to demonstrate that all radioisotope considerations are compliant with the NNSS low-level waste (LLW) disposal facility performance assessment and WAC. Lastly, the SEC team determined that the GE2000 Type B cask met the necessary size, weight, and thermal loading requirements for five of the six RTGs. The sixth RTG (BUP-500) required a one-time DOT shipment exemption request due to the RTG's large size. The DOT exemption justification for the BUP-500 relies on the inherent robust construction and material make-up of the BUP- 500 RTG. DOE-ORO, SEC, and the entire SEC RTG team are nearing the conclusion of the Sr-90 RTG disposition challenge - a legacy now 50 years in the making. Over 600,000 Ci of Sr-90 waste await disposal and its removal from ORNL will mark an historical moment in the clean-up of the cold-war legacy in the ORNL central industrial area. Elimination (i.e., removal) of the RTGs will reduce security risks at ORNL and disposal will permanently eliminate security risks. The RTGs will eventually decay to benign levels within a reasonable timeframe relative to radiological risks posed by long-lived isotopes. The safety authorization basis at ORNL Building 3517 will be reduced enabling greater operational flexibility in future clean-out and D and D campaigns. Upon disposition the Department of Energy will realize reduced direct and indirect surveillance and maintenance costs that can be reapplied to accelerated and enhanced clean-up of the Oak Ridge Reservation. At present, waste profiles for the RTGs are developed and under review by NNSS RWAP staff and approval authorities. Disposition schedule is driven by the availability of compliant shipping casks necessary to safely transport the RTGs from ORNL to NNSS. The first disposal of the RCA RTG is expected in April 2012 and the remaining RTGs disposed in 2012 and 2013. (authors)

  10. Science and technology for a sustainable energy future: Accomplishments of the Energy Efficiency and Renewable Energy Program at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Brown, M.A.; Vaughan, K.H.

    1995-03-01

    Accomplishments of the Energy Efficiency and Renewable Energy Program at the Oak Ridge National Laboratory are presented. Included are activities performed in the utilities, transportation, industrial, and buildings technology areas.

  11. DOE/EA-1488: Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory (12/04)

    Office of Environmental Management (EM)

    488 FINAL Environmental Assessment for the U-233 Disposition, Medical Isotope Production, and Building 3019 Complex Shutdown at the Oak Ridge National Laboratory, Oak Ridge, Tennessee December 2004 U. S. Department of Energy Oak Ridge Operations 04-049(doc)/120204 04-049(doc)/120204 SCIENCE APPLICATIONS INTERNATIONAL CORPORATION contributed to the preparation of this document and should not be considered an eligible contractor for its review. Environmental Assessment for the U-233 Disposition,

  12. Workshops | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workshop Summary June 8-10, 2015 NSRC Workshop on "Big, Deep, and Smart Data Analytics in Materials Imaging" Oak Ridge National Laboratory This workshop brought together ...

  13. Human health risk assessment and remediation activities at White Oak Creek Embayment at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Blaylock, B.G.

    1994-12-31

    Cesium-137 concentrations of >10{sup 6} Bq/kg dry wt (10{sup 4} pCi/g dry wt) were found in the surface sediments of White Oak Creek Embayment (WOCE) during 1990. A review of past data indicated Cesium-137, among other contaminants, was released from White Oak dam in the mid 1950s and had accumulated in the sediment of WOCE. The sediments from WOCE were being eroded and transported downstream primarily during winter low-water levels by flood events and by a combination of normal downstream flow and water turbulence. Sampling was conducted to determine the extent of radiological and nonradiological contamination. A contaminant screening analysis was conducted to determine which contaminants pose a problem from a human health standpoint. All noncarcinogens had screening indices of <1.0, indicating that concentrations of noncarcinogens were below the levels of concern for a realistic maximum exposure situation. An illegal intruder or an individual using the embayment for fishing purposes could be exposed to >10{sup 4} risk of excess lifetime cancer incidence from external exposure to Cesium-137 in sediment and from ingestion of polychlorinated biphenyls in fish. As a result of these analyses and the fact that >10{sup 6} Bq/kg dry wt (10{sup 4} pCi/g dry wt) of Cesium-137 could be transported from the Oak Ridge Reservation, a coffer-cell dam was constructed at the mouth of White Oak Creek in 1992 to: (1) reduce sediment erosion and the transport of radioactive sediments from the WOCE into the Clinch River, (2) maintain year-round inundation of the embayment sediments to reduce external radiation exposure, and (3) impede the movement of fish into and out of the embayment. The effectiveness of this remediation is being evaluated.

  14. Oak Ridge National Laboratory Corrective Action Plan in response to Tiger Team assessment. Volume 1, Revision 5

    SciTech Connect (OSTI)

    Kuliasha, Michael A.

    1991-08-23

    This report presents a complete response to the Tiger Team assessment that was conducted at Oak Ridge National Laboratory (ORNL) and at the US Department of Energy (DOE) Oak Ridge Operations Office (ORO) from October 22, 1990, through November 30, 1990. The action plans have undergone both a discipline review and a cross-cutting review with respect to root cause. In addition, the action plans have been integrated with initiatives being pursued across Martin Marietta Energy Systems, Inc., in response to Tiger Team findings at other DOE facilities operated by Energy Systems. The root cause section is complete and describes how ORNL intends to address the root causes of the findings identified during the assessment. The action plan has benefited from a complete review by various offices at DOE Headquarters as well as review by the Tiger Team that conducted the assessment to ensure that the described actions are responsive to the observed problems.

  15. Applications of low-cost radio-controlled airplanes to environmental restoration at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Nyquist, J.E.

    1996-10-01

    The US DOE is endeavoring to clean up contamination created by the disposal of chemical and nuclear waste on the Oak Ridge Reservation (ORR), Tennessee, with an emphasis on minimizing off-site migration of contaminated surface and ground water. The task is complicated by inadequate disposal records and by the complexity of the local geology. Remote sensing data, including aerial photography and geophysics, have played an important role in the ORR site characterization. Are there advantages to collecting remote sensing data using Unmanned Aerial Vehicles (UAV`s)? In this paper, I will discuss the applications of UAV`s being explored at Oak Ridge National Laboratory (ORNL) under the sponsorship of the Department of Energy`s Office of Science and technology. These applications are : aerial photography, magnetic mapping, and Very Low Frequency (VLF) electromagnetic mapping.

  16. Data Sharing Report for the Quantification of Removable Activity in Various Surveillance and Maintenance Facilities at the Oak Ridge National Laboratory Oak Ridge TN

    SciTech Connect (OSTI)

    King, David A

    2013-12-12

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (OR-EM) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using American Recovery and Reinvestment Act (ARRA) funds. Specifically, DOE OR-EM requested that ORAU plan and implement a sampling and analysis campaign targeting potential removable radiological contamination that may be transferrable to future personal protective equipment (PPE) and contamination control materials—collectively referred to as PPE throughout the remainder of this report—used in certain URS|CH2M Oak Ridge, LLC (UCOR) Surveillance and Maintenance (S&M) Project facilities at the Oak Ridge National Laboratory (ORNL). Routine surveys in Bldgs. 3001, 3005, 3010, 3028, 3029, 3038, 3042, 3517, 4507, and 7500 continuously generate PPE. The waste is comprised of Tyvek coveralls, gloves, booties, Herculite, and other materials used to prevent worker exposure or the spread of contamination during routine maintenance and monitoring activities. This report describes the effort to collect and quantify removable activity that may be used by the ORNL S&M Project team to develop radiation instrumentation “screening criteria.” Material potentially containing removable activity was collected on smears, including both masselin large-area wipes (LAWs) and standard paper smears, and analyzed for site-related constituents (SRCs) in an analytical laboratory. The screening criteria, if approved, may be used to expedite waste disposition of relatively clean PPE. The ultimate objectives of this effort were to: 1) determine whether screening criteria can be developed for these facilities, and 2) provide process knowledge information for future site planners. The screening criteria, if calculated, must be formally approved by Federal Facility Agreement parties prior to use for ORNL S&M Project PPE disposal at the Environmental Management Waste Management Facility (EMWMF). ORAU executed the approved sampling and analysis plan (SAP) (DOE 2013) while closely coordinating with ORNL S&M Project personnel and using guidelines outlined in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012). WHP guidelines were followed because the PPE waste targeted by this SAP is consistent with that addressed under the approved Waste Lot (WL) 108.1 profile for disposal at EMWMF—this PPE is a “future waste stream” as defined in the WHP. The SAP presents sampling strategy and methodology, sample selection guidelines, and analytical guidelines and requirements necessary for characterizing future ORNL S&M Project PPE waste. This report presents a review of the sample and analysis methods including data quality objectives (DQOs), required deviations from the original design, summary of field activities, radiation measurement data, analytical laboratory results, a brief presentation of results, and process knowledge summaries.

  17. EIS-0305: Treating Transuranic (TRU)/Alpha Low-Level at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EIS evaluates DOE's proposal to construct, operate, and decontaminate/decommission a Transuranic (TRU) Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste.

  18. FY2009 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery

    SciTech Connect (OSTI)

    Olszewski, Mitchell

    2009-11-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), all electric vehicles, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher-temperature environments while achieving high reliability; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control and packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2009 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.

  19. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, M.

    2008-10-15

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors, and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making HEVs practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies.

  20. Remedial investigation report on Waste Area Grouping 5 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2 -- Appendix A: Characterization methods and data summary

    SciTech Connect (OSTI)

    1995-09-01

    This document provides the Environmental Restoration Program with information about the results of investigations performed at Waste Area Grouping (WAG) 5. It includes information on risk assessments that have evaluated long-term impacts to human health and the environment. Information provided in this document forms the basis for decisions regarding the need for subsequent remediation work at WAG 5. This appendix presents background regulatory and technical information regarding the solid waste management units (SWMUs) at WAG 5 to address requirements established by the Federal Facility Agreement (FFA) for the Oak Ridge Reservation (ORR). The US Department of Energy (DOE) agreed to conduct remedial investigations (RIs) under the FFA at various sites at Oak Ridge National Laboratory (ORNL), including SWMUs and other areas of concern on WAG 5. The appendix gives an overview of the regulatory background to provide the context in which the WAG 5 RI was planned and implemented and documents how historical sources of data, many of which are SWMU-specific, were evaluated and used.

  1. Groundwater level monitoring sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    This Sampling and Analysis Plan addresses groundwater level monitoring activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Groundwater level monitoring will be conducted at 129 sites within the WAG. All of the sites will be manually monitored on a semiannual basis. Forty-five of the 128 wells, plus one site in White Oak Lake, will also be equipped with automatic water level monitoring equipment. The 46 sites are divided into three groups. One group will be equipped for continuous monitoring of water level, conductivity, and temperature. The other two groups will be equipped for continuous monitoring of water level only. The equipment will be rotated between the two groups. The data collected from the water level monitoring will be used to support determination of the contaminant flux at WAG 6.

  2. Oak Ridge National Laboratory Old Hydrofracture Facility Waste Remediation Using the Borehole-Miner Extendible-Nozzle Sluicer

    SciTech Connect (OSTI)

    Bamberger, J.A.; Boris, G.F.

    1999-10-07

    A borehole-miner extendible-nozzle sluicing system was designed, constructed, and deployed at Oak Ridge National Laboratory to remediate five horizontal underground storage tanks containing sludge and supernate at the ORNL Old Hydrofracture Facility site. The tanks were remediated in fiscal year 1998 to remove {approx}98% of the waste, {approx}3% greater than the target removal of >95% of the waste. The tanks contained up to 18 in. of sludge covered by supernate. The 42,000 gal of low level liquid waste were estimated to contain 30,000 Ci, with 97% of this total located in the sludge. The retrieval was successful. At the completion of the remediation, the State of Tennessee Department of Environment and Conservation agreed that the tanks were cleaned to the maximum extent practicable using pumping technology. This deployment was the first radioactive demonstration of the borehole-miner extendible-nozzle water-jetting system. The extendible nozzle is based on existing bore hole-miner technology used to fracture and dislodge ore deposits in mines. Typically borehole-miner technology includes both dislodging and retrieval capabilities. Both dislodging, using the extendible-nozzle water-jetting system, and retrieval, using a jet pump located at the base of the mast, are deployed as an integrated system through one borehole or riser. Note that the extendible-nozzle system for Oak Ridge remediation only incorporated the dislodging capability; the retrieval pump was deployed through a separate riser. The borehole-miner development and deployment is part of the Retrieval Process Development and Enhancements project under the direction of the US Department of Energy's EM-50 Tanks Focus Area. This development and deployment was conducted as a partnership between RPD and E and the Oak Ridge National Laboratory's US DOE EM040 Old Hydrofracture Facility remediation project team.

  3. Dynamic Wireless Charging of Electric Vehicle Demonstrated at Oak Ridge National Laboratory: Benefit of Electrochemical Capacitor Smoothing

    SciTech Connect (OSTI)

    Miller, John M; Onar, Omer C; White, Cliff P; Campbell, Steven L; Coomer, Chester; Seiber, Larry Eugene

    2014-01-01

    Abstract Wireless charging of an electric vehicle while in motion presents challenges in terms of low latency communications for roadway coil excitation sequencing, and maintenance of lateral alignment, plus the need for power flow smoothing. This paper summarizes the experimental results on power smoothing of in-motion wireless EV charging performed at Oak Ridge National Laboratory using various combinations of electrochemical capacitors at the grid-side and in-vehicle. Electrochemical capacitors of the symmetric carbon-carbon type from Maxwell Technologies comprised the in-vehicle smoothing of wireless charging current to the EV battery pack. Electro Standards Laboratories fabricated the passive and active parallel lithium-capacitor unit used to smooth grid-side power. Power pulsation reduction was 81% on grid by LiC, and 84% on vehicle for both lithium-capacitor and the carbon ultracapacitors.

  4. Sampling and analysis plan for the gunite and associated tanks interim remedial action, wall coring and scraping at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1998-02-01

    This Sampling and Analysis Plan documents the procedures for collecting and analyzing wall core and wall scraping samples from the Gunite and Associated Tanks. These activities are being conducted to support the Comprehensive Environmental Response, Compensation, and Liability Act at the gunite and associated tanks interim remedial action at Oak Ridge National Laboratory in Oak Ridge, Tennessee. The sampling and analysis activities will be performed in concert with sludge retrieval and sluicing of the tanks. Wall scraping and/or wall core samples will be collected from each quadrant in each tank by using a scraping sampler and/or a coring drill deployed by the Houdini robot vehicle. Each sample will be labeled, transported to the Radioactive Materials Analytical Laboratory, and analyzed for physical and radiological characteristics, including total activity, gross alpha, gross beta, radioactive strontium and cesium, and other alpha- and gamma-emitting radionuclides. The data quality objectives process, based on US Environmental Protection Agency guidance, was applied to identify the objectives of this sampling and analysis. The results of the analysis will be used to (1) validate predictions of a strontium concrete diffusion model, (2) estimate the amount of radioactivity remaining in the tank shells, (3) provide information to correlate with measurements taken by the Gunite Tank Isotope Mapping Probe and the Characterization End Effector, and (4) estimate the performance of the wall cleaning system. This revision eliminates wall-scraping samples from all tanks, except Tank W-3. The Tank W-3 experience indicated that the wall scrapper does not collect sufficient material for analysis.

  5. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, M.

    2006-10-31

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel Partnership and the 21st Century Truck Partnership through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2006 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work. Summaries of major accomplishments for each technical project are give.

  6. Oak Ridge National Laboratory Site Office EA / EIS | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) National Laboratory Site Office EA / EIS Safety and Security Policy (SSP) SSP Home About Frequently Used Resources NEPA Documents Categorical Exclusion Determinations Environmental Assessments and Environmental Impact Statements Continuity of Operations (COOP) Implementation Plan Contact Information Safety and Security Policy U.S. Department of Energy SC-31/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-6800 F: (301) 903-7047 More Information »

  7. Oak Ridge National Laboratory Annual Progress Report for the Electric Drive Technologies Program

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2015-10-01

    The US Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the US Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE’s commitment to developing public–private partnerships to fund high-risk–high-reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from “Freedom” and “Cooperative Automotive Research”) that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. Oak Ridge National Laboratory’s (ORNL’s) Electric Drive Technologies (EDT) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs. In supporting the development of advanced vehicle propulsion systems, the EDT subprogram fosters the development of technologies that will significantly improve efficiency, costs, and fuel economy

  8. Evaluation of Side Stream Filtration Technology at Oak Ridge National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory | Department of Energy Evaluation of Side Stream Filtration Technology at Oak Ridge National Laboratory Evaluation of Side Stream Filtration Technology at Oak Ridge National Laboratory Document provides an in-depth look at side stream filtration at Oak Ridge National Laboratory. PDF icon ssf_evaluation.pdf More Documents & Publications Side Stream Filtration for Cooling Towers Technical Evaluation of Side Stream Filtration for Cooling Towers Cooling Towers: Understanding Key

  9. Preliminary Report on Oak Ridge National Laboratory Testing of Drake/ACSS/MA2/E3X

    SciTech Connect (OSTI)

    Irminger, Philip; King, Daniel J.; Herron, Andrew N.; Davis, Cody; Temple, Bill; Baker, Gord; Li, Zhi; Starke, Michael R.; Ollis, T. Ben

    2015-12-01

    A key to industry acceptance of a new technology is extensive validation in field trials. The Powerline Conductor Accelerated Test facility (PCAT) at Oak Ridge National Laboratory (ORNL) is specifically designed to evaluate the performance and reliability of a new conductor technology under real world conditions. The facility is set up to capture large amounts of data during testing. General Cable used the ORNL PCAT facility to validate the performance of TransPowr with E3X Technology a standard overhead conductor with an inorganic high emissivity, low absorptivity surface coating. Extensive testing has demonstrated a significant improvement in conductor performance across a wide range of operating temperatures, indicating that E3X Technology can provide a reduction in temperature, a reduction in sag, and an increase in ampacity when applied to the surface of any overhead conductor. This report provides initial results of that testing.

  10. Oak Ridge National Laboratory Corrective Action Plan in response to Tiger Team assessment. Volume 2, Revision 5

    SciTech Connect (OSTI)

    Kuliasha, Michael A.

    1991-08-23

    This report presents a complete response to the Tiger Team assessment that was conducted to Oak Ridge National Laboratory (ORNL) and at the US Department of Energy (DOE) Oak Ridge Operations Office (ORO) from October 2, 1990, through November 30, 1990. The action plans have undergone both a discipline review and a cross-cutting review with respect to root cause. In addition, the action plans have been integrated with initiatives being pursued across Martin Marietta Energy Systems, Inc., in response to Tiger Team findings at other DOE facilities operated by Energy Systems. The root cause section is complete and describes how ORNL intends to address the root cause of the findings identified during the assessment. This report is concerned with reactors safety and health findings, responses, and planned actions. Specific areas include: organization and administration; quality verification; operations; maintenance; training and certification; auxiliary systems; emergency preparedness; technical support; nuclear criticality safety; security/safety interface; experimental activities; site/facility safety review; radiological protection; personnel protection; fire protection; management findings, responses, and planned actions; self-assessment findings, responses, and planned actions; and summary of planned actions, schedules, and costs.

  11. Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part C, Robotics/automation, Waste management

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

  12. Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part B, Dismantlement, Remedial action

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

  13. Environmental health and safety plan for the Molten Salt Reactor Experiment Remediation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Burman, S.N.; Tiner, P.F.; Gosslee, R.C.

    1998-01-01

    The Lockheed Martin Energy Systems, Inc. (Energy Systems) policy is to provide a safe and healthful workplace for all employees and subcontractors. The accomplishment of this policy requires that operations at the Molten Salt Reactor Experiment (MSRE) facility at the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL) are guided by an overall plan and consistent proactive approach to environmental protection and safety and health (S and H) issues. The policy and procedures in this plan apply to all MSRE operations. The provisions of this plan are to be carried out whenever activities are initiated at the MSRE that could be a threat to human health or the environment. This plan implements a policy and establishes criteria for the development of procedures for day-to-day operations to prevent or minimize any adverse impact to the environment and personnel safety and health and to meet standards that define acceptable management of hazardous and radioactive materials and wastes. The plan is written to utilize past experience and the best management practices to minimize hazards to human health or the environment from events such as fires, explosions, falls, mechanical hazards, or any unplanned release of hazardous or radioactive materials to the air.

  14. Groundwater level monitoring sampling and analysis plan for the environmental monitoring plan at waste area grouping 6, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1995-09-01

    This document is the Groundwater Level Monitoring Sampling and Analysis Plan (SAP) for Waste Area Grouping (WAG) 6 at Oak Ridge National Laboratory (ORNL). Note that this document is referred to as a SAP even though no sampling and analysis will be conducted. The term SAP is used for consistency. The procedures described herein are part of the Environmental Monitoring Plan (EMP) for WAG 6, which also includes monitoring tasks for seeps and springs, groundwater quality, surface water, and meteorological parameters. Separate SAPs are being issued concurrently to describe each of these monitoring programs. This SAP has been written for the use of the field personnel responsible for implementation of the EMP, with the intent that the field personnel will be able to take these documents to the field and quickly find the appropriate steps required to complete a specific task. In many cases, Field Operations Procedures (FOPs) will define the steps required for an activity. The FOPs for the EMP are referenced and briefly described in the relevant sections of the SAPs, and are contained within the FOP Manual. Both these documents (the SAP and the FOP Manual) will be available to personnel in the field.

  15. Final deactivation project report on the High Radiation Level Analytical Facility, Building 3019B at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1997-09-01

    The purpose of this report is to document the condition of the High Radiation Level Analytical Facility (Building 3019B) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities. This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the Environmental Restoration EM-40 Program. This document provides a history and description of the facility prior to the commencement of deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S&M) Plan, remaining hazardous materials inventory, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided in the Nuclear Material and Facility Stabilization (EM-60) Turnover package are discussed. Building 3019B will require access to perform required S&M activities to maintain the building safety envelope. Building 3019B was stabilized during deactivation so that when transferred to the EM-40 Program, only a minimal S&M effort would be required to maintain the building safety envelope. Other than the minimal S&M activities the building will be unoccupied and the exterior doors locked to prevent unauthorized access. The building will be entered only to perform the required S&M until decommissioning activities begin.

  16. Results of the measurement survey of elevation and environmental media in surface impoundments 3513 (B) and 3524 (A) at Oak Ridge National Laboratory, Oak Ridge, TN

    SciTech Connect (OSTI)

    Murray, M.E.; Rose, D.A.; Brown, K.S.; Coe, R.H.C. III; Lawrence, J.D.; Winton, W.

    1998-07-01

    A measurement survey of the elevation and environmental media in impoundments 3513 (B) and 3524 (A) at the Oak Ridge National Laboratory (ORNL) was conducted during April 1998. The investigation was performed by the Measurement Applications and Development Group of the Life Sciences Division of ORNL at the request of Bechtel Jacobs Company. Measurement activities were conducted at selected locations in order to determine the depth and appearance of the sediment and describe the clay underlying the impoundments prior to remediation. The survey was a follow-up to a previous elevation survey. The survey included the following: collection of sediment/clay cores from selected locations in each impoundment; measurement and documentation of the elevation at the water surface, at the top of sediment, at the top of clay, and at the bottom of each core; visual inspection of each core by a soil scientist to confirm the presence of clay and not material such as fly ash and soda lime compacted over the last 50 years; measurement and documentation of the background beta-gamma radiation level at the time and location of collection of each core, the highest beta-gamma level along the sediment portion of each core, and the highest beta-gamma level along the clay portion of each core; measurement and documentation of the length of the clay and of the sediment portion of each core; photographic documentation of each core; and replacement of each core in the impoundment.

  17. Results of the radiological and chemical characterization of surface impoundments 3539 and 3540 at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Murray, M.E.; Rose, D.A.; Brown, K.S.; Winton, W.; Dean, R.A.; Coe, R.H. III

    1998-03-01

    A radiological and chemical characterization survey of impoundments 3539 and 3540 at the Oak Ridge National Laboratory (ORNL) was conducted during December 1997. Impoundments 3539 and 3540 are located in the Surface Impoundments Operable Unit (SIOU) of Waste Area Group 1. The investigation was performed by the Measurement Applications and Development Group of the Life Sciences Division of ORNL at the request of the Department of Energy (DOE) Office of Environmental Restoration. Sampling was conducted in order to quantify the presence of polychlorinated biphenyls (PCBs), Resource Conservation and Recovery Act (RCRA) constituents, and other contaminants of interest in support of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation for the SIOU> The survey included collection of sediment/clay samples, quality control blank water samples and equipment rinsate samples for chemical and radiological analysis. Results show the samples contain traces of various organic, inorganic, and radioactive materials. Of particular interest are PCB values which demonstrate the impoundments are not regulated under the Toxic Substances Control Act.

  18. Surface water sampling and analysis plan for environmental monitoring in Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This Sampling and Analysis Plan addresses surface water monitoring, sampling, and analysis activities that will be conducted in support of the Environmental Monitoring Plan for Waste Area Grouping (WAG) 6. WAG 6 is a shallow-burial land disposal facility for low-level radioactive waste at the Oak Ridge National Laboratory, a research facility owned by the US Department of Energy and managed by Martin Marietta Energy Systems, Inc. Surface water monitoring will be conducted at nine sites within WAG 6. Activities to be conducted will include the installation, inspection, and maintenance of automatic flow-monitoring and sampling equipment and manual collection of various water and sediment samples. The samples will be analyzed for various organic, inorganic, and radiological parameters. The information derived from the surface water monitoring, sampling, and analysis will aid in evaluating risk associated with contaminants migrating off-WAG, and will be used in calculations to establish relationships between contaminant concentration (C) and flow (Q). The C-Q relationship will be used in calculating the cumulative risk associated with the off-WAG migration of contaminants.

  19. Hydrologic data summary for the White Oak Creek watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee (January--December 1993)

    SciTech Connect (OSTI)

    Borders, D.M.; Frederick, B.J.; Reece, D.K.; McCalla, W.L.; Watts, J.A.; Ziegler, K.S.

    1994-10-01

    This report summarizes, for the 12-month period (January through December 1993), the available dynamic hydrologic data collected, primarily, on the White Oak Creek (WOC) watershed along with information collected on the surface flow systems which affect the quality or quantity of surface water. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data, an activity that contributes to the Site Investigations (SI) component of the ERP. This report provides and describes sources of hydrologic data for Environmental Restoration activities that use monitoring data to quantify and assess the impact from releases of contaminants from ORNL WAGs.

  20. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 1 Main Text

    SciTech Connect (OSTI)

    NONE

    1996-11-01

    The purpose of this Remedial Investigation (RI) report is to present an analysis of the Melton Valley portion of the White Oak Creek (WOC) watershed, which will enable the US Department of Energy (DOE) to pursue a series of cost-effective remedial actions resulting in site cleanup and stabilization. In this RI existing levels of contamination and radiological exposure are compared to levels acceptable for future industrial and potential recreational use levels at the site. This comparison provides a perspective for the magnitude of remedial actions required to achieve a site condition compatible with relaxed access restrictions over existing conditions. Ecological risk will be assessed to evaluate measures required for ecological receptor protection. For each subbasin, this report will provide site-specific analyses of the physical setting including identification of contaminant source areas, description of contaminant transport pathways, identification of release mechanisms, analysis of contaminant source interactions with groundwater, identification of secondary contaminated media associated with the source and seepage pathways, assessment of potential human health and ecological risks from exposure to contaminants, ranking of each source area within the subwatershed, and outline the conditions that remedial technologies must address to stop present and future contaminant releases, prevent the spread of contamination and achieve the goal of limiting environmental contamination to be consistent with a potential recreational use of the site.

  1. Engineering Evaluation of Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiement for the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Carlberg, Jon A.; Roberts, Kenneth T.; Kollie, Thomas G.; Little, Leslie E.; Brady, Sherman D.

    2009-09-30

    This evaluation was performed by Pro2Serve in accordance with the Technical Specification for an Engineering Evaluation of the Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiment at the Oak Ridge National Laboratory (BJC 2009b). The evaluators reviewed the Engineering Evaluation Work Plan for Molten Salt Reactor Experiment Residual Salt Removal, Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE 2008). The Work Plan (DOE 2008) involves installing a salt transfer probe and new drain line into the Fuel Drain Tanks and Fuel Flush Tank and connecting them to the new salt transfer line at the drain tank cell shield. The probe is to be inserted through the tank ball valve and the molten salt to the bottom of the tank. The tank would then be pressurized through the Reactive Gas Removal System to force the salt into the salt canisters. The Evaluation Team reviewed the work plan, interviewed site personnel, reviewed numerous documents on the Molten Salt Reactor (Sects. 7 and 8), and inspected the probes planned to be used for the transfer. Based on several concerns identified during this review, the team recommends not proceeding with the salt transfer via the proposed alternate salt transfer method. The major concerns identified during this evaluation are: (1) Structural integrity of the tanks - The main concern is with the corrosion that occurred during the fluorination phase of the uranium removal process. This may also apply to the salt transfer line for the Fuel Flush Tank. Corrosion Associated with Fluorination in the Oak Ridge National Laboratory Fluoride Volatility Process (Litman 1961) shows that this problem is significant. (2) Continued generation of Fluorine - Although the generation of Fluorine will be at a lower rate than experienced before the uranium removal, it will continue to be generated. This needs to be taken into consideration regardless of what actions are taken with the salt. (3) More than one phase of material - There are likely multiple phases of material in the salt (metal or compound), either suspended through the salt matrix, layered in the bottom of the tank, or both. These phases may contribute to plugging during any planned transfer. There is not enough data to know for sure. (4) Probe heat trace - The alternate transfer method does not include heat tracing of the bottom of the probe. There is a concern that this may cool the salt and other phases of materials present enough to block the flow of salt. (5) Stress-corrosion cracking - Additionally, there is a concern regarding moisture that may have been introduced into the tanks. Due to time constraints, this concern was not validated. However, if moisture was introduced into the tanks and not removed during heating the tanks before HF and F2 sparging, there would be an additional concern regarding the potential for stress-corrosion cracking of the tank walls.

  2. CHP Research and Development - Presentation by Oak Ridge National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory, June 2011 | Department of Energy Research and Development - Presentation by Oak Ridge National Laboratory, June 2011 CHP Research and Development - Presentation by Oak Ridge National Laboratory, June 2011 Presentation on Combined Heat and Power (CHP) Research and Development, given by K. Dean Edwards of Oak Ridge National Lab, at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011. PDF icon chp_rd_edwards.pdf More Documents

  3. Demonstration of DeconGelTM at the Oak Ridge National Laboratory Building 2026

    Office of Environmental Management (EM)

    of K-31 gaseous diffusion building begins Demolition of K-31 gaseous diffusion building begins October 8, 2014 - 12:00pm Addthis OREM began demolition of the 750,000 sq. ft. K-31 Building, marking the removal of the fourth of five gaseous diffusion buildings at the former uranium enrichment site. OREM began demolition of the 750,000 sq. ft. K-31 Building, marking the removal of the fourth of five gaseous diffusion buildings at the former uranium enrichment site. OAK RIDGE, Tenn. - Demolition of

  4. OAK RIDGE NATIONAL LABORATORY OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS. INC.

    Office of Legacy Management (LM)

    OPERATED BY MARTIN MARIETTA ENERGY SYSTEMS. INC. FOR THE UNITED STATES DEPARTMENT OF ENERGY RESULTS OF THE RADIOLOGICAL SURVEY OFTHE CARPENTER STEEL FACILITY READING, PENNSYLVANIA W. D. Cottrell R. F. Carrier : This report has be& reprohucad directly from the best available copy. Available to DOE and DOE contractors from the Office of Scientiiic and Technical Information. P.O. Box 62, Oak Ridge. TN 37831; prices available hcm(615)57&8401,FTS626-8401. Available to the public from the

  5. Neutron scattering at the high flux isotope reactor at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Yethiraj, M.; Fernandez-Baca, J.A.

    1995-03-01

    Since its beginnings in Oak Ridge and Argonne in the late 1940`s, neutron scattering has been established as the premier tool to study matter in its various states. Since the thermal neutron wavelength is of the same order of magnitude as typical atomic spacings and because they have comparable energies to those of atomic excitations in solids, both structure and dynamics of matter can be studied via neutron scattering. The High Flux Isotope Reactor (HFIR) provides an intense source of neutrons with which to carry out these measurements. This paper summarizes the available neutron scattering facilities at the HFIR.

  6. Energy Department, Oak Ridge National Lab Officials to Celebrate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy, U.S. Department of Energy Dr. Thom Mason, Oak Ridge National Laboratory Director Industry representatives, including Dow, Ford and the Council on Competitiveness ...

  7. Waste Stream Generated and Waste Disposal Plans for Molten Salt Reactor Experiment at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Haghighi, M. H.; Szozda, R. M.; Jugan, M. R.

    2002-02-26

    The Molten Salt Reactor Experiment (MSRE) site is located in Tennessee, on the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR), south of the Oak Ridge National Laboratory (ORNL) main plant across Haw Ridge in Melton Valley. The MSRE was run by ORNL to demonstrate the desirable features of the molten-salt concept in a practical reactor that could be operated safely and reliably. It introduced the idea of a homogeneous reactor using fuel salt media and graphite moderation for power and breeder reactors. The MSRE reactor and associated components are located in cells beneath the floor in the high-bay area of Building 7503 (Figure 1). The reactor was operated from June 1965 to December 1969. When the reactor was shut down, fuel salt was drained from the reactor circuit to two drain tanks. A ''clean'' salt was then circulated through the reactor as a decontamination measure and drained to a third drain tank. When operations ceased, the fuel and flush salts were allowed t o cool and solidify in the drain tanks. At shutdown, the MSRE facility complex was placed in a surveillance and maintenance program. As a result of the S&M program, it was discovered in 1994 that gaseous uranium (233U/232U) hexafluoride (UF6) had moved throughout the MSRE process systems. The UF6 was generated when radiolysis of the fluorine salts caused the individual constituents to dissociate to their component atoms, including free fluorine.Some of the free fluorine combined with uranium fluorides (UF4) in the salt to form UF6. UF6 is gaseous at slightly above ambient temperatures; thus, periodic heating of the fuel salts (which was intended to remedy the radiolysis problems) and simple diffusion had allowed the UF6 to move out of the salt and into the process systems of MSRE.

  8. Development of a waste dislodging and retrieval system for use in the Oak Ridge National Laboratory gunite tank

    SciTech Connect (OSTI)

    Randolph, J.D.; Lloyd, P.D.; Burks, B.L.

    1997-03-01

    As part of the Gunite And Associated Tanks (GAAT) Treatability Study the Oak Ridge National Laboratory (ORNL) has developed a tank waste retrieval system capable of removing wastes varying from liquids to thick sludges. This system is also capable of scarifying concrete walls and floors. The GAAT Treatability Study is being conducted by the Department of Energy Oak Ridge Environmental Restoration Program. Much of the technology developed for this project was cosponsored by the DOE Office of Science and Technology through the Tanks Focus Area (TFA) and the Robotics Technology Development Program. The waste dislodging and conveyance (WD&C) system was developed jointly by ORNL and participants from the TFA. The WD&C system is comprised of a four degree-of-freedom arm with back driveable motorized joints. a cutting and dislodging tool, a jet pump and hose management system for conveyance of wastes, confined sluicing end-effector, and a control system, and must be used in conjunction with a robotic arm or vehicle. Other papers have been submitted to this conference describing the development and operation of the arm and vehicle positioning systems. This paper will describe the development of the WD&C system and its application for dislodging and conveyance of ORNL sludges from the GAAT tanks. The confined sluicing end-effector relies on medium pressure water jets to dislodge waste that is then pumped by the jet pump through the conveyance system out of the tank. This paper will describe the results of cold testing of the integrated system. At the conference presentation there will also be results from the field deployment. ORNL has completed fabrication of the WD&C system for waste removal and is full-scale testing, including testing of the confined sluicing end-effector.

  9. Oak Ridge National Laboratory REVIEW, Vol. 25, Nos. 3 and 4, 1992

    SciTech Connect (OSTI)

    Krause, C.

    1992-01-01

    The titles in the table of contents from this journal are: Wartime Laboratory; High-flux Years; Accelerating Projects; Olympian Feats; Balancing Act; Responding to Social Needs; Energy Technologies; Diversity and Sharing; Global Outreach; Epilogue

  10. Annual summary report of the Decontamination and Decommissioning Surveillance and Maintenance Program at Oak Ridge National Laboratory for period ending September 30, 1994

    SciTech Connect (OSTI)

    Anderson, L.A.; Burwinkle, T.W.; Ford, M.K.; Gaddis, H.R.; Holder, L. Jr.; Mandry, G.J.; Nelson, T.R.; Patton, B.D.

    1995-03-01

    The Surplus Facilities Management Program (SFMP) was established at Oak Ridge National Laboratory (ORNL) in 1976 to provide collective management of all surplus sites under ORNL`s control on the Oak Ridge Reservation. Presently, over 50 facilities, grouped into projects, are currently managed by the Decontamination and Decommissioning Program, the successor program to the SFMP. Support includes (1) surveillance and maintenance planning; (2) routine surveillance and maintenance; and (3) special maintenance projects. This report documents routine surveillance and maintenance, special projects, and special maintenance performed on these facilities for the period of October 1993 through September 1994.

  11. In situ vitrification demonstration at Pit 1, Oak Ridge National Laboratory. Volume 1: Results of treatability study

    SciTech Connect (OSTI)

    Spalding, B.P.; Naney, M.T.; Cline, S.R.; Bogle, M.A.; Tixier, J.S.

    1997-12-01

    A treatability study was initiated in October 1993 to apply in situ vitrification (ISV) to at least two segments of Oak Ridge National Laboratory (ORNL) seepage Pit 1 by the end of fiscal year (FY) 1995. This treatability study was later extended to include all of Pit 1 and was performed to support a possible Interim Record of Decision or removal action for closure of one or more of the seepage pits and trenches beginning as early as FY 1997. This treatability study was carried out to establish the field-scale technical performance of ISV for (1) attaining the required depth, nominally 15 ft, to incorporate source contamination within and beneath the pits; (2) demonstrating field capability for the overlap of melt settings which will be necessary to achieve fused, melted segments of the source contamination; (3) demonstrating off-gas handling technology for accommodating and minimizing the volatilization of {sup 137}Cs; (4) demonstrating adequate site characterization techniques to predict ISV melting kinetics, processing temperatures, and product durability; and (5) promoting public acceptance of ISV technology by demonstrating its safety, implementability, site impacts, and air emissions and by coordinating the treatability study within the regulatory closure process. In April 1996 an expulsion of an estimated 10% of the 196 Mg (216 tons) melt body occurred resulting in significant damage to ISV equipment and, ultimately, led to an indefinite suspension of further ISV operations at Pit 1. This report summarizes the technical accomplishments and status of the project in fulfilling these objectives through September 1997.

  12. Demonstration of DeconGel (TM) at the Oak Ridge National Laboratory

    Energy Savers [EERE]

    Biorefinery | Department of Energy Successes: Sapphire Integrated Algal Biorefinery Demonstration and Deployment Successes: Sapphire Integrated Algal Biorefinery Demonstration and Deployment Successes Jaime Moreno, Vice President of Projects, Sapphire Energy, Inc. PDF icon b13_moreno_ap-2.pdf More Documents & Publications Sapphire Energy, Inc. Demonstration-Scale Project The Promise and Challenge of Algae as Renewable Sources of Biofuels National Alliance for Advanced Biofuels and

  13. Evaluation of the environmental effects of stormwater pollutants for Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Hinzman, R.L.; Southworth, G.R.; Stewart, A.J.; Filson, M.J.

    1995-07-01

    Despite Best Management Practices (BMP), total suspended solids (TSS) and oil and grease (O and G) concentrations in stormwater runoff frequently have been above the National Pollutant Discharge Elimination System (NPDES) Permit effluent limits at ORNL. Although the effects of stormwater pollutants to aquatic ecosystems are of concern regionally and nationally, NPDES permit violations at ORNL are best addressed on a site-specific basis. This document explores several key questions to determine whether the TSS and O and G noncompliances at ORNL are primarily a regulatory problem (i.e., Category 1 and 2 effluent limits are neither reasonably achievable nor effective in achieving environmental protection), or a legitimate ecological concern that will require effective remediation. The three tasks outlined in the study plan were to (1) clarify the degree of TSS and O and G noncompliances at ORNL, (2) provide guidance as to appropriate limits for TSS and O and G in Category 1 and 2 discharges, and (3) provide information about the effectiveness of possible mitigation or remediation measures for TSS and O and G in stormwater releases, assuming that such measures are needed for one or more ORNL Category 1 or 2 outfalls.

  14. Oak Ridge National Laboratory Next-Generation Safeguards Initiative: Human Capital Development

    SciTech Connect (OSTI)

    Gilligan, Kimberly

    2014-01-01

    In 2007, the US Department of Energy National Nuclear Security Administration (DOE/NNSA) Office of Nonproliferation and International Security (NA-24) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. The review examined: trends and events that have an effect on the mission of international safeguards; the implications of expanding and evolving mission requirements of the legal authorities and institutions that serve as the foundation of the international safeguards system; and, the technological, financial, and human resources required for effective safeguards implementation. The review’s findings and recommendations were summarized in the report International Safeguards: Challenges and Opportunities for the 21st Century (October 2007). The executive summary is available at the following link: http://nnsa.energy.gov/sites/default/files/nnsa/inlinefiles/NGSI_Report.pdf.

  15. Annual report of the Environmental Restoration Monitoring and Assessment Program at Oak Ridge National Laboratory for FY 1992. Environmental Restoration Program

    SciTech Connect (OSTI)

    Clapp, R.B.

    1992-09-01

    This report summarizes the salient features of the annual efforts of the investigations and monitoring, conducted to support the Environmental Restoration (ER) Program at Oak Ridge National Laboratory (ORNL). The results presented can be used to develop a conceptual understanding of the key contaminants and the sources, fluxes, and processes affecting their distribution and movement. This information forms a basis for prioritizing sites and for selecting, implementing, and evaluating remedial actions. Groundwater, soils, sediments, and surface water monitoring results are described.

  16. Bechtel National, Inc. Engineers Constructors Oak Ridge Office

    Office of Legacy Management (LM)

    389 Bechtel National, Inc. Engineers - Constructors Oak Ridge Office Jackson Plaza Tower 800 Oak Ridge Turnpike Oak Ridge, Tennessee Mail Address: P. O. Box 350, Oak Ridge. TN...

  17. Oak Ridge National Laboratory

    Office of Scientific and Technical Information (OSTI)

    The system components. featuring discrete or continuous. linear or nonlinear. are modeled in mathematical equations. Inverter control methods, such as pulse-width-modulation and ...

  18. OAK RIDGE NATIONAL LABORATORY

    Office of Legacy Management (LM)

    Building EM-421 Washington, D. C. 20585 Dear Dr. Williams: Trip Report of ORNL Health Physics Support at the Uniroyal Chemical Company Painesvik, Ohio, on June 25,1992 As per...

  19. Oak Ridge National Laboratory

    Office of Scientific and Technical Information (OSTI)

    ... SIMNOiV for Windows, SSPA Systems, Sweden, 1993. 161 171 91 E161 The Math Works, UATLAB User Guide, The Math Works, 1992. The Math Works, SIMULINK User Guide, The Math Works, ...

  20. Monitoring Uranium Transformations Determined by the Evolution of Biogeochemical Processes: Design of Mixed Batch Reactor and Column Studies at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Criddle, Craig S.; Wu, Weimin

    2013-04-17

    With funds provided by the US DOE, Argonne National Laboratory subcontracted the design of batch and column studies to a Stanford University team with field experience at the ORNL IFRC, Oak Ridge, TN. The contribution of the Stanford group ended in 2011 due to budget reduction in ANL. Over the funded research period, the Stanford research team characterized ORNL IFRC groundwater and sediments and set up microcosm reactors and columns at ANL to ensure that experiments were relevant to field conditions at Oak Ridge. The results of microcosm testing demonstrated that U(VI) in sediments was reduced to U(IV) with the addition of ethanol. The reduced products were not uraninite but were instead U(IV) complexes associated with Fe. Fe(III) in solid phase was only partially reduced. The Stanford team communicated with the ANL team members through email and conference calls and face to face at the annual ERSP PI meeting and national meetings.

  1. Heather M. Connaway | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory. Previous work experience includes graduate student research at the Massachusetts Institute of Technology, and internships with Argonne National Laboratory, Oak...

  2. National Laboratories Shine at World’s Largest Hydropower Event

    Broader source: Energy.gov [DOE]

    Members of the Energy Department's national laboratories—Oak Ridge National Laboratory, Argonne National Laboratory, and National Renewable Energy Laboratory—took home "Technical Paper of the Year"...

  3. In Situ Grouting of Liquid Waste Disposal Trenches and Experimental Reactor Fuel Disposal Wells at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Johnson, Ch.; Cange, J.; Lambert, R. [Bechtel Jacobs Company, LLC, Oak Ridge, TN (United States); Trujillo, E. [BWXT Pantex, LLC, Amarillo, TX (United States); Julius, J. [U.S. DOE, Oak Ridge Operations Office, Oak Ridge, TN (United States)

    2008-07-01

    In the early to mid-1960's, liquid low-level wastes (LLLW) generated at Oak Ridge National Laboratory were disposed of in specially-constructed, gravel-filled trenches within the Melton Valley watershed at the lab. The initial selected remedy for Trenches 5 and 7 was in situ vitrification; however, an amendment to the record of decision changed the remedy to in situ grouting of the trenches. The work was accomplished by filling the void space within the crushed stone section of each trench with cementitious grout. The contaminated soil surrounding the trenches (1-m perimeter) was then grouted with acrylamide grout. At the HRE fuel wells, a 1-m ring of soil surrounding the fuel wells was grouted with acrylamide. The results of the hydraulic conductivity tests ranged from 4.74 x 10{sup -6} to 3.60 x 10{sup -7} cm/sec, values that were well below the 1 x 10{sup -5} cm/sec design criterion. In summary: The ISG Project was conducted to decrease hydraulic conductivity and thereby decrease water flow and contaminate migration from the area of the trenches. The initial remedy for Trenches 5 and 7 in the Melton Valley ROD was for in situ vitrification of the trench matrix. The remedy was changed to in situ grouting of the trenches and HRE fuel wells through an amendment to the ROD after moisture was found in the trenches. The grouting of the trenches was accomplished by filling the void space within the crushed stone section of each trench with cementitious grout. The contaminated soil surrounding the trenches (1-m perimeter) was then grouted with acrylamide grout to further reduce water infiltration. Soil backfill above each of the seven HRE fuel wells was removed to a depth of approximately 1 m by augering, and the soils were replaced with a cement plug to prevent water infiltration from migrating down the original borehole. Soil surrounding the fuel wells was then grouted with acrylamide to ensure water infiltration through the HRE fuel wells is prevented. A summary of the quantities used is shown. After completion of grouting, in-situ hydraulic conductivities of the grouted materials were measured to verify attainment of the design objective. The areas were then covered with multi-layer caps as part of the MV hydrologic isolation project. (authors)

  4. Robin Graham | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robin Graham Deputy Associate Laboratory Director Robin Lambert Graham is a forest ecosystem ecologist with expertise in biomass resource availability for bioenergy and climate change. She is currently overseeing Argonne's climate change and biological research for the Department of Energy. Prior to joining Argonne, she spent 25 years at Oak Ridge National Laboratory in Oak Ridge Tennessee where she managed the Oak Ridge Bioenergy Research program, served in multiple leadership positions and

  5. FY2011 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, Mitchell

    2011-10-01

    The U.S. Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the U.S. Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE's commitment to developing public-private partnerships to fund high risk-high reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research') that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machines (PEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the PEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The PEEM subprogram supports the efforts of the U.S. DRIVE partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component R&D activities; (2) develop and validate individual subsystems and components, including EMs and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, efficiency, and cost targets for the PE and EM subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor-inverter traction drive system concepts. ORNL's PEEM research program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP Advanced Power Electronics and Electric Motors (APEEM) program. In this role, ORNL serves on the U.S. DRIVE Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. DOE's continuing R&D into advanced vehicle technologies for transportation offers the possibility of reducing the nation's dependence on foreign oil and the negative economic impacts of crude oil price fluctuations. It also supports the Administration's goal of deploying 1 million PHEVs by 2015.

  6. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 4, Technical memorandums 06-03A, 06-04A, 06-05A, and 06-08A: Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    This report presents data and information related to remedial investigation studies for Oak Ridge National Laboratory (ORNL). Information is included on a soil gas survey, surface radiological investigations of waste areas, and well installation for ground water monitoring. (CBS)

  7. FY 2005 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, M

    2005-11-22

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel and the 21st Century Truck Partnerships through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2004 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.

  8. FY2010 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, Mitchell

    2010-10-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public-private partnerships to fund high risk, high payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the PE and electrical machines subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machines Research Program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2010 and conveys highlights of their accomplishment

  9. FY2007 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, Mitchell

    2007-10-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as 'FreedomCAR' (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR and Vehicle Technologies Program. A key element in making hybrid electric vehicles (HEVs) practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2007 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.

  10. Type B Accident Investigation Board Report on the September 7, 2001, Burn Accident at Oak Ridge National Laboratory, Building 9210

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type B Investigation Board appointed by G. Leah Dever, Manager, Oak Ridge Operations Office, U.S. Department of Energy.

  11. Type B Accident Investigation Board Report on the February 27, 1998, Shipping Violations Involving the Corehole 8 Project at the Oak Ridge National Laboratory, Oak Ridge, Tennesee

    Broader source: Energy.gov [DOE]

    This report is an independent product of the Type B Investigation Board appointed by James C. Hall, Manager, Oak Ridge Operations Office, U.S. Department of Energy. The Board was appointed to perform a Type B investigation of these incidents and to prepare an investigation report in accordance with DOE Order 225.1A, Accident Investigations.

  12. Electron-Impact Ionization of Multicharged Ions: Cross-Sections Data from Oak Ridge National Laboratory (ORNL) and the Controlled Fusion Atomic Data Center (CFADC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This website presents experimental ionization cross sections measured using the Electron-Ion Crossed Beams apparatus in the Multicharged Ion Research Facility (MIRF) at the Physics Division of Oak Ridge National Laboratory (ORNL). The data are given in both graphical and tabular form along with the reference to the original publication of the experimental results. Also presented in the figures are theoretical cross sections supporting the experiments. For details of the theoretical work, refer to the original publication given for the particular experiment. These pages are based primarily on three technical memorandums issued by ORNL: 1(D. H. Crandall, R. A. Phaneuf, and D. C. Gregory, Electron Impact Ionization of Multicharged Ions, ORNL/TM-7020, Oak Ridge National Laboratory, 1979; 2) D. C. Gregory, D. H. Crandall, R. A. Phaneuf, A. M. Howald, G. H. Dunn, R. A. Also presented are more recent (1993-present) data, both published and unpublished. The data pages feature dynamic plotting, allowing the user to choose which sets of data to plot and zoom in on regions of interest within the plot. [Taken from http://www-cfadc.phy.ornl.gov/xbeam/index.html

  13. 2013 Federal Energy and Water Management Award Winner Oak Ridge National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory | Department of Energy 2013 Federal Energy and Water Management Award Winner Oak Ridge National Laboratory 2013 Federal Energy and Water Management Award Winner Oak Ridge National Laboratory Poster showing the 2013 Federal Energy and Water Management award winner, Oak Ridge National Laboratory. PDF icon High Resolution Poster PDF icon Low Resolution Poster More Documents & Publications An Approach to Sustainability that Improves Environmental and Safety Performance EA-1575:

  14. DOE Awards $6.3 Billion Contract Extension for Oak Ridge National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory | Department of Energy $6.3 Billion Contract Extension for Oak Ridge National Laboratory DOE Awards $6.3 Billion Contract Extension for Oak Ridge National Laboratory December 1, 2005 - 4:28pm Addthis OAK RIDGE, TENN. -- The U.S. Department of Energy has awarded a five-year, $6.3 billion extension to its current management and operating contractor, UT-Battelle, LLC, for the continued operation of the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., the Department's Under

  15. FY2014 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Motors Program

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-11-01

    The US Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the US Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE’s commitment to developing public–private partnerships to fund high-risk–high-reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from “Freedom” and “Cooperative Automotive Research”) that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. Oak Ridge National Laboratory’s (ORNL’s) Advanced Power Electronics and Electric Motors (APEEM) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs.

  16. Experimental support for coal conversion demonstration projects at the Oak Ridge National Laboratory: preheater rheology, slurry mixing, and vacuum bottoms viscosity

    SciTech Connect (OSTI)

    Rodgers, B.R.; Johnson, J.K.; Lee, D.D.; Wilson, J.H.; Youngblood, E.L.; Hightower, J.R.

    1981-01-01

    The Oak Ridge National Laboratory has carried out a major support role in the area of thermophysical properties since 1978. From the outset, the emphasis has been on obtaining data on real coal liquids at process conditions of temperature and pressure. The results of rheology (viscosity and density) measurements of reacting mixtures under conditions similar to those of the SRC preheaters are presented, emphasizing the effects of the measured non-Newtonian behavior on design. Data obtained on mixing coal and process solvent up to 500/sup 0/K (450/sup 0/F) will be discussed, emphasizing its impact on thermal efficiency of the SRC processes. Finally, design and initial operation of a unique instrument to measure the viscosity on-line of streams containing up to 55% solids will be discussed.

  17. Sampling and analysis plan for the site characterization of the waste area Grouping 1 groundwater operable unit at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    1994-11-01

    Waste Area Grouping (WAG) 1 at Oak Ridge National Laboratory (ORNL) includes all of the former ORNL radioisotope research, production, and maintenance facilities; former waste management areas; and some former administrative buildings. Site operations have contaminated groundwater, principally with radiological contamination. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to a known extent. In addition, karst geology, numerous spills, and pipeline leaks, together with the long and varied history of activities at specific facilities at ORNL, complicate contaminant migration-pathway analysis and source identification. To evaluate the extent of contamination, site characterization activity will include semiannual and annual groundwater sampling, as well as monthly water level measurements (both manual and continuous) at WAG 1. This sampling and analysis plan provides the methods and procedures to conduct site characterization for the Phase 1 Remedial Investigation of the WAG 1 Groundwater Operable Unit.

  18. Radiological benchmarks for screening contaminants of potential concern for effects on aquatic biota at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1998-07-01

    A hazardous waste site may contain hundreds of contaminants; therefore, it is important to screen contaminants of potential concern for the ecological risk assessment. Often this screening is done as part of a screening assessment, the purpose of which is to evaluate the available data, identify data gaps, and screen contaminants of potential concern. Screening may be accomplished by using a set of toxicological benchmarks. These benchmarks are helpful in determining whether contaminants warrant further assessment or are at a level that requires no further attention. Unlike exposures to chemicals, which are expressed as the concentration in water or sediment, exposures to radionuclides are expressed as the dose rate received by the organism. The recommended acceptable dose rate to natural populations of aquatic biota is 1 rad d{sup {minus}1}. Blaylock, Frank, and O`Neal provide formulas and exposure factors for estimating the dose rates to representative aquatic organisms. Those formulas were used herein to calculate the water and sediment concentrations that result in a total dose rate of 1 rad d{sup {minus}1} to fish for selected radionuclides. These radiological benchmarks are intended for use at the US Department of Energy`s (DOE`s) Oak Ridge Reservation and at the Portsmouth and Paducah gaseous diffusion plants as screening values only to show the nature and extent of contamination and identify the need for additional site-specific investigation.

  19. Rodney East | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Roderick Jackson About Us Roderick Jackson - Technical Lead, Oak Ridge National Lab Roderick Jackson leads the Building Envelope Systems Research Group at the Department of Energy's Oak Ridge National Laboratory and serves as the technical lead for the Additive Manufacturing Integrated Energy (AMIE) demonstration project. He holds a bachelor's, master's, and Ph.D. in mechanical engineering from Georgia Tech. More about the AMIE demonstration project can be found:

  20. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputing Challenge draws more than 200 students to Los Alamos National Laboratory April 16, 2015 NOTE TO EDITORS: Media are welcome to attend the awards ceremony from 9 a.m. to noon a.m., April 21 at the Church of Christ, 2323 Diamond Drive, Los Alamos. Student teams from around New Mexico showcase year-long research projects April 20-21 LOS ALAMOS, N.M., April 16, 2015-More than 200 New Mexico students and their teachers are at Los Alamos National Laboratory April 20-21 for the 25th

  1. Brookhaven National Laboratory | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Brookhaven National Laboratory

  2. Publications of the Oak Ridge National Laboratory Fossil Energy Program and the AR and TD Materials Program, April 1, 1995--March 31, 1997

    SciTech Connect (OSTI)

    Carlson, P.T.

    1997-07-01

    The Oak Ridge National Laboratory (ORNL) Fossil Energy Program, organized in FY 1974 as the Coal Technology Program, involves research and development activities that cover a wide range of fossil energy technologies. The principal focus of the Laboratory`s fossil energy activities relates to coal, with current emphasis on materials research and development; environmental, health, and safety research; and the bioprocessing of coal to produce liquid or gaseous fuels. This bibliography covers the period of April 1, 1995, through March 31, 1997, and is a supplement to the earlier bibliographies in this series. The publications listed in this document have been limited to topical reports, open literature publications, full-length papers in published proceedings of conferences, and books and book articles. A major activity of the Fossil Energy Program is the Advanced Research and Technology Development (AR and TD) Materials Program. The objective of the AR and TD Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. Beginning with this report, publications of the AR and TD Materials Program, previously compiled in separate reports, and publications from non-materials activities of the Fossil Energy Program will be combined in a single report.

  3. In situ vitrification demonstration at Pit 1, Oak Ridge National Laboratory. Volume 2: Site characterization report of the Pit 1 area

    SciTech Connect (OSTI)

    Spalding, B.P.; Bogle, M.A.; Cline, S.R.; Naney, M.T.; Gu, B.

    1997-12-01

    A treatability study was initiated in October 1993, initially encompassing the application of in situ vitrification (ISV) to at least two segments of Oak Ridge National Laboratory (ORNL) seepage Pit 1 by the end of fiscal year (FY) 1995. This treatability study was to have supported a possible Interim Record of Decision (IROD) or removal action for closure of one or more of the seepage pits and trenches as early as FY 1997. The Remedial Investigation/Feasibility Study for Waste Area Grouping (WAG) 7, which contains these seven seepage pits and trenches, will probably not begin until after the year 2000. This treatability study will establish the field-scale technical performance of ISV for (1) attaining the required depth, nominally 15 ft, to incorporate source contamination within and beneath the pits; (2) demonstrating field capability to overlap melt settings that are necessary to achieve fused, melted segments of the source contamination; (3) demonstrating off-gas handling technology for accommodating and minimizing the volatilization of {sup 137}Cs; (4) demonstrating adequate site characterization techniques to predict ISV melting kinetics, processing temperatures, and product durability; and (5) promoting public acceptance of ISV technology by demonstrating its safety, implementability, site impacts, and air emissions and by coordinating the treatability study within the regulatory closure process. This report summarizes the site characterization information gathered through the end of September 1996 which supports the planning and assessment of ISV for Pit 1 (objective 4 above).

  4. Quality Assurance Project Plan for the treatability study of in situ vitrification of Seepage Pit 1 in Waste Area Grouping 7 at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    NONE

    1995-07-01

    This Quality Assurance Project Plan (QAPjP) establishes the quality assurance procedures and requirements to be implemented for the control of quality-related activities for Phase 3 of the Treatability Study (TS) of In Situ Vitrification (ISV) of Seepage Pit 1, ORNL Waste Area Grouping 7. This QAPjP supplements the Quality Assurance Plan for Oak Ridge National Laboratory Environmental Restoration Program by providing information specific to the ISV-TS. Phase 3 of the TS involves the actual ISV melt operations and posttest monitoring of Pit 1 and vicinity. Previously, Phase 1 activities were completed, which involved determining the boundaries of Pit 1, using driven rods and pipes and mapping the distribution of radioactivity using logging tools within the pipes. Phase 2 involved sampling the contents, both liquid and solids, in and around seepage Pit 1 to determine their chemical and radionuclide composition and the spatial distribution of these attributes. A separate QAPjP was developed for each phase of the project. A readiness review of the Phase 3 activities presented QAPjP will be conducted prior to initiating field activities, and an Operational Acceptance, Test (OAT) will also be conducted with no contamination involved. After, the OAT is complete, the ISV process will be restarted, and the melt will be allowed to increase with depth and incorporate the radionuclide contamination at the bottom of Pit 1. Upon completion of melt 1, the equipment will be shut down and mobilized to an adjacent location at which melt 2 will commence.

  5. Leadership Oak Ridge visits Y-12 | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Leadership Oak Ridge visits Y-12 NNSA Blog The 2015 Leadership Oak Ridge class recently ... The 2015 Leadership Oak Ridge class recently visited the Y-12 National Security Complex. ...

  6. AUDIT REPORT Energy Savings Performance Contract Biomass Project at the Oak Ridge National

    Energy Savers [EERE]

    Biomass Project at the Oak Ridge National Laboratory OAI-L-16-03 November 2015 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 November 25, 2015 MEMORANDUM FOR THE MANAGER, OAK RIDGE NATIONAL LABORATORY SITE OFFICE FROM: Debra K. Solmonson, Director Eastern Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report: "Energy Savings Performance Contract Biomass Project at the Oak Ridge

  7. Oak Ridge Reservation Volume 3. Records relating to RaLa, iodine-131, and cesium-137 at the Oak Ridge National Laboratory and the Oak Ridge Operations Office: A guide to record series of the Department of Energy and its contractors

    SciTech Connect (OSTI)

    1995-03-21

    The purpose of this guide is to describe each of the documents and record series pertaining to the production, release, and disposal of radioactive barium-lanthanum (RaLa), iodine-131, and cesium-137 at the Department of Energy`s (DOE) Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. History Associates Incorporated (HAI) prepared this guide as part of DOE`s Epidemiologic Records Inventory Project, which seeks to verify and conduct inventories of epidemiologic and health-related records at various DOE and DOE contractor sites. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI`s role. It provides information on the history of the DOE-Oak Ridge Reservation (ORR), particularly ORNL. Specific attention is given to the production of RaLa and the fission products iodine-131 and cesium-137. This introduction also describes the methodologies HAI used in the selection and inventorying of documents and record series pertaining to RaLa, iodine-131, and cesium-137, and in the production of this guide. Concluding paragraphs describe the arrangement of the record series, explain the information contained in the record series descriptions, and indicate restrictions on access to the records.

  8. National Laboratory Impact Initiative

    Broader source: Energy.gov [DOE]

    The National Laboratory Impact Initiative supports the relationship between the Office of Energy Efficiency & Renewable Energy and the national laboratory enterprise.  The national laboratories...

  9. The Holifield Radioactive Ion Beam Facility at the Oak Ridge National Laboratory: Present status and future plans

    SciTech Connect (OSTI)

    Alton, G.D.; Beene, J.R.

    1998-03-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) is a first generation national user facility for nuclear physics and nuclear astrophysics research with radioactive ion beams (RIBS). The reconfiguration, construction, and equipment-commissioning phases have been completed and the beam development program is in progress. In this article, descriptions of the facility and newly implemented experimental equipment for use in the nuclear and astrophysics programs will be given and an outline of the initial experimental program will be presented. Special target/ion source related problems, endemic to the production of specific short-lived RIBs will be discussed. In addition, plans, which involve either a 200-MeV or a 1-GeV proton-linac driver for a second-generation ISOL facility, will be presented.

  10. The Holifield Radioactive Ion Beam Facility at the Oak Ridge National Laboratory: Present status and future plans

    SciTech Connect (OSTI)

    Alton, G.D.; Beene, J.R.

    1998-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF) is a first generation national user facility for nuclear physics and nuclear astrophysics research with radioactive ion beams (RIBs). The reconfiguration, construction, and equipment commissioning phases have been completed and the beam development program is in progress. In this article, descriptions of the facility and newly implemented experimental equipment for use in the nuclear and astrophysics programs will be given and an outline of the initial experimental program will be presented. Special target ion source related problems, endemic to the production of specific short lived RIBs will be discussed. In addition, plans, which involve either a 200 MeV or a 1 GeV proton linac driver for a second generation ISOL facility, will be presented.

  11. Energy Department, Oak Ridge National Lab Officials to Celebrate First of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    its Kind Carbon Fiber Facility | Department of Energy Department, Oak Ridge National Lab Officials to Celebrate First of its Kind Carbon Fiber Facility Energy Department, Oak Ridge National Lab Officials to Celebrate First of its Kind Carbon Fiber Facility March 25, 2013 - 9:51am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - On Tuesday, March 26, 2013, U.S. Assistant Secretary for Energy Efficiency and Renewable Energy David Danielson, Oak Ridge National Laboratory Director Thom

  12. Oak Ridge Reservation Needs Assessment

    Broader source: Energy.gov [DOE]

    Needs Assessment for former Oak Ridge National Laboratory and Y-12 Nuclear Security Complex production workers.

  13. University-Industry-National Laboratory Partnership to Improve Building

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency by Equipment Health Monitoring with Virtual Intelligent Sensing | Department of Energy University-Industry-National Laboratory Partnership to Improve Building Efficiency by Equipment Health Monitoring with Virtual Intelligent Sensing University-Industry-National Laboratory Partnership to Improve Building Efficiency by Equipment Health Monitoring with Virtual Intelligent Sensing Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: -- University of Tennessee -

  14. OAK RIDGE : I NATIONAL LABORATORY

    Office of Legacy Management (LM)

    ... commercial metal fabricators engaged by DuPont, a MED prime contractor, to fabricate a ... IL?, included machining and finishing slugs from uranium metal rod supplied by DuPont. ...

  15. Oak Ridge National Laboratory | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    History Diversity Hubs, Centers and Institutes Working with ORNL Partnerships Small Business Technology Licensing University Partnerships Academia User Facilities Building...

  16. Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory

    National Nuclear Security Administration (NNSA)

    Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory The Terascale Simulation Facility is a world-class supercomputing

  17. Dr. Ferenc Mezei, Los Alamos National Laboratory, Los Alamos, NM

    ScienceCinema (OSTI)

    Dr. Ferenc Mezei

    2010-01-08

    Neutron Spin Echo Spectroscopy: History and Outlook. Presented at the Workshop on Spin Echo Spectroscopy 2009 at Oak Ridge National Laboratory on November 4, 2009.

  18. University-Industry-National Laboratory Partnership to Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... CONTACTS DOE Technology Manager: Marina Sofos Lead Performer: Teja Kuruganti, Oak Ridge National Laboratory Related Publications PDF icon 2016 BTO Peer Review Presentation-Partners...

  19. EM Removes Radioactive Components from Former Reactor at Oak Ridge National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory | Department of Energy Removes Radioactive Components from Former Reactor at Oak Ridge National Laboratory EM Removes Radioactive Components from Former Reactor at Oak Ridge National Laboratory September 24, 2015 - 12:10pm Addthis Federal and contractor employees who worked on the project to remove irradiated components from a reactor pool gather to watch the transport of the shipment offsite for disposition. Federal and contractor employees who worked on the project to remove

  20. NATIONAL LABORATORY

    Office of Environmental Management (EM)

    N E W U T I L I T Y B U S I N E S S M O D E L S : Utility and Regulatory Models for the Modern Era Ronald Lehr former Public Utilities Commissioner A M E R I C A ' S POWER PLAN A m e r i c a ' s P o w e r P l a n Ralph Cavanagh, Natural Resources Defense Council Peter Fox-Penner, Brattle Group Tom King, National Grid Richard Sedano, Regulatory Assistance Project Alison Silverstein, former Federal Energy Regulatory Lisa Wood, Edison Foundation's Institute for Electric Efficiency We would like to

  1. Evaluation of Variable Refrigerant Flow Systems Performance and the Enhanced Control Algorithm on Oak Ridge National Laboratory s Flexible Research Platform

    SciTech Connect (OSTI)

    Im, Piljae; Munk, Jeffrey D; Gehl, Anthony C

    2015-06-01

    A research project “Evaluation of Variable Refrigerant Flow (VRF) Systems Performance and the Enhanced Control Algorithm on Oak Ridge National Laboratory’s (ORNL’s) Flexible Research Platform” was performed to (1) install and validate the performance of Samsung VRF systems compared with the baseline rooftop unit (RTU) variable-air-volume (VAV) system and (2) evaluate the enhanced control algorithm for the VRF system on the two-story flexible research platform (FRP) in Oak Ridge, Tennessee. Based on the VRF system designed by Samsung and ORNL, the system was installed from February 18 through April 15, 2014. The final commissioning and system optimization were completed on June 2, 2014, and the initial test for system operation was started the following day, June 3, 2014. In addition, the enhanced control algorithm was implemented and updated on June 18. After a series of additional commissioning actions, the energy performance data from the RTU and the VRF system were monitored from July 7, 2014, through February 28, 2015. Data monitoring and analysis were performed for the cooling season and heating season separately, and the calibrated simulation model was developed and used to estimate the energy performance of the RTU and VRF systems. This final report includes discussion of the design and installation of the VRF system, the data monitoring and analysis plan, the cooling season and heating season data analysis, and the building energy modeling study

  2. LA-UR-15-22097 Los Alamos National Laboratory

    Energy Savers [EERE]

    LA-UR-15-22097 Los Alamos National Laboratory DC Microgrids Scoping Study-Estimate of Technical and Economic Benefits Scott Backhaus 1 , Gregory W. Swift 1 , Spyridon Chatzivasileiadis 2 , William Tschudi 2 , Steven Glover 3 , Michael Starke 4 , Jianhui Wang 5 , Meng Yue 6 , and Donald Hammerstrom 7 1. Los Alamos National Laboratory 2. Lawrence Berkeley National Laboratory 3. Sandia National Laboratory 4. Oak Ridge National Laboratory 5. Argonne National Laboratory 6. Brookhaven National

  3. Oak Ridge Office of Environmental Management

    Energy Savers [EERE]

    Oak Ridge National Laboratory Oak Ridge National Laboratory Oak Ridge National Laboratory | April 2013 Aerial View Oak Ridge National Laboratory | April 2013 Aerial View Oak Ridge National Laboratory (ORNL) conducts research and development to create scientific knowledge and solutions that strengthen the nation's leadership in key areas of science; increase the availability of clean, abundant energy; restore and protect the environment; and contribute to national security. ORNL also performs

  4. 2013 Federal Energy and Water Management Award Winner Oak Ridge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Energy and Water Management Award Winner Oak Ridge National Laboratory 2013 Federal Energy and Water Management Award Winner Oak Ridge National Laboratory Poster showing ...

  5. Evaluation of Side Stream Filtration Technology at Oak Ridge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation of Side Stream Filtration Technology at Oak Ridge National Laboratory Evaluation of Side Stream Filtration Technology at Oak Ridge National Laboratory Document provides ...

  6. National Laboratory's Weapons Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us » Strategic Programs » National Laboratory Impact Initiative Team National Laboratory Impact Initiative Team The mission of the Office of Energy Efficiency and Renewable Energy's (EERE's) National Laboratory Impact Initiative is to significantly increase the industrial impact of the Energy Department's national laboratories on the U.S. clean energy sector. The goals of the Initiative are to: Increase and enhance laboratory-private sector relationships Increase and streamline access to

  7. The Treatment of Solar Generation in Electric Utility Resource Planning (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thorium Fuel Cycle Pilot Experiences at Oak Ridge National Laboratory E. D. Collins, B. D. Patton, A. M. Krichinsky, and D. F. Williams Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831-6423 collinsed@ornl.gov INTRODUCTION Thorium-uranium-233 fuels were processed at the Oak Ridge National Laboratory Radiochemical Pilot Plant, in kilogram-scale operations from 1954 to 19861. These operations were primarily aqueous separations and allied conversion technologies and included

  8. National Renewable Energy Laboratory

    Office of Environmental Management (EM)

    Renewable Energy Laboratory Innovation for Our Energy Future Renewable Resource Options Geothermal Biomass Solar Hydro Wind National Renewable Energy Laboratory Innovation ...

  9. Federal Energy Management Program National Laboratory Liaison Contacts |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Laboratory Liaison Contacts Federal Energy Management Program National Laboratory Liaison Contacts The following U.S. Department of Energy national laboratory liaisons serve as primary contacts for the Federal Energy Management Program (FEMP). FEMP staff contact information is also available. Christopher Payne Lawrence Berkeley National Laboratory 510-495-2577 Jerry Davis National Renewable Energy Laboratory 303-275-3199 Bob Slattery Oak Ridge National

  10. Management | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Sciences & Engineering Focus: Understanding & Control of Interfacial Processes Web Site Michael Thackeray Michael Thackeray (Deputy Director) Argonne National Laboratory...

  11. Alamos National Laboratory's 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    $2 million pledged during Los Alamos National Laboratory's 2014 employee giving campaign December 17, 2013 "I Give Because..." theme focuses on unique role Lab plays in local communities LOS ALAMOS, N.M., Dec. 17, 2013-Nearly $2 million has been pledged by Los Alamos National Laboratory employees to United Way and other eligible nonprofit programs during the Laboratory's 2014 Employee Giving Campaign. Los Alamos National Security, LLC, which manages and operates the Laboratory for the

  12. Oak Ridge Removes Laboratory's Greatest Source of Groundwater

    Energy Savers [EERE]

    Contamination | Department of Energy Removes Laboratory's Greatest Source of Groundwater Contamination Oak Ridge Removes Laboratory's Greatest Source of Groundwater Contamination May 1, 2012 - 12:00pm Addthis Workers remove the 4,000-gallon Tank W-1A, which was ORNL’s greatest source of groundwater contamination. Workers remove the 4,000-gallon Tank W-1A, which was ORNL's greatest source of groundwater contamination. Workers load boxes containing contaminated soil that surrounded Tank

  13. Level 3 Baseline Risk Assessment for Building 3515 at Oak Ridge National Lab., Oak Ridge, TN

    SciTech Connect (OSTI)

    Wollert, D.A.; Cretella, F.M.; Golden, K.M.

    1995-08-01

    The baseline risk assessment for the Fission Product Pilot Plant (Building 3515) at the Oak Ridge National laboratory (ORNL) provides the Decontamination and Decommissioning (D&D) Program at ORNL and Building 3515 project managers with information concerning the results of the Level 3 baseline risk assessment performed for this building. The document was prepared under Work Breakdown Structure 1.4.12.6.2.01 (Activity Data Sheet 3701, Facilities D&D) and includes information on the potential long-term impacts to human health and the environment if no action is taken to remediate Building 3515. Information provided in this document forms the basis for the development of remedial alternatives and the no-action risk portion of the Engineering Evaluation/Cost Analysis report.

  14. An Oak Ridge baseball team | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Oak Ridge baseball team An Oak Ridge baseball team An Oak Ridge baseball team

  15. Savannah River National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savannah River National Laboratory srnl.doe.gov SRNL is a DOE National Laboratory operated by Savannah River Nuclear Solutions. At a glance 'Tin whiskers' suppression method Researchers at the Savannah River National Laboratory (SRNL) have identified a treatment method that slows or prevents the formation of whiskers in lead-free solder. Tin whiskers spontaneously grow from thin films of tin, often found in microelectronic devices in the form of solders and platings. Background This problem was

  16. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mentoring Why mentoring? As one of the largest laboratories in the nation for science and engineering research, Argonne National Laboratory is home to some of the most prolific and well-renowned scientists and engineers. To maintain an environment that fosters innovative research, we are committed to ensuring the success of our major players on the frontlines of our research-our Postdoctoral Scientists. The Argonne National Laboratory has a long-standing reputation as a place that offers

  17. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    short-pulse laser, scientists from Los Alamos, the Technical University of Darmstadt, Germany, and Sandia National Laboratories focus high-intensity light on an ultra-thin...

  18. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    He was the third director of Los Alamos National Laboratory, succeeding Robert Oppenheimer and Norris Bradbury. He served from 1970 to 1979. Joined Manhattan Project in 1943 During ...

  19. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LOS ALAMOS, New Mexico, November 20, 2008- Los Alamos National Laboratory employees once again demonstrated concern for their communities and those in need by pledging a record...

  20. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009 Los Alamos, New Mexico, December 1, 2009-Los Alamos National Laboratory employees once more demonstrated concern for their communities and those in need by pledging a record...

  1. National Laboratory Geothermal Publications

    Broader source: Energy.gov [DOE]

    You can find publications, including technical papers and reports, about geothermal technologies, research, and development at the following U.S. Department of Energy national laboratories.

  2. Awards | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance Award, 2013 (with two other researchers) U.S. Department of Energy Vehicle Technologies Office R&D Award, 2013 Argonne National Laboratory Distinguished...

  3. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    funds July 21, 2009 Funding will aid environmental cleanup and compliance Los Alamos, New Mexico, July 22, 2009-Los Alamos National Laboratory today announced plans to begin...

  4. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32...

  5. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2009 Lab contributes computer modeling, antibody engineering capabilities Los Alamos, New Mexico, July 28, 2009- Los Alamos National Laboratory scientists will codirect a new...

  6. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  7. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6th Hazmat Challenge July 31, 2012 Competition tests skills of hazardous materials response teams LOS ALAMOS, New Mexico, July 31, 2012 What: Los Alamos National Laboratory (LANL)...

  8. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sustainability award October 14, 2010 LOS ALAMOS, New Mexico, October 14, 2010-Los Alamos National Laboratory recently received an Environmental Sustainability (EStar) ...

  9. Evaluation of beryllium exposure assessment and control programs at AWE, Cardiff Facility, Rocky Flats Plant, Oak Ridge Y-12 Plant and Lawrence Livermore National Laboratory. Phase 1

    SciTech Connect (OSTI)

    Johnson, J.S.; Foote, K.L.; Slawski, J.W.; Cogbill, G.

    1995-04-28

    Site visits were made to DOE beryllium handling facilities at the Rocky Flats Plant; Oak Ridge Y-12 Plant, LLNL; as well as to the AWE Cardiff Facility. Available historical data from each facility describing its beryllium control program were obtained and summarized in this report. The AWE Cardiff Facility computerized Be personal and area air-sampling database was obtained and a preliminary evaluation was conducted. Further validation and documentation of this database will be very useful in estimating worker Be. exposure as well as in identifying the source potential for a variety of Be fabrication activities. Although all of the Be control programs recognized the toxicity of Be and its compounds, their established control procedures differed significantly. The Cardiff Facility, which was designed for only Be work, implemented a very strict Be control program that has essentially remained unchanged, even to today. LLNL and the Oak Ridge Y-12 Plant also implemented a strict Be control program, but personal sampling was not used until the mid 1980s to evaluate worker exposure. The Rocky Flats plant implemented significantly less controls on beryllium processing than the three previous facilities. In addition, records were less available, management and industrial hygiene staff turned over regularly, and less control was evident from a management perspective.

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    70th anniversary app for iPhone, iPads June 5, 2013 LOS ALAMOS, N.M., June 4, 2013-Los Alamos National Laboratory has launched its first app for iPhones and iPads as part of the Laboratory's yearlong celebration of 70 years serving the nation. The free application is available from the Apple Store (search for Los Alamos National Lab). The app enables users to learn more about the Laboratory's national security mission, cutting edge research, unique history, top-flight scientists and the many

  11. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Defense Systems & Assessments: About Us Defense Systems About Defense Systems & Assessments Program Areas Accomplishments Cybersecurity Programs About Defense Systems & Assessments soldier silhouetted by a sunset Defense Systems & Assessments supports guardians of peace and freedom on the battlefield and in the laboratory by applying engineering, science, and technology solutions to deter, detect, defeat, and defend threats to our national security. We analyze and exploit the

  12. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons: About About Nuclear Weapons at Sandia Weapons Researcher World-class scientists and engineers come to Sandia to conduct breakthrough research in nuclear weapons. Sandia designs more than 6,300 parts of a modern nuclear weapon's 6,500 components. Our state-of-the-art laboratories facilitate large-scale testing and computer simulation. Sandia's work is of the highest consequence and those doing the work face awesome responsibilities. Unlike other national labs, which focus on

  13. Los Alamos National Laboratory attracts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Los Alamos National Laboratory Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national...

  14. Sandia National Laboratories

    National Nuclear Security Administration (NNSA)

    National Laboratories Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582 P. ENERGY U.S. DEPARTMENT OF Albuquerque N e w M e x i c o Sandia Mountains Q Q ApproximatelyQ8,800QacresQQ ofQDOE-ownedQandQQ permittedQland Q Q LocatedQwithinQtheQQ KirtlandQAirQForceQQ

  15. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientists will codirect $14.5 million National Center for Systems Biology July 28, 2009 Lab contributes computer modeling, antibody engineering capabilities Los Alamos, New Mexico, July 28, 2009- Los Alamos National Laboratory scientists will codirect a new National Center for Systems Biology located at the University of New Mexico in Albuquerque. The new Spatiotemporal Modeling Center (STMC) is funded by a $14.5 million, five- year grant from the National Institute for General Medical Sciences

  16. Site Safety and Health Plan (Phase 3) for the treatability study for in situ vitrification at Seepage Pit 1 in Waste Area Grouping 7, Oak Ridge National Laboratory, Oak Ridge, TN

    SciTech Connect (OSTI)

    Spalding, B.P.; Naney, M.T.

    1995-06-01

    This plan is to be implemented for Phase III ISV operations and post operations sampling. Two previous project phases involving site characterization have been completed and required their own site specific health and safety plans. Project activities will take place at Seepage Pit 1 in Waste Area Grouping 7 at ORNL, Oak Ridge, Tennessee. Purpose of this document is to establish standard health and safety procedures for ORNL project personnel and contractor employees in performance of this work. Site activities shall be performed in accordance with Energy Systems safety and health policies and procedures, DOE orders, Occupational Safety and Health Administration Standards 29 CFR Part 1910 and 1926; applicable United States Environmental Protection Agency requirements; and consensus standards. Where the word ``shall`` is used, the provisions of this plan are mandatory. Specific requirements of regulations and orders have been incorporated into this plan in accordance with applicability. Included from 29 CFR are 1910.120 Hazardous Waste Operations and Emergency Response; 1910.146, Permit Required - Confined Space; 1910.1200, Hazard Communication; DOE Orders requirements of 5480.4, Environmental Protection, Safety and Health Protection Standards; 5480.11, Radiation Protection; and N5480.6, Radiological Control Manual. In addition, guidance and policy will be followed as described in the Environmental Restoration Program Health and Safety Plan. The levels of personal protection and the procedures specified in this plan are based on the best information available from reference documents and site characterization data. Therefore, these recommendations represent the minimum health and safety requirements to be observed by all personnel engaged in this project.

  17. Brookhaven National Laboratory

    Broader source: Energy.gov [DOE]

    Site OverviewThe Brookhaven National Laboratory (BNL) was established in 1947 by the Atomic Energy Commission (AEC) (predecessor to U.S. Department of Energy [DOE]). Formerly Camp Upton, a U.S....

  18. Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    HISTORYThe Argonne National Laboratory (ANL) site is approximately 27 miles southwest of downtown Chicago in DuPage County, Illinois.  The 1,500 acre ANL site is completely surrounded by the 2,240...

  19. sandia national laboratory

    National Nuclear Security Administration (NNSA)

    %2A en Sandia National Laboratories http:nnsa.energy.govaboutusourlocationssandia

    Page...

  20. Los Alamos National Laboratory

    Broader source: Energy.gov [DOE]

    HISTORYLos Alamos National Laboratory (LANL) is located in Los Alamos County in north central New Mexico (NM). LANL, founded in 1943 during World War II as Project Y, served as a secret facility...

  1. Sandia National Laboratories

    Broader source: Energy.gov [DOE]

    The Sandia National Laboratories (SNL) is comprised of 2,820 acres within the boundaries of the 118 square miles Kirtland Air Force Base, and is located 6.5 miles east of downtown Albuquerque, New...

  2. Sandia National Laboratories:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prognostics Management System Reduces Offshore Wind O&M Costs | Department of Energy Sandia National Laboratories' Structural Health Monitoring and Prognostics Management System Reduces Offshore Wind O&M Costs Sandia National Laboratories' Structural Health Monitoring and Prognostics Management System Reduces Offshore Wind O&M Costs September 16, 2015 - 11:53am Addthis Offshore wind energy could potentially play a significant role in helping the United States obtain an energy

  3. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 million to local United Way organizations, other nonprofits November 18, 2010 LOS ALAMOS, New Mexico, November 18, 2010-Los Alamos National Laboratory employees have again demonstrated concern for their communities and those in need by pledging a record $1.5 million to United Way and other eligible nonprofit programs. Los Alamos National Security, LLC, which operates the Laboratory, plans to prorate its $1 million match among the selected nonprofit organizations, bringing the total donation to

  4. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    strategy for long-term environmental sustainability March 1, 2013 Blueprint for planning work activities with the environment in mind LOS ALAMOS, N.M., March 1, 2013-The Department of Energy and Los Alamos National Laboratory have developed a long-term strategy for environmental stewardship and sustainability that provides a blueprint for protecting the environment while accomplishing the Laboratory's national security missions. "This plan represents a significant amount of effort on the

  5. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory has been at the forefront of high-explosives research since the Manhattan Project in 1943. The science of high-explosive performance is central to stockpile stewardship. Yet, explosives science at the Laboratory isn't simply about maintaining and certifying the aging U.S. nuclear deterrent; it's also about developing novel applications of that science to other national security challenges. In 2015, Los Alamos executed more than 400 high-explosive-driven experiments

  6. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    record neutron beam at Los Alamos National Laboratory July 10, 2012 New method has potential to advance materials measurement LOS ALAMOS, New Mexico, July 10, 2012-Using a one-of-a-kind laser system at Los Alamos National Laboratory, scientists have created the largest neutron beam ever made by a short-pulse laser, breaking a world record. Neutron beams are usually made with particle accelerators or nuclear reactors and are commonly used in a wide variety of scientific research, particularly in

  7. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economic development in Northern New Mexico focus of new podcast from Los Alamos National Laboratory November 25, 2013 Podcast part of Lab's new multi-channel effort to better engage with the community LOS ALAMOS, N.M., Nov. 27, 2013-Podcasts and webinars are among the new communications tools being rolled out by Los Alamos National Laboratory's Community Programs Office to reach a broader audience. The first podcast discusses economic development and the Northern New Mexico 20/20 Campaign, a

  8. Sandia National Laboratories: Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Locations Locations Sandia California CINT photo A national and international presence Sandia operates laboratories, testing facilities, and offices in multiple sites around the United States and participates in research collaborations around the world. Sandia's executive management offices and larger laboratory complex are located in Albuquerque, New Mexico. Our second principal laboratory is located in Livermore, California. Although most of our 9,840 employees work at these two locations,

  9. National Energy Technology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Design Standards for the NETL Logo Feburary 2016 The Logo Display of the NETL logo is critical because this symbol represents who we are - it's our signature. Consistent application of the logo is crucial to the success of our identity. As the primary identifier of the National Energy Technology Laboratory, it is essential that the logo's appearance is consistent throughout all of the Laboratory's communications. Over time, consistent and repeated use of the logo will establish a

  10. Lawrence Livermore National Laboratory | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    About Us Our Operations Acquisition and Project Management M & O Support Department Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence ...

  11. Sandia National Laboratories beginnings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia National Laboratories beginnings focus of Los Alamos' 70th anniversary lecture March 6, 2013 LOS ALAMOS, N.M., March 6, 2013-Sandia National Laboratories historian Rebecca Ullrich discusses Sandia's transition from a Los Alamos division to an independent organization during a talk at 5:30 p.m., March 13 at the Bradbury Science Museum in Los Alamos. The talk is part of the Laboratory's 70th anniversary lecture series. Sandia Labs' origins are in Los Alamos' Z Division, the engineering

  12. ARGONNE NATIONAL LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARGONNE NATIONAL LABORATORY P. 0. Box 5207 Chicago 80, Ill. N U C W SHELL STRUCTURE AND 18-DECAY I. ODD A IVUCLEZ PI, G. Mayer and S . A. Moszkowski Argonne National Laboratory Chicago, I l l i n o i s m-4626 Physics & Mathematics L. W. Nordheim Duke University Durham, North Carolina ( A t present on Ieave a t the Los Alamos S c i e n t i f i c Laboratory, Los Alamos, New Mexfco) 1 1 . EVEN A NUCLEX L. W. Nordheim The study reported i n Part I was started independently by the Chicago and

  13. The Department of Energy's National Laboratories

    Office of Scientific and Technical Information (OSTI)

    THE DEPARTMENT OF ENERGY'S National Laboratories All National Laboratories Achievements History Argonne National Laboratory (ANL) Achievements History Brookhaven National ...

  14. IDAHO NATIONAL LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Idaho National Laboratory (INL) You are here: DOE-ID Home > Inside ID > Brief History Site History The Idaho National Laboratory (INL), an 890-square-mile section of desert in southeast Idaho, was established in 1949 as the National Reactor Testing Station. Initially, the missions at the INL were the development of civilian and defense nuclear reactor technologies and management of spent nuclear fuel. Fifty-two reactors—most of them first-of-a-kind—were built, including the Navy’s

  15. Los Alamos National Laboratory's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Los Alamos National Laboratory DE-AC52-06NA25396 Operated by Los Alamos National Security, LLC Conformed to Modification 0341 dated 02/29/2016 BASIC Contract (Official) Modifications (Official) Funding Mods Available Upon Request Conformed Contract (Unofficial) LANL Basic Contract dated 12/21/05 (pdf, 5,501KB) LANL A004 (8/11/06) (pdf, 501KB) LANL Conformed Contract (Conformed to to Modification 0341 dated 02/29/2016) LANL A008 (9/29/06) (pdf, 485KB) LANL A009

  16. SANDIA NATIONAL LABORATORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Impacts on Sandia and the Nation 2 SANDIA NATIONAL LABORATORIES 3 LDRD Impacts on Sandia and the Nation For further information, contact: Wendy R. Cieslak Senior Manager, Science, Technology, and Engineering Strategic Initiatives wrciesl@sandia.gov (505) 844-8633 or Henry R. Westrich LDRD Program Manager hrwestr@sandia.gov 505-844-9092 LDRD Impacts on Sandia and the Nation ABOUT THE COVER: Images from some of the case studies in this brochure: a near-UV light- emitting diode (LED), a cell

  17. Los Alamos National Laboratory A National Science Laboratory (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Los Alamos National Laboratory A National Science Laboratory Citation Details In-Document Search Title: Los Alamos National Laboratory A National Science Laboratory Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) Ensure the safety, security, and reliability of the US nuclear deterrent; (2) Protect against the nuclear threat; and (3) Solve Energy Security and other emerging national

  18. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Careers Education Community Diversity Directory Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne Safety Biosafety Safety Safety is integral to Argonne's scientific research and engineering technology mission. As a leading U.S. Department of Energy multi-program research laboratory, our obligation to the American people demands that we conduct our research and operations safely

  19. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Argonne National Laboratory and the U.S. Department of Energy (DOE) are very concerned about the well-being of all employees. Students at the undergraduate and graduate level as well as postdoctoral appointees form an essential component of the research endeavor at the laboratory. However, research does not stand alone but must be integrated into a program of environment, safety, and security. From time to time, incidents regarding students and postdocs occur across the DOE complex. It is

  20. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy environmental sustainability award October 14, 2010 LOS ALAMOS, New Mexico, October 14, 2010-Los Alamos National Laboratory recently received an Environmental Sustainability (EStar) award from the Department of Energy for integrating sustainable practices in its design for the Radiological Laboratory/ Utility/Office Building (RLUOB). The RLUOB is part of the Lab's Chemistry and Metallurgy Research Replacement (CMRR) Project. The Lab ultimately expects to achieve Leadership

  1. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 14, 2013 Value of up to $150 million over five years LOS ALAMOS, N.M., May 14, 2013-Los Alamos National Laboratory has awarded a master task order agreement in which three small businesses will compete for environmental work worth up to $150 million over five years. The businesses each have offices in northern New Mexico. The agreement is for technical services for the Laboratory's Environmental Programs directorate and includes work such as environmental engineering design, regulatory

  2. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32 teams received Pollution Prevention awards during an Earth Day awards ceremony on Wednesday, saving taxpayers $5.6 million while also reusing, recycling, re-tasking and re-routing waste. "The goal of the Laboratory's pollution prevention efforts is to reduce or eliminate waste whenever possible. The awards

  3. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32 teams received Pollution Prevention awards during an Earth Day awards ceremony on Wednesday, saving taxpayers $5.6 million while also reusing, recycling, re-tasking and re-routing waste. "The goal of the Laboratory's pollution prevention efforts is to reduce or eliminate waste whenever possible. The awards

  4. In Situ NDA Conformation Measurements Performed at Auxiliary Charcoal Bed and Other Main Charcoal Beds After Uranium Removal from Molten Salt Reactor Experiment ACB at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Haghighi, M. H.; Kring, C. T.; McGehee, J. T.; Jugan, M. R.; Chapman, J.; Meyer, K. E.

    2002-02-26

    The Molten Salt Reactor Experiment (MSRE) site is located in Tennessee, on the U.S. Department of Energy (DOE) Oak Ridge Reservation (ORR). The MSRE was run by Oak Ridge National Laboratory (ORNL) to demonstrate the desirable features of the molten-salt concept in a practical reactor that could be operated safely and reliably. It introduced the idea of a homogeneous reactor using fuel salt media and graphite moderation for power and breeder reactors. The MSRE reactor and associated components are located in cells beneath the floor in the high-bay area of Building 7503. The reactor was operated from June 1965 to December 1969. When the reactor was shut down, fuel salt was drained from the reactor circuit to two drain tanks. A ''clean'' salt was then circulated through the reactor as a decontamination measure and drained to a third drain tank. When operations ceased, the fuel and flush salts were allowed to cool and solidify in the drain tanks. At shutdown, the MSRE facility complex was placed in a surveillance and maintenance program. Beginning in 1987, it was discovered that gaseous uranium (U-233/U-232) hexafluoride (UF6) had moved throughout the MSRE process systems. The UF6 had been generated when radiolysis in the fluorine salts caused the individual constituents to dissociate to their component atoms, including free fluorine. Some of the free fluorine combined with uranium fluorides (UF4) in the salt to produce UF6. UF6 is gaseous at slightly above ambient temperatures; thus, periodic heating of the fuel salts (which was intended to remedy the radiolysis problems) and simple diffusion had allowed the UF6 to move out of the salt and into the process systems of MSRE. One of the systems that UF6 migrated into due to this process was the offgas system which is vented to the MSRE main charcoal beds and MSRE auxiliary charcoal bed (ACB). Recently, the majority of the uranium laden-charcoal material residing within the ACB was safely and successfully removed using the uranium deposit removal system and equipment. After removal a series of NDA measurements was performed to determine the amount of uranium material remaining in the ACB, the amount of uranium material removed from the ACB, and the amount of uranium material remaining in the uranium removal equipment due to removal activities.

  5. Oak Ridge shoppers | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shoppers Oak Ridge shoppers Oak Ridge shoppers in a crowded grocery store

  6. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On a broad mesquite plain in central New Mexico, a small crew fits a metal cylinder into a rocket the size of a baseball bat, then slips the rocket onto guide rods on a platform. A "Los Alamos" logo on the fuselage certifies this launch as official science by the world-famous national laboratory, not a weekend outing with the kids. Bryce Tappan and a handful of scientists, engineers, and students from Los Alamos National Laboratory and New Mexico Tech stand back as another crew member

  7. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Around 10 a.m. Pyongyang Time on Wednesday, January 6, 2016, seismic analysts around the world picked up something unusual-a 5.1-magnitude seismic event in the northeast corner of North Korea. Earthquakes of this size aren't common on the Korean Peninsula, which likely meant the violent shaking was caused by something else: an explosion. Enter Los Alamos National Laboratory. Los Alamos isn't just in the business of developing, testing, and maintaining explosives. A

  8. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous devices teams showcase skills at Robot Rodeo June 24-27 June 18, 2014 Bomb squads compete in timed scenarios at Los Alamos National Laboratory LOS ALAMOS, N.M., June 19, 2014-Hazardous devices teams from around the Southwest will wrangle their bomb squad robots at the eighth annual Robot Rodeo beginning Tuesday, June 24 at Los Alamos National Laboratory. "The Robot Rodeo gives bomb squad teams the opportunity to practice and hone their skills in a lively but low-risk

  9. Transportation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation From modeling and simulation programs to advanced electric powertrains, engines, biofuels, lubricants, and batteries, Argonne's transportation research is vital to the development of next-generation vehicles. Revolutionary advances in transportation are critical to reducing our nation's petroleum consumption and the environmental impact of our vehicles. Some of the most exciting new vehicle technologies are being ushered along by research conducted at Argonne National Laboratory.

  10. Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalysis Partnerships Licensing Sponsored Research Technical Services Technologist in Residence News Press Releases Feature Stories In the News Photos Videos Ombudsman Ombudsman Argonne National Laboratory Technology Development and Commercialization About Technologies Available for Licensing Capabilities Partnerships News Capabilities Catalysis Capabilities Argonne offers a wide range of R&D capabilities that collaborators from private industry, federal agencies, and state and local

  11. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mentoring Blog Postdoctoral Programs Lab-Corps Program Life at Argonne Benefits Education Community Diversity Directory Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne Careers Apply for a Job External Applicants Internal Applicants Postdoctoral Applicants Fellowships Students Faculty Programs Why Argonne Your Career Leadership Development Mentoring Mentoring Blog Postdoctoral

  12. National Laboratory Contacts

    Broader source: Energy.gov [DOE]

    Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge transportation research occurs at these facilities, funded by both DOE and cooperative research and development agreements (CRADAs) with industry

  13. Oak Ridge Construction | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System Supplier Profile PIA, Oak ridge Operations Office | Department of Energy Associated Universities Procurement Questionnaire Application System Supplier Profile PIA, Oak ridge Operations Office Oak Ridge Associated Universities Procurement Questionnaire Application System Supplier Profile PIA, Oak ridge Operations Office Oak Ridge Associated Universities Procurement Questionnaire Application System Supplier Profile PIA, Oak ridge Operations Office PDF icon Oak Ridge Associated

  14. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pledge $2.17 million in 2015 giving campaign November 25, 2014 More than 250 nonprofits, social service providers will benefit LOS ALAMOS, N.M., Nov. 25, 2014-The work of more than 250 community and social service organizations will benefit from the more than $2.17 million pledged by Los Alamos National Laboratory employees to United Way and other nonprofits during the Laboratory's 2015 Employee Giving Campaign. "We are proud to help the many community focused non-profit organizations

  15. Oak Ridge National Laboratory Environmental Management Portfolio...

    Office of Environmental Management (EM)

    Ridge Office of Environmental Management (OREM) East Tennessee Technology Park Portfolio Plan Jim Kopotic Portfolio Federal Project Director East Tennessee Technology Park...

  16. Oak Ridge National Laboratory Environmental Management Portfolio...

    Office of Environmental Management (EM)

    gas handling equipment and 250 ft stack Miles of underground piping and underground tanks Radioactive liquid processing equipment and facilities Contaminated soils ...

  17. Oak Ridge National Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Barriers Geothermal Properties Measurement Tool Market Acceptance of Advanced Automotive Technologies Model (MA3T) Consumer Choice Model ORNL Weatherization Program...

  18. Oak Ridge National Laboratory (ORNL): Industrial Collaborations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Nanoscale Characterization, Advanced Microscopy, and In-Situ Diagnosics Collaborators 6 ... durability through world-class microscopy and chemical analysis capabilities. * ...

  19. Oak Ridge National Laboratory Environmental Management Portfolio...

    Office of Environmental Management (EM)

    challenges * More than 20 million pounds of mercury were used in early processing of lithium; over 700,000 pounds suspected to have been released to the environment * Four large...

  20. Oak Ridge National Laboratory Site Office Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  1. Analysis Activities at Oak Ridge National Laboratory

    Broader source: Energy.gov [DOE]

    Presentation on ORNL’s analysis activities to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  2. Oak Ridge National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    However, amid the modern infrastructure are numerous old, contaminated buildings and ... groundwater at ORNL. Ultimately, the end-state for EM's work at the site is to meet ...

  3. Oak Ridge National Laboratory- Neutron Imaging

    Broader source: Energy.gov [DOE]

    Characterizing flow through fractures is critical towards understanding dominant flow processes before, during, and after stimulation of an enhanced geothermal system (EGS) reservoir. Directly...

  4. OAK RIDGE NATIONAL LABORATORY RESULTS OF RADIOLOGICAL

    Office of Legacy Management (LM)

    - Field Survey Supervisor Survey Team Members E. T. Loy R. S. Ray C. N. Smith R. R. Smith Work performed as part of the RADIOLOGICAL SURVEY ACTIVITIES PROGRAM Prepared by ...

  5. Energy Programs at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Sheffield, J.

    1999-05-11

    Energy availability in a country is of great importance to its economy and to raising and maintaining its standard of living. In 1994, the United States consumed more than 88 quadrillion Btu (quads) of energy and spent about $500 billion on fuels and electricity. Fortunately, the United States is well endowed with energy sources, notably fossil fuels, and possesses a considerable nuclear power industry. The United States also has significant renewable energy resources and already exploits much of its hydropower resources, which represent 10% of electricity production. Nevertheless, in 1994, the United States imported about 45% of the petroleum products it consumed, equivalent to about 17 quads of energy. This dependence on imported oil puts the country at risk of energy supply disruptions and oil price shocks. Previous oil shocks may have cost the country as much as $4 billion (in 1993 dollars) between 1973 and 1990. Moreover, the production and use of energy from fossil fuels are major sources of environmental damage. The corresponding situation in many parts of the world is more challenging. Developing countries are experiencing rapid growth in population, energy demand, and the environmental degradation that often results from industrial development. The near-term depletion of energy resources in response to this rapid growth runs counter to the concept of ''sustainable development''--development that meets the needs of today without compromising the ability of future generations to meet their own needs. Energy research and development (R&D) to improve efficiency and to develop and deploy energy alternatives may be viewed, therefore, as an insurance policy to combat the dangers of oil shocks and environmental pollution and as a means of supporting sustainable development. These considerations guide the energy policy of the United States and of the U.S. Department of Energy (DOE). In its strategic plan, DOE identifies the fostering of ''a secure and reliable energy system that is environmentally and economically sustainable'' as the first component of its mission. The strategic goal established for energy resources, identified as one of DOE's four businesses, is for ''the Department of Energy and its partners [to] promote secure, competitive, and environmentally responsible energy systems that serve the needs of the public.'' DOE has also identified four strategic goals for its programs in energy resources: (1) strengthening the economy and raising living standards through improvements in the energy field; (2) protecting the environment by reducing the adverse environmental impacts associated with energy production, distribution, and use; (3) keeping America secure by reducing vulnerabilities to global energy market shocks; and (4) enhancing American competitiveness in a growing world energy market.

  6. Oak Ridge National Laboratory Technology Marketing Summaries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Find More Like This Spatially Resolved Quantitative ... for quantitative mapping of polymeric materials. This technique probes thermomechanical properties and phase ...

  7. Researcher, Sandia National Laboratories | National Nuclear Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Award: Fellow of the Institute of Electrical & Electronics Engineers (IEEE) Profile: Paul Dodd, a Sandia National Laboratories researcher, has been named a Fellow...

  8. Lawrence Livermore National Laboratory | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Lawrence Livermore National Laboratory (LLNL) is a design laboratory that is responsible for the safety and reliability of the nuclear explosives package in nuclear weapons. It ...

  9. Oak Ridge Removes Laboratory's Greatest Source of Groundwater...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Oak Ridge completes field work on Recovery Act-projects Employees at Oak Ridge are accelerating work at K-25's East Wing. Sixty percent of the remaining structure is expected to be ...

  10. Laboratory Graduate Research Appointment | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Graduate Research Program Perform your thesis research among the best and the brightest at Argonne National Laboratory. About the Program Laboratory Graduate Research (Lab Grad) appointments are available to qualified U.S. university graduate students who wish to carry out their thesis research at Argonne National Laboratory under co-sponsorship of an Argonne staff member and a faculty member. The university sets the academic standard and awards the degree. The participation of the

  11. Sandia National Laboratories: Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agreements Agreements We have transferred technology to the commercial sector for more than three decades, and make it possible for partners to access our world-class science, people, and infrastructure. Sandia National Laboratories has a robust technology transfer mission that is facilitated by several types of agreements. In compliance with the various statutory and administrative requirements, Sandia provides its expertise, technology and capabilities for benefit of the United States economy

  12. Sandia National Laboratories: Strategy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Top Strategy Vision, Mission, and Values Strategic Framework Strategic Objectives and Crosscuts About Strategy Scientist Welcome to our FY16-FY20 Strategic Plan, which both reflects our continued dedication to the work we do and reinforces the importance of the integrated Laboratories' strategic framework to our future. This plan is the result of the leadership team's journey over the past few years in response to the needs of our nation. In an external environment that continues to change,

  13. Argonne National Laboratory

    Office of Environmental Management (EM)

    Are You Keeping Warm This Winter? Are You Keeping Warm This Winter? January 23, 2013 - 4:33pm Addthis An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. An efficient heater can save money and energy while keeping you warmer. | Photo by Dennis Schroeder, NREL 20288. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? Get an energy audit and learn about your heating options to warm your home while

  14. National Renewable Energy Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Because original equipment manufacturer (OEM) vehicles designed to run on compressed natural gas (CNG) and liquefied petroleum gas (LPG) have only been available in limited models in past years, many fleets have had to rely on conversions as a source for alternative fuel vehicles (AFVs). The Federal fleet is no different-so far it has converted approximately 900 vehicles to CNG or LPG, providing the National Renewable Energy Laboratory (NREL) with an opportunity to test a variety of conversion

  15. News | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BROCHURES & NEWSLETTERS CNM Overview Brochure CNM Fact Sheet News Research Highlights Researchers from Argonne National Laboratory developed a first-principles-based, variable-charge force field that has shown to accurately predict bulk and nanoscale structural and thermodynamic properties of IrO2. Catalytic properties pertaining to the oxygen reduction reaction, which drives water-splitting for the production of hydrogen fuel, were found to depend on the coordination and charge transfer at

  16. Sandia National Laboratories Problem

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia National Laboratories Problem Natural disasters such as Hurricane Katrina in New Orleans and the tsunami in Japan in 2011 create emergency situations that must be dealt with quickly and effectively in order to minimize injury and loss of life. Simulating such events before they occur can help emergency responders fine-tune their preparations. To create the most accurate modeling scenarios, exercise planners need to know critical details of the event, such as infrastructure damage and

  17. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4th Hazmat Challenge July 22, 2010 Competition tests skills of hazardous materials response teams LOS ALAMOS, New Mexico, July 22, 2010-Fourteen hazardous materials response teams from New Mexico and Oklahoma will test their skills at the 14th annual Hazmat Challenge July 27-30 sponsored by Los Alamos National Laboratory. The challenge provides hazardous materials responders the opportunity to network and learn new techniques under realistic conditions in a safe environment. Held at the

  18. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    describes storm damage to environmental monitoring stations, canyons September 18, 2013 Stations supporting Santa Fe water utility returned to service LOS ALAMOS, N.M., Sept. 20, 2013 - Hours after a disaster declaration by Los Alamos County, Los Alamos National Laboratory officials on Friday described "millions" of dollars in damage to environmental monitoring stations, monitoring wells, access roads and badly eroded canyon bottoms. - 2 - "Last week we experienced an epic

  19. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 23, 2013 Value of up to $400 million over five years LOS ALAMOS, N.M., Sept. 23, 2013-Los Alamos National Laboratory has awarded master task order agreements to three small businesses for environmental support services work worth up to $400 million within a five-year period. The businesses were selected based on a technical proficiency and lowest price basis. The companies-Terranear PMC, Navarro Research and Engineering, Inc. and Portage, Inc.-were chosen from 11 prospective bidders.

  20. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    second Presidential Award as a climate champion December 8, 2015 LOS ALAMOS, N.M., Dec. 8, 2015-In recognition of their proactive commitment to protecting the environment of Northern New Mexico from the potential impacts of a changing climate, a consortium of Los Alamos National Laboratory's federal and contractor staff received the GreenGov Presidential Award on Nov. 30. "We recognized the need for a different approach after a devastating wildfire and a series of impactful environmental

  1. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2015 Films of the U.S. atmospheric nuclear tests provide breathtaking reminders of the power of nuclear weapons. Now a new project is salvaging and mining these deteriorating films for fresh-and crucial- scientific data about the weapons' yields. To understand why Lawrence Livermore National Laboratory nuclear weapons physicist Greg Spriggs is spearheading, in partnership with Los Alamos, an urgent search-and-rescue mission to salvage several thousand films documenting U.S. atmospheric

  2. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Lawrence Livermore National Laboratory's weapon-physicist Greg Spriggs, leader of the Film Scanning and Reanalysis Project, the work has become a search-and-rescue mission. He has to find thousands of scientific test films and digitize them before they deteriorate beyond usefulness. Lost and Found Old and imprecise records told Spriggs how many original films there were, but not where they were. In fact, they were stored in several different archives. He has now found most of them at

  3. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ii Judicial Science School * Los Alamos National Laboratory * UCSD Jacobs School of Engineering Foreword Scientific evidence is introduced in our courts with increasing frequency and greater complexity, which requires judges to have a better understanding of science. Preparing judges to competently rule on the admissibility of scientific evidence represents a new challenge in judicial education. The role of uncertainty in science requires special attention. What better way to educate judges

  4. Videos | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Releases Feature Stories Science Highlights In the News Fact Sheets and Other Publications Photos Videos Events About Us Intranet About Us Intranet Argonne National Laboratory Computing, Environment and Life Sciences Organizations Facilities and Institutes News Events News Press Releases Feature Stories Science Highlights In the News Fact Sheets and Other Publications Photos Videos Videos Browse By - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles

  5. Students | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply for a Job Connect with Argonne LinkedIn Facebook Twitter YouTube Google+ More Social Media » Students Interested in exploring what it would be like to work at a national laboratory? If you are a student in science, technology, engineering or math, you can find out more at Argonne. Through summer and school semester research opportunities, you can discover what being an innovative, groundbreaking scientist or engineer means. Learn More Pre-College Research Participation Program Internship

  6. Contract | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne's Prime Contract is the contract between the U.S. Department of Energy and UChicago Argonne, LLC that sets out the terms and conditions for the operation of Argonne National Laboratory. Please direct general comments and questions about the Argonne Prime Contract to William Luck. Navigation Tips Listed below are tips on navigating through the Argonne Prime Contract. The navigation menu contains the currently available options. Select the main Argonne Prime Contract at any time to return

  7. Awards | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards Each year, Argonne National Laboratory and many of its world-class scientists and engineers are recognized for their outstanding talents and the innovative technologies they develop with their research teams and in association with industry partners. Argonne researchers have received or been recognized by: R&D 100 Awards: Each year, R&D Magazine recognizes the 100 most technologically significant new products of the last year. The competition has two purposes: to recognize

  8. National Security Science | Los National Alamos Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this Issue (pdf) In 2012 NSS received an NNSA Defense Programs AWARD OF EXCELLENCE National Security Science Mail Stop A142 Los Alamos National Laboratory Los Alamos, NM...

  9. Sandia National Laboratories | National Nuclear Security Administratio...

    National Nuclear Security Administration (NNSA)

    nuclear weapons Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge Sandia National Laboratories chemist Mark Allendorf, shown here at...

  10. Manager, Sandia National Laboratories | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Novak Role: Manager, Sandia National Laboratories Award: University of New Mexico's Anderson School of Management's Hall of Fame Inductee Profile: Jim Novak from Sandia National...

  11. Sandia National Laboratories: Sandia National Laboratories: Tonopah...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tonopah Test Range Tonopah Tonopah Test Range (TTR) is the testing range of choice for all national security missions. Sandia conducts operations at TTR in support of the...

  12. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    SciTech Connect (OSTI)

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  13. Early Oak Ridge Trailer Home | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Early Oak Ridge Trailer Home A typical trailer home

  14. ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne, Illinois 60439

    Office of Legacy Management (LM)

    07 - 76 ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue, Argonne, Illinois 60439 ACTION DESCRIPTION MEMORANDUM INTERIM CLEANUP OF CONTAMINATED MATERIALS FROM BUILDING 3 AT THE UNIVERSAL CYCLOPS SITE, ALIQUIPPA, PENNSYLVANIA by Energy and Environmental Systems Division October 1988 work supported by U.S. DEPARTMENT OF ENERGY Oak Ridge Operations Technical Services Division Oak Ridge,/Tennessee CONTENTS 1 SUMMARY ............................................ ............. 1 2 STTE DSCRIPTION AND

  15. National Laboratory]; Chertkov, Michael [Los Alamos National...

    Office of Scientific and Technical Information (OSTI)

    Chertkov, Michael Los Alamos National Laboratory Construction and Facility Engineering; Energy Conservation, Consumption, & Utilization(32); Energy Planning, Policy, &...

  16. Management Council | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Illinois at Urbana-Champaign Vice Chancellor for Research Professor of Physics Web Site Harry Weerts Harry Weerts Argonne National Laboratory Interim Associate Laboratory Director...

  17. National Labs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oak Ridge National Laboratory's Building Technologies Research and Integration Center (BTRIC) Windows Lawrence Berkeley National Laboratory's Windows & Daylighting Group Building ...

  18. Sandia National Laboratories:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LabNews Topics Issues Image Gallery Search Icon Photo credit: Jean-Pol Grandmont/Wikimedia Creative Commons Facebook Twitter YouTube Flickr RSS News LabNews - April 28, 2016 Articles Lessons from cow eyes Better flat-panel displays Sandia named a top employer for Native STEM professionals Cold War Warriors Good neighbors Getting better all the time Under the sun Sandia needs 'Zero Heroes' to meet 2025 goal Contact Us Download PDF Videos Exc Sandia National Laboratories Exceptional service in the

  19. Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Xyce(tm) 4.0.2 1 Xyce(tm) 4.0.2 2 Sandia National Laboratories P.O. Box 5800 Albuquerque, NM 87185 Eric R. Keiter Phone: 505-284-6088 Fax: 505-284-5451 erkeite@sandia.gov AFFIRMATION: I affirm that all information submitted as a part of, or supplemental to, this entry is a fair and accurate representation of this product. ____________________________________________ Eric R. Keiter No Xyce(tm) 4.0.2. Xyce 4.0.2 is a massively parallel analog circuit simulator. While designed to be compatible with

  20. Pacific Northwest National Laboratory

    Broader source: Energy.gov [DOE]

    The Newberry Geothermal Energy team seeks to establish the FORGE site at Newberry Volcano. The region surrounding the proposed site, along with its geothermal and EGS potential, was previously explored and researched by participating members of the Newberry Geothermal Energy team, and the understanding and data gathered with those efforts provide the scientific foundation for establishing a potential FORGE site. The team brings together the scientific research and management experience of the Pacific Northwest National Laboratory with the research, educational, and outreach experience of Oregon State University, and the industry and EGS experience of AltaRock Energy, Inc.

  1. S ARGONNE NATIONAL LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARGONNE NATIONAL LABORATORY 19 ON CLOSED SHEIIS IN NUCLEI. II Maria G. Mayer April., 1949 Feenberg (1) ' (2) and Nordlkeim (3) have used the spins and magnetic moments of the even-odd nuclei to determine the angular momentum of the eigenfunction of the odd particle. The tabulations given by them indi- cate that spin orbit coupling favors the state of higher total angular momentum, If - strong spin.orbit coupling' increasing with angular mom- entum is assumed, a level assignment encounters a very

  2. ARGONNE NATIONAL LABORATORY

    Office of Legacy Management (LM)

    7/ ARGONNE NATIONAL LABORATORY 9700 Sod CASS AVENUE, A~o~NE, llhois 60439 oh/, lb w- /7 T-E 312/972-3322 e-,/f pa, / =i ' 4 /2 August 21, 1984 MI-. 3' (it+ ipj Aerospace Corporation Suite 4000 955 L'Enfant Plaza S. W. Washington, D.C. 20024 Dear Mr. Wallo: Subject: Aerospace Records Search Reference: 1. Letter, H. J. Rauch to A. Schriesheim, dated July 30, 1984, subject same as above. 2. Letter, J. E. Baublitz to R. M. Moser, dated July 19, 1984, subject same as above. In accordance with the

  3. Idaho National Laboratory April

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Idaho National Laboratory April 24, 2015 CCN 235661 Mr. Jeffrey C. Fogg DOE-ID Contracting Officer U.S. Department of Energy Idaho Operations Office (DOE-ID) 1955 Fremont Avenue Idaho Falls, ID 83415-1221 SUBJECT: Contract No. DE-ACO7-051D14517 - Battelle Energy Alliance, LLC Response to Department of Energy, Idaho Operations Office Request for Information to Support Supplement Analysis of Proposed Commercial Fuel Research and Development Efforts Reference: J. C. Fogg letter to D. M. Storms,

  4. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resumes transuranic waste shipments April 2, 2014 Shipments keep Lab on track to complete 3706 Campaign on schedule LOS ALAMOS, N.M., April 2, 2014-Los Alamos National Laboratory resumed shipments of transuranic waste yesterday from Technical Area 54 Area G. The shipments are part of an accelerated shipping campaign to remove 3,706 cubic meters of transuranic waste stored aboveground at Area G by June 30, 2014. Nearly 3,200 cubic meters of the waste have already been removed since the 3706

  5. Environmental Protection | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    emissions. Environment Argonne National Laboratory is helping our nation build an economy based on renewable energy, a reduced carbon footprint and freedom from foreign...

  6. Nanophotonics at Sandia National Laboratories.

    SciTech Connect (OSTI)

    McCormick, Frederick Bossert

    2008-10-01

    Sandia National Laboratories is leveraging the extensive CMOS, MEMS, compound semiconductor, and nanotechnology fabrication and test resources at Sandia National Laboratories to explore new science and technology in photonic crystals, plasmonics, metamaterials, and silicon photonics.

  7. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Defense Systems & Assessments: Accomplishments Top Archives About Defense Systems & Assessments Program Areas Accomplishments Archives Cybersecurity Programs Archives Sandia's scientists and engineers have a significant impact on national security and continually deliver results. View our previous accomplishments: 2011 Archives: View our 2011 Accomplishments 2010 Archives: View our 2010 Accomplishments

  8. National Laboratory Contacts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Contacts National Laboratory Contacts The Geothermal Technologies Office works closely with several DOE national laboratories in managing and contributing to research and development projects. Below are the primary contacts at these laboratories. Laboratory Name Idaho National Laboratory Greg Mines, Lead Manager Lawrence Berkeley National Laboratory Mack Kennedy, Lead Scientist Lawrence Livermore National Laboratory Jeff Roberts, Lead Scientist National Renewable Energy Laboratory Tom

  9. Occupational Medicine - Assistant PIA, Idaho National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National ...

  10. ___________________ BROOKHAVEN NATIONAL LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ___________________ BROOKHAVEN NATIONAL LABORATORY I B ASSOCIATED UNIVERSITlEa INC. Upton, Long Island, N ew York 11973 ( 5 1 6 )2 8 2 \ 3416 Biology D eportm ent FTS 666 ^ « ^ C t L U t / u T o P T H C I I ^ J a n u a r y 1 4 , 1983 ^ D r. D avid A. S m itli H e a l th E f f e c t s R e s e a rc h O f f ic e o f H e a l th and E n v iro n m e n ta l R e s e a rc h Room F -2 0 9 , E R -72, GTN D e p a rtm e n t o f E n erg y W a sh in g to n , D. C. 20545 D ear D ave: E n c lo s e d i s a copy

  11. Lawrence Berkeley National Laboratory | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    The solar power system installed at Lawrence Livermore National Laboratory (LLNL) is now ... Solar power purchase for DOE laboratories WASHINGTON D.C. -- The U.S. Department of ...

  12. Trailer homes in Oak Ridge | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Traffic Safety Traffic Safety Addthis Description Traffic safety promotion video

    Trailer homes in Oak Ridge Trailer homes in Oak Ridge An aerial of Oak Ridge showing the extensive use of trailer homes

  13. Sandia National Laboratories: Laboratories' Strategic Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Framework Vision, Mission, and Values Strategic Framework Mission Areas Laboratories Foundation Strategic Objectives and Crosscuts About Strategic Framework strategic framework Sandia continues to be engaged in the significant demands of the nation's nuclear weapons modernization program while conducting a whole range of activities in broader national security. The Laboratories' strategic framework drives strategic decisions about the totality of our work and has positioned our

  14. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Tribology Laboratory Transportation Beamline at the Advanced Photon Source...

  15. Sandia National Laboratories | National Nuclear Security Administratio...

    National Nuclear Security Administration (NNSA)

    Two individuals and nine teams received the NNSA Defense Programs Awards of Excellence at ceremonies this year at Sandia National Laboratories in New Mexico and California. The ...

  16. Researcher, Sandia National Laboratories | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Laboratories Award: Fellow of the American Association for the Advancement of Science Profile: Sandia researchers David Haaland and David Myers have been elected Fellows...

  17. Lawrence Livermore National Laboratory | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Life Extension Program Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge SOLAR POWER PURCHASE FOR DOE LABORATORIES More about LLNL...

  18. Previous Sandia National Laboratories | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home About Us Our Operations Acquisition and Project Management M & O Support Department Sandia National Laboratories ...

  19. DOE's Oak Ridge and Lawrence Berkeley National Labs Join with...

    Broader source: Energy.gov (indexed) [DOE]

    (ORNL) and Lawrence Berkeley National Laboratory (LBNL) have joined with Dow Chemical Company as part of a Cooperative Research and Development Agreement to fund key ...

  20. DOE Awards $6.3 Billion Contract Extension for Oak Ridge National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory | U.S. DOE Office of Science (SC) DOE Awards $6.3 Billion Contract Extension for Oak Ridge National Laboratory News News Home Featured Articles Science Headlines 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 12.01.05 DOE Awards $6.3 Billion

  1. EIS-0305: Treating Transuranic (TRU)/Alpha Low-Level at the Oak...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transuranic (TRU)Alpha Low-Level at the Oak Ridge National Laboratory, Oak Ridge, Tennessee EIS-0305: Treating Transuranic (TRU)Alpha Low-Level at the Oak Ridge National ...

  2. Sandia National Laboratories Contract Competition | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Sandia National Laboratories Contract Competition Welcome to the National Nuclear Security Administration's website for the Sandia National Laboratories (SNL) M&O Contract Competition. SNL is a Federally Funded Research and Development Center (FFRDC) and is responsible for non-nuclear engineering development of all U.S. nuclear weapons and for systems integration of the nuclear weapons with their delivery vehicles. SNL's national security responsibilities include

  3. Sandia National Laboratories | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Sandia National Laboratories NNSA hosts international CTBT on-site inspection experts at Nevada National Security Site This month, NNSA hosted a Comprehensive Nuclear-Test-Ban Treaty (CTBT) on-site inspection activity at the Nevada National Security Site (NNSS). For the first time, CTBT surrogate inspectors and other inspection experts were able to visit NNSS, a former nuclear explosive test site that now supports... Sandia National Laboratories Contract Process Announced WASHINGTON (May 18,

  4. Chemist, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Chemist, Sandia National Laboratories Jerilyn Timlin Jerilyn Timlin October 2009 National Institutes of Health (NIH) New Innovator Award Jerilyn Timlin, a chemist at Sandia National Laboratories, has been presented by the National Institutes of Health (NIH) with a New Innovator Award, one of 55 such awards granted by the NIH this year. The award encourages researchers to explore bold ideas that have the potential to catapult fields forward and speed the translation of research

  5. National Laboratory]; Kim, Young Jin [Los Alamos National Laboratory...

    Office of Scientific and Technical Information (OSTI)

    EDM Abstract Not Provided Los Alamos National Laboratory (LANL) DOELANL United States 2014-11-05 English Conference Conference: Challenges of the worldwide experimental search...

  6. Los Alamos National Laboratory Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    way. Together, Los Alamos National Laboratory (LANL) and EMC, are enhancing, designing, building, testing and deploying new cutting-edge technologies in an effort to meet some of...

  7. Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration Lawrence Livermore National Lab Perforemance Evaluations FY 2016 FY 2016 Performance Evaluation Plan, Lawrence Livermore National Security, LLC FY 2015 FY 2015 Performance Evaluation Report, Lawrence Livermore National Security, LLC FY 2015 Performance Evaluation Report, Fee Determination Letter, Lawrence Livermore National Security, LLC FY 2015 Performance Evaluation Plan, Lawrence Livermore National Security, LLC FY 2014 FY 2014 Performance Evaluation Report,

  8. Sandia National Laboratory | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    fieldoffices Sandia National Laboratory NNSA's Sandia National Laboratories are responsible for the development, testing, and production of specialized nonnuclear components and quality assurance and systems engineering for all of the United States' nuclear weapons. Sandia has locations in Albuquerque, New Mexico; Livermore, California; Kauai, Hawaii; and Tonopah, Nevada. Sandia Field Office Contact the Field Office Contract Administration & Business Management Emergency Information

  9. leaves Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Milestone reached: Waste shipment leaves Los Alamos National Laboratory June 2, 2009 Remote-handled transuranic waste will go to WIPP LOS ALAMOS, New Mexico, June 2, 2009 - Los Alamos National Laboratory officials today announced the departure of the Laboratory's first shipment of a special type of radioactive waste destined for the Waste Isolation Pilot Plant in Carlsbad, New Mexico. The material, known as "remote-handled transuranic waste" (RH-TRU), has been stored at the Laboratory

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration Los Alamos National Lab Performance Evaluations FY 2016 FY 2016 Performance Evaluation Plan, Los Alamos National Security, LLC FY 2015 FY 2015 Performance Evaluation Report, Los Alamos National Security, LLC FY 2015 Performance Evaluation Report, Fee Determination Letter, Los Alamos National Security, LLC FY 2015 Performance Evaluation Plan, Los Alamos National Security, LLC FY 2014 FY 2014 Performance Evaluation Report, Los Alamos National Security, LLC FY 2014 Performance

  11. Oak Ridge Facilities Construction | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Oak Ridge Environmental Management: 30 years in 30 minutes Oak Ridge Environmental Management: 30 years in 30 minutes Addthis

    Facilities ... Oak Ridge Facilities Construction Work in wet and mud was common during the construction of Oak Ridge facilities

  12. Early Oak Ridge Home | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Early Oak Ridge Home A typical dwelling predating the Manhattan Project homes

  13. Early Oak Ridge Trailer Homes | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Early Oak Ridge Trailer Homes A row of trailer homes used

  14. Social Media | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory's cover photo from Facebook More Breaking down barriers: Women in STEM careers Three Argonne National Laboratory researchers, each from a different country, talk about their paths to becoming... from Flickr More Top 10 tips on how to prevent cyber "break-ins" Mike Skwarek, Argonne National Laboratory's Cyber Security Officer, is an expert on how to protect yourself... from Flickr More Haidan Wen Argonne X-ray physicist Haidan Wen received a 2016 DOE Early

  15. Media Contacts | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media Contacts Matthew Howard Argonne National Laboratory Matthew Howard is Argonne's Director of Communications, Education and Public Affairs. Christopher J. Kramer Argonne National Laboratory Christopher J. Kramer is the manager of media relations and external affairs for Argonne. Contact him at 630-252-5580 or media@anl.gov. Tona Kunz Argonne National Laboratory Tona Kunz is a public information officer who covers X-ray science research at Argonne's Advanced Photon Source. Contact her at

  16. Nuclear recycling | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear recycling Pyroprocessing facilities 1 of 8 Pyroprocessing facilities Frances Dozier conducts pyroprocessing research inside a glovebox at Argonne National Laboratory....

  17. about Savannah River National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The EDM capability at the Savannah River National Laboratory (SRNL) is unique to the Savannah River Site. It allows for very fine, precise cutting of metal without destroying ...

  18. Los Alamos National Laboratory again

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the ninth consecutive year are the largest contributors to the United Way of Santa Fe County's annual giving campaign. Laboratory employees and Los Alamos National...

  19. Los Alamos National Laboratory again

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the eighth consecutive year are the largest contributors to the United Way of Santa Fe County's annual giving campaign. Laboratory employees and Los Alamos National...

  20. Energy Systems | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us For ES Employees Staff Directory Argonne National Laboratory Energy Systems Research Facilities Publications News Green delivery Major Chicago-based baking company sees ...

  1. Lisa Utschig | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lisa Utschig Chemist, Solar Energy Conversion Group BA, Cornell College PhD, Northwestern University Enrico Fermi Scholar, Argonne National Laboratory Primary Research Interests:...

  2. Sandia National Laboratories: Power Electronics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia National Laboratories is well-suited to understand both performance and reliability ... However, the long-term reliability of these materials must be studied before that becomes ...

  3. DEP Competitions | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    were young and our excitement in meeting new challenges knew no bounds." -Sydney Brenner, 2002 Nobel Prize Winner Argonne National Laboratory has been tasked with solving...

  4. NATIONAL RENEWABLE ENERGY LABORATORY Outline

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NATIONAL RENEWABLE ENERGY LABORATORY Outline 3 * Water scarcity and resources in the US * Desalination technologies * "GDsalt" decision support tool * Project status and ...

  5. Executive Committee | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Focus: Three-Dimensional Architectures at the ElectrodeElectrolyte Interface Web Site Paul Fenter Paul Fenter (ex-officio) Argonne National Laboratory Chemical...

  6. Robert Jacob | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Scientist Robert Jacob is a computational climate scientist in the Mathematics and Computer Science Division of Argonne National Laboratory and a Fellow in the...

  7. About Argonne | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in providing scientific and engineering solutions to the grand challenges of our time: sustainable energy, a healthy environment, and a secure nation. About Argonne A laboratory...

  8. About Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    successfully address some of this century's most significant challenges. Argonne National Laboratory leads the development of new ways of seeing materials by connecting techniques...

  9. User Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory is a premier user facility providing world-class expertise, instrumentation and infrastructure for interdisciplinary nanoscience and nanotechnology research....

  10. Physicist, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration Physicist, Lawrence Livermore National Laboratory Kennedy Reed Kennedy Reed July 2009 Presidential Award for Excellence in Science and Engineering Mentoring President Obama has named Lawrence Livermore National Laboratory physicist Kennedy Reed as a recipient of the prestigious Presidential Award for Excellence in Science and Engineering Mentoring. Reed is a theoretical physicist at the laboratory, conducting research on atomic collisions in high temperature plasmas.

  11. Los Alamos National Laboratory | National Nuclear Security Administrat...

    National Nuclear Security Administration (NNSA)

    Operations Acquisition and Project Management M & O Support Department Los Alamos National Laboratory Los Alamos National Laboratory Los Alamos National Laboratory ...

  12. National Security Facility (NSF) | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security Facility (NSF) National Security Facility (NSF) Argonne National Laboratory's National Security Facility (NSF) is a flexible, state-of-the-art secure user facility that contains multiple national security networks, video teleconference capability, high-resolution graphics support, a fully powered and cooled data center, multi-level training facilities, and conferencing facilities. The NSF provides tools and resources to enable and strengthen connections between government

  13. Sandia National Laboratories: About Sandia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Sandia Military Bio Fuel National security is our business. We apply science to help detect, repel, defeat, or mitigate threats. For more than 60 years, Sandia has delivered essential science and technology to resolve the nation's most challenging security issues. Sandia National Laboratories is operated and managed by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation. Sandia Corporation operates Sandia National Laboratories as a contractor for the U.S.

  14. CASL - Idaho National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The laboratory has designed and operated 52 test reactors, including EBR-1, the world's first nuclear power plant Key Contributions System safety analysis Multiscale fuel ...

  15. Leadership | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientific user facility in North America; and the Argonne Accelerator Institute. Harry Weerts Harry Weerts, Associate Laboratory Director, Physical Sciences and Engineering...

  16. Sandia National Laboratories:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    event Annual Exercise an earth-shaking activity Sandia President and Laboratories Director Jill Hruby Partnerships, mission synergy key to Sandia's future Sandia California...

  17. Los Alamos National Laboratory's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produced by current operations. LANL and regulatory agencies survey the air, soil, sediment, groundwater, and surface water around the Laboratory to make sure contaminants from...

  18. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and affirmative procurement accomplishments. The Laboratory also received a Department of Energy "E Star" award for its Environmental Management System project, based on a...

  19. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accomplishment," Deputy Laboratory Director and this year's campaign champion Ike Richardson said of this year's pledged - 2 - amount. "The LANL team raised 1.5 million, which...

  20. Sustainability | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability "Much of Argonne's cutting-edge research is dedicated to discovery and ... Argonne's Sustainability and Environmental Program embodies the laboratory's commitment to ...

  1. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory has awarded master task order agreements to three small businesses for environmental support services work worth up to 400 million within a five-year period....

  2. Employees | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    due to weather or other circumstances, assistance for working remotely, clubs and sports leagues, and many other topics of interest to the laboratory community. Quick...

  3. National Renewable Energy Laboratory's Energy Systems Integration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This ...

  4. Occupational Medicine - Assistant PIA, Idaho National Laboratory...

    Energy Savers [EERE]

    Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho...

  5. Independent Activity Report, Sandia National Laboratories - September...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 2012 Independent Activity Report, Sandia National Laboratories - September 2012 September 2012 Operational Awareness Oversight of Sandia National Laboratories HIAR ...

  6. Independent Oversight Inspection, Los Alamos National Laboratory...

    Energy Savers [EERE]

    Inspection, Los Alamos National Laboratory - January 2007 Independent Oversight Inspection, Los Alamos National Laboratory - January 2007 January 2007 Independent Oversight...

  7. Los Alamos National Laboratory Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory 14 15 Technology Transfer 2011-2012 Progress Report Technology Transfer 2011-2012 Progress Report In 2011, The National Institutes of Health awarded a five-year Models of Infectious Disease Agent Study (MIDAS) grant to a team of researchers from Los Alamos National Laboratory (LANL) and Tulane University. This team, lead by principal investigator Sara Del Valle, connects social media and epidemiological research in an attempt to predict people's social behavior and

  8. Sandia National Laboratories

    National Nuclear Security Administration (NNSA)

    feet underground.

    Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge http:www.nnsa.energy.govblogbay-area-national-labs-team-tackle-...

  9. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    participates in National Lab Day to increase awareness of science across the nation April 29, 2010 Events planned May 4-5 at Bradbury Science Museum LOS ALAMOS, New Mexico, April...

  10. Photos | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -Arms control & nonproliferation --Research reactor conversion -Biometrics -Biotechnology for national security -Cyber security -Facility security -Decision science ...

  11. Thomas Wallner | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory's Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Browse by Topic Energy Energy efficiency Vehicles Alternative fuels Automotive engineering Biofuels Diesel Fuel economy Fuel injection Heavy-duty vehicles Hybrid & electric vehicles Hydrogen & fuel cells Internal combustion Powertrain research Vehicle testing Building design Manufacturing Energy sources Renewable energy Bioenergy Solar energy Wind energy Fossil fuels Oil Nuclear energy Nuclear

  12. Xuedan Ma | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Xuedan Ma Assistant Scientist Education Ph.D. University of Hamburg Postdoc experience Center for Integrated Nanotechnologies, Sandia National Laboratories, 2015-2016 Center for Integrated Nanotechnologies, Los Alamos National Laboratories, 2012-2015 Research Summary Quantum optics of semiconductor nanomaterials Temperature dependent single molecule/particle optical spectroscopy and imaging Plasmonic and dielectric metamaterials; nanophotonics and nano-optics Biological imaging and sensing;

  13. Two Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory organizations receive Performance Excellence recognition from Quality New Mexico March 26, 2015 Laboratory is co-sponsor of QNM event in Albuquerque LOS ALAMOS, N.M., March 26, 2015-Los Alamos National Laboratory's Nuclear Material Control and Accountability Group and the Quality and Performance Assurance Division received 2014 Performance Excellence Recognition awards from Quality New Mexico and will be recognized at QNM's annual learning summit and awards ceremony April 7-8

  14. Los Alamos National Laboratory Institutes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Institutes The National Security Education Center has formed several institutes, each with a partner university or consortia of universities. The formation of these institutes serves the need for LANL to recruit new staff and provide educational opportunities that will enhance retention at the Laboratory. This is accomplished by:  Developing long-term collaborative relationships with universities whose research interests are important to the Laboratory. 

  15. DOE National Laboratories | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratories DOE National Laboratories + - Department of Energy National Laboratories Click on a National Laboratory to learn more. Hide Research Learn more about the Department of Energy's National Labs Visit this lab's site Click on a National Laboratory Employees Learn more about the Department of Energy's National Labs Visit this lab's site

  16. SNL Los Alamos National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration SNL Los Alamos National Laboratory

  17. Sandia National Laboratories: National Security Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons Defense Systems International, Homeland, & Nuclear Security Energy and Climate Facebook Twitter YouTube Flickr RSS Programs National Security Programs We strive to become the laboratory that the U.S. turns to first for technology solutions to the most challenging problems that threaten peace and freedom for our nation and the globe. At Sandia, national security is our business. We apply advanced science and engineering to help our nation and allies detect, repel, defeat, or

  18. Idaho National Laboratory

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28

    INL is the leading laboratory for nuclear R&D. Nuclear engineer Dr. Kathy McCarthy talks aobut the work there and the long-term benefits it will provide.

  19. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combined with the laboratory's state-of-the-art facilities has produced a wide variety of game-changing discoveries and inventions in fields as diverse as energy storage and...

  20. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science. Information about the teacher conference is available from the Laboratory's Scott Robbins of the Education and Postdoc Office at 667-3639 or srobbins@lanl.gov by e-mail...