Powered by Deep Web Technologies
Note: This page contains sample records for the topic "national lab ignites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Princeton Plasma Physics Lab - National Ignition Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

national-ignition-facility National Ignition Facility en Summary of Assessment of Prospects for Inertial Fusion Energy http:www.pppl.govnode1361

2

Delivering Innovations That Create Jobs: National Lab Ignites...  

Energy Savers (EERE)

agreements and license agreements. The program intends to accelerate the rate of technology transfer out of the Lab and into business. LLNL is partnering with the Keiretsu Forum,...

3

Delivering Innovations That Create Jobs:National Lab Ignites Business for Entrepreneurs  

Energy.gov (U.S. Department of Energy (DOE))

Tapping the entrepreneurial spirit of its Silicon Valley surroundings, Lawrence Livermore National Lab has a legacy that includes the launch of hundreds of successful companies. During just the past 20 years, five entrepreneurs from the Lab have founded four companies with a current market capitalization of $8.4 billion.

4

Groundbreaking at National Ignition Facility | National Nuclear...  

National Nuclear Security Administration (NNSA)

Ignition Facility May 29, 1997 Groundbreaking at National Ignition Facility Livermore, CA Secretary Pena participates in the ground breaking ceremony for the National Ignition...

5

National Ignition Facility & Photon Science  

NLE Websites -- All DOE Office Websites (Extended Search)

5 National Ignition Facility & Photon Science how do Lasers work? how Do Lasers work? A laser can be as small as a microscopic computer chip or as immense as the National Ignition...

6

June 11, 1999: National Ignition Facility  

Energy.gov (U.S. Department of Energy (DOE))

June 11, 1999Secretary Richardson dedicates the National Ignition Facility target chamber at DOE's Lawrence Livermore National Laboratory.

7

National Ignition Facility (NIF): Under Pressure: Ramp-Compression...  

NLE Websites -- All DOE Office Websites (Extended Search)

National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes Record American Fusion News Category: National Ignition Facility Link: National Ignition Facility (NIF):...

8

National Ignition Campaign Hohlraum Energetics  

SciTech Connect

The first series of experiments on the National Ignition Facility (NIF) [E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, 'The National Ignition Facility: ushering in a new age for high energy density science,' Phys. Plasmas 16, 041006 (2009)] tested ignition hohlraum 'energetics,' a term described by four broad goals: (1) Measurement of laser absorption by the hohlraum; (2) Measurement of the x-ray radiation flux (T{sub RAD}{sup 4}) on the surrogate ignition capsule; (3) Quantitative understanding of the laser absorption and resultant x-ray flux; and (4) Determining whether initial hohlraum performance is consistent with requirements for ignition. This paper summarizes the status of NIF hohlraum energetics experiments. The hohlraum targets and experimental design are described, as well as the results of the initial experiments. The data demonstrate low backscattered energy (< 10%) for hohlraums filled with helium gas. A discussion of our current understanding of NIF hohlraum x-ray drive follows, including an overview of the computational tools, i.e., radiation-hydrodynamics codes, that have been used to design the hohlraums. The performance of the codes is compared to x-ray drive and capsule implosion data from the first NIF experiments. These results bode well for future NIF ignition hohlraum experiments.

Meezan, N B; Atherton, L J; Callahan, D A; Dewald, E L; Dixit, S N; Dzenitis, E G; Edwards, M J; Haynam, C A; Hinkel, D E; Jones, O S; Landen, O; London, R A; Michel, P A; Moody, J D; Milovich, J L; Schneider, M B; Thomas, C A; Town, R J; Warrick, A L; Weber, S V; Widmann, K; Glenzer, S H; Suter, L J; MacGowan, B J; Kline, J L; Kyrala, G A; Nikroo, A

2009-11-16T23:59:59.000Z

9

COLLOQUIUM: In Pursuit of Ignition on the National Ignition Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Lawrence Livermore National Laboratory with the goal of igniting a propagating thermonuclear burn wave in DT fuel leading to energy gain (defined as fusion yieldinput laser...

10

The National Labs on Flickr | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flickr Flickr The National Labs on Flickr The interior of the National Ignition Facility target chamber at Lawrence Livermore National Laboratory. The service module carrying technicians can be seen on the left. The target positioner, which holds the target, is on the right. | Photo courtesy of Lawrence Livermore National Laboratory. The interior of the National Ignition Facility target chamber at Lawrence Livermore National Laboratory. The service module carrying technicians can be seen on the left. The target positioner, which holds the target, is on the right. | Photo courtesy of Lawrence Livermore National Laboratory. EXPLORE THE NATIONAL LABS ON FLICKR Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory

11

National Ignition Facility & Photon Science What  

NLE Websites -- All DOE Office Websites (Extended Search)

What is NiF? the national ignition Facility: bringing star Power to earth The National Ignition Facility (NIF) is the world's largest and highest energy laser system. NIF is an...

12

Heating National Ignition Facility, Realistic Financial Planning...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOEEIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic...

13

National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Labs National Labs Special Feature: National Security & Public Safety at the National Labs This month on energy.gov, learn how the National Labs are advancing the national security and public safety interests of the United States. Read more Top 10 Things You Didn't Know About Los Alamos National Laboratory From national security science to supercomputing, Los Alamos National Lab is leading the way in protecting the American public, countering global threats and solving emerging energy challenges. Read more Energetic Science and Piranha-Proof Armor Learn how Berkeley Lab's Advanced Light Source is revealing the unique structure of incredible, adaptable fish armor. Read more Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory From nuclear security to supercomputing, Lawrence Livermore National Lab is

14

National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Labs National Labs Special Feature: National Security & Public Safety at the National Labs This month on energy.gov, learn how the National Labs are advancing the national security and public safety interests of the United States. Read more Top 10 Things You Didn't Know About Los Alamos National Laboratory From national security science to supercomputing, Los Alamos National Lab is leading the way in protecting the American public, countering global threats and solving emerging energy challenges. Read more Energetic Science and Piranha-Proof Armor Learn how Berkeley Lab's Advanced Light Source is revealing the unique structure of incredible, adaptable fish armor. Read more Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory From nuclear security to supercomputing, Lawrence Livermore National Lab is

15

Groundbreaking at National Ignition Facility | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Groundbreaking at National Ignition Facility | National Nuclear Security Groundbreaking at National Ignition Facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Groundbreaking at National Ignition Facility Groundbreaking at National Ignition Facility May 29, 1997 Livermore, CA Groundbreaking at National Ignition Facility

16

Plastic ablator ignition capsule design for the National Ignition Facility  

SciTech Connect

This paper describes current efforts to develop a plastic ablator capsule design for the first ignition attempt on the National Ignition Facility. The trade-offs in capsule scale and laser energy that must be made to achieve ignition probabilities comparable to those with other candidate ablators, beryllium and high-density carbon, are emphasized. Large numbers of 1-D simulations, meant to assess the statistical behavior of the target design, as well as 2-D simulations to assess the target's susceptibility to Rayleigh-Taylor growth are discussed.

Clark, D S; Haan, S W; Hammel, B A; Salmonson, J D; Callahan, D A; Town, R J

2009-10-06T23:59:59.000Z

17

The National Ignition Facility and the Ignition Campaign  

E-Print Network (OSTI)

February 14-18, 2013 Debra A. Callahan Group Leader for ICF/IFE Target design Lawrence Livermore National(atm-s) Indirect drive on the NIF is within a factor of 2-3 of the conditions required for ignition Callahan -- AAAS, February 14-18, 2013 82013-047661s2.ppt NIF Ignition #12;2013-047661s2.ppt Callahan -- AAAS

18

AMERICA'S NATIONAL LABS  

NLE Websites -- All DOE Office Websites (Extended Search)

AMERICA'S AMERICA'S NATIONAL LABS by 50 50 M A D E IN U S A B r e a k t h r o u g h s America's National Laboratory system has been changing and improving the lives of millions for more than 80 years. Born at a time of great societal need, this network of Department of Energy Laboratories has now grown into 17 facilities, working together as engines of prosperity and invention. As this list of 50 Break- throughs attests, National Laboratory discoveries have spawned industries, saved lives, generated new products, fired the imagination, and helped to reveal the secrets of the universe. Rooted in the need to be the best and bring the best, America's National Laboratories have put an American stamp on the past century of science. With equal ingenuity and tenacity, they are now engaged in

19

The National Ignition Facility National Ignition Campaign Short Pulse Lasers High-Average-Power Laser  

E-Print Network (OSTI)

#12;The National Ignition Facility National Ignition Campaign Short Pulse Lasers High hole shields SSD, Polarization smoothing Improvements in ignition point designs have reduced laser Campaign NIF-0905-11310 09EIM/dj 1997 1.7 MJ ignition point design 0.5 0.4 0.3 0.2 0.1 0 0 0.5 1 1.5 Laser

20

The National Ignition Facility: Status of Construction  

E-Print Network (OSTI)

Bruce Warner Deputy Associate Director, NIF Programs Lawrence Livermore National Laboratory October 11, 2005 #12;NIF-0605-10997 27EIM/cld NIF-0605-10997-L2 27EIM/cld P LLNLLLNL P9266 #12;NIF-0605-10997 27EIM/cld NIF-0605-10997-L28 27EIM/cld P LLNLLLNL National Ignition FacilityNational Ignition Facility P9292 San

Note: This page contains sample records for the topic "national lab ignites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Confinement of ignition and yield on the National Ignition Facility  

SciTech Connect

The National Ignition Facility Target Areas and Experimental Systems has reached mid-Title I design. Performance requirements for the Target Area are reviewed and design changes since the Conceptual Design Report are discussed. Development activities confirm a 5-m radius chamber and the viability of a boron carbide first wall. A scheme for cryogenic target integration with the NIF Target Area is presented.

Tobin, M.; Karpenko, V.; Foley, D.; Anderson, A.; Burnham, A.; Reitz, T.; Latkowski, J.; Bernat, T.

1996-06-14T23:59:59.000Z

22

Director of the National Ignition Facility, Lawrence Livermore National  

NLE Websites -- All DOE Office Websites (Extended Search)

Director of the National Ignition Facility, Lawrence Livermore National Director of the National Ignition Facility, Lawrence Livermore National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Edward Moses Director of the National Ignition Facility, Lawrence Livermore National Laboratory

23

National Ignition Facility | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

other ICF high energy density facilities leading to demonstrate fusion ignition and thermonuclear burn in the laboratory. The NIF is also being used to support basic science and...

24

UCRL-PRES-225531 National ignition facility  

E-Print Network (OSTI)

Title Page UCRL-PRES-225531 #12;National ignition facility #12;NIF is 705,000 #12;NIF laser system #12;NIF us 885 #12;NIF-0506-11956 Laser bay 2 #12;Switchyard 2 #12;Target chamber in the air #12;Target chamber #12;Target chamber national geographic #12;Target chamber inside #12;Warehouse of laser

25

Target Visualization at the National Ignition Facility  

SciTech Connect

As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the targets used to achieve this goal. Techniques have been developed to measure target surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. Using these techniques we are able to produce a detailed view of the shell surface, which in turn allows us to refine target manufacturing and cleaning processes. However, the volume of data produced limits the methods by which this data can be effectively viewed by a user. This paper introduces an image-based visualization system for data exploration of target shells at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. It aims to combine multiple image sets into a single visualization to provide a method of navigating the data in ways that are not possible with existing tools.

Potter, D

2011-11-21T23:59:59.000Z

26

HEC-DPSSL 2012 Workshop, NIF Tour: National Ignition Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deadline: August 10, 2012 Lawrence Livermore National Laboratory is home to the National Ignition Facility (NIF). NIF is a national resource a unique experimental facility...

27

National Ignition Facility & Photon Science NIF AT A GLANCe  

NLE Websites -- All DOE Office Websites (Extended Search)

& Photon Science NIF AT A GLANCe the national ignition Facility at a glance The National Ignition Facility (NIF) is the world's largest laser system, housed in a 10-story building...

28

National Ignition Facility & Photon Science NIF Fun Facts  

NLE Websites -- All DOE Office Websites (Extended Search)

7 National Ignition Facility & Photon Science NIF Fun Facts niF Fun Facts The National Ignition Facility (NIF), became operational in march 2009. Planning began in the early 1990s,...

29

Lab Spotlight: Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab Spotlight: Argonne National Laboratory Lab Spotlight: Argonne National Laboratory ultrananocrystalline diamond (UNCD) technology Researchers John Carlisle (left) and Orlando Auciello (right) are developing an ultrathin biocompatible coating for the device. Creating Diamond Coatings for the Retinal Implant Argonne National Laboratory (ANL) plays a critical role in the success of the electrode implants used in the Artificial Retina Project. That's where researchers Orlando Auciello and colleague John Carlisle are using their patented ultrananocrystalline diamond (UNCD) technology to apply a revolutionary new coating to the retinal prosthetic device. The new packaging promises to provide a very thin, ultrasmooth film that will be far more compact and biocompatible than the bulky materials used to encase

30

Progress Toward Ignition on the National Ignition Facility  

SciTech Connect

The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is {approx}0.5 cm diameter by {approx}1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays for symmetrically imploding the capsule. The fuel capsule is a {approx}2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The larger targets and longer pulse lengths produce unique plasma conditions for laser-plasma instabilities that could reduce hohlraum coupling efficiency. Initial experiments have demonstrated efficient coupling of laser energy to x-rays. X-ray drive greater than 300 eV has been measured in gas-filled ignition hohlraum and shows the expected scaling with laser energy and hohlraum scale size. Experiments are now optimizing capsule implosions for ignition. Ignition conditions require assembling the fuel with sufficient density and temperature for thermonuclear burn. X-rays ablate the outside of the capsule, accelerating and spherically compressing the capsule for assembling the fuel. The implosion stagnates, heating the central core and producing a hot spot that ignites and burns the surrounding fuel. The four main characteristics of the implosion are shell velocity, central hot spot shape, fuel adiabat, and mix. Experiments studying these four characteristics of implosions are used to optimize the implosion. Integrated experiments using cryogenic fuel layer experiments demonstrate the quality of the implosion as the optimization experiments progress. The final compressed fuel conditions are diagnosed by measuring the x-ray emission from the hot core and the neutrons and charged particles produced in the fusion reactions. Metrics of the quality of the implosion are the neutron yield and the shell areal density, as well as the size and shape of the core. The yield depends on the amount of fuel in the hot core and its temperature and is a gauge of the energy coupling to the fuel. The areal density, the density of the fuel times its thickness, diagnoses the fuel assembly, which is measured using the fraction of neutrons that are down scattered passing through the dense shell. The yield and fraction of down scattered neutrons, or shell rho-r, from the cryogenic layered implosions are shown in Figure 3. The different sets of data represent results after a series of implosion optimization experiments. Both yield and areal density show significant increases as a result of the optimiza

Kauffman, R L

2011-10-17T23:59:59.000Z

31

DOE/EIS-0236, Oakland Operations Office, National Ignition Facility...  

Energy Savers (EERE)

DOEEIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic...

32

National Ignition Facility Title II Design Plan  

SciTech Connect

This National Ignition Facility (NIF) Title II Design Plan defines the work to be performed by the NIF Project Team between November 1996, when the U.S. Department of Energy (DOE) reviewed Title I design and authorized the initiation of Title H design and specific long-lead procurements, and September 1998, when Title 11 design will be completed.

Kumpan, S

1997-03-01T23:59:59.000Z

33

Impacts assessment for the National Ignition Facility  

SciTech Connect

This report documents the economic and other impacts that will be created by the National Ignition Facility (NIF) construction and ongoing operation, as well as the impacts that may be created by new technologies that may be developed as a result of NIF development and operation.

Bay Area Economics

1996-12-01T23:59:59.000Z

34

HEC-DPSSL 2012 Workshop, Directions: National Ignition Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

Road Keep left at the fork Destination will be on the right Directions to Lawrence Livermore National Laboratory and the National Ignition Facility can be found on the...

35

Status of the National Ignition Campaign Prof. R. Paul Drake  

E-Print Network (OSTI)

Ignition Campaign has the goal of producing net en- ergy gain in a laser-fusion system. I have been keeping Status of the National Ignition Campaign Prof. R. Paul Drake Joint Seminar with Atmospheric progress on the National Ignition Campaign, from a recent conference. This includes a discussion

Shyy, Wei

36

Status of Experiments on National Ignition Facility Presented to  

E-Print Network (OSTI)

into the hohlraum temperature range for ignition experiments at 280-300 eV · The laser, diagnostic, targetStatus of Experiments on National Ignition Facility Presented to 31st Annual Meeting and Symposium Associates 4NIF­1110-20542.ppt #12;National Ignition Campaign goals Moses - 31st Annual Meeting and Symposium

37

A polar-drive shock-ignition design for the National Ignition Facility  

SciTech Connect

Shock ignition [R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007)] is being pursued as a viable option to achieve ignition on the National Ignition Facility (NIF). Shock-ignition target designs use a high-intensity laser spike at the end of a low-adiabat assembly pulse to launch a spherically convergent strong shock to ignite the hot spot of an imploding capsule. A shock-ignition target design for the NIF is presented. One-dimensional simulations indicate an ignition threshold factor of 4.1 with a gain of 58. A polar-drive beam-pointing configuration for shock-ignition experiments on the NIF at 750 kJ is proposed. The capsule design is shown to be robust to the various one- and two-dimensional effects and nonuniformities anticipated on the NIF. The target is predicted to ignite with a gain of 38 when including all anticipated levels of nonuniformity and system uncertainty.

Anderson, K. S.; McKenty, P. W.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Marozas, J. A.; Skupsky, S.; Shvydky, A. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States) [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Departments of Mechanical Engineering and Physics, University of Rochester, Rochester, New York 14627 (United States); Hohenberger, M.; Theobald, W.; Lafon, M.; Nora, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States) [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States)

2013-05-15T23:59:59.000Z

38

The National Ignition Campaign: status and progress  

Science Journals Connector (OSTI)

The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) has been operational since March 2009 and a variety of experiments have been completed and many more are planned in support of NIF's mission areas: national security, fundamental science, and fusion energy. NIF capabilities and infrastructure are in place to support all of its missions with nearly 60 x-ray, optical and nuclear diagnostic systems and the ability to shoot cryogenic targets and DT layered capsules. The NIF has also been qualified for the use of tritium and other special materials as well as to perform high-yield experiments and classified experiments. Implosions with record indirect-drive neutron yield of 7.5?1014 neutrons have been achieved. NIF, a Nd?:?Glass laser facility, is routinely operating at 1.6MJ of ultraviolet (3?) light on target with very high reliability. It recently reached its design goal of 1.8MJ and 500TW of 3? light on target, and has performed target experiments with 1.9MJ at peak powers of 410TW. The National Ignition Campaign (NIC), an international effort with the goal of demonstrating thermonuclear burn in the laboratory, is making steady progress towards achieving ignition. Other experiments have been completed in support of high-energy science, materials equation of state, and materials strength. In all cases, records of extreme temperatures and pressures, highest neutron yield and highest energy densities have been achieved. This paper describes the unprecedented experimental capabilities of the NIF and the results achieved so far on the path towards ignition.

E.I. Moses; the NIC Collaborators

2013-01-01T23:59:59.000Z

39

First Hot Electron Measurements in Near-ignition Scale Hohlraums on the National Ignition Facility  

SciTech Connect

On the National Ignition Facility (NIF), the hot electrons generated in laser heated hohlraums are inferred from the >20 keV bremsstrahlung emission measured with the FFLEX broadband spectrometer. New high energy (>200 keV) time resolved channels were added to meet requirements for ignition and to infer the generated >170 keV hot electrons that can cause ignition capsule preheat. First hot electron measurements in near ignition scaled hohlraums heated by 96-192 NIF laser beams are presented.

Dewald, E L; Suter, L J; Thomas, C; Hunter, S; Meeker, D; Meezan, N; Glenzer, S H; Bond, E; Kauffman, R L; Kilkenny, J; Landen, O

2009-10-08T23:59:59.000Z

40

The National Ignition Facility (NIF) and the National Ignition Campaign (NIC)  

SciTech Connect

The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). NIF construction was certified by the Department of Energy as complete on March 27, 2009. NIF, a 192-beam Nd:glass laser facility, will ultimately produce 1.8-MJ, 500-TW of 351-nm third-harmonic, ultraviolet light. On March 10, 2009, total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and broader frontier scientific exploration. NIF experiments in support of indirect-drive ignition began in August 2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments includes diagnostics, a cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational, integrated into the facility, and ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and Fast Ignition concepts. Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science. The NIC will develop the full set of capabilities required to operate NIF as a major national and international user facility. A solicitation for NIF frontier science experiments is planned for summer 2009. This paper summarizes the design, performance, and status of NIF and plans for the NIF ignition experimental program. A brief summary of the overall NIF experimental program is also presented.

Moses, E

2009-09-17T23:59:59.000Z

Note: This page contains sample records for the topic "national lab ignites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

The role of the National Ignition Facility in energy production from inertial fusion  

Science Journals Connector (OSTI)

...in IFE attractive. inertial fusion energy|laser fusion|ignition (lasers)|thermonuclear gain|National Ignition Facility...inertial fusion energy; laser fusion; ignition (lasers); thermonuclear gain; National Ignition Facility...

1999-01-01T23:59:59.000Z

42

National Ignition Facility project acquisition plan  

SciTech Connect

The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.

Callaghan, R.W.

1996-04-01T23:59:59.000Z

43

LAWRENCE BERKELEY NATIONAL LABORATORY About Berkeley Lab  

E-Print Network (OSTI)

LAWRENCE BERKELEY NATIONAL LABORATORY About Berkeley Lab Berkeley Lab is a U.S. Department and energy research. Berkeley Lab was founded in 1931 by Ernest Orlando Lawrence, a UC Berkeley physicist who of Energy (DOE) national laboratory that conducts a wide variety of unclassified scientific research for DOE

Eisen, Michael

44

Status of the National Ignition Facility project  

SciTech Connect

The ultimate goal of worldwide research in inertial confinement fusion (ICF) is to develop fusion as an inexhaustible, economic, environmentally safe source of electric power. Following nearly thirty years of laboratory and underground fusion experiments, the next step toward this goal is to demonstrate ignition and propagating burn of fusion fuel in the laboratory. The National Ignition Facility(NIF) Project is being constructed at Lawrence Livermore National Laboratory (LLNL), for just this purpose. NIF will use advanced Nd-glass laser technology to deliver 1.8 MJ of 0.35-um laser light in a shaped pulse, several nanoseconds in duration, achieving a peak power of 500 TW. A national community of U.S. laboratories is participating in this project, now in its final design phase. Franceand the United Kingdom are collaborating on development of required technology under bilateral agreements with the US. This paper presents thestatus of the laser design and development of its principal components and optical elements.

Paisner, J.A.; Lowdermilk, W.H.; Boyes, J.D.; Sorem, M.S.; Soures, J.M.

1997-04-01T23:59:59.000Z

45

Hot electron measurements in ignition relevant Hohlraums on the National Ignition Facility  

SciTech Connect

On the National Ignition Facility (NIF), hot electrons generated in laser heated Hohlraums are inferred from the >20 keV bremsstrahlung emission measured with the time integrated FFLEX broadband spectrometer. New high energy (>200 keV) time resolved channels were added to infer the generated >170 keV hot electrons that can cause ignition capsule preheat. First hot electron measurements in near ignition scaled Hohlraums heated by 96-192 NIF laser beams are presented.

Dewald, E. L.; Thomas, C.; Hunter, S.; Divol, L.; Meezan, N.; Glenzer, S. H.; Suter, L. J.; Bond, E.; Celeste, J.; Bradley, D.; Bell, P.; Kauffman, R. L.; Landen, O. L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Kline, J. L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kilkenny, J. [General Atomics, P.O. Box 85608, San Diego, California 92186 (United States)

2010-10-15T23:59:59.000Z

46

National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lab Day Fact Sheets Secretary Ernest Moniz learns about the Labs' work in high performance computing and additive manufacturing. | Photo courtesy of Sarah Gerrity, Energy...

47

Aerosciences at Sandia National Labs.  

SciTech Connect

A brief overview of Sandia National Laboratories will be presented highlighting the mission of Engineering Science Center. The Engineering Science Center provides a wide range of capabilities to support the lab's missions. As part of the Engineering Science Center the Aeroscience department provides research, development and application expertise in both experimental and computation compressible fluid mechanics. The role of Aeroscience at Sandia National Labs will be discussed with a focus on current research and development activities within the Aeroscience Department. These activities will be presented within the framework of a current program to highlight the synergy between computational and experimental work. The research effort includes computational and experimental activities covering fluid and structural dynamics disciplines. The presentation will touch on: probable excitation sources that yield the level of random vibration observed during flight; the methods that have been developed to model the random pressure fields in the turbulent boundary layer using a combination of CFD codes and a model of turbulent boundary layer pressure fluctuations; experimental measurement of boundary layer fluctuations; the methods of translating the random pressure fields to time-domain spatially correlated pressure fields.

Payne, Jeffrey L.

2010-10-01T23:59:59.000Z

48

The National Ignition Facility and Laser Fusion Energy  

Science Journals Connector (OSTI)

This talk provides an update of the NIC on the National Ignition Facility at the Lawrence Livermore National Laboratory and the roadmap to demonstrate laser fusion as a viable source...

Moses, E I

49

Status Of The National Ignition Campaign And National Ignition Facility Integrated Computer Control System  

SciTech Connect

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that will contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn. NIF is operated by the Integrated Computer Control System (ICCS) in an object-oriented, CORBA-based system distributed among over 1800 frontend processors, embedded controllers and supervisory servers. In the fall of 2010, a set of experiments began with deuterium and tritium filled targets as part of the National Ignition Campaign (NIC). At present, all 192 laser beams routinely fire to target chamber center to conduct fusion and high energy density experiments. During the past year, the control system was expanded to include automation of cryogenic target system and over 20 diagnostic systems to support fusion experiments were deployed and utilized in experiments in the past year. This talk discusses the current status of the NIC and the plan for controls and information systems to support these experiments on the path to ignition.

Lagin, L; Brunton, G; Carey, R; Demaret, R; Fisher, J; Fishler, B; Ludwigsen, P; Marshall, C; Reed, R; Shelton, R; Townsend, S

2011-03-18T23:59:59.000Z

50

Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facility  

SciTech Connect

A series of laser plasma interaction experiments at OMEGA (LLE, Rochester) using gas-filled hohlraums shed light on the behavior of stimulated Raman scattering and stimulated Brillouin scattering at various plasma conditions encountered in indirect drive ignition designs. We present detailed experimental results that quantify the density, temperature, and intensity thresholds for both of these instabilities. In addition to controlling plasma parameters, the National Ignition Campaign relies on optical beam smoothing techniques to mitigate backscatter. We show that polarization smoothing is effective at controlling backscatter. These results provide an experimental basis for forthcoming experiments on National Ignition Facility.

Froula, D H; Divol, L; London, R A; Berger, R L; Doeppner, T; Meezan, N B; Ralph, J; Ross, J S; Suter, L J; Glenzer, S H

2009-11-12T23:59:59.000Z

51

DOE Congratulates Under Secretary, National Lab Director and Other National  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Congratulates Under Secretary, National Lab Director and Other Congratulates Under Secretary, National Lab Director and Other National Lab Scientists for Receiving Top Scientific Honor DOE Congratulates Under Secretary, National Lab Director and Other National Lab Scientists for Receiving Top Scientific Honor April 29, 2010 - 12:00am Addthis Washington, DC - U.S. Department of Energy Under Secretary for Science Steven E. Koonin, SLAC National Accelerator Laboratory Director Persis Drell, and other National Lab affiliated scientists and engineers are among the 72 new members elected to the National Academy of Sciences (NAS). NAS is a private, nonprofit, honorific society of distinguished scholars engaged in scientific and engineering research, dedicated to furthering science and technology and to their use for the general welfare.

52

About the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the National Labs the National Labs About the National Labs DOE National Laboratories Founded during the immense investment in scientific research in the period preceding World War II, the National Laboratories have served as the leading institutions for scientific innovation in the United States for more than sixty years. The Energy Department's National Labs tackle the critical scientific challenges of our time -- from combating climate change to discovering the origins of our universe -- and possess unique instruments and facilities, many of which are found nowhere else in the world. They address large scale, complex research and development challenges with a multidisciplinary approach that places an emphasis on translating basic science to innovation. Specifically, the National Laboratories:

53

Capsule performance optimization in the National Ignition Campaign  

SciTech Connect

A capsule performance optimization campaign will be conducted at the National Ignition Facility [G. H. Miller et al., Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition by laser-driven hohlraums [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)]. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the OMEGA facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.

Landen, O. L.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L.; Glenzer, S. H.; Hamza, A.; Hicks, D. G.; Izumi, N.; Jones, O. S.; Kirkwood, R. K.; Michel, P.; Milovich, J.; Munro, D. H.; Robey, H. F.; Spears, B. K.; Thomas, C. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2010-05-15T23:59:59.000Z

54

Capsule Performance Optimization in the National Ignition Campaign  

SciTech Connect

A capsule performance optimization campaign will be conducted at the National Ignition Facility to substantially increase the probability of ignition. The campaign will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models before proceeding to cryogenic-layered implosions and ignition attempts. The required tuning techniques using a variety of ignition capsule surrogates have been demonstrated at the Omega facility under scaled hohlraum and capsule conditions relevant to the ignition design and shown to meet the required sensitivity and accuracy. In addition, a roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget.

Landen, O L; MacGowan, B J; Haan, S W; Edwards, J

2009-10-13T23:59:59.000Z

55

Review of the National Ignition Campaign 2009-2012  

SciTech Connect

The National Ignition Campaign (NIC) was a multi-institution effort established under the National Nuclear Security Administration of DOE in 2005, prior to the completion of the National Ignition Facility (NIF) in 2009. The scope of the NIC was the planning and preparation for and the execution of the first 3 yr of ignition experiments (through the end of September 2012) as well as the development, fielding, qualification, and integration of the wide range of capabilities required for ignition. Besides the operation and optimization of the use of NIF, these capabilities included over 50 optical, x-ray, and nuclear diagnostic systems, target fabrication facilities, experimental platforms, and a wide range of NIF facility infrastructure. The goal of ignition experiments on the NIF is to achieve, for the first time, ignition and thermonuclear burn in the laboratory via inertial confinement fusion and to develop a platform for ignition and high energy density applications on the NIF. The goal of the NIC was to develop and integrate all of the capabilities required for a precision ignition campaign and, if possible, to demonstrate ignition and gain by the end of FY12. The goal of achieving ignition can be divided into three main challenges. The first challenge is defining specifications for the target, laser, and diagnostics with the understanding that not all ignition physics is fully understood and not all material properties are known. The second challenge is designing experiments to systematically remove these uncertainties. The third challenge is translating these experimental results into metrics designed to determine how well the experimental implosions have performed relative to expectations and requirements and to advance those metrics toward the conditions required for ignition. This paper summarizes the approach taken to address these challenges, along with the progress achieved to date and the challenges that remain. At project completion in 2009, NIF lacked almost all the diagnostics and infrastructure required for ignition experiments. About half of the 3 yr period covered in this review was taken up by the effort required to install and performance qualify the equipment and experimental platforms needed for ignition experiments. Ignition on the NIF is a grand challenge undertaking and the results presented here represent a snapshot in time on the path toward that goal. The path forward presented at the end of this review summarizes plans for the Ignition Campaign on the NIF, which were adopted at the end of 2012, as well as some of the key results obtained since the end of the NIC.

Lindl, John; Landen, Otto; Edwards, John; Moses, Ed [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Collaboration: NIC Team

2014-02-15T23:59:59.000Z

56

Sandia National Laboratories: Optics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Engine Test Facility Central Receiver Test Facility Power Towers for Utilities Solar Furnace Dish Test Facility Optics Lab Parabolic Dishes Work For Others (WFO) User...

57

National Ignition Facility & Photon Science HOW NIF WORKS  

NLE Websites -- All DOE Office Websites (Extended Search)

NIF WORKS beam me up: how niF works In the National Ignition Facility (NIF), 192 laser beams travel a long path, about 1,500 meters, from their birth at the master oscillator-a...

58

Shock Ignition: A New Approach to High Gain Inertial Confinement Fusion on the National Ignition Facility  

Science Journals Connector (OSTI)

Shock ignition, an alternative concept for igniting thermonuclear fuel, is explored as a new approach to high gain, inertial confinement fusion targets for the National Ignition Facility (NIF). Results indicate thermonuclear yields of ?120250??MJ may be possible with laser drive energies of 11.6MJ, while gains of ?50 may still be achievable at only ?0.2??MJ drive energy. The scaling of NIF energy gain with laser energy is found to be G?126E??(MJ)0.510. This offers the potential for high-gain targets that may lead to smaller, more economic fusion power reactors and a cheaper fusion energy development path.

L. J. Perkins; R. Betti; K. N. LaFortune; W. H. Williams

2009-07-23T23:59:59.000Z

59

National Ignition Facility Project Site Safety Program  

SciTech Connect

This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during activities performed on the NIF Project site. The NIF Project Site Safety Program (NPSSP) requires that activities at the NIF Project site be performed in accordance with the ''LLNL ES&H Manual'' and the augmented set of controls and processes described in this NIF Project Site Safety Program. Specifically, this document: (1) Defines the fundamental NIF site safety philosophy. (2) Defines the areas covered by this safety program (see Appendix B). (3) Identifies management roles and responsibilities. (4) Defines core safety management processes. (5) Identifies NIF site-specific safety requirements. This NPSSP sets forth the responsibilities, requirements, rules, policies, and regulations for workers involved in work activities performed on the NIF Project site. Workers are required to implement measures to create a universal awareness that promotes safe practice at the work site and will achieve NIF management objectives in preventing accidents and illnesses. ES&H requirements are consistent with the ''LLNL ES&H Manual''. This NPSSP and implementing procedures (e.g., Management Walkabout, special work procedures, etc.,) are a comprehensive safety program that applies to NIF workers on the NIF Project site. The NIF Project site includes the B581/B681 site and support areas shown in Appendix B.

Dun, C

2003-09-30T23:59:59.000Z

60

Laser-Plasma Coupling with Ignition-Scale Targets: New Regimes and Frontiers on the National Ignition Facility  

Science Journals Connector (OSTI)

It is very exciting that the National Ignition Facility (NIF) is now operational and being used to irradiate ignition-scale hohlraums. As discussed in the last ... Summer School in Physics on the topic of laser-p...

William L. Kruer

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "national lab ignites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

President Obama Visits the Argonne National Research Lab to Talk...  

Office of Environmental Management (EM)

President Obama Visits the Argonne National Research Lab to Talk About American Energy Security President Obama Visits the Argonne National Research Lab to Talk About American...

62

Energy Department, Oak Ridge National Lab Officials to Celebrate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Department, Oak Ridge National Lab Officials to Celebrate First of its Kind Carbon Fiber Facility Energy Department, Oak Ridge National Lab Officials to Celebrate First of its Kind...

63

GE, Sandia National Lab Improve Wind Turbines | GE Global Research  

NLE Websites -- All DOE Office Websites (Extended Search)

GE, Sandia National Lab Discover Pathway to Quieter, More Productive Wind Turbines GE, Sandia National Lab Discover Pathway to Quieter, More Productive Wind Turbines Use of...

64

Energy Department, Oak Ridge National Lab Officials to Celebrate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Department, Oak Ridge National Lab Officials to Celebrate First of its Kind Carbon Fiber Facility Energy Department, Oak Ridge National Lab Officials to Celebrate First of...

65

MOU signed between CIAE and Jefferson National Lab, USA. (China...  

NLE Websites -- All DOE Office Websites (Extended Search)

https:www.jlab.orgnewsarticlesmou-signed-between-ciae-and-jefferson-national-lab-usa-china-nuclear-industry-news-ge... MOU signed between CIAE and Jefferson National Lab, USA....

66

X-ray driven implosions at ignition relevant velocities on the National Ignition Facility  

SciTech Connect

Backlit convergent ablator experiments on the National Ignition Facility [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] are indirect drive implosions that study the inflight dynamics of an imploding capsule. Side-on, backlit radiography provides data used by the National Ignition Campaign to measure time-dependent properties of the capsule ablator including its center of mass radius, velocity, and unablated mass. Previously, Callahan [D. A. Callahan et al., Phys. Plasmas 19, 056305 (2012)] and Hicks [D. H. Hicks et al., Phys. Plasmas 19, 122702 (2012)] reported backlit convergent ablator experiments demonstrating velocities approaching those required for ignition. This paper focuses on implosion performance data in the rocket curve plane, velocity vs. ablator mass. These rocket curve data, along with supporting numerical simulations, show that the nominal 195 ?m-thick ignition capsule would reach the ignition velocity goal V = 370 km/s with low ablator mass remainingbelow the goal of M = 0.25 mg. This finding led to experiments with thicker capsule ablators. A recent symmetry capsule experiment with a 20 ?m thicker capsule driven by 520 TW, 1.86 MJ laser pulse (along with a companion backlit convergent ablator experiment) appears to have demonstrated V?350 km/s with ablator mass remaining above the ignition goal.

Meezan, N. B.; MacKinnon, A. J.; Hicks, D. G.; Dewald, E. L.; Tommasini, R.; Le Pape, S.; Dppner, T.; Ma, T.; Farley, D. R.; Kalantar, D. H.; Di Nicola, P.; Callahan, D. A.; Robey, H. F.; Thomas, C. A.; Prisbrey, S. T.; Jones, O. S.; Milovich, J. L.; Clark, D. S.; Eder, D. C.; Schneider, M. B. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)] [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

2013-05-15T23:59:59.000Z

67

Design of a deuterium and tritium-ablator shock ignition target for the National Ignition Facility  

SciTech Connect

Shock ignition presents a viable path to ignition and high gain on the National Ignition Facility (NIF). In this paper, we describe the development of the 1D design of 0.5 MJ class, all-deuterium and tritium (fuel and ablator) shock ignition target that should be reasonably robust to Rayleigh-Taylor fluid instabilities, mistiming, and hot electron preheat. The target assumes 'day one' NIF hardware and produces a yield of 31 MJ with reasonable allowances for laser backscatter, absorption efficiency, and polar drive power variation. The energetics of polar drive laser absorption require a beam configuration with half of the NIF quads dedicated to launching the ignitor shock, while the remaining quads drive the target compression. Hydrodynamic scaling of the target suggests that gains of 75 and yields 70 MJ may be possible.

Terry, Matthew R.; Perkins, L. John; Sepke, Scott M. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 (United States)

2012-11-15T23:59:59.000Z

68

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2011 5, 2011 The Truth about Clean Energy Jobs Director of Public Affairs Dan Leistikow details how the Loan Program will support 60K American jobs and save 300 million gallons of gasoline a year. September 14, 2011 Rich Earley, CEO of Clean Urban Energy presents at Clean Energy Trust's Clean Energy Challenge in March 2011 | Courtesy of Clean Energy Trust Innovation Ecosystems Spur Rapid Growth for Startups, Entrepreneurs To accelerate high-growth entrepreneurship across the nation and move cutting-edge clean energy technologies from the lab to the marketplace, a year ago the Energy Department launched the Innovation Ecosystem Initiative. 

 September 12, 2011 A view of a cryogenically cooled National Ignition Facility (NIF) target as "seen" by the laser through the hohlraum's laser entrance hole. | Photo courtesy of Lawrence Livermore National Laboratory.

69

LabUPDATE ISSUE 7 JUNE 11, 2003 News about the Berkeley, Livermore and Los Alamos national laboratories,  

E-Print Network (OSTI)

: The National Ignition Facility at Lawrence Livermore National Laboratory has produced a record energy levelLabUPDATE ISSUE 7 ­ JUNE 11, 2003 News about the Berkeley, Livermore and Los Alamos national technical goals. "Full NIF equivalent" performance (extrapolating the single beam output to the 192 beams

Knowles, David William

70

Ignition on the National Ignition Facility: a path towards inertial fusion energy  

Science Journals Connector (OSTI)

The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is nearing completion at Lawrence Livermore National Laboratory (LLNL). NIF, a 192-beam Nd-glass laser facility, will produce 1.8?MJ, 500?TW of light at the third-harmonic, ultraviolet light of 351?nm. The NIF project is scheduled for completion in March 2009. Currently, all 192 beams have been operationally qualified and have produced over 4.0?MJ of light at the fundamental wavelength of 1053?nm, making NIF the world's first megajoule laser. The principal goal of NIF is to achieve ignition of a deuteriumtritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader scientific applications.The plan is to begin 96-beam symmetric indirect-drive ICF experiments early in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). This national effort to achieve fusion ignition is coordinated through a detailed plan that includes the science, technology and equipment such as diagnostics, cryogenic target manipulator and user optics required for ignition experiments. Participants in this effort include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility soon after project completion and to conduct a credible ignition campaign in 2010. When the NIF is complete, the long-sought goal of achieving self-sustaining nuclear fusion and energy gain in the laboratory will be much closer to realization.Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of inertial fusion energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed (Lindl 1998 Inertial Confinement Fusion: the Quest for Ignition and Energy Gain Using Indirect Drive (New York: American Institute of Physics)) and has a high probability of success. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and fast ignition concepts (Tabak et al 1994 Phys. Plasmas 1 162634, Tabak et al 2005 Phys. Plasmas 12 057305). Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science.This paper summarizes the design, performance and status of NIF, experimental plans for NIC, and will present laser inertial confinement fusionfission energy (LIFE) as a path to achieve carbon-free sustainable energy.

Edward I. Moses

2009-01-01T23:59:59.000Z

71

The National Ignition Facility and the Path to Fusion Energy  

SciTech Connect

The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

Moses, E

2011-07-26T23:59:59.000Z

72

Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility  

SciTech Connect

Point design targets have been specified for the initial ignition campaign on the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)]. The targets contain D-T fusion fuel in an ablator of either CH with Ge doping, or Be with Cu. These shells are imploded in a U or Au hohlraum with a peak radiation temperature set between 270 and 300 eV. Considerations determining the point design include laser-plasma interactions, hydrodynamic instabilities, laser operations, and target fabrication. Simulations were used to evaluate choices, and to define requirements and specifications. Simulation techniques and their experimental validation are summarized. Simulations were used to estimate the sensitivity of target performance to uncertainties and variations in experimental conditions. A formalism is described that evaluates margin for ignition, summarized in a parameter the Ignition Threshold Factor (ITF). Uncertainty and shot-to-shot variability in ITF are evaluated, and sensitivity of the margin to characteristics of the experiment. The formalism is used to estimate probability of ignition. The ignition experiment will be preceded with an experimental campaign that determines features of the design that cannot be defined with simulations alone. The requirements for this campaign are summarized. Requirements are summarized for the laser and target fabrication.

Haan, S. W.; Lindl, J. D.; Callahan, D. A.; Clark, D. S.; Salmonson, J. D.; Hammel, B. A.; Atherton, L. J.; Cook, R. C.; Edwards, M. J.; Glenzer, S.; Hamza, A. V.; Hatchett, S. P.; Hinkel, D. E.; Ho, D. D.; Jones, O. S.; Landen, O. L.; MacGowan, B. J.; Marinak, M. M.; Milovich, J. L.; Moses, E. I. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2011-05-15T23:59:59.000Z

73

Jobs at the National Labs  

Energy.gov (U.S. Department of Energy (DOE))

Search for jobs, internships and educational programs at the Department of Energy's National Laboratories.

74

Fast Ignition  

NLE Websites -- All DOE Office Websites (Extended Search)

ignition. The approach being taken by the National Ignition Facility to achieve thermonuclear ignition and burn is called the "central hot spot" scenario. This technique relies...

75

National Ignition Facility faces an uncertain future David Kramer  

E-Print Network (OSTI)

-member user group, with 22% of its members coming from host Lawrence Livermore National Laboratory (LLNL at the National Ignition Facility to achieve a self-sustaining fusion reaction fell short. Now NIF stands to lose that were specified for NIF when the massive laser facility was ap- proved for construction in 1996

76

Recap: Energy Efficiency at the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recap: Energy Efficiency at the National Labs Recap: Energy Efficiency at the National Labs Recap: Energy Efficiency at the National Labs December 2, 2013 - 11:50am Addthis Ben Dotson Ben Dotson Project Coordinator for Digital Reform, Office of Public Affairs Energy Efficiency at the National Labs During the month of November, we featured the National Labs and their work in energy efficiency on Energy.gov. Storified by Energy Department · Mon, Dec 02 2013 08:50:36 Transformative Science: Energy Efficiency at the National Labs Transformative Science: Energy Efficiency at the National Labs This month on energy.gov, we're featuring the Energy Department's National Labs and their work in energy efficiency: the technologies the... The National Labs are fundamentally changing the way that consumers and businesses approach energy efficiency. The Labs are developing new

77

High Performance Imaging Streak Camera for the National Ignition Facility  

SciTech Connect

An x-ray streak camera platform has been characterized and implemented for use at the National Ignition Facility. The camera has been modified to meet the experiment requirements of the National Ignition Campaign and to perform reliably in conditions that produce high EMI. A train of temporal UV timing markers has been added to the diagnostic in order to calibrate the temporal axis of the instrument and the detector efficiency of the streak camera was improved by using a CsI photocathode. The performance of the streak camera has been characterized and is summarized in this paper. The detector efficiency and cathode measurements are also presented.

Opachich, Y. P. [LLNL; Kalantar, D. [LLNL; MacPhee, A. [LLNL; Holder, J. [LLNL; Kimbrough, J. [LLNL; Bell, P. M. [LLNL; Bradley, D. [LLNL; Hatch, B. [LLNL; Brown, C. [LLNL; Landen, O. [LLNL; Perfect, B. H. [LLNL, HMC; Guidry, B. [LLNL; Mead, A. [NSTec; Charest, M. [NSTec; Palmer, N. [LLNL; Homoelle, D. [LLNL; Browning, D. [LLNL; Silbernagel, C. [NSTec; Brienza-Larsen, G. [NSTec; Griffin, M. [NSTec; Lee, J. J. [NSTec; Haugh, M. J. [NSTec

2012-12-01T23:59:59.000Z

78

Los Alamos National Lab staff benchmark Y-12 sustainability programs...  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos National Lab ... Los Alamos National Lab staff benchmark Y-12 sustainability programs Posted: June 27, 2013 - 3:53pm OAK RIDGE, Tenn. - Staff from Los Alamos National...

79

National Labs | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

as Core Facilities & Capabilities necessary to achieve its goals: Heating, Ventilation, & Air Conditioning (HVAC) Oak Ridge National Laboratory's Building Technologies Research and...

80

LAWRENCE BERKELEY NATIONAL LABORATORY About Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

About Berkeley Lab Berkeley Lab is a U.S. Department of Energy (DOE) national laboratory that conducts a wide variety of unclassified scientific research for DOE's Office of Science. Located in Berkeley, California, Berkeley Lab is managed by the University of California, and the director is Dr. Paul Alivisatos. Bringing Science Solutions to the World Berkeley Lab is an incubator for ideas, innovations and products that help society and explain how the universe works: n renewable energy sources such as biofuels and artificial photosynthesis n energy efficiency at home, at work, and around the world n the ability to observe, probe, and assemble materials atom by atom n climate change research, environmental science, and the growing connections between them

Note: This page contains sample records for the topic "national lab ignites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Lab Spotlight: Sandia National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia National Laboratories Sandia National Laboratories Illustration of integrated circuit Figure 1. An application-specific integrated circuit being developed for advanced artificial retinas. Click on image to enlarge. Microscale Enablers More advanced artificial retinas are relying on miniaturized electronics for processing incoming images and activating the corresponding electrodes to communicate with retinal cells and ultimately the brain. The goal of these devices, being developed through a U.S. Department of Energy (DOE) collaboration, is to continually improve their visual resolution so that implanted individuals eventually will be able to read large print, recognize faces, and move about without aid. Sandia National Laboratories' expertise in the development, fabrication, and production

82

High resolution simulations of ignition capsule designs for the National Ignition Facility  

SciTech Connect

Ignition capsule designs for the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)] have continued to evolve in light of improved physical data inputs, improving simulation techniques, and - most recently - experimental data from a growing number of NIF sub-ignition experiments. This paper summarizes a number of recent changes to the cryogenic capsule design and some of our latest techniques in simulating its performance. Specifically, recent experimental results indicated harder x-ray drive spectra in NIF hohlraums than were predicted and used in previous capsule optimization studies. To accommodate this harder drive spectrum, a series of high-resolution 2-D simulations, resolving Legendre mode numbers as high as two thousand, were run and the germanium dopant concentration and ablator shell thicknesses re-optimized accordingly. Simultaneously, the possibility of cooperative or nonlinear interaction between neighboring ablator surface defects has motivated a series of fully 3-D simulations run with the massively parallel HYDRA code. These last simulations include perturbations seeded on all capsule interfaces and can use actual measured shell surfaces as initial conditions. 3-D simulations resolving Legendre modes up to two hundred on large capsule sectors have run through ignition and burn, and higher resolution simulations resolving as high as mode twelve hundred have been run to benchmark high-resolution 2-D runs. Finally, highly resolved 3-D simulations have also been run of the jet-type perturbation caused by the fill tube fitted to the capsule. These 3-D simulations compare well with the more typical 2-D simulations used in assessing the fill tube's impact on ignition. Coupled with the latest experimental inputs from NIF, our improving simulation capability yields a fuller and more accurate picture of NIF ignition capsule performance.

Clark, D S; Haan, S W; Cook, A W; Edwards, M J; Hammel, B A; Koning, J M; Marinak, M M

2011-02-17T23:59:59.000Z

83

Diagnosing and controlling mix in National Ignition Facility implosion experiments  

SciTech Connect

High mode number instability growth of ''isolated defects'' on the surfaces of National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] capsules can be large enough for the perturbation to penetrate the imploding shell, and produce a jet of ablator material that enters the hot-spot. Since internal regions of the CH ablator are doped with Ge, mixing of this material into the hot-spot results in a clear signature of Ge K-shell emission. Evidence of jets entering the hot-spot has been recorded in x-ray images and spectra, consistent with simulation predictions [Hammel et al., High Energy Density Phys. 6, 171 (2010)]. Ignition targets have been designed to minimize instability growth, and capsule fabrication improvements are underway to reduce ''isolated defects.'' An experimental strategy has been developed where the final requirements for ignition targets can be adjusted through direct measurements of mix and experimental tuning.

Hammel, B. A.; Scott, H. A.; Cerjan, C.; Clark, D. S.; Edwards, M. J.; Glenzer, S. H.; Haan, S. W.; Izumi, N.; Koch, J. A.; Landen, O. L.; Langer, S. H.; Smalyuk, V. A.; Suter, L. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Regan, S. P.; Epstein, R. [University of Rochester, Laboratory for Laser Energetics, Rochester, New York 14623 (United States); Kyrala, G. A.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Peterson, K. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

2011-05-15T23:59:59.000Z

84

Shock timing on the National Ignition Facility: First Experiments  

SciTech Connect

An experimental campaign to tune the initial shock compression sequence of capsule implosions on the National Ignition Facility (NIF) was initiated in late 2010. The experiments use a NIF ignition-scale hohlraum and capsule that employs a reentrant cone to provide optical access to the shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of the shock sequence is diagnosed with velocity interferometry that provides target performance data used to set the pulse shape for ignition capsule implosions that follow. From the start, these measurements yielded significant new information on target performance, leading to improvements in the target design. We describe the results and interpretation of the initial tuning experiments.

Celliers, P M; Robey, H F; Boehly, T R; Alger, E; Azevedo, S; Berzins, L V; Bhandarkar, S D; Bowers, M W; Brereton, S J; Callahan, D; Castro, C; Chandrasekaran, H; Choate, C; Clark, D; Coffee, K R; Datte, P S; Dewald, E L; DiNicola, P; Dixit, S; Doeppner, T; Dzenitis, E; Edwards, M J; Eggert, J H; Fair, J; Farley, D R; Frieders, G; Gibson, C R; Giraldez, E; Haan, S; Haid, B; Hamza, A V; Haynam, C; Hicks, D G; Holunga, D M; Horner, J B; Jancaitis, K; Jones, O S; Kalantar, D; Kline, J L; Krauter, K G; Kroll, J J; LaFortune, K N; Pape, S L; Malsbury, T; Maypoles, E R; Milovich, J L; Moody, J D; Moreno, K; Munro, D H; Nikroo, A; Olson, R E; Parham, T; Pollaine, S; Radousky, H B; Ross, G F; Sater, J; Schneider, M B; Shaw, M; Smith, R F; Thomas, C A; Throop, A; Town, R J; Trummer, D; Van Wonterghem, B M; Walters, C F; Widmann, K; Widmayer, C; Young, B K; Atherton, L J; Collins, G W; Landen, O L; Lindl, J D; MacGowan, B J; Meyerhofer, D D; Moses, E I

2011-10-24T23:59:59.000Z

85

DOE's Oak Ridge and Lawrence Berkeley National Labs Join with...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Oak Ridge and Lawrence Berkeley National Labs Join with Dow Chemical to Develop Next-Generation Cool Roofs DOE's Oak Ridge and Lawrence Berkeley National Labs Join with Dow...

86

Argonne National Lab Cleanup schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Takes Steps to Complete Clean-Up of Argonne by 2003; Takes Steps to Complete Clean-Up of Argonne by 2003; Schedule for Shipping Waste to WIPP is 'Good News' for Illinois CARLSBAD, N.M., May 15, 2000 - The U.S. Department of Energy (DOE) reinforced plans to complete the clean-up of its Argonne National Laboratory-East site in Illinois by 2003 by accelerating its schedule for shipping transuranic waste to DOE's permanent disposal site in New Mexico. Previously, the shipments were not expected to begin before 2003. Under the accelerated schedule, shipments to DOE's Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico, are expected to begin in Spring 2001 and be completed by the end of the calendar year. Characterization of the waste currently stored at Argonne will begin this October. This agreement is a major step in honoring Argonne and DOE's commitment to the community to

87

Staff Services | Brookhaven National Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Our mission is to provide services that support and assist the world-class Our mission is to provide services that support and assist the world-class scientific research performed at Brookhaven National Laboratory. Our services are available to all Brookhaven Departments, Divisions, guests, users, and visiting researchers. The Staff Services office is located in Building 400, 20 Brookhaven Avenue. Get maps and directions. Food Services food services Food services are an integral part of life at BNL. We offer an on-site cafeteria, full service restaurant, a cafe serving Starbuck's coffee and vending machines. Housing Services housing services BNL attracts more than 4,500 visiting scientists from all over the world each year. To support our guests, 333 on-site housing units are available for rent. Mail Services mail services The BNL Mail Room handles all official U.S. mail, through our on-site U.S.

88

Capsule implosion optimization during the indirect-drive National Ignition Campaign  

E-Print Network (OSTI)

and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement. INTRODUCTION A. Indirect-drive design The National Ignition Facility (NIF)1 is a 192 beam, 1.8 MJ 0.35 lm laserCapsule implosion optimization during the indirect-drive National Ignition Campaign O. L. Landen,1

89

Recent News from the National Labs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

recent-news-national-labs 1000 Independence Ave. SW recent-news-national-labs 1000 Independence Ave. SW Washington DC 20585 202-586-5000 en Our Best Energy Videos of 2013 http://energy.gov/articles/our-best-energy-videos-2013 Our Best Energy Videos of 2013

90

The National Ignition Facility: A New Era in High Energy Density Science  

SciTech Connect

The National Ignition Facility, the world's most energetic laser system, is now operational. This talk will describe NIF, the ignition campaign, and new opportunities in fusion energy and high energy density science enabled by NIF.

Moses, E

2009-06-10T23:59:59.000Z

91

Los Alamos National Lab: National Security Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Content stc logo Content stc logo Best of Show Winner of STC's International Summit Awards Competition, 2013 Top Innovations of the Year Science and technology for a safe, secure nation Impenetrable encryption defends data from cyberterrorism keyboard with atrack button A hacker could crack a code, steal private information or shut down systems we rely on daily. Small enough to fit in a smart phone, our QkarD technology ("kee-u-kard") provides virtually impenetrable defense, using quantum cryptography to secure computers. This novel encryption generates security at the subatomic particle level. If someone tries to hack in, that particle is altered, and the owner quietly alerted. And it works-even against super-powerful quantum computers. Multipronged HIV vaccine shows promise in monkeys

92

The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy  

SciTech Connect

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

Moses, E

2011-03-25T23:59:59.000Z

93

Sandia National Laboratories: News: Publications: Lab News  

NLE Websites -- All DOE Office Websites (Extended Search)

Oct. 5, 2012 Oct. 5, 2012 Primary Standards Lab: Sandia's the word for precision measurements, calibrations REALLY ROUND - The image of project lead Hy Tran (2541) is reflected in a polished quartz ball that is the standard for roundness. The Primary Standards Laboratory at Sandia uses a specialized instrument to measure roundness deviation against the roundness standard, which has been certified to national standards to be round within about 20 nanometers. (Photo by Randy Montoya) by Sue Holmes You probably never gave roundness a thought. But when it's crucial that something be really round, federal labs and agencies can turn to the DOE Primary Standards Laboratory (PSL), operated by Sandia. Take the standard for roundness, or deviation from a circle. The PSL uses a specialized instrument to measure roundness deviation against a roundness

94

National Ignition Facility Cryogenic Target Systems Interim Management Plan  

SciTech Connect

Restricted availability of funding has had an adverse impact, unforeseen at the time of the original decision to projectize the National Ignition Facility (NIF) Cryogenic Target Handling Systems (NCTS) Program, on the planning and initiation of these efforts. The purpose of this document is to provide an interim project management plan describing the organizational structure and management processes currently in place for NCTS. Preparation of a Program Execution Plan (PEP) for NCTS has been initiated, and a current draft is provided as Attachment 1 to this document. The National Ignition Facility is a multi-megajoule laser facility being constructed at Lawrence Livermore National Laboratory (LLNL) by the National Nuclear Security Administration (NNSA) in the Department of Energy (DOE). Its primary mission is to support the Stockpile Stewardship Program (SSP) by performing experiments studying weapons physics, including fusion ignition. NIF also supports the missions of weapons effects, inertial fusion energy, and basic science in high-energy-density physics. NIF will be operated by LLNL under contract to the University of California (UC) as a national user facility. NIF is a low-hazard, radiological facility, and its operation will meet all applicable federal, state, and local Environmental Safety & Health (ES&H) requirements. The NCTS Interim Management Plan provides a summary of primary design criteria and functional requirements, current organizational structure, tracking and reporting procedures, and current planning estimates of project scope, cost, and schedule. The NIF Director controls the NIF Cryogenic Target Systems Interim Management Plan. Overall scope content and execution schedules for the High Energy Density Physics Campaign (SSP Campaign 10) are currently undergoing rebaselining and will be brought into alignment with resources expected to be available throughout the NNSA Future Years National Security Plan (FYNSP). The revised schedule for delivering this system will be decided at the national level, based on experiment campaign requirement dates that will be derived through this process. The current milestone date for achieving indirect-drive ignition on the NIF is December 2010. Maintaining this milestone requires that the cryogenic systems be complete and available for fielding experiments early enough that the planned experimental campaigns leading up to ignition can be carried out. The capability of performing non-ignition cryogenic experiments is currently required by March 2006, when the NIF's first cluster of beams is operational. Plans for cryogenic and non-cryogenic experiments on the NIF are contained in NNSA's Campaign 10 Program Plans for Ignition (MTE 10.1) and High Energy Density Sciences (MTE 10.2). As described in this document, the NCTS Program Manager is responsible for managing NIF Cryogenic Target Systems development, engineering, and deployment. Through the NIF Director, the NCTS Program Manager will put in place an appropriate Program Execution Plan (draft attached) at a later time consistent with the maturing and funding these efforts. The PEP will describe management methods for carrying out these activities.

Warner, B

2002-04-25T23:59:59.000Z

95

Laser design basis for the National Ignition Facility  

SciTech Connect

Controlled nuclear fusion initiated by highly intense laser beams has been the subject of experiment for many years. The National Ignition Facility (NIF) represents the culmination of design efforts to provide a laser facility that will successfully demonstrate fusion ignition in the laboratory. In this so-called inertial confinement approach, energetic driver beams (laser, X-ray, or charged particle) heat the outer surface of a spherical capsule containing deuterium and tritium (DT) fuel. As the capsule surface explosively evaporates, reaction pressure compresses the DT fuel causing the central core of the fuel to reach extreme density and temperature. When the central temperature is high enough, DT fusion reactions occur. The energy released from these reactions further heats the compressed fuel, and fusion burn propagates outward through the colder regions of the capsule much more rapidly than the inertially confined capsule can expand. The resulting fusion reactions yield many times more energy than was absorbed from the driver beams.

Hunt, J.T.; Manes, K.R.; Murray, J.R.; Renard, P.A.; Sawicki, R.; Trenholme, J.B.; Williams, W.

1994-06-01T23:59:59.000Z

96

Hydrodynamic instabilities in beryllium targets for the National Ignition Facility  

SciTech Connect

Beryllium ablators offer higher ablation velocity, rate, and pressure than their carbon-based counterparts, with the potential to increase the probability of achieving ignition at the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We present here a detailed hydrodynamic stability analysis of low (NIF Revision 6.1) and high adiabat NIF beryllium target designs. Our targets are optimized to fully utilize the advantages of beryllium in order to suppress the growth of hydrodynamic instabilities. This results in an implosion that resists breakup of the capsule, and simultaneously minimizes the amount of ablator material mixed into the fuel. We quantify the improvement in stability of beryllium targets relative to plastic ones, and show that a low adiabat beryllium capsule can be at least as stable at the ablation front as a high adiabat plastic target.

Yi, S. A., E-mail: austinyi@lanl.gov; Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Kline, J. L.; Batha, S. H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, D. S.; Hammel, B. A.; Milovich, J. L.; Salmonson, J. D.; Kozioziemski, B. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

2014-09-15T23:59:59.000Z

97

LabWindows/CVI" LabWindows/CVI National  

E-Print Network (OSTI)

) ANSI C, , : 1. ­ , , , , . (User Interface Library). 2. (VISA Library. ­ , , (Analysis Library, Advanced Analysis Library). 5. ANSI C. DDE, ActiveX, , .NET, . Lab

98

NNSA National Labs, Y-12 Earn 11 R&D 100 Awards | Y-12 National...  

NLE Websites -- All DOE Office Websites (Extended Search)

dramatically increases the operational flexibility and efficiency at the National Ignition Facility, the world's largest laser. Among the team members that developed Laser...

99

Sandia National Labs: PCNSC: Research: Nanosciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanosciences Nanosciences Throughout the scientific community, including Sandia National Laboratories (SNL), researchers say building things atom-by-atom or molecule-by-molecule will revolutionize the production of virtually every human-made object. Exciting prospects-but they also point out that the promise of nanotechnology can only be realized if we learn to understand the special rules that control behavior at this small scale and develop the skill needed to integrate these concepts into practical devices. The excitement stems from the understanding that the behavior of materials at the nanoscale is nothing like that at the large scale. The necessary tools, such as powerful new microscopes, have been developed to let researchers see these surprising behaviors. Sandia National Labs'

100

Diagnosing implosion performance at the National Ignition Facility (NIF) by means of neutron spectrometry  

E-Print Network (OSTI)

, Cambridge, MA 02139, USA 2 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 3 LaboratoryDiagnosing implosion performance at the National Ignition Facility (NIF) by means of neutron.1088/0029-5515/53/4/043014 Diagnosing implosion performance at the National Ignition Facility (NIF) by means of neutron spectrometry J

Note: This page contains sample records for the topic "national lab ignites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A sensitive neutron spectrometer for the National Ignition Facility  

SciTech Connect

We are developing a sensitive neutron spectrometer for the National Ignition Facility laser at Livermore. The spectrometer will consist of a 1020 channel single-neutron-interaction time-of-flight detector array fielded 23 m from the neutron-producing target. It will use an existing detector array together with upgraded electronics for improved time resolution. Measurements of neutron yield, ion and electron temperatures, and density-radius product are all possible under certain conditions using one-, two-, or three-step reaction processes. The locations of the most important potential sources of scattered neutron backgrounds are determined as the first step in designing collimation to reduce these backgrounds.

Watt, R. G.; Chrien, R. E.; Klare, K. A.; Murphy, T. J.; Wilson, D. C.; Haan, S.

2001-01-01T23:59:59.000Z

102

A polar-drive-ignition design for the National Ignition Facility  

SciTech Connect

Polar drive [Skupsky et al., Phys. Plasmas 11, 2763 (2004)] will enable direct-drive experiments to be conducted on the National Ignition Facility (NIF) [Miller et al., Opt. Eng. 43, 2841 (2004)], while the facility is configured for x-ray drive. A polar-drive ignition design for the NIF has been developed that achieves a gain of 32 in two-dimensional (2-D) simulations, which include single- and multiple-beam nonuniformities and ice and outer-surface roughness. This design requires both single-beam UV polarization smoothing and one-dimensional (1-D) multi-frequency modulator (MFM) single-beam smoothing to achieve the required laser uniformity. The multi-FM smoothing is employed only during the low-intensity portion of the laser pulse, allowing for the use of sufficient smoothing-by-spectral-dispersion bandwidth while maintaining safe laser operations during the high-intensity part of the pulse. This target is robust to all expected sources of perturbations.

Collins, T. J. B.; Marozas, J. A.; Anderson, K. S.; Craxton, R. S.; Delettrez, J. A.; Goncharov, V. N.; Harding, D. R.; Marshall, F. J.; McCrory, R. L.; McKenty, P. W.; Radha, P. B.; Shvydky, A.; Skupsky, S.; Zuegel, J. D. [Laboratory for Laser Energetics, 250E. River Rd, Rochester, New York 14623 (United States); Betti, R.; Meyerhofer, D. D. [Laboratory for Laser Energetics, 250E. River Rd, Rochester, New York 14623 (United States); Departments of Mechanical Engineering and Physics, University of Rochester, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States)

2012-05-15T23:59:59.000Z

103

National Labs Commission Phase I Public Schedule | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Labs Commission Phase I Public Schedule More Documents & Publications Hydrogen Generator Appliance Natural Gas and Hydrogen Infrastructure Opportunities Workshop Agenda...

104

Big Science: Supercomputing at the National Labs | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

per second. The National Labs are even exploring the next frontier in high performance computing -- the exascale. Though none have been built just yet, exascale...

105

Supercomputers: Extreme Computing at the National Labs | Department...  

Office of Environmental Management (EM)

32 of the 500 fastest supercomputers in the world. National Labs supercomputers enable science of scale, tackling complex challenges that require massive calculations or modeling...

106

Driving Innovation at the National Labs | Department of Energy  

Energy Savers (EERE)

and Integration Facility. | Photo Courtesy of NREL. Researchers at the National Renewable Energy Lab showcase innovation at their Vehicle Testing and Integration Facility. | Photo...

107

Department of Energy's National Renewable Energy Lab to Dramatically...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy's National Renewable Energy Lab to Dramatically Increase Use of Clean, Renewable Energy October 30, 2007 - 4:21pm Addthis New "Green Building," Biomass and Solar...

108

From Innovation to Commercialization: Tech Transfer at the National Labs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

From Innovation to Commercialization: Tech Transfer at the National From Innovation to Commercialization: Tech Transfer at the National Labs From Innovation to Commercialization: Tech Transfer at the National Labs August 26, 2013 - 5:28pm Addthis Argonne National Lab scientists Jeff Elam (left) and Anil Mane’s work in nanocomposite charge drain coatings represents a significant breakthrough in the efforts to develop microelectromechanical systems, or MEMS. This new technology earned one of the 36 R&D 100 awards from R&D Magazine that the National Labs took home in 2013. | Image courtesy of Argonne National Laboratory. Argonne National Lab scientists Jeff Elam (left) and Anil Mane's work in nanocomposite charge drain coatings represents a significant breakthrough in the efforts to develop microelectromechanical systems, or MEMS. This new

109

Sandia National Laboratories: News: Publications: Lab News  

NLE Websites -- All DOE Office Websites (Extended Search)

May 18, 2012 May 18, 2012 Labs technology launched in first test flight of Army's conventional Advanced Hypersonic Weapon The US Army's Advanced Hypersonic Weapon on a non-ballistic flight path after launch from Sandia's Kauai Test Facility. (Illustration courtesy of Sandia National Laboratories) View large image. by Heather Clark Seven seconds remained in the countdown to launch a conventional hypersonic glide vehicle from the Kauai Test Facility (KTF) in Hawaii, when a technical issue stopped the count. The Sandia launch team scrambled to find the offending software script error and craft a solution to keep the first test flight of the US Army's Advanced Hypersonic Weapon (AHW) on track. "It was very nerve-wracking," says David Keese, director of Integrated

110

Dr. Yuan Ping Lawrence Livermore National Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Creating, diagnosing and Creating, diagnosing and controlling high-energy- density matter with lasers Dr. Yuan Ping Lawrence Livermore National Lab Tuesday, Oct 22, 2013 - 3:00PM MBG AUDITORIUM Refreshments at 2:45PM The PrinceTon Plasma Physics laboraTory is a U.s. DeParTmenT of energy faciliTy Since their invention in 1960's, lasers with power spanning from Kilo- Watt to PetaWatt have been widely used in almost every branch of sci- ence, leading to numerous discoveries and novel techniques. At present, lasers are capable of creating extreme states of matter in a laboratory, at conditions resembling those most extreme in the Universe: they heat matter up to the temperatures inside stars, they create electric field and

111

National ignition facility environment, safety, and health management plan  

SciTech Connect

The ES&H Management Plan describes all of the environmental, safety, and health evaluations and reviews that must be carried out in support of the implementation of the National Ignition Facility (NIF) Project. It describes the policy, organizational responsibilities and interfaces, activities, and ES&H documents that will be prepared by the Laboratory Project Office for the DOE. The only activity not described is the preparation of the NIF Project Specific Assessment (PSA), which is to be incorporated into the Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (PEIS). This PSA is being prepared by Argonne National Laboratory (ANL) with input from the Laboratory participants. As the independent NEPA document preparers ANL is directly contracted by the DOE, and its deliverables and schedule are agreed to separately with DOE/OAK.

NONE

1995-11-01T23:59:59.000Z

112

The National Ignition Facility: The world's largest optical system  

SciTech Connect

The National Ignition Facility (NIF), a 192-beam fusion laser, is presently under construction at the Lawrence Livermore National Laboratory with an expected completion in 2008. The facility contains 7,456 meter-scale optics for amplification, beam steering, vacuum barriers, focusing, polarization rotation, and wavelength conversion. A multiphase program was put in place to increase the monthly optical manufacturing rate by up to 20x while simultaneously reducing cost by up to 3x through a sub-scale development, full-scale facilitization, and a pilot production phase. Currently 80% of the optics are complete with over 50% installed. In order to manufacture the high quality optics at desired manufacturing rate of over 100 precision optics per month, new more deterministic advanced fabrication technologies had to be employed over those used to manufacture previous fusion lasers.

Stolz, C J

2007-10-15T23:59:59.000Z

113

Implosion dynamics measurements at the National Ignition Facility  

SciTech Connect

Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% {+-} 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel {rho}R on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell thickness were also examined, both of which indicated that instabilities seeded at the ablation front are a significant source of hydrodynamic mix into the central hot spot. Additionally, a direct test of the surrogacy of cryogenic fuel layered versus gas-filled targets was performed. Together all these measurements have established the fundamental ablative-rocket relationship describing the dependence of implosion velocity on fractional ablator mass remaining. This curve shows a lower-than-expected ablator mass at a given velocity, making the capsule more susceptible to feedthrough of instabilities from the ablation front into the fuel and hot spot. This combination of low velocity and low ablator mass indicates that reaching ignition on the NIF will require >20 {mu}m ({approx}10%) thicker targets and laser powers at or beyond facility limits.

Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Callahan, D. A.; Doeppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

2012-12-15T23:59:59.000Z

114

Target diagnostic system for the national ignition facility (invited)  

SciTech Connect

A review of recent progress on the design of a diagnostic system proposed for ignition target experiments on the National Ignition Facility (NIF) will be presented. This diagnostic package contains an extensive suite of optical, x ray, gamma ray, and neutron diagnostics that enable measurements of the performance of both direct and indirect driven NIF targets. The philosophy used in designing all of the diagnostics in the set has emphasized redundant and independent measurement of fundamental physical quantities relevant to the operation of the NIF target. A unique feature of these diagnostics is that they are being designed to be capable of operating in the high radiation, electromagnetic pulse, and debris backgrounds expected on the NIF facility. The diagnostic system proposed can be categorized into three broad areas: laser characterization, hohlraum characterization, and capsule performance diagnostics. The operating principles of a representative instrument from each class of diagnostic employed in this package will be summarized and illustrated with data obtained in recent prototype diagnostic tests. {copyright} {ital 1997 American Institute of Physics.}

Leeper, R.J.; Chandler, G.A.; Cooper, G.W.; Derzon, M.S.; Fehl, D.L.; Hebron, D.E.; Moats, A.R.; Noack, D.D.; Porter, J.L.; Ruggles, L.E.; Ruiz, C.L.; Torres, J.A. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Cable, M.D.; Bell, P.M.; Clower, C.A.; Hammel, B.A.; Kalantar, D.H.; Karpenko, V.P.; Kauffman, R.L.; Kilkenny, J.D.; Lee, F.D.; Lerche, R.A.; MacGowan, B.J.; Moran, M.J.; Nelson, M.B.; Olson, W.; Orzechowski, T.J.; Phillips, T.W.; Ress, D.; Tietbohl, G.L.; Trebes, J.E. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bartlett, R.J.; Berggren, R.; Caldwell, S.E.; Chrien, R.E.; Failor, B.H.; Fernandez, J.C.; Hauer, A.; Idzorek, G.; Hockaday, R.G.; Murphy, T.J.; Oertel, J.; Watt, R.; Wilke, M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Bradley, D.K.; Knauer, J. [University of Rochester, Rochester, New York 14627 (United States)] [University of Rochester, Rochester, New York 14627 (United States); Petrasso, R.D.; Li, C.K. [Massachusetts Institute of Technology, Plasma Fusion Center, Cambridge, Massachusetts 02139 (United States)] [Massachusetts Institute of Technology, Plasma Fusion Center, Cambridge, Massachusetts 02139 (United States)

1997-01-01T23:59:59.000Z

115

Visualization of Target Inspection data at the National Ignition Facility  

SciTech Connect

As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the target capsules used to achieve this goal. Techniques have been developed to measure capsule surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. These instruments produce multi-gigabyte datasets which consist of tens to hundreds of files. Existing software can handle viewing a small subset of an entire dataset, but none can view a dataset in its entirety. Additionally, without an established mode of transport that keeps the target capsules properly aligned throughout the assembly process, a means of aligning the two dataset coordinate systems is needed. The goal of this project is to develop web based software utilizing WebGL which will provide high level overview visualization of an entire dataset, with the capability to retrieve finer details on demand, in addition to facilitating alignment of multiple datasets with one another based on common features that have been visually identified by users of the system.

Potter, D; Antipa, N

2012-02-16T23:59:59.000Z

116

Neutron source reconstruction from pinhole imaging at National Ignition Facility  

SciTech Connect

The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the ignition stage of inertial confinement fusion (ICF) implosions at NIF. Since the neutron source is small (?100 ?m) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-?m resolution are 20-cm long, single-sided tapers in gold. These apertures, which have triangular cross sections, produce distortions in the image, and the extended nature of the pinhole results in a non-stationary or spatially varying point spread function across the pinhole field of view. In this work, we have used iterative Maximum Likelihood techniques to remove the non-stationary distortions introduced by the aperture to reconstruct the underlying neutron source distributions. We present the detailed algorithms used for these reconstructions, the stopping criteria used and reconstructed sources from data collected at NIF with a discussion of the neutron imaging performance in light of other diagnostics.

Volegov, P.; Danly, C. R.; Grim, G. P.; Guler, N.; Merrill, F. E.; Wilde, C. H.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Fittinghoff, D. N.; Izumi, N.; Ma, T.; Warrick, A. L. [Livermore National Laboratory, Livermore, California 94550 (United States)] [Livermore National Laboratory, Livermore, California 94550 (United States)

2014-02-15T23:59:59.000Z

117

Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility  

SciTech Connect

The theory of ignition for inertial confinement fusion capsules [R. Betti et al., Phys. Plasmas 17, 058102 (2010)] is used to assess the performance requirements for cryogenic implosion experiments on the Omega Laser Facility. The theory of hydrodynamic similarity is developed in both one and two dimensions and tested using multimode hydrodynamic simulations with the hydrocode DRACO [P. B. Radha et al., Phys. Plasmas 12, 032702 (2005)] of hydro-equivalent implosions (implosions with the same implosion velocity, adiabat, and laser intensity). The theory is used to scale the performance of direct-drive OMEGA implosions to the National Ignition Facility (NIF) energy scales and determine the requirements for demonstrating hydro-equivalent ignition on OMEGA. Hydro-equivalent ignition on OMEGA is represented by a cryogenic implosion that would scale to ignition on the NIF at 1.8?MJ of laser energy symmetrically illuminating the target. It is found that a reasonable combination of neutron yield and areal density for OMEGA hydro-equivalent ignition is 3 to 6??10{sup 13} and ?0.3?g/cm{sup 2}, respectively, depending on the level of laser imprinting. This performance has not yet been achieved on OMEGA.

Nora, R.; Betti, R.; Bose, A.; Woo, K. M.; Christopherson, A. R.; Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Fusion Science Center, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Anderson, K. S.; Shvydky, A.; Marozas, J. A.; Collins, T. J. B.; Radha, P. B.; Hu, S. X.; Epstein, R.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); McCrory, R. L. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

2014-05-15T23:59:59.000Z

118

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15, 2012 15, 2012 SLAC's linac accelerates very short pulses of electrons to 99.9999999 percent the speed of light through a slalom that causes the electrons to emit X-rays, which become synchronized as they interact with the electron pulses and create the world's brightest X-ray laser pulse. | Photo by Brad Plummer, SLAC. #LabChat: Particle Accelerators, Lasers and Discovery Science, May 17 at 1pm EST #LabChat kicks off May 17, 1 p.m. EST with atom smashers and laser scientists from Fermi National Accelerator Lab, Thomas Jefferson National Accelerator Lab, and SLAC National Accelerator Lab. May 14, 2012 Lab Breakthrough: Fermilab Accelerator Technology Fermilab scientists developed techniques to retrofit some of the 30,000 particle accelerators in use around the world to make them more efficient

119

Tapping Our Commercial Potential: Work with the National Labs | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tapping Our Commercial Potential: Work with the National Labs Tapping Our Commercial Potential: Work with the National Labs Tapping Our Commercial Potential: Work with the National Labs October 12, 2011 - 9:59am Addthis Tapping Our Commercial Potential: Work with the National Labs Karina Edmonds Karina Edmonds Technology Transfer Coordinator In order to transform our nation's energy system and secure U.S. leadership in energy technologies, we must maximize the potential of the scientific discoveries made in our National Laboratories. In 2010 alone, the Energy Department's 17 National Laboratories and 5 facilities executed more than 13,500 technology transfer transactions. These transactions include a range of other research and development agreements as well as the licensing of laboratory technologies, negotiated by technology transfer offices across the Department. Technology Transfer

120

Planning for the National Ignition Campaign on NIF Presentation to  

E-Print Network (OSTI)

yields>1 MJ (an ignition margin >1) with the expected precision of target experiments, laser performance by melting with the first shock ·We predict an ignition margin >1 at the point design laser energy #12;A CH that roll up to set the ignition conditions ~150 lower parameters 1D quantities, e.g: Peak Laser Power Foot

Note: This page contains sample records for the topic "national lab ignites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Measurement on the National Ignition Facility Advance the Science of Inertial Confinement Fusion  

Science Journals Connector (OSTI)

The National Ignition Facility at Lawrence Livermore National Laboratory is a 1.8 MJ, 192 beam laser designed to produce the conditions of temperature and density in compressed...

Kilkenny, Joe

122

Observation of strong electromagnetic fields around laser-entrance holes of ignition-scale hohlraums in inertial-confinement fusion experiments at the National Ignition Facility  

E-Print Network (OSTI)

Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 USA 2 Lawrence Livermore National Laboratory, Livermore, CA 94550 USA 3 Los Alamos National Laboratory, Los Alamos, NM) experiments utilizing ignition-scaled hohlraums at the National Ignition Facility (NIF). A striking

123

Configuring the National Ignition Facility for direct-drive experiments  

SciTech Connect

The National Ignition Facility (NIF) is a project whose primary mission is to provide an above-ground experimental capability for maintaining nuclear competence and weapons effects simulation, and to pursue the achievement of fusion ignition utilizing solid state lasers as the energy driver. In this facility a large number of laser beams are focused onto a small target located at the center of a spherical target chamber. The laser energy is delivered in a few billionths of a second, raising the temperature and density of the nuclear materials in the target to levels where significant thermonuclear energy is released. The thermonuclear reaction proceeds very rapidly, so that the target materials remain confined by their own inertia during the thermonuclear reaction. This type of approach is called inertial confinement fusion (ICF). The proposed project is described in a conceptual design report (CDR) that was released in May 1994. Early in FY95, a collaboration between the University of Rochester and the Lawrence Livermore National Laboratory was established to study reconfiguring the NIF to accommodate direct-drive experiments. The present paper is a report to the scientific community, primarily the scientists and engineers working on the design of the NIF. It represents results from work in progress, specifically work completed by the end of the second quarter FY95. This report has two main sections. The first describes the target requirements on the laser drive, and the second part describes how the NIF laser can be configured to accommodate both indirect and direct drive. The report includes a description of the scientific basis for these conclusions. Though a complete picture does not exist, the present understanding is sufficient to conclude that the primary target requirements and laser functional requirements for indirect and direct drive are quite compatible. It is evidently straightforward to reconfigure the NIF to accommodate direct and indirect drive.

Eimerl, D. [ed.

1995-07-01T23:59:59.000Z

124

Secretary Bodman Visits National Energy Technology Lab | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Energy Technology Lab National Energy Technology Lab Secretary Bodman Visits National Energy Technology Lab January 6, 2006 - 9:11am Addthis On Friday, January 6, Secretary Bodman visited the National Energy Technology Lab (NETL) in Pittsburgh, PA, to tour the research facility and hold an all-hands meeting with NETL employees. The Secretary was joined by Assistant Secretary for Fossil Energy Jeff Jarrett and Congressman Tim Murphy (R-PA). During the visit, Secretary Bodman toured exhibits on NETL's research and development projects and received demonstrations from scientists and researchers on the latest energy and environmental technologies developed by the lab. Prior to his visit to NETL, Secretary Bodman joined Reps. Melissa Hart and Tim Murphy for the Pittsburgh Energy Summit 2006. During the summit,

125

Jefferson Lab Engineer Among Nation's Best | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineer Among Nation's Best Celia Whitlatch Celia Whitlatch, JLab Mechanical Engineer August 7, 2007 NEWPORT NEWS, VA, Aug. 7 - A mechanical engineer at the Department of Energy's...

126

2011 Nobel Laureate Saul Perlmutter on the Value of National Labs  

ScienceCinema (OSTI)

2011 Nobel Laureate, Saul Perlmutter, discusses what makes Lawrence Berkeley National Lab unique, and the value of national labs in award-winning research.

Perlmutter, Saul

2013-05-29T23:59:59.000Z

127

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 5, 2011 December 5, 2011 Researchers with the Energy Department's Joint BioEnergy Institute (JBEI) at Lawrence Berkeley National Lab have identified a potential new advanced biofuel that could replace today's standard fuel if successfully commercialized. The new blog TechStream will focus on new technologies coming out of the lab. | Photo courtesy of Lawrence Berkeley National Lab. New Blog Seeks Out the "Next Big Thing" The new blog TechStream will focus on promising technologies from Lawrence Berkeley National Lab that have not yet been commercialized. December 2, 2011 This is a computer simulation of a Class 1a supernova. Argonne National Laboratory's Mira will have enough computing power to help researchers run simulations of exploding stars, specifically, of the turbulent nuclear combustion that sets off type 1a supernovae. | Photo courtesy of Argonne National Laboratory

128

Recovery Act Progress at Idaho National Lab | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Progress at Idaho National Lab Progress at Idaho National Lab Recovery Act Progress at Idaho National Lab August 19, 2010 - 5:09pm Addthis Andy Oare Andy Oare Former New Media Strategist, Office of Public Affairs Idaho National Laboratory (INL) is a hot bed of activity with various Recovery Act projects funded through the Office of Environmental Management. For example, North Wind Services will be constructing several new structures at the INL Radioactive Waste Management Complex -- facilities that will provide important protection from the elements and minimize the spread of contamination during buried waste excavation, retrieval and packaging operations. Pictures of Recovery Act Projects at Idaho National Lab Down the road at the Advanced Test Reactor Complex, TerranearPMC is working

129

The National Ignition Facility: enabling fusion ignition for the 21st century  

Science Journals Connector (OSTI)

The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, when completed in 2008, will contain a 192-beam, 1.8?MJ, 500?TW, ultraviolet laser system together with a 10?m diameter target chamber and room for 100 diagnostics. NIF is housed in a 26?000?m2 environmentally controlled building and is the world's largest and most energetic laser experimental system. NIF provides a scientific centre for the study of inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures and pressures approaching 108?K and 1011?bar, respectively, conditions that exist naturally only in the interior of stars and planets. NIF is currently configured with four laser beams activated in late 2002. These beams are being regularly used for laser performance and physics experiments, and to date nearly 250 system shots have been conducted. NIF's laser beams have generated 106?kJ in 23?ns pulses of infrared light and over 16?kJ in 3.5?ns pulses at the third harmonic (351?nm). A number of target experimental systems are being commissioned in support of experimental campaigns. This paper provides a detailed look at the NIF laser systems, laser and optical performance, and results from laser commissioning shots. We also discuss NIF's high-energy density and inertial fusion experimental capabilities, the first experiments on NIF, and plans for future capabilities of this unique facility.

George H. Miller; Edward I. Moses; Craig R. Wuest

2004-01-01T23:59:59.000Z

130

Scaling laws for ignition at the National Ignition Facility from first principles  

Science Journals Connector (OSTI)

We have developed an analytical physics model from fundamental physics principles and used the reduced one-dimensional model to derive a thermonuclear ignition criterion and implosion energy scaling laws applicable to inertial confinement fusion capsules. The scaling laws relate the fuel pressure and the minimum implosion energy required for ignition to the peak implosion velocity and the equation of state of the pusher and the hot fuel. When a specific low-entropy adiabat path is used for the cold fuel, our scaling laws recover the ignition threshold factor dependence on the implosion velocity, but when a high-entropy adiabat path is chosen, the model agrees with recent measurements.

Baolian Cheng; Thomas J. T. Kwan; Yi-Ming Wang; Steven H. Batha

2013-10-07T23:59:59.000Z

131

Back to School at the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Back to School at the National Labs Back to School at the National Labs Back to School at the National Labs August 20, 2013 - 5:19pm Addthis Intern Aleksander Navratil, Carroll College, is setting up to perform viscosity measurements of engine oil formulations for an Argonne National Laboratory program researching oils and additives to improve engine efficiency and reduce emissions. | Photo courtesy of Argonne National Laboratory. Intern Aleksander Navratil, Carroll College, is setting up to perform viscosity measurements of engine oil formulations for an Argonne National Laboratory program researching oils and additives to improve engine efficiency and reduce emissions. | Photo courtesy of Argonne National Laboratory. Ben Dotson Ben Dotson Project Coordinator for Digital Reform, Office of Public Affairs

132

National Labs Open Doors to Displaced Japanese Researchers | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Labs Open Doors to Displaced Japanese Researchers National Labs Open Doors to Displaced Japanese Researchers National Labs Open Doors to Displaced Japanese Researchers July 5, 2011 - 1:42pm Addthis Maiko Kofu, Atsushi Nagoe and Osamu Yamamuro examine their sample attached to the end of the cryostat stick after running an experiment at Oak Ridge National Laboratory’s Spallation Neutron Source. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain | Maiko Kofu, Atsushi Nagoe and Osamu Yamamuro examine their sample attached to the end of the cryostat stick after running an experiment at Oak Ridge National Laboratory's Spallation Neutron Source. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain | Charles Rousseaux Charles Rousseaux

133

Supercomputing and Advanced Computing at the National Labs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

supercomputing 1000 Independence Ave. SW Washington DC supercomputing 1000 Independence Ave. SW Washington DC 20585 202-586-5000 en Lab Breakthrough: Supercomputing Power to Accelerate Fossil Energy Research http://energy.gov/articles/lab-breakthrough-supercomputing-power-accelerate-fossil-energy-research lab-breakthrough-supercomputing-power-accelerate-fossil-energy-research" class="title-link">Lab Breakthrough: Supercomputing Power to Accelerate Fossil Energy Research

134

Secretary Chu Congratulates the National Renewable Energy Lab on 2011  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the National Renewable Energy Lab on the National Renewable Energy Lab on 2011 GreenGov Presidential Award Secretary Chu Congratulates the National Renewable Energy Lab on 2011 GreenGov Presidential Award November 1, 2011 - 6:16pm Addthis WASHINGTON, D.C. - U.S. Energy Secretary Steven Chu today congratulated the National Renewable Energy Lab (NREL) on winning the 2011 GreenGov Presidential Award for Green Innovation. NREL's Green Data Center was recognized for its innovative design that minimizes its energy footprint and reduces costs, without compromising service quality. Announced this morning by the White House Council on Environmental Quality (CEQ), the GreenGov Presidential Awards celebrate extraordinary achievement in the pursuit of President Obama's Executive Order on Federal Leadership

135

Sandia National Laboratories: News: Publications: Lab News  

NLE Websites -- All DOE Office Websites (Extended Search)

November 15, 2013 Sandia President Paul Hommert testifies on importance of B61 LEP Sandia President and Labs Director Paul Hommert, right, was part of a panel testifying before the...

136

Berkeley Lab - Lawrence Berkeley National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

the Lab, which has a strong commitment to inclusion and diversity. He was right. Dark Energy Survey Captures Stunning Deep-Space Images The Dark Energy Survey kicked off its...

137

Review of the National Ignition Campaign 2009-2012 John Lindl, Otto Landen, John Edwards, Ed Moses, and NIC Team  

E-Print Network (OSTI)

for the target, laser, and diagnostics with the understanding that not all ignition physics is fully understoodReview of the National Ignition Campaign 2009-2012 John Lindl, Otto Landen, John Edwards, Ed Moses://scitation.aip.org/termsconditions. Downloaded to IP: 198.125.181.33 On: Wed, 05 Mar 2014 18:15:06 #12;Review of the National Ignition Campaign

138

ASC at the Labs | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

at the Labs | National Nuclear Security Administration at the Labs | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog ASC at the Labs Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > ASC at the Labs ASC at the Labs

139

Supercomputers: Extreme Computing at the National Labs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supercomputers: Extreme Computing at the National Labs Supercomputers: Extreme Computing at the National Labs Supercomputers: Extreme Computing at the National Labs September 4, 2013 - 1:08pm Addthis Titan 1 of 5 Titan Oak Ridge National Laboratory's Titan has a theoretical peak performance of more than 20 petaflops, or more than 20 quadrillion calculations per second. This will enable researchers across the scientific arena, from materials to climate change to astrophysics, to acquire unparalleled accuracy in their simulations and achieve research breakthroughs more rapidly than ever before. Titan is currently the second fastest supercomputer in the world. Image: Courtesy of Oak Ridge National Laboratory. Sequoia 2 of 5 Sequoia Sequoia is a 20 petaflop, that is 20 quadrillion floating point operations per second, IBM BlueGene/Q system at Lawrence Livermore National

140

Programmable Beam Spatial Shaping System for the National Ignition Facility  

SciTech Connect

A system of customized spatial light modulators has been installed onto the front end of the laser system at the National Ignition Facility (NIF). The devices are capable of shaping the beam profile at a low-fluence relay plane upstream of the amplifier chain. Their primary function is to introduce 'blocker' obscurations at programmed locations within the beam profile. These obscurations are positioned to shadow small, isolated flaws on downstream optical components that might otherwise limit the system operating energy. The modulators were designed to enable a drop-in retrofit of each of the 48 existing Pre Amplifier Modules (PAMs) without compromising their original performance specifications. This was accomplished by use of transmissive Optically Addressable Light Valves (OALV) based on a Bismuth Silicon Oxide photoconductive layer in series with a twisted nematic liquid crystal (LC) layer. These Programmable Spatial Shaper packages in combination with a flaw inspection system and optic registration strategy have provided a robust approach for extending the operational lifetime of high fluence laser optics on NIF.

Heebner, J; Borden, M; Miller, P; Hunter, S; Christensen, K; Scanlan, M; Haynam, C; Wegner, P; Hermann, M; Brunton, G; Tse, E; Awwal, A; Wong, N; Seppala, L; Franks, M; Marley, E; Wong, N; Seppala, L; Franks, M; Marley, E; Williams, K; Budge, T; Henesian, M; Stolz, C; Suratwala, T; Monticelli, M; Walmer, D; Dixit, S; Widmayer, C; Wolfe, J; Bude, J; McCarty, K; DiNicola, J M

2011-01-21T23:59:59.000Z

Note: This page contains sample records for the topic "national lab ignites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Transformative Battery Technology at the National Labs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs January 17, 2012 - 10:45am Addthis Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's Batteries for Advanced Transportation Technologies Program where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What are the key facts? Berkeley's Batteries for Advanced Transportation Technologies Program is developing lithium-ion technology to power a vehicle for 300 miles. Lithium-sulfur and lithium-air are "unknown known" technologies for the future of electric vehicle batteries.

142

Transformative Battery Technology at the National Labs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs Transformative Battery Technology at the National Labs January 17, 2012 - 10:45am Addthis Vince Battaglia leads a behind-the-scenes tour of Berkeley Lab's Batteries for Advanced Transportation Technologies Program where researchers aim to improve batteries upon which the range, efficiency, and power of tomorrow's electric cars will depend. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What are the key facts? Berkeley's Batteries for Advanced Transportation Technologies Program is developing lithium-ion technology to power a vehicle for 300 miles. Lithium-sulfur and lithium-air are "unknown known" technologies for the future of electric vehicle batteries.

143

Transformative Science: Energy Efficiency at the National Labs | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transformative Science: Energy Efficiency at the National Labs Transformative Science: Energy Efficiency at the National Labs Transformative Science: Energy Efficiency at the National Labs November 4, 2013 - 4:00pm Addthis Research Support Facility 1 of 3 Research Support Facility At the National Renewable Energy Laboratory, the Research Support Facility (RSF) houses about 1,300 federal employees and is one of the largest net-zero office buildings in the world -- meaning it produces as much energy as it consumes. Energy efficiency features at the RSF include daylighting, low-emissivity windows, building orientation, and super insulation. Image: Photo by Dennis Schroeder, National Renewable Energy Laboratory. Date taken: 2010-08-17 12:00 Illinois Accelerator Research Center 2 of 3 Illinois Accelerator Research Center The 83,000 square-foot Illinois Accelerator Research Center, a new building

144

Energy Efficiency at the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency at the National Labs Energy Efficiency at the National Labs Energy Efficiency at the National Labs Addthis Research Support Facility 1 of 3 Research Support Facility At the National Renewable Energy Laboratory, the Research Support Facility (RSF) houses about 1,300 federal employees and is one of the largest net-zero office buildings in the world -- meaning it produces as much energy as it consumes. Energy efficiency features at the RSF include daylighting, low-emissivity windows, building orientation, and super insulation. Image: Photo by Dennis Schroeder, National Renewable Energy Laboratory. Date taken: 2010-08-17 12:00 Illinois Accelerator Research Center 2 of 3 Illinois Accelerator Research Center The 83,000 square-foot Illinois Accelerator Research Center, a new building at Fermilab, is aiming for a LEED Gold rating from the US Green Building

145

Transformative Science: Energy Efficiency at the National Labs | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transformative Science: Energy Efficiency at the National Labs Transformative Science: Energy Efficiency at the National Labs Transformative Science: Energy Efficiency at the National Labs November 4, 2013 - 4:00pm Addthis Research Support Facility 1 of 3 Research Support Facility At the National Renewable Energy Laboratory, the Research Support Facility (RSF) houses about 1,300 federal employees and is one of the largest net-zero office buildings in the world -- meaning it produces as much energy as it consumes. Energy efficiency features at the RSF include daylighting, low-emissivity windows, building orientation, and super insulation. Image: Photo by Dennis Schroeder, National Renewable Energy Laboratory. Date taken: 2010-08-17 12:00 Illinois Accelerator Research Center 2 of 3 Illinois Accelerator Research Center The 83,000 square-foot Illinois Accelerator Research Center, a new building

146

SLIDESHOW: Tour the National Renewable Energy Lab's Latest Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SLIDESHOW: Tour the National Renewable Energy Lab's Latest SLIDESHOW: Tour the National Renewable Energy Lab's Latest Research Center SLIDESHOW: Tour the National Renewable Energy Lab's Latest Research Center June 20, 2013 - 1:16pm Addthis The Energy Systems Integration Facility at the National Renewable Energy Laboratory in Golden, Colorado. | Photo by Dennis Schroeder, NREL. The Energy Systems Integration Facility at the National Renewable Energy Laboratory in Golden, Colorado. | Photo by Dennis Schroeder, NREL. NREL Senior Scientists Ross Larsen and Travis Kemper examine a molecular model using a 3D model at the Insight Collaboration Laboratory during a tour of the Energy Systems Integration Facility. | Photo by Dennis Schroeder, NREL. NREL Senior Scientists Ross Larsen and Travis Kemper examine a molecular

147

Eight National Labs Offer Streamlined Partnership Agreements to Help  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Eight National Labs Offer Streamlined Partnership Agreements to Eight National Labs Offer Streamlined Partnership Agreements to Help Industry Bring New Technologies to Market Eight National Labs Offer Streamlined Partnership Agreements to Help Industry Bring New Technologies to Market February 23, 2012 - 12:38pm Addthis Washington, D.C. - Energy Secretary Steven Chu today announced that eight of the Department's national laboratories will participate in a pilot initiative to make it easier for private companies to utilize the laboratories' research capabilities. The program will harness America's unique advantages in innovation to create jobs and accelerate the development of new clean energy technologies. "The Agreements for Commercializing Technology will cut red tape for businesses and startups interested in working with our nation's crown

148

National Lab 'Flips Switch' on East Coast's Largest Solar Array |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Lab 'Flips Switch' on East Coast's Largest Solar Array National Lab 'Flips Switch' on East Coast's Largest Solar Array National Lab 'Flips Switch' on East Coast's Largest Solar Array November 21, 2011 - 12:16pm Addthis An aerial view of the 32-megawatt photovoltaic array of the Long Island Solar Farm, which will produce enough energy to power up to 4,500 local homes. The central Brookhaven National Laboratory campus is seen at left. An aerial view of the 32-megawatt photovoltaic array of the Long Island Solar Farm, which will produce enough energy to power up to 4,500 local homes. The central Brookhaven National Laboratory campus is seen at left. Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs What are the key facts? The 32-megawatt Long Island Solar Farm Project will produce enough

149

Sandia National Laboratories: News: Publications: Lab News  

NLE Websites -- All DOE Office Websites (Extended Search)

February 8, 2013 February 8, 2013 Report spotlights Sandia's impact on New Mexico Sandia spent roughly $900 million on goods and services in fiscal year 2012 and New Mexico businesses were awarded more than $400 million, or 45 percent, of the total, according to the Labs' latest economic impact report. For more on Sandia's economic impact on the community, visit the Labs' Economic Impact website. by Nancy Salem Sandia spent roughly $900 million on goods and services in fiscal year 2012 and New Mexico businesses were awarded more than $400 million, or 45 percent, of the total, according to the Labs' latest economic impact report. US small businesses received $472.7 million in Sandia contracts, with the New Mexico share totaling $255.9 million, or 64 percent. "I am proud to say that fiscal year 2012 stood out as another consecutive

150

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy.gov » Recent News from the National Labs Energy.gov » Recent News from the National Labs Recent News from the National Labs RSS December 24, 2013 The Energy Department's Los Alamos National Lab is tracking Santa Claus as he circles the globe the night before Christmas. Tracking Santa With Our Eyes in the Sky The Energy Department's Los Alamos National Lab is tracking Santa Claus as he circles the globe the night before Christmas. December 18, 2013 Scientists at Pacific Northwest National Laboratory study the microbial interactions in the plant root systems, the rhizosphere. The rhizosphere represents a critical zone where plant roots, microbes and minerals interface, and where biogeochemical weathering provides nutrients to plants. This research program will broaden our understanding of the biogeochemistry of plant-microbe-soil interactions. Shown are the spores of an opportunistic soil fungus Penicillium sp. that associates with the plant roots, microbial biofilms and soil minerals. | Photo courtesy of Pacific Northwest National Laboratory.

151

NIF achieves record laser energy in pursuit of fusion ignition | National  

NLE Websites -- All DOE Office Websites (Extended Search)

achieves record laser energy in pursuit of fusion ignition | National achieves record laser energy in pursuit of fusion ignition | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NIF achieves record laser energy in pursuit ... NIF achieves record laser energy in pursuit of fusion ignition Posted By Office of Public Affairs NNSA Blog The NNSA's National Ignition Facility (NIF) surpassed a critical

152

National Labs Leading Charge on Building Better Batteries | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Labs Leading Charge on Building Better Batteries Labs Leading Charge on Building Better Batteries National Labs Leading Charge on Building Better Batteries September 26, 2011 - 12:36pm Addthis Berkeley Lab researchers have designed a new anode -- a key component of lithium ion batteries -- made from a "tailored polymer" (pictured above at right in purple). It has a greater capacity to store energy since it can conduct electricity itself rather than using a polymer binder (such as PVDF, pictured above at left in brown) in the traditional method. Berkeley Lab researchers have designed a new anode -- a key component of lithium ion batteries -- made from a "tailored polymer" (pictured above at right in purple). It has a greater capacity to store energy since it can conduct electricity itself rather than using a polymer binder (such as

153

Department of Energy's National Renewable Energy Lab to Dramatically  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy's National Renewable Energy Lab to Department of Energy's National Renewable Energy Lab to Dramatically Increase Use of Clean, Renewable Energy Department of Energy's National Renewable Energy Lab to Dramatically Increase Use of Clean, Renewable Energy October 30, 2007 - 4:21pm Addthis New "Green Building," Biomass and Solar Facilities to Transform how NREL Uses Power GOLDEN, CO- U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today participated in a groundbreaking ceremony for a highly efficient and "green" Research Support Facility, and announced two major renewable power projects at the Department's National Renewable Energy Laboratory (NREL). These projects further President Bush's to increase the use of clean, renewable energy and maximize energy efficiency across the federal

154

Supercomputing and Advanced Computing at the National Labs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy.gov » Supercomputing and Advanced Computing at the National Energy.gov » Supercomputing and Advanced Computing at the National Labs Supercomputing and Advanced Computing at the National Labs RSS September 30, 2013 Lab Breakthrough: Supercomputing Power to Accelerate Fossil Energy Research Learn how a new supercomputer at the National Energy Technology Laboratory will accelerate research into the next generation of fossil fuel systems. September 26, 2013 Infographic by Sarah Gerrity, Energy Department. INFOGRAPHIC: Everything You Need to Know About Supercomputers In our newest infographic, we explain some of the complex terms associated with the speed, storage and processing on supercomputers; the game changing work being done with them; and the top 8 supercomputers that call the

155

National Lab Celebrates a Century of Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Lab Celebrates a Century of Science National Lab Celebrates a Century of Science National Lab Celebrates a Century of Science October 13, 2010 - 1:00pm Addthis Washington, DC - On the occasion of its 100th anniversary, the Office of Fossil Energy's National Energy Technology Laboratory (NETL) today launched its Regional University Alliance (NETL-RUA) and dedicated the Energy Challenge, an interactive energy exhibit for kids, with an event at the Carnegie Science Center. Energy Challenge is an interactive kiosk that quizzes players on sources of energy, the science behind energy, and ways to use it wisely in daily life. The exhibit will be located on the fourth floor of the Carnegie Science Center and will be included in general admission. NETL-RUA combines the best qualities of two fascinating worlds: NETL's

156

Precision Shock Tuning on the National Ignition Facility H. F. Robey,1  

E-Print Network (OSTI)

. Atherton,1 J. D. Lindl,1 D. D. Meyerhofer,3 and E. Moses1 1 Lawrence Livermore National Laboratory, Livermore, California 94551, USA 2 Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA 3 implosions on the National Ignition Facility (NIF) [1] are underway using the indirect-drive concept, where

157

Copper activation deuterium-tritium neutron yield measurements at the National Ignition Facility  

E-Print Network (OSTI)

, New Mexico 87131, USA 2 Sandia National Laboratories, Albuquerque, New Mexico 87185, USA 3 Lawrence Livermore National Laboratories, Livermore, California 94550, USA 4 Plasma Science and Fusion Center, MIT(+ ) and 65 Cu(n,2n) 64 Cu(+ ), has been fielded at the National Ignition Facility (NIF). The induced copper

158

So Far Unfruitful, Fusion Project Faces a Frugal Congress National Ignition Facility  

E-Print Network (OSTI)

laser at the Lawrence Livermore National Laboratory in California. By WILLIAM J. BROAD September 29 have broad repercussions not only for the big laser, which is based at the Lawrence Livermore National the government have long assailed the laser project, known as the National Ignition Facility, or NIF

159

NNSA labs, sites receive DOE Sustainability Awards | National Nuclear  

National Nuclear Security Administration (NNSA)

labs, sites receive DOE Sustainability Awards | National Nuclear labs, sites receive DOE Sustainability Awards | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > NNSA labs, sites receive DOE Sustainability Awards NNSA labs, sites receive DOE Sustainability Awards Posted By Office of Public Affairs In keeping with NNSA's commitment to improving the way it does business,

160

Management Of Experiments And Data At The National Ignition Facility  

SciTech Connect

Experiments, or 'shots', conducted at the National Ignition Facility (NIF) are discrete events that occur over a very short time frame (tens of nanoseconds) separated by many hours. Each shot is part of a larger campaign of shots to advance scientific understanding in high-energy-density physics. In one campaign, scientists use energy from the 192-beam, 1.8-Megajoule pulsed laser in the NIF system to symmetrically implode a hydrogen-filled target, thereby creating conditions similar to the interior of stars in a demonstration of controlled fusion. Each NIF shot generates gigabytes of data from over 30 diagnostics that measure optical, x-ray, and nuclear phenomena from the imploding target. We have developed systems to manage all aspects of the shot cycle. Other papers will discuss the control of the lasers and targets, while this paper focuses on the setup and management of campaigns and diagnostics. Because of the low duty cycle of shots, and the thousands of adjustments for each shot (target type, composition, shape; laser beams used, their power profiles, pointing; diagnostic systems used, their configuration, calibration, settings) it is imperative that we accurately define all equipment prior to the shot. Following the shot, and capture of the data by the automatic control system, it is equally imperative that we archive, analyze and visualize the results within the required 30 minutes post-shot. Results must be securely archived, approved, web-visible and downloadable in order to facilitate subsequent publication. To-date NIF has successfully fired over 2,500 system shots, as well as thousands of test firings and dry-runs. We will present an overview of the highly-flexible and scalable campaign management systems and tools employed at NIF that control experiment configuration of the facility all the way through presentation of analyzed results.

Azevedo, S; Casey, A; Beeler, R; Bettenhausen, R; Bond, E; Chandrasekaran, H; Foxworthy, C; Hutton, M; Krammen, J; Liebman, J; Marsh, A; Pannell, T; Rhodes, J; Tappero, J; Warrick, A

2011-03-18T23:59:59.000Z

Note: This page contains sample records for the topic "national lab ignites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

National Ignition Facility core x-ray streak camera  

SciTech Connect

The National Ignition Facility (NIF) core x-ray streak camera will be used for laser performance verification experiments as well as a wide range of physics experiments in the areas of high-energy-density science, inertial confinement fusion, and basic science. The x-ray streak camera system is being designed to record time-dependent x-ray emission from NIF targets using an interchangeable family of snouts for measurements such as one-dimensional (1D) spatial imaging or spectroscopy. the NIF core x-ray streak camera will consist of an x-ray-sensitive photocathode that detects x rays with 1D spatial resolution coupled to an electron streak tube to detect a continuous time history of the x rays incident on the photocathode over selected time periods. A charge-coupled-device (CCD) readout will record the signal from the streak tube. The streak tube, CCD, and associated electronics will reside in an electromagnetic interference, and electromagnetic pulse protected, hermetically sealed, temperature-controlled box whose internal pressure is approximately 1 atm. The streak tube itself will penetrate through the wall of the box into the target chamber vacuum. We are working with a goal of a spatial resolution of 15 lp/mm with 50% contrast transfer function at the photocathode and adjustment sweep intervals of 1--50 ns. The camera spectral sensitivity extends from soft x rays to 20 keV x rays, with varying quantum efficiency based on photocathode selection. The system will have remote control, monitoring, and Ethernet communications through an embedded controller. The core streak camera will be compatible with the instrument manipulators at the OMEGA (University of Rochester) and NIF facilities.

Kimbrough, J. R.; Bell, P. M.; Christianson, G. B.; Lee, F. D.; Kalantar, D. H.; Perry, T. S.; Sewall, N. R.; Wootton, A. J.

2001-01-01T23:59:59.000Z

162

Polar-drive implosions on OMEGA and the National Ignition Facility P. B. Radha, F. J. Marshall, J. A. Marozas, A. Shvydky, I. Gabalski et al.  

E-Print Network (OSTI)

)1 permits direct-drive-ignition experi- ments on laser facilities like the National IgnitionPolar-drive implosions on OMEGA and the National Ignition Facility P. B. Radha, F. J. Marshall, J-drive implosions on OMEGA and the National Ignition Facilitya) P. B. Radha,1,b) F. J. Marshall,1 J. A. Marozas,1 A

163

Sandia National Laboratories: News: Publications: Lab News  

NLE Websites -- All DOE Office Websites (Extended Search)

Facebook Facebook Twitter YouTube Flickr RSS Top Archive Annual Report Environmental Reports Fact Sheets Labs Accomplishments Lab News Archive Partnerships Annual Report Research Magazine Search Sandia Publications News December 13, 2013 Realizing tunable conductivity in 'tinker toy' materials Mark Allendorf (8600), left, Alec Talin and Francois Leonard (both 8656) measure the conductivity of a MOF device, shown on the monitor (upper left). The team has developed a technique that increases the electrical conductivity of one MOF by more than six orders of magnitude. (Photo by Dino Vournas) by Mike Janes Sandia researchers have devised a novel way to realize electrical conductivity in metal-organic framework (MOF) materials, a development that could have profound implications for the future of electronics, sensors,

164

Lab Status via Twitter | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab Status via Twitter Lab Status via Twitter Employees can be notified of changes to the laboratory's operations - for example, a delayed opening due to a heavy overnight snowfall - via the "Argonnestatus" account on Twitter. The account can be set to automatically send text messages to most mobile phones and PDAs. In addition to a short description of any changes in laboratory operations, messages may contain links to additional, detailed information. Only messages about changes in laboratory business hours will be sent. Most mobile communication devices can receive Twitter updates; instructions for receiving Argonne Status updates by phone are below. Any applicable text messaging charges from your provider are your responsibility. The Twitter Web site has basic information about the free online service.

165

Sandia National Laboratories: News: Publications: Lab News  

NLE Websites -- All DOE Office Websites (Extended Search)

Aug. 24, 2012 Aug. 24, 2012 Failure the only option at the Mechanics Lab BREAK TIME - Helena Jin and Kevin Nelson (both 8526) inspect the test setup for upcoming experiments to determine the breaking strength of weapon case lugs. (Photo by Dino Vournas) View large image. by Patti Koning For most people, breaking something is unplanned and unwelcome. But for Bonnie Antoun (8256) and the rest of the Micromechanics & Materials Mechanics Experimental Facilities staff, also known as the Mechanics Lab, it's all in a day's work. Bonnie and the rest of the staff - Wei-Yang Lu, Bo Song, Helena Jin, Kevin Connelly, Andy Kung, and Kevin Nelson (8256) - will stretch, squeeze, torque, heat, cool, and pound any material to failure. Material systems of interest include metals, ceramics, structural foams, polymers,

166

Special Feature: National Security & Public Safety at the National Labs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Special Feature: National Security & Public Safety at the National Special Feature: National Security & Public Safety at the National Labs Special Feature: National Security & Public Safety at the National Labs December 4, 2013 - 4:10pm Addthis In the photo above, a robot investigates a bomb threat at an arcade during the 2013 Robot Rodeo at Sandia Labs. The operators are not allowed to turn on the lights or turn off the machines, complicating the operation. | Photo by Randy Montoya, Sandia National Laboratories. In the photo above, a robot investigates a bomb threat at an arcade during the 2013 Robot Rodeo at Sandia Labs. The operators are not allowed to turn on the lights or turn off the machines, complicating the operation. | Photo by Randy Montoya, Sandia National Laboratories. Ben Dotson Ben Dotson Project Coordinator for Digital Reform, Office of Public Affairs

167

Los Alamos National Laboratory participates in National Lab Day to increase  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL participates in National Lab Day LANL participates in National Lab Day Los Alamos National Laboratory participates in National Lab Day to increase awareness of science across the nation Connecting teachers and students with scientists, engineers, mathematicians, and industry professionals across the country is the goal of National Lab Day. April 29, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

168

Partnering with National Labs Brings Cutting Edge Technology to Market |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnering with National Labs Brings Cutting Edge Technology to Partnering with National Labs Brings Cutting Edge Technology to Market Partnering with National Labs Brings Cutting Edge Technology to Market October 13, 2011 - 4:11pm Addthis The inside of the specimen/vacuum chamber of NREL's FEI Nova 200 dual beam electron microscope used to analyze the topography of materials such as Innovalight's Silicon Ink. The instrument is used to produce site-specific sections for high spatial microstructural analysis. The inside of the specimen/vacuum chamber of NREL's FEI Nova 200 dual beam electron microscope used to analyze the topography of materials such as Innovalight's Silicon Ink. The instrument is used to produce site-specific sections for high spatial microstructural analysis. Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs

169

Lawrence Berkeley National Laboratory Berkeley Lab | Open Energy  

Open Energy Info (EERE)

National Laboratory Berkeley Lab National Laboratory Berkeley Lab Jump to: navigation, search Name Lawrence Berkeley National Laboratory (Berkeley Lab) Place Berkeley, California Zip 94720 Product String representation "Conducts unclas ... for discovery." is too long. Coordinates 38.748315°, -90.334929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.748315,"lon":-90.334929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

170

National Lab Scientists Win Nobel Recognition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lab Scientists Win Nobel Recognition Lab Scientists Win Nobel Recognition National Lab Scientists Win Nobel Recognition October 6, 2011 - 3:46pm Addthis Dr. Saul Perlmutter, who won the 2011 Nobel Prize in Physics, heads the Supernova Cosmology Project at Lawrence Berkeley National Laboratory. It was this team along with the High-z Supernova Search Team which found evidence of the accelerating expansion of the universe. Dr. Saul Perlmutter, who won the 2011 Nobel Prize in Physics, heads the Supernova Cosmology Project at Lawrence Berkeley National Laboratory. It was this team along with the High-z Supernova Search Team which found evidence of the accelerating expansion of the universe. Charles Rousseaux Charles Rousseaux Senior Writer, Office of Science Science is all about opening eyes and expanding horizons. This week,

171

National Lab 'Flips Switch' on East Coast's Largest Solar Array |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lab 'Flips Switch' on East Coast's Largest Solar Array Lab 'Flips Switch' on East Coast's Largest Solar Array National Lab 'Flips Switch' on East Coast's Largest Solar Array November 21, 2011 - 12:16pm Addthis An aerial view of the 32-megawatt photovoltaic array of the Long Island Solar Farm, which will produce enough energy to power up to 4,500 local homes. The central Brookhaven National Laboratory campus is seen at left. An aerial view of the 32-megawatt photovoltaic array of the Long Island Solar Farm, which will produce enough energy to power up to 4,500 local homes. The central Brookhaven National Laboratory campus is seen at left. Liisa O'Neill Liisa O'Neill Former New Media Specialist, Office of Public Affairs What are the key facts? The 32-megawatt Long Island Solar Farm Project will produce enough

172

National Lab Technology Transfer Making a Difference | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Lab Technology Transfer Making a Difference National Lab Technology Transfer Making a Difference National Lab Technology Transfer Making a Difference August 28, 2013 - 11:10am Addthis Incorporation of a new CO2 sorbent into commercial heating, ventilation, and air conditioning (HVAC) systems will save energy and reduce operating costs. HVAC is one of the largest consumers of electric power in the United States, responsible for more than half of the load on the electric grid in many major cities. NETL work has led to a patented CO2 sorbent that has now been licensed commercially. Incorporation of a new CO2 sorbent into commercial heating, ventilation, and air conditioning (HVAC) systems will save energy and reduce operating costs. HVAC is one of the largest consumers of electric power in the United

173

Advances in inertial confinement fusion at the National Ignition Facility (NIF)  

Science Journals Connector (OSTI)

The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratorytemperatures over 100 million K, densities of 1000g/cm3, and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

Edward I. Moses

2010-01-01T23:59:59.000Z

174

Advances in Inertial Confinement Fusion at the National Ignition Facility (NIF)  

SciTech Connect

The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratory - temperatures over 100 million K, densities of 1,000 g/cm3, and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1 MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

Moses, E

2009-10-15T23:59:59.000Z

175

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

26, 2013 26, 2013 Infographic by Sarah Gerrity, Energy Department. INFOGRAPHIC: Everything You Need to Know About Supercomputers In our newest infographic, we explain some of the complex terms associated with the speed, storage and processing on supercomputers; the game changing work being done with them; and the top 8 supercomputers that call the National Labs home. September 25, 2013 Dr. Erich Strohmaier, of Lawrence Berkeley National Laboratory, presents data from the TOP500 list of supercomputers. | Photo courtesy of Berkeley Lab. 10 Questions for a Scientist: Erich Strohmaier Dr. Erich Strohmaier discusses the evolution of the TOP500 list of supercomputers, his own career and where the field of high performance

176

The National Ignition Facility: The Path to a Carbon-Free Energy Future  

SciTech Connect

The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centers on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.

Stolz, C J

2011-03-16T23:59:59.000Z

177

Sandia National Laboratories: News: Publications: Lab News  

NLE Websites -- All DOE Office Websites (Extended Search)

October 4, 2013 October 4, 2013 Stronglinks: Mechanisms that help ensure nuclear weapons remain safe INSPECTION - Ray Ely, left, and Dennis Kuchar (both 2613) inspect launch accelerometer hardware before assembling units for critical flight tests. Their work is part of Sandia's long-time effort on stronglinks. (Photo by Randy Montoya) by Sue Major Holmes Three engineers lean over a workbench in a lab for Sandia's Integrated Surety Mechanisms, adjusting levers on a scale model as they check a design. In this case, the plastic model is several times larger than the real thing - tiny weapon parts that are hand-assembled, sometimes using a microscope and tweezers. NNSA's Kansas City Plant has built its 1,000th stronglink for the W76-1's arming, fuzing, and firing (AF&F) system. A stronglink mechanism

178

Sandia National Laboratories: News: Publications: Lab News  

NLE Websites -- All DOE Office Websites (Extended Search)

August 23, 2013 August 23, 2013 New initiative will bolster infrastructure for hydrogen vehicles by MIke Janes The broad public and government interest in renewable energy and the hope for a zero-emission transportation future seem to be at an all-time high. So what is the remaining hurdle to overcome before we see widespread adoption of clean, hydrogen-powered vehicles on the road? In a word: infrastructure. For hydrogen-based vehicles, very little infrastructure currently exists. But that could change soon, and Sandia's Center for Infrastructure Research and Innovation (CIRI) on the Livermore Valley Open Campus (LVOC) hopes to contribute in a big way. Daniel Dedrick (8367), the Labs' hydrogen program manager, calls CIRI a "collaboration facility" modeled on the success of the Combustion

179

Sandia National Laboratories: News: Publications: Lab News  

NLE Websites -- All DOE Office Websites (Extended Search)

May 17, 2013 May 17, 2013 Sandia Wounded Warriors discover they were united in battle years ago BROTHERS IN ARMS - Jason Shelton (2998), left, and John Bailon (5627) reminisce while walking in terrain at Sandia Labs that reminds them of Iraq. They both fought for the US military in Operation Iraqi Freedom. (Photo by Randy Montoya) by Nancy Salem Jason Shelton and John Bailon left a recent Sandia Military Support Committee meeting side by side, sharing stories of combat in Iraq. John (5627) talked about a day in the summer of 2005 when his Marine unit was called to help a small Joint Special Operations team holed up and taking mortar and gunfire in a house next to a school booby-trapped with explosives. The hair stood up on Jason's neck. "It sounded really familiar," Jason (2998) says. "I asked if the

180

Sandia National Labs: PCNSC: IBA Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home About Us Departments Radiation, Nano Materials, & Interface Sciences > Radiation & Solid Interactions > Nanomaterials Sciences > Surface & Interface Sciences Semiconductor & Optical Sciences Energy Sciences Small Science Cluster Business Office News Partnering Research Ion Beam Analysis (IBA) Periodic Table (HTML) IBA Table (HTML) | IBA Table (135KB GIF) | IBA Table (1.2MB PDF) | IBA Table (33MB TIF) | Heavy Ion Backscattering Spectrometry (HIBS) | Virtual Lab Tour (6MB) The purpose of this table is to quickly give the visitor to this site information on the sensitivity, depth of analysis and depth resolution of most of the modern ion beam analysis techniques in a single easy to use format: a periodic table. Note that you can click on each panel of this

Note: This page contains sample records for the topic "national lab ignites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Sandia National Laboratories: News: Publications: Lab News  

NLE Websites -- All DOE Office Websites (Extended Search)

June 29, 2012 June 29, 2012 Sandia wins four R&D 100 Awards by Neal Singer Winners include Sandia Cooler, neutristor, solar glitter,and digital microfluidics hub Sandia researchers - competing in an international pool of universities, corporations and government labs - captured four prestigious R&D 100 Awards in this year's contest. R&D Magazine presents the awards each year to researchers who its editors and independent judging panels determine havedeveloped the year's 100 most outstanding advances in applied technologies. An awards banquet will be held Nov. 1 in Orlando, Fla. The awards, with their focus on practical impact rather than pure research, reward entrants on their products' design, development, testing,and production. The Chicago Tribune once described the contest as "the Oscars

182

Sandia National Laboratories: News: Publications: Lab News  

NLE Websites -- All DOE Office Websites (Extended Search)

June 1, 2012 June 1, 2012 Small worlds come into focus with new Sandia instrument PRINCIPAL INVESTIGATORS Paul Kotula, left, and Ping Lu (both 1822) show off Sandia's new aberration-corrected scanning transmission electron microscope, which has a unique combination of X-ray detectors and very high resolution and is capable of doing analyses in far less time than the Labs' older analytic microscope. (Photo by Randy Montoya) View large image. by Sue Major Holmes Paul Kotula recently told a colleague at another laboratory that Sandia's new aberration-corrected scanning transmission electron microscope (AC-STEM) was like a Lamborghini with James Bond features. The $3.2 million FEI Titan G2 8200 Sandia accepted in February is 50 to 100 times better than what went before in terms of resolution and the time it

183

Sandia National Laboratories: News: Publications: Lab News  

NLE Websites -- All DOE Office Websites (Extended Search)

June 15, 2012 June 15, 2012 Follow the sun: Sandia solar-tracking technology fuels global business WEATHERWISE - Tim Leonard, right, owner of Precision Solar Technologies Corp., and the company's project engineer, Tony Louderbough, do final adjustments on the instrumentation of a trailer-mounted solar weather station, called the Prospector Mule, at Sandia Labs. Precision Solar uses a tracking technology developed at Sandia. (Photo by Randy Montoya) View large image. by Nancy Salem In the 1980s Tim Leonard was busy programming computers at Sandia, unaware that just down the hall work was going on that would change his life. Tim was in the wind energy group, steps away from the people in solar energy. One of them was Alex Maish, starting his pet project, a low-cost, high-precision tracking technology to continuously move solar panels into

184

Target diagnostic system for the national ignition facility (invited) R. J. Leeper, G. A. Chandler, G. W. Cooper, M. S. Derzon, D. L. Fehl, D. E. Hebron,  

E-Print Network (OSTI)

is a glass laser which will initially be used to demonstrate ignition and gain in an inertially confinedTarget diagnostic system for the national ignition facility (invited) R. J. Leeper, G. A. Chandler of a diagnostic system proposed for ignition target experiments on the National Ignition Facility NIF

185

DOE/EIS-0236, Oakland Operations Office, National Ignition Facility Final  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE/EIS-0236, Oakland Operations Office, National Ignition Facility DOE/EIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement Volume II: Response to Public Comments (January 2 DOE/EIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement Volume II: Response to Public Comments (January 2 DOE issued the Draft SEIS for public review and comment by mailings to stakeholders and by announcements in the Federal Register (FR) on November 5, 1999, (64 FR 60430) (Attachment 4 of Volume I) and on November 12, 1999 (64 FR 61635) correcting a document title (Attachment 5 of Volume I). On

186

Indirect-Drive Noncryogenic Double-Shell Ignition Targets for the National Ignition Facility: Design and Analysis  

SciTech Connect

The central goal of the National Ignition Facility (NIF) is demonstration of controlled thermonuclear ignition. The mainline ignition target is a low-Z, single-shell cryogenic capsule designed to have weakly nonlinear Rayleigh-Taylor growth of surface perturbations. Double-shell targets are an alternative design concept that avoids the complexity of cryogenic preparation but has greater physics uncertainties associated with performance-degrading mix. A typical double-shell design involves a high-Z inner capsule filled with DT gas and supported within a low-Z ablator shell. The largest source of uncertainty for this target is the degree of highly evolved nonlinear mix on the inner surface of the high-Z shell. High Atwood numbers and feed-through of strong outer surface perturbation growth to the inner surface promote high levels of instability. The main challenge of the double-shell target designs is controlling the resulting nonlinear mix to levels that allow ignition to occur. Design and analysis of a suite of indirect-drive NIF double-shell targets with hohlraum temperatures of 200 eV and 250 eV are presented. Analysis of these targets includes assessment of two-dimensional radiation asymmetry as well as nonlinear mix. Two-dimensional integrated hohlraum simulations indicate that the x-ray illumination can be adjusted to provide adequate symmetry control in hohlraums specially designed to have high laser-coupling efficiency [Suter et al., Phys. Plasmas 5, 2092 (2000)]. These simulations also reveal the need to diagnose and control localized 10-15 keV x-ray emission from the high-Z hohlraum wall because of strong absorption by the high-Z inner shell. Preliminary estimates of the degree of laser backscatter from an assortment of laser-plasma interactions suggest comparatively benign hohlraum conditions. Application of a variety of nonlinear mix models and phenomenological tools, including buoyancy-drag models, multimode simulations and fall-line optimization, indicates a possibility of achieving ignition, i.e., fusion yields greater than 1 MJ. Planned experiments on the Omega laser to test current understanding of high-energy radiation flux asymmetry and mix-induced yield degradation in double-shell targets are described.

Amendt, P.; Colvin, J.; Tipton, R.E.; Hinkel, D.; Edwards, J.J.; Landen, O.I.; Ramshaw, J.D.; Suter, L.J.; Watt, W.G.

2001-10-15T23:59:59.000Z

187

Sandia National Laboratories: News: Publications: Lab News  

NLE Websites -- All DOE Office Websites (Extended Search)

March 22, 2013 March 22, 2013 'Taking it to the next level' for biodefense SPIN DOCTORS - From left,Sandia's Matt Piccini (8621), Chung-Yan Koh (8621), and Anup Singh (8620) lead the SpinDx team. The hope is that a new NIH-funded project that takes advantage of SpinDx technology will take the device to a new level and result in a point-of-care instrument that can detect a suite of biothreat agents. (Photo by Jeff McMillan) by Mike Janes Latest NIH award aims for instrument capable of detecting botulinum, ricin, anthrax, other agents of concern First, in the early 1990s, came MicroChemLab. Then, in the early-to-mid 2000s, the "saliva device" and a follow-up technology, RapiDx. Those microfluidics-based platforms eventually led to SpinDx, unveiled earlier this summer as the latest in a line of medical diagnostic tools developed

188

Progress towards ignition on the National Ignition Facility M. J. Edwards, P. K. Patel, J. D. Lindl, L. J. Atherton, S. H. Glenzer et al.  

E-Print Network (OSTI)

; published online 30 July 2013) The National Ignition Facility (NIF) at Lawrence Livermore National Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550, USA 2 General Atomics, P to a target. NIF has been operational since March 2009. A variety of experiments have been completed

189

NNSA National Labs, Y-12 Earn 11 R&D 100 Awards | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Labs, Y-12 Earn 11 R&D 100 Awards | National Nuclear Security Labs, Y-12 Earn 11 R&D 100 Awards | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > NNSA National Labs, Y-12 Earn 11 R&D ... Press Release NNSA National Labs, Y-12 Earn 11 R&D 100 Awards Jul 9, 2013 WASHINGTON, D.C. - Four National Nuclear Security Administration (NNSA)

190

Sandia National Labs: PCNSC: Departments: Nanomaterials Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Carlos Gutierrez Carlos Gutierrez Carlos Gutierrez Acting Manager Resources Department Outlook Calendar (PCs only) Link for others: Outlook Public Folders/ All Public Folders/ VP-01000/ Centers/ 01100/ 01112/ 01112 Calendar" 01112 Sharepoint Diamond Coatings Socorro DFT Code Departments Nanomaterials Sciences The Nanomaterials Sciences Department develops innovative science to enable integrated self-powered sensors and actuators for national security needs and provides a basis for a secure national energy future. In order to accomplish this vision, the department performs fundamental research in the areas of sensors and actuators, energy storage and delivery, energy conversion and harvesting, device integration and energy transport, solid state lighting, and the role of defects in all of these broad category

191

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 18, 2012 September 18, 2012 Supercomputers like this petascale computer, Jaguar, at Oak Ridge National Laboratory are helping researchers build and experiment with next-generation nuclear reactors. Jaguar powers the virtual reactor at the Consortium for Advanced Simulation of Light Water Reactors (CASL). | Photo courtesy of Oak Ridge National Lab. #LabChat: Supercomputing Our Way to the Future, Sept. 19 at 1:30 pm EDT Ask your questions about high-performance modeling software, uses of advanced computing in industry, or the insanely fast hardware that runs it all. September 17, 2012 Winners of the 2011 Regional Science Bowl competition (hosted in partnership with the University of Texas - Pan American) pose at the national competition in Washington, DC. | Courtesy of the University of Texas - Pan American HESTEC Program.

192

Diagnosing ablator R and R asymmetries in capsule implosions using charged-particle spectrometry at the National Ignition Facility  

E-Print Network (OSTI)

American Institute of Physics. DOI: 10.1063/1.2965829 I. INTRODUCTION Ignition of an indirectly laser at the National Ignition Facility J. A. Frenje,1 C. K. Li,1 J. R. Rygg,1,a F. H. Séguin,1 D. T. Casey,1 R. D for Laser Energetics, University of Rochester, Rochester, New York 14623, USA 3 Lawrence Livermore National

193

Capsule implosion optimization during the indirect-drive National Ignition Campaign  

SciTech Connect

Capsule performance optimization campaigns will be conducted at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition. The campaigns will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models using a variety of ignition capsule surrogates before proceeding to cryogenic-layered implosions and ignition experiments. The quantitative goals and technique options and down selections for the tuning campaigns are first explained. The computationally derived sensitivities to key laser and target parameters are compared to simple analytic models to gain further insight into the physics of the tuning techniques. The results of the validation of the tuning techniques at the OMEGA facility [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] under scaled hohlraum and capsule conditions relevant to the ignition design are shown to meet the required sensitivity and accuracy. A roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget. Finally, we show how the tuning precision will be improved after a number of shots and iterations to meet an acceptable level of residual uncertainty.

Landen, O. L.; Edwards, J.; Haan, S. W.; Robey, H. F.; Milovich, J.; Spears, B. K.; Weber, S. V.; Clark, D. S.; Lindl, J. D.; MacGowan, B. J.; Moses, E. I.; Atherton, J.; Amendt, P. A.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2011-05-15T23:59:59.000Z

194

Sandia National Laboratories: News: Publications: Lab News  

NLE Websites -- All DOE Office Websites (Extended Search)

January 25, 2013 January 25, 2013 Zombie' cells may outperform live ones as catalysts and conductors Zombie cell, first stage - Only moderately heated, the cell is now pure silica, and needed to be coated in gold for a scanning electron microscope to image it. (Image courtesy of Bryan Kaehr) by Neal Singer Sandia researchers have created "zombie" mammalian cells that may function better after they die. The simple technique uses a silica solution to coat a cell's insides to form a near-perfect replica of its internal structure. The process opens the door to simplifying a wide variety of commercial fabrication processes from the nano- to macroscale. The work, reported in a fall issue of the Proceedings of the National Academy of Sciences (PNAS), uses the nanoscopic organelles and other tiny

195

HEC-DPSSL 2012 Workshop, Organizing Committee: National Ignition...  

NLE Websites -- All DOE Office Websites (Extended Search)

Robert J. Deri Lawrence Livermore National Laboratory Michael Dunne Lawrence Livermore National Laboratory Meeting Support Trina Voelker NIF Event & Protocol Office Deputy...

196

NETL: News Release - National Labs to Strengthen Natural Gas Pipeline's  

NLE Websites -- All DOE Office Websites (Extended Search)

National Labs to Strengthen Natural Gas Pipelines' Integrity, Reliability National Labs to Strengthen Natural Gas Pipelines' Integrity, Reliability DOE Receives 24 Proposals, Valued at Half Billion Dollars, For Technologies to Improve Power Plants, Cut Emissions MORGANTOWN, WV - To identify and develop advanced technology for the nation's natural gas pipelines, the Energy Department is calling upon the national labs to assist private industry in developing innovative technologies that establish a framework for future natural gas transmission and distribution systems. The laboratories will help 11 government-industry cost-shared projects, many of which center around detection devices designed to prevent pipeline damage, DOE selected earlier this year (see May 31, 2001, announcement). DOE estimates that natural gas consumption will increase by 60 percent by 2020, placing an unaccustomed demand on the U.S.'s aging natural gas infrastructure. The already-selected 11 projects address that need by demonstrating robotics and other sophisticated ways of bolstering strength, and, therefore, the integrity and reliability of the pipelines the crisscross the country.

197

National Ignition Campaign (NIC) Precision Tuning Series Shock Timing Experiments  

SciTech Connect

A series of precision shock timing experiments have been performed on NIF. These experiments continue to adjust the laser pulse shape and employ the adjusted cone fraction (CF) in the picket (1st 2 ns of the laser pulse) as determined from the re-emit experiment series. The NIF ignition laser pulse is precisely shaped and consists of a series of four impulses, which drive a corresponding series of shock waves of increasing strength to accelerate and compress the capsule ablator and fuel layer. To optimize the implosion, they tune not only the strength (or power) but also, to sub-nanosecond accuracy, the timing of the shock waves. In a well-tuned implosion, the shock waves work together to compress and heat the fuel. For the shock timing experiments, a re-entrant cone is inserted through both the hohlraum wall and the capsule ablator allowing a direct optical view of the propagating shocks in the capsule interior using the VISAR (Velocity Interferometer System for Any Reflector) diagnostic from outside the hohlraum. To emulate the DT ice of an ignition capsule, the inside of the cone and the capsule are filled with liquid deuterium.

Robey, H F; Celliers, P M

2011-07-19T23:59:59.000Z

198

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 28, 2011 April 28, 2011 Chemical Theorist Greg Schenter | Photo Courtesy of PNNL 10 Questions for a Chemical Theorist: Greg Schenter Dr. Schenter works on the mathematics and physics of how molecules interact and develops mathematical models to simulate how molecules move and band together to form new materials -- projects leading to better ways to store energy. April 26, 2011 A diagram of the RHIC complex at Brookhaven National Lab | Photo Courtesy of Brookhaven National Lab's Flickr Antimatter Experiment Aboard Friday's Space Shuttle Launch The Alpha Magnetic Spectrometer experiment will sweep the skies for signs of antimatter and the even more exotic dark matter. April 25, 2011 President Obama Talks Clean Energy At Facebook Town Hall Check out this video for President Obama's comments on why investments in

199

NETL: News Release - NETL to Celebrate National Lab Day  

NLE Websites -- All DOE Office Websites (Extended Search)

8, 2010 8, 2010 NETL to Celebrate National Lab Day Educational Initiative Strengthens Science Education Nationwide MORE INFO View archived Webcast Read more about National Lab Day! Morgantown, W.Va. - On May 6, 2010, scientists, engineers, and other volunteers from various sites at NETL will bring science to local middle schools in South Park, PA; Pittsburgh, PA; Fairmont, WV; and Albany, OR. NETL volunteers will lead fifth-grade students at South Park (Pa.) Middle School in a series of hands-on science experiments meant to excite the students about science and interest them in future careers in science, technology, engineering, and math. The students will explore topics such as polymerization, crystallization, and acid-base chemistry in an environment that engages both their hands and minds.

200

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24, 2012 24, 2012 Lab Breakthrough: Lead-free Solder Iver Anderson, Ames National Laboratory materials scientist, discusses the impact of a lead-free solder he invented 15 years ago, the road to commercialization and the lab resources that made it possible. May 24, 2012 After pitching their business plan to panels of judges at the regional semifinal and final, six teams advanced to the national competition for a chance at the cash grand prize. | Energy Department file graphic. America's Best Student Start-Up Companies Pitch for Your Vote Voting opened on May 24 for voters to review company summaries online, view their 3-minute video pitches, and then 'like' the companies they think will most positively impact America's energy future. May 23, 2012 Unlocking the Power of Energy Data

Note: This page contains sample records for the topic "national lab ignites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

ESnet Update Steve Cotter, Dept Head Lawrence Berkeley National Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Update Update Steve Cotter, Dept Head Lawrence Berkeley National Lab Winter 2011 Joint Techs Clemson, SC Feb 2, 2011 Lawrence Berkeley National Laboratory U.S. Department of Energy | Office of Science @ESnet: It's all about the Science * More bandwidth to DOE facilities and Labs at lower costs * Richer network services in support of distributed science - Develop 'network aware' integrated services that deliver 'end-to-end' high- performance data transfer, HPC/cloud computing, and science collaborative services * Carrier-class network operations providing high network availability to all DOE facilities - Seamless network interoperability across multiple network domains * Develop and deploy energy-aware and efficient networking infrastructure * Provide a networking research testbed for DOE community

202

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

19, 2011 19, 2011 At NREL's High-Intensity Pulse Solar Simulator, NREL's Keith Emery removes an array of multijunction solar cells produced by PV Incubator partner Solar Junction. The NREL instrument can produce the intensity of up to 90 suns. | Photo credit: Dennis Schroeder Advancing Solar Through Photovoltaic Technology Innovations A piece on a PV Technology Incubator program from the March 22 issue of the National Renewable Energy Lab (NREL) News. April 18, 2011 One "Cool Tool" That's Helping Repair Your DNA Berkeley Lab's Advanced Light Source produces x-ray light that shines a billion times bright than the sun - a tool that is giving insight insight into how cells perform the essential function of repairing damaged DNA. April 15, 2011 Blood flow visualization | Photo Courtesy of Argonne National Laboratory

203

The National Labs on Facebook | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facebook Facebook The National Labs on Facebook The Z machine is located in Albuquerque, N.M., and is part of the Pulsed Power Program, which started at Sandia National Laboratories in the 1960s. Pulsed power is a technology that concentrates electrical energy and turns it into short pulses of enormous power, which are then used to generate X-rays and gamma rays. | Photo courtesy of Sandia National Laboratory. The Z machine is located in Albuquerque, N.M., and is part of the Pulsed Power Program, which started at Sandia National Laboratories in the 1960s. Pulsed power is a technology that concentrates electrical energy and turns it into short pulses of enormous power, which are then used to generate X-rays and gamma rays. | Photo courtesy of Sandia National Laboratory.

204

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 7, 2011 October 7, 2011 SunShot Initiative Researcher Wins National Medal of Technology and Innovation Last week, President Obama recognized Dr. Rakesh Agrawal, who is currently a researcher with the Department's SunShot Initiative, with the National Medal of Technology and Innovation. October 6, 2011 Dr. Saul Perlmutter, who won the 2011 Nobel Prize in Physics, heads the Supernova Cosmology Project at Lawrence Berkeley National Laboratory. It was this team along with the High-z Supernova Search Team which found evidence of the accelerating expansion of the universe. National Lab Scientists Win Nobel Recognition This week, Secretary Chu congratulated two scientists for their trailblazing work: Dr. Saul Perlmutter in the Energy Department's Lawrence Berkeley National Laboratory, who was recently named the winner of

205

National Ignition Facility & Photon Science - Bringing Star Power to Earth  

NLE Websites -- All DOE Office Websites (Extended Search)

NIF Go NIF Go LLNL Logo Lawrence Livermore National Laboratory LLNL Home NIF Home LIFE Home Jobs Site Map Contact News Press Releases In the News Status Update Media Assistance About Us National Ignition Facility About NIF How NIF Works The Seven Wonders of NIF Building NIF An Engineering Marvel NIFFY Early Light Collaborators Status Visiting NIF Missions National Security Energy for the Future Understanding the Universe People The People of NIF Awards NIF Professor Sabbatical Opportunities NIF Online Store Programs National Ignition Campaign How to Make a Star (ICF) Target Physics Target Fabrication Cryogenic Target System Diagnostics Participants Photon Science & Applications Advanced Optics Advanced Radiography Directed Energy Fusion Energy Inertial Fusion Energy How IFE Works Science at the Extremes

206

National Ignition Facility computational fluid dynamics modeling and light fixture case studies  

SciTech Connect

This report serves as a guide to the use of computational fluid dynamics (CFD) as a design tool for the National Ignition Facility (NIF) program Title I and Title II design phases at Lawrence Livermore National Laboratory. In particular, this report provides general guidelines on the technical approach to performing and interpreting any and all CFD calculations. In addition, a complete CFD analysis is presented to illustrate these guidelines on a NIF-related thermal problem.

Martin, R.; Bernardin, J.; Parietti, L.; Dennison, B.

1998-02-01T23:59:59.000Z

207

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 16, 2013 December 16, 2013 Arapaima gigas is an air-breathing fresh water fish in the Amazon Basin that swims with impunity through piranha-infested waters. | Photo courtesy of Jeff Kubina, National Geographic. Energetic Science and Piranha-Proof Armor Learn how Berkeley Lab's Advanced Light Source is revealing the unique structure of incredible, adaptable fish armor. December 13, 2013 Los Alamos National Laboratory scientist Roger Wiens removes the laser safety plug on the ChemCam Mast Unit, selected for the Mars Science Laboratory rover, Curiosity. Wiens removes the plug (left), while scientist Bruce Barraclough sits at the command console (right). | Photo courtesy of LeRoy Sanchez, Los Alamos National Laboratory. Top 10 Things You Didn't Know About Los Alamos National Laboratory

208

On the Fielding of a High Gain, Shock-Ignited Target on the National Ignitiion Facility in the Near Term  

SciTech Connect

Shock ignition, a new concept for igniting thermonuclear fuel, offers the possibility for a near-term ({approx}3-4 years) test of high gain inertial confinement fusion on the National Ignition Facility at less than 1MJ drive energy and without the need for new laser hardware. In shock ignition, compressed fusion fuel is separately ignited by a strong spherically converging shock and, because capsule implosion velocities are significantly lower than those required for conventional hotpot ignition, fusion energy gains of {approx}60 may be achievable on NIF at laser drive energies around {approx}0.5MJ. Because of the simple all-DT target design, its in-flight robustness, the potential need for only 1D SSD beam smoothing, minimal early time LPI preheat, and use of present (indirect drive) laser hardware, this target may be easier to field on NIF than a conventional (polar) direct drive hotspot ignition target. Like fast ignition, shock ignition has the potential for high fusion yields at low drive energy, but requires only a single laser with less demanding timing and spatial focusing requirements. Of course, conventional symmetry and stability constraints still apply. In this paper we present initial target performance simulations, delineate the critical issues and describe the immediate-term R&D program that must be performed in order to test the potential of a high gain shock ignition target on NIF in the near term.

Perkins, L J; Betti, R; Schurtz, G P; Craxton, R S; Dunne, A M; LaFortune, K N; Schmitt, A J; McKenty, P W; Bailey, D S; Lambert, M A; Ribeyre, X; Theobald, W R; Strozzi, D J; Harding, D R; Casner, A; Atzemi, S; Erbert, G V; Andersen, K S; Murakami, M; Comley, A J; Cook, R C; Stephens, R B

2010-04-12T23:59:59.000Z

209

Learn from Top Researchers as a #NationalLabsIntern | Department...  

Office of Environmental Management (EM)

by visiting each lab's website directly. From creating a star on Earth to 3D printing a sports car, National Labs are pushing the frontiers of research and spurring the...

210

Los Alamos National Lab awards $753 million in contracts  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL awards $753 million in contracts LANL awards $753 million in contracts Los Alamos National Lab awards $753 million in contracts These subcontract awards for products and professional services demonstrate the Laboratory's continued investment in New Mexico small businesses. April 16, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

211

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 20, 2013 June 20, 2013 The Energy Systems Integration Facility at the National Renewable Energy Laboratory in Golden, Colorado. | Photo by Dennis Schroeder, NREL. SLIDESHOW: Tour the National Renewable Energy Lab's Latest Research Center Browse through our slideshow featuring unique elements of a new research center focused on boosting clean energy technologies. June 19, 2013 Applications powered by open energy data were on display at the Energy Datapalooza in June 2012. | Photo by Sarah Gerrity, Energy Department. Submit Your Ideas for the NY Energy Data Jam The Energy Data Jam travels to New York City next week, and we want to hear your ideas for the next breakthrough technology built on open energy data. June 14, 2013 Earlier this week, the Energy Department hosted the second annual National Clean Energy Business Plan Competition. From Northwestern University, SiNode Systems took home the top honors | Photo courtesy of Ken Shipp, Department of Energy.

212

SBOT PENNSYLVANIA NATIONAL ENERGY TECHNOLOGY LAB - PA POC Larry Sullivan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PENNSYLVANIA PENNSYLVANIA NATIONAL ENERGY TECHNOLOGY LAB - PA POC Larry Sullivan Telephone (412) 386-6115 Email larry.sullivan@netl.doe.gov ADMINISTATIVE / WASTE / REMEDIATION Facilities Support Services 561210 Employment Placement Agencies 561311 Temporary Help Services 561320 Professional Employer Organizations 561330 Document Preparation Services 561410 Security Guards and Patrol Services 561612 Security Systems Services (except Locksmiths) 561621 Janitorial Services 561720 Landscaping Services 561730 Hazardous Waste Treatment and Disposal 562211 Remediation Services 562910 Materials Recovery Facilities 562920 All Other Miscellaneous Waste Management Services 562998 CONSTRUCTION Industrial Building Construction 236210 Commercial and Institutional Building Construction 236220 Power and Communication Line and Related Structures Construction

213

The National Ignition Facility and the Promise of Inertial Fusion Energy  

SciTech Connect

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational. The NIF is the world's most energetic laser system capable of producing 1.8 MJ and 500 TW of ultraviolet light. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in planetary interiors and stellar environments. On September 29, 2010, the first integrated ignition experiment was conducted, demonstrating the successful coordination of the laser, cryogenic target system, array of diagnostics and infrastructure required for ignition demonstration. In light of this strong progress, the U.S. and international communities are examining the implication of NIF ignition for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a laser with 10% electrical-optical efficiency, as well as further development and advances in large-scale target fabrication, target injection, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in the 10- to 15-year time frame. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Engine (LIFE) concept and examining in detail various technology choices, as well as the advantages of both pure fusion and fusion-fission schemes. This paper will describe the unprecedented experimental capabilities of the NIF and the results achieved so far on the path toward ignition. The paper will conclude with a discussion about the need to build on the progress on NIF to develop an implementable and effective plan to achieve the promise of LIFE as a source of carbon-free energy.

Moses, E I

2010-12-13T23:59:59.000Z

214

Effects On Beam Alignment Due To Neutron-Irradiated CCD Images At The National Ignition Facility  

SciTech Connect

The 192 laser beams in the National Ignition Facility (NIF) are automatically aligned to the target-chamber center using images obtained through charged coupled device (CCD) cameras. Several of these cameras are in and around the target chamber during an experiment. Current experiments for the National Ignition Campaign are attempting to achieve nuclear fusion. Neutron yields from these high energy fusion shots expose the alignment cameras to neutron radiation. The present work explores modeling and predicting laser alignment performance degradation due to neutron radiation effects, and demonstrates techniques to mitigate performance degradation. Camera performance models have been created based on the measured camera noise from the cumulative single-shot fluence at the camera location. We have found that the effect of the neutron-generated noise for all shots to date have been well within the alignment tolerance of half a pixel, and image processing techniques can be utilized to reduce the effect even further on the beam alignment.

Awwal, A; Manuel, A; Datte, P; Burkhart, S

2011-02-28T23:59:59.000Z

215

Calibration of X-ray detectors in the 8 to 115 keV energy range and their application to diagnostics on the National Ignition Facility  

SciTech Connect

The calibration of X-ray diagnostics is of paramount importance to the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL). National Security Technologies LLC (NSTec) fills this need by providing a wide variety of calibration and diagnostic development services in support of the ongoing research efforts at NIF. The X-ray source in the High Energy X-ray lab utilizes induced fluorescence in a variety of metal foils to produce a beam of characteristic X rays ranging from 8 to 111 keV. Presented are the methods used for calibrating a High Purity Germanium detector, which has been absolutely calibrated using radioactive check sources, compared against a silicon photodiode calibrated at Physikalisch Technische Bundesanstalt (PTB). Also included is a limited presentation of results from the recent calibration of the upgraded Filter Fluorescer X ray Spectrometer.

J. J. Lee, M. J. Haugh, G. LaCaille, and P. Torres

2012-10-01T23:59:59.000Z

216

"Defense-in-Depth" Laser Safety and the National Ignition Facility  

SciTech Connect

The National Ignition Facility (NIF) is the largest and most energetic laser in the world contained in a complex the size of a football stadium. From the initial laser pulse, provided by telecommunication style infrared nanoJoule pulsed lasers, to the final 192 laser beams (1.8 Mega Joules total energy in the ultraviolet) converging on a target the size of a pencil eraser, laser safety is of paramount concern. In addition to this, there are numerous high-powered (Class 3B and 4) diagnostic lasers in use that can potentially send their laser radiation travelling throughout the facility. With individual beam paths of up to 1500 meters and a workforce of more than one thousand, the potential for exposure is significant. Simple laser safety practices utilized in typical laser labs just don't apply. To mitigate these hazards, NIF incorporates a multi layered approach to laser safety or 'Defense in Depth.' Most typical high-powered laser operations are contained and controlled within a single room using relatively simplistic controls to protect both the worker and the public. Laser workers are trained, use a standard operating procedure, and are required to wear Personal Protective Equipment (PPE) such as Laser Protective Eyewear (LPE) if the system is not fully enclosed. Non-workers are protected by means of posting the room with a warning sign and a flashing light. In the best of cases, a Safety Interlock System (SIS) will be employed which will 'safe' the laser in the case of unauthorized access. This type of laser operation is relatively easy to employ and manage. As the operation becomes more complex, higher levels of control are required to ensure personnel safety. Examples requiring enhanced controls are outdoor and multi-room laser operations. At the NIF there are 192 beam lines and numerous other Class 4 diagnostic lasers that can potentially deliver their hazardous energy to locations far from the laser source. This presents a serious and complex potential hazard to personnel. Because of this, a multilayered approach to safety is taken. This paper presents the philosophy and approach taken at the NIF in the multi-layered 'defense-in-depth' approach to laser safety.

King, J J

2010-12-02T23:59:59.000Z

217

National Lab Day Fact Sheets | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lab Day Fact Sheets Secretary Ernest Moniz learns about the Labs' work in high performance computing and additive manufacturing. | Photo courtesy of Sarah Gerrity, Energy...

218

University Research National Labs | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

About » University About » University Research & National Labs » University Research National Labs Alpha Listing High Energy Physics (HEP) HEP Home About Staff Organization Chart .pdf file (170KB) HEP Budget HEP Committees of Visitors Directions Jobs University Research & National Labs University Research National Labs Alpha Listing Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees News & Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: sc.hep@science.doe.gov More Information » University Research & National Labs University Research National Labs Alpha Listing Print Text Size: A A A RSS Feeds

219

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17, 2011 17, 2011 An illustration of the 2011 Chevy Volt, whose lithium-ion battery is based on technology developed at Argonne National Laboratory. | Image courtesy of General Motors. From the Lab to the Showroom: How the Electric Car Came to Life In the U.S., businesses tend to invest in research that will pay off in the short term. National laboratories are filling a gap by conducting the essential research that will change the game 10 to 20 years down the road. Learn more about how years of conducting advanced research in both the private and public sectors led to battery technology that made electric cars possible. October 17, 2011 Steps to Commercialization: Nickel Metal Hydride Batteries The Energy Department funds cutting-edge research on a broad range of

220

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22, 2010 22, 2010 Chu in China: The Shared Necessity of Innovation Secretary Chu tours automotive research labs in Shanghai and gives a speech to 800 university students on the critical role that science and innovation will play in ensuring both countries' future prosperity. November 22, 2010 Thankful Recognizing the engineers and researchers who have made energy efficiency a reality over the past few decades. November 19, 2010 Why America Must Win the Supercomputing Race Without a commitment to national investment in exascale computing, the American supercomputers of the future may be labeled, "Made in China." November 19, 2010 An optical micrograph of a polymer film that self-assembles into ordered nanoscale structures. | Photo Courtesy of Argonne National Laboratory

Note: This page contains sample records for the topic "national lab ignites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 15, 2010 October 15, 2010 Nanoparticles grown under the irradiation of high-energy X-rays | Source: Argonne National Lab and Carnegie Institution of Washington Geek-Up[10.15.2010]: Growing Nanoparticles, Developing Plastic from Bacteria and Wireless Water Heaters A new, cheaper way to make plastics with wastewater, why we're watching nanoparticles grow in real time and wireless devices that are helping us integrate renewable energy sources into our grid. October 14, 2010 Recovery Act Provides Big Boost with a Nanoscale Focus The Center for Functional Nanomaterials is getting a new electron microscope that will be valuable for solar cell research -- one of 7 ARRA-funded additions at the Brookhaven National Laboratory facility. October 8, 2010 Make Your Mark in the 2011 Hydrogen Student Design Contest

222

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

27, 2011 27, 2011 University of Minnesota Boosts Studies with Wind Power University of Minnesota's new Clipper Liberty wind turbine and 426-foot tall meteorological tower will allow researchers to work on improving wind turbine efficiency and help train a new generation of engineers and technicians. October 26, 2011 John Shanklin, biochemist at Brookhaven National Laboratory, and Ed Whittle, research assistant in Shanklin's lab, with a fatty acid molecule model and plant seeds and casings in the foreground. | Courtesy of Brookhaven National Laboratory Solving the Mystery of the Billion-Dollar Bond, Double Bond Plant fatty acids are used in a vast range of products, from polymers to plastics and soaps to industrial feed stocks -- making up an estimated $150 billion market annually. A new discovery of inserting double bonds in the

223

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

28, 2012 28, 2012 More than 750 students and teachers (and Energy Ant!) visited Washington D.C. for the 32nd Annual NEED Youth Awards for Energy Achievement to receive awards for outstanding energy education efforts in their local communities. | Photo courtesy National Energy Education Development Project Back to School with Energy Ant Learn about some of the extraordinary - and free - resources available for teachers and students on the U.S. Energy Information Administrations's Energy Kids page. August 24, 2012 An LBNL scientist explains the properties of liquid nitrogen to students on Bring Your Sons and Daughters to Work Day. | Courtesy of Lawrence Berkeley National Lab | Credit: Roy Kaltschmidt. Top 7 Things You Didn't Know About Energy: Back-to-School Edition

224

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 13, 2012 January 13, 2012 A Livestream with our Latest Nobel Prize Winner Dr. Perlmutter presents, "Supernovae, Dark Energy and the Accelerating Universe: How the Energy Department Helped to Win (yet another) Nobel Prize." January 12, 2012 Snowflakes always have six sides, their form and shape depend on temperature and moisture -- and they may have also inspired a pathway to a new alternative source of energy. | Image courtesy of SnowCrystals.com. Snowflake Science Physicists at the Princeton Plasma Physics Laboratory are using a device called a "snowflake divertor" to solve one of the grand challenges of magnetic fusion. December 30, 2011 Researchers at Brookhaven National Lab (BNL) are studying how radiation affects DNA, specifically a tumor-suppressor protein called p53, which deploys cell repair efforts. | Photo courtesy of National Institute of Health.

225

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

25, 2013 25, 2013 In celebration of Women's History Month, the Department of Energy is honoring some of the nation's best and brightest women in the science, technology, engineering and math (STEM) community. In this 1949 photo, U.S. Geological Survey mineralogist Elaine Zworykin is shown with an electron microscope, a piece of technology developed by her father, Vladimir Zworykin. Elaine had been assigned to RCA laboratories to teach researchers how to use the microscope. | Photo courtesy of Smithsonian Institution Archives, Acc. 90-105 - Science Service, Records, 1920s-1970s. Photo of the Week: Women in STEM -- Elaine Zworykin Check out our favorite energy-related photos! March 20, 2013 Sandia chemical engineer Nancy Jackson has worked in laboratories around the world to help ensure that chemicals are used safely and kept secure. The American Association for the Advancement of Science honored her with the 2013 Science Diplomacy Award. | Photo by Randy Montoya, Sandia National Lab.

226

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10, 2011 10, 2011 I'll Take Argonne for $200, Alex How much do you know about Argonne? Test your knowledge on Jeopardy! March 10, 2011 Morgan State alumnus and PNNL electrical engineer Jewel Adgerson | Courtesy of Pacific Northwest National Laboratory From Gadgets to Labs: Morgan State Alum Jewel Adgerson Jewel Adgerson is an electrical engineer at the Energy Department's Pacific Northwest National Laboratory (PNNL) and Morgan State University alum. We got to talk with her about her work with the Department's Energy Innovation Hub and her passion for building up the next generation of scientists and engineers through STEM education. March 7, 2011 Winning the Biofuel Future A research team at the Energy Department's BioEnergy Science Center achieved yet another advance in the drive toward next generation biofuels.

227

How the National Labs Help Us Understand the Inner Workings of Power Plants  

Energy.gov (U.S. Department of Energy (DOE))

Learn more about research at the National Energy Technology Lab that's helping us understand more about what happens inside power plants.

228

The National Ignition Facility Data Requirements Tim Frazier and Alice Koniges, LLNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Ignition Facility Data Requirements Ignition Facility Data Requirements Tim Frazier and Alice Koniges, LLNL SC08 BOF: Computing with Massive and Persistent Data LLNL-PRES-408909. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344 2 Target chamber One Terabyte of data to be downloaded in ~50 Minutes for each shot. 5 Full Aperture Backscatter Diagnostic Instrument Manipulator (DIM) Diagnostic Instrument Manipulator (DIM) X-ray imager Streaked x-ray detector VISAR Velocity Measurements Static x-ray imager FFLEX Hard x-ray spectrometer Near Backscatter Imager DANTE Soft x-ray temperature Diagnostic Alignment System Cross Timing System Each Diagnostic Produces Data that Requires Analysis 6 Tools are being built to manage and integrate:

229

Extracting core shape from x-ray images at the National Ignition Facility  

SciTech Connect

Measuring the shape of implosions is critical to inertial confinement fusion experiments at the National Ignition Facility. We have developed techniques that have proven successful for extracting shape information from images of x-ray self-emission recorded by a variety of diagnostic instruments for both DT-filled targets and low-yield surrogates. These key results help determine optimal laser and target parameters leading to ignition. We have compensated for instrumental response and have employed a variety of image processing methods to remove artifacts from the images while retaining salient features. The implosion shape has been characterized by decomposing intensity contours into Fourier and Legendre modes for different lines of sight. We also describe procedures we have developed for estimating uncertainties in these measurements.

Glenn, S. M.; Benedetti, L. R.; Bradley, D. K.; Hammel, B. A.; Izumi, N.; Khan, S. F.; Ma, T.; Milovich, J. L.; Pak, A. E.; Smalyuk, V. A.; Tommasini, R.; Town, R. P. [Lawrence Livermore National Laboratory, Livermore, California 94555 (United States); Kyrala, G. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

2012-10-15T23:59:59.000Z

230

Asymmetric directly driven capsule implosions: Modeling and experiments-A requirement for the National Ignition Facility  

SciTech Connect

Direct-drive experiments at the University of Rochester's OMEGA laser [T. R. Boehly, R. L. McCrory, C. P. Verdon et al., Fusion Eng. Des. 44, 35 (1999)] have been performed to prototype eventual campaigns on the National Ignition Facility (NIF) [E. I. Moses and C. R. Wuest, Fusion Sci. Technol. 43, 420 (2003)] to investigate the mixing of target materials. Spherical-implosion targets with equatorial defects have been irradiated with polar direct drive, a requirement for direct-drive experiments at NIF. The physics question addressed by these results is whether simulations can match data on 0th-order hydrodynamics and implosion symmetry, the most basic implosion features, with and without the defect. The successful testing of hydrodynamic simulations leads to better designs for experiments and guides accurate planning for polar-direct-drive-ignition studies on the NIF platform.

Cobble, J. A.; Murphy, T. J.; Schmitt, M. J.; Bradley, P. A.; Krashenninikova, N. S.; Obrey, K. A.; Hsu, S. C.; Tregillis, I. L.; Magelssen, G. R.; Wysocki, F. J.; Batha, S. H. [Los Alamos National Laboratory, Mail Stop E527, Los Alamos, New Mexico 87545 (United States)

2012-12-15T23:59:59.000Z

231

Shock timing on the National Ignition Facility: the first precision tuning series  

SciTech Connect

Ignition implosions on the National Ignition Facility (NIF) [Lindl et al., Phys. Plasmas 11, 339 (2004)] are driven with a very carefully tailored sequence of four shock waves that must be timed to very high precision in order to keep the fuel on a low adiabat. The first series of precision tuning experiments on NIF have been performed. These experiments use optical diagnostics to directly measure the strength and timing of all four shocks inside the hohlraum-driven, cryogenic deuterium-filled capsule interior. The results of these experiments are presented demonstrating a significant decrease in the fuel adiabat over previously un-tuned implosions. The impact of the improved adiabat on fuel compression is confirmed in related deuterium-tritium (DT) layered capsule implosions by measurement of fuel areal density (rR), which show the highest fuel compression (rR {approx} 1.0 g/cm{sup 2}) measured to date.

Robey, H F; Celliers, P M; Kline, J L; Mackinnon, A J

2011-10-27T23:59:59.000Z

232

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29, 2012 29, 2012 This slice can help sequester carbon. The x-ray microtomography image shows a slice of biofilm grown on a porous hollow fiber (500 microns in diameter). By working with the chemical and physical interactions of biofilms, we can gain insight into how microorganisms can help sequester carbon, reducing environmental impact. This photo was submitted to Pacific Northwest National Lab's 2012 Science as Art Contest by Mathew Thomas and the Systems Toxicology Group. Receiving the most likes on Facebook, this photo won the People's Choice award and will appear in the Lab's 2013 Calendar. Photo of the Week: June 29, 2012 Check out our favorite energy-related photos! June 28, 2012 This is a graphic representation of the Milky Way, the galaxy in which Earth is contained. Scientists know of more than 20 visible satellite galaxies that circle the center of the Milky Way, with masses ranging from one million to one billion solar masses. Occasionally, one of these orbiting galaxies pass through the Milky Way making waves for millennia. | Graphic courtesy of NASA

233

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2012 5, 2012 Join us for a conversation about women in science, technology, engineering, and Math (STEM) on Twitter on Thursday, March 22 at 2:30pm EDT by following the hashtag #STEM. Got Questions about Women in Science, Tech, Engineering, or Math (STEM)? Tweet us! Join us for a conversation about women in STEM on Twitter on Thursday, March 22 at 2:30pm EDT by following the hashtag #STEM. You'll be able to to ask experts how we can advance women's education and empowerment to bring women into STEM careers. March 13, 2012 Energy Innovator Drops Costs for Titanium Metalwork Gas atomization technology developed at Ames National Lab and licensed to a startup company can cheaply and efficiently provide a main component in producing intricate aircraft, marine and biomedical parts.

234

Research, Washington, DC (United States) Sandia National Labs.,  

Office of Scientific and Technical Information (OSTI)

584878 SAND--95-2914 GeoEnergy technology 1980-12-31 USDOE Office of Energy 584878 SAND--95-2914 GeoEnergy technology 1980-12-31 USDOE Office of Energy Research, Washington, DC (United States) Sandia National Labs., Albuquerque, NM (United States) English 2010-02-18 Technical Report http://www.osti.gov/geothermal/servlets/purl/584878-P1qAuZ/webviewable/ http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=584878 29 ENERGY PLANNING AND POLICY; RESEARCH PROGRAMS; COAL; PETROLEUM; NATURAL GAS; SYNTHETIC PETROLEUM; GEOTHERMAL ENERGY; ENERGY CONVERSION; PRODUCTION; HEAT EXTRACTION; US DOE; IN-SITU GASIFICATION; ENHANCED RECOVERY; COAL LIQUEFACTION; GEOTHERMAL WELLS Geothermal Legacy 894529 894529 Use of Geothermal Energy for Aquaculture Purposes - Phase III Johnson, W.C.; Smith, K.C. 1981-09-01 USDOE Geo-Heat Center, Klamath Falls, OR English

235

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24, 2011 24, 2011 Investing in a New Era of Manufacturing Technology The Energy Department will be investing up to $120 million over three years in the development of transformational manufacturing technologies and innovative materials that could enable industrial facilities to dramatically increase their energy efficiency. June 23, 2011 Uwe Bergmann | Photo Courtesy of Brad Plummer, SLAC 10 Questions for a Physicist: Uwe Bergmann How can we better use sunlight to create new fuels? SLAC National Accelerator Lab physicist Uwe Bergmann is helping answer this by using the world's first free electron x-ray laser to make an atomic resolution movie of photosynthesis -- how "tiny machines" in plants and algae use sunlight to split water into oxygen. June 22, 2011

236

Hadoop Hands-On Exercises Lawrence Berkeley National Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Hadoop Hands-On Exercises Hadoop Hands-On Exercises Lawrence Berkeley National Lab Oct 2011 We will ... Training accounts/User Agreement forms Test access to carver HDFS commands Monitoring Run the word count example Simple streaming with Unix commands Streaming with simple scripts Streaming "Census" example Pig Examples Additional Exercises 2 Instructions http://tinyurl.com/nerschadoopoct 3 Login and Environment ssh [username]@carver.nersc.gov echo $SHELL - should be bash 4 Remote Participants Visit: http://maghdp01.nersc.gov:50030/ http://magellan.nersc.gov (Go to Using Magellan -> Creating a SOCKS proxy) 5 Environment Setup $ ssh [username]@carver.nersc.gov $ echo $SHELL If your shell doesn't show /bin/bash please change your shell $ bash Setup your environment to use Hadoop on Magellan

237

EA-1928: White-Tailed Deer Management at Brookhaven National Lab, Upton,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: White-Tailed Deer Management at Brookhaven National Lab, 8: White-Tailed Deer Management at Brookhaven National Lab, Upton, New York EA-1928: White-Tailed Deer Management at Brookhaven National Lab, Upton, New York SUMMARY This EA evaluates the potential environmental impacts of a proposal to lower, then maintain the deer herd on the 5,265 acre Brookhaven National Laboratory to levels protective of the ecosystem (estimated to be between 80 and 250 animals) using one or more methods for population growth. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 6, 2013 EA-1928: Finding of No Significant Impact White-Tailed Deer Management at Brookhaven National Lab, Upton, New York March 6, 2013 EA-1928: Final Environmental Assessment White-Tailed Deer Management at Brookhaven National Lab, Upton, New York

238

In-Depth: Cleantech at the National Labs | Department of Energy  

Energy Savers (EERE)

- 5:30pm Addthis These solar power collection dishes at Sandia National Labs' National Solar Thermal Test Facility are capable of some of the highest solar to electricity...

239

World War II role of Oak Ridge National Lab featured in second...  

NLE Websites -- All DOE Office Websites (Extended Search)

role of Oak Ridge National Lab featured in second 70th anniversary lecture Talk by Ray Smith about that laboratory's role during World War II and the shared national security...

240

Sandia National Laboratories: Areva Solar and Sandia Labs Join...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar PowerAreva Solar and Sandia Labs Join Forces for CLFR Molten-Salt Storage Areva Solar and Sandia Labs Join Forces for CLFR Molten-Salt Storage Dr. David Danielson Visit to...

Note: This page contains sample records for the topic "national lab ignites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Sandia National Laboratories: Sandia Labs Harnesses the Sun's...  

NLE Websites -- All DOE Office Websites (Extended Search)

ClimateECEnergyRenewable EnergySolarConcentrating Solar PowerSandia Labs Harnesses the Sun's Energy with Tiny Particles Sandia Labs Harnesses the Sun's Energy with Tiny Particles...

242

A three wavelength scheme to optimize hohlraum coupling on the National Ignition Facility  

SciTech Connect

By using three tunable wavelengths on different cones of laser beams on the National Ignition Facility, numerical simulations show that the energy transfer between beams can be tuned to redistribute the energy within the cones of beams most prone to backscatter instabilities. These radiative hydrodynamics and laser-plasma interaction simulations have been tested against large scale hohlraum experiments with two tunable wavelengths, and reproduce the hohlraum energetics and symmetry. Using a third wavelength provides a greater level of control of the laser energy distribution and coupling in the hohlraum, and could significantly reduce stimulated Raman scattering losses and increase the hohlraum radiation drive while maintaining a good implosion symmetry.

Michel, P; Divol, L; Town, R; Rosen, M

2010-12-16T23:59:59.000Z

243

Distributed Feedback Fiber Laser The Heart of the National Ignition Facility  

SciTech Connect

The National Ignition Facility (NIF) is a world-class laser fusion machine that is currently under construction at Lawrence Livermore National Laboratory (LLNL). The 192 laser beams that converge on the target at the output of the NIF laser system originate from a low power fiber laser in the Master Oscillator Room (MOR). The MOR is responsible for generating the single pulse that seeds the entire NIF laser system. This single pulse is phase-modulated to add bandwidth, and then amplified and split into 48 separate beam lines all in single-mode polarizing fiber. Before leaving the MOR, each of the 48 output beams are temporally sculpted into high contrast shapes using Arbitrary Waveform Generators. The 48 output beams of the MOR are amplified in the Preamplifier Modules (PAMs), split and amplified again to generate 192 laser beams. The 192 laser beams are frequency converted to the third harmonic and then focused at the center of a 10-meter diameter target chamber. The MOR is an all fiber-based system utilizing highly reliable Telecom-Industry type hardware. The nearly 2,000,000 joules of energy at the output of the NIF laser system starts from a single fiber oscillator that fits in the palm of your hand. This paper describes the design and performance of the laser source that provides the precision light to the National Ignition Facility. Shown below is a simplified diagram illustrating the MOR's basic functions.

Browning, D F; Erbert, G V

2003-12-01T23:59:59.000Z

244

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15, 2013 15, 2013 Energy.gov/Data's resources include featured energy datasets and links to additional search tools. Welcome to Energy.gov/Data The Energy Data Initiative is proud to announce the launch of a new resource hub for open energy data. February 14, 2013 Marius Stan, computational energy scientist from Argonne National Lab, submits his verification photo as part of an informal question and answer session with Internet users on the Ask Me Anything section of the social website Reddit. Reddit AMA: Marius Stan, energy researcher and Breaking Bad actor You know the carwash owner from Breaking Bad with the awesome eyebrows? Yeah. That's him. February 14, 2013 The Cardioid code developed by a team of Livermore and IBM scientists divides the heart into a large number of manageable pieces, or subdomains. The development team used two approaches, called Voronoi (left) and grid (right), to break the enormous computing challenge into much smaller individual tasks. | Photo from the Lawrence Livermore National Laboratory

245

Labs at-a-Glance: Fermi National Accelerator Laboratory | U.S. DOE Office  

Office of Science (SC) Website

Fermi National Fermi National Accelerator Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Fermi National Accelerator Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Fermi National Accelerator Laboratory Logo Visit the Fermi National Accelerator

246

Labs at-a-Glance: SLAC National Accelerator Laboratory | U.S. DOE Office of  

Office of Science (SC) Website

SLAC National SLAC National Accelerator Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: SLAC National Accelerator Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page SLAC National Accelerator Laboratory Logo Visit the SLAC National Accelerator

247

Labs at-a-Glance: Argonne National Laboratory | U.S. DOE Office of Science  

Office of Science (SC) Website

Argonne National Argonne National Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Argonne National Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Argonne National Laboratory Logo Visit the Argonne National Laboratory

248

Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Flexible hydropower: boosting energy January 30, 2014 New hydroelectric resource for Northern New Mexico supplies clean energy to homes, businesses and the Lab We know a lot of...

249

2014-11-22T16:07:50-07:00 U.S. National Lab Programs 108  

Open Energy Info (EERE)

6:07:50-07:00 U.S. National Lab Programs 108 2010-07-21T14:55:40Z 2455399.1219907 U.S. National Lab Programs...

250

Labs at-a-Glance: Oak Ridge National Laboratory | U.S. DOE Office of  

Office of Science (SC) Website

Oak Ridge Oak Ridge National Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Oak Ridge National Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Oak Ridge National Laboratory Logo Visit the Oak Ridge National Laboratory

251

Labs at-a-Glance: Pacific Northwest National Laboratory | U.S. DOE Office  

Office of Science (SC) Website

Pacific Pacific Northwest National Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Pacific Northwest National Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Pacific Northwest National Laboratory Logo Visit the Pacific Northwest National

252

Labs at-a-Glance: Brookhaven National Laboratory | U.S. DOE Office of  

Office of Science (SC) Website

Brookhaven Brookhaven National Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Brookhaven National Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Brookhaven National Laboratory Logo Visit the Brookhaven National Laboratory

253

Labs at-a-Glance: Lawrence Berkeley National Laboratory | U.S. DOE Office  

Office of Science (SC) Website

Lawrence Lawrence Berkeley National Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Lawrence Berkeley National Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Lawrence Berkeley National Laboratory Logo Visit the Lawrence Berkeley National

254

Target area and diagnostic interface issues on the National Ignition Facility (invited)  

SciTech Connect

The National Ignition Facility (NIF) is under construction at Lawrence Livermore National Laboratory for the DOE Stockpile Stewardship Program. It will be used for experiments for inertial confinement fusion ignition, high energy density science, and basic science. Many interface issues confront the experimentalist who wishes to design, fabricate, and install diagnostics, and to help this process, a set of standards and guideline documents is being prepared. Compliance with these will be part of a formal diagnostic design review process. In this article we provide a short description of each, with reference to more complete documentation. The complete documentation will also be available through the NIF Diagnostics web page. Target area interface issues are grouped into three categories. First are the layout and utility interface issues which include the safety analysis report, target area facility layout; target chamber port locations; diagnostic interferences and envelopes; utilities and cable tray distribution; and timing and fiducial systems. Second are the environment interface issues which include radiation electromagnetic interference/electromagnetic pulse effects and mitigation; electrical grounding, shielding, and isolation; and cleanliness and vacuum guidelines. Third are the operational interface issues which include manipulator based target diagnostics, diagnostic alignment, shot life cycle and setup, diagnostic controllers; integrated computer control system; shot data archival; classified operations; and remote operations.

Bell, Perry; Lee, Dean; Wootton, Alan; Mascio, Bill; Kimbrough, Joe; Sewall, Noel; Hibbard, Wilthea; Dohoney, Pat; Landon, Mark; Christianson, George (and others) [and others

2001-01-01T23:59:59.000Z

255

In-Depth: Cleantech at the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

In-Depth: Cleantech at the National Labs In-Depth: Cleantech at the National Labs In-Depth: Cleantech at the National Labs January 7, 2014 - 5:30pm Addthis These solar power collection dishes at Sandia National Labs' National Solar Thermal Test Facility are capable of some of the highest solar to electricity conversion. In January 2008, this technology set a new solar-to-grid system conversion efficiency record of 31.25 percent net efficiency rate; the technology is still available to benefit the U.S. by delivering power at all hours of the day by implementing thermal energy storage. CSP with storage provides important benefits to integrate more renewable energy to our electric power supply by mitigating resource variability and satisfying peak demand after sunset. | Photo courtesy of Sandia National Laboratories.

256

National Labs Use OpenEI to Showcase Capabilities | OpenEI Community  

Open Energy Info (EERE)

National Labs Use OpenEI to Showcase Capabilities National Labs Use OpenEI to Showcase Capabilities Home > Groups > OpenEI Community Central Graham7781's picture Submitted by Graham7781(2002) Super contributor 3 February, 2010 - 13:59 imported OpenEI National laboratories are the backbone of the U.S. Department of Energy's R&D efforts-and generate some of the most valuable and accessible energy information. So it is fitting that every national laboratory has a page on OpenEI. Although some contain only basic information, others give detailed descriptions of lab capabilities and R&D activities, with links back to lab websites. Lawrence Livermore Nationa l Laboratory and Idaho National Laboratory, for example, use OpenEI pages to describe their R&D programs, including work on nuclear energy, biofuels, geothermal energy, and more. The National Energy

257

A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility  

SciTech Connect

A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors (GXD) it records sixteen time-gated spectra between 250 and 1000eV with 100ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and VUV beamline at the National Synchrotron Light Source (NSLS), evidence a <100{micro}m spatial resolution in combination with a source-size limited spectral resolution that is <10eV at photon energies of 300eV.

Moore, A S; Guymer, T M; Kline, J L; Morton, J; Taccetti, M; Lanier, N E; Bentley, C; Workman, J; Peterson, B; Mussack, K; Cowan, J; Prasad, R; Richardson, M; Burns, S; Kalantar, D H; Benedetti, L R; Bell, P; Bradley, D; Hsing, W; Stevenson, M

2012-05-01T23:59:59.000Z

258

A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility  

SciTech Connect

A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors it records 16 time-gated spectra between 250 and 1000 eV with 100 ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300 eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and vacuum ultraviolet beamline at the National Synchrotron Light Source, evidence a <100 {mu}m spatial resolution in combination with a source-size limited spectral resolution that is <10 eV at photon energies of 300 eV.

Moore, A. S.; Guymer, T. M.; Morton, J.; Bentley, C.; Stevenson, M. [Directorate Science and Technology, AWE Aldermaston, Reading, RG7 4PR (United Kingdom); Kline, J. L.; Taccetti, M.; Lanier, N. E.; Workman, J.; Peterson, B.; Mussack, K.; Cowan, J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Prasad, R.; Richardson, M.; Burns, S.; Kalantar, D. H.; Benedetti, L. R.; Bell, P.; Bradley, D.; Hsing, W. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)

2012-10-15T23:59:59.000Z

259

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24, 2013 24, 2013 By applying pressure to the generator, one is able to generate about six nanoamperes of current and 400 millivolts of potential -- roughly a quarter of the voltage of a AAA battery and enough to flash a number on the small LCD screen. | Photo courtesy of Seung-Wuk Lee's lab at Lawrence Berkeley National Laboratory. R&D 100: Battery Technology Goes Viral Learn how Energy Department researchers are harnessing power from an unlikely source -- viruses. July 24, 2013 If you've ever heard the thunderous sound of a sonic boom, you've experienced the shock waves in the air created by an object traveling faster than the speed of sound. But what happens when an object travels faster than the speed of light? At Jefferson Laboratory, construction is underway to upgrade the Continuous Electron Beam Accelerator Facility (CEBAF) and the CEABF Large Acceptance Spectrometer (CLAS12) at Hall B. During the experiments, the accelerator will shoot electrons at speeds faster than the speed at which light travels in the same medium, creating shock waves that emit a blue light, known as Cherenkov light -- this light is equivalent to the sonic boom. By recording data from Cherenkov light, scientists will be able to map a nucleon's three-dimensional spin.

260

Labs at-a-Glance: Thomas Jefferson National Accelerator Facility | U.S. DOE  

Office of Science (SC) Website

Thomas Jefferson Thomas Jefferson National Accelerator Facility Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Thomas Jefferson National Accelerator Facility Print Text Size: A A A RSS Feeds FeedbackShare Page Thomas Jefferson National Accelerator Facility Logo

Note: This page contains sample records for the topic "national lab ignites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility  

SciTech Connect

In order to achieve ignition using inertial confinement fusion it is important to control the growth of low-mode asymmetries as the capsule is compressed. Understanding the time-dependent evolution of the shape of the hot spot and surrounding fuel layer is crucial to optimizing implosion performance. A design and experimental campaign to examine sources of asymmetry and to quantify symmetry throughout the implosion has been developed and executed on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We have constructed a large simulation database of asymmetries applied during different time intervals. Analysis of the database has shown the need to measure and control the hot-spot shape, areal density distribution, and symmetry swings during the implosion. The shape of the hot spot during final stagnation is measured using time-resolved imaging of the self-emission, and information on the shape of the fuel at stagnation can be obtained from Compton radiography [R. Tommasini et al., Phys. Plasmas 18, 056309 (2011)]. For the first time on NIF, two-dimensional inflight radiographs of gas-filled and cryogenic fuel layered capsules have been measured to infer the symmetry of the radiation drive on the capsule. These results have been used to modify the hohlraum geometry and the wavelength tuning to improve the inflight implosion symmetry. We have also expanded our shock timing capabilities by the addition of extra mirrors inside the re-entrant cone to allow the simultaneous measurement of shock symmetry in three locations on a single shot, providing asymmetry information up to Legendre mode 4. By diagnosing the shape at nearly every step of the implosion, we estimate that shape has typically reduced fusion yield by about 50% in ignition experiments.

Town, R. P. J., E-mail: town2@llnl.gov; Bradley, D. K.; Kritcher, A.; Jones, O. S.; Rygg, J. R.; Tommasini, R.; Barrios, M.; Benedetti, L. R.; Berzak Hopkins, L. F.; Celliers, P. M.; Dppner, T.; Dewald, E. L.; Eder, D. C.; Field, J. E.; Glenn, S. M.; Izumi, N.; Haan, S. W.; Khan, S. F.; Ma, T.; Milovich, J. L. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

2014-05-15T23:59:59.000Z

262

Performance metrics for Inertial Confinement Fusion implosions: aspects of the technical framework for measuring progress in the National Ignition Campaign  

SciTech Connect

The National Ignition Campaign (NIC) uses non-igniting 'THD' capsules to study and optimize the hydrodynamic assembly of the fuel without burn. These capsules are designed to simultaneously reduce DT neutron yield and to maintain hydrodynamic similarity with the DT ignition capsule. We will discuss nominal THD performance and the associated experimental observables. We will show the results of large ensembles of numerical simulations of THD and DT implosions and their simulated diagnostic outputs. These simulations cover a broad range of both nominal and off nominal implosions. We will focus on the development of an experimental implosion performance metric called the experimental ignition threshold factor (ITFX). We will discuss the relationship between ITFX and other integrated performance metrics, including the ignition threshold factor (ITF), the generalized Lawson criterion (GLC), and the hot spot pressure (HSP). We will then consider the experimental results of the recent NIC THD campaign. We will show that we can observe the key quantities for producing a measured ITFX and for inferring the other performance metrics. We will discuss trends in the experimental data, improvement in ITFX, and briefly the upcoming tuning campaign aimed at taking the next steps in performance improvement on the path to ignition on NIF.

Spears, B K; Glenzer, S; Edwards, M J; Brandon, S; Clark, D; Town, R; Cerjan, C; Dylla-Spears, R; Mapoles, E; Munro, D; Salmonson, J; Sepke, S; Weber, S; Hatchett, S; Haan, S; Springer, P; Moses, E; Mapoles, E; Munro, D; Salmonson, J; Sepke, S

2011-12-16T23:59:59.000Z

263

Hydrodynamic instability growth and mix experiments at the National Ignition Facility  

SciTech Connect

Hydrodynamic instability growth and its effects on implosion performance were studied at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)]. Implosion performance and mix have been measured at peak compression using plastic shells filled with tritium gas and containing embedded localized carbon-deuterium diagnostic layers in various locations in the ablator. Neutron yield and ion temperature of the deuterium-tritium fusion reactions were used as a measure of shell-gas mix, while neutron yield of the tritium-tritium fusion reaction was used as a measure of implosion performance. The results have indicated that the low-mode hydrodynamic instabilities due to surface roughness were the primary culprits for yield degradation, with atomic ablator-gas mix playing a secondary role. In addition, spherical shells with pre-imposed 2D modulations were used to measure instability growth in the acceleration phase of the implosions. The capsules were imploded using ignition-relevant laser pulses, and ablation-front modulation growth was measured using x-ray radiography for a shell convergence ratio of ?2. The measured growth was in good agreement with that predicted, thus validating simulations for the fastest growing modulations with mode numbers up to 90 in the acceleration phase. Future experiments will be focused on measurements at higher convergence, higher-mode number modulations, and growth occurring during the deceleration phase.

Smalyuk, V. A.; Barrios, M.; Caggiano, J. A.; Casey, D. T.; Cerjan, C. J.; Clark, D. S.; Edwards, M. J.; Haan, S. W.; Hammel, B. A.; Hamza, A.; Hsing, W. W.; Hurricane, O.; Kroll, J.; Landen, O. L.; Lindl, J. D.; Ma, T.; McNaney, J. M.; Mintz, M.; Parham, T.; Peterson, J. L. [Lawrence Livermore National Laboratory, NIF Directorate, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, NIF Directorate, Livermore, California 94550 (United States); and others

2014-05-15T23:59:59.000Z

264

Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Ignition Facility  

SciTech Connect

For indirect drive inertial confinement fusion, Beryllium (Be) ablators offer a number of important advantages as compared with other ablator materials, e.g., plastic and high density carbon. In particular, the low opacity and relatively high density of Be lead to higher rocket efficiencies giving a higher fuel implosion velocity for a given X-ray drive; and to higher ablation velocities providing more ablative stabilization and reducing the effect of hydrodynamic instabilities on the implosion performance. Be ablator advantages provide a larger target design optimization space and can significantly improve the National Ignition Facility (NIF) [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)] ignition margin. Herein, we summarize the Be advantages, briefly review NIF Be target history, and present a modern, optimized, low adiabat, Revision 6 NIF Be target design. This design takes advantage of knowledge gained from recent NIF experiments, including more realistic levels of laser-plasma energy backscatter, degraded hohlraum-capsule coupling, and the presence of cross-beam energy transfer.

Simakov, Andrei N., E-mail: simakov@lanl.gov; Wilson, Douglas C.; Yi, Sunghwan A.; Kline, John L.; Batha, Steven H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, Daniel S.; Milovich, Jose L.; Salmonson, Jay D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)] [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

2014-02-15T23:59:59.000Z

265

Control System For Cryogenic THD Layering At The National Ignition Facility  

SciTech Connect

The National Ignition Facility (NIF) is the world largest and most energetic laser system for Inertial Confinement Fusion (ICF). In 2010, NIF began ignition experiments using cryogenically cooled targets containing layers of the tritium-hydrogen-deuterium (THD) fuel. The 75 {micro}m thick layer is formed inside of the 2 mm target capsule at temperatures of approximately 18 K. The ICF target designs require sub-micron smoothness of the THD ice layers. Formation of such layers is still an active research area, requiring a flexible control system capable of executing the evolving layering protocols. This task is performed by the Cryogenic Target Subsystem (CTS) of the NIF Integrated Computer Control System (ICCS). The CTS provides cryogenic temperature control with the 1 mK resolution required for beta-layering and for the thermal gradient fill of the capsule. The CTS also includes a 3-axis x-ray radiography engine for phase contrast imaging of the ice layers inside of the plastic and beryllium capsules. In addition to automatic control engines, CTS is integrated with the Matlab interactive programming environment to allow flexibility in experimental layering protocols. The CTS Layering Matlab Toolbox provides the tools for layer image analysis, system characterization and cryogenic control. The CTS Layering Report tool generates qualification metrics of the layers, such as concentricity of the layer and roughness of the growth boundary grooves. The CTS activities are automatically coordinated with other NIF controls in the carefully orchestrated NIF Shot Sequence.

Fedorov, M; Blubaugh, J; Edwards, O; Mauvais, M; Sanchez, R; Wilson, B

2011-03-18T23:59:59.000Z

266

Neutron spectrometry - An essential tool for diagnosing implosions at the National Ignition Facility  

SciTech Connect

DT neutron yield (Y{sub n}), ion temperature (T{sub i}) and down-scatter ratio (dsr) determined from measured neutron spectra are essential metrics for diagnosing the performance of Inertial Confinement Fusion (ICF) implosions at the National Ignition Facility (NIF). A suite of neutron-Time-Of-Flight (nTOF) spectrometers and a Magnetic Recoil Spectrometer (MRS) have been implemented in different locations around the NIF target chamber, providing good implosion coverage and the redundancy required for reliable measurements of Yn, Ti and dsr. From the measured dsr value, an areal density ({rho}R) is determined from the relationship {rho}R{sub tot} (g/cm{sup 2}) = (20.4 {+-} 0.6) x dsr{sub 10-12 MeV}. The proportionality constant is determined considering implosion geometry, neutron attenuation and energy range used for the dsr measurement. To ensure high accuracy in the measurements, a series of commissioning experiments using exploding pushers have been used for in situ calibration. The spectrometers are now performing to the required accuracy, as indicated by the good agreement between the different measurements over several commissioning shots. In addition, recent data obtained with the MRS and nTOFs indicate that the implosion performance of cryogenically layered DT implosions, characterized by the experimental Ignition Threshold Factor (ITFx) which is a function of dsr (or fuel {rho}R) and Y{sub n}, has improved almost two orders of magnitude since the first shot in September, 2010.

Mackinnon, A J; Johnson, M G; Frenje, J A; Casey, D T; Li, C K; Seguin, F H; Petrasso, R; Ashabranner, R; Cerjan, C; Clancy, T J; Bionta, R; Bleuel, D; Bond, E J; Caggiano, J A; Capenter, A; Eckart, M J; Edwards, M J; Friedrich, S; Glenzer, S H; Haan, S W; Hartouni, E P; Hatarik, R; Hachett, S P; McKernan, M; Jones, O; Lepape, S; Lerche, R A; Landen, O L; Moran, M; Moses, E; Munro, D; McNaney, J; Rygg, J R; Sepke, S; Spears, B; Springer, P; Yeamans, C; Farrell, M; Kilkenny, J D; Nikroo, A; Paguio, R; Knauer, J; Glebov, V; Sangster, T; Betti, R; Stoeckl, C; Magoon, J; Shoup, M J; Grim, G P; Moran, G L; Murphy, T J; Leeper, R J; Ruiz, C

2012-05-02T23:59:59.000Z

267

Use of the target diagnostic control system in the National Ignition Facility  

SciTech Connect

The extreme physics of targets shocked by NIF's 192-beam laser are observed by a diverse suite of diagnostics including optical backscatter, time-integrated, time resolved and gated X-ray sensors, laser velocity interferometry, and neutron time of flight. Diagnostics to diagnose fusion ignition implosion and neutron emissions have been developed. A Diagnostic Control System (DCS) for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the DCS architecture each instrument is interfaced to a low-cost Window XP processor and Java application. Instruments are aggregated as needed in the supervisory system to form an integrated diagnostic. The Java framework provides data management, control services and operator GUI generation. During the past several years, over thirty-six diagnostics have been deployed using this architecture in support of the National Ignition Campaign (NIC). The DCS architecture facilitates the expected additions and upgrades to diagnostics as more experiments are performed. This paper presents the DCS architecture, framework and our experiences in using it during the NIC to operate, upgrade and maintain a large set of diagnostic instruments.

Shelton, R; Lagin, L; Nelson, J

2011-07-25T23:59:59.000Z

268

Brookhaven National Lab Regional Middle School Science Bowl | U.S. DOE  

Office of Science (SC) Website

Brookhaven National Lab Brookhaven National Lab Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New York Regions Brookhaven National Lab Regional Middle School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Catherine Osiecki Email: Osiecki@bnl.gov Regional Event Information Date: Saturday, March 1, 2014

269

Brookhaven National Lab Regional High School Science Bowl | U.S. DOE Office  

Office of Science (SC) Website

Brookhaven National Lab Brookhaven National Lab Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov New York Regions Brookhaven National Lab Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Catherine Osiecki Email: Osiecki@bnl.gov Regional Event Information Date: Saturday, January 25, 2014 Maximum Number of Teams: 20

270

Los Alamos lab director to link science education, national security in  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab director to link science education, national security in talk Lab director to link science education, national security in talk Los Alamos lab director to link science education, national security in TEDxABQ talk McMillan will describe the events that led to his career in science and share suggestions on how non-scientists can inspire young people to STEM careers and scientific literacy. September 5, 2013 Los Alamos National Laboratory Director Charlie McMillan Los Alamos National Laboratory Director Charlie McMillan Contact Fred deSousa Communications Office (505) 665-3430 Email "Finding young people with the scientific and technical capabilities to carry on the Laboratory's national security missions will be critical, but the linkage to national security goes beyond that," McMillan said. Watch live stream at home or at Bradbury Science Museum

271

Top 10 Things You Didn't Know About the National Labs | Department...  

Office of Environmental Management (EM)

Lab. December 13, 2013 Los Alamos National Laboratory scientist Roger Wiens removes the laser safety plug on the ChemCam Mast Unit, selected for the Mars Science Laboratory rover,...

272

PLANNING TOOLS FOR ESTIMATING RADIATION EXPOSURE AT THE NATIONAL IGNITION FACILITY  

SciTech Connect

A set of computational tools was developed to help estimate and minimize potential radiation exposure to workers from material activation in the National Ignition Facility (NIF). AAMI (Automated ALARA-MCNP Interface) provides an efficient, automated mechanism to perform the series of calculations required to create dose rate maps for the entire facility with minimal manual user input. NEET (NIF Exposure Estimation Tool) is a web application that combines the information computed by AAMI with a given shot schedule to compute and display the dose rate maps as a function of time. AAMI and NEET are currently used as work planning tools to determine stay-out times for workers following a given shot or set of shots, and to help in estimating integrated doses associated with performing various maintenance activities inside the target bay. Dose rate maps of the target bay were generated following a low-yield 10{sup 16} D-T shot and will be presented in this paper.

Verbeke, J; Young, M; Brereton, S; Dauffy, L; Hall, J; Hansen, L; Khater, H; Kim, S; Pohl, B; Sitaraman, S

2010-10-22T23:59:59.000Z

273

Overview of the gamma reaction history diagnostic for the national ignition facility (NIF)  

SciTech Connect

The National Ignition Facility (NIF) has a need for measuring gamma radiation as part of a nuclear diagnostic program. A new gamma-detection diagnostic uses 900 off-axis parabolic mirrors to rel ay Cherenkov light from a volume of pressurized gas. This non imaging optical system has the high-speed detector placed at a stop position with the Cherenkov light delayed until after the prompt gammas have passed through the detector. Because of the wavelength range (250 to 700 nm), the optical element surface finish was a key design constraint. A cluster of four channels (each set to a different gas pressure) will collect the time histories for different energy ranges of gammas.

Kim, Yong Ho [Los Alamos National Laboratory; Evans, Scott C [Los Alamos National Laboratory; Herrmann, Hans W [Los Alamos National Laboratory; Mack, Joseph M [Los Alamos National Laboratory; Young, Carl S [Los Alamos National Laboratory; Malone, Robert M [Los Alamos National Laboratory; Cox, Brian C [Los Alamos National Laboratory; Frogget, Brent C [Los Alamos National Laboratory; Kaufman, Morris I [Los Alamos National Laboratory; Tunnell, Thomas W [Los Alamos National Laboratory; Tibbitts, Aric [Los Alamos National Laboratory; Palagi, Martin J [NST/LAS VEGAS; Stoeffl, Wolfgang [LLNL

2010-01-01T23:59:59.000Z

274

Standard design for National Ignition Facility x-ray streak and framing cameras  

SciTech Connect

The x-ray streak camera and x-ray framing camera for the National Ignition Facility were redesigned to improve electromagnetic pulse hardening, protect high voltage circuits from pressure transients, and maximize the use of common parts and operational software. Both instruments use the same PC104 based controller, interface, power supply, charge coupled device camera, protective hermetically sealed housing, and mechanical interfaces. Communication is over fiber optics with identical facility hardware for both instruments. Each has three triggers that can be either fiber optic or coax. High voltage protection consists of a vacuum sensor to enable the high voltage and pulsed microchannel plate phosphor voltage. In the streak camera, the high voltage is removed after the sweep. Both rely on the hardened aluminum box and a custom power supply to reduce electromagnetic pulse/electromagnetic interference (EMP/EMI) getting into the electronics. In addition, the streak camera has an EMP/EMI shield enclosing the front of the streak tube.

Kimbrough, J. R.; Bell, P. M.; Bradley, D. K.; Holder, J. P.; Kalantar, D. K.; MacPhee, A. G.; Telford, S. [Lawrence Livermore National Laboratory, Livermore, California 94551-0808 (United States)

2010-10-15T23:59:59.000Z

275

Assessment and Mitigation of Diagnostic-Generated Electromagnetic Interference at the National Ignition Facility  

SciTech Connect

Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effects of diagnostic-generated EMI on NIF diagnostics.

Brown, C G; Ayers, M J; Felker, B; Ferguson, W; Holder, J P; Nagel, S R; Piston, K W; Simanovskaia, N; Throop, A L; Chung, M; Hilsabeck, T

2012-04-20T23:59:59.000Z

276

Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility  

SciTech Connect

Experiments that characterize and develop a high energy-density half-hohlraum platform for use in benchmarking radiation hydrodynamics models have been conducted at the National Ignition Facility (NIF). Results from the experiments are used to quantitatively compare with simulations of the radiation transported through an evolving plasma density structure, colloquially known as an N-wave. A half-hohlraum is heated by 80 NIF beams to a temperature of 240?eV. This creates a subsonic diffusive Marshak wave, which propagates into a high atomic number Ta{sub 2}O{sub 5} aerogel. The subsequent radiation transport through the aerogel and through slots cut into the aerogel layer is investigated. We describe a set of experiments that test the hohlraum performance and report on a range of x-ray measurements that absolutely quantify the energetics and radiation partition inside the target.

Moore, A. S., E-mail: alastair.moore@physics.org; Graham, P.; Comley, A. J.; Foster, J. [Directorate Science and Technology, AWE Aldermaston, Reading RG7 4PR (United Kingdom); Cooper, A. B. R.; Schneider, M. B.; MacLaren, S.; Lu, K.; Seugling, R.; Satcher, J.; Klingmann, J.; Marrs, R.; May, M.; Widmann, K.; Glendinning, G.; Castor, J.; Sain, J.; Baker, K.; Hsing, W. W.; Young, B. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

2014-06-15T23:59:59.000Z

277

South pole bang-time diagnostic on the National Ignition Facility  

SciTech Connect

The south pole bang-time (SPBT) diagnostic views National Ignition Facility (NIF) implosions through the lower hohlraum laser entrance hole to measure the time of peak x-ray emission (peak compression) in indirect drive implosions. Five chemical-vapor-deposition (CVD) diamond photoconductive detectors (PCD's) with different filtrations and sensitivities record the time-varying x rays emitted by the target. Wavelength-selecting highly oriented pyrolytic graphite (HOPG) crystal mirror monochromators increase the x-ray signal-to-background ratio by filtering for 11-keV emission. Diagnostic timing and the in-situ temporal instrument response function are determined from laser impulse shots on the NIF. After signal deconvolution and background removal, the bang time is determined to 45-ps accuracy. The x-ray 'yield' (mJ/sr/keV at 11 keV) is determined from the total area under the peak.

MacPhee, A; Edgell, D; Bradley, D K; Bond, E J; Burns, S; Callahan, D A; Celeste, J; Kimbrough, J; Mackinnon, A J; Magoon, J; Eckart, M J; Glebov, V; Hey, D; Lacielle, G; Kilkenny, J; Parker, J; Sangster, T C; Shoup, M J; Stoeckl, C; Thomas, T

2012-05-01T23:59:59.000Z

278

Simulation of Radiation Backgrounds associated with the HEXRI Diagnostics at the National Ignition Facility  

SciTech Connect

Experiments resulting in a significant neutron yield are scheduled to start in 2010 at the National Ignition Facility (NIF). A wide range of diagnostics will be used to measure several parameters of implosion such as the core and fuel shape, temperatures and densities, and neutron yield. Accurate evaluations of the neutron and gamma backgrounds are important for several diagnostics, such as the High Energy X-ray Imager (HEXRI). Several Monte-Carlo simulations were performed to identify the expected signal to background ratios at several potential locations for the HEXRI diagnostics. Gamma backgrounds were significantly reduced by using tungsten collimators. The collimators resulted in the reduction of the gamma background at the HEXRI scintillators by more than an order of magnitude during the first 40 ns following a THD shot.

Khater, H; Dauffy, L; Tommasini, R; Eckart, M; Eder, D

2009-10-05T23:59:59.000Z

279

Optomechanical considerations for the VISAR diagnostic at the National Ignition Facility (NIF)  

SciTech Connect

The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The velocity interferometer for any reflector measures shock velocities at a location remote to the NIF target chamber. Our team designed two systems, one for a polar port orientation, and the other to accommodate two equatorial ports. The polar-oriented design requires a 48-m optical relay to move the light from inside the target chamber to a separately housed measurement and laser illumination station. The currently operational equatorial design requires a much shorter relay of 21 m. Both designs posed significant optomechanical challenges due to the long optical path length, large quantity of optical elements, and stringent NIF requirements. System design had to tightly control the use of lubricants and materials, especially those inside the vacuum chamber; tolerate earthquakes and radiation; and consider numerous other tolerance, alignment, and steering adjustment issues. To ensure compliance with NIF performance requirements, we conducted a finite element analysis.

Kaufman, Morris I.; Celeste, John R.; Frogget, Brent C.; Lee, Tony L.; GacGowan, Brian J.; Malone, Robert M.; Ng, Edmund W.; Tunnell, Tom W.; Watts, Phillip W.

2006-09-01T23:59:59.000Z

280

Overview of the Gamma Reaction History Diagnostic for the National Ignition Facility (NIF)  

SciTech Connect

The National Ignition Facility (NIF) has a need for measuring gamma radiation as part of a nuclear diagnostic program. A new gamma-detection diagnostic uses 90 off-axis parabolic mirrors to relay Cherenkov light from a volume of pressurized gas. This nonimaging optical system has the high-speed detector placed at a stop position with the Cherenkov light delayed until after the prompt gammas have passed through the detector. Because of the wavelength range (250 to 700 nm), the optical element surface finish was a key design constraint. A cluster of four channels (each set to a different gas pressure) will collect the time histories for different energy ranges of gammas.

Malone, R M; Frogget, B C; Kaufman, M I; Tibbitts, A; Tunnell, T W; Evans, S C; Herrmann, H W; Kim, Y H; Mack, J M; Young, C S; McGillivray, K D; Palagi, M J

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "national lab ignites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Sandia National Laboratories: News: Publications: Lab News: Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

News News 2011-1998 Browse selected articles from past Lab News issues (since 1998) Articles are listed in reverse chronological order, with most recent listed first. Also, Lab News issues published since Dec. 2000 are archived here as Adobe Acrobat-compatible PDF files. 2012 February 24, 2012 Lab News - Sandia working to improve nervous system control of prosthetics; Initial geothermal investment comes full circle in new project; Making an impact in the economy: New Mexico companies did $400 million in business with Sandia; and more. February 10, 2012 Lab News - Sandia one of 'greatest research institutions in the world,' visiting Energy Secretary Steven Chu says; Sandia tool determines value of solar photovoltaic power systems; Prestigious Asian American event comes to Albuquerque; and more.

282

Recap: Advancing Scientific Innovation at the National Labs ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lab Fri, Mar 07 2014 18:19:31 OLCF Industry User Named Person to Watch in High-Performance Computing for 2014 http:t.copXTjgsn0XJ Titan Industry @ORNL @GEResearch - OLCF ...

283

DOE's Oak Ridge and Lawrence Berkeley National Labs Join with Dow Chemical  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Oak Ridge and Lawrence Berkeley National Labs Join with Dow DOE's Oak Ridge and Lawrence Berkeley National Labs Join with Dow Chemical to Develop Next-Generation Cool Roofs DOE's Oak Ridge and Lawrence Berkeley National Labs Join with Dow Chemical to Develop Next-Generation Cool Roofs April 14, 2011 - 12:00am Addthis Washington, DC - The U.S. Department of Energy today announced that Oak Ridge National Laboratory (ORNL) and Lawrence Berkeley National Laboratory (LBNL) have joined with Dow Chemical Company as part of a Cooperative Research and Development Agreement to fund key research that will help develop the next generation of cool roof technologies in the U.S. The agreement will support research to increase the energy savings from existing cool roof technologies by more than 50 percent, decreasing the nation's carbon footprint and providing an opportunity for Americans to

284

DOE's Oak Ridge and Lawrence Berkeley National Labs Join with Dow Chemical  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Oak Ridge and Lawrence Berkeley National Labs Join with Dow DOE's Oak Ridge and Lawrence Berkeley National Labs Join with Dow Chemical to Develop Next-Generation Cool Roofs DOE's Oak Ridge and Lawrence Berkeley National Labs Join with Dow Chemical to Develop Next-Generation Cool Roofs April 14, 2011 - 12:00am Addthis Washington, DC - The U.S. Department of Energy today announced that Oak Ridge National Laboratory (ORNL) and Lawrence Berkeley National Laboratory (LBNL) have joined with Dow Chemical Company as part of a Cooperative Research and Development Agreement to fund key research that will help develop the next generation of cool roof technologies in the U.S. The agreement will support research to increase the energy savings from existing cool roof technologies by more than 50 percent, decreasing the nation's carbon footprint and providing an opportunity for Americans to

285

The Five Fastest Supercomputers at the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Five Fastest Supercomputers at the National Labs The Five Fastest Supercomputers at the National Labs The Five Fastest Supercomputers at the National Labs Addthis Titan 1 of 5 Titan Oak Ridge National Laboratory's Titan has a theoretical peak performance of more than 20 petaflops, or more than 20 quadrillion calculations per second. This will enable researchers across the scientific arena, from materials to climate change to astrophysics, to acquire unparalleled accuracy in their simulations and achieve research breakthroughs more rapidly than ever before. Titan is currently the second fastest supercomputer in the world. Image: Courtesy of Oak Ridge National Laboratory. Sequoia 2 of 5 Sequoia Sequoia is a 20 petaflop, that is 20 quadrillion floating point operations per second, IBM BlueGene/Q system at Lawrence Livermore National

286

DOE Signs Agreement Allowing National Labs to Use the U.S. Civilian Board  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Signs Agreement Allowing National Labs to Use the U.S. Civilian Signs Agreement Allowing National Labs to Use the U.S. Civilian Board of Contract Appeals to Resolve Disputes DOE Signs Agreement Allowing National Labs to Use the U.S. Civilian Board of Contract Appeals to Resolve Disputes December 17, 2010 - 5:24pm Addthis The Department of Energy announced today that it has entered into a Memorandum of Agreement with the United States Civilian Board of Contract Appeals (CBCA) to enable the Department's lab and facility management and operation (M&O) contractors to employ the CBCA for mediation, arbitration, and other alternative dispute resolution services. Earlier this year, the Department clarified that M&O contractors are permitted to include binding arbitration clauses in their contracts with others, and, indeed, that

287

Team Led by Argonne National Lab Selected as DOE's Batteries and Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Team Led by Argonne National Lab Selected as DOE's Batteries and Team Led by Argonne National Lab Selected as DOE's Batteries and Energy Storage Hub Team Led by Argonne National Lab Selected as DOE's Batteries and Energy Storage Hub November 30, 2012 - 12:15pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - U.S. Secretary of Energy Steven Chu was joined today by Senator Dick Durbin, Illinois Governor Pat Quinn, and Chicago Mayor Rahm Emanuel to announce that a multi-partner team led by Argonne National Laboratory has been selected for an award of up to $120 million over five years to establish a new Batteries and Energy Storage Hub. The Hub, to be known as the Joint Center for Energy Storage Research (JCESR), will combine the R&D firepower of five DOE national laboratories, five universities, and four private firms in an effort aimed at achieving revolutionary advances

288

Introducing a Girl to Engineering - A Day at Argonne National Lab |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Introducing a Girl to Engineering - A Day at Argonne National Lab Introducing a Girl to Engineering - A Day at Argonne National Lab Introducing a Girl to Engineering - A Day at Argonne National Lab February 25, 2013 - 2:51pm Addthis Participants of the 2013 Introduce a Girl to Engineering Day gather at Argonne National Laboratory with Director Dot Harris. Participants of the 2013 Introduce a Girl to Engineering Day gather at Argonne National Laboratory with Director Dot Harris. Dot Harris Dot Harris The Honorable Dot Harris, Director, Office of Economic Impact and Diversity Did you know that while women comprise 48 percent of the U.S. workforce, they hold only 24 percent of STEM jobs? STEM, or science, technology, engineering, and mathematics, is critical for the mission of the Energy Department in securing our clean energy future - and it's critical for the

289

Energy Department, Oak Ridge National Lab Officials to Celebrate First of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department, Oak Ridge National Lab Officials to Celebrate Department, Oak Ridge National Lab Officials to Celebrate First of its Kind Carbon Fiber Facility Energy Department, Oak Ridge National Lab Officials to Celebrate First of its Kind Carbon Fiber Facility March 25, 2013 - 9:51am Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - On Tuesday, March 26, 2013, U.S. Assistant Secretary for Energy Efficiency and Renewable Energy David Danielson, Oak Ridge National Laboratory Director Thom Mason, Governor Bill Haslam and Congressman Chuck Fleischmann, along with industry representatives, will celebrate the opening of Oak Ridge National Laboratory's Carbon Fiber Technology Facility in Oak Ridge, Tennessee. As the first of its kind in the United States, this facility will help make sure the U.S. is a magnet for manufacturing jobs - supporting American innovation in next generation

290

Deputy Secretary Poneman Announces Team led by Oak Ridge National Lab  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deputy Secretary Poneman Announces Team led by Oak Ridge National Deputy Secretary Poneman Announces Team led by Oak Ridge National Lab Selected to Receive up to $122 Million for Nuclear Energy Innovation Hub Deputy Secretary Poneman Announces Team led by Oak Ridge National Lab Selected to Receive up to $122 Million for Nuclear Energy Innovation Hub May 28, 2010 - 12:05pm Addthis WASHINGTON, D.C. - As part of a broad effort to spur innovation and achieve clean energy breakthroughs, U.S. Deputy Secretary of Energy Daniel Poneman today announced the selection of a team led by Oak Ridge National Laboratory (ORNL) for an award of up to $122 million over five years to establish and operate a new Nuclear Energy Modeling and Simulation Energy Innovation Hub. The Hub, which includes partners from universities, industry and other national labs, will use advanced capabilities of the

291

President Obama Visits the Argonne National Research Lab to Talk About  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Visits the Argonne National Research Lab to Talk Visits the Argonne National Research Lab to Talk About American Energy Security President Obama Visits the Argonne National Research Lab to Talk About American Energy Security March 18, 2013 - 1:48pm Addthis President Barack Obama delivers remarks on clean energy at Argonne National Laboratory’s Nanoscale Materials Center in Lemont, Ill., March 15, 2013. | Official White House Photo by Chuck Kennedy President Barack Obama delivers remarks on clean energy at Argonne National Laboratory's Nanoscale Materials Center in Lemont, Ill., March 15, 2013. | Official White House Photo by Chuck Kennedy Colleen Curtis Director of Digital Content for the Office of Digital Strategy for the White House We Are Poised to Take Control of Our Energy Future We produce more oil than we have in 15 years.

292

Follow Live Dec 24: Los Alamos National Lab Tracks Rudolph's Nose,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Follow Live Dec 24: Los Alamos National Lab Tracks Rudolph's Follow Live Dec 24: Los Alamos National Lab Tracks Rudolph's Nose, Santa's Sleigh Follow Live Dec 24: Los Alamos National Lab Tracks Rudolph's Nose, Santa's Sleigh December 23, 2011 - 8:40am Addthis Thanks to the Los Alamos National Laboratory, you can follow along live as Santa circles the globe this Christmas Eve. | Image credit: Hantz Leger. Thanks to the Los Alamos National Laboratory, you can follow along live as Santa circles the globe this Christmas Eve. | Image credit: Hantz Leger. Ginny Simmons Ginny Simmons Former Managing Editor for Energy.gov, Office of Public Affairs What are the key facts? You can follow along live as Santa circles the globe this Christmas Eve. Santa enjoys a wide variety of cookies.

293

Deputy Secretary Poneman Announces Team led by Oak Ridge National Lab  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces Team led by Oak Ridge National Announces Team led by Oak Ridge National Lab Selected to Receive up to $122 Million for Nuclear Energy Innovation Hub Deputy Secretary Poneman Announces Team led by Oak Ridge National Lab Selected to Receive up to $122 Million for Nuclear Energy Innovation Hub May 28, 2010 - 12:00am Addthis WASHINGTON, D.C. - As part of a broad effort to spur innovation and achieve clean energy breakthroughs, U.S. Deputy Secretary of Energy Daniel Poneman today announced the selection of a team led by Oak Ridge National Laboratory (ORNL) for an award of up to $122 million over five years to establish and operate a new Nuclear Energy Modeling and Simulation Energy Innovation Hub. The Hub, which includes partners from universities, industry and other national labs, will use advanced capabilities of the

294

Lawrence Berkeley National Lab/ Site Specific Safety Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab/ Site Specific Safety Plan Lab/ Site Specific Safety Plan Site Specific Safety Plan Site Specific Safety Plan shall contain at a minimum: List by name & phone numbers the following person who will be on the project: Submit: Name of the On-site Superintendent & Phone. Submit: Name of the On-site Health and Safety Representative & Phone. Submit: Name of the person who is responsible for the implementation of safety plan. Submit: Resume & qualification of the person who is responsible for implantation of this projects safety plan. Include OSHA certifications. Submit: The companies' Policy statement on environment, safety and health. Submit: The companies' Policy on substance abuse and testing policy.

295

An Investigation Into Bayesian Networks for Modeling National Ignition Facility Capsule Implosions  

SciTech Connect

Bayesian networks (BN) are an excellent tool for modeling uncertainties in systems with several interdependent variables. A BN is a directed acyclic graph, and consists of a structure, or the set of directional links between variables that depend on other variables, and conditional probabilities (CP) for each variable. In this project, we apply BN's to understand uncertainties in NIF ignition experiments. One can represent various physical properties of National Ignition Facility (NIF) capsule implosions as variables in a BN. A dataset containing simulations of NIF capsule implosions was provided. The dataset was generated from a radiation hydrodynamics code, and it contained 120 simulations of 16 variables. Relevant knowledge about the physics of NIF capsule implosions and greedy search algorithms were used to search for hypothetical structures for a BN. Our preliminary results found 6 links between variables in the dataset. However, we thought there should have been more links between the dataset variables based on the physics of NIF capsule implosions. Important reasons for the paucity of links are the relatively small size of the dataset, and the sampling of the values for dataset variables. Another factor that might have caused the paucity of links is the fact that in the dataset, 20% of the simulations represented successful fusion, and 80% didn't, (simulations of unsuccessful fusion are useful for measuring certain diagnostics) which skewed the distributions of several variables, and possibly reduced the number of links. Nevertheless, by illustrating the interdependencies and conditional probabilities of several parameters and diagnostics, an accurate and complete BN built from an appropriate simulation set would provide uncertainty quantification for NIF capsule implosions.

Mitrani, J

2008-08-18T23:59:59.000Z

296

IMPACT OF TARGET MATERIAL ACTIVATION ON PERSONNEL EXPOSURE AND RADIOACTIVE CONTAMINATION IN THE NATIONAL IGNITION FACILITY  

SciTech Connect

Detailed activation analyses are performed for the different materials under consideration for use in the target capsules and hohlraums used during the ignition campaign on the National Ignition Facility. Results of the target material activation were additionally used to estimate the levels of contamination within the NIF target chamber and the workplace controls necessary for safe operation. The analysis examined the impact of using Be-Cu and Ge-doped CH capsules on the external dose received by workers during maintenance activities. Five days following a 20 MJ shot, dose rates inside the Target Chamber (TC) due to the two proposed capsule materials are small ({approx} 1 {micro}rem/h). Gold and depleted-uranium (DU) are considered as potential hohlraum materials. Following a shot, gold will most probably get deposited on the TC first wall. On the other hand, while noble-gas precursors from the DU are expected to stay in the TC, most of the noble gases are pumped out of the chamber and end up on the cryopumps. The dose rates inside the TC due to activated gold or DU, at 5 days following a 20 MJ shot, are about 1 mrem/h. Dose rates in the vicinity of the cryo-pumps (containing noble 'fission' gases) drop-off to about 1 mrem/h during the first 12 hours following the shot. Contamination from activation of NIF targets will result in the NIF target chamber exceeding DOE surface contamination limits. Objects removed from the TC will need to be managed as radioactive material. However, the results suggest that airborne contamination from resuspension of surface contamination will not be significant and is at levels that can be managed by negative ventilation when accessing the TC attachments.

Khater, H; Epperson, P; Thacker, R; Beale, R; Kohut, T; Brereton, S

2009-06-30T23:59:59.000Z

297

Developing depleted uranium and gold cocktail hohlraums for the National Ignition Facility  

SciTech Connect

Fusion ignition experiments are planned to begin at the National Ignition Facility (NIF) [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, 755 (1994)] using the indirect drive configuration [J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer, S. W. Haan, R. L, Kauffman, O. L. Landen, and L. J. Suter, Phys. Plasmas 11, 339 (2004)]. Although the x-ray drive in this configuration is highly symmetric, energy is lost in the conversion process due to x-ray penetration into the hohlraum wall. To mitigate this loss, depleted uranium is incorporated into the traditional gold hohlraum to increase the efficiency of the laser to x-ray energy conversion by making the wall more opaque to the x rays [H. Nishumura, T. Endo, H. Shiraga, U. Kato, and S. Nakai, Appl. Phys. Lett. 62, 1344 (1993)]. Multilayered depleted uranium (DU) and gold hohlraums are deposited by sputtering by alternately rotating a hohlraum mold in front of separate DU and Au sources to build up multilayers to the desired wall thickness. This mold is removed to leave a freestanding hohlraum half; two halves are used to assemble the complete NIF hohlraum to the design specifications. In practice, exposed DU oxidizes in air and other chemicals necessary to hohlraum production, so research has focused on developing a fabrication process that protects the U from damaging environments. This paper reports on the most current depleted uranium and gold cocktail hohlraum fabrication techniques, including characterization by Auger electron spectroscopy, which is used to verify sample composition and the amount of oxygen uptake over time.

Wilkens, H. L.; Nikroo, A.; Wall, D. R.; Wall, J. R. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

2007-05-15T23:59:59.000Z

298

Developing depleted uranium and gold cocktail hohlraums for the National Ignition Facilitya)  

Science Journals Connector (OSTI)

Fusion ignition experiments are planned to begin at the National Ignition Facility (NIF) [J. A. Paisner E. M. Campbell and W. J. Hogan Fusion Technol.26 755 (1994)] using the indirect drive configuration [J. D. Lindl P. Amendt R. L. Berger S. G. Glendinning S. H. Glenzer S. W. Haan R. L Kauffman O. L. Landen and L. J. Suter Phys. Plasmas11 339 (2004)]. Although the x-ray drive in this configuration is highly symmetric energy is lost in the conversion process due to x-ray penetration into the hohlraum wall. To mitigate this loss depleted uranium is incorporated into the traditional goldhohlraum to increase the efficiency of the laser to x-ray energy conversion by making the wall more opaque to the x rays [H. Nishumura T. Endo H. Shiraga U. Kato and S. Nakai Appl. Phys. Lett.62 1344 (1993)]. Multilayered depleted uranium (DU) and goldhohlraums are deposited by sputtering by alternately rotating a hohlraum mold in front of separate DU and Au sources to build up multilayers to the desired wall thickness. This mold is removed to leave a freestanding hohlraum half; two halves are used to assemble the complete NIF hohlraum to the design specifications. In practice exposed DU oxidizes in air and other chemicals necessary to hohlraum production so research has focused on developing a fabrication process that protects the U from damaging environments. This paper reports on the most current depleted uranium and gold cocktail hohlraum fabrication techniques including characterization by Auger electron spectroscopy which is used to verify sample composition and the amount of oxygen uptake over time.

H. L. Wilkens; A. Nikroo; D. R. Wall; J. R. Wall

2007-01-01T23:59:59.000Z

299

Observation of strong electromagnetic fields around laser-entrance holes of ignition-scale hohlraums in inertial-confinement fusion experiments at the National Ignition Facility  

Science Journals Connector (OSTI)

Energy spectra and spectrally resolved one-dimensional fluence images of self-emitted charged-fusion products (14.7MeV D3He protons) are routinely measured from indirectly driven inertial-confinement fusion (ICF) experiments utilizing ignition-scaled hohlraums at the National Ignition Facility (NIF). A striking and consistent feature of these images is that the fluence of protons leaving the ICF target in the direction of the hohlraum's laser entrance holes (LEHs) is very nonuniform spatially, in contrast to the very uniform fluence of protons leaving through the hohlraum equator. In addition, the measured nonuniformities are unpredictable, and vary greatly from shot to shot. These observations were made separately at the times of shock flash and of compression burn, indicating that the asymmetry persists even at ~0.52.5ns after the laser has turned off. These phenomena have also been observed in experiments on the OMEGA laser facility with energy-scaled hohlraums, suggesting that the underlying physics is similar. Comprehensive data sets provide compelling evidence that the nonuniformities result from proton deflections due to strong spontaneous electromagnetic fields around the hohlraum LEHs. Although it has not yet been possible to uniquely determine whether the fields are magnetic (B) or electric (E), preliminary analysis indicates that the strength is ~1MG if B fields or ~109Vcm?1 if E fields. These measurements provide important physics insight into the ongoing ignition experiments at the NIF. Understanding the generation, evolution, interaction and dissipation of the self-generated fields may help to answer many physics questions, such as why the electron temperatures measured in the LEH region are anomalously large, and may help to validate hydrodynamic models of plasma dynamics prior to plasma stagnation in the center of the hohlraum.

C K Li; A B Zylstra; J A Frenje; F H Sguin; N Sinenian; R D Petrasso; P A Amendt; R Bionta; S Friedrich; G W Collins; E Dewald; T Dppner; S H Glenzer; D G Hicks; O L Landen; J D Kilkenny; A J Mackinnon; N Meezan; J Ralph; J R Rygg; J Kline; G Kyrala

2013-01-01T23:59:59.000Z

300

PNNL Laboratory Research Homes Pacific Northwest National Laboratory's Lab Homes  

E-Print Network (OSTI)

-efficient homes. The homes will be fully instrumented with controllable circuits, dual heating systems,500 square-foot Lab Homes for experiments focused on reducing energy use and peak demand on the electric grid in homes throughout the U.S." ­ Steve Shankle Director PNNL Electricity Infrastructure and Buildings

Note: This page contains sample records for the topic "national lab ignites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

DOE Awards Task Order for Disposal of Los Alamos National Lab Waste |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Awards Task Order for Disposal of Los Alamos National Lab Waste DOE Awards Task Order for Disposal of Los Alamos National Lab Waste DOE Awards Task Order for Disposal of Los Alamos National Lab Waste November 13, 2013 - 12:00pm Addthis Media Contact Bill Taylor, 803-952-8564 bill.taylor@srs.gov Cincinnati - The Department of Energy (DOE) today awarded a task order in support of the Los Alamos National Laboratory Legacy Waste Project to Waste Control Specialists (WCS) of Andrews, Texas under the Environmental Management (EM) Low-Level and Mixed Low-Level Waste Disposal Indefinite Delivery/Indefinite Quantity (ID/IQ) Master Contract. This is a fixed-price task order based on pre-established rates with a $2,225,140 value and has a one-year performance period. The work to be performed under this task order includes the receipt and

302

DOE's Idaho National Lab Issues Request for Proposals for Engineering and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho National Lab Issues Request for Proposals for Idaho National Lab Issues Request for Proposals for Engineering and Design on NGNP DOE's Idaho National Lab Issues Request for Proposals for Engineering and Design on NGNP July 26, 2006 - 4:37pm Addthis Services Will Guide R&D on Next Generation Reactor WASHINGTON, DC. - In an important step forward for the Next Generation Nuclear Plant (NGNP) project, the U.S. Department of Energy's Idaho National Laboratory today issued a Request for Proposals (RFP) for engineering services in support of development of NGNP. This RFP is for pre-conceptual engineering and design services to assist in focusing the technical scope and principles of research and development on the next generation reactor, and to provide a basis for subsequent development of the technical and functional specifications for the prototype facilities.

303

Experimental investigation of bright spots in broadband, gated x-ray images of ignition-scale implosions on the National Ignition Facility  

SciTech Connect

Bright spots in the hot spot intensity profile of gated x-ray images of ignition-scale implosions at the National Ignition Facility [G. H. Miller et al., Opt. Eng. 443, (2004)] are observed. X-ray images of cryogenically layered deuterium-tritium (DT) and tritium-hydrogen-deuterium (THD) ice capsules, and gas filled plastic shell capsules (Symcap) were recorded along the hohlraum symmetry axis. Heterogeneous mixing of ablator material and fuel into the hot spot (i.e., hot-spot mix) by hydrodynamic instabilities causes the bright spots. Hot-spot mix increases the radiative cooling of the hot spot. Fourier analysis of the x-ray images is used to quantify the evolution of bright spots in both x- and k-space. Bright spot images were azimuthally binned to characterize bright spot location relative to known isolated defects on the capsule surface. A strong correlation is observed between bright spot location and the fill tube for both Symcap and cryogenically layered DT and THD ice targets, indicating the fill tube is a significant seed for the ablation front instability causing hot-spot mix. The fill tube is the predominant seed for Symcaps, while other capsule non-uniformities are dominant seeds for the cryogenically layered DT and THD ice targets. A comparison of the bright spot power observed for Si- and Ge-doped ablator targets shows heterogeneous mix in Symcap targets is mostly material from the doped ablator layer.

Barrios, M. A.; Suter, L. J.; Glenn, S.; Benedetti, L. R.; Bradley, D. K.; Collins, G. W.; Hammel, B. A.; Izumi, N.; Ma, T.; Scott, H.; Smalyuk, V. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Regan, S. P.; Epstein, R. [Laboratory for Laser Energetics, University of Rochester 250 East River Road, Rochester, New York 14623-199 (United States)] [Laboratory for Laser Energetics, University of Rochester 250 East River Road, Rochester, New York 14623-199 (United States); Kyrala, G. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2013-07-15T23:59:59.000Z

304

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2011 3, 2011 Geek-Up[6.3.2011]: Inked PV, Diagnostic Tools and Tough Microscopes Solar photovoltaics in ink form? Scientists have also engineered a technique to help doctors identify Alzheimer's in its early stages and discover new therapies for this disease. June 2, 2011 Nathan Baker | Photo Courtesy of PNNL 10 Questions for a Signature Scientist: Nathan Baker Find out how he's working to advance the innovative application of data analytics and algorithms to real-world challenges, ranging from smart grids and bioforensics to nuclear non-proliferation and medical treatments. June 2, 2011 Bitmap indices translate variable values into strings of bits, or ones and zeros. | Photo Courtesy Getty Images. Berkeley Lab Creates Superfast Search Engine Scientists at the Energy Department's Berkeley Lab developed a new approach

305

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 How to See the Supernova Berkeley Lab Just Discovered According to astronomers, this is the closest and brightest supernova of this type detected in the last 30 years and will be closely studied for years to come. In this video, Berkeley Lab's Peter Nugent explains how to find the event with a small telescope or pair of binoculars. August 31, 2011 Dr. Anthony Atti, CEO of Phononic Devices, demonstrates the standard semiconductor bonding equipment used to fabricate Phononic's high performance thermoelectric devices. Phononic Devices is one of the five innovative ARPA-E Awardees that have attracted over $100 million in outside capital investments. | Photo Courtesy of Phononic Devices. A Major Milestone for ARPA-E To create jobs and lead in the global clean energy economy, the Obama

306

The National Ignition Facility: the path to acarbon-free energy future  

Science Journals Connector (OSTI)

...basic science and fusion energy. One of the...achieving laboratory-scale thermonuclear ignition and energy...feasibility of laser fusion as a viable source of...achieving laboratory-scale thermonuclear ignition and energy...feasibility of laser fusion as a viable source of...

2012-01-01T23:59:59.000Z

307

DOE/EIS-0236-S1; National Ignition Facility Draft Supplemental Environmental Impact Statement to the SSM PEIS, October 1999  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Ignition Facility Draft Supplemental Environmental Impact Statement to the SSM PEIS Prepared by U.S. Department of Energy Oakland Operations Office Oakland, California October 1999 [This page intentionally left blank.] iii COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy TITLE: National Ignition Facility Draft Supplemental Environmental Impact Statement to the SSM PEIS CONTACT: For additional information on For general information on the NEPA this statement write or call: process at DOE, write or call: Mr. Richard Scott, Document Manager Ms. Carol M. Borgstrom, Director U.S. Department of Energy, L-293 Office of NEPA Policy and Assistance, EH-42 7000 East Avenue, P.O. Box 808 U.S. Department of Energy Livermore, CA 94550 1000 Independence Avenue, SW

308

Observations and Modeling of Debris and Shrapnel Impacts on Optics and Diagnostics at the National Ignition Facility  

SciTech Connect

A wide range of targets with laser energies spanning two orders of magnitude have been shot at the National Ignition Facility (NIF). The National Ignition Campaign (NIC) targets are cryogenic with Si supports and cooling rings attached to an Al thermo-mechanical package (TMP) with a thin (30 micron) Au hohlraum inside. Particular attention is placed on the low-energy shots where the TMP is not completely vaporized. In addition to NIC targets, a range of other targets has also been fielded on NIF. For all targets, simulations play a critical role in determining if the risks associated with debris and shrapnel are acceptable. In a number of cases, experiments were redesigned, based on simulations, to reduce risks or to obtain data. The majority of these simulations were done using the ALE-AMR code, which provides efficient late-time (100-1000X the pulse duration) 3D calculations of complex NIF targets.

Eder, D; Bailey, D; Chamgers, F; Darnell, I; Nicola, P D; Dixit, S; Fisher, A; Gururangan, G; Kalantar, D; Koniges, A; Liu, W; Marinak, M; Masters, N; Mlaker, V; Prasad, R; Sepke, S; Whitman, P

2011-11-04T23:59:59.000Z

309

Mode 1 drive asymmetry in inertial confinement fusion implosions on the National Ignition Facility  

SciTech Connect

Mode 1 radiation drive asymmetry (pole-to-pole imbalance) at significant levels can have a large impact on inertial confinement fusion implosions at the National Ignition Facility (NIF). This asymmetry distorts the cold confining shell and drives a high-speed jet through the hot spot. The perturbed hot spot shows increased residual kinetic energy and reduced internal energy, and it achieves reduced pressure and neutron yield. The altered implosion physics manifests itself in observable diagnostic signatures, especially the neutron spectrum which can be used to measure the neutron-weighted flow velocity, apparent ion temperature, and neutron downscattering. Numerical simulations of implosions with mode 1 asymmetry show that the resultant simulated diagnostic signatures are moved toward the values observed in many NIF experiments. The diagnostic output can also be used to build a set of integrated implosion performance metrics. The metrics indicate that P{sub 1} has a significant impact on implosion performance and must be carefully controlled in NIF implosions.

Spears, Brian K., E-mail: spears9@llnl.gov; Edwards, M. J.; Hatchett, S.; Kritcher, A.; Lindl, J.; Munro, D.; Patel, P.; Robey, H. F.; Town, R. P. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)] [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Kilkenny, J. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)] [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Knauer, J. [Laboratory for Laser Energetics, 250 E. River Road Rochester, New York 14623-1212 (United States)] [Laboratory for Laser Energetics, 250 E. River Road Rochester, New York 14623-1212 (United States)

2014-04-15T23:59:59.000Z

310

Conceptual design of the gamma-to-electron magnetic spectrometer for the National Ignition Facility  

SciTech Connect

The Gamma-to-Electron Magnetic Spectrometer (GEMS) diagnostic is designed to measure the prompt ?-ray energy spectrum during high yield deuterium-tritium (DT) implosions at the National Ignition Facility (NIF). The prompt ?-ray spectrum will provide burn-averaged observables, including total DT fusion yield, total areal density (?R), ablator ?R, and fuel ?R. These burn-averaged observables are unique because they are essentially averaged over 4?, providing a global reference for the line-of-sight-specific measurements typical of x-ray and neutron diagnostics. The GEMS conceptual design meets the physics-based requirements: ?E/E = 3%5% can be achieved in the range of 225 MeV ?-ray energy. Minimum DT neutron yields required for 15% measurement uncertainty at low-resolution mode are: 5 10{sup 14} DT-n for ablator ?R (at 0.2 g/cm{sup 2}); 2 10{sup 15} DT-n for total DT yield (at 4.2 10{sup ?5} ?/n); and 1 10{sup 16} DT-n for fuel ?R (at 1 g/cm{sup 2})

Kim, Y., E-mail: yhkim@lanl.gov; Herrmann, H. W.; Jorgenson, H. J.; Barlow, D. B.; Young, C. S.; Lopez, F. E.; Oertel, J. A.; Batha, S. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Stoeffl, W.; Casey, D.; Clancy, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hilsabeck, T. [General Atomics, San Diego, California 92186 (United States); Moy, K. [National Security Technologies, Special Technologies Laboratory, Santa Barbara, California 93111 (United States)

2014-11-15T23:59:59.000Z

311

The effects of early time laser drive on hydrodynamic instability growth in National Ignition Facility implosions  

SciTech Connect

Defects on inertial confinement fusion capsule surfaces can seed hydrodynamic instability growth and adversely affect capsule performance. The dynamics of shocks launched during the early period of x-ray driven National Ignition Facility (NIF) implosions determine whether perturbations will grow inward or outward at peak implosion velocity and final compression. In particular, the strength of the first shock, launched at the beginning of the laser pulse, plays an important role in determining Richtmyer-Meshkov (RM) oscillations on the ablation front. These surface oscillations can couple to the capsule interior through subsequent shocks before experiencing Rayleigh-Taylor (RT) growth. We compare radiation hydrodynamic simulations of NIF implosions to analytic theories of the ablative RM and RT instabilities to illustrate how early time laser strength can alter peak velocity growth. We develop a model that couples the RM and RT implosion phases and captures key features of full simulations. We also show how three key parameters can control the modal demarcation between outward and inward growth.

Peterson, J. L.; Clark, D. S.; Suter, L. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Masse, L. P. [CEA, DAM, DIF, 91297 Arpajon (France)

2014-09-15T23:59:59.000Z

312

2011 Status of the Automatic Alignment System for the National Ignition Facility  

SciTech Connect

Automated alignment for the National Ignition Facility (NIF) is accomplished using a large-scale parallel control system that directs 192 laser beams along the 300-m optical path. The beams are then focused down to a 50-micron spot in the middle of the target chamber. The entire process is completed in less than 50 minutes. The alignment system commands 9,000 stepping motors for highly accurate adjustment of mirrors and other optics. 41 control loops per beamline perform parallel processing services running on a LINUX cluster to analyze high-resolution images of the beams and their references. This paper describes the status the NIF automatic alignment system and the challenges encountered as NIF development has transitioned from building the laser, to becoming a research project supporting a 24 hour, 7 day laser facility. NIF is now a continuously operated system where performance monitoring is increasingly more critical for operation, maintenance, and commissioning tasks. Equipment wear and the effects of high energy neutrons from fusion experiments are issues which alter alignment efficiency and accuracy. New sensors needing automatic alignment assistance are common. System modifications to improve efficiency and accuracy are prevalent. Handling these evolving alignment and maintenance needs while minimizing the impact on NIF experiment schedule is expected to be an on-going challenge for the planned 30 year operational life of NIF.

Wilhelmsen, K; Awwal, A; Burkhart, S; McGuigan, D; Kamm, V M; Leach, R; Lowe-Webb, R; Wilson, R

2011-07-19T23:59:59.000Z

313

A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments  

SciTech Connect

A detailed simulation-based model of the June 2011 National Ignition Campaign cryogenic DT experiments is presented. The model is based on integrated hohlraum-capsule simulations that utilize the best available models for the hohlraum wall, ablator, and DT equations of state and opacities. The calculated radiation drive was adjusted by changing the input laser power to match the experimentally measured shock speeds, shock merger times, peak implosion velocity, and bangtime. The crossbeam energy transfer model was tuned to match the measured time-dependent symmetry. Mid-mode mix was included by directly modeling the ablator and ice surface perturbations up to mode 60. Simulated experimental values were extracted from the simulation and compared against the experiment. Although by design the model is able to reproduce the 1D in-flight implosion parameters and low-mode asymmetries, it is not able to accurately predict the measured and inferred stagnation properties and levels of mix. In particular, the measured yields were 15%-40% of the calculated yields, and the inferred stagnation pressure is about 3 times lower than simulated.

Jones, O. S.; Cerjan, C. J.; Marinak, M. M.; Milovich, J. L.; Robey, H. F.; Springer, P. T.; Benedetti, L. R.; Bleuel, D. L.; Bond, E. J.; Bradley, D. K.; Callahan, D. A.; Caggiano, J. A.; Celliers, P. M.; Clark, D. S.; Dixit, S. M.; Doppner, T.; Dylla-Spears, R. J.; Dzentitis, E. G.; Farley, D. R.; Glenn, S. M. [Lawrence Livermore National Laboratory, 7000 East Avenue, L-399, Livermore, California 94551 (United States); and others

2012-05-15T23:59:59.000Z

314

National Lab Helping to Train Operators for Next Generation of Power Plants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Lab Helping to Train Operators for Next Generation of National Lab Helping to Train Operators for Next Generation of Power Plants National Lab Helping to Train Operators for Next Generation of Power Plants January 25, 2013 - 11:10am Addthis AVESTAR provides high-quality, hands-on, simulator-based workforce training delivered by an experienced team of power industry training professionals for West Virginia students. | Photo courtesy of the Office of Fossil Energy. AVESTAR provides high-quality, hands-on, simulator-based workforce training delivered by an experienced team of power industry training professionals for West Virginia students. | Photo courtesy of the Office of Fossil Energy. Gayland Barksdale Technical Writer, Office of Fossil Energy What Does AVESTAR Provide? Advanced dynamic simulation, control and virtual plant technologies

315

Russia Tri-Lab S&T Collaborations | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Russia Tri-Lab S&T Collaborations | National Nuclear Security Russia Tri-Lab S&T Collaborations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Russia Tri-Lab S&T Collaborations Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and

316

The LLNL (Lawrence Livermore National Laboratory) ICF (Inertial Confinement Fusion) Program: Progress toward ignition in the Laboratory  

SciTech Connect

The Inertial Confinement Fusion (ICF) Program at the Lawrence Livermore National Laboratory (LLNL) has made substantial progress in target physics, target diagnostics, and laser science and technology. In each area, progress required the development of experimental techniques and computational modeling. The objectives of the target physics experiments in the Nova laser facility are to address and understand critical physics issues that determine the conditions required to achieve ignition and gain in an ICF capsule. The LLNL experimental program primarily addresses indirect-drive implosions, in which the capsule is driven by x rays produced by the interaction of the laser light with a high-Z plasma. Experiments address both the physics of generating the radiation environment in a laser-driven hohlraum and the physics associated with imploding ICF capsules to ignition and high-gain conditions in the absence of alpha deposition. Recent experiments and modeling have established much of the physics necessary to validate the basic concept of ignition and ICF target gain in the laboratory. The rapid progress made in the past several years, and in particular, recent results showing higher radiation drive temperatures and implosion velocities than previously obtained and assumed for high-gain target designs, has led LLNL to propose an upgrade of the Nova laser to 1.5 to 2 MJ (at 0.35 {mu}m) to demonstrate ignition and energy gains of 10 to 20 -- the Nova Upgrade.

Storm, E.; Batha, S.H.; Bernat, T.P.; Bibeau, C.; Cable, M.D.; Caird, J.A.; Campbell, E.M.; Campbell, J.H.; Coleman, L.W.; Cook, R.C.; Correll, D.L.; Darrow, C.B.; Davis, J.I.; Drake, R.P.; Ehrlich, R.B.; Ellis, R.J.; Glendinning, S.G.; Haan, S.W.; Haendler, B.L.; Hatcher, C.W.; Hatchett, S.P.; Hermes, G.L.; Hunt, J.P.; Kania, D.R.; Kauffman, R.L.; Kilkenny, J.D.; Kornblum, H.N.; Kruer, W.L.; Kyrazis, D.T.; Lane, S.M.; Laumann

1990-10-02T23:59:59.000Z

317

Sandia National Labs: PCNSC: Departments: Surface and Interface Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home About Us Departments Radiation, Nano Materials, & Interface Sciences > Radiation & Solid Interactions > Nanomaterials Sciences > Surface & Interface Sciences Semiconductor & Optical Sciences Energy Sciences Small Science Cluster Business Office News Partnering Research Carlos Gutierrez Carlos Gutierrez Manager Resources Department Folder 01114 Sharepoint Visit Our Labs Grest Group Nanorheology Research (514 KB PDF) Interfacial Force Microscopy Group (701 KB PDF) Research Image Gallery (3,698 KB PDF) Surface Imaging Laboratory Technology - Metals for tomorrow Tina Nenoff Departments Surface and Interface Sciences The Surface and Interface Sciences Department is engaged in a diverse portfolio of leading-edge research projects related to the understanding

318

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2013 30, 2013 Acting Energy Secretary Poneman (far left) stand with a team of young entrepreneurs from Brigham Young University -- the regional winners of the National Clean Energy Business Plan Competition. | Photo by Ilya Pupko, ILAsoft.net. Celebrating The Next Generation of Energy Entrepreneurs Recognizing innovative, bold-thinking student entrepreneurs who are working to advance clean energy technologies. April 29, 2013 National Science Bowl 2013 Congratulations, 2013 National Science Bowl Winners The team from Sacramento's Mira Loma High School won the 2013 National Science Bowl in dramatic fashion -- pulling ahead as the clock expired in the final round. April 26, 2013 Right now, teams of middle and high school students from across the country are prepping for a weekend of academic competition like no other - the National Science Bowl. Run by the Energy Department since 1991, the National Science Bowl features the winners of regional competitions from across the country.

319

national-lab-research-network | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory Research Network Core Storage R&D Storage Infrastructure Strategic Program Support NATCARBAtlas Program Plan Project Portfolio Publications Carbon Storage...

320

Los Alamos National Laboratory, Sandia Labs, other major employers...  

NLE Websites -- All DOE Office Websites (Extended Search)

as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory...

Note: This page contains sample records for the topic "national lab ignites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DOE's Idaho National Lab Issues Request for Proposals for Engineering...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Energy's Idaho National Laboratory today issued a Request for Proposals (RFP) for engineering services in support of development of NGNP. This RFP is for pre-conceptual...

322

National Labs Open Doors to Displaced Japanese Researchers |...  

Energy Savers (EERE)

Oak Ridge National Laboratory. Photo of the Week: The VULCAN Diffractometer Dr Jeremy Smith | Photo Courtesy of ORNL 10 Questions for a Biophysicist: Jeremy Smith Named in honor...

323

Team Led by Argonne National Lab Selected as DOE's Batteries...  

Office of Environmental Management (EM)

combine the R&D firepower of five DOE national laboratories, five universities, and four private firms in an effort aimed at achieving revolutionary advances in battery...

324

National Science Bowl bound! | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

National Science Bowl bound! National Science Bowl bound! April 28, 2013 Congratulations to Princeton High School, of Princeton, NJ for ranking 14th place in the top 16 High School teams at the National Science Bowl from April 26-30, 2012. Gallery: Out of 69 high school teams from all 50 states, Puerto Rico and the U.S. Virgin Islands, the Princeton High School Science Team placed 14th in the top 16 High School teams at the National Science bowl!! Thanks to their efforts Princeton High School will receive $1000 towards the purchase of supplies for their Science Department! Kudos to Thomas Grover Middle School for making it to and for participating at finals... They competed like champs!!! See you next year!! You can learn more about the National Science Bowl here. To learn more about the NJ Regional Science Bowl competition visit our website.

325

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2013 1, 2013 New Energy Systems Integration Facility (ESIF) to Help Modernize the Grid Today, Secretary Moniz is at the opening of an exciting new NREL facility that will house multiple experimental labs and test beds, including an interactive grid testing system. September 10, 2013 Key to the University of North Carolina at Charlotte's fundraising success was involving the local community. To celebrate the groundbreaking of their Solar Decathlon house, the team invited all of their sponsors to the event. | Photo courtesy of the University of North Carolina at Charlotte. Solar Decathlon 2013: Raising More Than Just Walls Part two in our behind-the-scenes look at competing in the Solar Decathlon, we explore how students master the art of fundraising. September 10, 2013

326

Lawrence Berkeley National Lab_Technology_Transfer_Contact_Us  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us Contact Us chemistry, cleantech, bioenergy, environmental remediation, physical biosciences, geothermal energy, scintillating materials batteries, oil exploration, fuel cells, thin film deposition, gamma and neutron generators, materials physics, material science, nanotechnology, photovoltaics, electronic and photonic devices, NMR and MRI, optics, computing sciences biotechnology, life sciences, physical biosciences, genomics, nanotechnology To file a complaint or provide feedback on the work we do, please contact our Ombudsman. For licensing inquiries, please fill out our online Technology Licensing form or send e-mail to TTD@lbl.gov. To receive customized email alerts about Berkeley Lab technologies, please complete our Tech Alerts form. For any General Law matters handled by Patent Attorneys, work is under

327

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 15, 2010 April 15, 2010 Pennsylvania Company Develops Solar Cell Printing Technology The technology uses Plextronics' conductive inks that can be printed by manufacturers worldwide to make solar cells, potentially as easily as they might print a newspaper. April 12, 2010 Universities Across the United States Make Strides in Energy Education A new video on EERE's Energy Empowers website highlights an inspiring energy-saving contest held by a group at the University of Central Florida called UCF Sustainability and Energy Management. April 2, 2010 Arizona Teachers Prepare Students for Green Economy Students led by their building trades teacher , are wiring parts of the Raymond S. Kellis High School in Glendale, Arizona for solar power. March 30, 2010 Biomass Company Sets Up Shop in High School Lab

328

Sandia National Labs: PCNSC: Heavy Ion Backscattering Spectrometry  

NLE Websites -- All DOE Office Websites (Extended Search)

Heavy Ion Backscattering Spectrometry (HIBS) Heavy Ion Backscattering Spectrometry (HIBS) IBA Table (HTML) | IBA Table (135KB GIF) | IBA Table (1.2MB PDF) | IBA Table (33MB TIF) | Heavy Ion Backscattering Spectrometry (HIBS) | Virtual Lab Tour (6MB) Description of Technique: HIBS is used to detect ultra-trace levels of heavy impurities on the surface of a Si wafer. HIBS has advantages over TXRF, including: Improved sensitivity for most elements Quantifying composition without standards Measurement on rough surfaces. HIBS is accomplished by focusing a 120 keV beam of C+ions onto a small spot at the wafer's surface. The backscattered ions are collected by a time-of-flight (TOF) detector array with a large solid angle. The flight time of the backscattered C identifies the near-surface impurities and the

329

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 Lasers, Electron Beams and New Years Resolutions The electron beam that powers Jefferson Lab's Free-Electron Laser pumped out a record power input of 500 kilvolts using an innovative energy-recovery system that amplifies energy with far less power. March 2, 2011 Backstage Footage from the ARPA-E Summit See what Secretary Chu, Governor Schwarzenegger and ARPA-E Director Arun Majumdar had to say to the gathering of talented graduate students during their surprise visit. March 1, 2011 William Mouat explains the PolyPlus battery technology. | Energy Department photo, credit Ken Shipp. ARPA-E Technology Showcase: Project Spotlight We checked in with ten outstanding technologies on display at the 2011 ARPA-E Energy Innovation Summit to find out how the transformational

330

NEWTON, Ask a Scientist at Argonne National Labs  

NLE Websites -- All DOE Office Websites (Extended Search)

Shoes and Energy Shoes and Energy Name: Steven Status: other Grade: other Location: CT Date: Winter 2011-2012 Question: A company named Athletic Propulsion Labs designed a basketball shoe that they claim makes a player jump higher. The shoe has "Load and Launch" technology built into the front sole of the shoe that is some sort of spring mechanism. The way I see it, this mechanism cannot allow a player to jump higher because only an external force can produce motion. The spring mechanism is internal to the body (including the player, shoes, socks uniform) that is launched into the air and an internal force cannot produce motion. Despite this, the shoe has been tested and found to provide additional lift. The shoe has actually been banned by the NBA because it provides an unfair advantage to players who wear them. How could this shoe possibly work?

331

Los Alamos lab director to link science education, national security...  

NLE Websites -- All DOE Office Websites (Extended Search)

education, national security in TEDxABQ talk McMillan will describe the events that led to his career in science and share suggestions on how non-scientists can inspire young...

332

Performance Improvements to the Neutron Imaging System at the National Ignition Facility  

SciTech Connect

A team headed by LANL and including many members from LLNL and NSTec LO and NSTec LAO fielded a neutron imaging system (NIS) at the National Ignition Facility at the start of 2011. The NIS consists of a pinhole array that is located 32.5 cm from the source and that creates an image of the source in a segmented scintillator 28 m from the source. The scintillator is viewed by two gated, optical imaging systems: one that is fiber coupled, and one that is lens coupled. While there are a number of other pieces to the system related to pinhole alignment, collimation, shielding and data acquisition, those pieces are discussed elsewhere and are not relevant here. The system is operational and has successfully obtained data on more that ten imaging shots. This remainder of this whitepaper is divided in five main sections. In Section II, we identify three critical areas of improvement that we believe should be pursued to improve the performance of the system for future experiments: spatial resolution, temporal response and signal-to-noise ratio. In Section III, we discuss technologies that could be used to improve these critical performance areas. In Section IV, we describe a path to evolve the current system to achieve improved performance with minimal impact on the ability of the system to operate on shots. In Section V, we discuss the abilities, scope and timescales of the current teams and the Commissariat energie atomique (CEA). In Section VI, we summarize and make specific recommendations for collaboration on improvements to the NIS.

Fittinghoff, D N; Bower, D E; Drury, O B; Dzenitis, J M; Hatarik, R; Merrill, F E; Grim, G P; Wilde, C H; Wilson, D C; Landoas, O; Caillaud, T; Bourgade, J; Buckles, R A; Lee, J; Weiss, P B

2011-09-26T23:59:59.000Z

333

Design, Assembly, and Testing of the Neutron Imaging Lens for the National Ignition Facility  

SciTech Connect

The National Ignition Facility will begin testing DT fuel capsules yielding greater than 10^13 neutrons during 2010. Neutron imaging is an important diagnostic for understanding capsule behavior. Neutrons are imaged at a scintillator after passing through a pinhole. The pixelated, 160-mm square scintillator is made up of mm diameter rods 50 mm long. Shielding and distance (28 m) are used to preserve the recording diagnostic hardware. Neutron imaging is light starved. We designed a large nine-element collecting lens to relay as much scintillator light as reasonable onto a 75 mm gated microchannel plate (MCP) intensifier. The image from the intensifiers phosphor passes through a fiber taper onto a CCD camera for digital storage. Alignment of the pinhole and tilting of the scintillator is performed before the relay lens and MCP can be aligned. Careful tilting of the scintillator is done so that each neutron only passes through one rod (no crosstalk allowed). The 3.2 ns decay time scintillator emits light in the deep blue, requiring special glass materials. The glass within the lens housing weighs 26 lbs, with the largest element being 7.7 inches in diameter. The distance between the scintillator and the MCP is only 27 inches. The scintillator emits light with 0.56 NA and the lens collects light at 0.15 NA. Thus, the MCP collects only 7% of the available light. Baffling the stray light is a major concern in the design of the optics. Glass cost considerations, tolerancing, and alignment of this lens system will be discussed.

Malone, Robert M; Fatherley, Valerie E; Frogget, Brent C; Grim, Gary P; Kaufman, Morris I; McGillivray, Kevin D; Oertel, John A; Palagi, Martin J; Skarda, William K; Tibbitts, Aric; Wilde, Carl H

2010-09-01T23:59:59.000Z

334

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11, 2012 11, 2012 Breakthrough: MFiX: Building Industry-Scale Machines in a Virtual World This powerful virtual modeling software is making huge strides in energy efficiency in coal gasification processes, and also predicting volcanic eruptions. July 6, 2012 More than 200 Fermilab researchers and staffers crowded into an auditorium at 2 a.m. EDT July 4 and waited for the latest announcement regarding the Higgs boson. When CERN Director-General Rolf-Dieter Heuer said the words - "I think we have it" - the Fermilab crowd erupted into applause. Fermi National Accelerator Laboratory and Brookhaven National Laboratory are the host laboratories for the U.S. contingents of the Large Hadron Collider (LHC) experiments that found the Higgs boson-like particle. They and researchers from Argonne National Laboratory, Lawrence Berkeley National Laboratory and SLAC National Accelerator Laboratory are among the 1,700 scientists, engineers, technicians and graduate students from the United States that helped design, build and operate the LHC accelerator and particle detectors, and analyze the data from the collisions. Read the story: The Last Piece of the Puzzle: Celebrating the Higgs Boson | Photo courtesy of Fermilab

335

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2010 16, 2010 Unlocking Life's Mysteries (One Atom at a Time) The Linac Coherent Light Source (LSCLS) at SLAC National Accelerator Laboratory will allow us to make "molecular movies" and answer many questions surrounding atoms. August 13, 2010 Geek-Up: K East Reactor Demolition, Retrograde Melting and Cloud Pattern Tracking Recovery Act funds help clean up the Hanford site, retrograde melting (melting as something cools) and how open-cell clouds could help predict climate change. August 13, 2010 Pete McGrail, a Laboratory Fellow at Pacific Northwest National Laboratory, is part of a team studying basalts to determine how carbon dioxide can be safely and permanently stored in these massive, deep underground rock formations. | Photo courtesy of Pacific Northwest National Laboratory.

336

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2013 1, 2013 Secretary Moniz: Biofuels Important to America's Energy Future Watch the video of Secretary Moniz speaking about the importance of investing in biofuels to combat the effects of climate change and reduce our dependence on foreign oil. July 30, 2013 As a Laboratory Fellow at the Energy Department's Pacific Northwest National Laboratory, Pete McGrail and his team are working to develop a more efficient adsorption chiller that could help the Navy cut its fuel costs. | Photo courtesy of Pacific Northwest National Laboratory. PNNL Helps the Navy Stay Cool and Conserve Fuel Researchers at Pacific Northwest National Laboratory are developing a more efficient air conditioner that could help the U.S. military cut its fuel use. July 30, 2013 Secretary Moniz Speaks on Future of Fossil Energy

337

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

26, 2013 26, 2013 Secretary of Energy Steven Chu speaks at the 2013 ARPA-E Energy Innovation Summit. | Photo by Sarah Gerrity. Day 1: Innovation at the 2013 ARPA-E Summit The fourth annual ARPA-E Energy Innovation Summit kicked off yesterday -- get the highlights from day 1. February 25, 2013 Supporting STEM Education: A Q&A with the Energy Department's Tech Transfer Coordinator Dr. Karina Edmonds -- a panelist for our upcoming STEM Google+ Hangout -- reflects on her career in STEM. February 25, 2013 Each year, the National Science Bowl brings together thousands of middle and high school students from across the country to compete in a range of science disciplines, including biology, chemistry, earth science, physics, astronomy and math. The members of the winning team, from Roosevelt Middle School of River Forest, Illinois, competed against 14 other teams from across the Midwest in one of the regional competitions in the 23rd Annual U.S. Department of Energy National Science Bowl. This April, the winning teams from each region will compete for a national title in Washington, D.C. View a full gallery of photos from the 2013 Regional Science Bowl at Argonne. | Photo courtesy of Argonne National Laboratory.

338

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 3, 2013 May 3, 2013 Panelists discuss the role of colleges and universities in helping to further clean-energy research and entrepreneurship during a forum at Stanford University. | Photo courtesy of Stanford Energy Club. Energy Wrap-Up: Charging Students To Take the Lead in Energy Innovation Students, academics and entrepreneurs came together at Stanford University to discuss how the next generation can lead the way in creating the next big breakthroughs in sustainable energy. May 2, 2013 After months of training and preparation, regional Science Bowl champions gathered in Washington, D.C. to compete for the national title at the 2013 National Science Bowl. Some of the nation's best and brightest high school and middle school students spent the past few days showing off their science, technology and engineering skills by completing a series of tasks, including the construction of a miniature electric car, using only household items and a lithium-ion battery. In this photo, Yaniel Ramirez from Colegio Catolico Notre Dame in Caguas, Puerto Rico launches his team's electric car down the test track. Learn more about the 2013 National Science Bowl. | Photo by Jack Dempsey, Department of Energy.

339

Fermi National Accelerator Lab: Progress on a Grand Design  

Science Journals Connector (OSTI)

...support for the National Institutes of Health re-search and training programs. Ford...have been obligated. With the "kitty" depleted, there will no longer be a cushion for...and chemically extract the remaining uranium and its by-product plutonium for later...

John Walsh

1974-08-30T23:59:59.000Z

340

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2011 4, 2011 Chemical engineer Alan Zacher 10 Questions for a Chemical Engineer: Alan Zacher Chemical engineer Alan Zacher took some time to share advice for students interested in science and engineering and give us the download on his work developing propylene glycol from renewable sources. March 23, 2011 Compositional X-ray image of the rim and margin of a ~4.6 billion year old calcium aluminum refractory inclusion (CAI)
from the Allende carbonaceous chondrite. | Courtesy of Lawrence Livermore National Laboratory Taking a Look at 4.57 Billion Year Old Space Objects Researchers at the Energy Department's Lawrence Livermore National Laboratory and NASA's Johnson Space Center are investigating objects some 4.57 billion years old in order to better understand how our solar system

Note: This page contains sample records for the topic "national lab ignites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 16, 2012 November 16, 2012 At the SLAC National Accelerator Laboratory, scientists are using the Facility for Advanced Accelerator Experimental Tests, also known as FACET, to research accelerator science and high-energy density physics. SLAC's particle accelerator may be two miles long, but researchers at FACET are working to develop more compact versions that could be widely used in medicine and industry -- particle accelerators are used for cancer research, processing computer chips, and even producing the shrink wrap used to keep your Thanksgiving turkey fresh. In this photo, Stanford graduate student Spencer Gessner assembles a camera that will monitor an X-ray spectrometer designed to measure FACET's beam energy. Learn more about how FACET works. | Photo courtesy of SLAC National Accelerator Laboratory.

342

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2011 8, 2011 The Amonix 7700 CPV Solar Power Generators at the SolarTAC facility in Aurora, Colorado. | Photo credit: Dennis Schroeder, National Renewable Energy Laboratory staff photographer Geek-Up[2.18.2011]: Record-Setting Efficiency Through a partnership with NREL, California-based Amonix developed a concentrated solar power technology the size of an IMAX screen with the highest level of efficiency ever achieved for this type of operating solar system. February 17, 2011 The Virginia winners: coach Sharon Webb, Alexander Yang, Steve Qian, Alec Brenner, Owen Gray, Zeming Lin and Ollie, the Virginia Regional Science Bowl puppy | Photo Courtesy of National Science Bowl More Regional Science Bowl Winners By March 25, 2011, thousands of students will have competed in more than

343

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2011 5, 2011 "Smart Windows" seen at light and dark settings. | Photo Courtesy of SAGE Electrochromics, Inc., by Susan Fleck Photography Making Smart Windows Smarter This new type of glass that could drastically help you control the temperature of your home. "Smart windows" could save 1 quadrillion BTUs of energy each year - more than 1 percent of the nation's annual energy consumption, or more than $10 billion in annual energy costs. April 1, 2011 Two structures of the Mre11-Rad50 complex were solved independently and overlaid, further revealing a flexible hinge in Rad50 near the Mre11 binding site | Courtesy of Lawrence Berkeley National Laboratory Geek-Up[04.01.2011]: A Discovery to Fight Cancer and Other Diseases Learn more about DNA's remarkable "molecular motor" -- a discovery that

344

Nitride III-V Activities at Sandia National Labs  

NLE Websites -- All DOE Office Websites (Extended Search)

Lighting: Lighting: Synergisms with Office of Science Materials Programs Jerry A. Simmons Semiconductor Materials and Device Sciences Sandia National Laboratories March 13, 2001 EMaCC Meeting OUTLINE *Brief overview of prospects & promise of SSL *National Initiative *Grand Challenge LDRD at Sandia *BES-supported activities at Sandia provided core capabilities *Other NS applications of nitride materials science Will only discuss inorganic materials and devices here. Major motivation for SSL is energy savings: lighting is large fraction of energy consumption 1 10 100 1000 1970 1980 1990 2000 2010 2020 Energy Electricity Illumination (assuming 20% of electricity) Projected WORLD Energy Consumption (Quads) Year 400 Quads 130 Quads 25 Quads 1998 1970 1980 1990 2000 2010 2020 Energy Electricity Illumination

345

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 22, 2012 October 22, 2012 Energy Datapalooza: Unleashing the Power of Open Data to Advance our Energy Future Today more than 150 of America's entrepreneurs, software developers, energy experts, and policy makers are coming together for an Energy Datapalooza. October 19, 2012 This acoustic levitator was originally developed to help NASA simulate microgravity conditions, but now, scientists are using this piece of equipment to study pharmaceutical solutions at the molecular level. At Argonne National Laboratory, droplets are suspended in air between two sets of speakers, which generate sound waves at frequencies slightly above the audible range -- about 22 kilohertz. Learn more about how acoustic levitation is performed and how it helps scientists study pharmaceuticals here. | Photo by Dan Harris, Argonne National Laboratory.

346

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

26, 2013 26, 2013 Our Women @ Energy series is one way we're spreading the word about women leaders, including Mayling Wong-Squires (left), a Mechanical Engineer at the Energy Department's Fermi National Accelerator Laboratory. | Photo courtesy of Fermi National Accelerator Laboratory. Why We Fight -- Celebrating Women's Equality Day Honoring Women's Equality Day by renewing our commitment to securing opportunities for women in the energy sector. August 23, 2013 EM Office of External Affairs Acting Communications Director Dave Borak talks with EM intern Valerie Edwards. | Photo courtesy of the Energy Department. Internships Help Future Energy Leaders Gain Hands-On Experience What's it like interning at the Energy Department? We interviewed one

347

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 4, 2011 August 4, 2011 This 10-watt alternative LED bulb (which glows white when turned on) could save the nation about 35 terawatt-hours of electricity or $3.9 billion in one year and avoid 20 million metric tons of carbon emissions if every 60-watt incandescent bulb in the U.S. was replaced with the L Prize winner. | Photo Courtesy of Philips Lighting North America A Winning Light Bulb With the Potential to Save the Nation Billions Thomas Edison would be amazed. The conventional light bulb is getting some serious competition from a 10-watt LED bulb -- the first winner of the Energy Department's L prize. August 4, 2011 Go Local on the New Energy.gov Want to learn how you can save money by saving energy? Check out our new and easy to use Tax Credits, Rebates and Savings feature for saving

348

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15, 2013 15, 2013 Concentrated solar panels are getting a power boost. This summer, Pacific Northwest National Laboratory (PNNL) will be testing a new concentrated solar power system -- one that can help natural gas power plants reduce their fuel usage by up to 20 percent. PNNL has developed a system that uses a thermochemical conversion device to convert natural gas and sunlight into a more energy-rich fuel called syngas. By installing the pictured device in front of a concentrating solar power dish, power plants can burn less fuel. Learn more about concentrated solar energy at PNNL. | Photo courtesy of Pacific Northwest National Laboratory. Photo of the Week: Boosting Solar Technology

349

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2011 9, 2011 Multimedia and Visualization Innovations for Science The Department of Energy's Office of Scientific and Technical Information (OSTI, within the Office of Science, has developed ScienceCinema in partnership with Microsoft. OSTI's mission is to advance science and sustain technological creativity by making R&D findings available and useful to scientists, researchers, students and the public. February 9, 2011 Rising to the Challenge: Innovating toward our Clean Energy Future We will need America's ingenuity to meet the challenge of generating 80% of our electricity from clean sources by 2035 and win the global clean energy race, writes Under Secretary Cathy Zoi. February 8, 2011 BMI corporation, of South Carolina, is using the Jaguar super computer at Oak Ridge National Laboratory to do complex pre-visualization and develop products to increase fuel efficiency for the trucking industry. | Department of Energy Photo | Courtesy of Oak Ridge National Laboratory | Public Domain

350

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29, 2013 29, 2013 Members of the Los Alamos High School team, Los Alamos, New Mexico, concentrates on the answer to a question at the 2012 National Science Bowl in Washington D.C. on April 29, 2012. | Photograph by Dennis Brack, Office of Science Thousands of Students Prepare to Compete in the National Science Bowl Until March 9th, thousands of middle- and high-school students will compete in 120 regional competitions all across the country as well as Puerto Rico and the Virgin Islands. January 25, 2013 In this 1939 photo, Eric and Margaret Lawrence are sitting inside the tank of something called the 60-inch cyclotron -- a machine invented by their father, Ernest Lawrence. The cyclotron is a unique circular particle accelerator, which Lawrence himself referred to as a "proton merry-go-round." In reality, the cyclotron specialized in smashing atoms. Fun facts: this cyclotron contains a magnet that weighs 220 tons, and experiments conducted on this very machine led to the discovery of plutonium and Nobel Prizes for researchers Glenn Seaborg and Melvin Calvin. Ernest Lawrence passed away in 1958 -- just 23 days later, the Regents of the University of California voted to rename two of the university's nuclear research sites: Lawrence Livermore and Lawrence Berkeley Laboratories. | Photo courtesy of Lawrence Berkeley National Laboratory.

351

Development of the CD Symcap platform to study gas-shell mix in implosions at the National Ignition Facility  

SciTech Connect

Surrogate implosions play an important role at the National Ignition Facility (NIF) for isolating aspects of the complex physical processes associated with fully integrated ignition experiments. The newly developed CD Symcap platform has been designed to study gas-shell mix in indirectly driven, pure T{sub 2}-gas filled CH-shell implosions equipped with 4 ?m thick CD layers. This configuration provides a direct nuclear signature of mix as the DT yield (above a characterized D contamination background) is produced by D from the CD layer in the shell, mixing into the T-gas core. The CD layer can be placed at different locations within the CH shell to probe the depth and extent of mix. CD layers placed flush with the gas-shell interface and recessed up to 8??m have shown that most of the mix occurs at the inner-shell surface. In addition, time-gated x-ray images of the hotspot show large brightly radiating objects traversing through the hotspot around bang-time, which are likely chunks of CH/CD plastic. This platform is a powerful new capability at the NIF for understanding mix, one of the key performance issues for ignition experiments.

Casey, D. T.; Smalyuk, V. A.; Tipton, R. E.; Pino, J. E.; Remington, B. A.; Rowley, D. P.; Weber, S. V.; Barrios, M.; Benedetti, L. R.; Bleuel, D. L.; Bond, E. J.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Cerjan, C. J.; Edwards, M. J.; Fittinghoff, D.; Glenn, S.; Haan, S. W.; Hamza, A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

2014-09-15T23:59:59.000Z

352

Using X-Rays to Test CVD Diamond Detectors for Areal Density Measurement at the National Ignition Facility  

SciTech Connect

At the National Ignition Facility (NIF), 192 laser beams will compress a target containing a mixture of deuterium and tritium (DT) that will release fusion neutrons, photons, and other radiation. Diagnostics are being designed to measure this emitted radiation to infer crucial parameters of an ignition shot. Chemical Vapor Deposited (CVD) diamond is one of the ignition diagnostics that will be used as a neutron time-of-flight detector for measuring primary (14.1 MeV) neutron yield, ion temperature, and plasma areal density. This last quantity is the subject of this study and is inferred from the number of downscattered neutrons arriving late in time, divided by the number of primary neutrons. We determine in this study the accuracy with which this detector can measure areal density, when the limiting factor is detector and electronics saturation. We used laser-produced x-rays to reproduce NIF signals in terms of charge carriers density, time between pulses, and amplitude contrast and found that the effect of the large pulse on the small pulse is at most 8.4%, which is less than the NIF accuracy requirement of {+-} 10%.

Dauffy, L S; Koch, J A; Tommasini, R; Izumi, N

2008-05-06T23:59:59.000Z

353

User:GregZiebold/U.S. National Lab cleanup | Open Energy Information  

Open Energy Info (EERE)

National Lab cleanup National Lab cleanup < User:GregZiebold Jump to: navigation, search Energy Initiatives ANL Wind Power Forecasting and Electricity Markets Afghanistan-NREL Mission Afghanistan-NREL Resource Maps and Toolkits Algeria-NREL Energy Activities Argentina-NREL Bi-National Energy Working Group Assessment of Biomass Resources from Marginal Lands in APEC Countries Assisting Mexico in Developing Energy Supply and Demand Projections Berkeley India Joint Leadership on Energy and Environment Brazil-NETL Advanced Fossil Fuels Partnerships Brazil-NREL Biofuels and EERE Cooperation Canada-NREL Energy Activities Caribbean-NREL Cooperation Center for BioEnergy Sustainability Chile-NREL Renewable Energy Center and CSP Activities Chile-NREL Rural Electrification Activities China and India Industrial Efficiency NREL Partnership

354

Sandia National Labs: Physical, Chemical and Nano Sciences Center (PCNSC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home About Us Departments News Partnering Research J. Charles Barbour J. Charles Barbour Director Beverly Eppinga Beverly A. Eppinga Sr. Mgt. Asst. DOI Research Briefs CINT Physical, Chemical, and Nano Sciences Center The Physical, Chemical, and Nano Sciences Center supports Sandia's mission by providing new scientific knowledge.We have two key activities: Support the National Nuclear Security Administration's (NNSA) mission with our unique expertise in science-based solutions Perform long-term research, particularly in the physical, chemical, and nano sciences that will enable future microsystems We focus on five technical thrusts: Science-Based Solutions for NNSA Mission Needs Collective Hierarchical Systems Compound Semiconductor Science and Technology Nanosciences

355

National Lab Helping to Train Operators for Next Generation of Power Plants  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lab Helping to Train Operators for Next Generation of Lab Helping to Train Operators for Next Generation of Power Plants National Lab Helping to Train Operators for Next Generation of Power Plants January 25, 2013 - 11:10am Addthis AVESTAR provides high-quality, hands-on, simulator-based workforce training delivered by an experienced team of power industry training professionals for West Virginia students. | Photo courtesy of the Office of Fossil Energy. AVESTAR provides high-quality, hands-on, simulator-based workforce training delivered by an experienced team of power industry training professionals for West Virginia students. | Photo courtesy of the Office of Fossil Energy. Gayland Barksdale Technical Writer, Office of Fossil Energy What Does AVESTAR Provide? Advanced dynamic simulation, control and virtual plant technologies

356

High-energy x-ray microscopy of laser-fusion plasmas at the National Ignition Facility  

SciTech Connect

Multi-keV x-ray microscopy will be an important laser-produced plasma diagnostic at future megajoule facilities such as the National Ignition Facility (NIF).In preparation for the construction of this facility, we have investigated several instrumentation options in detail, and we conclude that near normal incidence single spherical or toroidal crystals may offer the best general solution for high-energy x-raymicroscopy at NIF and at similar large facilities. Kirkpatrick-Baez microscopes using multi-layer mirrors may also be good secondary options, particularly if apertures are used to increase the band-width limited field of view.

Koch, J.A.; Landen, O.L.; Hammel, B.A. [and others

1997-08-26T23:59:59.000Z

357

The National Ignition Facility Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network (OSTI)

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control roo...

Moses, E I

2001-01-01T23:59:59.000Z

358

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13, 2011 13, 2011 Virginia Tech puts their EcoCar vehicle through the paces at General Motors' Milford Proving Grounds. | Credit Department of Energy Advanced Vehicle Technology Competitions EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground EcoCar vehicles impress during real world testing at General Motors' Milford Proving Grounds. June 13, 2011 White House Rural Council: Creating New Business Opportunities The Council provides a new mechanism to ensure that our work creating new business opportunities and jobs in rural America is well-coordinated between agencies and that no important opportunity is missed. June 10, 2011 Data image on lead telluride thermal conductivity | Photo Courtesy of Oak Ridge National Laboratory Geek-Up[6.10.2011]: Thermoelectrics' Great Power, Key Ingredient in Bone's

359

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22, 2013 22, 2013 History of the Light Bulb The History of the Light Bulb From incandescent bulbs to fluorescents to LEDs, we're exploring the long history of the light bulb. November 21, 2013 This week, the Energy Department's digital team has been focusing on the rivalry between two of history's most important energy-related engineers: Thomas Edison and Nikola Tesla. Edison and Tesla's developments in electric power generation and distribution made possible many later breakthroughs. This 1951 photo shows a simple string of four 100-watt light bulbs powered by the first useful electricity ever produced by nuclear power, generated on December 20, 1951, by Argonne's Experimental Breeder Reactor 1. | Photo courtesy of Argonne National Laboratory.

360

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2012 30, 2012 Argonne scientists Ira Bloom (front) and Javier Bareño prepare a sample of battery materials for Raman spectroscopy, which is used to gather information regarding the nature of the materials present in the sample. | Photo courtesy of Argonne National Laboratory. Building a Better Battery for Vehicles and the Grid The new Batteries and Energy Storage Hub is a coordinated effort designed to push the limits on battery advances. November 27, 2012 How to Turn a Jaguar into a Titan It takes more than the side mural to turn the fastest supercomputer dedicated to Open Science into the fastest computer in the world. November 26, 2012 Learning about Energy Use and Conservation Has Merit EIA sponsored an Energy Merit Badge class as part of the 2012 Energy Action

Note: This page contains sample records for the topic "national lab ignites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2013 30, 2013 Day 7 Construction Solar Decathlon 2013: Let the Building Begin Last week, teams began reassembling their houses on the Solar Decathlon competition site. See photo updates from the first week of construction. September 27, 2013 This aerial photo shows open water and floating ice on ponds, lakes and river channels in the Sagavanirktok River Delta in Alaska's North Slope. PNNL scientists employed satellite technology to understand the impacts of oil development activities on the environment. Using satellite radar to "see" through the ice, scientists detected critical fish overwintering habitats by identifying where ice was grounded and where it was floating. Utilizing this information on critical habitats, fishery managers can suggest locations for energy development activities that increase the sustainability of fishery resources and minimize environmental impacts. Research was funded by the U.S. Department of the Interior. | Photo courtesy of Pacific Northwest National Laboratory.

362

Sandia National Labs: PCNSC: Research: Collective Hierarchical Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Collective Hierarchical Systems: Collective Hierarchical Systems: Developing life-emulating technologies by exploiting the physics of far-from-equilibrium, self-assembling systems What is it? We want to establish the Physical, Chemical and Nano Sciences Center and Sandia National Laboratories as major players in developing the interdisciplinary science of complex, far-from-equilibrium, self-assembling systems. These are systems that self-assemble highly organized states dynamically, across multiple length scales, through the constant flow-through and consumption of energy and material. Such driven systems, in contrast to equilibrated systems, can, in special cases, develop the key capability of representing, maintaining and modifying information. Such systems also typically bridge multiple length scales by developing

363

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2013 3, 2013 The Solar Classroom Lesson Plan Summer activities for parents, teachers and kids to expand their solar energy knowledge. July 2, 2013 Whether producing simple metallic pads for probing exciting new nanoscale systems or structuring more complicated geometries into silicon and other materials, nanofabrication lies at the heart of much of the work at Brookhaven's Center for Functional Nanomaterials (CFN). Inside the nanofabrication facility are three bays filled with state-of-the-art equipment available for use by the CFN staff, the Brookhaven community and all external users. | Photo courtesy of Brookhaven National Laboratory. Exploring the Possibilities of the Smallest Scales Scientists are studying materials of the smallest scale -- at the the level

364

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

17, 2011 17, 2011 Smoke cloud from Endeavour's Final Launge | Photo: NASA, Troy Cryder Experimental Endeavour on a Pillar of Flame: Space Shuttle Rises with Ambitious Technology Aboard In addition to measuring how cosmic rays flow and what they are made of, the AMS will also search for cosmic rays made of a special form of matter known as antimatter. May 17, 2011 Lipid droplets before (left) and after (right) ultrasonic lysis | Photo courtesy of Los Alamos National Laboratory Innovation at Los Alamos Unlocking a New Source of Domestic Oil... From Algae! We now have an excellent idea of just huge the potential is for algae as a biofuel. May 16, 2011 Fuel Cells Shine a Light on the Last Endeavour Space Shuttle Launch NASA's Kennedy Space Center is one of several test sites for a new

365

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2012 30, 2012 Mayor Antonio Villaraigosa and the Founding Partners of Los Angeles Better Buildings Challenge sign commitments to reduce energy use in their buildings. | Photo courtesy of the City of Los Angeles. The City of Los Angeles Has Its Spotlight on Energy Efficiency The second largest city in the U.S. commits to increasing energy efficiency in 30 million square feet of public and private buildings. July 26, 2012 Report: Tech Review Takes Snapshot of Energy Research In the energy industry, infrastructure investments must be relevant for decades. Welcome to the Quadrennial Technology Review. July 26, 2012 The Department awardees are being recognized for their efforts in a variety of fields - from advances in power electronics for the electric grid to innovations in scientific computation to new physics developments. | Photo courtesy of Argonne National Laboratory.

366

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 5, 2013 March 5, 2013 Wrapping Up: Our Conversation on Increasing Diversity in STEM Education and the Workforce A recap of our discussion on increasing diversity in science, technology, engineering and math fields. March 4, 2013 These tiny green crystals, measuring just millionths of a meter, preserve the molecular structure and activity of Photosystem II, which carries out the oxygen-releasing process in photosynthesis. The chlorophyll-containing crystals, which have a boxlike structure, were studied at room temperature using ultrashort X-ray pulses at SLAC's Linac Coherent Light Source X-ray laser. The image was taken with a light microscope. | Photo by Jan Kern, Lawrence Berkeley National Laboratory. Sweet Sunbeams and Creative Catalysts Opening a new window on the way plants generate the oxygen we breathe, SLAC

367

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

25, 2012 25, 2012 A view of one of the aisles of racks that hold Sequoia's 1.6 million cores. Its 16.32 sustained petaflops and 1.6 petabytes of memory make it the world's fastest supercomputer. | Photo courtesy of Lawrence Livermore National Laboratory. Sequoia Ranked as Fastest Supercomputer in the World With 1.6 million cores and 1.6 petabytes of memory, Sequoia takes the title for the fastest supercomputer on the planet. June 22, 2012 This rendering shows a lysozyme structural model against its X-ray diffraction pattern from SLAC's Linac Coherent Light Source (LCLS), a powerful X-ray laser facility. Researchers have achieved high-resolution images of these simple biomolecules using advanced crystallography at LCLS. | Photo by Anton Barty/DESY Cracking Molecular Structures with Bright Lights - and a Few Good Eggs

368

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 29, 2013 October 29, 2013 VIDEO: Bringing This Year's Energy Pumpkins to Life Watch the Energy Department's digital team bring a CFL, solar panels, an atom and a wind turbine to life in spooky, candlelit time-lapse -- and get inspired to carve energy pumpkins of your own. October 28, 2013 VIDEO: Transforming a House into a Home Some of the nation's best and brightest students are proving that owning ultra-efficient, solar-powered houses can be part of the middle class dream. October 25, 2013 This artist's rendering illustrates the full site installation, including a new aerosol observing system (far left) and a precipitation radar (far right, with 20-ft tower). The site is located near the Graciosa Island aiport terminal, hidden by the image inset. | Image courtesy of ARM Climate Research Facility.

369

DARPA's HPCS Program: History, Models, Tools, Languages Jack Dongarra, University of Tennessee and Oak Ridge National Lab  

E-Print Network (OSTI)

of Tennessee and Oak Ridge National Lab Robert Graybill, USC Information Sciences Institute William Harrod, University of California ­ San Diego Jeffery Vetter, Oak Ridge National Laboratory Katherine Yelick, Lawrence Berkeley National Laboratory Sadaf Alam, Oak Ridge National Laboratory Roy Campbell, Army Research

Dongarra, Jack

370

Neutron activation diagnostics at the National Ignition Facility (invited) D. L. Bleuel, C. B. Yeamans, L. A. Bernstein, R. M. Bionta, J. A. Caggiano et al.  

E-Print Network (OSTI)

. H. G. Schneider1 1 Lawrence Livermore National Laboratory, Livermore, California 94550, USA 2 yields are measured at the National Ignition Facility (NIF) by an extensive suite of neutron activation manipulators in the NIF target chamber, 25­50 cm from the source, to measure 2.45 MeV deuterium

371

Measurements of fuel and ablator R in Symmetry-Capsule implosions with the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facilitya)  

E-Print Network (OSTI)

Lawrence Livermore National Laboratory, Livermore, California 94550, USA 3 Laboratory for Laser Energetics Spectrometer (MRS) on the National Ignition Facility (NIF) measures the neutron spectrum in the energy range-filled symmetry-capsule implosions at the NIF. DT-fuel R's of 80­140 mg/cm2 and CH-ablator R's of 400­680 mg/cm2

372

NETL: News Release - DOE Selects Eight National Lab Projects as Research to  

NLE Websites -- All DOE Office Websites (Extended Search)

February 18, 2000 February 18, 2000 DOE Selects Eight National Lab Projects as Research to Capture, Store Greenhouse Gases Expands The U.S. Department of Energy (DOE) will tap the talents of eight of its national laboratories as it expands its research into future ways to capture and store greenhouse gases. MORE INFO Carbon Sequestration Program. In the first of two major project selections the department expects to make this year in its carbon sequestration program, DOE said it will provide $7.7 million to the laboratories over the next three years to study innovations ranging from carbon dioxide filtering membranes to the development of "biofilms" made up of carbon-converting microorganisms. In seven of the eight projects, lab researchers will team with scientists

373

Laser Ignition  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Ignition Laser Ignition A first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable...

374

Hohlraum energetics scaling to 520 TW on the National Ignition Facility  

SciTech Connect

Indirect drive experiments have now been carried out with laser powers and energies up to 520 TW and 1.9 MJ. These experiments show that the energy coupling to the target is nearly constant at 84% 3% over a wide range of laser parameters from 350 to 520 TW and 1.2 to 1.9 MJ. Experiments at 520 TW with depleted uranium hohlraums achieve radiation temperatures of ?330 4 eV, enough to drive capsules 20 ?m thicker than the ignition point design to velocities near the ignition goal of 370 km/s. A series of three symcap implosion experiments with nearly identical target, laser, and diagnostics configurations show the symmetry and drive are reproducible at the level of 8.5% absolute and 2% relative, respectively.

Kline, J. L.; Grim, G.; Kyrala, G. A.; Batha, S. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Callahan, D. A.; Glenzer, S. H.; Meezan, N. B.; Moody, J. D.; Hinkel, D. E.; Jones, O. S.; MacKinnon, A. J.; Bennedetti, R.; Berger, R. L.; Bradley, D.; Dewald, E. L.; Bass, I.; Bennett, C.; Bowers, M.; Brunton, G.; Bude, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

2013-05-15T23:59:59.000Z

375

Polar-drive implosions on OMEGA and the National Ignition Facility  

SciTech Connect

Polar-drive (PD) experiments on the OMEGA [Boehly et al., Opt. Commun. 133, 495 (1997)] laser are described. Continuous pulse shapes, where a low-power foot is followed by a rise to the main pulse, and triple-picket pulse shapes, where three pickets precede the main pulse, are used to irradiate warm plastic shell capsules. Both of these pulse shapes set the target on a low, ignition-relevant adiabat of ?3.5. The areal density is modeled very well in these implosions indicating that shock timing is well modeled in PD geometry. It is shown that the symmetry can be predictably varied by changing the beam pointings. Symmetry is also well reproduced across the two pulse shapes. Limitations of OMEGA experiments are discussed. Preliminary designs for PD implosion experiments on the NIF, with the goal of addressing ignition-relevant issues for PD, including symmetry are presented.

Radha, P. B.; Marshall, F. J.; Marozas, J. A.; Shvydky, A.; Gabalski, I.; Boehly, T. R.; Collins, T. J. B.; Craxton, R. S.; Edgell, D. H.; Epstein, R.; Froula, D. H.; Goncharov, V. N.; Hohenberger, M.; McKenty, P. W.; Sangster, T. C.; Skupsky, S. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Frenje, J. A.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); McCrory, R. L.; Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States) [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Department of Mechanical Engineering and Department of Physics, University of Rochester, Rochester, New York 14623 (United States)

2013-05-15T23:59:59.000Z

376

Implementation of DOE NPH Requirements at the Thomas Jefferson National Accelerator Facility (TJNAF), a Non-Nuclear DOE Lab  

Energy.gov (U.S. Department of Energy (DOE))

Implementation of DOE NPH Requirements at the Thomas Jefferson National Accelerator Facility (TJNAF), a Non-Nuclear DOE Lab David Luke, DOE, Thomas Jefferson Site Office Stephen McDuffie, DOE, Office of the Chief of Nuclear Safety

377

DOE EiR at Oakridge National Lab 2008/09  

SciTech Connect

This project placed an experienced technology entrepreneur at Oak Ridge National Lab, one of DOEâ??s premier laboratories undertaking cutting edge research in a variety of fields, including energy technologies. With the goal of accelerating the commercialization of advanced energy technologies, the task was to review available technologies at the lab and identify those that qualify for licensing and commercialization by a private startup company, backed by private venture capital. During the project, more than 1,500 inventions filed at the lab were reviewed over a 1 year period; a successively smaller number was selected for more detailed review, ultimately resulting in five, and then 1 technology, being reviewed for immediate commercialization. The chosen technology, consisting in computational chemistry based approached to optimization of enzymes, was tested in lab experiments, paid for by funds raised by ORNL for the purpose of proving out the effectiveness of the technology and readiness for commercialization. The experiments proved out that the technology worked however itâ??s performance proved not yet mature enough to qualify for private venture capital funded commercialization in a high tech startup. As a consequence, the project did not result in a new startup company being formed, as originally intended.

Bauer, Michael

2012-11-30T23:59:59.000Z

378

2010 National Instruments. All rights reserved. Visit ni.com/legal. For patents see ni.com/patents. National Instruments LabVIEW Boot Camp at  

E-Print Network (OSTI)

.com/patents. National Instruments LabVIEW Boot Camp at Arizona State University June 16 - 19, 2014 8:00 AM - 5:00 PM Each day Memorial Union - Cochise & Union Stage Register today to attend our upcoming NI LabVIEW Boot

Reisslein, Martin

379

Los Alamos, Sandia National labs recognize New Mexico small businesses for  

NLE Websites -- All DOE Office Websites (Extended Search)

12th annual innovation celebration 12th annual innovation celebration Los Alamos, Sandia National labs recognize New Mexico small businesses for innovation The program was created in 2000 to bring national laboratory technology and expertise to small businesses in New Mexico and promote economic development with an emphasis on rural areas. April 3, 2013 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

380

Comparison of the Recently proposed Super Marx Generator Approach to Thermonuclear Ignition with the DT Laser Fusion-Fission Hybrid Concept by the Lawrence Livermore National Laboratory  

E-Print Network (OSTI)

The recently proposed Super Marx generator pure deuterium micro-detonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser DT fusion-fission hybrid concept (LiFE) [1]. In a Super Marx generator a large number of ordinary Marx generators charge up a much larger second stage ultra-high voltage Marx generator, from which for the ignition of a pure deuterium micro-explosion an intense GeV ion beam can be extracted. A typical example of the LiFE concept is a fusion gain of 30, and a fission gain of 10, making up for a total gain of 300, with about 10 times more energy released into fission as compared to fusion. This means a substantial release of fission products, as in fusion-less pure fission reactors. In the Super Marx approach for the ignition of a pure deuterium micro-detonation a gain of the same magnitude can in theory be reached [2]. If feasible, the Super Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of ther...

Winterberg, Friedwardt

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "national lab ignites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

UNITED STATES DEPARTMENT OF ENERGY (DOE) THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY (JEFFERSON LAB)  

NLE Websites -- All DOE Office Websites (Extended Search)

- 2014 JSAT Application Package - 2014 JSAT Application Package Page 1 of 6 UNITED STATES DEPARTMENT OF ENERGY (DOE) THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY (JEFFERSON LAB) JLAB SCIENCE ACTIVITIES FOR TEACHERS (JSAT) ATTENTION ALL 5 th , 6 th AND 8 th GRADE MIDDLE SCHOOL SCIENCE TEACHERS! THIS PROGRAM IS FOR YOU! What is it? JSAT is an after school program for 5 th , 6 th and 8 th grade science teachers designed to build teachers' skills in the physical sciences, funded by the Jefferson Science Associates Initiatives Fund. What will I do? The 2013-2014 program will include interactive activities to enhance physical science instruction at the middle school level and lectures by Jefferson Lab staff on the applications of science. And, yes, teachers WILL receive class sets of some activities!

382

A neutron spectrometer for precise measurements of DT neutrons from 10 to 18 MeV at OMEGA and the National Ignition Facility  

E-Print Network (OSTI)

and the National Ignition Facility J. A. Frenje, K. M. Green, D. G. Hicks, C. K. Li, F. H. Se´guin, and R. D to determine fuel R is to measure the energy spectrum and yield of elastically scattered primary neutrons, a novel spectrometer for measurements of neutrons in the energy range 10­18 MeV is proposed. From

383

High-resolution spectroscopy for Doppler-broadening ion temperature measurements of implosions at the National Ignition Facility  

SciTech Connect

Future implosion experiments at the national ignition facility (NIF) will endeavor to simultaneously measure electron and ion temperatures with temporal and spatial resolution in order to explore non-equilibrium temperature distributions and their relaxation toward equilibrium. In anticipation of these experiments, and with understanding of the constraints of the NIF facility environment, we have explored the use of Doppler broadening of mid-Z dopant emission lines, such as krypton He-{alpha} at 13 keV, as a diagnostic of time- and potentially space-resolved ion temperature. We have investigated a number of options analytically and with numerical raytracing, and we have identified several promising candidate spectrometer designs that meet the expected requirements of spectral and temporal resolution and data signal-to-noise ratio for gas-filled exploding pusher implosions, while providing maximum flexibility for use on a variety of experiments that potentially include burning plasma.

Koch, J. A.; Stewart, R. E.; Beiersdorfer, P.; Shepherd, R.; Schneider, M. B.; Miles, A. R.; Scott, H. A.; Smalyuk, V. A.; Hsing, W. W. [Lawrence Livermore National Laboratory, P.O. Box 808, L-493, Livermore, California 94550 (United States)

2012-10-15T23:59:59.000Z

384

Los Alamos National Laboratory employees, Lab contractor pledge record $2.5  

NLE Websites -- All DOE Office Websites (Extended Search)

United Way pledge record United Way pledge record Los Alamos National Laboratory employees, Lab contractor pledge record $2.5 million to local United Way organizations, other nonprofits The Laboratory employee contributions will fund a number of United Way agencies and programs as well as other eligible nonprofit organizations. November 18, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

385

Los Alamos National Laboratory employees, Lab contractor pledge record $2.3  

NLE Websites -- All DOE Office Websites (Extended Search)

Local United Way organizations Local United Way organizations Los Alamos National Laboratory employees, Lab contractor pledge record $2.3 million to local United Way organizations, other nonprofits The Laboratory employee contributions will fund a number of United Way agencies and programs as well as other eligible nonprofit organizations. December 1, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

386

High aspect ratio hard x-ray (> 100 keV) imager to measure hot electron preheat for indirectly driven capsule implosions on the National Ignition Facility  

SciTech Connect

We have fielded a multi-pinhole, hard x-ray (> 100 keV) imager to measure the spatially-resolved bremsstrahlung emission from energetic electrons slowing in a plastic ablator shell during indirectly driven implosions at the National Ignition Facility. These electrons are generated in laser plasma interactions, and are a source of preheat to the deuterium-tritium fuel that could limit the compressibility required for ignition and burn. Our hard x-ray imaging measurements allow to set an upper limit to the DT fuel preheat, which we find is acceptable in current capsule implosions on the NIF.

Doppner, T; Dewald, E; Divol, L; Burns, S; Izumi, N; Kline, J; LaCaille, G; McNaney, J; Prasad, R; Thomas, C A; Glenzer, S H; Landen, O; Author, A; Author, S G; Author, T

2012-05-01T23:59:59.000Z

387

SBOT WEST VIRGINIA NATIONAL ENERGY TECHNOLOGY LAB -WV POC Larry Sullivan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WEST VIRGINIA WEST VIRGINIA NATIONAL ENERGY TECHNOLOGY LAB -WV POC Larry Sullivan Telephone (412) 386-6115 Email larry.sullivan@netl.doe.gov ADMINISTATIVE / WASTE / REMEDIATION Facilities Support Services 561210 Employment Placement Agencies 561311 Temporary Help Services 561320 Professional Employer Organizations 561330 Document Preparation Services 561410 Security Guards and Patrol Services 561612 Security Systems Services (except Locksmiths) 561621 Janitorial Services 561720 Landscaping Services 561730 Hazardous Waste Treatment and Disposal 562211 Remediation Services 562910 Materials Recovery Facilities 562920 All Other Miscellaneous Waste Management Services 562998 CONSTRUCTION Industrial Building Construction 236210 Commercial and Institutional Building Construction 236220 Power and Communication Line and Related Structures Construction

388

The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network (OSTI)

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control room presents facility-wide status and orchestrates experiments using operating parameters predicted by physics models. A network of several hundred front-end processors (FEPs) implements device control. The object-oriented software system is implemented in the Ada and Java languages and emphasizes CORBA distribution of reusable software objects. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008.

E. I. Moses

2001-11-09T23:59:59.000Z

389

Lab celebrates Earth Day  

NLE Websites -- All DOE Office Websites (Extended Search)

Lab celebrates Earth Day Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: Dec. 2014 - Jan. 2015 All Issues submit Lab...

390

Transportation and Electricity Convergence Session 2: National Lab Perspective (Sub-metering Hardware and Protocols)  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation and Electricity Convergence Session 2: National Lab Perspective (Sub-metering Hardware and Protocols) 1912 2012 Theodore Bohn Argonne National Laboratory 4 th Annual Workshop Evs- Transportation and Electricity Convergence Houston, TX Nov 2, 2011 ANL Perspective: Standards are the common thread that enables interoperability of new technologies Detroit was the first American city to use electric taxi cabs, in 1914. Are Indoor/Outdoor Charge Ports New? Detroit's first electric taxi accumulated >46,000 miles first two years. 2 Outdoor Curb-Side Charging Port Indoor charging stations 3 Charging Levels/ Recharge Times (it depends)  AC Level 1 - 120 v/20A outlet (~1600W) - In most garages - Outlet capacity? - Dedicated outlet usually required

391

Laser ignition  

Science Journals Connector (OSTI)

Due to their thermodynamic benefits, second-generation spark-ignition engines with gasoline direct injection systems have ... combination of a spray-guided combustion process with laser-induced ignition allows th...

Bernhard Geringer; Dominikus Klawatsch; Josef Graf; Hans Peter Lenz

2004-03-01T23:59:59.000Z

392

National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement  

SciTech Connect

This Supplemental Environmental Impact Statement (SEIS) was prepared pursuant to a Joint Stipulation and Order approved and entered as an order of the court on October 27, 1997, in partial settlement of the lawsuit Civ. No. 97-936 (SS) (D.D.C.), ''Natural Resources Defense Council [NRDC] et al. v. Richardson et al.'' The Joint Stipulation and Order is reproduced at the end of this document as Attachment 1. In the Joint Stipulation and Order, the U.S. Department of Energy (DOE) agreed to prepare an SEIS to the Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (SSM PEIS) (DOE/EIS-0236, DOE 1996a) to evaluate the reasonably foreseeable significant adverse environmental impacts of continuing to construct and of operating the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in Livermore, California, with respect to any potential or confirmed contamination in the area by hazardous, toxic, and/or radioactive materials. On September 25, 1998, DOE announced in the ''Federal Register'' the agency's intent to prepare this SEIS for the NIF portion (Volume III, Appendix I) of the SSM PEIS. DOE's need for preparation of this SEIS, consistent with the previously established need for NIF (DOE 1996a, Appendix I), is to determine how the results of characterization studies completed pursuant to the Joint Stipulation and Order should affect the manner in which DOE proceeds with the construction and operation of NIF. On August 5, 1999, DOE issued an amended Notice of Intent to prepare this SEIS, which incorporated changes in schedule resulting from new relevant information. The SSM PEIS addressed alternative plans for DOE's defense program activities related to nuclear weapons stockpile issues at several DOE laboratories, including LLNL. The environmental consequences of construction and operation of NIF were addressed in detail in SSM PEIS Volume III, Appendix I, entitled ''National Ignition Facility Project Specific Analysis'' (NIF PSA). The Record of Decision (ROD) for the SSM PEIS was published in the ''Federal Register'' on December 26, 1996 (61 FR 68014). In the ROD, DOE announced its decision to construct and operate NIF at LLNL. The NIF is an experimental facility that would use laser light to initiate a fusion reaction in very small quantities of hydrogen by a process known as inertial confinement fusion. The start of physical construction of NIF was authorized on March 7, 1997, and groundbreaking for the NIF occurred on May 29, 1997. Construction of the NIF is ongoing; the conventional facilities are over 94% complete and are expected to be completed in late 2001.

N /A

2001-02-23T23:59:59.000Z

393

VOLUME 77, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 23 SEPTEMBER 1996 Measuring Implosion Symmetry and Core Conditions in the National Ignition Facility  

E-Print Network (OSTI)

Implosion Symmetry and Core Conditions in the National Ignition Facility R. D. Petrasso and C. K. Li Plasma, California 94550 S. Cremer, J. P. Knauer, C. P. Verdon, and R. L. Kremens Laboratory for Laser Energetics energies from 27 to 30.8 MeV result from the implosion of ignition- scale inertial confinement fusion

394

Target Diagnostic Instrument-Based Controls Framework for the National Ignition Facility (NIF)  

SciTech Connect

The extreme physics of targets shocked by NIF's 192-beam laser are observed by a diverse suite of diagnostics including optical backscatter, time-integrated and gated X-ray sensors, and laser velocity interferometry. Diagnostics to diagnose fusion ignition implosion and neutron emissions are being planned. Many diagnostics will be developed by collaborators at other sites, but ad hoc controls could lead to unreliable and costly operations. An instrument-based controls (I-BC) framework for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the I-BC architecture each instrument is interfaced to a low-cost Windows XP processor and Java application. Each instrument is aggregated with others as needed in the supervisory system to form an integrated diagnostic. The Java framework provides data management, control services and operator GUI generation. I-BCs are reusable by replication and reconfiguration for specific diagnostics in XML. Advantages include minimal application code, easy testing, and better reliability. Collaborators save costs by assembling diagnostics with existing I-BCs. This paper discusses target diagnostic instrumentation used on NIF and presents the I-BC architecture and framework.

Shelton, R T; O'Brien, D W; Kamperschroer, J H; Nelson, J R

2007-10-03T23:59:59.000Z

395

Fusion Energy Research at The National Ignition Facility: The Pursuit of the Ultimate Clean, Inexhaustible  

E-Print Network (OSTI)

at the" Lawrence Radiation Laboratory" In Livermore, California..." " #12;Presentation to MIT 13NIF-0709, Inexhaustible Energy Source" John D. Moody, Lawrence Livermore National Laboratory" " Presented to: MIT ­ PSFC by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 #12;A few memories of MIT physics

396

An in-flight radiography platform to measure hydrodynamic instability growth in inertial confinement fusion capsules at the National Ignition Facility  

SciTech Connect

A new in-flight radiography platform has been established at the National Ignition Facility (NIF) to measure RayleighTaylor and RichtmyerMeshkov instability growth in inertial confinement fusion capsules. The platform has been tested up to a convergence ratio of 4. An experimental campaign is underway to measure the growth of pre-imposed sinusoidal modulations of the capsule surface, as a function of wavelength, for a pair of ignition-relevant laser drives: a low-foot drive representative of what was fielded during the National Ignition Campaign (NIC) [Edwards et al., Phys. Plasmas 20, 070501 (2013)] and the new high-foot [Dittrich et al., Phys. Rev. Lett. 112, 055002 (2014); Park et al., Phys. Rev. Lett. 112, 055001 (2014)] pulse shape, for which the predicted instability growth is much lower. We present measurements of Legendre modes 30, 60, and 90 for the NIC-type, low-foot, drive, and modes 60 and 90 for the high-foot drive. The measured growth is consistent with model predictions, including much less growth for the high-foot drive, demonstrating the instability mitigation aspect of this new pulse shape. We present the design of the platform in detail and discuss the implications of the data it generates for the on-going ignition effort at NIF.

Raman, K. S.; Smalyuk, V. A.; Casey, D. T.; Haan, S. W.; Hurricane, O. A.; Kroll, J. J.; Peterson, J. L.; Remington, B. A.; Robey, H. F.; Clark, D. S.; Hammel, B. A.; Landen, O. L.; Marinak, M. M.; Munro, D. H.; Salmonson, J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hoover, D. E.; Nikroo, A. [General Atomics, San Diego, California 92121 (United States); Peterson, K. J. [Sandia National Laboratory, Albuquerque, New Mexico 87125 (United States)

2014-07-15T23:59:59.000Z

397

Laser Ignition  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Ignition Laser Ignition Laser Ignition A first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Available for thumbnail of Feynman Center (505) 665-9090 Email Laser Ignition A first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In two embodiments the beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion

398

The Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

The Lab The Lab The Lab Photo Gallery Images of the Lab's world-class facilities and buildings. Click thumbnails to enlarge. Photos arranged by most recent first, horizontal formats before vertical. See Flickr for more sizes and details. LANL buildings at Technical Area 3 LANL buildings at Technical Area 3 Technical Area 3 early morning Technical Area 3 early morning Aerial View of Neutron Science Center Aerial View of Neutron Science Center Aerial View of TA-15 - 1 Aerial View of TA-15 - 1 Aerial View of Los Alamos National Laboratory Aerial View of Los Alamos National Laboratory Aerial View of Los Alamos National Laboratory - 1 Aerial View of Los Alamos National Laboratory - 1 Aerial View of Los Alamos National Laboratory - 3 Aerial View of Los Alamos National Laboratory - 3

399

Pathway from the National Ignition Facility to an operational LIFE power plant  

E-Print Network (OSTI)

Lawrence Livermore National Laboratory #12;#12;Or, less than a gram of fuel per person per year next step, after NIF, is construction of a full-scale power plant NIF-1111-23807.ppt 4 #12 delivery #12;7NIF-1111-23807.ppt #12;Principle of LIFE plant operation Heat transfer DT fuel cycle

400

Simulating x-ray Thomson scattering signals from high-density, millimetre-scale plasmas at the National Ignition Facility  

SciTech Connect

We have developed a model for analysing x-ray Thomson scattering data from high-density, millimetre-scale inhomogeneous plasmas created during ultra-high pressure implosions at the National Ignition Facility in a spherically convergent geometry. The density weighting of the scattered signal and attenuation of the incident and scattered x-rays throughout the target are included using radial profiles of the density, opacity, ionization state, and temperature provided by radiation-hydrodynamics simulations. These simulations show that the scattered signal is strongly weighted toward the bulk of the shocked plasma and the Fermi degenerate material near the ablation front. We show that the scattered signal provides a good representation of the temperature of this highly nonuniform bulk plasma and can be determined to an accuracy of ca. 15% using typical data analysis techniques with simple 0D calculations. On the other hand, the mean ionization of the carbon in the bulk is underestimated. We suggest that this discrepancy is due to the convolution of scattering profiles from different regions of the target. Subsequently, we discuss modifications to the current platform to minimise the impact of inhomogeneities, as well as opacity, and also to enable probing of conditions more strongly weighted toward the compressed core.

Chapman, D. A., E-mail: david.chapman@awe.co.uk [Plasma Physics Group, Radiation Physics Department, AWE plc, Reading RG7 4PR (United Kingdom); Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Kraus, D.; Falcone, R. W. [Department of Physics, University of California, Berkeley, California 94720 (United States); Kritcher, A. L.; Bachmann, B.; Collins, G. W.; Gaffney, J. A.; Hawreliak, J. A.; Landen, O. L.; Le Pape, S.; Ma, T.; Nilsen, J.; Pak, A.; Swift, D. C.; Dppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Gericke, D. O. [Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94309 (United States); Guymer, T. M. [Plasma Physics Group, Radiation Physics Department, AWE plc, Reading RG7 4PR (United Kingdom); Neumayer, P. [Gesellschaft fr Schwerionenforschung, 64291 Darmstadt (Germany); Redmer, R. [Institut fr Physik, Universitt Rostock, 18051 Rostock (Germany); and others

2014-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "national lab ignites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The Radiochemical Analysis of Gaseous Samples (RAGS) apparatus for nuclear diagnostics at the National Ignition Facility (invited)  

SciTech Connect

The Radiochemical Analysis of Gaseous Samples (RAGS) diagnostic apparatus was recently installed at the National Ignition Facility (NIF). Following a NIF shot, RAGS is used to pump the gas load from the NIF chamber for purification and isolation of the noble gases. After collection, the activated gaseous species are counted via gamma spectroscopy for measurement of the capsule areal density and fuel-ablator mix. Collection efficiency was determined by injecting a known amount of {sup 135}Xe into the NIF chamber, which was then collected with RAGS. Commissioning was performed with an exploding pusher capsule filled with isotopically enriched {sup 124}Xe and {sup 126}Xe added to the DT gas fill. Activated xenon species were recovered post-shot and counted via gamma spectroscopy. Results from the collection and commissioning tests are presented. The performance of RAGS allows us to establish a noble gas collection method for measurement of noble gas species produced via neutron and charged particle reactions in a NIF capsule.

Shaughnessy, D. A.; Velsko, C. A.; Jedlovec, D. R.; Yeamans, C. B.; Moody, K. J.; Tereshatov, E.; Stoeffl, W.; Riddle, A. [Lawrence Livermore National Laboratory, PO Box 808, L-236, Livermore, California 94551 (United States)

2012-10-15T23:59:59.000Z

402

Thermal Issues Associated with the Lighting Systems, Electronics Racks, and Pre-Amplifier Modules in the National Ignition System  

SciTech Connect

This report summarizes an investigation of the thermal issues related to the National Ignition Facility. The influence of heat sources such as lighting fixtures, electronics racks, and pre-amplifier modules (PAMs) on the operational performance of the laser guide beam tubes and optical alignment hardware in the NE laser bays were investigated with experiments and numerical models. In particular, empirical heat transfer data was used to establish representative and meaningful boundary conditions and also serve as bench marks for computational fluid dynamics (CFD) models. Numerical models, constructed with a commercial CFD code, were developed to investigate the extent of thermal plumes and radiation heat transfer from the heat sources. From these studies, several design modifications were recommended including reducing the size of all fluorescent lights in the NIF laser bays to single 32 W bulb fixtures, maintaining minimum separation distances between light fixtures/electronics racks and beam transport hardware, adding motion sensors in areas of the laser bay to control light fixture operation during maintenance procedures, properly cooling all electronics racks with air-water heat exchangers with heat losses greater than 25 W/rack to the M1 laser bay, ensuring that the electronics racks are not overcooked and thus maintain their surface temperatures to within a few degrees centigrade of the mean air temperature, and insulating the electronic bays and optical support structures on the PAMs.

A. C. Owen; J. D. Bernardin; K. L. Lam

1998-08-01T23:59:59.000Z

403

Development of a polar direct-drive platform for studying inertial confinement fusion implosion mix on the National Ignition Facility  

SciTech Connect

Experiments were performed to develop a platform for the simultaneous measurement of mix and its effects on fusion burn. Two polar direct drive implosions of all-plastic capsules were conducted for the first time on the National Ignition Facility (NIF). To measure implosion trajectory and symmetry, area image backlighting of these capsules was also employed for the first time on NIF, an advance over previous 1-D slit imaging experiments, providing detailed symmetry data of the capsules as they imploded. The implosion trajectory and low-mode asymmetry seen in the resultant radiographs agreed with pre-shot predictions even though the 700 kJ drive energy produced laser beam intensities exceeding laser-plasma instability thresholds. Post-shot simulations indicate that the capsule yield was reduced by a factor of two compared to pre-shot predictions owing to as-shot laser drive asymmetries. The pre-shot predictions of bang time agreed within 200 ps with the experimental results. The second shot incorporated a narrow groove encircling the equator of the capsule. A predicted yield reduction factor of three was not observed.

Schmitt, Mark J.; Bradley, Paul A.; Cobble, James A.; Fincke, James R.; Hakel, Peter; Hsu, Scott C.; Krasheninnikova, Natalia S.; Kyrala, George A.; Magelssen, Glenn R.; Montgomery, David S.; Murphy, Thomas J.; Obrey, Kimberly A.; Shah, Rahul C.; Tregillis, Ian L.; Baumgaertel, Jessica A.; Wysocki, Frederick J.; Batha, Steven H. [Los Alamos National Laboratory, MS F699, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, MS F699, Los Alamos, New Mexico 87545 (United States); Stephen Craxton, R.; McKenty, Patrick W. [Laboratory for Laser Energetics, University of Rochester, 250 E. River Road, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, 250 E. River Road, Rochester, New York 14623 (United States); Fitzsimmons, Paul [General Atomics, 3550 General Atomics Court, San Diego, California 92121 (United States)] [General Atomics, 3550 General Atomics Court, San Diego, California 92121 (United States); and others

2013-05-15T23:59:59.000Z

404

Ignition system  

SciTech Connect

This patent describes an ignition system of an internal combustion engine which consists of: a permanent magnet supported by a rotary member of the engine adapted to rotate in synchronism with a rotary shaft of the engine; a generating coil for generating an electromotive force to produce an electric current as the permanent magnet acts on the generating coil during the rotation of the rotary member; an ignition capacitor charged by the electric current generated by the generating coil; a thyristor caused to turn on by a counter electromotive force generated by the generating coil to thereby cause the ignition capacitor to begin to discharge; and an ignition coil generating a high voltage as the ignition capacitor begins to discharge, to cause a spark discharge to take place in an ignition plug of the internal combustion engine.

Kondo, T.; Ohno, S.

1986-09-16T23:59:59.000Z

405

Argonne National Laboratory Partners with Advanced Magnet Lab to Develop First Fully Superconducting Direct-Drive Generator  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy (DOE) Argonne National Laboratory (ANL) is partnering with Advanced Magnet Lab, in Palm Bay, Florida, on one of six projects recently awarded by DOE to help develop next generation wind turbines and accelerate the deployment of advanced turbines for offshore wind energy in the United States.

406

An initial assessment of three-dimensional polar direct drive capsule asymmetries for implosions at the National Ignition Facility  

SciTech Connect

The National Ignition Facility (NIF) provides a unique opportunity to study implosion physics with nuclear yield. The use of polar direct drive (PDD) [A. M. Cok, R. S. Craxton, and P. W. McKenty, Phys. Plasmas 15, 082705 (2008)] provides a simple platform for the experimental studies without expensive optics upgrades to NIF. To determine the optimum PDD laser pointing geometry on NIF and provide a baseline for validating inertial confinement fusion codes against experiments for symmetric and asymmetric implosions, computer simulations using the 3D radiation-hydrodynamics code hydra[M. M. Marinak, R. E. Tipton, O. L. Landen, T. J. Murphy, P. Amendt, S. W. Haan, S. P. Hatchett, C. J. Keane, R. McEachern, and R. Wallace, Phys. Plasmas 3, 2070 (1996)] were preformed. The upper hemisphere of a DT-filled CH capsule was imploded by 96 NIF beams in a PDD configuration. Asymmetries in both polar and equatorial directions around the capsule were observed, with the former dominating the latter. Analysis of the simulation results indicates that the lack of symmetry in the initial power density profile (during the first 200 ps of the implosion) is a primary cause of late-time asymmetry in the implosion as well as decreased yield. By adjusting the laser pointings, the symmetry and total neutron yield were improved. Simulations with dropped quads (four of the NIF laser system's 192 beamlines) without repointing worsen the overall symmetry by a factor of 10 (with respect to rms radial variation around the capsule) and reduce neutron yield by a factor of 2. Both of these degraded implosion characteristics are restored by azimuthal repointing of the remaining quads.

Krasheninnikova, Natalia S.; Finnegan, Sean M.; Schmitt, Mark J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2012-01-15T23:59:59.000Z

407

Combining a thermal-imaging diagnostic with an existing imaging VISAR diagnostic at the National Ignition Facility (NIF)  

SciTech Connect

Optical diagnostics are currently being designed to analyze high-energy density physics experiments at the National Ignition Facility (NIF). Two independent line-imaging Velocity Interferometer System for Any Reflector (VISAR) interferometers have been fielded to measure shock velocities, breakout times, and emission of targets having sizes of 15 mm. An 8-inch-diameter, fused silica triplet lens collects light at f/3 inside the 30-foot-diameter NIF vacuum chamber. VISAR recordings use a 659.5-nm probe laser. By adding a specially coated beam splitter to the interferometer table, light at wavelengths from 540 to 645 nm is spilt into a thermal-imaging diagnostic. Because fused silica lenses are used in the first triplet relay, the intermediate image planes for different wavelengths separate by considerable distances. A corrector lens on the interferometer table reunites these separated wavelength planes to provide a good image. Thermal imaging collects light at f/5 from a 2-mm object placed at Target Chamber Center (TCC). Streak cameras perform VISAR and thermal-imaging recording. All optical lenses are on kinematic mounts so that pointing accuracy of the optical axis may be checked. Counter-propagating laser beams (orange and red) are used to align both diagnostics. The red alignment laser is selected to be at the 50 percent reflection point of the beam splitter. This alignment laser is introduced at the recording streak cameras for both diagnostics and passes through this special beam splitter on its way into the NIF vacuum chamber.

Robert M. Malone; John R. Celesteb; Peter M. Celliers; Brent C. Froggeta; Robert L. Guyton; Morris I. Kaufman; Tony L. Lee; Brian J. MacGowan; Edmund W. Ng; Imants P. Reinbachs; Ronald B. Robinson; Lynn G. Seppala; Tom W. Tunnell; Phillip W. Watts

2005-01-01T23:59:59.000Z

408

National Ignition Facility subsystem design requirements NIF site improvements SSDR 1.2.1  

SciTech Connect

This Subsystem Design Requirements (SSDR) document establishes the performance, design, and verification requirements associated with the NIF Project Site at Lawrence Livermore National Laboratory (LLNL) at Livermore, California. It identifies generic design conditions for all NIF Project facilities, including siting requirements associated with natural phenomena, and contains specific requirements for furnishing site-related infrastructure utilities and services to the NIF Project conventional facilities and experimental hardware systems. Three candidate sites were identified as potential locations for the NIF Project. However, LLNL has been identified by DOE as the preferred site because of closely related laser experimentation underway at LLNL, the ability to use existing interrelated infrastructure, and other reasons. Selection of a site other than LLNL will entail the acquisition of site improvements and infrastructure additional to those described in this document. This SSDR addresses only the improvements associated with the NIF Project site located at LLNL, including new work and relocation or demolition of existing facilities that interfere with the construction of new facilities. If the Record of Decision for the PEIS on Stockpile Stewardship and Management were to select another site, this SSDR would be revised to reflect the characteristics of the selected site. Other facilities and infrastructure needed to support operation of the NIF, such as those listed below, are existing and available at the LLNL site, and are not included in this SSDR. Office Building. Target Receiving and Inspection. General Assembly Building. Electro- Mechanical Shop. Warehousing and General Storage. Shipping and Receiving. General Stores. Medical Facilities. Cafeteria services. Service Station and Garage. Fire Station. Security and Badging Services.

Kempel, P.; Hands, J.

1996-08-19T23:59:59.000Z

409

Design of precision mounts for optimizing the conversion efficiency of KDP crystals for the National Ignition Facility  

SciTech Connect

A key design challenge for the National Ignition Facility (NIF), being constructed at Lawrence Livermore National Laboratory (LLNL), [Hibbard, R L , 1998], is the frequency converter consisting of two KDP crystals and a focusing lens Frequency conversion is a critical performance factor for NIF and the optical mount design for this plays a key role in meeting design specifications The frequency converter is a monolithic cell that mounts the optics and is the point on the beamline where the frequency conversion crystals are optimally aligned and the cell is focused on target The lasing medium is neodymium in phosphate glass with a fundamental frequency (1{omega}) of 1 053 {micro}m Sum frequency generation in a pair of conversion crystals (KDP/KD*P) produces 1 8 MJ of the third harmonic light (3{omega} or {lambda}=O 35 pm). The phase-matching scheme on NIF is type I second harmonic generation followed by type II sum-frequency-mixing of the residual fundamental and the second harmonic light This laser unlike previous laser system designs, must achieve high conversion efficiency, 85%, which is close to the 90 8% theoretical maximum As a result, this design is very sensitive to angular variations in beam propagation and in the crystal axes orientation. Factors that influence the phase matching angle include crystal inhomogeneity, residual and induced stress in the crystals, the crystals` natural and mounted surface figure, mounting imperfections and gravity sag These angular variations need to be controlled within a 40 {micro}rad error budget. The optical mount contributions to the angular error budget are 20 {micro}rad and are what make the frequency converter in the Final Optics Cell (FOC) such a challenging precision design. The premise of using full edge support in the FOC design is primarily driven by the spherical target chamber design that has optics mounted at multiple longitudinal angles and thus gravity sag in the crystals that needs to be minimized To meet the angular performance requirements, a precision monolithic cell with full edge support for mounting the optics to 10 {micro}rad angular and 1-5 {micro}m flatness tolerances is required The NIF frequency converter design is a major step in improving both conversion efficiency and precision of the mount design Another major consideration in the FOC design is the trade-off between cost of manufacturing the cell and the performance of the mount An interesting balance of what can be accomplished with a conventional machine tool in a commercial shop to produce prototype FOC` s will be discussed Metrology issues involved in qualifying the FOC are also discussed.

Hibbard, R.L., LLNL

1998-03-30T23:59:59.000Z

410

Laser Fusion: The Uncertain Road to Ignition  

Science Journals Connector (OSTI)

In early 2014, the U.S. National Ignition Facility announced that it had achieved a fusion reaction that produced net positive energy. Fusion scientists have applauded that...

Rose, Melinda

2014-01-01T23:59:59.000Z

411

Ignition Experiments  

NLE Websites -- All DOE Office Websites (Extended Search)

Ignition Experiments The goal of many NIF experiments is to create a self-sustaining "burn" of fusion fuel (the hydrogen isotopes deuterium and tritium) that produces as much or...

412

Y-12 hosts visit from directors of weapons labs | Y-12 National...  

NLE Websites -- All DOE Office Websites (Extended Search)

hosts visit from ... Y-12 hosts visit from directors of weapons labs Posted: October 13, 2014 - 8:44am AssemblyDisassembly Operations Manager Reed Mullins, Y-12 Site Manager Bill...

413

Economic Impact | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Jefferson Lab's Hall A Jefferson Lab generates many economic benefits for the nation and Virginia, providing many well-paying jobs for highly skilled and well-educated workers. A D...

414

DOE/EIS-0236-S1F; National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement (January 2001)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUMMARY SUMMARY 1 This Supplemental Environmental Impact Statement (SEIS) was prepared pursuant to a Joint Stipulation and Order approved and entered as an order of the court on October 27, 1997, in partial settlement of the lawsuit Civ. No. 97-936 (SS) (D.D.C.), Natural Resources Defense Council [NRDC] et al. v. Richardson et al. The Joint Stipulation and Order is reproduced at the end of this document as Attachment 1. In the Joint Stipulation and Order, the U.S. Department of Energy (DOE) agreed to prepare an SEIS to the Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (SSM PEIS) (DOE/EIS-0236, DOE 1996a) to evaluate the reasonably foreseeable significant adverse environmental impacts of continuing to construct and of operating the National Ignition Facility (NIF) at Lawrence Livermore National

415

Fuel Effects on Ignition and Their Impact on Advanced Combustion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ignition and Their Impact on Advanced Combustion Engines Joshua D. Taylor - National Renewable Energy Laboratory Stuart Neill, Hailin Li - National Research Council Canada...

416

Laser ignition  

DOE Patents (OSTI)

In the apparatus of the invention, a first excitation laser or other excitation light source capable of producing alternating beams of light having different wavelengths is used in tandem with one or more ignitor lasers to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using the single remote excitation light source for pumping one or more small lasers located proximate to one or more fuel combustion zones with alternating wavelengths of light.

Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

2002-01-01T23:59:59.000Z

417

Laser ignition  

DOE Patents (OSTI)

In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. The beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being recombined with the first portion after a delay before injection into the ignitor laser. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones.

Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

2002-01-01T23:59:59.000Z

418

Comparison of the recently proposed super-Marx generator approach to thermonuclear ignition with the deuterium-tritium laser fusion-fission hybrid concept by the Lawrence Livermore National Laboratory  

The recently proposed super-Marx generator pure deuterium microdetonation ignition concept is compared to the Lawrence Livermore National Ignition Facility (NIF) Laser deuterium-tritium fusion-fission hybrid concept (LIFE). In a super-Marx generator, a large number of ordinary Marx generators charge up a much larger second stage ultrahigh voltage Marx generator from which for the ignition of a pure deuterium microexplosion an intense GeV ion beam can be extracted. Typical examples of the LIFE concept are a fusion gain of 30 and a fission gain of 10, making up a total gain of 300, with about ten times more energy released into fission as compared to fusion. This means the substantial release of fission products, as in fissionless pure fission reactors. In the super-Marx approach for the ignition of pure deuterium microdetonation, a gain of the same magnitude can, in theory, be reached. If feasible, the super-Marx generator deuterium ignition approach would make lasers obsolete as a means for the ignition of thermonuclear microexplosions.

Winterberg, F.

2009-10-29T23:59:59.000Z

419

BERKELEY LAB  

NLE Websites -- All DOE Office Websites (Extended Search)

Bringing Science Solutions to the World Bringing Science Solutions to the World lbl.gov Lawrence Berkeley National Laboratory's science is a global enterprise. From the Lab's site in the hills overlooking the University of California Berkeley campus, to locations across the continent and around the world, Berkeley Lab scientists are working at the frontiers of knowledge to better understand our universe and to address the challenges facing our nation and our planet. Understanding the Effects of the Gulf Oil Spill In the aftermath of the explosion of BP's Deepwater Horizon drilling rig in the Gulf of Mexico, a dispersed oil plume was formed at a depth between 3,600 and 4,000 feet, extending some 10 miles out from the wellhead. An intensive study by Berkeley Lab scientists, using a DNA-analytical tool they developed

420

Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

INDIA BANGLADESH CHINA DAYA BAY CHINA RUSSIA SIBERIA JAPAN SAMOA HAWAII INDIA BANGLADESH CHINA DAYA BAY CHINA RUSSIA SIBERIA JAPAN SAMOA HAWAII SOUTH POLE ANTARCTICA NEW MEXICO SOUTH DAKOTA TEXAS GULF OF MEXICO NEW YORK PUERTO RICO AMAZON RAIN FOREST CANARY ISLANDS SWITZERLAND ETHIOPIA JOHANNESBURG ERITREA Lawrence Berkeley National Laboratory's science is a global enterprise. From the Lab's site in the hills overlooking the University of California Berkeley campus, to locations across the continent and around the world, Berkeley Lab scientists are working at the frontiers of knowledge to better understand our universe and to address the challenges facing our nation and our planet. Roll your mouse across the map to see how the Lab is making a difference. gulf-oil-spill_2 Understanding the Effects of the Gulf Oil Spill / Gulf of Mexico

Note: This page contains sample records for the topic "national lab ignites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

DOE/EIS-0236-S1F; National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement (January 2001)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I: Main Text I: Main Text Prepared by U.S. Department of Energy Oakland Operations Office Oakland, California January 2001 [This page intentionally left blank] iii COVER SHEET RESPONSIBLE AGENCY: U.S. Department of Energy TITLE: National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement CONTACT: For additional information on For general information on the NEPA this statement, write or call: process at DOE, write or call: Mr. Richard Scott, Document Manager Ms. Carol M. Borgstrom, Director U.S. Department of Energy, L-467 Office of NEPA Policy and Compliance, EH-42 7000 East Avenue, P.O. Box 808 U.S. Department of Energy Livermore, CA 94550 1000 Independence Avenue, SW Telephone: (925) 423-3022

422

Laser ignition  

DOE Patents (OSTI)

In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In the embodiment of the invention claimed herein, the beam from the excitation light source is split with a portion of it going to the ignitor laser and a second portion of it being combined with either the first portion after a delay before injection into the ignitor laser.

Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

2002-01-01T23:59:59.000Z

423

Laser ignition  

DOE Patents (OSTI)

In the apparatus of the invention, a first excitation laser or other excitation light source is used in tandem with an ignitor laser to provide a compact, durable, engine deployable fuel ignition laser system. Reliable fuel ignition is provided over a wide range of fuel conditions by using a single remote excitation light source for one or more small lasers located proximate to one or more fuel combustion zones. In a third embodiment, alternating short and long pulses of light from the excitation light source are directed into the ignitor laser. Each of the embodiments of the invention can be multiplexed so as to provide laser light energy sequentially to more than one ignitor laser.

Early, James W. (Los Alamos, NM); Lester, Charles S. (San Juan Pueblo, NM)

2003-01-01T23:59:59.000Z

424

MagLab - Pioneers in Electricity and Magnetism: Georg Bednorz  

NLE Websites -- All DOE Office Websites (Extended Search)

Zrich Magnet Lab Title Header Magnet Lab Title Florida State University Los Alamos National Laboratory University of Florida Magnet Lab Logo SEARCH Search People | Search Pubs...

425

Berkeley Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Berkeley Berkeley The Lab at a Glance 13 Nobel Prizes $700 million Annual contribution to local economy $1.6 billion Impact on U.S. economy 4,200 Employees, including: 1,685 Scientists, engineers, and faculty 475 Postdoctoral fellows 560 Undergraduate and graduate student employees Lab Budget FY 2011 $836 million $735 million + $101 million (ARRA) FY 2010 $811 million $707 million + $104 million (ARRA) FY 2009 $648 million $637 million + $ 11 million (ARRA) FY 2008 $590 million (ARRA = American Recovery and Reinvestment Act) Berkeley Lab hosts six major national user facilities that attract more than 7,000 visitors a year to conduct joint research, run experiments, and analyze sample materials: Advanced Light Source Energy Sciences Network Joint Genome Institute

426

Forward Thinking: Women-led Team Plans for National Labs' Future...  

Energy Savers (EERE)

Clean Energy Careers Robin Goldstone is a computer scientist working in the High Performance Computing (HPC) division at Lawrence Livermore National Laboratory (LLNL). Women @...

427

Measurements of an Ablator-Gas Atomic Mix in Indirectly Driven Implosions at the National Ignition Facility  

E-Print Network (OSTI)

. Town,1 K. Widmann,1 D. C. Wilson,2 and C. B. Yeamans1 1 Lawrence Livermore National Laboratory, Livermore, California 94550, USA 2 Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA 3 (NIF) [3,4] uses a 1.6 MJ laser pulse at a peak power of 410 TW to accelerate the DT fuel to a peak

428

Status of Cryogenic System for Spallation Neutron Source's Superconducting Radiofrequency Test Facility at Oak Ridge National Lab  

SciTech Connect

Spallation Neutron Source (SNS) at Oak Ridge National Lab (ORNL) is building an independent cryogenic system for its Superconducting Radiofrequency Test Facility (SRFTF). The scope of the system is to support the SNS cryomodule test and cavity test at 2-K (using vacuum pump) and 4.5K for the maintenance purpose and Power Upgrade Project of SNS, and to provide the part of the cooling power needed to backup the current CHL to keep Linac at 4.5-K during CHL maintenance period in the future. The system is constructed in multiple phases. The first phase is to construct an independent 4K helium refrigeration system with helium Dewar and distribution box as load interface. It is schedule to be commissioned in 2013. Here we report the concept design of the system and the status of the first phase of this project.

Xu, Ting [ORNL; Casagrande, Fabio [ORNL; Ganni, Venkatarao [ORNL; Knudsen, Peter N [ORNL; Strong, William Herb [ORNL

2011-01-01T23:59:59.000Z

429

Thomas Mason Oak Ridge National Lab July 10 2012 SB Summit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Laboratory Presented to the DOE/NNSA Regional Small Business Summit Thomas E. Mason Director, Oak Ridge National Laboratory Knoxville, Tennessee July 10, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy RegionalSummit_1207 ORNL is DOE's largest science and energy laboratory 2 Managed by UT-Battelle for the U.S. Department of Energy $1.65B budget World's most intense neutron source 4,400 employees World-class research reactor 3,000 research guests annually $500M modernization investment Nation's largest materials research portfolio Most powerful open scientific computing facility Nation's most diverse energy portfolio Managing billion-dollar U.S. ITER project 3 Managed by UT-Battelle for the U.S. Department of Energy RegionalSummit_1207

430

Leveraging National Lab Capabilities: 2014 Fuel Cell Seminar and Energy Exposition  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Sunita Satyapal, Fuel Cell Technologies Office, and Chris Ainscough, National Renewable Energy Laboratory, at the 2014 Fuel Cell Seminar and Energy Exposition, November 11, 2014, in Los Angeles, California.

431

Inertial confinement fusion | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

the Lawrence Livermore National Laboratory with the goal of igniting a propagating thermonuclear burn wave in DT fuel leading to energy gain (defined as fusion yieldinput laser...

432

Laser diagnostics | Princeton Plasma Physics Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

the Lawrence Livermore National Laboratory with the goal of igniting a propagating thermonuclear burn wave in DT fuel leading to energy gain (defined as fusion yieldinput laser...

433

Optical alignment techniques for line-imaging velocity interferometry and line-imaging self-emission of targets at the National Ignition Facility (NIF)  

SciTech Connect

The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The nature of the NIF facility requires the alignment of complex three-dimensional optical systems of very long distances. Access to the alignment mechanisms can be limited, and any alignment system must be operator friendly. The Velocity Interferometer System for Any Reflector (VISAR) measures shock velocities, shock breakout times, and emission of 1- to 5-mm targets at a location remote to the NIF target chamber. Three optical systems using the same vacuum chamber port each have a total track of 21 m. All optical lenses are on kinematic mounts or sliding rails, enabling pointing accuracy of the optical axis to be checked. Counter-propagating laser beams (orange and red) align these diagnostics to a listing of tolerances. Movable aperture cards, placed before and after lens groups, show the spread of alignment spots created by the orange and red alignment lasers. Optical elements include 1-in. to 15-in. diameter mirrors, lenses with up to 10.5-in. diameters, beamsplitters, etalons, dove prisms, filters, and pellicles. Alignment of more than 75 optical elements must be verified before each target shot. Archived images from eight alignment cameras prove proper alignment before each shot.

Malone, Robert; Celeste, John; Celliers, Peter; Frogget, Brent; Robert Guyton,,; Kaufman, Morris; Lee, Tony; MacGowan, Brian; Ng, Edmend; Reinbachs, Imants; Robinson, Ronald; Tunnell, Thomas; Watts, Phillip

2007-08-01T23:59:59.000Z

434

Gamma Bang Time/Reaction History Diagnostics for the National Ignition Facility (NIF) Using 90-degree Off-axis Parabolic Mirrors  

SciTech Connect

Gas Cherenkov detectors (GCD) have been used to convert fusion gamma into photons to achieve gamma bang time (GBT) and reaction history measurements. The GCD designed for Omega used Cassegrain reflector optics in order to fit inside a ten-inch manipulator. A novel design for the National Ignition Facility (NIF) using 90 Off-Axis Parabolic (OAP) mirrors will increase light collection efficiency from fusion gammas and achieve minimum time dispersion. The broadband Cherenkov light (from 200 to 800 nm) is relayed into a high-speed detector using three parabolic mirrors. Because light is collected from many source planes throughout the CO2 gas volume, the detector is positioned at the stop position rather than an image position. The stop diameter and its position are independent of the light-generation location along the gas cell. The current design collects light from a 100-mm diameter by 500-mm-long gas volume. Optical ray tracings demonstrate how light can be collected from different angled trajectories of the Compton electrons as they fly through the CO2 gas volume. A cluster of four channels will allow for increased dynamic range as well as different gamma energy threshold sensitivities. 52.70.La, 29.40.Ka, 42.15.Eq, 07.60.-j, 07.85.-m

H.W. Herrmann, R.M. Malone, W. Stoeffl, J.M. Mack, C.S. Young

2008-06-01T23:59:59.000Z

435

X-ray Streak Camera Cathode Development and Timing Accuracy of the 4w UV Fiducial System at the National Ignition Facility  

SciTech Connect

The convergent ablator experiments at the National Ignition Facility (NIF) are designed to measure the peak velocity and remaining ablator mass of an indirectly driven imploding capsule. Such a measurement can be performed using an x-ray source to backlight the capsule and an x-ray streak camera to record the capsule as it implodes. The ultimate goal of this experiment is to achieve an accuracy of 2% in the velocity measurement, which translates to a {+-}2 ps temporal accuracy over any 300 ps interval for the streak camera. In order to achieve this, a 4-{omega} (263nm) temporal fiducial system has been implemented for the x-ray streak camera at NIF. Aluminum, Titanium, Gold and Silver photocathode materials have been tested. Aluminum showed the highest quantum efficiency, with five times more peak signal counts per fiducial pulse when compared to Gold. The fiducial pulse data was analyzed to determine the centroiding a statistical accuracy for incident laser pulse energies of 1 and 10 nJ, showing an accuracy of {+-}1.6 ps and {+-}0.7 ps respectively.

Opachich, Y P; Palmer, N; Homoelle, D; Hatch, B W; Bell, P; Bradley, D; Kalantar, D; Browning, D; Landen, O

2012-05-02T23:59:59.000Z

436

X-ray streak camera cathode development and timing accuracy of the 4{omega} ultraviolet fiducial system at the National Ignition Facility  

SciTech Connect

The convergent ablator experiments at the National Ignition Facility (NIF) are designed to measure the peak velocity and remaining ablator mass of an indirectly driven imploding capsule. Such a measurement can be performed using an x-ray source to backlight the capsule and an x-ray streak camera to record the capsule as it implodes. The ultimate goal of this experiment is to achieve an accuracy of 2% in the velocity measurement, which translates to a {+-}2 ps temporal accuracy over any 300 ps interval for the streak camera. In order to achieve this, a 4{omega} (263 nm) temporal fiducial system has been implemented for the x-ray streak camera at NIF. Aluminum, titanium, gold, and silver photocathode materials have been tested. Aluminum showed the highest relative quantum efficiency, with five times more peak signal counts per fiducial pulse when compared to Gold. The fiducial pulse data were analyzed to determine the centroiding statistical accuracy for incident laser pulse energies of 1 and 10 nJ, showing an accuracy of {+-}1.6 ps and {+-}0.7 ps, respectively.

Opachich, Y. P.; Palmer, N.; Homoelle, D.; Hatch, B.; Bell, P.; Bradley, D.; Kalantar, D.; Browning, D.; Landen, O. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Zuegel, J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

2012-10-15T23:59:59.000Z

437

Energy Department Announces New Lab Program to Accelerate Commercializ...  

Office of Environmental Management (EM)

DOE's National Laboratories into the commercial marketplace. Lab-Corps aims to better train and empower national lab researchers to successfully transition their discoveries into...

438

Enhanced Model for Fast Ignition  

SciTech Connect

Laser Fusion is a prime candidate for alternate energy production, capable of serving a major portion of the nation??s energy needs, once fusion fuel can be readily ignited. Fast Ignition may well speed achievement of this goal, by reducing net demands on laser pulse energy and timing precision. However, Fast Ignition has presented a major challenge to modeling. This project has enhanced the computer code ePLAS for the simulation of the many specialized phenomena, which arise with Fast Ignition. The improved code has helped researchers to understand better the consequences of laser absorption, energy transport, and laser target hydrodynamics. ePLAS uses efficient implicit methods to acquire solutions for the electromagnetic fields that govern the accelerations of electrons and ions in targets. In many cases, the code implements fluid modeling for these components. These combined features, ??implicitness and fluid modeling,? can greatly facilitate calculations, permitting the rapid scoping and evaluation of experiments. ePLAS can be used on PCs, Macs and Linux machines, providing researchers and students with rapid results. This project has improved the treatment of electromagnetics, hydrodynamics, and atomic physics in the code. It has simplified output graphics, and provided new input that avoids the need for source code access by users. The improved code can now aid university, business and national laboratory users in pursuit of an early path to success with Fast Ignition.

Dr. Rodney J. Mason

2010-10-12T23:59:59.000Z

439

DOE/EIS-0236-S1; National Ignition Facility Draft Supplemental Environmental Impact Statement to the SSM PEIS, October 1999  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3 3 East Avenue S o u t h e r n P a c i f i c R . R . A r r o y o S e c o 580 Vasco Road Patterson Pass Road Greenville Road Arroyo Las Positas S o u t h L i v e r m o r e A v e n u e A r r o y o M o c h o 0 Scale: Miles 1 0.5 Springtown Tesla Road A r r o y o La s P o si ta s Sandia National Laboratories Lawrence Livermore National Laboratory 0 1 2 Scale: Kilometers N MLA11861 * * Indicates approximate location of the NIF construction area. FIGURE 3.1 Surface Water Features near Lawrence Livermore National Laboratory 3-7 FIGURE 3.3 Eastern Portion of the Livermore Site Showing Groundwater Wells and Approximate Area Containing VOCs over the Maximum Contaminant Levels in 1998 3-11 MLA6906 PCB (ppm) Tritium (pCi/g) Freon 11 (ppb) Carbon tetrachloride (ppb) PCE (ppb) TCE (ppb) 1x10 -1 1x10 0 1x10 1 1x10 2 1x10 3 1x10 4 1x10 5 18 0.53 520 23 1,600 6,100 540 EPA Industrial PRG

440

Thermal ignition combustion system  

SciTech Connect

A thermal ignition combustion system adapted for use with an internal combustion engine is described comprising: (a) means for providing ignition chamber walls defining an ignition chamber, the chamber walls being made of a material having a thermal conductivity greater than 20 W/m/sup 0/C. and a specific heat greater than 480J/kg/sup 0/C., the ignition chamber being in constant communication with the main combustion chamber; (b) means for maintaining the temperature of the chamber walls above a threshold temperature capable of causing ignition of a fuel; and (c) means for conducting fuel to the ignition chamber.

Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

1988-04-19T23:59:59.000Z

Note: This page contains sample records for the topic "national lab ignites" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Lawrence Livermore National Laboratory: Site Map  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Site Map About LLNL What we do How we do it Our Values Organization Management and Sponsors Publications History Organizations Global Security National Ignition Facility Operations Safety & Security Science & Technology Weapons & Complex Integration Visiting LLNL Maps & Directions Badging Discovery Center Site Tours Current Weather Protocol Office Where to stay Tri-Valley Visitors Bureau City of Livermore News News Center For Reporters Social Media & Multimedia Publication Science and Technology Review Lab Report News Releases Around the Lab Community Discovery Center Site Tours Community giving Corporate giving Environmental information Community Center Contacts Discover LLNL Newsletter Volunteer Opportunities Education Internships Postdocs K - 12 Outreach Site Tours School Tours

442

Introduce a Girl to Engineering Day (IGED) at Argonne National Lab -  

NLE Websites -- All DOE Office Websites (Extended Search)

Introduce a Girl to Engineering Day (IGED) Introduce a Girl to Engineering Day (IGED) Search Go Home Postdocs Students Student Outreach Resources for Schools U.S.-based International (English) International (Other) Events IGED 2013 Science Careers in Search of Women Girls, choose a career in Nuclear Science and Technology! Argonne Nuclear Engineers tell why they chose a Nuclear Career Resources Contact Us Recent Events Science Careers in Search of Women, Apr. 18, 2013 Junior Girl Scout Workshop 'Atomic Fission Fun with the American Nuclear Society', Jan. 26, 2013 Getting to know nuclear energy: the past, the present & the future - free public lecture (Nov. 15, 2012, Argonne National Laboratory) On January 26, 2013, Argonne staff members participated in the Junior Girl Scout Workshop 'Atomic Fission Fun with the American Nuclear Society'

443

Thermonuclear Ignition of Dark Galaxies  

E-Print Network (OSTI)

thermonuclear ignition of stars by nuclear fission, and the corollary, non-ignition of stars. The possibility of

J. Marvin Herndon

2006-01-01T23:59:59.000Z

444

Lab Breakthroughs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lab Breakthroughs Lab Breakthroughs Lab Breakthroughs The Lab Breakthroughs series brings together video produced by each of the National Labs about their innovations and discoveries, and a Q&A with a project researcher about how they affect Americans. Here you can view the latest Q&As weekly, or view the full playlist on our YouTube page. The Lab Breakthroughs series brings together video produced by each of the National Labs about their innovations and discoveries, and a Q&A with a project researcher about how they affect Americans. Here you can view the latest Q&As weekly, or view the full playlist on our YouTube page. The Energy Department's 17 National Labs are world-class scientific

445

Research, Development, Test, and Evaluation | National Nuclear...  

National Nuclear Security Administration (NNSA)

the long term. Among our ongoing efforts are the following activities: Providing a thermonuclear ignition platform at the National Ignition Facility (NIF) to investigate physics...

446

Laser preheat enhanced ignition  

DOE Patents (OSTI)

A method for enhancing fuel ignition performance by preheating the fuel with laser light at a wavelength that is absorbable by the fuel prior to ignition with a second laser is provided.

Early, James W. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

447

Laser preheat enhanced ignition  

DOE Patents (OSTI)

A method for enhancing fuel ignition performance by preheating the fuel with laser light at a wavelength that is absorbable by the fuel prior to ignition with a second laser is provided. 11 figs.

Early, J.W.

1999-03-02T23:59:59.000Z

448

U.S. bioassay Intercomparison Studies Program at Oak Ridge National Lab  

SciTech Connect

The Intercomparison Studies Program (ISP) for in-vitro bioassay at Oak Ridge National Laboratory (ORNL) has been in place since May 1991. The ISP was originally created to fill a need in the Radiobioassay area at ORNL, specifically in the areas of Quality Control, Quality Assurance, and Performance Testing. In the beginning, this consisted of two or three laboratories working in a pilot intercomparison program. Once it was determined that this could work effectively, the program began to seek additional members to broaden the scope of the effort. The program became formalized with a quarterly report in January 1992. The ISP currently provides cross-check blind/double-blind samples spiked with known amounts of radioactivity to various Department of Energy (DOE) facilities, universities, and private industry organizations throughout the US. These samples can be packaged according to ORNL procedures (ORNL sample bottles, ORNL chain-of-custody forms, tamper seals etc.), for a single blind sample or according to the needs of a particular facility if the double-blind sample mode is to be maintained. In 1998, the customer base was broadened to include European facilities. In January 1993, the whole-body count program was added. This involves each participating facility receiving a block phantom from the ISP and determining a geometry factor using a known standard. At quarterly intervals, each participant receives an unknown sample for analysis. The sample is counted and the data is collected for publication in an annual report. In October 1994, the fecal program was added. This involves spiking an artificial matrix with known amounts of radioactivity. Laboratories receive unknown samples on a quarterly basis. The sample is counted and the data is collected and published in a quarterly report. The ISP maintains archive samples which can be analyzed in the QC laboratory at the request of any participants if a conflict or discrepancy in a sample analysis/result occurs.

Payne, G.F.; Bores, N.; Melton, K.K.; Rankin, J.M.

1998-06-01T23:59:59.000Z

449

Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Things You Didn't Know About Lawrence Livermore National 0 Things You Didn't Know About Lawrence Livermore National Laboratory Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory December 6, 2013 - 6:18pm Addthis The photo above is of a cryogenically cooled target in the National Ignition Facility as "seen" by the laser through the hohlraum's laser entrance hole. | Photo courtesy of Lawrence Livermore National Laboratory. The photo above is of a cryogenically cooled target in the National Ignition Facility as "seen" by the laser through the hohlraum's laser entrance hole. | Photo courtesy of Lawrence Livermore National Laboratory. Ben Dotson Ben Dotson Project Coordinator for Digital Reform, Office of Public Affairs What are the key facts? Founded in 1952, Lawrence Livermore National Lab is one of the

450

Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Top 10 Things You Didn't Know About Lawrence Livermore National Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory Top 10 Things You Didn't Know About Lawrence Livermore National Laboratory December 6, 2013 - 6:18pm Addthis The photo above is of a cryogenically cooled target in the National Ignition Facility as "seen" by the laser through the hohlraum's laser entrance hole. | Photo courtesy of Lawrence Livermore National Laboratory. The photo above is of a cryogenically cooled target in the National Ignition Facility as "seen" by the laser through the hohlraum's laser entrance hole. | Photo courtesy of Lawrence Livermore National Laboratory. Ben Dotson Ben Dotson Project Coordinator for Digital Reform, Office of Public Affairs What are the key facts? Founded in 1952, Lawrence Livermore National Lab is one of the

451

Visiting JLab | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Situated between Norfolk and Williamsburg, Newport News is easily accessible by air, automobile and train. Jefferson Lab is one of 17 national laboratories funded by the U.S....

452

Jefferson Lab Virtual Tour  

ScienceCinema (OSTI)

Take a virtual tour of the campus of Thomas Jefferson National Accelerator Facility. You can see inside our two accelerators, three experimental areas, accelerator component fabrication and testing areas, high-performance computing areas and laser labs.

None

2014-05-22T23:59:59.000Z

453

Currents, Berkeley Lab's Biweekly Newspaper  

NLE Websites -- All DOE Office Websites (Extended Search)

Currents Index A-Z Index Search Phone Book Comments Ernest Orlando Lawrence Berkeley National Laboratory Search Currents Back Issues (1994 to present) Search Lab science articles...