Powered by Deep Web Technologies
Note: This page contains sample records for the topic "national industry model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

EIA - The National Energy Modeling System: An Overview 2003-Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The National Energy Modeling System: An Overview 2003 Industrial Demand Module Figure 7. Industrial Demand Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Economic Subsectors Within the IDM Table. Need help, contact the National Energy Information Center at 202-586-8800. Industrial Demand Module Table. Need help, contact the National Energy Information Center at 202-586-8800. Fuel Consuming Activities for the Energy-Intensive Manufacturing Subsectors Table. Need help, contact the National Energy Information Center at 202-586-8800. The industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing

2

Model documentation report: Industrial sector demand module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

NONE

1997-01-01T23:59:59.000Z

3

The National Energy Modeling System: An Overview 2000 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. industrial demand module (IDM) forecasts energy consumption for fuels and feedstocks for nine manufacturing industries and six nonmanufactur- ing industries, subject to delivered prices of energy and macroeconomic variables representing the value of output for each industry. The module includes industrial cogeneration of electricity that is either used in the industrial sector or sold to the electricity grid. The IDM structure is shown in Figure 7. Figure 7. Industrial Demand Module Structure Industrial energy demand is projected as a combination of “bottom up” characterizations of the energy-using technology and “top down” econometric estimates of behavior. The influence of energy prices on industrial energy consumption is modeled in terms of the efficiency of use of existing capital, the efficiency of new capital acquisitions, and the mix of fuels utilized, given existing capital stocks. Energy conservation from technological change is represented over time by trend-based “technology possibility curves.” These curves represent the aggregate efficiency of all new technologies that are likely to penetrate the future markets as well as the aggregate improvement in efficiency of 1994 technology.

4

Scientific Management in Nationalized Industries  

Science Journals Connector (OSTI)

... Boards of Nationalized Industries"*, arises out of his experience as governing director of two private engineering firms and as chairman of the British Broadcasting Corporation. It is a noteworthy ... of experience, independence and security of tenure as is common in the best concerns of private enterprise; but it is of wider importance as endorsing the stress laid on the ...

1958-02-22T23:59:59.000Z

5

HVAC Component Data Modeling Using Industry Foundation Classes Vladimir Bazjanac, Lawrence Berkeley National Laboratory, U.S.A.  

E-Print Network (OSTI)

1 HVAC Component Data Modeling Using Industry Foundation Classes Vladimir Bazjanac, Lawrence. This paper describes a number of aspects of a major extension of the HVAC part of the IFC data model. First is the introduction of a more generic approach for handling HVAC components. This includes type information, which

6

Energy Department Applauds Nation's First Large-Scale Industrial...  

Office of Environmental Management (EM)

Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage...

7

University-Industry-National Laboratory Partnership to Improve...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Laboratory Partnership to Improve Building Efficiency by Equipment Health Monitoring with Virtual Intelligent Sensing University-Industry-National Laboratory...

8

Maryland-National Capital Building Industry Association Regulatory Burden  

NLE Websites -- All DOE Office Websites (Extended Search)

Maryland-National Capital Building Industry Association Regulatory Maryland-National Capital Building Industry Association Regulatory Burden RFI (Federal Register August 8, 2012) Maryland-National Capital Building Industry Association Regulatory Burden RFI (Federal Register August 8, 2012) On behalf of the Maryland-National Capital Building Industry Association, I am providing the following comments and information in response to DOE's request. The Association represents residential builders, developers and associated professionals and service firms. Final Letter to DOE Regulatory Burden 9_7_2012.pdf More Documents & Publications National Association of Home Builders (NAHB) Ex Parte Memorandum Energy Storage Activities in the United States Electricity Grid. May 2011 Frederick County (Maryland) Department of Permits and Inspections (FCDPI

9

National Association of the Remodeling Industry (NARI) | Open Energy  

Open Energy Info (EERE)

Association of the Remodeling Industry (NARI) Association of the Remodeling Industry (NARI) Jump to: navigation, search Name National Association of the Remodeling Industry (NARI) Place Des Plaines, IL Website http://www.nari.org/ References NARI[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! National Association of the Remodeling Industry (NARI) is a company located in Des Plaines, IL. References ↑ "NARI" Retrieved from "http://en.openei.org/w/index.php?title=National_Association_of_the_Remodeling_Industry_(NARI)&oldid=586523" Categories: Clean Energy Organizations

10

Energy Department Applauds Nation's First Large-Scale Industrial Carbon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nation's First Large-Scale Industrial Nation's First Large-Scale Industrial Carbon Capture and Storage Facility Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility August 24, 2011 - 6:23pm Addthis Washington, D.C. - The U.S. Department of Energy issued the following statement in support of today's groundbreaking for construction of the nation's first large-scale industrial carbon capture and storage (ICCS) facility in Decatur, Illinois. Supported by the 2009 economic stimulus legislation - the American Recovery and Reinvestment Act - the ambitious project will capture and store one million tons of carbon dioxide (CO2) per year produced as the result of processing corn into fuel-grade ethanol from the nearby Archer Daniels Midland biofuels plant. Since all of

11

Energy Department Applauds Nation's First Large-Scale Industrial Carbon  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Department Applauds Nation's First Large-Scale Industrial Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility August 24, 2011 - 6:23pm Addthis Washington, D.C. - The U.S. Department of Energy issued the following statement in support of today's groundbreaking for construction of the nation's first large-scale industrial carbon capture and storage (ICCS) facility in Decatur, Illinois. Supported by the 2009 economic stimulus legislation - the American Recovery and Reinvestment Act - the ambitious project will capture and store one million tons of carbon dioxide (CO2) per year produced as the result of processing corn into fuel-grade ethanol from the nearby Archer Daniels Midland biofuels plant. Since all of

12

Sandia National Laboratories: help U.S. PV industry expand  

NLE Websites -- All DOE Office Websites (Extended Search)

help U.S. PV industry expand Photovoltaic (PV) Regional Test Center (RTC) Website Goes Live On February 26, 2013, in Energy, National Solar Thermal Test Facility, News, News &...

13

United Nations Industrial Development Organization (UNIDO) | Open Energy  

Open Energy Info (EERE)

United Nations Industrial Development Organization (UNIDO) United Nations Industrial Development Organization (UNIDO) Jump to: navigation, search Logo: United Nations Industrial Development Organization Name United Nations Industrial Development Organization Address Wagramer Straße 5, 1220 Place Vienna, Austria Phone number +43 (1) 26026-0 Coordinates 48.2336891°, 16.4174512° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.2336891,"lon":16.4174512,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

14

General Assembly of the National Industrial Association (ANDI) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

General Assembly of the National Industrial Association (ANDI) General Assembly of the National Industrial Association (ANDI) General Assembly of the National Industrial Association (ANDI) August 8, 2008 - 2:40pm Addthis Remarks As Prepared for Delivery for Acting Deputy Secretary Kupfer Thank you, Mr. Villegas. I appreciate the opportunity to be here with all of you today and join the distinguished list of speakers on your agenda. I have only been in your country for a short time, but it is long enough to recognize that there are ample opportunities for enhanced cooperation between the United States and Colombia in all areas - but especially on energy. The U.S. has long stood as a proud ally of your country-from the early days of Colombia's independence, which President Bush and other U.S. and Colombian officials commemorated at the White House in Washington just a

15

United Nations Industrial Development Organization (UNIDO) | Open Energy  

Open Energy Info (EERE)

Industrial Development Organization (UNIDO) Industrial Development Organization (UNIDO) (Redirected from UNIDO) Jump to: navigation, search Logo: United Nations Industrial Development Organization Name United Nations Industrial Development Organization Address Wagramer Straße 5, 1220 Place Vienna, Austria Phone number +43 (1) 26026-0 Coordinates 48.2336891°, 16.4174512° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.2336891,"lon":16.4174512,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

16

Iron and steel industry process model  

SciTech Connect

The iron and steel industry process model depicts expected energy-consumption characteristics of the iron and steel industry and ancillary industries for the next 25 years by means of a process model of the major steps in steelmaking, from ore mining and scrap recycling to the final finishing of carbon, alloy, and stainless steel into steel products such as structural steel, slabs, plates, tubes, and bars. Two plant types are modeled: fully integrated mills and mini-mills. User-determined inputs into the model are as follows: projected energy and materials prices; projected costs of capacity expansion and replacement; energy-conserving options, both operating modes and investments; the internal rate of return required on investment; and projected demand for finished steel. Nominal input choices in the model for the inputs listed above are as follows: National Academy of Sciences Committee on Nuclear and Alternative Energy Systems Demand Panel nominal energy-price projections for oil, gas, distillates, residuals, and electricity and 1975 actual prices for materials; actual 1975 costs; new technologies added; 15% after taxes; and 1975 actual demand with 1.5%/y growth. The model reproduces the base-year (1975) actual performance of the industry; then, given the above nominal input choices, it projects modes of operation and capacity expansion that minimize the cost of meeting the given final demands for each of 5 years, each year being the midpoint of a 5-year interval. The output of the model includes the following: total energy use and intensity (Btu/ton) by type, by process, and by time period; energy conservation options chosen; utilization rates for existing capacity; capital-investment decisions for capacity expansion.

Sparrow, F.T.; Pilati, D.; Dougherty, T.; McBreen, E.; Juang, L.L.

1980-01-01T23:59:59.000Z

17

National Energy Modeling System (NEMS)  

DOE Data Explorer (OSTI)

The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. through 2030. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). NEMS can be used to analyze the effects of existing and proposed government laws and regulations related to energy production and use; the potential impact of new and advanced energy production, conversion, and consumption technologies; the impact and cost of greenhouse gas control; the impact of increased use of renewable energy sources; and the potential savings from increased efficiency of energy use; and the impact of regulations on the use of alternative or reformulated fuels. NEMS has also been used for a number of special analyses at the request of the Administration, U.S. Congress, other offices of DOE and other government agencies, who specify the scenarios and assumptions for the analysis. Modules allow analyses to be conducted in energy topic areas such as residential demand, industrial demand, electricity market, oil and gas supply, renewable fuels, etc.

18

Sandia National Laboratories: Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling On June 26, 2014, in Computational Modeling & Simulation, Energy, Energy Surety, Grid Integration, Infrastructure Security, Modeling, Modeling & Analysis, News, News &...

19

Nevada National Security Site Industrial Sites Project Closeout - 12498  

SciTech Connect

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office is responsible for environmental restoration (ER) at the Nevada National Security Site (NNSS). This includes remediation at Industrial Sites where past nuclear testing activities and activities that supported nuclear testing may have or are known to have resulted in the release of contaminants into the environment. Industrial Sites at the NNSS have included nuclear facilities that supported the nuclear rocket/missile development programs, gas stations, landfills, spill sites, ordnance sites, and numerous other waste disposal and release sites. The NNSS Industrial Sites activities neared completion at the end of fiscal year 2011 while other activities required under the Federal Facility Agreement and Consent Order (FFACO) and part of the same NNSS ER Project are forecasted to extend to 2027 or beyond. With the majority of Industrial Sites corrective action units (CAUs) completed (more than 250 CAUs and over 1,800 corrective action sites), it was determined that an activity closeout process should be implemented to ensure that the work completed over the past 15 years is well documented in a comprehensive and concise summary. While the process used to close each individual CAU is described in approved documents, no single document describes in summary fashion the work completed to close the many individual Industrial Sites. The activity closeout process will be used to develop an Industrial Sites closeout document that describes these years of work. This document will summarize the number of Industrial Sites closed under the FFACO and provide general descriptions of projects, contaminants removed, and sites closed in place with corresponding Use Restrictions. Other pertinent information related to Industrial Sites work such as the project history, closure decisions, historical declarations, remediation strategies, and final CAU status will be included in the closeout document, along with a table listing each CAU and corresponding corrective action sites within each CAU. Using this process of conducting the activity closeout and developing a closeout document may prove useful for other ER projects within the DOE complex in describing how a long period of ER can be summarized in a single document. The NNSS Industrial Sites activities were completed over the span of 15 years and involved the investigation, cleanup or Use Restriction, and closure of more than 260 CAUs and over 1,800 sites. These activities will conclude in FY 2012 (with the exception of one CAU). In order to capture the work completed over this length of time and document decisions made during the activities, a closeout effort was initiated. The closeout will review the work conducted during the Industrial Sites activities and produce a single document that summarizes Industrial Sites activities. This closeout is being conducted at an interim stage in the overall NNSA/NSO ER Project since the Soils and UGTA activities will continue for a number of years, but the completion of the Industrial Sites project warrants conducting a closeout now while personnel are available and information is still current. The process followed by NNSA/NSO in conducing project closeout for the Industrial Sites portion of the ER program may prove useful within the DOE complex in demonstrating how a large ER project can be summarized. (authors)

Cabble, Kevin [U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Las Vegas, Nevada 89193 (United States); Krauss, Mark [S.M. Stoller for Navarro-Intera, LLC, Las Vegas, Nevada 89193 (United States); Matthews, Pat [Navarro-Intera, LLC, Las Vegas, Nevada 8919 (United States)

2012-07-01T23:59:59.000Z

20

Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and Buildings, Energy, Greenhouse Gas, Industrial and Policy Modeling and Simulation Tools Available from Energy Analysis and Environmental Impacts Department Tools header image January 2014 Tools and models to find the best way to save energy and reduce greenhouse gas emissions in cities and industries, to follow the transport of pollutants through the environment, and to calculate the cost of power interruptions are among those available on a new Lawrence Berkeley National Laboratory (Berkeley Lab) web site. The site brings together models and simulation tools developed by the Energy Analysis and Environmental Impacts (EAEI) Department of the Lab's Environmental Energy Technologies Division. "Our hope is that the site will facilitate greater technical awareness of

Note: This page contains sample records for the topic "national industry model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Sandia National Laboratories: Modeling  

NLE Websites -- All DOE Office Websites (Extended Search)

to address the most challenging and demanding climate-change issues. Accelerated Climate Modeling for Energy (ACME) is designed to accel-erate the development and applica-tion of...

22

Sandia National Laboratories: JBEI Research Receives Strong Industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

EnergyBiofuelsJBEI Research Receives Strong Industry Interest in DOE Technology Transfer Call JBEI Research Receives Strong Industry Interest in DOE Technology Transfer...

23

Industrial-Strength UPF | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

and beyond. Suppliers that can meet UPF standards will be able to compete for work in the pharmaceutical, aerospace and defense industries or in any industry that demands high...

24

Industrial Revolutions and Consumption: A Common Model to the Various Periods of Industrialization  

E-Print Network (OSTI)

Industrial Revolutions and Consumption: A Common Model to the Various Periods of Industrialization and establish a plausible link between consumption structure evolutions and industrial revolutions. In particular, we show that an industrial revolution starts with a "smithian growth process", which is demand

Boyer, Edmond

25

The French National Energy Conservation Program - The Case of Industry  

E-Print Network (OSTI)

France is certainly one of the industrialized countries which has been the most severely affected by the energy crisis. It has thus been necessary since 1974 to plan and execute a bold, far-reaching government policy for energy reconversion...

Zyss, J.

1980-01-01T23:59:59.000Z

26

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

27

Policy modeling for industrial energy use  

SciTech Connect

The international workshop on Policy Modeling for Industrial Energy Use was jointly organized by EETA (Professional Network for Engineering Economic Technology Analysis) and INEDIS (International Network for Energy Demand Analysis in the Industrial Sector). The workshop has helped to layout the needs and challenges to include policy more explicitly in energy-efficiency modeling. The current state-of-the-art models have a proven track record in forecasting future trends under conditions similar to those faced in the recent past. However, the future of energy policy in a climate-restrained world is likely to demand different and additional services to be provided by energy modelers. In this workshop some of the international models used to make energy consumption forecasts have been discussed as well as innovations to enable the modeling of policy scenarios. This was followed by the discussion of future challenges, new insights in the data needed to determine the inputs into energy model s, and methods to incorporate decision making and policy in the models. Based on the discussion the workshop participants came to the following conclusions and recommendations: Current energy models are already complex, and it is already difficult to collect the model inputs. Hence, new approaches should be transparent and not lead to extremely complex models that try to ''do everything''. The model structure will be determined by the questions that need to be answered. A good understanding of the decision making framework of policy makers and clear communication on the needs are essential to make any future energy modeling effort successful. There is a need to better understand the effects of policy on future energy use, emissions and the economy. To allow the inclusion of policy instruments in models, evaluation of programs and instruments is essential, and need to be included in the policy instrument design. Increased efforts are needed to better understand the effects of innovative (no n-monetary) policy instruments through evaluation and to develop approaches to model both conventional and innovative policies. The explicit modeling of barriers and decision making in the models seems a promising way to enable modeling of conventional and innovative policies. A modular modeling approach is essential to not only provide transparency, but also to use the available resources most effectively and efficiently. Many large models have been developed in the past, but have been abandoned after only brief periods of use. A development path based on modular building blocks needs the establishment of a flexible but uniform modeling framework. The leadership of international agencies and organizations is essential in the establishment of such a framework. A preference is given for ''softlinks'' between different modules and models, to increase transparency and reduce complexity. There is a strong need to improve the efficiency of data collection and interpretation efforts to produce reliable model inputs. The workshop participants support the need for the establishment of an (in-)formal exchanges of information, as well as modeling approaches. The development of an informal network of research institutes and universities to help build a common dataset and exchange ideas on specific areas is proposed. Starting with an exchange of students would be a relative low-cost way to start such collaboration. It would be essential to focus on specific topics. It is also essential to maintain means of regular exchange of ideas between researchers in the different focus points.

Worrell, Ernst; Park, Hi-Chun; Lee, Sang-Gon; Jung, Yonghun; Kato, Hiroyuki; Ramesohl, Stephan; Boyd, Gale; Eichhammer, Wolfgang; Nyboer, John; Jaccard, Mark; Nordqvist, Joakim; Boyd, Christopher; Klee, Howard; Anglani, Norma; Biermans, Gijs

2003-03-01T23:59:59.000Z

28

Sandia National Laboratories: Modeling & Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling On June 26, 2014, in Computational Modeling & Simulation, Energy, Energy Surety, Grid Integration, Infrastructure Security, Modeling, Modeling & Analysis, News, News &...

29

2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Sites Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of special compliance conditions Discussion of the facilitys environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

David B. Frederick

2011-02-01T23:59:59.000Z

30

United Nations Industrial Development Organization Feed | Open Energy  

Open Energy Info (EERE)

Feed Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ) Global Village Energy Partnership (GVEP) Information for Development Program (infoDev)

31

Online Modeling in the Process Industry for Energy Optimization  

E-Print Network (OSTI)

"This paper discusses how steady state models are being used in the process industry to perform online energy optimization of steam and electrical systems. It presents process demands commonly found in the processing industry in terms of steam...

Alexander, J.

32

Industry Day and One-on-One Meetings | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Industry Day and One-on-One Meetings | National Nuclear Security Industry Day and One-on-One Meetings | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Industry Day and One-on-One Meetings Home > About Us > Our Operations > Acquisition and Project Management > Major Contract Solicitations > Environmental Program Services Contract >

33

most are government agencies --local, national and international. A ten-year industry forecast put together  

E-Print Network (OSTI)

most are government agencies -- local, national and international. A ten-year industry forecast put environmental, civil government, defence and security, and transportation as the most active market segments combine geographic information systems with satellite data are in demand in a variety of disciplines

Wisconsin at Madison, University of

34

Industrial  

NLE Websites -- All DOE Office Websites (Extended Search)

Products Industrial Institutional Multi-Sector Residential Momentum Savings Regional Efficiency Progress Report Utility Toolkit Energy Smart Industrial - Energy Management...

35

Industry  

E-Print Network (OSTI)

2004). US DOEs Industrial Assessment Centers (IACs) are anof Energys Industrial Assessment Center program in SMEs

Bernstein, Lenny

2008-01-01T23:59:59.000Z

36

A SYSTEMS APPROACH TO MATHEMATICAL MODELING OF INDUSTRIAL PROCESSES  

E-Print Network (OSTI)

/or partial automation of the creative modeling process. Model Generation is a new modeling paradigm designed specifically for rapid modeling of large multi-scale systems in the industrial practice. It proposes model. Keywords: Dynamic and continuous/discrete simulation, computer-aided modeling, symbolic

Linninger, Andreas A.

37

Sandia National Laboratories: Modeling & Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

to address the most challenging and demanding climate-change issues. Accelerated Climate Modeling for Energy (ACME) is designed to accel-erate the development and applica-tion of...

38

Energy and cost optimization in industrial models  

Science Journals Connector (OSTI)

A program for Linear Energy Optimization (LEO...) which was used to investigate thermodynamical and technical options of reducing the energy-consumption of industrialized countries is extended to handle the cost ...

H. -M. Groscurth; R. Kmmel

1990-01-01T23:59:59.000Z

39

National Energy Modeling System: An Overview  

Gasoline and Diesel Fuel Update (EIA)

6) 6) Distribution Category UC-950 The National Energy Modeling System: An Overview March 1996 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or of any other organization. PREFACE The National Energy Modeling System: An Overview (Overview) provides a summary description of the National Energy Modeling System (NEMS), which was used to generate the forecasts of energy production, demand, imports, and prices through the year 2015 for the Annual Energy Outlook 1996 (AEO96), (DOE/EIA- 0383(96)), released in January

40

National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet)  

SciTech Connect

This technical highlight describes NREL research to develop a publicly available database of energy retrofit measures containing performance characteristics and cost estimates for nearly 3,000 measures. Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost-effective retrofit measures to improve the energy efficiency of residential buildings. The database provides a single, consistent source of current data for DOE and private-sector energy audit and simulation software tools and the retrofit industry. The database will reduce risk for residential retrofit industry stakeholders by providing a central, publicly vetted source of up-to-date information.

Not Available

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "national industry model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

US Energy Service Company Industry: History and Business Models  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Service Company Industry: Energy Service Company Industry: History and Business Models Don Gilligan President, NAESCO May 6, 2011 Overview of Presentation * US ESCO industry evolution: Five phases * Business models in each phase * Financing models in each phase * Factors that forced change to next phase * Lessons learned US ESCO Industry: Five Phases * Pre-1985: The Beginning of Large-scale Energy Efficiency (EE) * 1985-1995: Early ESCo experience * 1995-2000: Consolidation and Growth * 2000-2004: Setbacks * 2004 - present: Growth and new services Beginning of EE: pre-1985 * Federal government mandates utilities to provide energy conservation * Business model: ESCOs provide services - Energy audits, arranging contracting, etc. * Finance model: fee for service - Utilities pay ESCOs for services

42

EIA - The National Energy Modeling System: An Overview 2003  

Gasoline and Diesel Fuel Update (EIA)

The National Energy Modeling System: An Overview 2003 This report provides a summary description of the NEMS which was used to generate the projections of energy production, demand, imports, and prices through the year 2025 for the Annual Energy Outlook 2003. Preface Introduction Overview of NEMS Carbon Dioxide and Methane Emissions Macroeconomic Activity Module International Energy Module Residential Demand Module Commercial Demand Module Industrial Demand Module Transportation Demand Module Electricity Market Module Renewable Fuels Module Oil and Gas Supply Module Natural Gas Transmission and Distribution Module Petroleum Market Module Coal Market Module Bibliography Download the Report NEMS: An Overview 2003 Cover. Need help, contact the National Energy Information Center at 202-586-8800.

43

Friction Modeling and Compensation for an Industrial Robot  

E-Print Network (OSTI)

Friction Modeling and Compensation for an Industrial Robot Stephen M. Phillips and Kevin R. Ballou it is assumed to be unpredictable or insignificant. In experiments on the PUMA 560 robot arm, Armstrong' dem

44

DOE Releases Maturity Model to Better Protect the Nation's Grid from  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Maturity Model to Better Protect the Nation's Grid Releases Maturity Model to Better Protect the Nation's Grid from Cybersecurity Threats DOE Releases Maturity Model to Better Protect the Nation's Grid from Cybersecurity Threats May 31, 2012 - 4:32pm Addthis The Electricity Subsector Cybersecurity Capability Maturity Model, which allows electric utilities and grid operators to assess their cybersecurity capabilities and prioritize their actions and investments to improve cybersecurity, combines elements from existing cybersecurity efforts into a common tool that can be used consistently across the industry. The Maturity Model was developed as part of a White House initiative led by the Department of Energy in partnership with the Department of Homeland Security (DHS) and involved close collaboration with industry, other

45

Modelling in industrial maintenance and reliability  

Science Journals Connector (OSTI)

......of modelling the reliability of wind turbines and some critical subsystems from...change, through the years, in wind turbines reliability. There were major...research on determining optimal maintenance policies for deteriorating systems......

Wenbin Wang

2010-10-01T23:59:59.000Z

46

Creative industries urban model: structure and functioning  

E-Print Network (OSTI)

initiate office refurbishment/construction projects and real estate refurbishment/development projects accordingly. In addition, by studying the evolution of land-use transformation displayed by the model, areas not productive to invest are easily... ). Later, their contribution to support urban creativity (Stam and Jeroen et al, 2008; Scott, 2006), facilitate urban regeneration (Pratt, 2009; Evans, 2005), and promote sustainable urban development (Kakiuchi, 2012; Forum for the Future, 2010) is also...

Liu, Helen; Silva, Elisabete A.

2014-01-01T23:59:59.000Z

47

National Energy Modeling System (United States) | Open Energy Information  

Open Energy Info (EERE)

National Energy Modeling System (United States) National Energy Modeling System (United States) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National Energy Modeling System (United States) Focus Area: Biomass Topics: Policy, Deployment, & Program Impact Website: www.eia.gov/oiaf/aeo/overview/ Equivalent URI: cleanenergysolutions.org/content/national-energy-modeling-system-unite Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance Regulations: Utility/Electricity Service Costs The National Energy Modeling System (NEMS) is a computer-based, energy-economy modelling system of the United States through 2030. NEMS

48

Industry  

E-Print Network (OSTI)

Information on corn wet milling. Corn Refiners Association corn wet milling industry: An ENERGYas an automotive fuel. Corn wet milling is the most energy-

Bernstein, Lenny

2008-01-01T23:59:59.000Z

49

Industry  

E-Print Network (OSTI)

increased use of biomass and energy efficiency improvements,Moreira, J. , 2006: Global biomass energy potential. Journal19712004 Notes 1) Biomass energy included 2) Industrial

Bernstein, Lenny

2008-01-01T23:59:59.000Z

50

The National Energy Modeling System: An overview  

SciTech Connect

The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of US energy markets for the midterm period of 1990 to 2010. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. This report presents an overview of the structure and methodology of NEMS and each of its components. The first chapter provides a description of the design and objectives of the system. The second chapter describes the modeling structure. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. Additional background on the development of the system is provided in Appendix A of this report, which describes the EIA modeling systems that preceded NEMS. More detailed model documentation reports for all the NEMS modules are also available from EIA.

Not Available

1994-05-01T23:59:59.000Z

51

Solar PV Manufacturing Cost Analysis: U.S. Competitiveness in a Global Industry (Presentation), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar PV Manufacturing Cost Analysis: Solar PV Manufacturing Cost Analysis: U.S. Competitiveness in a Global Industry Stanford University: Precourt Institute for Energy Alan Goodrich † , Ted James † , and Michael Woodhouse October 10, 2011 † Corresponding authors: alan.goodrich@nrel.gov, ted.james@nrel.gov NREL/PR-6A20-53938 2 Analysis Disclaimer DISCLAIMER AGREEMENT These manufacturing cost model results ("Data") are provided by the National Renewable Energy Laboratory ("NREL"), which is operated by the Alliance for Sustainable Energy LLC ("Alliance") for the U.S. Department of Energy (the "DOE"). It is recognized that disclosure of these Data is provided under the following conditions and warnings: (1) these Data have been prepared for reference purposes only; (2) these Data consist of forecasts, estimates or assumptions made on a best-

52

The National Energy Modeling System: An Overview 1998 - Appendix:  

Gasoline and Diesel Fuel Update (EIA)

APPENDIX: APPENDIX: BIBLIOGRAPHY The National Energy Modeling System is documented in a series of model documentation reports, available by contacting the National Energy Information Center (202/586-8800). Energy Information Administration, National Energy Modeling System Integrating Module Documentation Report, DOE/EIA-M057(97) (Washington, DC, May 1997). Energy Information Administration, Model Documentation Report: Macroeconomic Activity Module (MAM) of the National Energy Modeling System, DOE/EIA-M065(97) (Washington, DC, December 1996). Energy Information Administration, Model Developer's Appendix to the Model Documentation Report: NEMS Macroeconomic Activity Module, DOE/EIA-M065A (Washington, DC, July 1994). Energy Information Administration, Documentation of the DRI Model of the

53

NSC employees recognized as community role models | National...  

National Nuclear Security Administration (NNSA)

role models NSC employees recognized as community role models NNSA Blog Sr. Quality Engineer Brenette Wilder and Lead Project Engineer Dwight Drake from NNSA's National Security...

54

Sandia National Laboratories: A Model for the Nation: Promoting...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Exhibition (EU PVSC) EC Top Publications Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter Experimental Wave Tank Test for Reference Model 3 Floating- Point...

55

Industry  

E-Print Network (OSTI)

for im- proving energy efficiency of corn wet milling havefor the corn wet milling industry: An ENERGY STAR Guide forfuel. Corn wet milling is the most energy-intensive food

Bernstein, Lenny

2008-01-01T23:59:59.000Z

56

Industry  

E-Print Network (OSTI)

options for combined heat and power in Canada. Office ofpolicies to promote combined heat and power in US industry.with fuel inputs in combined heat and power plants being

Bernstein, Lenny

2008-01-01T23:59:59.000Z

57

Industry  

E-Print Network (OSTI)

EJ of primary energy, 40% of the global total of 227 EJ. Bytotal energy use by industry and on the fraction of electricity use consumed by motor driven systems was taken as representative of global

Bernstein, Lenny

2008-01-01T23:59:59.000Z

58

The National Energy Modeling System The  

Gasoline and Diesel Fuel Update (EIA)

2000 2000 (AEO2000) are generated from the National Energy Modeling System (NEMS), developed and main- tained by the Office of Integrated Analysis and Fore- casting of the Energy Information Administration (EIA). In addition to its use in the development of the AEO projections, NEMS is also used in analytical studies for the U.S. Congress and other offices within the Department of Energy. The AEO forecasts are also used by analysts and planners in other govern- ment agencies and outside organizations. The projections in NEMS are developed with the use of a market-based approach to energy analysis. For each fuel and consuming sector, NEMS balances the energy supply and demand, accounting for the eco- nomic competition between the various energy fuels and sources. The time horizon of NEMS is the mid- term period, approximately 20 years in the future. In order to represent the regional differences

59

Industry  

SciTech Connect

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

60

Department of Energy Office of Nuclear Safety and Environmental Policy Technical Position NSEP-TP-2007- 1, Technical Position on the Requirement in DOE 0 420.1B to Use National Consensus Industry Standards and the Model Building CodesTechnical Position NS  

Energy.gov (U.S. Department of Energy (DOE))

All new construction required to follow the provisions of Department of Energy(DOE) Order 420. lB, Facility Safety, must comply with national consensus industrystandards and the model building...

Note: This page contains sample records for the topic "national industry model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

1992-02-01T23:59:59.000Z

62

EIA - The National Energy Modeling System: An Overview 2003-Petroleum  

Gasoline and Diesel Fuel Update (EIA)

Petroleum Market Module Petroleum Market Module The National Energy Modeling System: An Overview 2003 Petroleum Market Module Figure 17. Petroleum Market Module Structure. Need help, contact the National Energy Information Center. Need help, contact the National Energy Information Center at 202-586-8800. Figure 18. Petroleum Administration for Defense Districts. Need help, contact the National Energy Information Center at 202-586-8800. Petroleum Market Module Table. Need help, contact the National Energy Information Center at 202-586-8800. Petroleum Products Modeled in PMM. Need help, contact the National Energy Information Center at 202-586-8800. Crude Oil Categories in PMM Table. Need help, contact the National Energy Information Center at 202-586-8800. Refinery Processing Units Modeled in PMM. Need help, contact the National Energy Information Center at 202-586-8800.

63

A model for Long-term Industrial Energy Forecasting (LIEF)  

SciTech Connect

The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

1992-02-01T23:59:59.000Z

64

DOE Releases Maturity Model to Better Protect the Nation's Grid...  

Office of Environmental Management (EM)

the Nation's Grid from Cybersecurity Threats May 31, 2012 - 4:32pm Addthis The Electricity Subsector Cybersecurity Capability Maturity Model, which allows electric utilities...

65

National Industrial Energy Technology Conference, New Orleans, LA, May 11-12, 2005 1 Quantifying Savings From Improved Boiler Operation  

E-Print Network (OSTI)

energy savings from switching to modulation control mode and reducing excess air in natural gas firedNational Industrial Energy Technology Conference, New Orleans, LA, May 11-12, 2005 1 Quantifying/off operation and excess combustion air reduce boiler energy efficiency. This paper presents methods to quantify

Kissock, Kelly

66

Delivered Energy Consumption Projections by Industry in the Annual Energy Outlook 2002  

Reports and Publications (EIA)

This paper presents delivered energy consumption and intensity projections for the industries included in the industrial sector of the National Energy Modeling System.

2002-01-01T23:59:59.000Z

67

National Energy Modeling System (NEMS) | Open Energy Information  

Open Energy Info (EERE)

National Energy Modeling System (NEMS) National Energy Modeling System (NEMS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National Energy Modeling System (NEMS) Agency/Company /Organization: Energy Information Administration Sector: Energy Focus Area: Economic Development Phase: Develop Goals Topics: Policies/deployment programs Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.eia.gov/oiaf/aeo/overview/index.html OpenEI Keyword(s): EERE tool, National Energy Modeling System, NEMS Language: English References: The National Energy Modeling System: An Overview[1] Project the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and

68

National Institute of Standards and Technology - Texas instruments industrial collaboratory testbed.  

SciTech Connect

A portion of the mission of the NIST Manufacturing Engineering Laboratory (MEL) is to improve and advance length metrology in aid of U.S. Industry. This responsibility is found within the Precision Engineering Division (PED). The successful development of a ''Collaborator'' for TelePresence Microscopy provides an important new tool to promote technology transfer in the area of length metrology and measurement technology. NIST and Texas Instruments under the auspices of the National Automated Manufacturing Testbed (NAMT) and in collaboration with the University of Illinois are developing a microscopy collaborator testbed to demonstrate the value of telepresence microscopy within a large distributed manufacturing facility such as Texas Instruments and between organizations such as NET, Texas Instruments and Universities. Telepresence Microscopy is an application of the state-of-the-art Internet based technology to long-distance scientific endeavors. Long distance can refer to across the country or from one site within a company to another. Telepresence is currently being applied to electron microscopy in several locations where unique analytical facilities (such as those at NIST) can be utilized via Internet connection. Potentially this can provide tremendous savings to a company where asset sharing can now be rapidly and effectively accessed or remote unique facilities can be utilized without the requirement of expensive and time consuming travel. This methodology is not limited to electron microscopy, but its power is currently exemplified by its application to that form of microscopy.

Postek, M. T.

1998-10-29T23:59:59.000Z

69

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

70

National Strategic Unconventional Resource Model | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Strategic Unconventional Resource Model National Strategic Unconventional Resource Model National Strategic Unconventional Resource Model This is the second revision to the National Strategic Unconventional Resources Model that was developed in 2005-2006 to support the Task Force mandated by Congress in subsection 369(h) of the Energy Policy Act of 2005. The primary function of the first Model was to evaluate varying economic scenarios for four technologies: Surface Mining, Underground Mining, Modified In-Situ, and True In-Situ. In 2009 the Model was revised to update the cost data in the first Model. This second revision of the Model adds a fifth Hybrid technology that can be evaluated economically; and it also adds the capability of determining water requirements, CO2 production, and energy efficiency for the first four technologies. Subject to the

71

National Strategic Unconventional Resource Model | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Strategic Unconventional Resource Model National Strategic Unconventional Resource Model National Strategic Unconventional Resource Model This is the second revision to the National Strategic Unconventional Resources Model that was developed in 2005-2006 to support the Task Force mandated by Congress in subsection 369(h) of the Energy Policy Act of 2005. The primary function of the first Model was to evaluate varying economic scenarios for four technologies: Surface Mining, Underground Mining, Modified In-Situ, and True In-Situ. In 2009 the Model was revised to update the cost data in the first Model. This second revision of the Model adds a fifth Hybrid technology that can be evaluated economically; and it also adds the capability of determining water requirements, CO2 production, and energy efficiency for the first four technologies. Subject to the

72

Models of National Energy Systems -focusing on biomass energy  

E-Print Network (OSTI)

Models of National Energy Systems - focusing on biomass energy Poul Erik Grohnheit Systems Analysis models · International development of large energy models · Biomass energy · Upstream expansion of the Pan European model for biomass and crops · Basic elements in a crop model for Denmark· Basic elements

73

National Nanotechnology Initiative's Signature Initiative Sustainable Nanomanufacturing: Creating the Industries of the Future  

Energy.gov (U.S. Department of Energy (DOE))

Presentation for the Sustainable Nanomaterials Workshop by National Nanotechnology Coordination Office held on June 26, 2012

74

Watershed Modeling for Biofuels | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Watershed Modeling for Biofuels Argonne's watershed modeling research addresses water quality in tributary basins of the Mississippi River Basin Argonne's watershed modeling...

75

The National Environmental Justice Advisory Committee (NEJAC) Model Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The National Environmental Justice Advisory Committee (NEJAC) Model The National Environmental Justice Advisory Committee (NEJAC) Model Plan for Public Participation The National Environmental Justice Advisory Committee (NEJAC) Model Plan for Public Participation This report and recommendations have been written as a part of the activities of the NEJAC, a public advisory committee providing extramural policy information and advice to the Administrator and other officials of the U.S. Environmental Protection Agency (EPA). The Council is structured to provide balanced, expert assessment of matters related to environmental justice. This report has been reviewed by EPA. The National Environmental Justice Advisory Committee (NEJAC) Model Plan for Public Participation More Documents & Publications National Environmental Justice Advisory Council Federal Facilities Working

76

The National Energy Modeling System: An Overview 2000 - appendix  

Gasoline and Diesel Fuel Update (EIA)

The National Energy Modeling System is documented in a series of model documentation reports, available on the EIA Web site at http://www.eia.doe. gov/bookshelf/docs.html or by contacting the National Energy Information Center (202/586-8800). The National Energy Modeling System is documented in a series of model documentation reports, available on the EIA Web site at http://www.eia.doe. gov/bookshelf/docs.html or by contacting the National Energy Information Center (202/586-8800). Energy Information Administration, Integrating Module of the National Energy Modeling System: Model Documentation DOE/EIA-M057(2000) (Washington, DC, December 1999). Energy Information Administration, Model Documentation Report: Macroeconomic Activity Module (MAM) of the National Energy Modeling System, DOE/EIA-M065(2000) (Washington, DC, December 1999). Energy Information Administration, Documentation of the DRI Model of the U.S. Economy, DOE/EIA- M061 (Washington, DC, December 1993). Energy Information Administration, NEMS International Energy Module: Model Documentation Report, DOE/EIA-M071(99) (Washington, DC, February 1999).

77

US Energy Service Company Industry: History and Business Models  

Office of Energy Efficiency and Renewable Energy (EERE)

Information about the history of US Energy Service Company including industry history, setbacks, and lessons learned.

78

National and Sectoral GHG Mitigation Potential: A Comparison Across Models  

Open Energy Info (EERE)

National and Sectoral GHG Mitigation Potential: A Comparison Across Models National and Sectoral GHG Mitigation Potential: A Comparison Across Models Jump to: navigation, search Tool Summary Name: National and Sectoral GHG Mitigation Potential: A Comparison Across Models Agency/Company /Organization: Organisation for Economic Co-Operation and Development Topics: GHG inventory, Policies/deployment programs, Pathways analysis Resource Type: Software/modeling tools, Publications, Lessons learned/best practices Website: www.iea.org/papers/2009/Mitigation_potentials.pdf References: National and Sectoral GHG Mitigation Potential: A Comparison Across Models[1] Summary "This paper focuses on mitigation potential to provide a comparative assessment across key economies. GHG mitigation potential is defined here to be the level of GHG emission reductions that could be realised, relative

79

GTO Director Doug Hollett Delivers Keynote at the Nation's Largest Industry Gathering, September 29, 2014  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department's Geothermal Technologies Office participated in the industry's largest geothermal gathering in Portland, Oregon, with a keynote address by Director Doug Hollett.

80

Sandia National Laboratories: Reference Model 3  

NLE Websites -- All DOE Office Websites (Extended Search)

3 Sandia, NREL Release Wave Energy Converter Modeling and Simulation Code: WEC-Sim On July 29, 2014, in Computational Modeling & Simulation, Energy, News, News & Events,...

Note: This page contains sample records for the topic "national industry model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

MCT: Model Coupling Toolkit | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

MCT: Model Coupling Toolkit MCT: Model Coupling Toolkit MCT: Model Coupling Toolkit MCT is a set of open-source software tools for creating coupled models. MCT is fully parallel and can be used to couple message-passing parallel models to create a parallel coupled model. MCT is available as a small library and a set of Fortran90 modules. MCT provides model interoperability through a simple API. Two models that declare and use MCT datatypes can be coupled with a minimum of effort. MCT provides the following core coupling services: A component model registry Domain decomposition descriptors Communications schedulers for parallel MxN intercomponent data transfer and MxM intracomponent data redistribution A flexible and indexible (i.e., random-access) field data storage datatype A time averaging and accumulation buffer datatype

82

EIA - The National Energy Modeling System: An Overview 2003 - Preface  

Gasoline and Diesel Fuel Update (EIA)

Preface Preface The National Energy Modeling System: An Overview 2003 Preface The National Energy Modeling System: An Overview 2003 provides a summary description of the National Energy Modeling System (NEMS), which was used to generate the forecasts of energy production, demand, imports, and prices through the year 2025 for the Annual Energy Outlook 2003 (AEO2003), (DOE/EIA-0383(2003)), released in January 2003. AEO2003 presents national forecasts of energy markets for five primary cases—a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The Overview presents a brief description of the methodology and scope of each of the component modules of NEMS. The model documentation reports listed in the appendix of this document provide further details.

83

Review and evaluation of national airspace system models  

E-Print Network (OSTI)

Abstract from Technical Report Documentation Page: This report is intended to serve as a guide to the availability and capability of state-of-the-art analytical and simulation models of the National Airspace System (NAS). ...

Odoni, Amedeo R.

1979-01-01T23:59:59.000Z

84

EIA - The National Energy Modeling System: An Overview 2003-Electricity  

Gasoline and Diesel Fuel Update (EIA)

Electricity Market Module Electricity Market Module The National Energy Modeling System: An Overview 2003 Electricity Market Module Figure 9. Electricity Market Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Figure 10. Electricity Market Module Supply Regions. Need help, contact the National Energy Information Center at 202-586-8800. Electricity Market Module Table. Need help, contact the National Energy Information Center at 202-586-8800. Central-Station Generating Technologies. Need help, contact the National Energy Information Center at 202-586-8800. 2002 Overnight Capital Costs (including Contingencies), 2002 Heat Rates, and Online Year by Technology for the AEO2003 Reference Case Table. Need help, contact the National Energy Information Center at 202-586-8800.

85

Business models for information commons in the pharmaceutical industry  

E-Print Network (OSTI)

The pharmaceutical industry needs new modes of innovation. The industry's innovation system - based on massive investments in R&D protected by intellectual property rights - has worked well for many years, providing ...

Bharadwaj, Ragu

2009-01-01T23:59:59.000Z

86

EIA - The National Energy Modeling System: An Overview 2003-Residential  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module The National Energy Modeling System: An Overview 2003 Residential Demand Module Figure 5. Residential Demand Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Residential Demand Module Table. Need help, contact the National Energy Information Center at 202-586-8800. NEMS Residential Module Equipment Summary Table. Need help, contact the National Energy Information Center at 202-586-8800. Characteristics of Selected Equipment Table. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version The residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from

87

Sandia National Laboratories Releases Updated Wind Plant Modeling Guidelines  

Energy.gov (U.S. Department of Energy (DOE))

Sandia National Laboratories (Sandia), in collaboration with the Western Electricity Coordinating Councils (WECCs) Renewable Energy Modeling Task Force (REMTF), has released an updated version of the WECC Wind Plant Dynamic Modeling Guidelines for the second generation of generic wind turbine generator models.

88

Sandia National Laboratories: Computational Modeling & Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulated Wind Data for Wave Resource Characterization at US Test Sites On September 17, 2014, in Computational Modeling & Simulation, Energy, News, News & Events, Renewable...

89

Sandia National Laboratories: Accelerated Climate Modeling for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerated Climate Modeling for Energy New Project Is the ACME of Computer Science to Address Climate Change On December 3, 2014, in Analysis, Climate, Global Climate & Energy,...

90

Sandia National Laboratories: Computational Modeling & Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

is to model severe-accident progression in light-water-reactor (LWR) nuclear power plants. Sandia developed MELCOR for the US Nuclear Regulatory ... Sandian Presents on PV...

91

Sandia National Laboratories: PV Performance Modeling Collaborative  

NLE Websites -- All DOE Office Websites (Extended Search)

being pursued in this collaborative include: PVPMC Website: (http:pvpmc.org) Matlab(tm) PV Performance Modeling Toolbox (PVLIB Toolbox can be downloaded on http:...

92

Sandia National Laboratories: Reference Model Project  

NLE Websites -- All DOE Office Websites (Extended Search)

is a partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

93

Sloshing in the LNG shipping industry: risk modelling through multivariate heavy-tail analysis  

E-Print Network (OSTI)

Sloshing in the LNG shipping industry: risk modelling through multivariate heavy-tail analysis In the liquefied natural gas (LNG) shipping industry, the phenomenon of slosh- ing can lead to the occurrence in the LNG shipping industry. KEYWORDS: Sloshing, multivariate heavy-tail distribution, asymptotic depen

94

DYNAMIC MODEL OF AN INDUSTRIAL HEAT PUMP USING WATER AS REFRIGERANT  

E-Print Network (OSTI)

1 DYNAMIC MODEL OF AN INDUSTRIAL HEAT PUMP USING WATER AS REFRIGERANT CHAMOUN MARWAN to improve industrial energy efficiency, the development of a high temperature heat pump using water vapor as refrigerant is investigated. Technical problems restraining the feasibility of this industrial heat pump

Paris-Sud XI, Université de

95

EVALUATION OF INDUSTRY FOUNDATION CLASSES FOR PRACTICAL BUILDING INFORMATION MODELING INTEROPERABILITY  

E-Print Network (OSTI)

Standard Project Committee defines a Building Information Model as "a digital representation of physicalEVALUATION OF INDUSTRY FOUNDATION CLASSES FOR PRACTICAL BUILDING INFORMATION MODELING FOR PRACTICAL BUILDING INFORMATION MODELING INTEROPERABILITY ABSTRACT The AEC (Architecture, Engineering

Kamat, Vineet R.

96

Sandia National Laboratories: Computational Modeling & Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia and Partners Complete Phase I of a Vertical-Axis Deep-Water Offshore Turbine Study On December 3, 2014, in Computational Modeling & Simulation, Energy, News, News & Events,...

97

Evaluating Indoor Exposure Modeling Alternatives for LCA: A Case Study in the Vehicle Repair Industry  

Science Journals Connector (OSTI)

Evaluating Indoor Exposure Modeling Alternatives for LCA: A Case Study in the Vehicle Repair Industry ... Alternatives for modeling occupational exposure in LCA are evaluated using experimental monitoring data in the vehicle-repair industry. ... In addition to their use in occupational hygiene, exposure models may also be applied in environmental assessments, such as risk assessment (RA) and life-cycle assessment (LCA). ...

Evangelia Demou; Stefanie Hellweg; Michael P. Wilson; S. Katharine Hammond; Thomas E. McKone

2009-06-25T23:59:59.000Z

98

LANL researchers use computer modeling to study HIV | National Nuclear  

National Nuclear Security Administration (NNSA)

researchers use computer modeling to study HIV | National Nuclear researchers use computer modeling to study HIV | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > LANL researchers use computer modeling to study HIV LANL researchers use computer modeling to study HIV Posted By Office of Public Affairs Los Alamos National Laboratory researchers are investigating the complex

99

Industrial Hygienist  

Energy.gov (U.S. Department of Energy (DOE))

A successful candidate in this position wil l serve as an Industrial Hygienist in the Operations Division, providing technical oversight of the Pacific Northwest National Laboratory contractors...

100

National Skills Assessment of the U.S. Wind Industry in 2012  

Energy.gov (U.S. Department of Energy (DOE))

A robust workforce is essential to developing domestic wind power projects, including manufacturing, siting, operations, maintenance, and research capabilities. The purpose of our research is to better understand todays domestic wind workforce, projected workforce needs as the industry grows, and how existing and new programs can meet the wind industry's future education and training needs. Results presented in this report provide the first published investigation into the detailed makeup of the wind energy workforce, educational infrastructure and training needs of the wind industry. Insights from this research into the domestic wind workforce will allow the private sector, educational institutions, and federal and state governmental organizations to make workforce-related decisions based on the current employment and training data and future projections in this report.

Note: This page contains sample records for the topic "national industry model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

National Skills Assessment of the U.S. Wind Industry in 2012  

SciTech Connect

A robust workforce is essential to developing domestic wind power projects, including manufacturing, siting, operations, maintenance, and research capabilities. The purpose of our research is to better understand today's domestic wind workforce, projected workforce needs as the industry grows, and how existing and new programs can meet the wind industry's future education and training needs. Results presented in this report provide the first published investigation into the detailed makeup of the wind energy workforce, educational infrastructure and training needs of the wind industry. Insights from this research into the domestic wind workforce will allow the private sector, educational institutions, and federal and state governmental organizations to make workforce-related decisions based on the current employment and training data and future projections in this report.

Levanthal, M.; Tegen, S.

2013-06-01T23:59:59.000Z

102

A National Strategy for Advancing Climate Modeling  

SciTech Connect

Climate models are the foundation for understanding and projecting climate and climate-related changes and are thus critical tools for supporting climate-related decision making. This study developed a holistic strategy for improving the nation??s capability to accurately simulate climate and related Earth system changes on decadal to centennial timescales. The committee??s report is a high level analysis, providing a strategic framework to guide progress in the nation??s climate modeling enterprise over the next 10-20 years. This study was supported by DOE, NSF, NASA, NOAA, and the intelligence community.

Dunlea, Edward; Elfring, Chris

2012-12-04T23:59:59.000Z

103

New Model Demonstrates Offshore Wind Industrys Job Growth Potential  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Departments National Renewable Energy Laboratory (NREL) has developed a tool to estimate jobs and other economic impacts associated with offshore wind development in the United States.

104

The National Energy Modeling System: An Ocerview 2000 - Preface  

Gasoline and Diesel Fuel Update (EIA)

Preface Preface The National Energy Modeling System: An Overview provides a summary description of the National Energy Modeling System (NEMS), which was used to generate the forecasts of energy production, demand, imports, and prices through the year 2020 for the Annual Energy Outlook 2000 (AEO2000), (DOE/EIA-0383(2000)), released in November 1999. AEO2000 presents national forecasts of energy markets for five cases—a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The Overview presents a brief description of the methodology and scope of each of the component modules of NEMS. The model documentation reports listed in the appendix of this document provide further details.

105

The National Energy Modeling System: An Overview 2003  

Gasoline and Diesel Fuel Update (EIA)

3) 3) The National Energy Modeling System: An Overview 2003 March 2003 Energy Information Administration Office of Integrated Analysis and Forecasting U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. This publication is on the WEB at: www.eia.doe.gov/oiaf/aeo/overview/index.html The National Energy Modeling System: An Overview 2003 provides a summary description of the National En- ergy Modeling System (NEMS), which was used to generate the forecasts of energy production, demand, im- ports, and

106

Nationalization of the oil industry in Iran 1951-1953: a study in cold war diplomacy  

E-Print Network (OSTI)

that this oil was their only national resource, and that they wanted. the full benefits of the revenue for themselves. After several oil crises, the Iranian parliament under the leader- ship of Dr. Mohammed. Mossadegh announced. the nationalization... by her ownersh1p of' the oil refinery and f1elds and because it threatened to cut off her huge revenue from oil sales. She was therefore the power primar1ly concerned. with a settlement. The United States and Russian reactions were more complex...

Qaim-Maqami, Linda Wills

2012-06-07T23:59:59.000Z

107

EIA - The National Energy Modeling System: An Overview 2003-Introduction  

Gasoline and Diesel Fuel Update (EIA)

Introduction Introduction The National Energy Modeling System: An Overview 2003 Introduction The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. energy markets for the midterm period through 2025. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). The National Energy Modeling System: An Overview 2003 presents an overview of the structure and methodology of NEMS and each of its components. This chapter provides a description of the design and objectives of the system, followed by a chapter on the overall modeling structure and solution algorithm. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. More detailed model documentation reports for all the NEMS modules are also available from EIA (Appendix, “Bibliography”).

108

Sandia National Laboratories: Japanese National Institute of...  

NLE Websites -- All DOE Office Websites (Extended Search)

Japanese National Institute of Advanced Industrial Science and Technology Sandia-California Partners with Japanese National Institute of Advanced Industrial Science and Technology...

109

Model documentation report: Transportation sector model of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. This document serves three purposes. First, it is a reference document providing a detailed description of TRAN for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, 57(b)(1)). Third, it permits continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

Not Available

1994-03-01T23:59:59.000Z

110

Problem solving in product development: a model for the advanced materials industries  

Science Journals Connector (OSTI)

Problem solving has been identified as a key aspect of product development. Yet, existing descriptive models of problem solving in product development are derived from experience in traditional fabrication and assembly-based industries. This paper examines the sequence of problem solving activities in the advanced materials industries. As opposed to the paradigm of product development seen in industries based on traditional metal fabrication and assembly production technology, development activities in advanced materials industries are focused around a core effort in process development. The paper characterises the steps of design and the associated testing patterns in the advanced materials industries. The model formalises the emphasis on process design and process experimentation, providing a richer description of the problem-solving sequence than the traditional design-build-test sequence so common in the fabrication/assembly industries.

Brent D. Barnett; Kim B. Clark

1998-01-01T23:59:59.000Z

111

A Tale of Two Cities: Greensburg Rebuilds as a National Model...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Innovation, NREL (National Renewable Energy Laboratory) Leading the Nation in Clean Energy Deployment Rebuilding Greensburg, Kansas, as a Model Green Community: A Case Study;...

112

A model for a national low level waste program  

SciTech Connect

A national program for the management of low level waste is essential to the success of environmental clean-up, decontamination and decommissioning, current operations and future missions. The value of a national program is recognized through procedural consistency and a shared set of resources. A national program requires a clear waste definition and an understanding of waste characteristics matched against available and proposed disposal options. A national program requires the development and implementation of standards and procedures for implementing the waste hierarchy, with a specitic emphasis on waste avoidance, minimization and recycling. It requires a common set of objectives for waste characterization based on the disposal facility's waste acceptance criteria, regulatory and license requirements and performance assessments. Finally, a national waste certification program is required to ensure compliance. To facilitate and enhance the national program, a centralized generator services organization, tasked with providing technical services to the generators on behalf of the national program, is necessary. These subject matter experts are the interface between the generating sites and the disposal facility(s). They provide an invaluable service to the generating organizations through their involvement in waste planning prior to waste generation and through championing implementation of the waste hierarchy. Through their interface, national treatment and transportation services are optimized and new business opportunities are identified. This national model is based on extensive experience in the development and on-going management of a national transuranic waste program and management of the national repository, the Waste Isolation Pilot Plant. The Low Level Program at the Savannah River Site also successfully developed and implemented the waste hierarchy, waste certification and waste generator services concepts presented below. The Savannah River Site services over forty generators and has historically managed over 12,000 cubic meters of low level waste annually. The results of the waste minimization program at the site resulted in over 900 initiatives, avoiding over 220,000 cubic meters of waste for a life cycle cost savings of $275 million. At the Los Alamos National Laboratory, the low level waste program services over 20 major generators and several hundred smaller generators that produce over 4,000 cubic meters of low level waste annually. The Los Alamos National Laboratory low level waste program utilizes both on-site and off-site disposal capabilities. Off-site disposal requires the implementation of certification requirements to utilize both federal and commercial options. The Waste Isolation Pilot Plant is the US Department of Energy's first deep geological repository for the permanent disposal of Transuanic waste. Transuranic waste was generated and retrievably stored at 39 sites across the US. Transuranic waste is defined as waste with a radionuclide concentration equal to or greater than 100 nCi/g consisting of radionuclides with half-lives greater than 20 years and with an atomic mass greater than uranium. Combining the lessons learned from the national transuranic waste program, the successful low level waste program at Savannah River Site and the experience of off-site disposal options at Los Alamos National Laboratory provides the framework and basis for developing a viable national strategy for managing low level waste.

Blankenhorn, James A [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

113

Industrial landfill affects on fish communities at Indiana Dunes National Lakeshore (INDU)  

SciTech Connect

INDU, an urban park near the third largest metropolitan area in the US, provides access to over two million visitors per year. The Grand Calumet River/Indiana Harbor Ship Canal is the only Area of Concern (AOC) with all 14 designated uses impaired. The Grand Calumet Lagoons are the former mouth of the Grand Calumet River and form part of the western boundary of INDU, adjacent to Gary, IN. An industrial landfill (slag and other industrial waste) forms the westernmost boundary of the lagoon and a dunal pond. A least-impacted lagoon and a pond lying across a dune ridge were compared to sites adjacent to the landfill. Fish communities censused from twelve sites during the summer of 1994 were analyzed for several community metrics including species richness and composition, trophic structure, and community and individual health. A modified headwater Index of Biotic Integrity (IBI) was utilized to evaluate lacustrine community health. Results include the first record of the Iowa darter (Etheostoma exile) found in northwest Indiana. Examination of the fish community found the least impacted lagoon to contain Erimyzon sucetta, Esox americanus, and Lepomis gulosus. The landfill lagoon lacked these species, with the exception of fewer L. gulosus, while Pimephales notatus was found at all sites in the impacted lake but not at all in the least impacted lagoon. Statistically significant differences in species diversity and IBI can be attributed to landfill proximity. Whole fish analyses of a benthic omnivore (Cyprinus carpio) revealed PAH levels near 1 mg/kg of total PAH in several fish analyzed.

Stewart, P.M. [National Biological Service, Porter, IN (United States); Simon, T.P. [Environmental Protection Agency, Chicago, IL (United States)

1995-12-31T23:59:59.000Z

114

The National Energy Modeling System: An Overview 2000 - Introduction  

Gasoline and Diesel Fuel Update (EIA)

National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. energy markets for the midterm period through 2020. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. energy markets for the midterm period through 2020. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE). The National Energy Modeling System: An Overview presents an overview of the structure and methodology of NEMS and each of its components. This chapter provides a description of the design and objectives of the system, followed by a chapter on the overall modeling structure and solution algorithm. The remainder of the report summarizes the methodology and scope of the component modules of NEMS. The model descriptions are intended for readers familiar with terminology from economics, operations research, and energy modeling. More detailed model documentation reports for all the NEMS modules are also available from EIA (Appendix, “Bibliography”).

115

How to obtain the National Energy Modeling System (NEMS)  

Reports and Publications (EIA)

The National Energy Modeling System (NEMS) NEMS is used by the modelers at the U. S. Energy Information Administration (EIA) who understand its structure and programming. NEMS has only been used by a few organizations outside of the EIA, because most people that requested NEMS found out that it was too difficult or rigid to use. NEMS is not typically used for state-level analysis and is poorly suited for application to other countries. However, many do obtain the model simply to use the data in its input files or to examine the source code.

2013-01-01T23:59:59.000Z

116

Industrial environmental performance evaluation: A Markov-based model considering data uncertainty  

Science Journals Connector (OSTI)

Commonly, operational aspects of an industrial process are not included when evaluating the process environmental performance. These aspects are important as operational failures can intensify adverse environmental impacts or can diminish the chance ... Keywords: Decision-making, Environmental model, Industrial process, Maintenance, Markov chain, Uncertainty

Samaneh Shokravi, Alan J. R. Smith, Colin R. Burvill

2014-10-01T23:59:59.000Z

117

Petroleum Market Model of the National Energy Modeling System  

SciTech Connect

The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions. The production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcohols and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level. This report is organized as follows: Chapter 2, Model Purpose; Chapter 3, Model Overview and Rationale; Chapter 4, Model Structure; Appendix A, Inventory of Input Data, Parameter Estimates, and Model Outputs; Appendix B, Detailed Mathematical Description of the Model; Appendix C, Bibliography; Appendix D, Model Abstract; Appendix E, Data Quality; Appendix F, Estimation methodologies; Appendix G, Matrix Generator documentation; Appendix H, Historical Data Processing; and Appendix I, Biofuels Supply Submodule.

NONE

1997-01-01T23:59:59.000Z

118

Corporate social responsibility in Latin America's petroleum industry: a national oil company's strategy for sustainable development  

Science Journals Connector (OSTI)

National oil companies (NOCs) now control the majority of globally proved oil reserves but formal research into their social and environmental performance is scant. In a region of the world where poverty, environmental degradation, unemployment, poor access to health care and infrastructure services are ongoing realities, corporate social responsibility (CSR) in Latin America offers potential for net positive impact. We examine the particular case of a Latin American NOC's efforts to improve its social licence to operate by engaging communities as part of a broader sustainable development strategy for its last large oil field. Organisational strategic bridging is explored as a vehicle for the NOC to embark on CSR strategies in Latin America. In this emerging field, there is a place for ethically oriented business researchers to act as CSR-sustainable development practitioners going beyond the purely observational role of management academics towards application of participatory action research methods.

David Lertzman; Percy Garcia; Harrie Vredenburg

2013-01-01T23:59:59.000Z

119

The National Energy Modeling System: An Overview 2000 - Macroeconomic  

Gasoline and Diesel Fuel Update (EIA)

Macroeconomic assessment at EIA involves several modes of analysis. The first type of analysis, used in forecasting the Annual Energy Outlook where energy prices change, uses kernel regression and response surface techniques to mimic the response of larger macroeconomic and industrial models. This mode of analysis requires a given economic baseline and then calculates the economic impacts of changing energy prices, calculated from the chosen growth path. The economic growth cases are derived from the larger core models and can reflect either high, low, or reference case growth assumptions. Analyzing economic impacts from energy price changes uses the macroeconomic activity module (MAM) within NEMS and provides a subset of the macroeconomic variables available in the larger core models. The composition of the subset is determined by the other energy modules in NEMS, as they use various macroeconomic concepts as assumptions to their particular energy model.

120

On the use of fuzzy inference techniques in assessment models: part II: industrial applications  

Science Journals Connector (OSTI)

In this paper, we study the applicability of the monotone output property and the output resolution property in fuzzy assessment models to two industrial Failure Mode and Effect Analysis (FMEA) problems. First, t...

Kai Meng Tay; Chee Peng Lim

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "national industry model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Modeling ruminant methane emissions from the U.S. beef cattle industry  

E-Print Network (OSTI)

Computer models were constructed to estimate methane emissions from cow/calf, replacement heifers, burs, stockers and feedlot sectors of the U.S. beef cattle industry. Methane (CH4) yields were calculated based on net energy values and forage...

Turk, Danny Carroll

2012-06-07T23:59:59.000Z

122

Distributed Energy: Modeling Penetration in Industrial Sector Over the Long-Term  

E-Print Network (OSTI)

and the generation of steam. Within the framework of a US energy system model (MARKAL using the assumptions underlying AEO 2005), where all sources of energy supply and demand are depicted, the potential penetration of DE options is evaluated. The industrial... and the generation of steam. Within the framework of a US energy system model (MARKAL using the assumptions underlying AEO 2005), where all sources of energy supply and demand are depicted, the potential penetration of DE options is evaluated. The industrial...

Greening, L.

2006-01-01T23:59:59.000Z

123

Model documentation Renewable Fuels Module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analaytical approach and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1996 Annual Energy Outlook forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described.

NONE

1996-01-01T23:59:59.000Z

124

NRELs Industry Growth Forum Boosts Clean Energy Commercialization Efforts (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL's Industry Growth Forum NREL's Industry Growth Forum Boosts Clean Energy Commercialization Efforts For more than a decade, the National Renewable Energy Laboratory's (NREL) Industry Growth Forum has been the nation's premier event for early-stage clean energy investment. The forum features presentations from the most innovative, promising, and emergent clean energy companies; provocative panels led by thought leaders; and organized networking opportunities. It is the perfect venue for growing cleantech companies to present their business to a wide range of investors. The caliber of investors and entrepreneurial companies that attend are just a part of what make the forum the preeminent clean energy investment event in the country. The forum's unique presentation format, rich educational content, and rigorous evaluation process leave

125

Industrial Sector Energy Efficiency Modeling (ISEEM) Framework Documentation  

E-Print Network (OSTI)

Model Part I, Energy Technology Systems Analysis Programme,A Report of the Energy Technology Systems Analysis Project,Energy Efficiency Technologies in Integrated Assessment

Karali, Nihan

2014-01-01T23:59:59.000Z

126

2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond  

SciTech Connect

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance and other issues Discussion of the facility's environmental impacts During the 2011 permit year, approximately 166 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

Mike Lewis

2012-02-01T23:59:59.000Z

127

Mathematical Modeling of Pottery Production in Different Industrial Furnaces  

Science Journals Connector (OSTI)

The traditional process for pottery production was analyzed in this work by developing a fundamental mathematical model that simulates the operation of rustic pottery furnaces as employed by natives of village...

Marco Aurelio Ramrez Argez

2008-10-01T23:59:59.000Z

128

The deformation models needed by the steel industry  

Science Journals Connector (OSTI)

...model for process control. pressing at an auto supply company. The design...transferred along the supply chain. In other words...used for process control, have to run in real...feedstock composition and temperature. Figure 12 illus...

1999-01-01T23:59:59.000Z

129

DOE/DHS INDUSTRIAL CONTROL SYSTEM CYBER SECURITY PROGRAMS: A MODEL FOR USE IN NUCLEAR FACILITY SAFEGUARDS AND SECURITY  

SciTech Connect

Many critical infrastructure sectors have been investigating cyber security issues for several years especially with the help of two primary government programs. The U.S. Department of Energy (DOE) National SCADA Test Bed and the U.S. Department of Homeland Security (DHS) Control Systems Security Program have both implemented activities aimed at securing the industrial control systems that operate the North American electric grid along with several other critical infrastructure sectors (ICS). These programs have spent the last seven years working with industry including asset owners, educational institutions, standards and regulating bodies, and control system vendors. The programs common mission is to provide outreach, identification of cyber vulnerabilities to ICS and mitigation strategies to enhance security postures. The success of these programs indicates that a similar approach can be successfully translated into other sectors including nuclear operations, safeguards, and security. The industry regulating bodies have included cyber security requirements and in some cases, have incorporated sets of standards with penalties for non-compliance such as the North American Electric Reliability Corporation Critical Infrastructure Protection standards. These DOE and DHS programs that address security improvements by both suppliers and end users provide an excellent model for nuclear facility personnel concerned with safeguards and security cyber vulnerabilities and countermeasures. It is not a stretch to imagine complete surreptitious collapse of protection against the removal of nuclear material or even initiation of a criticality event as witnessed at Three Mile Island or Chernobyl in a nuclear ICS inadequately protected against the cyber threat.

Robert S. Anderson; Mark Schanfein; Trond Bjornard; Paul Moskowitz

2011-07-01T23:59:59.000Z

130

The National Energy Modeling System: An Overview 2000 - Transportation  

Gasoline and Diesel Fuel Update (EIA)

transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of renewables and alternative fuels, subject to delivered prices of energy fuels and macroeconomic variables, including disposable personal income, gross domestic product, level of imports and exports, industrial output, new car and light truck sales, and population. The structure of the module is shown in Figure 8. transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of renewables and alternative fuels, subject to delivered prices of energy fuels and macroeconomic variables, including disposable personal income, gross domestic product, level of imports and exports, industrial output, new car and light truck sales, and population. The structure of the module is shown in Figure 8. Figure 8. Transportation Demand Module Structure NEMS projections of future fuel prices influence the fuel efficiency, vehicle-miles traveled, and alternative-fuel vehicle (AFV) market penetration for the current fleet of vehicles. Alternative-fuel shares are projected on the basis of a multinomial logit vehicle attribute model, subject to State and Federal government mandates.

131

Industrial Application of ObjectOriented Mathematical Modeling and Computer Algebra  

E-Print Network (OSTI)

Industrial Application of Object­Oriented Mathematical Modeling and Computer Algebra in Mechanical of such an en­ vironment including a modeling language (ObjectMath -- Object oriented Mathematical language within a computer algebra language. This environment and language, called ObjectMath (Object oriented

Zhao, Yuxiao

132

The National Energy Modeling System: An Overview 1998 - Introduction  

Gasoline and Diesel Fuel Update (EIA)

INTRODUCTION INTRODUCTION blueball.gif (205 bytes) Purpose of NEMS blueball.gif (205 bytes) Representations of Energy Market blueball.gif (205 bytes) Technology Representation blueball.gif (205 bytes) External Availability The National Energy Modeling System (NEMS) is a computer-based, energy-economy modeling system of U.S. energy markets for the midterm period through 2020. NEMS projects the production, imports, conversion, consumption, and prices of energy, subject to assumptions on macroeconomic and financial factors, world energy markets, resource availability and costs, behavioral and technological choice criteria, cost and performance characteristics of energy technologies, and demographics. NEMS was designed and implemented by the Energy Information Administration (EIA) of the U.S.

133

Modeling National Impacts for the Building America Program  

SciTech Connect

In this paper we present a model to estimate the nationalenergy and economic impacts of the Department of Energy Building Americaprogram. The program goal is to improve energy performance in newresidential construction, by working with builders to design andconstruct energy-efficient homes at minimal cost. The model is anadaptation of the method used to calculate the national energy savingsfor appliance energy efficiency standards. The main difference is thatthe key decision here is not the consumer decision to buy anefficienthouse, but rather the builder decision to offer such a house inthe market. The builder decision is treated by developing a number ofscenarios in which the relative importance of first costs vs. energysavings is varied.

Coughlin, Katie M.; McNeil, Michael A.

2006-06-15T23:59:59.000Z

134

Energy Department Co-Hosts Workshops to Develop an Industry-Driven Vision of the Nations Future Electric Grid  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. electric grid provides the foundation for Americas economic success. Our digital economy, our national security, and our day-to-day lives are highly dependent on reliable, safe, and affordable electricity. To take advantage of technological advances and to meet societys changing expectations and preferences, our nations grid must evolve, as well.

135

A National Assistance Extension Program for Metal Casting: a foundation industry. Final report for the period February 16, 1994 through May 15, 1997  

SciTech Connect

The TRP award was proposed as an umbrella project to build infrastructure and extract lessons about providing extension-enabling services to the metal casting industry through the national network of Manufacturing Technology Center`s (MTC`s). It targeted four discrete task areas required for the MCC to service the contemplated needs of industry, and in which the MCC had secured substantial involvement of partner organizations. Task areas identified included Counter-Gravitational Casting, Synchronous Manufacturing, Technology Deployment, and Facility and Laboratory Improvements. Each of the task areas includes specific subtasks which are described.

NONE

1997-09-01T23:59:59.000Z

136

Mathematical Model and Artificial Intelligent Techniques Applied to a Milk Industry through DSM  

Science Journals Connector (OSTI)

The resources for electrical energy are depleting and hence the gap between the supply and the demand is continuously increasing. Under such circumstances the option left is optimal utilization of available energy resources. The main objective of this chapter is to discuss about the Peak load management and overcome the problems associated with it in processing industries such as Milk industry with the help of DSM techniques. The chapter presents a generalized mathematical model for minimizing the total operating cost of the industry subject to the constraints. The work presented in this chapter also deals with the results of application of Neural Network Fuzzy Logic and Demand Side Management (DSM) techniques applied to a medium scale milk industrial consumer in India to achieve the improvement in load factor reduction in Maximum Demand (MD) and also the consumer gets saving in the energy bill.

P. Ravi Babu; V. P. Sree Divya

2011-01-01T23:59:59.000Z

137

The application of neural networks with artificial intelligence technique in the modeling of industrial processes  

SciTech Connect

Neural networks are a relatively new artificial intelligence technique that emulates the behavior of biological neural systems in digital software or hardware. These networks can 'learn', automatically, complex relationships among data. This feature makes the technique very useful in modeling processes for which mathematical modeling is difficult or impossible. The work described here outlines some examples of the application of neural networks with artificial intelligence technique in the modeling of industrial processes.

Saini, K. K.; Saini, Sanju [CDLM engg. College Panniwala Mota, Sirsa and Murthal, Sonipat, Haryana (India)

2008-10-07T23:59:59.000Z

138

National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost- effective retrofit measures to improve the energy efficiency of residential buildings. This database: * Provides information in a standardized format. * Improves the technical consistency and accuracy of the results of software programs. * Enables experts and stakeholders to view the retrofit information and provide comments to improve data

139

Impacts of Modeled Recommendations of the National Commission on Energy Policy  

Reports and Publications (EIA)

This report provides the Energy Information Administration's analysis of those National Commission on Energy Policy (NCEP) energy policy recommendations that could be simulated using the National Energy Modeling System (NEMS).

2005-01-01T23:59:59.000Z

140

U.S. Department of Energy Commercial Reference Building Models of the National Building Stock  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy Department of Energy Commercial Reference Building Models of the National Building Stock Michael Deru, Kristin Field, Daniel Studer, Kyle Benne, Brent Griffith, and Paul Torcellini National Renewable Energy Laboratory Bing Liu, Mark Halverson, Dave Winiarski, and Michael Rosenberg Pacific Northwest National Laboratory Mehry Yazdanian Lawrence Berkeley National Laboratory Joe Huang Formerly of Lawrence Berkeley National Laboratory Drury Crawley Formerly of the U.S. Department of Energy Technical Report NREL/TP-5500-46861 February 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory

Note: This page contains sample records for the topic "national industry model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

EIA - Assumptions to the Annual Energy Outlook 2009 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2009 Industrial Demand Module Table 6.1. Industry Categories. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Table 6.2.Retirement Rates. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process flow or end use accounting

142

Evaluation Model for Safety Capacity of Chemical Industrial Park Based on Acceptable Regional Risk  

Science Journals Connector (OSTI)

Abstract The paper defines the Safety Capacity of Chemical Industrial Park (SCCIP) from the perspective of acceptable regional risk. For the purpose to explore the evaluation model for the SCCIP, a method based on quantitative risk assessment was adopted for evaluating transport risk and to confirm reasonable safety transport capacity for chemical industrial park, and then by combining with the safety storage capacity,a SCCIP evaluation model was put forward. The SCCIP was decided by the smaller one between the largest safety storage capacity and the maximum safety transport capacity, or else, the regional risk of the park will exceed the acceptable level. The developed method was applied to a chemical industrial park in Guangdong province to obtain the maximum safety transport capacity and the SCCIP. The results can be realized the regional risk control to the Park effectively.

Guohua Chen; Shukun Wang; Xiaoqun Tan

2014-01-01T23:59:59.000Z

143

UniversityIndustryNational Laboratory Partnership to Improve Building Efficiency by Equipment Health Monitoring with Virtual Intelligent Sensing  

Energy.gov (U.S. Department of Energy (DOE))

Lead Performer: Oak Ridge National Laboratory- Oak Ridge, TN Partners: -- University of Tennessee Knoxville, TN -- Richman Surrey, Inc. Scottsdale, AZ

144

Industry Alliance Industry Alliance  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century October, 2010...

145

Reducing the Anaerobic Digestion Model N1 for its application to an industrial wastewater treatment plant  

E-Print Network (OSTI)

the Anaerobic Digestion Model N°1 for its application to an industrial wastewater treatment plant treating winery effluent wastewater Carlos García-Diéguez 1 , Olivier Bernard 2 , Enrique Roca 1, * 1 USC ­ PRODES for winery effluent wastewater. A new reduced stoichiometric matrix was identified and the kinetic parameters

Boyer, Edmond

146

Idaho National Laboratory/Nuclear Power Industry Strategic Plan for Light Water Reactor Research and Development An Industry-Government Partnership to Address Climate Change and Energy Security  

SciTech Connect

The dual issues of energy security and climate change mitigation are driving a renewed debate over how to best provide safe, secure, reliable and environmentally responsible electricity to our nation. The combination of growing energy demand and aging electricity generation infrastructure suggests major new capacity additions will be required in the years ahead.

Electric Power Research

2007-11-01T23:59:59.000Z

147

Model documentation Coal Market Module of the National Energy Modeling System  

SciTech Connect

This report documents objectives and conceptual and methodological approach used in the development of the National Energy Modeling System (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1996 (AEO96). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s three submodules: Coal Production Submodule, Coal Export Submodule, and Coal Distribution Submodule.

NONE

1996-04-30T23:59:59.000Z

148

The Pacific Northwest National Laboratory delivers financially attractive systems that use biomass to produce industrial and consumer products.  

E-Print Network (OSTI)

biomass to produce industrial and consumer products. While biomass holds potential for a ready supply from biomass--has stymied government and industry alike. The U.S. Department of Energy's Pacific to using biomass. Our research is focused on producing high-value bioproducts, such as chemicals

149

Model documentation renewable fuels module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1997 Annual Energy Outlook forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs. and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves three purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Finally, such documentation facilitates continuity in EIA model development by providing information sufficient to perform model enhancements and data updates as part of EIA`s ongoing mission to provide analytical and forecasting information systems.

NONE

1997-04-01T23:59:59.000Z

150

Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 1  

SciTech Connect

In July, 1994, a team of materials specialists from Sandia and U S Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

Zanner, F.J.; Moffatt, W.C.

1995-07-01T23:59:59.000Z

151

Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 2  

SciTech Connect

In July, 1994, a team of materials specialists from Sandia and US. Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US. Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

Zanner, F.J.; Moffatt, W.C.

1995-07-01T23:59:59.000Z

152

System dynamics-based modelling and analysis of greening the construction industry supply chain  

Science Journals Connector (OSTI)

Increasing concern on global warming and corporate social responsibility have made environmental issues an area of importance to address for governments and businesses across the world. Among the Middle East countries, the United Arab Emirates (UAE) tops the list in terms of per capita energy spending and per capita carbon footprints. The construction industry is the major contributor to environmental pollution due to its size and nature of activity. The rapid growth of construction sector has a significant environmental impact with increase in carbon footprints. This paper analyses the environmental implications of the rapidly growing construction industry in UAE using system dynamics approach. Quantitative modelling of the construction industry supply chain helps to measure the dynamic interaction between its various factors under multiple realistic scenarios. The potential carbon savings and the impact of each factor are calculated using scenario development analysis. The paper has addressed in detail the various drivers and inhibitors of carbon emission in the construction industry supply chain and ways to evaluate the carbon savings. The paper provides an analytical decision framework to assess emissions of all stages applicable to the construction industry supply chain.

Balan Sundarakani; Arijit Sikdar; Sreejith Balasubramanian

2014-01-01T23:59:59.000Z

153

Petroleum Market Model of the National Energy Modeling System. Part 2  

SciTech Connect

This report contains the following: Bibliography; Petroleum Market Model abstract; Data quality; Estimation methodologies (includes refinery investment recovery thresholds, gas plant models, chemical industry demand for methanol, estimation of refinery fixed costs, estimation of distribution costs, estimation of taxes gasoline specifications, estimation of gasoline market shares, estimation of low-sulfur diesel market shares, low-sulfur diesel specifications, estimation of regional conversion coefficients, estimation of SO{sub 2} allowance equations, unfinished oil imports methodology, product pipeline capacities and tariffs, cogeneration methodology, natural gas plant fuel consumption, and Alaskan crude oil exports); Matrix generator documentation; Historical data processing; and Biofuels supply submodule.

NONE

1997-12-18T23:59:59.000Z

154

National resources for development -- a suggested decision model  

E-Print Network (OSTI)

that is relevant to the nations of the third world in following the path of national development. Schumpeter's develop- ment theory revolves around the idea of a stationary, established system being altered from its course of the circular flow of economic life... relations are directed toward that goal. Secondly, as implied by Norgenthau, a primary source of a nation's power is its relative level of development. Third, despite the di? chotomy in the literature on political and economic de- velopment, power as a...

Henry, Sam Sherrill

1973-01-01T23:59:59.000Z

155

Modeling the determinants of industry political power: industry winners in the Economic Recovery Tax Act of 1981  

E-Print Network (OSTI)

This study uses qualitative comparative analysis (QCA) to examine the basis of industry political power by assessing conditions of economic interdependence and political action associated with the passage of the Economic Recovery Tax Act of 1981...

Kardell, Amy Louise

2004-09-30T23:59:59.000Z

156

EIA - The National Energy Modeling System: An Overview 2003-Macroeconomic  

Gasoline and Diesel Fuel Update (EIA)

Macroeconomic Activity Module Macroeconomic Activity Module The National Energy Modeling System: An Overview 2003 Macroeconomic Activity Module The Macroeconomic Activity Module (MAM) links NEMS to the rest of the economy by providing projections of economic driver variables for use by the supply, demand, and conversion modules of NEMS. The derivation of the baseline macroeconomic forecast lays a foundation for the determination of the energy demand and supply forecast. MAM is used to present alternative macroeconomic growth cases to provide a range of uncertainty about the growth potential for the economy and its likely consequences for the energy system. MAM is also able to address the macroeconomic impacts associated with changing energy market conditions, such as alternative world oil price assumptions. Outside of the Annual Energy Outlook setting, MAM represents a system of linked modules which can assess the potential impacts on the economy of changes in energy events or policy proposals. These economic impacts then feed back into NEMS for an integrated solution. MAM consists of five modules:

157

Modelling commodity prices in the Australian National Electricity Market.  

E-Print Network (OSTI)

??Beginning in the early 1990s several countries, including Australia, have pursued programs of deregulation and restructuring of their electricity supply industries. Dissatisfaction with state-run monopoly (more)

Thomas, S

2007-01-01T23:59:59.000Z

158

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This report serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, section 57(b)(1)). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1995-02-01T23:59:59.000Z

159

Model documentation report: Commercial sector demand module of the national energy modeling system  

SciTech Connect

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This document serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

NONE

1994-08-01T23:59:59.000Z

160

Distributed generation capabilities of the national energy modeling system  

SciTech Connect

This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the n umber of years to a positive cash flow. Some important technologies, e.g. thermally activated cooling, are absent, and ceilings on DG adoption are determined by some what arbitrary caps on the number of buildings that can adopt DG. These caps are particularly severe for existing buildings, where the maximum penetration for any one technology is 0.25 percent. On the other hand, competition among technologies is not fully considered, and this may result in double-counting for certain applications. A series of sensitivity runs show greater penetration with net metering enhancements and aggressive tax credits and a more limited response to lowered DG technology costs. Discussion of alternatives to the current code is presented in Section 4. Alternatives or improvements to how DG is modeled in NEMS cover three basic areas: expanding on the existing total market for DG both by changing existing parameters in NEMS and by adding new capabilities, such as for missing technologies; enhancing the cash flow analysis but incorporating aspects of DG economics that are not currently represented, e.g. complex tariffs; and using an external geographic information system (GIS) driven analysis that can better and more intuitively identify niche markets.

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "national industry model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Civil War Icon Becomes National Clean Energy Model | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Civil War Icon Becomes National Clean Energy Model Civil War Icon Becomes National Clean Energy Model Civil War Icon Becomes National Clean Energy Model December 2, 2010 - 2:26pm Addthis Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program Nearly a century and a half after the first shots of the Civil War, Fort Sumter National Monument is poised to become a national model for clean energy. By adopting solar and hydrogen fuel cell technologies, the monument will generate clean, renewable power - establishing itself as an energy self-sufficient island. This project is part of the Energy SmartPARKS initiative. This first-of-its-kind collaboration - launched in 2008 with the Department of Energy, Department of Interior, and the National Park Service - is designed to implement and showcase sustainable energy

162

Civil War Icon Becomes National Clean Energy Model | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Civil War Icon Becomes National Clean Energy Model Civil War Icon Becomes National Clean Energy Model Civil War Icon Becomes National Clean Energy Model December 2, 2010 - 2:26pm Addthis Sunita Satyapal Program Manager, Hydrogen & Fuel Cell Technology Program Nearly a century and a half after the first shots of the Civil War, Fort Sumter National Monument is poised to become a national model for clean energy. By adopting solar and hydrogen fuel cell technologies, the monument will generate clean, renewable power - establishing itself as an energy self-sufficient island. This project is part of the Energy SmartPARKS initiative. This first-of-its-kind collaboration - launched in 2008 with the Department of Energy, Department of Interior, and the National Park Service - is designed to implement and showcase sustainable energy

163

Model-based robust fault detection and isolation of an industrial gas turbine prototype using soft computing techniques  

Science Journals Connector (OSTI)

This study proposes a model-based robust fault detection and isolation (RFDI) method with hybrid structure. Robust detection and isolation of the realistic faults of an industrial gas turbine in steady-state conditions is mainly considered. For residual ... Keywords: Industrial gas turbine, Local linear model tree (LOLIMOT), Local linear neuro-fuzzy network, Model error modelling, Neural network, Robust fault detection and isolation

Hasan Abbasi Nozari; Mahdi Aliyari Shoorehdeli; Silvio Simani; Hamed Dehghan Banadaki

2012-08-01T23:59:59.000Z

164

Advances in National Capabilities for Consequence Assessment Modeling of Airborne Hazards  

SciTech Connect

This paper describes ongoing advancement of airborne hazard modeling capabilities in support of multiple agencies through the National Atmospheric Release Advisory Center (NARAC) and the Interagency Atmospheric Modeling and Atmospheric Assessment Center (IMAAC). A suite of software tools developed by Lawrence Livermore National Laboratory (LLNL) and collaborating organizations includes simple stand-alone, local-scale plume modeling tools for end user's computers, Web- and Internet-based software to access advanced 3-D flow and atmospheric dispersion modeling tools and expert analysis from the national center at LLNL, and state-of-the-science high-resolution urban models and event reconstruction capabilities.

Nasstrom, J; Sugiyama, G; Foster, K; Larsen, S; Kosovic, B; Eme, B; Walker, H; Goldstein, P; Lundquist, J; Pobanz, B; Fulton, J

2007-11-26T23:59:59.000Z

165

Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

NONE

1998-01-01T23:59:59.000Z

166

Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 3  

SciTech Connect

This Appendix consists of two unpublished reports produced by Energy and Environmental Analysis, Inc., under contract to Oak Ridge National Laboratory. These two reports formed the basis for the subsequent development of the Fuel Economy Model described in Volume 1. They are included in order to document more completely the efforts undertaken to construct a comprehensive model of automobile fuel economy. The supplemental reports are as follows: Supplement 1--Documentation Attributes of Technologies to Improve Automotive Fuel Economy; Supplement 2--Analysis of the Fuel Economy Boundary for 2010 and Comparison to Prototypes.

NONE

1998-01-01T23:59:59.000Z

167

Modeling and co-simulation of a parabolic trough solar plant for industrial process heat  

Science Journals Connector (OSTI)

In the present paper a tri-dimensional non-linear dynamic thermohydraulic model of a parabolic trough collector was developed in the high-level acausal object-oriented language Modelica and coupled to a solar industrial process heat plant modeled in TRNSYS. The integration is performed in an innovative co-simulation environment based on the TLK interconnect software connector middleware. A discrete Monte Carlo ray-tracing model was developed in SolTrace to compute the solar radiation heterogeneous local concentration ratio in the parabolic trough collector absorber outer surface. The obtained results show that the efficiency predicted by the model agrees well with experimental data with a root mean square error of 1.2%. The dynamic performance was validated with experimental data from the Acurex solar field, located at the Plataforma Solar de Almeria, South-East Spain, and presents a good agreement. An optimization of the IST collector mass flow rate was performed based on the minimization of an energy loss cost function showing an optimal mass flow rate of 0.22kg/sm2. A parametric analysis showed the influence on collector efficiency of several design properties, such as the absorber emittance and absorptance. Different parabolic trough solar field model structures were compared showing that, from a thermal point of view, the one-dimensional model performs close to the bi-dimensional. Co-simulations conducted on a reference industrial process heat scenario on a South European climate show an annual solar fraction of 67% for a solar plant consisting on a solar field of 1000m2, with thermal energy storage, coupled to a continuous industrial thermal demand of 100kW.

R. Silva; M. Prez; A. Fernndez-Garcia

2013-01-01T23:59:59.000Z

168

Sandia National Laboratories: open source WEC modeling tool  

NLE Websites -- All DOE Office Websites (Extended Search)

open source WEC modeling tool Sandia, NREL Release Wave Energy Converter Modeling and Simulation Code: WEC-Sim On July 29, 2014, in Computational Modeling & Simulation, Energy,...

169

Modeling Interregional Transmission Congestion in the NationalEnergy Modeling System  

SciTech Connect

Congestion analysis using National Energy Modeling National Energy Modeling System (NEMS) or NEMS-derivatives, such as LBNL-NEMS, is subject to significant caveats because the generation logic inherent in NEMS limits the extent to which interregional transmission can be utilized and intraregional transmission is not represented at all. The EMM is designed primarily to represent national energy markets therefore regional effects may be simplified in ways that make congestion analysis harder. Two ways in particular come to mind. First, NEMS underutilizes the capability of the traditional electric grid as it builds the dedicated and detached grid. Second, it also undervalues the costs of congestion by allowing more transmission than it should, due to its use of a transportation model rather than a transmission model. In order to evaluate benefits of reduced congestion using LBNL-NEMS, Berkeley Lab identified three possible solutions: (1) implement true simultaneous power flow, (2) always build new plants within EMM regions even to serve remote load, and (3) the dedicated and detached grid should be part of the known grid. Based on these findings, Berkeley Lab recommends the following next steps: (1) Change the build logic that always places new capacity where it is needed and allow the transmission grid to be expanded dynamically. (2) The dedicated and detached grid should be combined with the traditional grid. (3) Remove the bias towards gas fired combine cycle and coal generation, which are the only types of generation currently allowed out of region. (4) A power flow layer should be embedded in LBNL-NEMS to appropriately model and limit transmission.

Gumerman, Etan; Chan, Peter; Lesieutre, Bernard; Marnay, Chris; Wang, Juan

2006-05-25T23:59:59.000Z

170

Model documentation report: Residential sector demand module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document providing a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

NONE

1995-03-01T23:59:59.000Z

171

Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1  

SciTech Connect

The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. Subsequent chapters of this report provide: an overview of NGTDM; a description of the interface between the NEMS and NGTDM; an overview of the solution methodology of the NGTDM; the solution methodology for the Annual Flow Module; the solution methodology for the Distributor Tariff Module; the solution methodology for the Capacity Expansion Module; the solution methodology for the Pipeline Tariff Module; and a description of model assumptions, inputs, and outputs.

NONE

1998-01-01T23:59:59.000Z

172

A Tale of Two Cities: Greensburg Rebuilds as a National Model for Green  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Tale of Two Cities: Greensburg Rebuilds as a National Model for A Tale of Two Cities: Greensburg Rebuilds as a National Model for Green Communities (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) A Tale of Two Cities: Greensburg Rebuilds as a National Model for Green Communities (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) This fact sheet provides a summary of how DOE and NREL's technical assistance in Greensburg, Kansas, helped the town rebuild green after recovering from a tornado in May 2007. 54901.pdf More Documents & Publications NREL Helps Greensburg Set the Model for Green Communities (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory) Leading the Nation in Clean Energy Deployment (Fact Sheet), Integrated Deployment: Overview of Projects (ID)

173

Long-term Industrial Energy Forecasting (LIEF) model (18-sector version)  

SciTech Connect

The new 18-sector Long-term Industrial Energy Forecasting (LIEF) model is designed for convenient study of future industrial energy consumption, taking into account the composition of production, energy prices, and certain kinds of policy initiatives. Electricity and aggregate fossil fuels are modeled. Changes in energy intensity in each sector are driven by autonomous technological improvement (price-independent trend), the opportunity for energy-price-sensitive improvements, energy price expectations, and investment behavior. Although this decision-making framework involves more variables than the simplest econometric models, it enables direct comparison of an econometric approach with conservation supply curves from detailed engineering analysis. It also permits explicit consideration of a variety of policy approaches other than price manipulation. The model is tested in terms of historical data for nine manufacturing sectors, and parameters are determined for forecasting purposes. Relatively uniform and satisfactory parameters are obtained from this analysis. In this report, LIEF is also applied to create base-case and demand-side management scenarios to briefly illustrate modeling procedures and outputs.

Ross, M.H. [Univ. of Michigan, Ann Arbor, MI (US). Dept. of Physics; Thimmapuram, P.; Fisher, R.E.; Maciorowski, W. [Argonne National Lab., IL (US)

1993-05-01T23:59:59.000Z

174

An industrial policy  

Science Journals Connector (OSTI)

An industrial policy ... There are problems that are very much intertwined with national policy, but there are strengths, too, and they are worth noting. ...

1984-03-05T23:59:59.000Z

175

Industrial and Grid Security  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial and Grid Security Establishing resilient infrastructures that operate when sensors and physical assets are perturbed is an important national objective. Two related LDRD...

176

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 4, APRIL 2008 1813 Models for Bearing Damage Detection in Induction  

E-Print Network (OSTI)

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 4, APRIL 2008 1813 Models for Bearing, torque variations. I. INTRODUCTION INDUCTION motors are nowadays widely used in all types of industry applications due to their simple construction, high reliability, and the availability of power converters using

Boyer, Edmond

177

Sandia National Laboratories: Photovoltaics  

NLE Websites -- All DOE Office Websites (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

178

Sandia National Laboratories: PV  

NLE Websites -- All DOE Office Websites (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

179

Sandia National Laboratories: Solar  

NLE Websites -- All DOE Office Websites (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

180

The Office of Fossil Energy's National Energy Technology Laboratory \(NETL\) is teaming with industry and acadamia through ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy-National Energy Technology Laboratory's NOx Energy-National Energy Technology Laboratory's NOx Control Program for Coal-Fired Power Plants Bruce W. Lani and Thomas J. Feeley, III U.S. Department of Energy National Energy Technology Laboratory P.O. Box 10940 Pittsburgh, PA 15236-0940 (412) 386-5819 Fax: (412) 386-5917 Email: lani@netl.doe.gov ABSTRACT The environmental performance of the United States' fleet of coal-fired boilers has steadily improved over the last three decades in response to concerns on the potential impact of emissions on the environment. Emissions of sulfur dioxide (SO 2 ), nitrogen oxide (NOx), particulate matter (PM) have been significantly reduced during this period while coal use has almost doubled. However, further restrictions on emissions from power plants have been proposed in response to issues such as mercury, acid rain,

Note: This page contains sample records for the topic "national industry model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Industrial power by research?  

Science Journals Connector (OSTI)

... The largest nation on the Earth is at last on the road to becoming an industrial power matching in prosperity and creativity the most successful nations elsewhere in the world. ... ask whether China has always been so certain of itself.

1985-11-21T23:59:59.000Z

182

Finding of no significant impact for the joint DOE/EPA program on national industrial competitiveness through energy efficiency and economics (NICE{sup 3})  

SciTech Connect

The Department of Energy (DOE) has prepared a Programmatic Environmental Assessment (PEA), to assess the environment impacts associated with a joint DOE/EPA cost-sharing grant program named National Industrial Competitiveness through Energy Efficiency, Environment and Economics (NICE{sup 3}). The purpose of the NICE{sup 3} Program is to encourage waste minimization technology in industry by funding projects that develop activities and process improvements to conserve energy and reduce pollution. The proposed action would provide Federal financial assistance in the form of grants to industry in order to promote pollution prevention, energy efficiency, and cost competitiveness. Based on the analysis presented in the PEA, DOE has determined that the proposed action (providing NICE{sup 3} grants for projects which are consistent with the goals of the PPA and EPACT) does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, the preparation of an Environmental Impact Statement is not needed and the Department is issuing this Finding of No Significant Impact.

NONE

1997-03-01T23:59:59.000Z

183

Natural gas transmission and distribution model of the National Energy Modeling System  

SciTech Connect

The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA`s modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes.

NONE

1997-02-01T23:59:59.000Z

184

A Tale of Two Cities: Greensburg Rebuilds as a National Model for Green  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A Tale of Two Cities: Greensburg Rebuilds as a National Model for A Tale of Two Cities: Greensburg Rebuilds as a National Model for Green Communities (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) A Tale of Two Cities: Greensburg Rebuilds as a National Model for Green Communities (Fact Sheet), Energy Efficiency & Renewable Energy (EERE) This fact sheet provides a summary of how DOE and NREL's technical assistance in Greensburg, Kansas, helped the town rebuild green after recovering from a tornado in May 2007. 54901.pdf More Documents & Publications NREL Helps Greensburg Set the Model for Green Communities (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory) Rebuilding Greensburg, Kansas, as a Model Green Community: A Case Study; NREL's Technical Assistance to Greensburg, June 2007-May 2009

185

Model documentation, Renewable Fuels Module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the Annual Energy Outlook 1998 (AEO98) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. For AEO98, the RFM was modified in three principal ways, introducing capital cost elasticities of supply for new renewable energy technologies, modifying biomass supply curves, and revising assumptions for use of landfill gas from municipal solid waste (MSW). In addition, the RFM was modified in general to accommodate projections beyond 2015 through 2020. Two supply elasticities were introduced, the first reflecting short-term (annual) cost increases from manufacturing, siting, and installation bottlenecks incurred under conditions of rapid growth, and the second reflecting longer term natural resource, transmission and distribution upgrade, and market limitations increasing costs as more and more of the overall resource is used. Biomass supply curves were also modified, basing forest products supplies on production rather than on inventory, and expanding energy crop estimates to include states west of the Mississippi River using information developed by the Oak Ridge National Laboratory. Finally, for MSW, several assumptions for the use of landfill gas were revised and extended.

NONE

1998-01-01T23:59:59.000Z

186

Sandia National Laboratories: JBEI Updates Techno-Economic Modeling...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Exhibition (EU PVSC) EC Top Publications Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter Experimental Wave Tank Test for Reference Model 3 Floating- Point...

187

Sandia National Laboratories: Sandia Funded to Model Power Pods...  

NLE Websites -- All DOE Office Websites (Extended Search)

Collaboration for Sandia, UNM Sandia Funded to Model Power Pods for Utility-Scale Wave-Energy Converter On September 16, 2014, in Computational Modeling & Simulation, Energy,...

188

The NOAA National Operational Model Archive and Distribution System -NOMADS  

E-Print Network (OSTI)

for access to real-time and retrospective high volume numerical weather prediction and climate models been on weather and reanalysis. Plans to support climate models and associated observational data a unified climate and weather model archive providing format independent access to retrospective models

189

Model documentation: Renewable Fuels Module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it related to the production of the 1994 Annual Energy Outlook (AEO94) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. This documentation report serves two purposes. First, it is a reference document for model analysts, model users, and the public interested in the construction and application of the RFM. Second, it meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. The RFM consists of six analytical submodules that represent each of the major renewable energy resources -- wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. Of these six, four are documented in the following chapters: municipal solid waste, wind, solar and biofuels. Geothermal and wood are not currently working components of NEMS. The purpose of the RFM is to define the technological and cost characteristics of renewable energy technologies, and to pass these characteristics to other NEMS modules for the determination of mid-term forecasted renewable energy demand.

Not Available

1994-04-01T23:59:59.000Z

190

Sandia National Laboratories: Analysis, Modeling, Cost of Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

ProgramsAnalysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014 Analysis, Modeling, Cost of Energy, and Policy Impact: Wind Vision 2014 The "20% Wind Energy by...

191

EIA - The National Energy Modeling System: An Overview 2003-Overview of  

Gasoline and Diesel Fuel Update (EIA)

Overview of NEMS Overview of NEMS The National Energy Modeling System: An Overview 2003 Overview of NEMS NEMS represents domestic energy markets by explicitly representing the economic decision making involved in the production, conversion, and consumption of energy products. Where possible, NEMS includes explicit representation of energy technologies and their characteristics. Summary of NEMS Detail Table. Need help, contact the National Energy Information Center at 202-586-8800. printer-friendly version Figure 1. Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. Figure 2. National Energy Modeling System. Need help, contact the National Energy Information Center at 202-586-8800. Since energy costs and availability and energy-consuming characteristics

192

Data Domain to Model Domain Conversion Package | Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Domain to Model Domain Conversion Package Data Domain to Model Domain Conversion Package Data Domain to Model Domain Conversion Package The Data Domain to Model Domain Conversion Package project will develop methods and implement a novel approach for generating data ensembles by using the latest available statistical modeling tools and knowledge of relevant physical and chemical process to develop climatologically aware methods for processing ACRF and other spatially sparse data sets. Data collected at the Atmospheric Radiation Measurement Program Climate Research Facility (ACRF) sites are employed mainly in column radiation models, to validate the models and develop new parameterizations. Currently, no single methodology can be used with data collected at the spatial scale of the ACRF sites or from specific AmeriFlux locations, to

193

FOAM: Fast Ocean Atmosphere Model | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

FOAM: Fast Ocean Atmosphere Model FOAM: Fast Ocean Atmosphere Model FOAM: Fast Ocean Atmosphere Model FOAM is a fully coupled, mixed-resolution, general circulation model designed for high-throughput (simulated years per day) while still providing a good simulated mean climate and simulated variability. FOAM uses the combination of a low resolution (R15) atmosphere model, a highly efficient medium-resolution ocean model, and distributed memory parallel processing to achieve high throughput on relatively modest numbers of processors (16-64). The quality of the simulated climate compares well with higher resolution models. No flux corrections are used. FOAM's intended purpose is to study long-term natural variability in the climate system. FOAM is also well suited for paleoclimate applications. FOAM is highly

194

Dynamic system identification and model-based fault diagnosis of an industrial gas turbine prototype  

Science Journals Connector (OSTI)

In this paper, a model-based procedure exploiting analytical redundancy for the detection and isolation of faults on a gas turbine process is presented. The main point of the present work consists of exploiting system identification schemes in connection with observer and filter design procedures for diagnostic purpose. Linear model identification (black-box modelling) and output estimation (dynamic observers and Kalman filters) integrated approaches to fault diagnosis are in particular advantageous in terms of solution complexity and performance. This scheme is especially useful when robust solutions are considered for minimise the effects of modelling errors and noise, while maximising fault sensitivity. A model of the process under investigation is obtained by identification procedures, whilst the residual generation task is achieved by means of output observers and Kalman filters designed in both noise-free and noisy assumptions. The proposed tools have been tested on a single-shaft industrial gas turbine prototype model and they have been evaluated using non-linear simulations, based on the gas turbine data.

Silvio Simani; Cesare Fantuzzi

2006-01-01T23:59:59.000Z

195

CFD modelling of thermal distribution in industrial server centres for configuration optimisation and energy efficiency  

Science Journals Connector (OSTI)

The use of servers for computational and communication control tasks is becoming more and more frequent in industries and institutions. Ever increasing computational power and data storage combined with reduction in chipsets size resulted in the increased heat density and need for proper configurations of the server racks to enhance cooling and energy efficiency. While different methods can be used to model and design new server centres and optimise their configuration, there is no clear guideline in the literature on the best way to design them and how to increase energy efficiency of existing server centres. This paper presents a simplified yet reliable computational fluid dynamics (CFD) model used to qualitatively evaluate different cooling solutions of a data centre and proposes guidelines to improve its energy efficiency. The influence of different parameters and configurations on the cooling load of the server room is then analysed.

Pierre-Luc Paradis; Drishtysingh Ramdenee; Adrian Ilinca; Hussein Ibrahim

2014-01-01T23:59:59.000Z

196

Sandia National Laboratories: DOE-Sponsored Reference Model Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

is a partnered effort to develop marine hydrokinetic (MHK) reference models (RMs) for wave energy converters and tidal, ocean, and river current energy converters. The RMP team...

197

JEDI: Jobs and Economic Development Impacts Model, National Renewable...  

Wind Powering America (EERE)

state) level. First developed by NREL's Wind Powering America program to model wind energy jobs and impacts, JEDI has been expanded to biofuels, concentrating solar power, coal,...

198

Integrating model-in-the-loop simulations to model-driven development in industrial control  

Science Journals Connector (OSTI)

Software applications are becoming increasingly important in automation and control systems. This has forced control system vendors and integrators to pursue new, more effective software development practices. One of the promising research paths has ... Keywords: Model-driven development, automation and control, model-in-the-loop, simulations

Timo Vepslinen, Seppo Kuikka

2014-12-01T23:59:59.000Z

199

EIA model documentation: Petroleum Market Model of the National Energy Modeling System  

SciTech Connect

The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. Documentation of the model is in accordance with EIA`s legal obligation to provide adequate documentation in support of its models (Public Law 94-385, section 57.b.2). The PMM models petroleum refining activities, the marketing of products, the production of natural gas liquids and domestic methanol, projects petroleum provides and sources of supplies for meeting demand. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption.

NONE

1994-12-30T23:59:59.000Z

200

The National Energy Modeling System: An Overview 1998 - Carbon Emissions  

Gasoline and Diesel Fuel Update (EIA)

CARBON EMISSIONS CARBON EMISSIONS A part of the integrating module, the carbon emissions submodule (CEM) computes the carbon emissions due to the combustion of energy. The coefficients for carbon emissions are derived from Energy Information Administration, Emissions of Greenhouse Gases in the United States 1996, published in October 1997. The calculations account for the fact that some fossil fuels are used for nonfuel purposes, such as feedstocks, and thus the carbon in the fuel is sequestered in the end product. CEM also allows for several carbon policy evaluation options to be imposed within NEMS. Although none of the policy options are assumed in the Annual Energy Outlook 1998, the options can be used in special analyses to simulate potential market-based approaches to meet national carbon emission

Note: This page contains sample records for the topic "national industry model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Model documentation renewable fuels module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives, analytical approach, and design of the National Energy Modeling System (NEMS) Renewable Fuels Module (RFM) as it relates to the production of the 1995 Annual Energy Outlook (AEO95) forecasts. The report catalogues and describes modeling assumptions, computational methodologies, data inputs, and parameter estimation techniques. A number of offline analyses used in lieu of RFM modeling components are also described. The RFM consists of six analytical submodules that represent each of the major renewable energy resources--wood, municipal solid waste (MSW), solar energy, wind energy, geothermal energy, and alcohol fuels. The RFM also reads in hydroelectric facility capacities and capacity factors from a data file for use by the NEMS Electricity Market Module (EMM). The purpose of the RFM is to define the technological, cost and resource size characteristics of renewable energy technologies. These characteristics are used to compute a levelized cost to be competed against other similarly derived costs from other energy sources and technologies. The competition of these energy sources over the NEMS time horizon determines the market penetration of these renewable energy technologies. The characteristics include available energy capacity, capital costs, fixed operating costs, variable operating costs, capacity factor, heat rate, construction lead time, and fuel product price.

NONE

1995-06-01T23:59:59.000Z

202

EIA - The National Energy Modeling System: An Overview 2003-Coal Market  

Gasoline and Diesel Fuel Update (EIA)

Coal Market Module Coal Market Module The National Energy Modeling System: An Overview 2003 Coal Market Module Figure 19. Coal Market Module Demand Regions. Need help, contact the National Energy Information Center at 202-586-8800. Figure 20. Coal Market Module Supply Regions. Need help, contact the National Energy Information Center at 202-586-8800. Figure 21. Coal Market Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Coal Market Module Table. Need help, contact the National Energy Information Center at 202-586-8800. The coal market module (CMM) represents the mining, transportation, and pricing of coal, subject to end–use demand. Coal supplies are differentiated by heat and sulfur content. CMM also determines the minimum cost pattern of coal supply to meet exogenously defined U.S. coal

203

Modeling and simulation of the industrial numerical distance relay aimed at knowledge discovery in resident event reporting  

Science Journals Connector (OSTI)

In the motivation of tapping the strong potential of computational intelligence in discovering knowledge of protective relay operations using data mining, modeling and simulation of an actual industrial numerical distance relay and its recording facility ... Keywords: Distance protection, Knowledge Discovery in Databases, Rough Set Theory, association rule, computational intelligence, data mining, numerical protective relay, relay modeling

Mohammad Lutfi Othman, Ishak Aris, Noor Izzri Abdul Wahab

2014-06-01T23:59:59.000Z

204

On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry  

E-Print Network (OSTI)

On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy On the Use of Computational Models for Wave Climate Assessment in Support of the Wave Energy Industry Effective, economic extraction of ocean wave energy requires an intimate under- standing of the ocean wave

Victoria, University of

205

Systems Modeling and Analysis Industrial Engineers are interested in optimizing the design and operation of complex systems  

E-Print Network (OSTI)

and operation of complex systems composed of people and machines using information, materials and energySystems Modeling and Analysis Industrial Engineers are interested in optimizing the design to produce goods and services. Analyzing such systems with information-driven models is an essential step

Dyer, Bill

206

The design, results and future development of the National Energy Strategy Environmental Analysis Model (NESEAM)  

SciTech Connect

The National Energy Strategy Environmental Model (NESEAM) has been developed to project emissions for the National Energy Strategy (NES). Two scenarios were evaluated for the NES, a Current Policy Base Case and a NES Action Case. The results from the NES Actions Case project much lower emissions than the Current Policy Base Case. Future enhancements to NESEAM will focus on fuel cycle analysis, including future technologies and additional pollutants to model. NESEAM's flexibility will allow it to model other future legislative issues. 7 refs., 4 figs., 2 tabs.

Fisher, R.E.; Boyd, G.A. (Argonne National Lab., IL (United States)); Breed, W.S. (USDOE Assistant Secretary for Environment, Safety, and Health, Washington, DC (United States). Office of Environmental Analysis)

1991-01-01T23:59:59.000Z

207

Modelling the potential for industrial energy efficiency in IEAs World Energy Outlook  

Science Journals Connector (OSTI)

The industry sector accounts for more than a third of global final energy consumption and nearly the same share of global energy-related CO2...emissions. Compared with other sectors, however, industrial energy mo...

Fabian Kesicki; Akira Yanagisawa

2014-07-01T23:59:59.000Z

208

Analysis and Reduction of Power Grid Models under Uncertainty Sandia National Laboratories  

E-Print Network (OSTI)

1.30pm Analysis and Reduction of Power Grid Models under Uncertainty Habib Najm Sandia National Laboratories Abstract The increased utilization of alternative energy sources requires that evolving power grid Uncertainty Eigenproblem Closure Analysis and Reduction of Power Grid Models under Uncertainty H.N. Najm

Levi, Anthony F. J.

209

The National Energy Modeling System: An Overview 2000 - Introduction  

Gasoline and Diesel Fuel Update (EIA)

A part of the integrating module, the carbon emissions submodule (CEM), computes the carbon emissions from the combustion of energy. The coefficients for carbon emissions are derived from Energy Information Administration, Emissions of Greenhouse Gases in the United States 1998,14 published in October 1999. The coefficients account for the fact that some fossil fuels are used for nonfuel purposes, such as feedstocks, and thus the carbon in the fuel is sequestered in the end product. A part of the integrating module, the carbon emissions submodule (CEM), computes the carbon emissions from the combustion of energy. The coefficients for carbon emissions are derived from Energy Information Administration, Emissions of Greenhouse Gases in the United States 1998,14 published in October 1999. The coefficients account for the fact that some fossil fuels are used for nonfuel purposes, such as feedstocks, and thus the carbon in the fuel is sequestered in the end product. CEM also allows for several carbon policy evaluation options to be analyzed within NEMS. Although these policy options are not assumed in the Annual Energy Outlook 2000, the options have been used in special analyses to simulate potential market-based approaches to meet national carbon emission objectives. The policy options implemented in CEM are as follows:

210

New Modeling Tool Analyzes Floating Platform Concepts for Offshore Wind Turbines (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

at the National Renewable Energy Laboratory at the National Renewable Energy Laboratory (NREL) develop a new complex modeling and analysis tool capable of analyzing floating platform concepts for offshore wind turbines. The new modeling tool combines the computational methodologies used to analyze land-based wind turbines with the comprehensive hydrodynamic computer programs developed for offshore oil and gas industries. This new coupled dynamic simulation tool will enable the development of cost-effective offshore technologies capable of harvesting the rich offshore wind resources at water depths that cannot be reached using the current technology. Currently, most offshore wind turbines are installed in shallow water, less than 30 meters deep, on bottom-mounted substructures. But these substructures are not

211

Model documentation, Coal Market Module of the National Energy Modeling System  

SciTech Connect

This report documents the objectives and the conceptual and methodological approach used in the development of the National Energy Modeling System`s (NEMS) Coal Market Module (CMM) used to develop the Annual Energy Outlook 1998 (AEO98). This report catalogues and describes the assumptions, methodology, estimation techniques, and source code of CMM`s two submodules. These are the Coal Production Submodule (CPS) and the Coal Distribution Submodule (CDS). CMM provides annual forecasts of prices, production, and consumption of coal for NEMS. In general, the CDS integrates the supply inputs from the CPS to satisfy demands for coal from exogenous demand models. The international area of the CDS forecasts annual world coal trade flows from major supply to major demand regions and provides annual forecasts of US coal exports for input to NEMS. Specifically, the CDS receives minemouth prices produced by the CPS, demand and other exogenous inputs from other NEMS components, and provides delivered coal prices and quantities to the NEMS economic sectors and regions.

NONE

1998-01-01T23:59:59.000Z

212

Review: Manufacturing National Park Nature  

E-Print Network (OSTI)

the Wilderness Industry of Jasper By J. Keri Cronin Reviewedthe Wilderness Industry of Jasper. Vancouver, BC: UBC Press,how photographic images of Jasper National Park in Alberta,

Mason, Fred

2012-01-01T23:59:59.000Z

213

National Hydropower Association Annual Conference  

Energy.gov (U.S. Department of Energy (DOE))

Join industry leaders, state and federal regulatory officials, and key legislative staff to discuss technology, policy and future development options for the hydropower industry at the National...

214

The competition situation analysis of shale gas industry in China: Applying Porters five forces and scenario model  

Science Journals Connector (OSTI)

Abstract With the increasing of energy demand and environmental pressure, China government has been exploring a way to diversify energy supply. Shale gas development is becoming an important energy strategy in China in recent years due to giant shale gas reserves. However, the shale gas market is preliminarily shaping in China, so that many factors have great influence on its competition. To find these factors and to control them rationally is good for the cultivating Chinese shale gas market. Five forces model for industry analysis puts an insight into the competitive landscape of shale gas market by showing the forces of supplier power, buyer power, threat of substitution, barriers to entry, and degree of rivalry. Illustrating the key factors that affect competitive landscape provides a view into the situation of shale gas industry. The variation tendency of shale gas industry is analyzed by setting various scenarios. Finally some suggestions are proposed in order to keep the development of shale gas industry positively.

Wu Yunna; Yang Yisheng

2014-01-01T23:59:59.000Z

215

Financial constraints in capacity planning: a national utility regulatory model (NUREG). Volume II of III: user's guide. Final report  

SciTech Connect

This volume is a User's Guide to the National Utility Regulatory Model (NUREG) and its implementation of the National Coal Model. This is the second of three volumes provided by ICF under contract number DEAC-01-79EI-10579. These three volumes are: a manual describing the NUREG methodology; a users guide; and a description of the software. This manual provides a brief introduction to the National Utility Regulation Model, describes the various programs that comprise the National Utility Regulatory Model, gives sample input files, and provides information needed to run the model.

Not Available

1981-10-29T23:59:59.000Z

216

The National Energy Modeling System: An Overview 2000 - Renewable Fuels  

Gasoline and Diesel Fuel Update (EIA)

renewable fuels module (RFM) consists of five submodules that represent the various types of renewable energy technologies used for grid-connected U.S. electricity supply (Figure 11). Since most renewables (wind, solar, and geothermal) are used to generate electricity, the interaction with the electricity market module (EMM) is important for modeling grid-connected renewable-electric applications. The penetration of grid-connected generation technologies, with the exception of municipal solid waste, is determined by EMM. Hydropower is included in EMM directly. renewable fuels module (RFM) consists of five submodules that represent the various types of renewable energy technologies used for grid-connected U.S. electricity supply (Figure 11). Since most renewables (wind, solar, and geothermal) are used to generate electricity, the interaction with the electricity market module (EMM) is important for modeling grid-connected renewable-electric applications. The penetration of grid-connected generation technologies, with the exception of municipal solid waste, is determined by EMM. Hydropower is included in EMM directly. Figure 11. Renewable Fuels Module Structure Each submodule of RFM is solved independently of the rest. Because variable operation and maintenance costs for renewable technologies are lower than for any other major generating technology and they produce almost no air pollution, all available renewable generating capacity is dispatched first by EMM.

217

A Process Reference Model for Reuse in Industrial Engineering: Enhancing the ISO/IEC 15504 Framework to Cope with Organizational Reuse Maturity  

E-Print Network (OSTI)

A Process Reference Model for Reuse in Industrial Engineering: Enhancing the ISO/IEC 15504 in industrial engineering for solution providers is more and more recognized as a key to economic success for reuse in industrial engineering. Based on an overview and the background of the GDES-Reuse improvement

Mössenböck, Hanspeter

218

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

219

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

220

The National Energy Modeling System: An Overview 1998 - Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

NATURAL GAS TRANSMISSION AND DISTRIBUTION MODULE NATURAL GAS TRANSMISSION AND DISTRIBUTION MODULE blueball.gif (205 bytes) Annual Flow Submodule blueball.gif (205 bytes) Capacity Expansion Submodule blueball.gif (205 bytes) Pipeline Tariff Submodule blueball.gif (205 bytes) Distributor Tariff Submodule The natural gas transmission and distribution module (NGTDM) is the component of NEMS that represents the natural gas market. The NGTDM models the natural gas transmission and distribution network in the lower 48 States, which links suppliers (including importers) and consumers of natural gas. The module determines regional market-clearing prices for natural gas supplies (including border prices) and end-use consumption. The NGTDM has four primary submodules: the annual flow submodule, the capacity expansion submodule, the pipeline tariff submodule, and the

Note: This page contains sample records for the topic "national industry model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The National Energy Modeling System: An Overview 1998 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

RESIDENTIAL DEMAND MODULE RESIDENTIAL DEMAND MODULE blueball.gif (205 bytes) Housing Stock Submodule blueball.gif (205 bytes) Appliance Stock Submodule blueball.gif (205 bytes) Technology Choice Submodule blueball.gif (205 bytes) Shell Integrity Submodule blueball.gif (205 bytes) Fuel Consumption Submodule The residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar thermal and geothermal energy. The RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of the RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts,

222

The National Energy Modeling System: An Overview 1998 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

COMMERCIAL DEMAND MODULE COMMERCIAL DEMAND MODULE blueball.gif (205 bytes) Floorspace Submodule blueball.gif (205 bytes) Energy Service Demand Submodule blueball.gif (205 bytes) Equipment Choice Submodule blueball.gif (205 bytes) Energy Consumption Submodule The commercial demand module (CDM) forecasts energy consumption by Census division for eight marketed energy sources plus solar thermal energy. For the three major commercial sector fuels, electricity, natural gas and distillate oil, the CDM is a "structural" model and its forecasts are built up from projections of the commercial floorspace stock and of the energy-consuming equipment contained therein. For the remaining five marketed "minor fuels," simple econometric projections are made. The commercial sector encompasses business establishments that are not

223

The National Energy Modeling System: An Overview 2000 - Petroleum Market  

Gasoline and Diesel Fuel Update (EIA)

petroleum market module (PMM) represents domestic refinery operations and the marketing of petroleum products to consumption regions. PMM solves for petroleum product prices, crude oil and product import activity (in conjunction with the international energy module and the oil and gas supply module), and domestic refinery capacity expansion and fuel consumption. The solution is derived, satisfying the demand for petroleum products and incorporating the prices for raw material inputs and imported petroleum products, the costs of investment, and the domestic production of crude oil and natural gas liquids. The relationship of PMM to other NEMS modules is illustrated in Figure 17. petroleum market module (PMM) represents domestic refinery operations and the marketing of petroleum products to consumption regions. PMM solves for petroleum product prices, crude oil and product import activity (in conjunction with the international energy module and the oil and gas supply module), and domestic refinery capacity expansion and fuel consumption. The solution is derived, satisfying the demand for petroleum products and incorporating the prices for raw material inputs and imported petroleum products, the costs of investment, and the domestic production of crude oil and natural gas liquids. The relationship of PMM to other NEMS modules is illustrated in Figure 17. Figure 17. Petroleum Market Module Structure PMM is a regional, linear-programming representation of the U.S. petroleum market. Refining operations are represented by a three-region linear programming formulation of the five Petroleum Administration for Defense Districts (PADDs) (Figure 18). PADDs I and V are each treated as single regions, while PADDs II, III, and IV are aggregated into one region. Each region is considered as a single firm where more than 30 distinct refinery processes are modeled. Refining capacity is allowed to expand in each region, but the model does not distinguish between additions to existing refineries or the building of new facilities. Investment criteria are developed exogenously, although the decision to invest is endogenous.

224

EIA - The National Energy Modeling System: An Overview 2003-Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Transmission and Distribution Module Natural Gas Transmission and Distribution Module The National Energy Modeling System: An Overview 2003 Natural Gas Transmission and Distribution Module Figure 15. Natural Gas Transmission and Distribution Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Figure 16. Natural Gas Transmission and distribution Module Network. Need help, contact the National Energy Information Center at 202-586-8800. Natural Gas Transmission and distribution Module Table. Need help, contact the National Energy Information Center at 202-586-8800. The natural gas transmission and distribution module (NGTDM) of NEMS represents the natural gas market and determines regional market–clearing prices for natural gas supplies and for end–use consumption, given the

225

EIA - The National Energy Modeling System: An Overview 2003-Oil and Gas  

Gasoline and Diesel Fuel Update (EIA)

Oil and Gas Supply Module Oil and Gas Supply Module The National Energy Modeling System: An Overview 2003 Oil and Gas Supply Module The oil and gas supply module (OGSM) consists of a series of process submodules that project the availability of: Domestic crude oil production and dry natural gas production from onshore, offshore, and Alaskan reservoirs Imported pipeline–quality gas from Mexico and Canada Imported liquefied natural gas. Figure 12. Oil and Gas Supply Module Regions. Need help, contact the National Energy Information Center at 202-202-586-8800. Figure 13. Oil and Gas Suppply Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Oil and Gas Supply Module Table. Need help, contact the National Energy Information Center at 202-586-8800.

226

The National Energy Modeling System: An Overview 2000 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. Figure 5. Residential Demand Module Structure RDM incorporates the effects of four broadly-defined determinants of energy consumption: economic and demographic effects, structural effects, technology turnover and advancement effects, and energy market effects. Economic and demographic effects include the number, dwelling type (single-family, multi-family or mobile homes), occupants per household, and location of housing units. Structural effects include increasing average dwelling size and changes in the mix of desired end-use services provided by energy (new end uses and/or increasing penetration of current end uses, such as the increasing popularity of electronic equipment and computers). Technology effects include changes in the stock of installed equipment caused by normal turnover of old, worn out equipment with newer versions which tend to be more energy efficient, the integrated effects of equipment and building shell (insulation level) in new construction, and in the projected availability of even more energy-efficient equipment in the future. Energy market effects include the short-run effects of energy prices on energy demands, the longer-run effects of energy prices on the efficiency of purchased equipment and the efficiency of building shells, and limitations on minimum levels of efficiency imposed by legislated efficiency standards.

227

Lean supply chain in pharmaceutical industry : modeling and simulation of a SAP environment  

E-Print Network (OSTI)

The global pharmaceutical business environment has been rapidly changing and has more competitive. Competition in pharmaceutical industry extended far beyond the traditional battle field, research and development. Bayer ...

Hou, Billy

2011-01-01T23:59:59.000Z

228

Study and implementation of mesoscale weather forecasting models in the wind industry.  

E-Print Network (OSTI)

?? As the wind industry is developing, it is asking for more reliable short-term wind forecasts to better manage the wind farms operations and electricity (more)

Jourdier, Bndicte

2012-01-01T23:59:59.000Z

229

Sandia National Laboratories: PV Value  

NLE Websites -- All DOE Office Websites (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

230

Sandia National Laboratories: PV evaluation  

NLE Websites -- All DOE Office Websites (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

231

2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Sites Advanced Test Reactor Complex Cold Waste Pond  

SciTech Connect

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Sites Advanced Test Reactor Complex Cold Waste Pond from November 1, 2009 through October 31, 2010. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Discussion of the facilitys environmental impacts During the 2010 permit year, approximately 164 million gallons of wastewater were discharged to the Cold Waste Pond. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

mike lewis

2011-02-01T23:59:59.000Z

232

2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Sites Advanced Test Reactor Complex Cold Waste Pond  

SciTech Connect

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Sites Advanced Test Reactor Complex Cold Waste Pond from November 1, 2012October 31, 2013. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance issues Discussion of the facilitys environmental impacts. During the 2013 permit year, approximately 238 million gallons of wastewater was discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

Mike Lewis

2014-02-01T23:59:59.000Z

233

Broadband Model Performance for an Updated National Solar Radiation Database in the United States of America: Preprint  

SciTech Connect

Updated review of broadband model performance in a project being done to update the existing United States National Solar Radiation Database (NSRDB).

Myers, D. R.; Wilcox, S.; Marion, W.; George, R.; Anderberg, M.

2005-09-01T23:59:59.000Z

234

Greenhouse gas emission by wastewater treatment plants of the pulp and paper industry Modeling and simulation  

Science Journals Connector (OSTI)

Abstract Greenhouse gas (GHG) emission and energy consumption in wastewater treatment plants (WWTPs) of the pulp and paper industry were modeled and estimated. Aerobic, anaerobic, and hybrid biological processes were used for the removal of contaminants. In addition to the removal of carbonaceous compounds, anaerobic digestion of the produced sludge and the removal of excess nitrogen in the effluent of treatment plants by nitrification/denitrification processes were incorporated in the model. Carbon dioxide, methane, and nitrous oxide were the major \\{GHGs\\} generated during the biological treatment, combustion, energy generation, and transportation. The generated biogas from the anaerobic processes was assumed to be recovered and used as a source of energy for the treatment plant, in an effort to reduce GHG emissions while decreasing the total energy needs of the WWTP. The established kinetic relationships of wastewater treatment processes along with mass and energy balances were employed for the simulation of different treatment systems and estimation of GHG emissions. Various sources of GHG emission were divided into on-site and off-site sources to simplify the modeling and simulation procedure. The overall GHG generation in the presence of biogas recovery was equal to 1.576, 3.026, and 3.271kg CO2-equivalent/kg BOD by the three examined systems. The energy produced by the recovery and combustion of biogas could exceed the energy demands of all different treatment plants examined in this study and reduce off-site GHG emission. The generation of \\{GHGs\\} from aerobic and hybrid processes increased by 27% and 33.2%, respectively, when N2O emission from nitrogen removal processes was taken into consideration.

Omid Ashrafi; Laleh Yerushalmi; Fariborz Haghighat

2013-01-01T23:59:59.000Z

235

EIA - The National Energy Modeling System: An Overview 2003-Renewable Fuels  

Gasoline and Diesel Fuel Update (EIA)

Renewable Fuelsl Module Renewable Fuelsl Module The National Energy Modeling System: An Overview 2003 Renewable Fuels Module Figure 11. Renewable Fuels Module Structure. Need help, contact the National Energy Information Center at 202-586-8800. Renewable Fuels Module Table. Need help, contact the National Energy Information Center at 202-586-8800. The renewable fuels module (RFM) represents renewable energy resoures and large–scale technologies used for grid-connected U.S. electricity supply (Figure 11). Since most renewables (biomass, conventional hydroelectricity, geothermal, landfill gas, solar photovoltaics, solar thermal, and wind) are used to generate electricity, the RFM primarily interacts with the electricity market module (EMM). New renewable energy generating capacity is either model–determined or

236

Lagrangian Modeling at Sandia National Laboratories: Current Status and Future Directions  

National Nuclear Security Administration (NNSA)

Lagrangian Modeling at Sandia National Laboratories: Lagrangian Modeling at Sandia National Laboratories: Current Status and Future Directions A. C. Robinson, * Martin W. Heinstein, * Guglielmo Scovazzi * * Sandia National Laboratories, New Mexico, 87185 Efficient Lagrangian methodologies for quadrilaterals and hexahedral meshes have been available for a number of years. Mesh generation issues for complex three-dimensional geometries can, however, be a severe limiting factor. Mesh generation for triangular and tetrahedral meshes is readily available, but solid mechanics discretizations on these meshes are not so well established because of problems with locking. We review a relatively new node-based uniform strain element as well as an SUPG stabilized formulation that hold promise for effective simulations

237

Artificial Neural Network Modeling of Solubilities of 21 Commonly Used Industrial Solid Compounds in Supercritical Carbon Dioxide  

Science Journals Connector (OSTI)

Artificial Neural Network Modeling of Solubilities of 21 Commonly Used Industrial Solid Compounds in Supercritical Carbon Dioxide ... Artificial neural networks are composed of simple elements working in a parallel computational strategy. ... These elements are inspired by biological nervous systems(36-40) and are called neurons. ...

Farhad Gharagheizi; Ali Eslamimanesh; Amir H. Mohammadi; Dominique Richon

2010-11-02T23:59:59.000Z

238

EPRI's Industrial Energy Management Program  

E-Print Network (OSTI)

EPRI's INDUSTRIAL ENERGY MANAGEMENT PROGRAM ED MERGENS MANAGER EPRI's CHEMICALS & PETROLEUM OFFICE HOUSTON, TEXAS ABSTRACT The loss of American industry jobs to foreign competition is made worse by national concerns over fuels combustion... and other industrial activity effects on our environment. Energy efficiency programs and new electrical processes can playa major role in restoring the environment and in creating a stronger industrial sector in the national economy. Since 1984...

Mergens, E.; Niday, L.

239

Research utilization in the building industry: decision model and preliminary assessment  

SciTech Connect

The Research Utilization Program was conceived as a far-reaching means for managing the interactions of the private sector and the federal research sector as they deal with energy conservation in buildings. The program emphasizes a private-public partnership in planning a research agenda and in applying the results of ongoing and completed research. The results of this task support the hypothesis that the transfer of R and D results to the buildings industry can be accomplished more efficiently and quickly by a systematic approach to technology transfer. This systematic approach involves targeting decision makers, assessing research and information needs, properly formating information, and then transmitting the information through trusted channels. The purpose of this report is to introduce elements of a market-oriented knowledge base, which would be useful to the Building Systems Division, the Office of Buildings and Community Systems and their associated laboratories in managing a private-public research partnership on a rational systematic basis. This report presents conceptual models and data bases that can be used in formulating a technology transfer strategy and in planning technology transfer programs.

Watts, R.L.; Johnson, D.R.; Smith, S.A.; Westergard, E.J.

1985-10-01T23:59:59.000Z

240

Motech Industries | Open Energy Information  

Open Energy Info (EERE)

for Others) for this property. Partnering Center within NREL National Center for Photovoltaics Partnership Year 2008 Motech Industries is a company located in Bethlehem, Taiwan....

Note: This page contains sample records for the topic "national industry model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Supporting Our Nation's Nuclear Industry  

ScienceCinema (OSTI)

On the 60th anniversary of the world's first nuclear power plant to produce electricity, Assistant Secretary for Nuclear Energy Peter Lyons discusses the Energy Department's and the Administration's commitment to promoting a nuclear renaissance in the United States.

Lyons, Peter

2013-05-29T23:59:59.000Z

242

PACIFIC ISLANDS DIGITAL ELEVATION MODELS Coastal Models Supporting our Nation's Needs through Science and Technology  

E-Print Network (OSTI)

. Seismic activity at plate boundaries along the Pacific Ring of Fire, along with other tectonic stresses as a protected national monument with the other northwestern Hawaiian Islands, and is managed by the U.S. Fish

243

An extended model for measuring the technology transfer potentials at the industrial level.  

E-Print Network (OSTI)

??Technology contributes to the development of society and economy of the nation through the invention, diffusion, transfer, and application of new knowledge. In the emerging (more)

Pachamuthu, Sathayanarayanan

2011-01-01T23:59:59.000Z

244

Model-based robust fault detection and isolation of an industrial gas turbine prototype using soft computing techniques  

Science Journals Connector (OSTI)

This study proposes a model-based robust fault detection and isolation (RFDI) method with hybrid structure. Robust detection and isolation of the realistic faults of an industrial gas turbine in steady-state conditions is mainly considered. For residual generation, a bank of time-delay multilayer perceptron (MLP) models is used, and in fault detection step, a passive approach based on model error modelling is employed to achieve threshold adaptation. To do so, local linear neuro-fuzzy (LLNF) modelling is utilised for constructing error-model to generate uncertainty interval upon the system output in order to make decision whether a fault occurred or not. This model is trained using local linear model tree (LOLIMOT) which is a progressive tree-construction algorithm. Simple thresholding is also used along with adaptive thresholding in fault detection phase for comparative purposes. Besides, another MLP neural network is utilised to isolate the faults. In order to show the effectiveness of proposed RFDI method, it was tested on a single-shaft industrial gas turbine prototype model and has been evaluated based on the gas turbine data. A brief comparative study with the related works done on this gas turbine benchmark is also provided to show the pros and cons of the presented RFDI method.

Hasan Abbasi Nozari; Mahdi Aliyari Shoorehdeli; Silvio Simani; Hamed Dehghan Banadaki

2012-01-01T23:59:59.000Z

245

Using a total landed cost model to foster global logistics strategy in the electronics industry  

E-Print Network (OSTI)

Global operation strategies have been widely used in the last several decades as many companies and industries have taken advantage of lower production costs. However, in choosing a location, companies often only consider ...

Jearasatit, Apichart

2010-01-01T23:59:59.000Z

246

Financial Impact of Good Condenser Vacuum in Industrial Steam Turbines: Computer Modeling Techniques  

E-Print Network (OSTI)

Industrial turbine throttle conditions are fixed by plant designs - materials of construction, steam requirements, etc. Condensing turbine exhaust conditions are limited by the atmosphere to which residual heat is rejected; and are fixed...

Viar, W. L.

1984-01-01T23:59:59.000Z

247

Study on the Model of Coal Industry Cycle Economic Development and Evaluation System  

Science Journals Connector (OSTI)

Firstly, the development status and existing problems of Chinas coal industry is analyzed. Then, the circular ... . In order to achieve the rationalization of coal exploration and use, the circular economy and coal

Bo Wang; Wei Jiang; Ji-hui Zhang

2013-01-01T23:59:59.000Z

248

A National Resource  

NLE Websites -- All DOE Office Websites (Extended Search)

National Resource National Resource for Industry Manufacturing DeMonstration facility As the nation's premier research laboratory, Oak Ridge National Laboratory is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. These industries call upon ORNL's expertise in materials synthesis, characterization, and process technology to reduce risk and accelerate the development and deployment of innovative energy-efficient manufacturing processes and materials targeting products of the future. The Department of Energy's first Manufacturing Demonstration Facility (MDF), established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy and

249

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

250

Argonne National Laboratory  

Energy.gov (U.S. Department of Energy (DOE))

Argonne is a multidisciplinary science and engineering research center, where dream teams of world-class researchers work alongside experts from industry, academia and other government laboratories to address vital national challenges in clean energy, environment, technology and national security.

251

JEDI: Jobs and Economic Development Impacts Model, National Renewable Energy Laboratory (NREL) (Fact Sheet)  

Wind Powering America (EERE)

JEDI: Jobs and Economic Development Impacts Model JEDI: Jobs and Economic Development Impacts Model The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation and biofuel plants at the local (usually state) level. First developed by NREL's Wind Powering America program to model wind energy jobs and impacts, JEDI has been expanded to biofuels, concentrating solar power, coal, and natural gas power plants. Based on project-specific and default inputs (derived from industry norms), JEDI estimates the number of jobs and economic impacts to a local area (usually a state) that could reasonably be supported by a power generation project. For example, JEDI estimates the number of in-state construction

252

A National Offshore Wind Strategy: Creating an Offshore Wind...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in...

253

Industrial Partnerships | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Fiber Consortium Manufacturing Industrial Partnerships Staff University Partnerships Events and Conferences Success Stories Video Newsletters Staff Contacts Partnerships Home | Connect with ORNL | For Industry | Partnerships | Industrial Partnerships SHARE Industrial Partnerships ORNL takes great pride in its work with U.S. industry. Each year, the Industrial Partnerships team hosts more than 100 visits to ORNL by both large corporations and small companies to help our potential partners understand the capabilities and expertise that exist at the laboratory and the various mechanisms available to help facilitate collaboration. Mechanism for Partnering How do I get started exploring industrial partnerships at ORNL? As the nation's largest science and energy laboratory, it can sometimes be

254

CHP Modeling as a Tool for Electric Power Utilities to Understand Major Industrial Customers  

E-Print Network (OSTI)

for optimum rate design. REFERENCES 1. Kumana, J D and R Nath, "Demand Side Dispatching, Part 1 - A Novel Approach for Industrial Load Shaping Applications", IETC Proceedings (March 93) 2. R Nath, D A Cerget, and E T Henderson, "Demand Side... Dispatching, Part 2 - An Industrial Application", IETC Proceedings (March 93) 3. R Nath and J D Kumana, "NOx Dispatching in Plant Utility Systems using Existing Software Tools", IETC Proceedings (April 92) 4. R Nath, J D KUJIl3I13, and J F Holiday...

Kumana, J. D.; Alanis, F. J.; Swad, T.; Shah, J. V.

255

This document is a template memorandum of understanding ("MOU") between the National Institutes of Health ("NIH") and collaborating pharmaceutical companies in the NIH-Industry  

E-Print Network (OSTI)

of Health ("NIH") and collaborating pharmaceutical companies in the NIH-Industry Pilot Program: Discovering NCATS intends to work with experts in academia and the biotechnology and pharmaceutical industries the NIH and the specific collaborating pharmaceutical companies, this template MOU expresses the general

Bandettini, Peter A.

256

Commercial development of environmental technologies for the automotive industry towards a new model of technological innovation  

Science Journals Connector (OSTI)

Economic importance of environmental issues is increasing, and new technologies are expected to reduce pollution derived both from productive processes and products, with costs that are still unknown. Until now, there is still little knowledge concerning the process of technological innovation in this field. What does exist is outdated due to rapid change in technology. In this paper, we analyse the development of Zinc Air Fuel Cells (ZAFC) and their transfer from research laboratories to large mass production. ZAFC are a new ''environmental technology'', proved to have a commercial value, that can be used for building Zero Emission Vehicles (ZEV). Although ZAFC performances are higher than traditional lead-acid batteries ones, difficulties in funding ZAFC engineering and ''moving'' them from laboratories to production caused some years delay in their diffusion. On the basis of this ''paradigmatic'' case, we argue that existing economic and organisational literature concerning technological innovation is not able to fully explain steps followed in developing environmental technologies. Existing models mainly consider adoption problems as due to market uncertainty, weak appropriability regime, lack of a dominant design, and difficulties in reconfiguring organisational routines. Additionally, the following aspects play a fundamental role in developing environmental technologies, pointing out how technological trajectories depend both on exogenous market conditions and endogenous firm competencies: 1. regulations concerning introduction of ZEV ''create'' market demand and business development for new technologies; they impose constraints that can be met only by segmenting transportation market at each stage of technology development; 2. each stage of technology development requires alternative forms of division and coordination of innovative labour; upstream and downstream industries are involved in new forms of inter-firm relationships, causing a reconfiguration of product architecture and reducing effects of path dependency; 3. product differentiation increases firm capabilities to plan at the same time technology introduction and customer selection, while meeting requirements concerning ''network externalities''; 4. it is necessary to find and/or create alternative funding sources for each research, development and design stage of the new technologies. From this discussion, we will draw some conclusions and issues for further researches concerning government policy and firms' strategies for sustaining the process of technological innovation and transfer.

Woodrow W. Clark II; Emilio Paolucci

2001-01-01T23:59:59.000Z

257

JEDI: Jobs and Economic Development Impacts Model, National Renewable Energy Laboratory (NREL) (Fact Sheet)  

SciTech Connect

The Jobs and Economic Development Impact (JEDI) models are user-friendly tools that estimate the economic impacts of constructing and operating power generation and biofuel plants at the local (usually state) level. First developed by NREL's Wind Powering America program to model wind energy jobs and impacts, JEDI has been expanded to biofuels, concentrating solar power, coal, and natural gas power plants. Based on project-specific and default inputs (derived from industry norms), JEDI estimates the number of jobs and economic impacts to a local area (usually a state) that could reasonably be supported by a power generation project. For example, JEDI estimates the number of in-state construction jobs from a new wind farm. This fact sheet provides an overview of the JEDI model as it pertains to wind energy projects.

Not Available

2009-12-01T23:59:59.000Z

258

Industrial Energy Efficiency Assessments  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency Energy Efficiency Assessments Lynn Price Staff Scientist China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Industrial Energy Efficiency Assessments - Definition and overview of key components - International experience - Chinese situation and recommendations - US-China collaboration Industrial Energy Efficiency Assessments - Analysis of the use of energy and potential for energy efficiency in an industrial facility * Current situation * Recommendations for improving energy efficiency * Cost-benefit analysis of recommended options * An action plan for realizing potential savings Types of Industrial Energy Efficiency Assessments - Preliminary or walk-through - Detailed or diagnostic Audit criteria

259

WaterSense Program: Methodology for National Water Savings Analysis Model Indoor Residential Water Use  

SciTech Connect

The U.S. Environmental Protection Agency (EPA) influences the market for plumbing fixtures and fittings by encouraging consumers to purchase products that carry the WaterSense label, which certifies those products as performing at low flow rates compared to unlabeled fixtures and fittings. As consumers decide to purchase water-efficient products, water consumption will decline nationwide. Decreased water consumption should prolong the operating life of water and wastewater treatment facilities.This report describes the method used to calculate national water savings attributable to EPA?s WaterSense program. A Microsoft Excel spreadsheet model, the National Water Savings (NWS) analysis model, accompanies this methodology report. Version 1.0 of the NWS model evaluates indoor residential water consumption. Two additional documents, a Users? Guide to the spreadsheet model and an Impacts Report, accompany the NWS model and this methodology document. Altogether, these four documents represent Phase One of this project. The Users? Guide leads policy makers through the spreadsheet options available for projecting the water savings that result from various policy scenarios. The Impacts Report shows national water savings that will result from differing degrees of market saturation of high-efficiency water-using products.This detailed methodology report describes the NWS analysis model, which examines the effects of WaterSense by tracking the shipments of products that WaterSense has designated as water-efficient. The model estimates market penetration of products that carry the WaterSense label. Market penetration is calculated for both existing and new construction. The NWS model estimates savings based on an accounting analysis of water-using products and of building stock. Estimates of future national water savings will help policy makers further direct the focus of WaterSense and calculate stakeholder impacts from the program.Calculating the total gallons of water the WaterSense program saves nationwide involves integrating two components, or modules, of the NWS model. Module 1 calculates the baseline national water consumption of typical fixtures, fittings, and appliances prior to the program (as described in Section 2.0 of this report). Module 2 develops trends in efficiency for water-using products both in the business-as-usual case and as a result of the program (Section 3.0). The NWS model combines the two modules to calculate total gallons saved by the WaterSense program (Section 4.0). Figure 1 illustrates the modules and the process involved in modeling for the NWS model analysis.The output of the NWS model provides the base case for each end use, as well as a prediction of total residential indoor water consumption during the next two decades. Based on the calculations described in Section 4.0, we can project a timeline of water savings attributable to the WaterSense program. The savings increase each year as the program results in the installation of greater numbers of efficient products, which come to compose more and more of the product stock in households throughout the United States.

Whitehead, Camilla Dunham; McNeil, Michael; Dunham_Whitehead, Camilla; Letschert, Virginie; della_Cava, Mirka

2008-02-28T23:59:59.000Z

260

Econometric model of the U.S. sheep and mohair industries for policy analysis  

E-Print Network (OSTI)

, and predator losses. In an effort to slow the rate of decline in the U.S. sheep industry, the U.S. Congress passed the Wool Act of 1954. In 1993, Congress passed a three-year phase out of the Wool Act incentive payments with the last payments occurring in 1996...

Ribera Landivar, Luis Alejandro

2005-08-29T23:59:59.000Z

Note: This page contains sample records for the topic "national industry model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Computational Modeling of Coal Water Slurry Combustion Processes in Industrial Heating Boiler  

Science Journals Connector (OSTI)

Coal water slurry (CWS) is typically composed of 6070% coal, 3040% water, and 1% chemical additives. It has been developed over the last 20 years as an alternative to fuel oil mainly in industrial and utility b...

L. J. Zhu; B. Q. Gu

2007-01-01T23:59:59.000Z

262

How warm was the last interglacial? New modeldata comparisons  

Science Journals Connector (OSTI)

...Division, National Center for Atmospheric...those of the pre-industrial (PI) Holocene...the start of the industrial age, atmospheric...simulations allow an assessment of how well models...at the National Center for Atmospheric...CCSM3 for pre-industrial (PI) conditions...

2013-01-01T23:59:59.000Z

263

DOE Hydrogen Analysis Repository: All Modular Industry Growth Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

All Modular Industry Growth Assessment (AMIGA) Model All Modular Industry Growth Assessment (AMIGA) Model Project Summary Full Title: All Modular Industry Growth Assessment (AMIGA) Model Project ID: 139 Principal Investigator: Donald Hanson Purpose A comprehensive economic model of energy markets, primarily used to simulate a wide range of technology and policy issues. Performer Principal Investigator: Donald Hanson Organization: Argonne National Laboratory (ANL) Address: 9700 S. Cass Ave. Argonne, IL 60439 Telephone: 630-252-5061 Email: dhanson@anl.gov Additional Performers: Peter Balash, NETL; John Marano, NETL Sponsor(s) Name: Peter Balash Organization: National Energy Technology Laboratory (NETL) Telephone: 412-386-5753 Email: Peter.Balash@NETL.DOE.GOV Period of Performance Start: January 2001 Project Description

264

Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 2  

SciTech Connect

The attachments contained within this appendix provide additional details about the model development and estimation process which do not easily lend themselves to incorporation in the main body of the model documentation report. The information provided in these attachments is not integral to the understanding of the model`s operation, but provides the reader with opportunity to gain a deeper understanding of some of the model`s underlying assumptions. There will be a slight degree of replication of materials found elsewhere in the documentation, made unavoidable by the dictates of internal consistency. Each attachment is associated with a specific component of the transportation model; the presentation follows the same sequence of modules employed in Volume 1. The following attachments are contained in Appendix F: Fuel Economy Model (FEM)--provides a discussion of the FEM vehicle demand and performance by size class models; Alternative Fuel Vehicle (AFV) Model--describes data input sources and extrapolation methodologies; Light-Duty Vehicle (LDV) Stock Model--discusses the fuel economy gap estimation methodology; Light Duty Vehicle Fleet Model--presents the data development for business, utility, and government fleet vehicles; Light Commercial Truck Model--describes the stratification methodology and data sources employed in estimating the stock and performance of LCT`s; Air Travel Demand Model--presents the derivation of the demographic index, used to modify estimates of personal travel demand; and Airborne Emissions Model--describes the derivation of emissions factors used to associate transportation measures to levels of airborne emissions of several pollutants.

NONE

1998-01-01T23:59:59.000Z

265

Customer service model for waste tracking at Los Alamos National Laboratory  

SciTech Connect

The deployment of any new software system in a production facility will always face multiple hurtles in reaching a successful acceptance. However, a new waste tracking system was required at the plutonium processing facility at Los Alamos National Laboratory (LANL) where waste processing must be integrated to handle Special Nuclear Materials tracking requirements. Waste tracking systems can enhance the processing of waste in production facilities when the system is developed with a focus on customer service throughout the project life cycle. In March 2010 Los Alamos National Laboratory Waste Technical Services (WTS) replaced the aging systems and infrastructure that were being used to support the plutonium processing facility. The Waste Technical Services (WTS) Waste Compliance and Tracking System (WCATS) Project Team, using the following customer service model, succeeded in its goal to meet all operational and regulatory requirements, making waste processing in the facility more efficient while partnering with the customer.

Dorries, Alison M [Los Alamos National Laboratory; Montoya, Andrew J [Los Alamos National Laboratory; Ashbaugh, Andrew E [Los Alamos National Laboratory

2010-11-10T23:59:59.000Z

266

Mobile robotics research at Sandia National Laboratories  

SciTech Connect

Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

Morse, W.D.

1998-09-01T23:59:59.000Z

267

Industry Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

idatech.com idatech.com info@idatech.com 63065 NE 18 th Street Bend, OR 97701 541.383.3390 Industry Perspective Biogas and Fuel Cell Workshop National Renewable Energy Laboratory June 11 - 13, 2012 Mike Hicks Chairman of the Board of Directors, FCHEA Treasurer of the Board of Directors, FCS&E Engineering Manager, Technology Development & Integration, IdaTech Outline 1. Critical Factors * Fuel Purity * Fuel Cost 2. Natural Gas - The Wild Card & Competition 3. IdaTech's Experience Implementing Biofuel Critical Factor - Fuel Purity All fuel cell system OEMs have fuel purity specifications * Independent of * Raw materials or feed stocks * Manufacturing process * Depends on * Fuel processor technology * Fuel cell technology - low temp PEM versus SOFC

268

Global Biogeochemistry Models and Global Carbon Cycle Research at Lawrence Livermore National Laboratory  

SciTech Connect

The climate modeling community has long envisioned an evolution from physical climate models to ''earth system'' models that include the effects of biology and chemistry, particularly those processes related to the global carbon cycle. The widely reproduced Box 3, Figure 1 from the 2001 IPCC Scientific Assessment schematically describes that evolution. The community generally accepts the premise that understanding and predicting global and regional climate change requires the inclusion of carbon cycle processes in models to fully simulate the feedbacks between the climate system and the carbon cycle. Moreover, models will ultimately be employed to predict atmospheric concentrations of CO{sub 2} and other greenhouse gases as a function of anthropogenic and natural processes, such as industrial emissions, terrestrial carbon fixation, sequestration, land use patterns, etc. Nevertheless, the development of coupled climate-carbon models with demonstrable quantitative skill will require a significant amount of effort and time to understand and validate their behavior at both the process level and as integrated systems. It is important to consider objectively whether the currently proposed strategies to develop and validate earth system models are optimal, or even sufficient, and whether alternative strategies should be pursued. Carbon-climate models are going to be complex, with the carbon cycle strongly interacting with many other components. Off-line process validation will be insufficient. As was found in coupled atmosphere-ocean GCMs, feedbacks between model components can amplify small errors and uncertainties in one process to produce large biases in the simulated climate. The persistent tropical western Pacific Ocean ''double ITCZ'' and upper troposphere ''cold pole'' problems are examples. Finding and fixing similar types of problems in coupled carbon-climate models especially will be difficult, given the lack of observations required for diagnosis and validation of biogeochemical processes.

Covey, C; Caldeira, K; Guilderson, T; Cameron-Smith, P; Govindasamy, B; Swanston, C; Wickett, M; Mirin, A; Bader, D

2005-05-27T23:59:59.000Z

269

Model-based testing in the automotive industry challenges and solutions  

E-Print Network (OSTI)

Test specification System integration testing ­ model-based Test executionTest model Documentation... Requirements System integration testing ­ model-based SUT Sensors/busses Input interfaces Actors/busses Output interfaces #12;9 Overview 1. Model-based system integration testing 2. Integrating external models in the HW

Peleska, Jan - Fachbereich 3

270

The DOE s In-Plant Training (INPLT) Model to Promote Energy Efficiency in the Industrial Sector  

SciTech Connect

In-Plant Training (INPLT) is a new model for developing energy efficiency expertise within the US manufacturing companies participating in the U.S. Department of Energy s (DOE s) Better Buildings, Better Plants Program-a nationwide initiative to drive a 25% reduction in industrial energy intensity in 10 years. INPLTs are designed to fill a market niche by providing hands on training in a real world manufacturing plant environment. Through INPLTs, participants from multiple manufacturing plants, supply chains, utilities, and other external stakeholders learn how to conduct energy assessments, use energy analysis tools to analyze energy saving opportunities, develop energy management systems, and implement energy savings projects. Typical INPLT events are led by DOE-certified Energy Experts and range from 2-4 days. Topics discussed include: identification of cross-cutting or system specific opportunities; introduction to ISO 50001 Energy Management Systems; and energy project implementation and replication. This model is flexible, and can be tailored to suit the needs of specific industries. The INPLTs are a significant departure from the traditional single plant energy assessment model previously employed by DOE. INPLTs shift the focus from the concept of a single-plant s energy profile to a broader focus on training and capacity building among multiple industrial participants. The objective is to enable trainees to identify, quantify, implement and replicate future energy saving projects without continued external assistance. This paper discusses the INPLT model and highlights some of the initial outcomes from the successfully delivered INPLTs and the overall impact in terms of numbers of plants/participants trained, impacted energy footprints, and potential replication of identified opportunities.

Alkadi, Nasr E [ORNL] [ORNL; Nimbalkar, Sachin U [ORNL] [ORNL; De Fontaine, Mr. Andre [United States Department of Energy (DOE), Industrial Technology Program] [United States Department of Energy (DOE), Industrial Technology Program; Schoeneborn, Fred C [ORNL] [ORNL

2013-01-01T23:59:59.000Z

271

An effectiveness evaluation model for the web-based marketing of the airline industry  

Science Journals Connector (OSTI)

In the air transportation industry the web-based marketing has already been widely applied to service the frequent customers as well as to attract new customers. For it, normally the airlines must invest amount of enterprise resources to develop the ... Keywords: Analytic Network Process (ANP), Decision Making Trial and Evaluation Laboratory (DEMATEL), Multiple criteria decision-making (MCDM), VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR), Web-based marketing, Website evaluation

Wen-Hsien Tsai; Wen-Chin Chou; Jun-Der Leu

2011-11-01T23:59:59.000Z

272

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

SciTech Connect

Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

Sathaye, J.; Xu, T.; Galitsky, C.

2010-08-15T23:59:59.000Z

273

EAST COAST DIGITAL ELEVATION MODELS Coastal Models Supporting our Nation's Needs through Science and Technology  

E-Print Network (OSTI)

in Environmental Sciences (CIRES)-- University of Colorado at Boulder. The elevation modeling work, done in the Gulf Stream. These storms cause coastal flooding, coastal erosion, and high- gust winds. Each year

274

A high-resolution integrated model of the National Ignition Campaign cryogenic layered experiments  

SciTech Connect

A detailed simulation-based model of the June 2011 National Ignition Campaign cryogenic DT experiments is presented. The model is based on integrated hohlraum-capsule simulations that utilize the best available models for the hohlraum wall, ablator, and DT equations of state and opacities. The calculated radiation drive was adjusted by changing the input laser power to match the experimentally measured shock speeds, shock merger times, peak implosion velocity, and bangtime. The crossbeam energy transfer model was tuned to match the measured time-dependent symmetry. Mid-mode mix was included by directly modeling the ablator and ice surface perturbations up to mode 60. Simulated experimental values were extracted from the simulation and compared against the experiment. Although by design the model is able to reproduce the 1D in-flight implosion parameters and low-mode asymmetries, it is not able to accurately predict the measured and inferred stagnation properties and levels of mix. In particular, the measured yields were 15%-40% of the calculated yields, and the inferred stagnation pressure is about 3 times lower than simulated.

Jones, O. S.; Cerjan, C. J.; Marinak, M. M.; Milovich, J. L.; Robey, H. F.; Springer, P. T.; Benedetti, L. R.; Bleuel, D. L.; Bond, E. J.; Bradley, D. K.; Callahan, D. A.; Caggiano, J. A.; Celliers, P. M.; Clark, D. S.; Dixit, S. M.; Doppner, T.; Dylla-Spears, R. J.; Dzentitis, E. G.; Farley, D. R.; Glenn, S. M. [Lawrence Livermore National Laboratory, 7000 East Avenue, L-399, Livermore, California 94551 (United States); and others

2012-05-15T23:59:59.000Z

275

Modelling and simulation of acid gas condensation in an industrial chimney - article no. A39  

SciTech Connect

Coal power stations as well as waste incinerators produce humid acid gases which may condense in industrial chimneys. These condensates can cause corrosion of chimney internal cladding which is made of stainless steel, nickel base alloys or non metallic materials. In the aim of polluting emission reduction and material optimal choice, it is necessary to determine and characterize all the phenomena which occur throughout the chimney and more especially condensation and dissolution of acid gases (in this particular case, sulfur dioxide SO{sub 2}).

Serris, E.; Cournil, M.M.; Peultier, J. [Ecole des Mines de St Etienne, St Etienne (France)

2009-07-01T23:59:59.000Z

276

Industrial Engineering Industrial Advisory Board  

E-Print Network (OSTI)

Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

Gelfond, Michael

277

Industrial energy use indices  

E-Print Network (OSTI)

and colder are determined by annual average temperature weather data). Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used in the south of the U.S. iv... This analysis uses electricity and natural gas energy consumption and area data of manufacturing plants available in the U.S. Department of Energys national Industrial Assessment Center (IAC) database. The data there come from Industrial Assessment Centers...

Hanegan, Andrew Aaron

2008-10-10T23:59:59.000Z

278

Sandia National Laboratories: renewables value proposition  

NLE Websites -- All DOE Office Websites (Extended Search)

outfitted with photovoltaic (PV) installations are a real challenge for the nation's real estate industry, but a new tool developed by Sandia National Laboratories and Solar Power...

279

Petroleum Market Model of the National Energy Modeling System. Part 1  

SciTech Connect

The purpose of this report is to define the objectives of the Petroleum Market Model (PMM), describe its basic approach, and provide detail on how it works. This report is intended as a reference document for model analysts, users, and the public. The PMM models petroleum refining activities, the marketing of petroleum products to consumption regions, the production of natural gas liquids in gas processing plants, and domestic methanol production. The PMM projects petroleum product prices and sources of supply for meeting petroleum product demand. The sources of supply include crude oil, both domestic and imported; other inputs including alcohols and ethers; natural gas plant liquids production; petroleum product imports; and refinery processing gain. In addition, the PMM estimates domestic refinery capacity expansion and fuel consumption. Product prices are estimated at the Census division level and much of the refining activity information is at the Petroleum Administration for Defense (PAD) District level.

NONE

1997-12-18T23:59:59.000Z

280

Memorandum of Understanding between the Department of Energy of the United States of America and the National Development and Reform Commission of the People's Republic of China Concerning Industrial Energy Efficiency Cooperation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

THE DEPARTMENT OF ENERGY OF THE UNITED STATES OF AMERICA AND THE NATIONAL DEVELOPMENT AND REFORM COMMISSION OF THE PEOPLE'S REPUBLIC OF CHINA CONCERNING INDUSTRIAL ENERGY EFFICIENCY COOPERATION The Department of Energy of the United States of America (DOE) and the National Development and Reform Commission of the People's Republic of China (NDRC), jointly referred to herein as the "Participants"; RECOGNIZING that the development and use of energy are key elements of the economic growth of the United States and the People's Republic of China (PRC); SHARING common serious energy challenges from increasing energy imports and worsening environmental impacts as energy use rises; SHARING the sense of commitment to enhancing energy security through cooperation;

Note: This page contains sample records for the topic "national industry model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

China's Industrial Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

China's Industrial Energy China's Industrial Energy Consumption Trends and Impacts of the Top-1000 Enterprises Energy- Saving Program and the Ten Key Energy-Saving Projects Jing Ke, Lynn Price, Stephanie Ohshita, David Fridley, Nina Khanna, Nan Zhou, Mark Levine China Energy Group Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Reprint version of journal article published in "Energy Policy", Volume 50, Pages 562-569, November 2012 October 2012 This work was supported by the China Sustainable Energy Program of the Energy Foundation through the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY

282

Artificial Neural Network Estimator Design for the Inferential Model Predictive Control of an Industrial Distillation Column  

Science Journals Connector (OSTI)

The ANN architecture is a multilayer perceptron (MLP), which is a typical feed-forward (layered) neural network.2 A collection of neurons connected to each other forms the artificial neural network. ... It is shown that the how artificial neural networks can model the column, and demonstrated that the network model is as good or better than a simplified first principles model when used for model predictive control. ... A dynamic, nonlinear, multi-input multi-output application using the recurrent dynamic neuron network (RDNN) model is presented for a two-by-two distn. ...

Alm?la Bahar; Canan zgen; Kemal Leblebicio?lu; U?ur Hal?c?

2004-08-12T23:59:59.000Z

283

Historically, estuaries have been the focal point of extensive industrial activity for maritime nations. Similarly, it is well established that such marginal marine environments are particularly  

E-Print Network (OSTI)

- and sediment-based pollution. In future, these areas will be placed under enhanced environmental pressure. AllHistorically, estuaries have been the focal point of extensive industrial activity for maritime anthropogenic influences, such as: maritime transport (port construction, navigational dredging and dumping

Quartly, Graham

284

Phenotypic Database to Support Genomics Assessment of Beef Cattle The beef cattle industry is important to the national economy as well as that of Texas.  

E-Print Network (OSTI)

Phenotypic Database to Support Genomics Assessment of Beef Cattle The beef cattle industry will require the application of genomics and marker-assisted breeding. Extensive phenotypic information stored at ­80°C from a larger number (>500) of animals· for future genomic evalulation. Objectives

285

Evaluation of Oxy-coal Combustion Modelling at Semi-industrial Scale  

Science Journals Connector (OSTI)

Duringthe oxy-fuelcombustion processpulverizedcoalisburntinan atmosphere consistingofpureO2mixedwith recycled ?uegas whereas during the conventional process air serves as the only oxidant. This entails speci?c conditions regarding thermo-physical properties which impact both combustion characteristics and heat transfer. Accordingly, adjustments within CFD codes are required in order to maintain accuracyand prediction quality criteria within simulations of oxy-coal combustion. The CFD code AIOLOS was used to evaluate recent oxy-coal speci?c implementations concerning the global chemistry mechanism and the heat transfer. For validation purposes extensive tests have been carried out at IFK's semi-industrial scale furnace (500kWth). Simulations have been performed for both, conventional air-?ring and oxy-coal combustion conditions with US bituminous coal, and a comparison of simulation results and corresponding experimental data is given. In general, satisfactory agreement is observed.

Michael Mller; Uwe Schnell; Simon Grathwohl; JrgMaier; Gnter Scheffknecht

2012-01-01T23:59:59.000Z

286

Improving baseline forecasts in a 500-industry dynamic CGE model of the USA.  

E-Print Network (OSTI)

??MONASH-style CGE models have been used to generate baseline forecasts illustrating how an economy is likely to evolve through time. One application of such forecasts (more)

Mavromatis, Peter George

2013-01-01T23:59:59.000Z

287

Compilation of CFD Models of Various Solid Oxide Electrolyzers Analyzed at the Idaho National Laboratory  

SciTech Connect

Various three dimensional computational fluid dynamics (CFD) models of solid oxide electrolyzers have been created and analyzed at the Idaho National Laboratory since the inception of the Nuclear Hydrogen Initiative in 2004. Three models presented herein include: a 60 cell planar cross flow with inlet and outlet plenums, 10 cell integrated planar cross flow, and internally manifolded five cell planar cross flow. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) module adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation over-potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Contour plots of local electrolyte temperature, current density, and Nernst potential indicated the effects of heat transfer, endothermic reaction, Ohmic heating, and change in local gas composition. Results are discussed for using these models in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production is reported herein. Contour plots and discussion show areas of likely cell degradation, flow distribution in inlet plenum, and flow distribution across and along the flow channels of the current collectors

Grant Hawkes; James O'Brien

2012-06-01T23:59:59.000Z

288

Structural model for the Al72Ni20Co8 decagonal quasicrystals National Renewable Energy Laboratory, Golden, Colorado 80401  

E-Print Network (OSTI)

Structural model for the Al72Ni20Co8 decagonal quasicrystals Yanfa Yan National Renewable Energy, Oak Ridge, Tennessee 37831 Received 15 February 2000 We propose a structure model for the Al72Ni20Co8 decagonal quasicrystals based on its 2 -inflated Al13Co4 approximant phase: Applying a 105 screw operation

Pennycook, Steve

289

Nuclear power eyed to generate industrial heat  

Science Journals Connector (OSTI)

Nuclear power eyed to generate industrial heat ... The American Nuclear Society has called for "an aggresssive national policy aimed at demonstrating specific capabilities and providing incentives for the application of nuclear power to meeting industrial energy needs." ...

1983-10-24T23:59:59.000Z

290

General overview of the Nigerian construction industry  

E-Print Network (OSTI)

The purpose of this study is to investigate and provide a general overview of the Nigerian construction industry, its role in the national economy, the main participants in the industry, the problems that they face, and ...

Dantata, Sanusi (Sanusi A.)

2008-01-01T23:59:59.000Z

291

State Level Analysis of Industrial Energy Use  

E-Print Network (OSTI)

Most analyses of industrial energy use have been conducted at the national level, in part because of the difficulties in dealing with state level data. Unfortunately, this provides a distorted view of the industrial sector for state and regional...

Elliott, R. N.; Shipley, A. M.; Brown, E.

292

Transportation | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Transportation From modeling and simulation programs to advanced electric powertrains, engines, biofuels, lubricants, and batteries, Argonne's transportation research is vital to the development of next-generation vehicles. Revolutionary advances in transportation are critical to reducing our nation's petroleum consumption and the environmental impact of our vehicles. Some of the most exciting new vehicle technologies are being ushered along by research conducted at Argonne National Laboratory. Our Transportation Technology R&D Center (TTRDC) brings together scientists and engineers from many disciplines across the laboratory to work with the U.S. Department of Energy (DOE), automakers and other industrial partners. Our goal is to put new transportation technologies on the road that improve

293

New process modeling [sic], design, and control strategies for energy efficiency, high product quality, and improved productivity in the process industries. Final project report  

SciTech Connect

This project was concerned with the development of process design and control strategies for improving energy efficiency, product quality, and productivity in the process industries. In particular, (i) the resilient design and control of chemical reactors, and (ii) the operation of complex processing systems, was investigated. Specific topics studied included new process modeling procedures, nonlinear controller designs, and control strategies for multiunit integrated processes. Both fundamental and immediately applicable results were obtained. The new design and operation results from this project were incorporated into computer-aided design software and disseminated to industry. The principles and design procedures have found their way into industrial practice.

Ray, W. Harmon

2002-06-05T23:59:59.000Z

294

Modeling the Energy Demands and Greenhouse Gas Emissions of the Canadian Oil Sands Industry  

Science Journals Connector (OSTI)

In this study, the energy requirements associated with producing synthetic crude oil (SCO) and bitumen from oil sands are modeled and quantified, on the basis of current commercially used production schemes. The production schemes were (a) mined bitumen, ...

Guillermo Ordorica-Garcia; Eric Croiset; Peter Douglas; Ali Elkamel; Murlidhar Gupta

2007-06-01T23:59:59.000Z

295

Modeling corner solutions with panel data: Application to the industrial energy demand in France  

Science Journals Connector (OSTI)

This paper provides an empirical application of Lee and Pitts (1986) approach to the problem of corner solutions in the case of panel data. This model deals with corner solutions in a manner consistent with the ...

Raja Chakir; Alain Bousquet; Norbert Ladoux

2004-01-01T23:59:59.000Z

296

Sandia National Laboratories: National Solar Thermal Test Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Sandia Capabilities to Support Power Industry On January 8, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

297

DOE/EIA-0581(2000) The National Energy Modeling System: An Overview  

Gasoline and Diesel Fuel Update (EIA)

NEMS NEMS represents domestic energy markets by ex- plicitly representing the economic decision making involved in the production, conversion, and con- sumption of energy products. Where possible, NEMS includes explicit representation of energy technolo- gies and their characteristics. Since energy costs and availability and en- ergy-consuming characteristics can vary widely across regions, considerable regional detail is in- cluded. Other details of production and consumption cate- gories are represented to facilitate policy analysis and en- sure the validity of the results. A summary of the detail provided in NEMS is shown below. Major Assumptions Each module of NEMS embodies many assumptions and data to characterize the future production, conversion, or consumption of energy in the United States. Two major Energy Information Administration/The National Energy Modeling

298

Estimating surface water risk at Oak Ridge National Laboratory: Effects of site conditions on modeling results  

SciTech Connect

Multiple source term and groundwater modeling runs were executed to estimate surface water {sup 90}Sr concentrations resulting from leaching of sludges in five 180,000 gallon Gunite{trademark} tanks at Oak Ridge National Laboratory. Four release scenarios were analyzed: (1) leaching of unstabilized sludge with immediate tank failure; (2) leaching of unstabilized sludge with delayed tank failure due to chemical degradation; (3) leaching of stabilized sludge with immediate tank failure; and (4) leaching of residual contamination out of the shells of empty tanks. Source terms and concentrations of {sup 90}Sr in the stream directly downgradient of the tanks were calculated under these release scenarios. The following conclusions were drawn from the results of the modeling: (1) small changes in soil path length resulted in relatively large changes in the modeled {sup 90}Sr concentrations in the stream; (2) there was a linear relationship between the amount of sludge remaining in a tank and the peak concentration of {sup 90}Sr in the stream; (3) there was a linear relationship between the cumulative {sup 90}Sr release from a tank and the peak concentration of {sup 90}Sr in the stream; (4) sludge stabilization resulted in significantly reduced peak concentrations of {sup 90}Sr in the stream; and (5) although radioactive decay of {sup 90}Sr during the period of tank degradation resulted in incrementally lower peak {sup 90}Sr concentrations in surface water than under the immediate tank failure scenarios these concentrations were equivalent under the two scenarios after about 90 years.

Curtis, A.H. III

1996-08-01T23:59:59.000Z

299

The following are appendices A, B1 and B2 of our paper, "Integrated Process Modeling and Product Design of Biodiesel Manufacturing", that appears in the Industrial and  

E-Print Network (OSTI)

a Biodiesel Process Model To access NIST TDE Data Engine in Aspen Plus version 2006.5 or V7.0 Step 1. Enter1 The following are appendices A, B1 and B2 of our paper, "Integrated Process Modeling and Product Design of Biodiesel Manufacturing", that appears in the Industrial and Engineering Chemistry Research

Liu, Y. A.

300

Webinar: Delivering Transformational HPC Solutions to Industry  

SciTech Connect

Dr. Frederick Streitz, director of the High Performance Computing Innovation Center, discusses Lawrence Livermore National Laboratory computational capabilities and expertise available to industry in this webinar.

Streitz, Frederick

2014-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "national industry model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Webinar: Delivering Transformational HPC Solutions to Industry  

ScienceCinema (OSTI)

Dr. Frederick Streitz, director of the High Performance Computing Innovation Center, discusses Lawrence Livermore National Laboratory computational capabilities and expertise available to industry in this webinar.

Streitz, Frederick

2014-07-22T23:59:59.000Z

302

Sandia National Laboratories: stainless steel  

NLE Websites -- All DOE Office Websites (Extended Search)

stainless steel Sandia-California Partners with Japanese National Institute of Advanced Industrial Science and Technology (AIST) in Hydrogen-Materials Research On July 26, 2013, in...

303

DOE National Hydrogen Learning Demonstration  

Energy.gov (U.S. Department of Energy (DOE))

DOE's Technology Validation project is a government/industry partnership created to address the national challenge of ensuring reliable, domestic, diverse energy sources while reducing U.S....

304

Business models and strategies in the video game industry : an analysis of Activision-Blizzard and Electronic Arts  

E-Print Network (OSTI)

In recent years the video game industry has been of great importance in the business world beyond the role of a cultural medium. With its huge size and potential for more growth, the industry has attracted many newcomers. ...

Lee, Ruri

2013-01-01T23:59:59.000Z

305

An evaluation of tannery industry wastewater treatment sludge gasification by artificial neural network modeling  

Science Journals Connector (OSTI)

Abstract This paper reports on the calorific value of synthetic gas (syngas) produced by gasification of dewatered sludge derived from treatment of tannery wastewater. Proximate and ultimate analyses of samples were performed. Thermochemical conversion alters the chemical structure of the waste. Dried air was used as a gasification agent at varying flow rates, which allowed the feedstock to be quickly converted into gas by means of different heterogeneous reactions. A lab-scale updraft fixed-bed steel reactor was used for thermochemical conversion of sludge samples. Artificial neural network (ANN) modeling techniques were used to observe variations in the syngas related to operational conditions. Modeled outputs showed that temporal changes of model predictions were in close accordance with real values. Correlation coefficients (r) showed that the ANN used in this study gave results with high sensitivity.

Atakan Ongen; H. Kurtulus Ozcan; Semiha Aray?c?

2013-01-01T23:59:59.000Z

306

NETL: Industrial Capture & Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Capture & Storage Industrial Capture & Storage Technologies Industrial Capture & Storage The United States Department of Energy, National Energy Technology Laboratory (DOE/NETL, or DOE) is currently implementing a program titled "Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use." This CO2 Capture and Sequestration (CCS) and CO2 use program is a cost-shared collaboration between the Government and industry whose purpose is to increase investment in clean industrial technologies and sequestration projects. In accordance with the American Recovery and Reinvestment Act of 2009, and Section 703 of Public Law 110-140, DOE's two specific objectives are to demonstrate: (1) Large-Scale Industrial CCS projects from industrial sources, and (2) Innovative Concepts for beneficial CO2 use.

307

Improving the Contribution of Economic Models in Evaluating Industrial Energy Efficiency Improvements  

E-Print Network (OSTI)

Traditional representation of improved end-use efficiency in the manufacturing sector has tended to assume a net cost perspective. In other words, the assumption for many models is that any change within the energy end-use patterns must imply a...

Laitner, J. A.

2007-01-01T23:59:59.000Z

308

National Laboratory Impact Initiative Team  

Office of Energy Efficiency and Renewable Energy (EERE)

The mission of the Office of Energy Efficiency and Renewable Energy's (EERE's) National Laboratory Impact Initiative is to significantly increase the industrial impact of the Energy Department's national laboratories on the U.S. clean energy sector.

309

Second-Use Li-Ion Batteries to Aid Automotive and Utility Industries (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Repurposing lithium-ion batteries at the end of useful life Repurposing lithium-ion batteries at the end of useful life in electric drive vehicles could eliminate owners' disposal concerns and offer low-cost energy storage for certain applications. Increasing the number of plug-in electric drive vehicles (PEVs) is one major strategy for reduc- ing the nation's oil imports and greenhouse gas emissions. However, the high up-front cost and end-of-service disposal concerns of their lithium-ion (Li-ion) batteries could impede the proliferation of such vehicles. Re-using Li-ion batteries after their useful automotive life has been proposed as a way to remedy both matters. In response, the National Renewable Energy Laboratory (NREL) and its partners are conducting research to identify, assess, and verify profitable

310

User Facilities for Industry 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Satellite!Workshop!10!-!User!Facilities!for!Industry!101! Satellite!Workshop!10!-!User!Facilities!for!Industry!101! Organizers:+Andreas+Roelofs+(CNM),+Jyotsana+Lal+(APS),+Katie+Carrado+Gregar+(CNM),+and+Susan+Strasser+ (APS)! ! In! order! to! increase! awareness! of! the! industrial! community! to! Argonne! National! Laboratory! user! facilities,!the!Advanced!Photon!Source!(APS),!the!Center!for!Nanoscale!Materials!(CNM)!and!the!Electron! Microscopy!Center!(EMC)!welcomed!industrial!scientists,!engineers!and!related!professionals!to!a!oneC day! workshop! to! learn! more! about! Argonne's! National! Laboratory! and! the! capabilities/techniques! available! for! their! use.! The! workshop! showcased! several! successful! industrial! user! experiments,! and! explained! the! different! ways! in! which! industrial! scientists! can! work! at! Argonne! or! with! Argonne!

311

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

312

Roadmap Document for Pacific Northwest National Laboratory Contribution to the Open Modeling Framework  

SciTech Connect

The Cooperative Research Network (CRN) of the National Rural Electric Cooperative Association (NRECA) has identified GridLAB-D as a tool that would provide significant benefit to its member utilities. However, they have also noted that the complexity of the tool would be a significant barrier for adoption. As can often happen in complex simulation environments, as the available capabilities and flexibility increases, the usability of the software decreases except for a few power users; this is not unique to GridLAB-D. While GridLAB-D has expanded to a considerable user base, with a few notable exceptions (e.g., American Electric Power) most users are focused on research and development. As a result, NRECA/CRN has proposed an Open Modeling Framework (OMF) designed to make the capabilities of GridLAB-D, and other advanced grid tools, available via a web interface. This will allow utility users to access many of the capabilities of GridLAB-D, with little to no knowledge of the tool itself. Other components will be layered over the simulation engines to provide the user with business support functions, allowing full business case scenarios to be created from the technical data generated within the simulations. Because of the open availability and potential national benefit of the OMF, PNNL has been tasked with supporting NRECA/CRNs development of the tool, with a focus on incorporating GridLAB-D within the OMF structure and expanding GridLAB-D capabilities to support OMF functions. The GridLAB-D enhancements will be provided first to the OMF developers, but will also be delivered to the wider GridLAB-D community after validation via the community repository. This report is intended to provide a roadmap for the intended enhancements to be delivered by PNNL. Seven tasks were identified in cooperation with NRECA/CRN each is briefly discussed, including potential outcomes and deadlines.

Fuller, Jason C.; Fisher, Andrew R.; Ciraci, Selim; Hammerstrom, Janelle L.; Hauer, Matthew L.; Schneider, Kevin P.

2013-05-30T23:59:59.000Z

313

Electric Utility Industry Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electric Utility Industry Update Electric Utility Industry Update Steve Kiesner Director, National Customer Markets Edison Electric Institute FUPWG Spring 2012 April 12, 2012 Edison Electric Institute  Investor-Owned Electric Companies  Membership includes  200 US companies,  More than 65 international affiliates and  170 associates  US members  Serve more than 95% of the ultimate customers in the investor-owned segment of the industry and  Nearly 70% of all electric utility ultimate customers, and  Our mission focuses on advocating public policy; expanding market opportunities; and providing strategic business information Agenda Significant Industry Trends Utility Infrastructure Investments Generation and Fuel Landscape

314

Industry | OpenEI  

Open Energy Info (EERE)

Industry Industry Dataset Summary Description The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and secondary; conventional and non-conventional; and new and renewable sources of energy. The Energy Statistics dataset, covering the period from 1990 on, is available at UNdata. This dataset relates to the consumption of alcohol by other industries and construction. Data is only available for Paraguay and the U.S., years 2000 to 2007. Source United Nations (UN) Date Released December 09th, 2009 (5 years ago) Date Updated Unknown Keywords Agriculture Alcohol consumption Industry UN Data application/zip icon XML (zip, 514 bytes) application/zip icon XLS (zip, 425 bytes) Quality Metrics

315

Estimation and Analysis of Energy Utilities Consumption in Batch Chemical Industry through Thermal Losses Modeling  

Science Journals Connector (OSTI)

A hot water distribution system is mainly used for heating the infrastructure (i.e., keeping the building and pipes at a desired temperature) and is fed by steam condensates. ... As a result, the three-parameters model, whose functional form already integrates this feature, was preferred to calibrate valves distributing liquid utilities both in the multiproduct and the monoproduct plant. ... However, an additional assumption for heat losses is necessary or a detailed and complicated analytical calculation for all components of the heating/cooling utility system. ...

Claude Rrat; Stavros Papadokonstantakis; Konrad Hungerbhler

2012-06-29T23:59:59.000Z

316

NSLS Industrial User Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Jun Wang Physicist, Industrial Program Coordinator Phone: 344-2661 Email: junwang@bnl.gov Jun Wang is an Industrial Program Coordinator in the Photon Science Directorate at Brookhaven National Laboratory. She is working closely with industrial researchers as well as beamline staff to identify and explore new opportunities in industrial applications using synchrotron radiation. She has been leading the industrial research program including consultation, collaboration and outreach to the industrial user groups. Before joining BNL in 2008, Jun Wang was a Lead Scientist for a high-resolution high throughput powder diffraction program at the Advanced Photon Source (APS). As a Physicist at BNL, her research focuses on materials structure determination and evolution. Her expertise covers wide range x-ray techniques such as thin film x-ray diffraction and reflectivity, powder diffraction, small angle x-ray scattering, protein solution scattering and protein crystallography, as well as x-ray imaging. Currently she is the project leader of a multi-million dollar project on transmission x-ray microscopy recently funded by the U.S. DOE and the spokesperson for this new imaging beamline at the NSLS. She has also been collaborating with universities and industries for several projects on energy research at the NSLS.

317

Policies on Japan's Space Industry  

E-Print Network (OSTI)

as a strategic industry Practical space use in National Security Diplomacy ...etc Policy Administrative Structure on the Basic Space Law legislated in 2008. 1. The government sets space policy as a national strategy utilization environment Develop new markets with small size satellites and rockets Promote the serialization

318

Bayesian models for elevated disease risk due to exposure to uranium mine and mill waste on the Navajo Nation  

E-Print Network (OSTI)

ForReview Only Bayesian models for elevated disease risk due to exposure to uranium mine and mill of Pharmacy, Community Environmental Health Program Keywords: abandoned uranium mines, conditionally specified to ex- posure to uranium mine and mill waste on the Navajo Nation Glenn A. Stark University of New

Huerta, Gabriel

319

Sub-national TIMES model for analyzing regional future use of Biomass and Biofuels in France and  

E-Print Network (OSTI)

1 Sub-national TIMES model for analyzing regional future use of Biomass and Biofuels in France Introduction Renewable energy sources such as biomass and biofuels are increasingly being seen as important of biofuels on the final consumption of energy in transport should be 10%. The long-term target is to reduce

Boyer, Edmond

320

Comparison of Software Models for Energy Savings from Cool Roofs Joshua New, Oak Ridge National Laboratory (United States)  

E-Print Network (OSTI)

Comparison of Software Models for Energy Savings from Cool Roofs Joshua New, Oak Ridge National consolidates comparison of RSC's projected energy savings to other simulation engines including DOE-2.1E, Attic of the Department of Energy's (DOE) Building Technologies Office (BTO). The simulation engine used in the RSC

Tennessee, University of

Note: This page contains sample records for the topic "national industry model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Final Technical Report on DOE Grant for Modeling of Plasma Rotation in the National Spherical Torus Experiment  

SciTech Connect

This is the final technical report on the Modeling of Plasma Rotation in National Spherical Torus Experiment (NSTX) DOE Grant No. DE-FG02-02ER54679. The research subjects, technical abstracts, and publications where details of the research results can be found are reported here.

Shaing, K. C.

2009-07-09T23:59:59.000Z

322

Industry Sponsored Research | Partnerships | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnering Mechanism Sample Sponsored Research Agreement SBIR-STTR Support Economic Development Industrial Partnerships University Partnerships Events and Conferences Success Stories Video Newsletters Staff Contacts Partnerships Home | Connect with ORNL | For Industry | Partnerships | Sponsored Research SHARE Sponsored Research Fiber Optic Research The Oak Ridge National Laboratory is a United States Department of Energy national laboratory, operated under contract by UT-Battelle, LLC. The laboratory's 1500+ research scientists and engineers conduct a vigorous program of scientific discovery and technology development, and ORNL is eager to engage industry in partnerships to help translate its research output into market impact and support for U.S. competitiveness. Companies wishing to learn about the research being

323

NETL: Industrial Capture & Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Technologies Industrial Capture & Storage Area 1 Large-Scale Industrial CCS Program The United States Department of Energy, National Energy Technology Laboratory (DOE/NETL, or DOE) is currently implementing a program titled "Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use." This CO2 Capture and Sequestration (CCS) and CO2 use program is a cost-shared collaboration between the Government and industry whose purpose is to increase investment in clean industrial technologies and sequestration projects. In accordance with the American Recovery and Reinvestment Act of 2009, and Section 703 of Public Law 110-140, DOE's two specific objectives are to demonstrate: (1) Large-Scale Industrial CCS projects from industrial sources, and (2) Innovative Concepts for beneficial CO2 use.

324

Industrial process surveillance system  

DOE Patents (OSTI)

A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

1998-06-09T23:59:59.000Z

325

EIA - The National Energy Modeling System: An Overview 2003-Carbon Dioxide  

Gasoline and Diesel Fuel Update (EIA)

Carbon Dioxide and Methane Emissions Carbon Dioxide and Methane Emissions The National Energy Modeling System: An Overview 2003 Carbon Dioxide and Methane Emissions The emissions policy submodule, part of the integrating module, estimates the energy–related emissions of carbon dioxide and methane. Carbon dioxide emissions are dependent on the fossil fuel consumed, the carbon content of the fuel, and the fraction of the fuel consumed in combustion. The product of the carbon dioxide coefficient and the combustion fraction yields a carbon dioxide emission factor. For fuel uses of fossil energy, the combustion fractions are assumed to be 0.99 for liquid fuels and 0.995 for gaseous fuels. The carbon dioxide potential of nonfuel uses of energy, such as asphalt and petrochemical feedstocks, is assumed to be sequestered in the product and not released to the atmosphere. The coefficients for carbon dioxide emissions are updated each year from the Energy Information Administration’s annual, Emissions of Greenhouse Gases in the United States.17

326

Industry @ ALS  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry @ ALS Industry @ ALS Industry @ ALS Concrete Industry Benefits from Ancient Romans and the ALS Print Thursday, 17 October 2013 14:24 New insights into the Romans' ingenious concrete harbor structures emerging from ALS beamline research could move the modern concrete industry toward its goal of a reduced carbon footprint. Summary Slide Read more... Moving Industry Forward: Finding the Environmental Opportunity in Biochar Print Thursday, 12 September 2013 08:41 Using ALS Beamlines 10.3.2 and 8.3.2, the Environmental Protection Agency (EPA) is currently investigating how biochar sorbs environmental toxins and which kinds of biochar are the most effective. The possibilities for widespread use have already launched entrepreneurial commercial ventures. Summary Slide

327

Industrial Users  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR...

328

Industrial Users  

NLE Websites -- All DOE Office Websites (Extended Search)

on altitude. This large flux allows testing of semiconductor devices at greatly accelerated rates. Industry users are invited to contact Steve Wender, phone:505-667-1344 or...

329

National Laboratory Dorene Price  

E-Print Network (OSTI)

Brookhaven National Laboratory Dorene Price Office of Intellectual Property and Sponsored Research: price@bnl.gov ELECTROCHEMICAL ENHANCEMENT OF BIO-ETHANOL AND METABOLITE PRODUCTION Brookhaven National-ethanol fuel, as a beverage, or industries which by means of fermenting microbes commercially make ethanol

330

NETL: First National Conference on Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

First National Conference on Carbon Sequestration First National Conference on Carbon Sequestration Table of Contents Disclaimer Papers and Presentations Plenary Session Industry Focus Panel Discussion Session 1A. Geologic Sequestration I - Overview Session 1B. Capture & Separation I - Industrial Efforts Session 1C. Modeling I - Case Studies & Deployment Session 2A. Geologic Sequestration II - EOR/EGR Session 2B. Capture & Separation II - Improved Processes Session 2C. Modeling II - Economics Poster Presentations International Panel Discussion Session 3A. Geologic Sequestration III - Enhanced Coalbed Methane Session 3B. Capture & Separation III - Adsorption Studies Session 3C. Terrestrial Sequestration I - Ecosystem Behavior Session 4A. Geologic Sequestration IV - Saline Aquifers Session 4B. Capture & Separation IV - Power Systems Concepts

331

An Investigation Into Bayesian Networks for Modeling National Ignition Facility Capsule Implosions  

SciTech Connect

Bayesian networks (BN) are an excellent tool for modeling uncertainties in systems with several interdependent variables. A BN is a directed acyclic graph, and consists of a structure, or the set of directional links between variables that depend on other variables, and conditional probabilities (CP) for each variable. In this project, we apply BN's to understand uncertainties in NIF ignition experiments. One can represent various physical properties of National Ignition Facility (NIF) capsule implosions as variables in a BN. A dataset containing simulations of NIF capsule implosions was provided. The dataset was generated from a radiation hydrodynamics code, and it contained 120 simulations of 16 variables. Relevant knowledge about the physics of NIF capsule implosions and greedy search algorithms were used to search for hypothetical structures for a BN. Our preliminary results found 6 links between variables in the dataset. However, we thought there should have been more links between the dataset variables based on the physics of NIF capsule implosions. Important reasons for the paucity of links are the relatively small size of the dataset, and the sampling of the values for dataset variables. Another factor that might have caused the paucity of links is the fact that in the dataset, 20% of the simulations represented successful fusion, and 80% didn't, (simulations of unsuccessful fusion are useful for measuring certain diagnostics) which skewed the distributions of several variables, and possibly reduced the number of links. Nevertheless, by illustrating the interdependencies and conditional probabilities of several parameters and diagnostics, an accurate and complete BN built from an appropriate simulation set would provide uncertainty quantification for NIF capsule implosions.

Mitrani, J

2008-08-18T23:59:59.000Z

332

Comparison of Bottom-Up and Top-Down Forecasts: Vision Industry Energy Forecasts with ITEMS and NEMS  

E-Print Network (OSTI)

of the Department of Energy's Office of Industrial Technologies, EIA extracted energy use infonnation from the Annual Energy Outlook (AEO) - 2000 (8) for each of the seven # The Pacific Northwest National Laboratory is operated by Battelle Memorial Institute...-6, 2000 NEMS The NEMS industrial module is the official forecasting model for EIA and thus the Department of Energy. For this reason, the energy prices and output forecasts used to drive the ITEMS model were taken from EIA's AEO 2000. Understanding...

Roop, J. M.; Dahowski, R. T

333

Industrial microbiology  

Science Journals Connector (OSTI)

...include the fruit, wine, baking, milling, dairy, and distill-ing industries...fructose known as high fruc-tose corn syrup. Between 500,000 and 1...glucose isomerase has permitted the corn wet milling industry to capture 30 percent of...

AL Demain

1981-11-27T23:59:59.000Z

334

National Ignition Facility computational fluid dynamics modeling and light fixture case studies  

SciTech Connect

This report serves as a guide to the use of computational fluid dynamics (CFD) as a design tool for the National Ignition Facility (NIF) program Title I and Title II design phases at Lawrence Livermore National Laboratory. In particular, this report provides general guidelines on the technical approach to performing and interpreting any and all CFD calculations. In addition, a complete CFD analysis is presented to illustrate these guidelines on a NIF-related thermal problem.

Martin, R.; Bernardin, J.; Parietti, L.; Dennison, B.

1998-02-01T23:59:59.000Z

335

Assumptions to the Annual Energy Outlook 2002 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated

336

Financial constraints in capacity planning: a national utility regulatory model (NUREG). Volume III of III: software description. Final report  

SciTech Connect

This volume is the software description for the National Utility Regulatory Model (NUREG). This is the third of three volumes provided by ICF under contract number DEAC-01-79EI-10579. These three volumes are: a manual describing the NUREG methodology; a users guide; and a description of the software. This manual describes the software which has been developed for NUREG. This includes a listing of the source modules. All computer code has been written in FORTRAN.

None

1981-10-29T23:59:59.000Z

337

Energy Department to Work with National Association of Manufacturers...  

Office of Environmental Management (EM)

to Work with National Association of Manufacturers to Increase Industrial Energy Efficiency Energy Department to Work with National Association of Manufacturers to Increase...

338

MOU signed between CIAE and Jefferson National Lab, USA. (China...  

NLE Websites -- All DOE Office Websites (Extended Search)

https:www.jlab.orgnewsarticlesmou-signed-between-ciae-and-jefferson-national-lab-usa-china-nuclear-industry-news-ge... MOU signed between CIAE and Jefferson National Lab, USA....

339

NREL Develops Heat Pump Water Heater Simulation Model (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

simulation model helps researchers evaluate real-world simulation model helps researchers evaluate real-world impacts of heat pump water heaters in U.S. homes. Heat pump water heaters (HPWHs) remove heat from the air and use it to heat water, presenting an energy-saving opportunity for homeowners. Researchers at the National Renewable Energy Laboratory (NREL) developed a simulation model to study the inter- actions of HPWHs and space conditioning equipment, related to climate and installa- tion location in the home. This model was created in TRNSYS and is based on data from HPWHs tested at NREL's Advanced HVAC Systems Laboratory. The HPWH model accounts for the condenser coil wrapped around the outside of the storage tank, and uses a data-based performance map. Researchers found that simulated energy use was within 2% of lab results, which confirms

340

Industry Research and Recommendations for New Commercial Buildings  

SciTech Connect

Researchers evaluated industry needs and developed logic models to support possible future commercial new construction research and deployment efforts that could be led or supported by DOE's Commercial Building Integration program or other national initiatives. The authors believe that these recommendations support a proposed course of action from the current state of commercial building energy efficiency to a possible long-term goal of achieving significant market penetration of cost-effective NZE buildings in all building sectors and climates by 2030.

Hendron, B.; Leach, M.; Gregory, N.; Pless, S.; Selkowitz, S.; Matthew, P.

2014-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "national industry model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

What is the Industrial Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Together with our industry partners, we strive to: Together with our industry partners, we strive to: * Accelerate adoption of the many energy-efficient technologies and practices available today * Conduct vigorous technology innovation to radically improve future energy diversity, resource efficiency, and carbon mitigation * Promote a corporate culture of energy efficiency and carbon management What Is the Industrial Technologies Program ? The Industrial Technologies Program (ITP) is the lead federal agency responsible for improving energy efficiency in the largest energy-using sector of the country. Industrial Sector National Initiative Goal: Drive a 25% reduction in industrial energy intensity by 2017. Standards Training Information Assessments * Website * Information Center * Tip Sheets * Case studies * Webcasts * Emerging

342

Industry Perspective  

Energy.gov (U.S. Department of Energy (DOE))

Fuel cell and biogas industries perspectives. Presented by Mike Hicks, Fuel Cell and Hydrogen Energy Association, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

343

ET Industries, Inc.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ET Industries, Inc. ET Industries, Inc. (showerheads) Issued: May 24, 2013 BEFORE THE U.S. DEPARTMENT OF ENERGY Washington, D.C. 20585 ) ) ) ) ) Case Number: 2012-SE-2902 AMENDED NOTICE OF NONCOMPLIANCE DETERMINATION 1 Manufacturers (including importers) are prohibited from distributing covered products in the United States that do not comply with applicable federal water conservation standards. See 10 C.F.R. §§ 429.5, 429.102; 42 U.S.C. §§ 6291(10), 6302. On April 3, 2012, DOE tested one unit of the "ThunderHead" showerhead basic model ("basic model TH-1 " 2 ), which ET Industries, Inc. ("ET") imported into the United States. On April 24, 2012, DOE completed testing of three additional units of basic model TH-1, also imported into

344

Automatic control in petroleum, petrochemical and desalination industries  

SciTech Connect

This is the second IFAC workshop on the subject of Automatic Control in Oil and Desalination Industries. Presentations and discussions underscored the priorities of oil and desalination industries in getting better overall quality, improved energy use, lower cost, and better safety and security. These factors will take on added importance to oil exporting nations that have been hit recently by large oil price declines, which are forcing them to improve the efficiency of their industries and rationalize all new capital expenditures. Papers presented at the workshop included reviews of theoretical developments in control and research in modelling, optimization, instrumentation and control. They included the latest developments in applications of control systems to petroleum, petrochemical and desalination industries such as refineries, multi-stage flash desalination, chemical reactors, and bioreactors. The papers covered the latest in the applications of adaptive control, robust control, decentralized control, bilinear control, measurement techniques, plant optimization and maintenance, and artificial intelligence. Several case studies on modernization of refineries and controls and its economics were included. Two panel discussions, on new projects at the Kuwait National Petroleum Company (KNPC) and needs for control systems were held. Participation in the workshop came from the oil industry and academic institutions.

Kotob, S.

1986-01-01T23:59:59.000Z

345

EIA - 2010 International Energy Outlook - Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial International Energy Outlook 2010 Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by 42 percent, or an average of 1.3 percent per year, from 2007 to 2035 in the IEO2010 Reference case. Ninety-five percent of the growth occurs in non-OECD nations. Overview The world's industries make up a diverse sector that includes manufacturing, agriculture, mining, and construction. Industrial energy demand varies across regions and countries, depending on the level and mix of economic activity and technological development, among other factors. Energy is consumed in the industrial sector for a wide range of activities, such as processing and assembly, space conditioning, and lighting. Industrial energy use also includes natural gas and petroleum products used as feedstocks to produce non-energy products, such as plastics. In aggregate, the industrial sector uses more energy than any other end-use sector, consuming about one-half of the world's total delivered energy.

346

Modeling foreign economic policy in strategic setting: the automotive industry of the U.S. and Japan  

E-Print Network (OSTI)

. For this study, I examined a specific case study in which the U.S. was in a dispute with a foreign country and how the U.S. dealt with the situation. This particular dispute spans a timeline of 15 years and involves the automotive industry of Japan and the U...

Au-Young, Marie Lily

2013-02-22T23:59:59.000Z

347

ITP Metal Casting: A Vision for the U.S. Metal Casting Industry: 2002 and Beyond  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. metalcasting industry will exhibit increased strength, vitality and innovation, contributing to the nations economy and security.

348

Oak Ridge National Laboratory Site Office Jobs  

NLE Websites -- All DOE Office Websites (Extended Search)

Title: Industrial Security Specialst
DOE 15 ORO RCG 4927
Office: Oak Ridge National Laboratory Site Office
URL:

349

Sandia National Laboratories Technology Marketing Summaries ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sandia National Laboratories 04052013 Industrial Technologies Find More Like This Small-Scale Reactor for the Production of Medical Isotopes Currently, there is a severe...

350

NREL: National Center for Photovoltaics Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

(NCPV) at NREL focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's...

351

Education and Outreach | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

of interest to the U.S. Department of Energy and the automotive industry Clean Cities Advancing the nation's economic, environmental and energy security by supporting local...

352

EIA - International Energy Outlook 2009-Industrial Sector Energy  

Gasoline and Diesel Fuel Update (EIA)

Industrial Sector Energy Consumption Industrial Sector Energy Consumption International Energy Outlook 2009 Chapter 6 - Industrial Sector Energy Consumption Worldwide industrial energy consumption increases by an average of 1.4 percent per year from 2006 to 2030 in the IEO2009 reference case. Much of the growth is expected to occur in the developing non-OECD nations. Figure 63. OECD and Non-OECD Industrial Sector Energy Consumption, 2006-2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 64. World Industrial Sector Energy Consumption by Fuel, 2006 and 2030 (quadrillion Btu). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 65. World Industrial Sector Energy Consumption by Major Energy-Intensive Industry Shares, 2005 (Trillion Cubic Feet). Need help, contact the National Energy Information Center at 202-586-8800.

353

Sandia National Laboratories: industrial water use  

NLE Websites -- All DOE Office Websites (Extended Search)

to saltwater to meet their water ... ECIS-UNM: Biomimetic Membranes for Water Purification On February 20, 2013, in Advanced Materials Laboratory, Energy Efficiency,...

354

Sandia National Laboratories: CSP Industry Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Engine Test Facility Central Receiver Test Facility Power Towers for Utilities Solar Furnace Dish Test Facility Optics Lab Parabolic Dishes Work For Others (WFO) User...

355

Industrial Geospatial Analysis Tool for Energy Evaluation  

E-Print Network (OSTI)

Industrial Geospatial Analysis Tool for Energy Evaluation- IGATE-E Nasr Alkadi, Researcher, Oak Ridge National Laboratory, Oak Ridge, TN Michael Starke, Researcher, Oak Ridge National Laboratory, Oak Ridge, TN Ookie Ma, Scientist, US Department... of Energy, Washington, DC Sachin Nimbalkar, Researcher, Oak Ridge National Laboratory, Oak Ridge, TN Daryl Cox, Researcher, Oak Ridge National Laboratory, Oak Ridge, TN Kevin Dowling, Student Researcher, University of Tennessee, Knoxville, TN Brendon...

Alkadi, N.; Starke, M.; Ma, O.; Nimbalkar, S.; Cox, D.; Dowling, K.; Johnson, B.; Khan, S.

2013-01-01T23:59:59.000Z

356

Development of a national model of Pinus radiata stand volume from lidar metrics for New Zealand  

Science Journals Connector (OSTI)

Although environmental variables are established determinants for V, their inclusion did not significantly improve either model 1 or 2. Residual values for both models showed little apparent bias when plotted against stand-level ...

Pete Watt; MichaelS. Watt

2013-08-01T23:59:59.000Z

357

Financial constraints in capacity planning: a national utility regulatory model (NUREG). Volume I of III: methodology. Final report  

SciTech Connect

This report develops and demonstrates the methodology for the National Utility Regulatory (NUREG) Model developed under contract number DEAC-01-79EI-10579. It is accompanied by two supporting volumes. Volume II is a user's guide for operation of the NUREG software. This includes description of the flow of software and data, as well as the formats of all user data files. Finally, Volume III is a software description guide. It briefly describes, and gives a listing of, each program used in NUREG.

Not Available

1981-10-29T23:59:59.000Z

358

Industrial Radiology  

Science Journals Connector (OSTI)

... chief application of industrial radiology in Norway is in the examination of pipe welds in hydroelectric plant. H. Vinter (Denmark), director of the Akademiet for de Technische Videns ... and to compare various methods of non-destructive testing. He gave results of tests on turbine disk forgings of austenitic steel which showed satisfactory agreement between radiography, ultrasonic examination and ...

1950-11-18T23:59:59.000Z

359

Carrying Out and Developing the Glass Industry Vision and Roadmap  

SciTech Connect

In support of its obligations under the above-mentioned project, the GMIC performed the following tasks: (1) Provided two-way communications liaison services between the U.S. glass industry and the D.O.E. to ensure the needs and concerns of each party are effectively communicated to the other. (2) Updated and modified on a continuing basis and in response to evolving conditions within the glass industry, the goals and priorities outlined in the Glass Industry Vision and the Glass Technology Roadmap. (3) Established relationships with a wide variety of government and non-governmental organizations with interests in further improving the levels of technology, productivity and environmental responsibility of the glass industry. (4) Canvassed the glass industry on an ongoing basis to determine overall and specific sector needs for technological development. (5) Fostered direct contacts between member companies and national laboratories to facilitate the development of individual company technology development. (6) Advised the DOE on the key elements of the solicitation process in support of the Glass Industry Vision and Technology Roadmap. In the course of this contract, the membership of the GMIC has grown to include over 70% of the glass industry. This gives it the ability to communicate persuasively with the vast majority of this energy intensive industry. One of the principal benefits of the existence of the GMIC is that, for the first time in this country, representative companies of all major sectors of the glass industry are now in regular communication with each other. Prior to the existence and activity of the GMIC, companies and individuals in the flat glass, container glass, fiber glass and specialty glass sectors rarely had contact with each other, in spite of the fact that they all face similar challenges and can benefit from pre-competitive research conducted to the benefit of the broad industry. The development of innovations in the industry under cost-shared DOE/industry research projects such as new melting technologies, sensors and controls, modeling programs, energy efficiency tools, etc. has led to substantial increases in energy efficiency in the industry. Increased energy efficiency results in increased job opportunities in the industry that has been negatively impacted by increases in energy costs, globalization and increased environmental controls.

Michael Greenman

2007-06-14T23:59:59.000Z

360

Energy Department Develops Tool with Industry to Help Utilities Strengthen  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Develops Tool with Industry to Help Utilities Develops Tool with Industry to Help Utilities Strengthen Their Cybersecurity Capabilities Energy Department Develops Tool with Industry to Help Utilities Strengthen Their Cybersecurity Capabilities June 28, 2012 - 10:24am Addthis News Media Contact (202) 586-4940 WASHINGTON -- As part of the Obama Administration's commitment to protecting America's critical energy infrastructure, U.S. Energy Secretary Steven Chu today announced the release of a new Cybersecurity Self-Evaluation Survey Tool for utilities that will strengthen protection of the nation's electric grid from cybersecurity threats. Today's announcement is part of a broader White House initiative to develop a Cybersecurity Capability Maturity Model for the electricity sector, which aims to support the private sector and utilities nationwide in determining

Note: This page contains sample records for the topic "national industry model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A tiered modelling approach for condition based maintenance of industrial assets with load sharing interaction and fault propagation  

E-Print Network (OSTI)

of one or more of the critical components, thus causing the asset to deteriorate faster than the normal rate. For instance, stay cables are some of the most important elements in span bridge. It consists of multiple parallel wires (critical components... need from the lower layer. Using this information, the optimal maintenance and inspection strategies can be found directly using equation (1) and (2). 4. Conclusion Motivated by industrial cases such as maintenance of stay cables, we propose a 2-tiered...

Liang, Zhenglin; Parlikad, Ajith Kumar

2014-05-24T23:59:59.000Z

362

Breakthrough Furnace Can Cut Solar Industry Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Furnace can Cut Solar Industry Costs A game-changing Optical Cavity Furnace (OCF)-developed by the National Renew- able Energy Laboratory (NREL) with funding from the U.S....

363

Reflections on relationships between national and world events and development of dermatology. Venezuela as a model  

E-Print Network (OSTI)

development of dermatology. Venezuela as a model MauricioVargas School of Medicine, Central University of Venezuela,Caracas Venezuela. ABSTRACT From a personal vantage, the

Goihman-Yahr, Mauricio

2013-01-01T23:59:59.000Z

364

National Residential Efficiency Measures Database | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » National Residential Efficiency Measures Database Jump to: navigation, search Tool Name National Residential Efficiency Measures Database Tool Author National Renewable Energy Laboratory Regional Focus National Focus Area Building Energy Efficiency Implementation Phase Evaluate Effectiveness and Revise as Needed Type CommunityEnergyToolType Modeling Tool Cost Free User Interface Website, Other Website http://www.nrel.gov/ap/retrofits/index.cfm Tool Users The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry.

365

Tom Rogers Director, Industrial Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Tom Rogers, rogerstc@ornl.gov 865-241-2149 Tom Rogers, rogerstc@ornl.gov 865-241-2149 Tom Rogers Director, Industrial Partnerships and Economic Development Tom Rogers was named Director of Industrial Partnerships and Economic Development at the Oak Ridge National Laboratory in June, 2008. His responsibilities include directing engagements with industrial partners, forging new ORNL entrepreneurial support efforts, and leading a number of strategic initiatives such as the Carbon Fiber Composites Cluster and development of the Oak Ridge Science and Technology Park. Prior to joining ORNL, Tom was the founding President and CEO of Technology 2020, a national award-winning public-private partnership focused on a building a robust regional entrepreneurial support system. Tom has also served as the Executive Director of the Tennessee Technology

366

China and India Industrial Efficiency NREL Partnership | Open Energy  

Open Energy Info (EERE)

China and India Industrial Efficiency NREL Partnership China and India Industrial Efficiency NREL Partnership Jump to: navigation, search Logo: China-NREL Industrial Efficiency Partnership Name China-NREL Industrial Efficiency Partnership Agency/Company /Organization National Renewable Energy Laboratory Sector Energy Focus Area Energy Efficiency, Industry Topics Background analysis Country China Eastern Asia References NREL International Program Overview Abstract In support of the DOE Office of Energy Efficiency and Renewable Energy (EERE) Industrial Technologies Program's (ITP) activities to promote industrial energy efficiency internationally, the NREL industrial communications team is developing a specialized portfolio of technical and outreach materials. "In support of the DOE Office of Energy Efficiency and Renewable Energy

367

New National Conservation Training Center a Model of Energy-Efficient Design  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

former Hendrix Farmstead on former Hendrix Farmstead on the banks of the Potomac River in West Virginia is the pastoral setting for the new U.S. Fish and Wildlife Service (USFWS) National Conservation Training Center (NCTC). It includes 16 buildings on 500 acres that accommo- date education and training facilities. Opened in September 1997, the campus now serves USFWS's habitat manage- ment, biodiversity, and environmental training needs with classrooms, teaching labs, a museum, student housing, sup- port and utilities spaces, and other structures. The center was designed to use passive solar and low-energy tech- nologies that are readily available, easily maintained, and cost effective. All these technologies and applications fit into a comprehensive sustainability approach. As a new Federal facility, the center

368

New National Conservation Training Center a Model of Energy-Efficient Design  

NLE Websites -- All DOE Office Websites (Extended Search)

former Hendrix Farmstead on former Hendrix Farmstead on the banks of the Potomac River in West Virginia is the pastoral setting for the new U.S. Fish and Wildlife Service (USFWS) National Conservation Training Center (NCTC). It includes 16 buildings on 500 acres that accommo- date education and training facilities. Opened in September 1997, the campus now serves USFWS's habitat manage- ment, biodiversity, and environmental training needs with classrooms, teaching labs, a museum, student housing, sup- port and utilities spaces, and other structures. The center was designed to use passive solar and low-energy tech- nologies that are readily available, easily maintained, and cost effective. All these technologies and applications fit into a comprehensive sustainability approach. As a new Federal facility, the center

369

Asymmetric directly driven capsule implosions: Modeling and experiments-A requirement for the National Ignition Facility  

SciTech Connect

Direct-drive experiments at the University of Rochester's OMEGA laser [T. R. Boehly, R. L. McCrory, C. P. Verdon et al., Fusion Eng. Des. 44, 35 (1999)] have been performed to prototype eventual campaigns on the National Ignition Facility (NIF) [E. I. Moses and C. R. Wuest, Fusion Sci. Technol. 43, 420 (2003)] to investigate the mixing of target materials. Spherical-implosion targets with equatorial defects have been irradiated with polar direct drive, a requirement for direct-drive experiments at NIF. The physics question addressed by these results is whether simulations can match data on 0th-order hydrodynamics and implosion symmetry, the most basic implosion features, with and without the defect. The successful testing of hydrodynamic simulations leads to better designs for experiments and guides accurate planning for polar-direct-drive-ignition studies on the NIF platform.

Cobble, J. A.; Murphy, T. J.; Schmitt, M. J.; Bradley, P. A.; Krashenninikova, N. S.; Obrey, K. A.; Hsu, S. C.; Tregillis, I. L.; Magelssen, G. R.; Wysocki, F. J.; Batha, S. H. [Los Alamos National Laboratory, Mail Stop E527, Los Alamos, New Mexico 87545 (United States)

2012-12-15T23:59:59.000Z

370

China-International Industrial Energy Efficiency Deployment Project | Open  

Open Energy Info (EERE)

China-International Industrial Energy Efficiency Deployment Project China-International Industrial Energy Efficiency Deployment Project Jump to: navigation, search Name China-International Industrial Energy Efficiency Deployment Project Agency/Company /Organization United States Department of Energy (USDOE), Institute for Sustainable Communities (ISC), Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory (ORNL), Alliance for Energy Efficient Economy (India), Confederation of Indian Industry Sector Energy Focus Area Industry Topics Implementation, Low emission development planning, Technology characterizations Program Start 2011 Program End 2013 Country China Eastern Asia References International Industrial Energy Efficiency Deployment Project[1] Overview China "China is prioritizing a low carbon, energy efficient economy and has

371

International Industrial Energy Efficiency Deployment Project | Open Energy  

Open Energy Info (EERE)

Industrial Energy Efficiency Deployment Project Industrial Energy Efficiency Deployment Project Jump to: navigation, search Name International Industrial Energy Efficiency Deployment Project Agency/Company /Organization United States Department of Energy (USDOE), Institute for Sustainable Communities (ISC), Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory (ORNL), Alliance for Energy Efficient Economy (India), Confederation of Indian Industry Sector Energy Focus Area Industry Topics Implementation, Low emission development planning, Technology characterizations Program Start 2011 Program End 2013 Country China, India Eastern Asia, Southern Asia References International Industrial Energy Efficiency Deployment Project[1] Overview China "China is prioritizing a low carbon, energy efficient economy and has

372

DARPA's HPCS Program: History, Models, Tools, Languages Jack Dongarra, University of Tennessee and Oak Ridge National Lab  

E-Print Network (OSTI)

of Tennessee and Oak Ridge National Lab Robert Graybill, USC Information Sciences Institute William Harrod, University of California ­ San Diego Jeffery Vetter, Oak Ridge National Laboratory Katherine Yelick, Lawrence Berkeley National Laboratory Sadaf Alam, Oak Ridge National Laboratory Roy Campbell, Army Research

Dongarra, Jack

373

Argonne National Laboratory | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Argonne National Laboratory Argonne National Laboratory Argonne National Laboratory Argonne National Laboratory | October 21, 2008 Aerial View Argonne National Laboratory | October 21, 2008 Aerial View Argonne is a multidisciplinary science and engineering research center, where "dream teams" of world-class researchers work alongside experts from industry, academia and other government laboratories to address vital national challenges in clean energy, environment, technology and national security. Enforcement March 7, 2006 Preliminary Notice of Violation,University of Chicago - EA-2006-02 Preliminary Notice of Violation issued to the University of Chicago related to Nuclear Safety Program Deficiencies at Argonne National Laboratory August 14, 2001 Preliminary Notice of Violation, Argonne National Laboratory-East -

374

Sandia National Laboratories: Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

This public benchmark represents analysis ... A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate,...

375

Cyclical dynamics of airline industry earnings  

E-Print Network (OSTI)

Aggregate airline industry earnings have exhibited large-amplitude cyclical behavior since deregulation in 1978. To explore the causes of these cycles we develop a behavioral dynamic model of the airline industry with ...

Pierson, Kawika

376

National Laboratory Contacts  

Energy.gov (U.S. Department of Energy (DOE))

Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge transportation research occurs at these facilities, funded by both DOE and cooperative research and development agreements (CRADAs) with industry

377

NREL's Wind R&D Success Stories, National Wind Technology Center (NWTC) (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

REL's wind energy research and development efforts at REL's wind energy research and development efforts at the National WInd Technology Center (NWTC) have contributed to numerous successes for the wind industry. In addition to helping its industry partners develop commercially successful wind turbines, NREL has developed award-winning components and modeling software. The Laboratory also engages in deployment activities that help schools, communities, and utilities understand the benefits of wind energy and how it can be successfully integrated into our nation's electrical system to provide for a cleaner, more secure energy future. NREL's successes in wind energy research, development, and deployment have: * Reduced the cost of large and small wind turbine technologies

378

NREL Tests Dehumidifiers, Defines Simplified Simulation Model (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

residential dehumidifiers residential dehumidifiers results in practical performance curves for use in whole-building simulation tools. Dehumidifiers remove moisture from a home's indoor environment, thereby increasing occupant comfort, improving air quality, and reducing the likelihood of mold, rot, and dust mites. To help energy professionals more easily evaluate this technology for the market, National Renewable Energy Laboratory (NREL) researchers tested the efficiency and capacity of a variety of dehumidifiers and developed a generalized approach to simulate any residential dehumidifier. The test results and modeling method are documented in a new report. Typically, dehumidifiers are only rated at a single temperature and humidity, so rating data alone cannot determine whether a product will meet the moisture removal

379

University at Buffalo (SUNY) Department of Industrial Engineering Scheduling Theory  

E-Print Network (OSTI)

University at Buffalo (SUNY) Department of Industrial Engineering IE 661 Scheduling Theory Chapter 2 Rakesh Nagi Department of Industrial Engineering University at Buffalo (SUNY) #12;University at Buffalo (SUNY) Department of Industrial Engineering Chapter 2: Deterministic Models Preliminaries

Nagi, Rakesh

380

Transport parameter determination and modeling of sodium and strontium plumes at the Idaho National Engineering Laboratory  

E-Print Network (OSTI)

. , 1974] . . 7. Generalized plume with centerline 8. Strontium-90 distribution, 1970 [after Robertson et aL, 1974]. . . . 20 . 22 9. The sodium plume transverse dispersivity-Rnite source size in y iteration diagram. 10. The calculat. ed sodium plume.... There is flow there which picks up the contaminant ions dispersing them through the complex network of fractures and interconnected pore space of the saturated porous medium, the aquifer. Being able to model this spread of contaminant in the subsurface...

Londergan, John Thomas

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "national industry model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Mechanical & Industrial Engineering  

E-Print Network (OSTI)

Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board October 15, 2010 #12;Mechanical & Industrial Engineering 2 MIE Dorothy Adams Undergraduate/Graduate Secretary David Schmidt Associate Professor & Graduate Program Director #12;Mechanical & Industrial Engineering 3 MIE James Rinderle

Mountziaris, T. J.

382

3426 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 55, NO. 9, SEPTEMBER 2008 Modeling and Control of the Yaw Channel  

E-Print Network (OSTI)

the modeling and flight- control-system design for the yaw channel of an unmanned- aerial-vehicle (UAV and Control of the Yaw Channel of a UAV Helicopter Guowei Cai, Student Member, IEEE, Ben M. Chen, Fellow, IEEE found that the commonly used yaw dynamical model for the UAV helicopter proposed in the literature

Benmei, Chen

383

Ames Lab Named an Industry Safety Leader  

ScienceCinema (OSTI)

The U.S. Department of Energy's Ames Laboratory has been named a 2010 Industry Leader Award winner by the National Safety Council. The Ames Laboratory was one of only 81 companies/organizations to receive the award for their safety performance and the only DOE national laboratory on the list. The award represents the top 5 percent of members that have qualified for the National Safety Council 2010 Occupational Excellence Achievement Award, based on 2009 calendar year data.

Wessels, Tom

2013-03-01T23:59:59.000Z

384

China's industrial sector in an international context  

SciTech Connect

The industrial sector accounts for 40% of global energy use. In 1995, developing countries used an estimated 48 EJ for industrial production, over one-third of world total industrial primary energy use (Price et al., 1998). Industrial output and energy use in developing countries is dominated by China, India, and Brazil. China alone accounts for about 30 EJ (National Bureau of Statistics, 1999), or about 23% of world industrial energy use. China's industrial sector is extremely energy-intensive and accounted for almost 75% of the country's total energy use in 1997. Industrial energy use in China grew an average of 6.6% per year, from 14 EJ in 1985 to 30 EJ in 1997 (Sinton et al., 1996; National Bureau of Statistics, 1999). This growth is more than three times faster than the average growth that took place in the world during the past two decades. The industrial sector can be divided into light and heavy industry, reflecting the relative energy-intensity of the manufacturing processes. In China, about 80% of the energy used in the industrial sector is consumed by heavy industry. Of this, the largest energy-consuming industries are chemicals, ferrous metals, and building materials (Sinton et al., 1996). This paper presents the results of international comparisons of production levels and energy use in six energy-intensive subsectors: iron and steel, aluminum, cement, petroleum refining, ammonia, and ethylene. The sectoral analysis results indicate that energy requirements to produce a unit of raw material in China are often higher than industrialized countries for most of the products analyzed in this paper, reflecting a significant potential to continue to improve energy efficiency in heavy industry.

Price, Lynn; Worrell, Ernst; Martin, Nathan; Lehman, Bryan; Sinton, Jonathan

2000-05-01T23:59:59.000Z

385

transportation industry | OpenEI  

Open Energy Info (EERE)

25 25 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142279625 Varnish cache server transportation industry Dataset Summary Description The Energy Statistics Database contains comprehensive energy statistics on the production, trade, conversion and final consumption of primary and secondary; conventional and non-conventional; and new and renewable sources of energy. The Energy Statistics dataset, covering the period from 1990 on, is available at UNdata. This dataset relates to the consumption of alcohol by the transportation industry. Source United Nations (UN) Date Released December 09th, 2009 (5 years ago) Date Updated Unknown Keywords Agriculture Alcohol consumption

386

Industry turns its attention south  

SciTech Connect

The paper discusses the outlook for the gas and oil industries in the Former Soviet Union and Eastern Europe. Significant foreign investment continues to elude Russia`s oil and gas industry, so the Caspian nations of Kazakhstan and Azerbaijan are picking up the slack, welcoming the flow of foreign capital to their energy projects. Separate evaluations are given for Russia, Azerbaijan, Kazakhstan, Turkmenistan, Ukraine, Armenia, Belarus, Georgia, Lithuania, Latvia, Estonia, Moldova, Tajikstan, Uzbekistan, Albania, Bulgaria, Croatia, Czech Republic, Hungary, Poland, Romania, Slovakia, Slovenia, and Serbia.

Marhefka, D. [Russian Petroleum Investor, Moscow (Russian Federation)

1997-08-01T23:59:59.000Z

387

Engineering Industrial & Systems  

E-Print Network (OSTI)

Industrial Engineering Department of Industrial & Systems Engineering Leslie Monplaisir, Ph powerful tool sets used in industry today. -Brent Gillett, BSIE 2007 Advanced Planning Engineer at BMW I is available at: http://ise.wayne.edu/bs-industrial/index What is Industrial Engineering? The industrial

Berdichevsky, Victor

388

INDUSTRIAL ENGINEERING Industrial engineering is concerned  

E-Print Network (OSTI)

INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. Industrial engineers design and run the factories and systems

389

INDUSTRIAL ENGINEERING Industrial engineering is concerned  

E-Print Network (OSTI)

INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. The focus of industrial engineering is on process improvement

390

SANDIA NATIONAL LABORATORIES  

NLE Websites -- All DOE Office Websites (Extended Search)

Impacts on Sandia and the Nation Impacts on Sandia and the Nation 2 SANDIA NATIONAL LABORATORIES 3 LDRD Impacts on Sandia and the Nation For further information, contact: Wendy R. Cieslak Senior Manager, Science, Technology, and Engineering Strategic Initiatives wrciesl@sandia.gov (505) 844-8633 or Henry R. Westrich LDRD Program Manager hrwestr@sandia.gov 505-844-9092 LDRD Impacts on Sandia and the Nation ABOUT THE COVER: Images from some of the case studies in this brochure: a near-UV light- emitting diode (LED), a cell membrane, a NISAC model, synthetic aperture radar (SAR) image of Washington, D.C. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT 4 SANDIA NATIONAL LABORATORIES 5 LDRD Impacts on Sandia and the Nation Sandia National Laboratories' Laboratory Directed Research and Development (LDRD) Program:

391

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

E-Print Network (OSTI)

developers also market fuzzy logic control systems, e.g. ,so- called 'fuzzy logic' or expert control, or rule-basedsystems or fuzzy logic is model-predictive control using

Sathaye, J.

2011-01-01T23:59:59.000Z

392

776 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 34, NO. 4, JULY/AUGUST 1998 Switched Reluctance Motor Modeling with  

E-Print Network (OSTI)

-line parameter estimation using recursive identification for switched reluctance motors (SRM's) is presented. Index Terms-- Parameter identification, switched reluctance motor modeling, switched reluctance motors. I. INTRODUCTION THE switched reluctance motor (SRM) is a simple, low- cost, and robust motor

Husain, Iqbal

393

A comparative study of Lotka-Volterra and system dynamics models for simulation of technology industry dynamics  

E-Print Network (OSTI)

Scholars have developed a range of qualitative and quantitative models for generalizing the dynamics of technological innovation and identifying patterns of competition between rivals. This thesis compares two predominant ...

nver, Hakk? zgr

2008-01-01T23:59:59.000Z

394

APPLICATION OF BAYESIAN AND GEOSTATISTICAL MODELING TO THE ENVIRONMENTAL MONITORING OF CS-137 AT THE IDAHO NATIONAL LABORATORY  

SciTech Connect

At the Idaho National Laboratory (INL) Cs-137 concentrations above the U.S. Environmental Protection Agency risk-based threshold of 0.23 pCi/g may increase the risk of human mortality due to cancer. As a leader in nuclear research, the INL has been conducting nuclear activities for decades. Elevated anthropogenic radionuclide levels including Cs-137 are a result of atmospheric weapons testing, the Chernobyl accident, and nuclear activities occurring at the INL site. Therefore environmental monitoring and long-term surveillance of Cs-137 is required to evaluate risk. However, due to the large land area involved, frequent and comprehensive monitoring is limited. Developing a spatial model that predicts Cs-137 concentrations at unsampled locations will enhance the spatial characterization of Cs-137 in surface soils, provide guidance for an efficient monitoring program, and pinpoint areas requiring mitigation strategies. The predictive model presented herein is based on applied geostatistics using a Bayesian analysis of environmental characteristics across the INL site, which provides kriging spatial maps of both Cs-137 estimates and prediction errors. Comparisons are presented of two different kriging methods, showing that the use of secondary information (i.e., environmental characteristics) can provide improved prediction performance in some areas of the INL site.

Kara G. Eby

2010-08-01T23:59:59.000Z

395

An Expert Elicitation Process in Support of Groundwater Model Evaluation for Frenchman Flat, Nevada National Security Site  

SciTech Connect

The U.S. Department of Energy is implementing corrective actions at facilities where nuclear-related operations were conducted in Nevada. Among the most significant sites being addressed are the locations of underground nuclear tests on the Nevada National Security Site (NNSS). The process for implementing corrective actions for the Underground Test Area (UGTA) locations is defined in Appendix VI of a Federal Facility Agreement and Consent Order (1996, as amended). In broad terms, Appendix VI describes a Corrective Action Investigation followed by a Corrective Action Decision, and implementation of a Corrective Action Plan prior to closure. The Frenchman Flat Corrective Action Unit (CAU) is farthest along in the UGTA corrective action process. It includes ten underground tests within the Frenchman Flat topographic basin, in the southeastern portion of the NNSS. Data have been collected from drilling exploration, hydrologic testing, and field and laboratory studies. Modeling has been completed at a variety of scales and focusing on a variety of flow and transport aspects ranging from regional boundary conditions to process dynamics within a single nuclear cavity. The culmination of the investigations is a transport model for the Frenchman Flat CAU (Stoller Navarro Joint Venture, 2009) that has undergone rigorous peer review and been accepted by the State of Nevada, setting the stage for the Corrective Action Decision and progression from the investigation phase to the corrective action phase of the project.

Chapman Jenny,Pohlmann Karl

2011-02-01T23:59:59.000Z

396

AMERICA'S NATIONAL LABS  

NLE Websites -- All DOE Office Websites (Extended Search)

AMERICA'S AMERICA'S NATIONAL LABS by 50 50 M A D E IN U S A B r e a k t h r o u g h s America's National Laboratory system has been changing and improving the lives of millions for more than 80 years. Born at a time of great societal need, this network of Department of Energy Laboratories has now grown into 17 facilities, working together as engines of prosperity and invention. As this list of 50 Break- throughs attests, National Laboratory discoveries have spawned industries, saved lives, generated new products, fired the imagination, and helped to reveal the secrets of the universe. Rooted in the need to be the best and bring the best, America's National Laboratories have put an American stamp on the past century of science. With equal ingenuity and tenacity, they are now engaged in

397

National Center for Photovoltaics at NREL  

ScienceCinema (OSTI)

The National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL) focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's capabilities in PV research, development, deployment, and outreach.

VanSant, Kaitlyn; Wilson, Greg; Berry, Joseph; Al-Jassim, Mowafak; Kurtz, Sarah

2014-06-10T23:59:59.000Z

398

Extreme Conditions Modeling Workshop Report  

SciTech Connect

Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) hosted the Wave Energy Converter (WEC) Extreme Conditions Modeling (ECM) Workshop in Albuquerque, NM on May 13th-14th, 2014. The objective of the workshop was to review the current state of knowledge on how to model WECs in extreme conditions (e.g. hurricanes and other large storms) and to suggest how U.S. Department of Energy (DOE) and national laboratory resources could be used to improve ECM methods for the benefit of the wave energy industry.

Coe, R. G.; Neary, V. S.; Lawson, M. J.; Yu, Y.; Weber, J.

2014-07-01T23:59:59.000Z

399

NETL: Industrial Capture & Storage Area 2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Technologies Industrial Capture & Storage Area 2 Innovative Concepts for Beneficial CO2 Use The United States Department of Energy, National Energy Technology Laboratory (DOE/NETL, or DOE) is currently implementing a program titled "Carbon Capture and Sequestration from Industrial Sources and Innovative Concepts for Beneficial CO2 Use." This CO2 Capture and Sequestration (CCS) and CO2 use program is a cost-shared collaboration between the Government and industry whose purpose is to increase investment in clean industrial technologies and sequestration projects. In accordance with the American Recovery and Reinvestment Act of 2009, and Section 703 of Public Law 110-140, DOE's two specific objectives are to demonstrate: (1) Large-Scale Industrial CCS projects from industrial sources, and (2) Innovative Concepts for beneficial CO2 use.

400

National Transmission Grid Study  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Grid Study Grid Study U.S. Department of Energy The Honorable Spencer Abraham Secretary of Energy May 2002 ii National Transmission Grid Study National Transmission Grid Study i ii National Transmission Grid Study National Transmission Grid Study iii How This Study Was Conducted The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to address them. DOE began by conducting an independent analysis of U.S. electricity markets and identifying transmission system bottlenecks using DOE's Policy Office Electricity Modeling System (POEMS). DOE's analysis, presented in Section 2, confirms the central role of the nation's transmission

Note: This page contains sample records for the topic "national industry model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy  

Open Energy Info (EERE)

Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Energy Efficiency, Industry Resource Type: Guide/manual Website: china.lbl.gov/sites/china.lbl.gov/files/LBNL-3991E.Industrial%20Energy Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities Screenshot References: Industrial Energy Audit Guidebook[1] "This guidebook provides guidelines for energy auditors regarding the key elements for preparing for an energy audit, conducting an inventory and

402

Detailed Modeling of Industrial Energy Use and Greenhouse Gas Emissions in an Integrated Assessment Model of Long-term Global Change  

E-Print Network (OSTI)

in the manufacturing sector, about 26% is electricity, 58% is natural gas, 10% is coal (excluding coal coke and breeze) and the remainder is from liquid fuels. 1 AdaptedfromTableE6.4. EndUsesofFuelConsumption,1998(URL: ftp://ftp.eia.doe.gov/pub/consumption/industry/d98...FuelConsumptionbyEnd-UseforallMECSIndustries,1998,trillionBTU Electricity Liquid Fuels Natural Gas Coal (excluding Coal Cokeand Breeze) Total BoilerFuel 29 308 2,538 770 3,645 ProcessHeating 363 185 3,187 331 4,066 ProcessCoolingand Refrigeration 209 2 22 233 MachineDrive 1,881 25 99 7 2...

Sinha, P.; Wise, M.; Smith, S.

2006-01-01T23:59:59.000Z

403

Egypt National Cleaner Production Center (ENCPC) | Open Energy Information  

Open Energy Info (EERE)

National Cleaner Production Center (ENCPC) National Cleaner Production Center (ENCPC) Jump to: navigation, search Name Egypt National Cleaner Production Center (ENCPC) Agency/Company /Organization United Nations Industrial Development Organization, Egypt Ministry of Trade and Industry (MTI) Sector Energy Focus Area Industry Topics Background analysis Website http://www.unido.org/index.php Country Egypt Northern Africa References Egypt National Cleaner Production Center (ENCPC)[1] "The Egypt National Cleaner Production Center (ENCPC) is a joint initiative between the Ministry of Trade and Industry (MTI) and UNIDO. It is an integral part of the ministry network of Technology Transfer and Innovation Centers (ETTIC) supporting the modernization of Egyptian industry, and covering 10 industrial sectors. The ENCPC operates as a horizontal,

404

Reduced model prediction of electron temperature profiles in microtearing-dominated National Spherical Torus eXperiment plasmas  

SciTech Connect

A representative H-mode discharge from the National Spherical Torus eXperiment is studied in detail to utilize it as a basis for a time-evolving prediction of the electron temperature profile using an appropriate reduced transport model. The time evolution of characteristic plasma variables such as ?{sub e},??{sub e}{sup ?}, the MHD ? parameter, and the gradient scale lengths of T{sub e}, T{sub i}, and n{sub e} were examined as a prelude to performing linear gyrokinetic calculations to determine the fastest growing micro instability at various times and locations throughout the discharge. The inferences from the parameter evolutions and the linear stability calculations were consistent. Early in the discharge, when ?{sub e} and ?{sub e}{sup ?} were relatively low, ballooning parity modes were dominant. As time progressed and both ?{sub e} and ?{sub e}{sup ?} increased, microtearing became the dominant low-k{sub ?} mode, especially in the outer half of the plasma. There are instances in time and radius, however, where other modes, at higher-k{sub ?}, may, in addition to microtearing, be important for driving electron transport. Given these results, the Rebut-Lallia-Watkins (RLW) electron thermal diffusivity model, which is based on microtearing-induced transport, was used to predict the time-evolving electron temperature across most of the profile. The results indicate that RLW does a good job of predicting T{sub e} for times and locations where microtearing was determined to be important, but not as well when microtearing was predicted to be stable or subdominant.

Kaye, S. M., E-mail: skaye@pppl.gov; Guttenfelder, W.; Bell, R. E.; Gerhardt, S. P.; LeBlanc, B. P.; Maingi, R. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

2014-08-15T23:59:59.000Z

405

The engineering institute of Los Alamos National Laboratory  

SciTech Connect

Los Alamos National Laboratory (LANL) and the University of California, San Diego (UCSD) have taken the unprecedented step of creating a collaborative, multi-disciplinary graduate education program and associated research agenda called the Engineering Institute. The mission of the Engineering Institute is to develop a comprehensive approach for conducting LANL mission-driven, multidisciplinary engineering research and to improve recruiting, revitalization, and retention of the current and future staff necessary to support the LANL' s national security responsibilities. The components of the Engineering Institute are (1) a joint LANL/UCSD degree program, (2) joint LANL/UCSD research projects, (3) the Los Alamos Dynamic Summer School, (4) an annual workshop, and (5) industry short courses. This program is a possible model for future industry/government interactions with university partners.

Farrar, Charles R [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Cornwell, Phillip J [Los Alamos National Laboratory; Todd, Michael D [UCSD

2008-01-01T23:59:59.000Z

406

NETL-Led Laboratory-Industry-Academia Collaboration Is Accelerating Carbon-Capture Technologies  

Energy.gov (U.S. Department of Energy (DOE))

In 2011, the U.S. Department of Energys National Energy Technology Laboratory established the Carbon Capture Simulation Initiative to take carbon-capture concepts from the laboratory to the power plant more quickly, at a lower cost, and with reduced risk than would be accomplished following more traditional research and development pathways. Today, the NETL-led CCSI has proven itself to be a model of successful, effective collaboration among government, industry, and academia.

407

and Industrial Engineering  

E-Print Network (OSTI)

45 Mechanical and Industrial Engineering 220 Engineering Lab Degrees: Bachelor of Science in Mechanical Engineering Bachelor of Science in Industrial Engineering Contact: James R. Rinderle to prosthetic limbs to windmills, and their myriad components. Industrial engineers are concerned

Mountziaris, T. J.

408

Industrial and Systems engineering  

E-Print Network (OSTI)

Industrial and Systems engineering COLLEGE of ENGINEERING DepartmentofIndustrialandSystemsEngineering EDGE Engineering Entrepreneur Certificate Program is a great addition to an industrial and systems to expert clinical recommendations. engineering.wayne.edu/isefaculty Industrial and systems engineering

Berdichevsky, Victor

409

Commentary on industrial processes  

Science Journals Connector (OSTI)

...crucial for an industrial process, namely: catalyst activity...of catalysis to industrial processes. The papers, however, do...at the heart of successful commercialization of catalytic science and technology...addressed in any industrial process, namely: activity-the...

2005-01-01T23:59:59.000Z

410

Borla Performance Industries, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Borla Borla Performance Industries, Inc. America's Next Top Energy Innovator Challenge 1830 likes Borla Performance Industries, Inc. Oak Ridge National Laboratory Borla Performance Industries is a 35-year technology leader, manufacturer and marketer of exhaust for the automotive industry, delivering innovative, patented exhaust systems that enhance the performance of internal combustion engines. Borla has an option to license a novel, nano-pore membrane technology from OakRidge National Laboratory. Combining this innovation with Borla's diesel exhaust technology will lead to a low cost, unique exhaust system that will double as a neutral energy device to recover and reclaim potable water from diesel and other internal combustion exhaust. Using capillary condensation - which contrasts to thermodynamic

411

Borla Performance Industries, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Borla Borla Performance Industries, Inc. America's Next Top Energy Innovator Challenge 1830 likes Borla Performance Industries, Inc. Oak Ridge National Laboratory Borla Performance Industries is a 35-year technology leader, manufacturer and marketer of exhaust for the automotive industry, delivering innovative, patented exhaust systems that enhance the performance of internal combustion engines. Borla has an option to license a novel, nano-pore membrane technology from OakRidge National Laboratory. Combining this innovation with Borla's diesel exhaust technology will lead to a low cost, unique exhaust system that will double as a neutral energy device to recover and reclaim potable water from diesel and other internal combustion exhaust. Using capillary condensation - which contrasts to thermodynamic

412

Borla Performance Industries, Inc. | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Borla Borla Performance Industries, Inc. America's Next Top Energy Innovator Challenge 1830 likes Borla Performance Industries, Inc. Oak Ridge National Laboratory Borla Performance Industries is a 35-year technology leader, manufacturer and marketer of exhaust for the automotive industry, delivering innovative, patented exhaust systems that enhance the performance of internal combustion engines. Borla has an option to license a novel, nano-pore membrane technology from OakRidge National Laboratory. Combining this innovation with Borla's diesel exhaust technology will lead to a low cost, unique exhaust system that will double as a neutral energy device to recover and reclaim potable water from diesel and other internal combustion exhaust. Using capillary condensation - which contrasts to thermodynamic

413

Establishing the Clear-Sky Diffuse Reference for BORCAL Using EPLAB Model 8-48 Pyranometers at the National Renewable Energ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Establishing the Clear-Sky Diffuse Reference for BORCAL Establishing the Clear-Sky Diffuse Reference for BORCAL Using EPLAB Model 8-48 Pyranometers at the National Renewable Energy Laboratory I. Reda, T. L. Stoffel, and D. Myers National Renewable Energy Laboratory Golden, Colorado Abstract Precision pyranometer calibrations are important to the quality of Atmospheric Radiation Measurement's (ARM's) shortwave solar irradiance measurements. Calibrations at the National Renewable Energy Laboratory (NREL) and Southern Great Plains (SGP) are under clear-sky conditions. G = I * COS(2) + D, is used to establish the reference global during the calibration. The references for the beam irradiance, I, and the solar zenith angle, 2, are internationally recognized. There is no recognized reference for the diffuse irradiance, D. Our research goal is to establish a consistent diffuse

414

Uranium industry annual 1997  

SciTech Connect

This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

NONE

1998-04-01T23:59:59.000Z

415

Small Wind Turbine Certifications Signal Maturing Industry  

Energy.gov (U.S. Department of Energy (DOE))

More than a dozen small wind turbine models have received certification to the U.S. industry standard from accredited certification bodies. This progress signals a maturing industry and that the DOE Wind Program is on track to reach its goal of certifying 40 turbine models by 2020.

416

Modeling of energy utilization of tourism industry to predict the future energy demand to showcase Sri Lanka - The Miracle of Asia.  

E-Print Network (OSTI)

?? Tourism industry in Sri Lanka shares a substantial amount of GDP (Gross Domestic Product) and predicts an immense expansion within a short time frame. (more)

Amarawardhana, Kumudu Nanditilaka

2014-01-01T23:59:59.000Z

417

EIA - Assumptions to the Annual Energy Outlook 2008 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2008 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module projects energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region projection using the SEDS1 data.

418

Cell fleet planning : an industry case study  

E-Print Network (OSTI)

The objective of this thesis is to demonstrate the practical use of the Cell Fleet Planning Model in planning the fleet for the U.S. airline industry. The Cell Model is a cell theory, linear programming approach to fleet ...

Silva, Armando C.

1984-01-01T23:59:59.000Z

419

Sandia National Laboratories  

NLE Websites -- All DOE Office Websites (Extended Search)

PHOTOVOLTAIC ARRAY PERFORMANCE MODEL D. L. King, W. E. Boyson, J. A. Kratochvil Sandia National Laboratories Albuquerque, New Mexico 87185-0752 2 SAND2004-3535 Unlimited Release...

420

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. 22nd NREL Industry Growth Forum  

E-Print Network (OSTI)

Energy Storage Geothermal Grid Hydrogen/ Fuel Cell Lighting Nuclear Other Solar Wave/ Ocean Wind $56 Efficiency Energy Storage Geothermal Grid Hydrogen/ Fuel Cell Lighting Nuclear Other Solar Wave/ Ocean WindNREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency

Note: This page contains sample records for the topic "national industry model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Industry Partnerships | BNL Technology Commercialization and Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Industry Licensing The Office of Technology Commercialization and Partnerships (TCP) grants licenses for BNL-developed intellectual property to existing and start-up companies that are technically and financially capable of turning early-stage technology into commercial products. Nonexclusive and exclusive licenses are granted. TCP is committed to negotiating fair and reasonable license agreements that are beneficial to both parties. Search available technologies | See DOE Tech Transfer Working Group Licensing Guide (PDF) Sponsored Research BNL has many ways of collaborating with industry on emerging technologies that are geared toward bringing new technologies to the marketplace. Learn more | See Guide to Partnering with DOE's National Laboratories (PDF)

422

Dan Miller Associate, Industrial and Economic Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Name, Phone, e-mail address Name, Phone, e-mail address Dan Miller Associate, Industrial and Economic Development Dan Miller joined Oak Ridge National Laboratory in January, 2010 as an Associate in Industrial Partnerships and Economic Development. His responsibilities include leading and supporting initiatives in the energy storage portfolio focused on technology commercialization, economic development, and industrial partnerships. He also manages ORNL's relationships with companies involved in the Oak Ridge Science & Technology Park and is actively recruiting additional companies to locate there. Prior to joining ORNL, Dan was a Licensing Associate in Rice University Office of Technology Transfer, where he managed the patent portfolio of the university's physical science technologies.

423

Water Efficient and Low Pollution Textile Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative and Emerging Technologies for an Energy Efficient Alternative and Emerging Technologies for an Energy Efficient Water Efficient and Low Pollution Textile Industry year month institution Lawrence Berkeley National Laboratory address Berkeley abstract p Emerging energy efficiency greenhouse gas GHG and pollution mitigation technologies will be crucial for the textile industry as it responds to population and economic growth that is expected to spur a rapid increase in textile consumption over the coming decades and a corresponding increase in the industry textquoteright s absolute energy use and GHG and other pollutant emissions This report gives an overview of textile industry processes and compiles available information on the energy savings environmental and other benefits costs commercialization status and references for emerging technologies to reduce the industry

424

Industrial Advanced Turbine Systems Program overview  

SciTech Connect

The U.S. Department of Energy (DOE), in partnership with industry, has set new performance standards for industrial gas turbines through the creation of the Industrial Advanced Turbine System Program. Their leadership will lead to the development of an optimized, energy efficient, and environmentally friendly gas turbine power systems in this size class (3-to-20 MW). The DOE has already created a positive effect by encouraging gas turbine system manufacturers to reassess their product and technology plans using the new higher standards as the benchmark. Solar Turbines has been a leader in the industrial gas turbine business, and is delighted to have joined with the DOE in developing the goals and vision for this program. We welcome the opportunity to help the national goals of energy conservation and environmental enhancement. The results of this program should lead to the U.S. based gas turbine industry maintaining its international leadership and the creation of highly paid domestic jobs.

Esbeck, D.W. [Solar Turbines Inc., San Diego, CA (United States)

1995-10-01T23:59:59.000Z

425

Productivity and labor management in Shanghai state-owned industrial enterprises  

E-Print Network (OSTI)

., China's Industrial Revolution ; Brugger, William, Democracy & Organization in the Chinese IndustrialProductivity and labor management in Shanghai state-owned industrial enterprises Christian HENRIOT picture of the state of national industries. It became clear to the Chinese leaders that their past

Paris-Sud XI, Université de

426

The future steelmaking industry and its technologies  

SciTech Connect

The objective of this report is to develop a vision of the future steelmaking industry including its general characteristics and technologies. In addition, the technical obstacles and research and development opportunities for commercialization of these technologies are identified. The report is being prepared by the Sloan Steel Industry Competitiveness Study with extensive input from the industry. Industry input has been through AISI (American Iron and Steel Institute), SMA (Steel Manufacturers Association) and contacts with individual company executives and technical leaders. The report identifies the major industry drivers which will influence technological developments in the industry for the next 5--25 years. Initially, the role of past drivers in shaping the current industry was examined to help understand the future developments. Whereas this report concentrates on future technologies other major factors such as national and international competition, human resource management and capital concerns are examined to determine their influence on the future industry. The future industry vision does not specify specific technologies but rather their general characteristics. Finally, the technical obstacles and the corresponding research and development required for commercialization are detailed.

Fruehan, R.J.; Paxton, H.W.; Giarratani, F.; Lave, L. [Carnegie-Mellon Univ., Pittsburgh, PA (United States)]|[Pittsburgh Univ., PA (United States)

1995-01-01T23:59:59.000Z

427

A Tale of Two Cities: Greensburg Rebuilds as a National Model for Green Communities (Fact Sheet), Energy Efficiency & Renewable Energy (EERE)  

NLE Websites -- All DOE Office Websites (Extended Search)

Tale of Two Cities: Tale of Two Cities: Greensburg Rebuilds as a National Model for Green Communities Greensburg, Kansas, was like any rural community in America until a massive tornado leveled much of the town on May 4, 2007. Key leaders in Greensburg and Kansas made a crucial decision not just to rebuild, but to remake the town as a model sustainable community. To help achieve that goal, technical experts from the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) arrived in Greensburg in June 2007. For three years, the experts worked with city leaders, business owners, residents, and other state, federal, and local agencies to identify ways to incorporate energy efficiency and renew- able energy technologies into the town's rebuilding efforts.

428

A Tale of Two Cities: Greensburg Rebuilds as a National Model for Green Communities (Fact Sheet), Energy Efficiency & Renewable Energy (EERE)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tale of Two Cities: Tale of Two Cities: Greensburg Rebuilds as a National Model for Green Communities Greensburg, Kansas, was like any rural community in America until a massive tornado leveled much of the town on May 4, 2007. Key leaders in Greensburg and Kansas made a crucial decision not just to rebuild, but to remake the town as a model sustainable community. To help achieve that goal, technical experts from the U.S. Department of Energy (DOE) and the National Renewable Energy Laboratory (NREL) arrived in Greensburg in June 2007. For three years, the experts worked with city leaders, business owners, residents, and other state, federal, and local agencies to identify ways to incorporate energy efficiency and renew- able energy technologies into the town's rebuilding efforts.

429

INDUSTRIAL ENGINEERING GRADUATE PROGRAMS  

E-Print Network (OSTI)

INDUSTRIAL ENGINEERING GRADUATE PROGRAMS The Master of Science in Industrial Engineering (M Systems and Engineering (M.S.M.S.E.), the Doctor of Philosophy in Industrial Engineering, and the Doctor of Philosophy in Systems and Engineering Management programs prepare competent industrial engineers

Gelfond, Michael

430

Mechanical & Industrial Engineering  

E-Print Network (OSTI)

Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board May 5th, 2011 #12;Mechanical & Industrial Engineering 2 IAB 2010-2011 · David K. Anderson ­ Alden Research Laboratory, Inc went on for three weeks Mechanical & Industrial Engineering 6 #12;Reza Shahbazian Yassar Mechanical

Mountziaris, T. J.

431

Career Map: Industrial Engineer  

Energy.gov (U.S. Department of Energy (DOE))

The Wind Program's Career Map provides job description information for Industrial Engineer positions.

432

Climate VISION: Industry Associations  

Office of Scientific and Technical Information (OSTI)

Industry Associations Industry Associations Aluminum Aluminum Association (Coordinating aluminum industry Climate VISION activities) The Aluminum Association, Inc. is the trade association for producers of primary aluminum, recyclers and semi-fabricated aluminum products, as well as suppliers to the industry. The Association provides leadership to the industry through its programs and services which aim to enhance aluminum's position in a world of proliferating materials, increase its use as the "material of choice," remove impediments to its fullest use, and assist in achieving the industry's environmental, societal, and economic objectives. Automobile Manufacturers Alliance of Automobile Manufacturers (Coordinating automobile industry Climate VISION activities) The Alliance of Automobile Manufacturers, Inc. is a trade association

433

Impact of the U.S. National Building Information Model Standard (NBIMS) on Building Energy Performance Simulation  

E-Print Network (OSTI)

data base and building modeling that will enable comparativeApplying Information Modeling to Buildings, in A. Dikba?

Bazjanac, Vladimir

2008-01-01T23:59:59.000Z

434

Numerical Simulation of Inter-basin Groundwater Flow into Northern Yucca Flat, Nevada National Security Site, Using the Death Valley Regional Flow System Model  

SciTech Connect

Models of groundwater flow for the Yucca Flat area of the Nevada National Security Site (NNSS) are under development by the U.S. Department of Energy (DOE) for corrective action investigations of the Yucca Flat-Climax Mine Corrective Action Unit (CAU). One important aspect of these models is the quantity of inter-basin groundwater flow from regional systems to the north. This component of flow, together with its uncertainty, must be properly accounted for in the CAU flow models to provide a defensible regional framework for calculations of radionuclide transport that will support determinations of the Yucca Flat-Climax Mine contaminant boundary. Because characterizing flow boundary conditions in northern Yucca Flat requires evaluation to a higher level of detail than the scale of the Yucca Flat-Climax Mine CAU model can efficiently provide, a study more focused on this aspect of the model was required.

Pohlmann Karl,Ye Ming

2012-03-01T23:59:59.000Z

435

Deputy Secretary Poneman Announces Team led by Oak Ridge National Lab  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deputy Secretary Poneman Announces Team led by Oak Ridge National Deputy Secretary Poneman Announces Team led by Oak Ridge National Lab Selected to Receive up to $122 Million for Nuclear Energy Innovation Hub Deputy Secretary Poneman Announces Team led by Oak Ridge National Lab Selected to Receive up to $122 Million for Nuclear Energy Innovation Hub May 28, 2010 - 12:05pm Addthis WASHINGTON, D.C. - As part of a broad effort to spur innovation and achieve clean energy breakthroughs, U.S. Deputy Secretary of Energy Daniel Poneman today announced the selection of a team led by Oak Ridge National Laboratory (ORNL) for an award of up to $122 million over five years to establish and operate a new Nuclear Energy Modeling and Simulation Energy Innovation Hub. The Hub, which includes partners from universities, industry and other national labs, will use advanced capabilities of the

436

Deputy Secretary Poneman Announces Team led by Oak Ridge National Lab  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces Team led by Oak Ridge National Announces Team led by Oak Ridge National Lab Selected to Receive up to $122 Million for Nuclear Energy Innovation Hub Deputy Secretary Poneman Announces Team led by Oak Ridge National Lab Selected to Receive up to $122 Million for Nuclear Energy Innovation Hub May 28, 2010 - 12:00am Addthis WASHINGTON, D.C. - As part of a broad effort to spur innovation and achieve clean energy breakthroughs, U.S. Deputy Secretary of Energy Daniel Poneman today announced the selection of a team led by Oak Ridge National Laboratory (ORNL) for an award of up to $122 million over five years to establish and operate a new Nuclear Energy Modeling and Simulation Energy Innovation Hub. The Hub, which includes partners from universities, industry and other national labs, will use advanced capabilities of the

437

Zoe Industries, Inc.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

D.C. 20585 D.C. 20585 ) ) ) ) ) Case Number: 2011-SW-2912 Issued: September 28, 2011 NOTICE OF NONCOMPLIANCE DETERMINATION Manufacturers and private labelers are prohibited from distributing covered products that do not comply with applicable Federal water conservation standards. 10 C.F.R. § 429.102; 42 U.S.C. § 6302. On July 20, 2011, DOE tested four units of the Giessdorf eight-jet basic model showerhead, SKU 150043 ("Giessdorf 150043"), manufactured by GiessdorfPlumbing, Inc. ("Giessdorf"), and imported by Zoe Industries, Inc. ("Zoe"), in accordance with DOE test procedures (10 C.F.R. Part 430, Subpart B, Appendix S). DOE's testing demonstrated that the Giessdorf 150043 model is not in compliance with Federal law. First, Federal water conservation standards require that the water flow for a showerhead

438

Recent News from the National Labs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 18, 2012 September 18, 2012 Supercomputers like this petascale computer, Jaguar, at Oak Ridge National Laboratory are helping researchers build and experiment with next-generation nuclear reactors. Jaguar powers the virtual reactor at the Consortium for Advanced Simulation of Light Water Reactors (CASL). | Photo courtesy of Oak Ridge National Lab. #LabChat: Supercomputing Our Way to the Future, Sept. 19 at 1:30 pm EDT Ask your questions about high-performance modeling software, uses of advanced computing in industry, or the insanely fast hardware that runs it all. September 17, 2012 Winners of the 2011 Regional Science Bowl competition (hosted in partnership with the University of Texas - Pan American) pose at the national competition in Washington, DC. | Courtesy of the University of Texas - Pan American HESTEC Program.

439

Ceramics for ATS industrial turbines  

SciTech Connect

US DOE and most US manufacturers of stationary gas turbines are participating in a major national effort to develop advanced turbine systems (ATS). The ATS program will achieve ultrahigh efficiencies, environmental superiority, and cost competitiveness compared with current combustion turbine systems. A major factor in the improved efficiencies of simple cycle ATS gas turbines will be higher operating efficiencies than curren engines. These temperatures strain the limits of metallic alloy and flow-path cooling technologies. Ceramics materials offer a potential alterative to cooled turbine alloys for ATS turbines due to higher melting points than metallics. This paper evaluates ceramics technology and plant economic issues for ATS industrial turbine systems. A program with the objective of demonstrating first-stage ceramic vanes in a commerical industrial turbine is also described.

Wenglarz, R.; Ali, S. [Allison Engine Co., Indianapolis, IN (United States); Layne, A. [USDOE Morgantown Energy Technology Center, WV (United States)

1996-05-01T23:59:59.000Z

440

Development of a regional groundwater flow model for the area of the Idaho National Engineering Laboratory, Eastern Snake River Plain Aquifer  

SciTech Connect

This report documents a study conducted to develop a regional groundwater flow model for the Eastern Snake River Plain Aquifer in the area of the Idaho National Engineering Laboratory. The model was developed to support Waste Area Group 10, Operable Unit 10-04 groundwater flow and transport studies. The products of this study are this report and a set of computational tools designed to numerically model the regional groundwater flow in the Eastern Snake River Plain aquifer. The objective of developing the current model was to create a tool for defining the regional groundwater flow at the INEL. The model was developed to (a) support future transport modeling for WAG 10-04 by providing the regional groundwater flow information needed for the WAG 10-04 risk assessment, (b) define the regional groundwater flow setting for modeling groundwater contaminant transport at the scale of the individual WAGs, (c) provide a tool for improving the understanding of the groundwater flow system below the INEL, and (d) consolidate the existing regional groundwater modeling information into one usable model. The current model is appropriate for defining the regional flow setting for flow submodels as well as hypothesis testing to better understand the regional groundwater flow in the area of the INEL. The scale of the submodels must be chosen based on accuracy required for the study.

McCarthy, J.M.; Arnett, R.C.; Neupauer, R.M. [and others

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "national industry model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

U.S. National Committee for Rock Mechanics; and Conceptual model of fluid infiltration in fractured media. Project summary, July 28, 1997--July 27, 1998  

SciTech Connect

The title describes the two tasks summarized in this report. The remainder of the report contains information on meetings held or to be held on the subjects. The US National Committee for Rock Mechanics (USNC/RM) provides for US participation in international activities in rock mechanics, principally through adherence to the International Society for Rock Mechanics (ISRM). It also keeps the US rock mechanics community informed about new programs directed toward major areas of national concern in which rock mechanics problems represent critical or limiting factors, such as energy resources, excavation, underground storage and waste disposal, and reactor siting. The committee also guides or produces advisory studies and reports on problem areas in rock mechanics. A new panel under the auspices of the US National Committee for Rock Mechanics has been appointed to conduct a study on Conceptual Models of Fluid Infiltration in Fractured Media. The study has health and environmental applications related to the underground flow of pollutants through fractured rock in and around mines and waste repositories. Support of the study has been received from the US Nuclear Regulatory Commission and the Department of Energy`s Yucca Mountain Project Office. The new study builds on the success of a recent USNC/RM report entitled Rock Fractures and Fluid Flow: Contemporary Understanding and Applications (National Academy Press, 1996, 551 pp.). A summary of the new study is provided.

NONE

1998-09-01T23:59:59.000Z

442

Sandia National Laboratories: Customers & Partners  

NLE Websites -- All DOE Office Websites (Extended Search)

with Sandia Labs' Molten-Salt Test Loop System ... A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate,...

443

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling  

E-Print Network (OSTI)

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling Oak Ridge National fiber reinforced composites have enjoyed limited acceptance in the automotive industry due to high costs to bond with composite matrix material. It is important that a carbon fiber manufacturing cost model

444

Sandia National Laboratories: Sandia National Laboratories: Locations...  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Park District Joshua Tree National Park Lassen Volcanic National Park Sequoia & Kings Canyon National Parks Yosemite National Park Cave exploring Diablo Grotto Moaning...

445

working with industry Engineering and  

E-Print Network (OSTI)

of interests including: · laser physics · semiconductor optoelectronics · photonics in manufacturing · solar · micromechanics and condition monitoring · renewable energy modelling · carbon capture and storage Our institute to applied systems. We have a wide ranging programme of current work with many industrial companies in key

Painter, Kevin

446

A Review of Energy Use and Energy Efficiency Technologies for the Textile Industry  

E-Print Network (OSTI)

s Office of Industrial Technology and Oak Ridge NationalGunnar Hovstadius of ITT Fluid Technology Corporation. 2002.of Demonstrated Energy Technologies (CADDET), Sittard, the

Hasanbeigi, Ali

2014-01-01T23:59:59.000Z

447

Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry  

E-Print Network (OSTI)

Biomass Gasification Technologies for Fuels, Chemicals andEnergy, National Energy Technology Laboratory. CO ? Solution01GO10621. Industrial Technologies Progarm (ITP). 2006e.

Kong, Lingbo

2014-01-01T23:59:59.000Z

448

ITP Mining: Energy and Environmental Profile of the U.S. Mining Industry (December 2002)  

Office of Energy Efficiency and Renewable Energy (EERE)

The U.S. Department of Energy and the National Mining Association are working in partnership to implement the Mining Industry of the Future strategy.

449

E-Print Network 3.0 - agate industry khambhat Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

of western Arabian Sea 47... and pollution forecasting, national security, the oil and gas industry, fisheries management and coastal... low-salinity plume off Gulf of Khambhat,...

450

Washington State Ergonomics Tool: predictive validity in the waste industry  

E-Print Network (OSTI)

This study applies the Washington State Ergonomics Tool to waste industry jobs in Texas. Exposure data were collected by on-site observation of fourteen different multi-task jobs in a major national solid waste management company employing more...

Eppes, Susan Elise

2004-09-30T23:59:59.000Z

451

PA Regional Nanotechnology Conference Nanotechnology for Industry  

E-Print Network (OSTI)

4/19/2011 Present PA Regional Nanotechnology Conference Nanotechnology for Industry May 31, 2011 9 _____________________________________________________________ _____________The field of nanotechnology continues to be one of the leading forces behind our nation's ability to develop, commercialize, and produce advancements that are enabled by nanotechnology. Therefore, Drexel

Gilchrist, James F.

452

NREL Computer Models Integrate Wind Turbines with Floating Platforms (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Models Computer Models Integrate Wind Turbines with Floating Platforms Far off the shores of energy-hungry coastal cities, powerful winds blow over the open ocean, where the water is too deep for today's seabed-mounted offshore wind turbines. For the United States to tap into these vast offshore wind energy resources, wind turbines must be mounted on floating platforms to be cost effective. Researchers at the National Renewable Energy Laboratory (NREL) are supporting that development with computer models that allow detailed analyses of such floating wind turbines. Coupling wind turbines and floating platforms requires complex computer models. Land- based wind turbines are designed and analyzed using simulation tools, called computer-aided engineering (CAE) design tools, that are capable of predicting a design's dynamic response to

453

Analysis of the impacts of Internet-based business activities on the container shipping industry : the system dynamics modeling approach with the framework of technological evolution  

E-Print Network (OSTI)

The internet-based business (e-business) activities have become a new technological challenge to the container shipping industry (CSI) in recent years. Despite the growing importance of e-business in the CSI, little ...

Auh, Jae Hyuck, 1969-

2003-01-01T23:59:59.000Z

454

The Use of Modern Third-Generation Air Quality Models (MM5-EMIMO-CMAQ) for Real-Time Operational Air Quality Impact Assessment of Industrial Plants  

Science Journals Connector (OSTI)

In many cases, a substantial proportion of large industrial emissions are located in the surrounding areas of cities and are the cause of an important part of air concentrations over the city and surrounding area...

R. San Jos; J. L. Prez; J. L. Morant

2009-04-01T23:59:59.000Z

455

Gamma Industry Processing Alliance Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NATIONAL NATIONAL STAKEHOLDERS TRANSPORTATION FORUM WHO IS GIPA? * Alliance made up of 15 companies from the Medical Device Manufacturers, Cobalt source , manufacturers and one industrial processing company Represents all the major gamma processing * Represents all the major gamma processing facilities within the US to the regulatory bodies such as the USNRC. * Member of International Irradiation Association (iiA) WHO IS GIPA? An alliance created to advocate the development of An alliance created to advocate the development of responsible regulations that enhance the safe and secure management of Cobalt-60 sources and related irradiation processing facilities related irradiation processing facilities. APRIL 15, 2010 PRESENTATION TITLE WORLD SUPPLIERS OF COBALT 60 COBALT 60 * Nordion Inc

456

Assumptions to the Annual Energy Outlook 2001 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Comleted Copy in PDF Format Comleted Copy in PDF Format Related Links Annual Energy Outlook 2001 Supplemental Data to the AEO 2001 NEMS Conference To Forecasting Home Page EIA Homepage Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The

457

Assumptions to the Annual Energy Outlook 2000 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The energy-intensive industries are modeled through the use of a detailed process flow accounting procedure, whereas the nonenergy-intensive and the nonmanufacturing industries are modeled with substantially less detail (Table 14). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated by using the SEDS24 data.

458

Microsoft Word - NIF Industry Day Agenda  

National Nuclear Security Administration (NNSA)

Department of Energy Department of Energy National Nuclear Security Administration Washington, DC 20585 National Nuclear Security Administration (NNSA) National Ignition Facility (NIF) Target Fabrication Industry Day at Lawrence Livermore National Laboratory (LLNL) Agenda 9:00 - 9:15 Welcome and orientation Mr. Roger Lewis, Assistant Deputy Administrator for Research, Development, Test Capabilities and Evaluation (Acting), NNSA Mr. John Post, Assistant Principal Associate Director, NIF and Photon Science, LLNL 9:15 - 9:30 Inertial Confinement Fusion (ICF) program, current and future status Mr. Roger Lewis 9:30 -10:30 National Ignition Facility (NIF), introduction and overview Mr. John Post 10:30 - 11:30 NIF/ICF Targets - Introduction, current technical requirements, anticipated future

459

National Security  

NLE Websites -- All DOE Office Websites (Extended Search)

because NIF provides the only process for scientists to gain access to and examine thermonuclear burn. These experiments will also help the nation maintain the skills of nuclear...

460

CLIMATE MODELING BEST ESTIMATE DATASET (CMBE) -NEW ADDITIONS Renata McCoy, Shaocheng Xie, Stephen Klein, Lawrence Livermore National Laboratory  

E-Print Network (OSTI)

CLIMATE MODELING BEST ESTIMATE DATASET (CMBE) - NEW ADDITIONS Renata McCoy, Shaocheng Xie, Stephen ARM product, the Climate Modeling Best Estimate (CMBE) dataset, is being augmented with the additional observational and model data. The CMBE dataset was created to serve the needs of climate model developers

Note: This page contains sample records for the topic "national industry model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Transformative CAD based industrial robot program generation  

Science Journals Connector (OSTI)

Industrial robots are widely used in various processes of surface manufacturing, such as spray painting, spray forming, rapid tooling, spray coating, and polishing. Robot programming for these applications is still time consuming and costly. Typical ... Keywords: CAD model, Industrial robot, Robot programming, Surface manufacturing

Heping Chen; Weihua Sheng

2011-10-01T23:59:59.000Z

462

Safe controllers design for industrial automation systems  

Science Journals Connector (OSTI)

The design of safe industrial controllers is one of the most important domains related to Automation Systems research. To support it, synthesis and analysis techniques are available. Among the analysis techniques, two of the most important are Simulation ... Keywords: Formal verification, Industrial systems behaviour modelling, Real-time systems, Safe controllers, Simulation

Jos Machado; Eurico Seabra; Jos C. Campos; Filomena Soares; Celina P. Leo

2011-05-01T23:59:59.000Z

463

Sandia National Laboratories (SNL)  

National Nuclear Security Administration (NNSA)

Sandia National Laboratories (SNL) Sandia National Laboratories (SNL) Current Projects with the Russian Federation Project Title: Development of Models of Energy Transfer in Nanostructured Materials. Russian Institute: Institute for Problems in Mechanical Engineering, Russian Academy of Sciences (IPME RAS), St. Petersburg. Brief Description: To develop modeling approaches and simulations to examine energy transport and transfer in materials with structural features at the nanoscale. Tasks include developing such a model for thin crystal structures subjected to short duration laser excitation, and using atomic-scale simulations to evaluate microscopic expressions for stress and heat flux in crystals containing defects such as vacancies, dislocations and bi-material interfaces.

464

Sandia National Laboratories: About Sandia  

NLE Websites -- All DOE Office Websites (Extended Search)

About Sandia About Sandia Military Bio Fuel National security is our business. We apply science to help detect, repel, defeat, or mitigate threats. For more than 60 years, Sandia has delivered essential science and technology to resolve the nation's most challenging security issues. Sandia National Laboratories is operated and managed by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation. Sandia Corporation operates Sandia National Laboratories as a contractor for the U.S. Department of Energy's National Nuclear Security Administration (NNSA) and supports numerous federal, state, and local government agencies, companies, and organizations. As a Federally Funded Research and Development Center (FFRDC), Sandia may perform work for industry responding to certain types of federal government

465

Users from Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Users from Industry Users from Industry Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial users to access our user facilities and engage in productive relationships with our scientific and engineering staff. Examples of past and current research conducted at the ALS can be viewed on the Industry @ ALS Web page. There are several modes of access; the ALS User and Scientific Support Groups are especially committed to helping new industrial users gain a foothold in our user community and welcome inquiries about how to make that happen.

466

Industry 4.0  

Science Journals Connector (OSTI)

Industry is the part of an economy that produces material goods which are highly mechanized and automatized. Ever since the beginning of industrialization, technological leaps have led to paradigm shifts which to...

Dr. Heiner Lasi

2014-08-01T23:59:59.000Z

467

Chemistry Industry in Egypt  

Science Journals Connector (OSTI)

Chemistry Industry in Egypt ... FROM antiquity the Egyptian economy has been predominately agricultural. ... Nevertheless, it is most probable that the ancient Egyptians were the world's first practical or industrial chemists. ...

1953-08-10T23:59:59.000Z

468

INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY  

E-Print Network (OSTI)

INDUSTRIAL ENGINEER APPRENTICE OPPORTUNITY SUMMER 2013 Industrial Engineering COOP Student needed-Fri, for summer 2013. Student must be enrolled in BS Engineering program. (Preferably completed 2-3 yrs

Pohl, Karsten

469

Industrial Green | Jefferson Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Green Industrial Green - This giant bag may not look green, but it keeps a potent greenhouse gas from being released into the atmosphere. It's part of a system at the...

470

The Industrial Electrification Program  

E-Print Network (OSTI)

EPRI's role as the research organization of the electric power industry, in coordination with potential user industries, is to 1) define the viability of candidate electrification technologies by monitoring the state-of-the-art and continuously...

Harry, I. L.

1982-01-01T23:59:59.000Z

471

Safety Share from National Safety Council  

Energy.gov (U.S. Department of Energy (DOE))

Slide Presentation by Joe Yanek, Fluor Government Group. National Safety Council Safety Share. The Campbell Institute is the Environmental, Health and Safety (EHS) Center of Excellence at the National Safety Council and provides a Forum for Leaders in EHS to exchange ideas and collaborate across industry sectors and organizational types.

472

Systems and Industry Analyses  

NLE Websites -- All DOE Office Websites (Extended Search)

systems and industry analyses News Gasifipedia Gasifier Optimization Feed Systems Syngas Processing Systems Analyses Gasification Plant Databases International Activity Program...

473

Geothermal Industry Partnership Opportunities  

Energy.gov (U.S. Department of Energy (DOE))

Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

474

Zoe Industries, Inc.  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issued: February 9, 2012 Issued: February 9, 2012 BEFORE THE U.S. DEPARTMENT OF ENERGY WASHINGTON, D.C. 20585 ) ) ) ) ) ORDER Case Number: 2011-SW-2912 By the General Counsel, U.S. Department of Energy: 1. In this Order, I adopt the attached Compromise Agreement entered into between the U.S. Department of Energy ("DOE") and Zoe Industries, Inc. ("Respondent"). The Compromise Agreement resolves the case initiated against Respondent pursuant to 10 C.F.R. § 429.122 by Notice of Proposed Civil Penalty, alleging that Respondent distributed in commerce in the United States the Giessdorf eight-jet basic model showerhead, SKU 150043, which failed to meet the applicable standard for water usage. See 10 C.F.R. § 430.32(p). 2. The DOE and Respondent have negotiated the terms of the Compromise Agreement

475

Observations and Modeling of Debris and Shrapnel Impacts on Optics and Diagnostics at the National Ignition Facility  

SciTech Connect

A wide range of targets with laser energies spanning two orders of magnitude have been shot at the National Ignition Facility (NIF). The National Ignition Campaign (NIC) targets are cryogenic with Si supports and cooling rings attached to an Al thermo-mechanical package (TMP) with a thin (30 micron) Au hohlraum inside. Particular attention is placed on the low-energy shots where the TMP is not completely vaporized. In addition to NIC targets, a range of other targets has also been fielded on NIF. For all targets, simulations play a critical role in determining if the risks associated with debris and shrapnel are acceptable. In a number of cases, experiments were redesigned, based on simulations, to reduce risks or to obtain data. The majority of these simulations were done using the ALE-AMR code, which provides efficient late-time (100-1000X the pulse duration) 3D calculations of complex NIF targets.

Eder, D; Bailey, D; Chamgers, F; Darnell, I; Nicola, P D; Dixit, S; Fisher, A; Gururangan, G; Kalantar, D; Koniges, A; Liu, W; Marinak, M; Masters, N; Mlaker, V; Prasad, R; Sepke, S; Whitman, P

2011-11-04T23:59:59.000Z

476

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 2: ITP Emerging Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

127 DOE Industrial Technologies Program 127 DOE Industrial Technologies Program Appendix 2: ITP Emerging Technologies Aluminum ............................................................................................................................................................................ 130 u Direct Chill Casting Model ................................................................................................................................................................130 Chemicals............................................................................................................................................................................ 130

477

Linking Energy Efficiency and ISO: Creating a Framework for Sustainable Industrial Energy Efficiency  

E-Print Network (OSTI)

application of energy efficiency standards in China andfor Sustainable Industrial Energy Efficiency in China. Model for Industrial Energy Efficiency, In Proceedings of

McKane, Aimee; Perry, Wayne; Aixian, Li; Tienan, Li; Williams, Robert

2005-01-01T23:59:59.000Z

478

Photovoltaics industry profile  

SciTech Connect

A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

None

1980-10-01T23:59:59.000Z

479

Mechanical & Industrial Engineering  

E-Print Network (OSTI)

Mechanical & Industrial Engineering Mario A. Rotea Professor and Department Head #12;2Mechanical & Industrial Engineering Outline · Undergraduate Degree Programs · Graduate Degree Programs · The Faculty · The Research · Summary #12;3Mechanical & Industrial Engineering Undergraduate Programs ­ BSME & BSIE 0 20 40 60

Mountziaris, T. J.

480

INDUSTRIAL AND BIOMEDICAL APPLICATIONS  

E-Print Network (OSTI)

INDUSTRIAL AND BIOMEDICAL APPLICATIONS Frank Smith, Nicholas Ovenden and Richard Purvis University are described, one industrial on violent water-air interaction during an impact process and the other biomedical: industrial, biomedical, impacts, networks, theory, computation, scales. 1. INTRODUCTION It is a pleasure

Purvis, Richard

Note: This page contains sample records for the topic "national industry model" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Computer Modeling of Carbon Metabolism Enables Biofuel Engineering (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Modeling of Computer Modeling of Carbon Metabolism Enables Biofuel Engineering In an effort to reduce the cost of biofuels, the National Renewable Energy Laboratory (NREL) has merged biochemistry with modern computing and mathematics. The result is a model of carbon metabolism that will help researchers understand and engineer the process of photosynthesis for optimal biofuel production. Organisms like green algae, grasses, and trees use photosynthesis to transform light energy and carbon dioxide into chemicals-chemicals that can be turned back into energy when used as biofuels or feedstocks for biofuel production. Researchers at NREL have set out to make photo- synthesis more efficient, so that more energy can be captured as biofuels. To improve the efficiency

482

High Tech and Industrial Systems Group  

NLE Websites -- All DOE Office Websites (Extended Search)

High Tech and Industrial Systems Group High Tech and Industrial Systems Group Some of the largest energy users in today's economy are high tech buildings and industrial systems. They operate up to 24 hours per day with energy intensities much greater than typical commercial or residential buildings, and they are essential to the national economy. High-tech buildings, such as laboratories, cleanrooms, data centers, and hospitals, are characterized by large base-loads, continuous operation, and high energy-use intensities. These buildings crosscut many industries and institutions. Group activities and products include: benchmarking surveys and metrics, case study reports, technology development, technology demonstrations, assessment and profiling tools, best practice guides, workshops, training guides, and development of other strategies.

483

Solar Industry At Work | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry At Work Industry At Work Solar Industry At Work Addthis 1 of 11 Vice President Joe Biden talks with staff at the National Renewable Energy Lab's Process Development and Integration Laboratory (PDIL). The PDIL brings together technical experts from NREL, the solar industry, and universities for collaborative research. Image: Dennis Schroeder (NREL) 2 of 11 Steven Bohn, an engineer at SunEdison oversees SunEdison's testing facility at SolarTAC in Aurora, CO. The SolarTAC mission is to increase the efficiency of solar energy products and rapidly deploy them to the commercial market. Image: Dennis Schroeder (NREL) 3 of 11 NREL scientists Ki Ye and Joe Berry peer into the glass siding of a deposition instrument to view the latest results of an experiment with a new material.

484

National Security Studies Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Security Studies Program National Security Studies Program National Security Studies Program Objective The National Security Studies Program (NSSP) is designed to prepare future leaders of civilian agencies for high-level policy, command, and staff responsibilities. The NSSP focuses on international environments and commercial partnerships. All students successfully completing the program are awarded a Master's degree. The program does not involve a promotion or a change in position. Benefits to the Organization The program prepares federal civilian employees for high-level policy, command, and staff responsibilities. Participants will gain valuable experience in leadership, information strategy, national security studies, military strategy, logistics, economics, industry studies, and more. The

485

2012 National Electricity Forum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Electric Transmission Congestion Study National Electric Transmission Congestion Study Workshop - December 15, 2011 Sheraton San Diego Hotel & Marina, 1380 Harbor Island Drive, San Diego, California 92101 Agenda 8:00 am - 9:00 am Registration 9:00 am - 9:15 am DOE Welcome and Presentation David Meyer, US Department of Energy, Session Moderator 9:15 am - 10:30 am Panel I - Regulators * Rebecca D. Wagner, Commissioner, Nevada Public Utilities Commission * Charles Hains, Chief Counsel, Arizona Corporation Commission * Keith D. White, Ph.D., Regulatory Analyst, Energy Division, California Public Utilities Commission 10:30 am - 10:45 am Break 10:45 am - 12:00 pm Panel II - Industry

486

Industry - ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry banner Industry banner Neutron scattering research has applications in practically every field, and neutron research at ORNL is leading to productive partnerships with the industrial and business communities. We welcome proposals for all types of research, including those involving proprietary work. Recent studies have led to discoveries with potential applications in fields such as medicine, energy, and various metals technologies. For more information, please see our recent research highlights. Research Collaborations Industry-Driven Research Benefits Plastics Manufacturing Corning uses VULCAN to test limits of ceramic material for car emission controls, filtration devices Neutrons Probe Inner Workings of Batteries Industry and Neutron Science: Working To Make a Match

487

Interacting With the Pharmaceutical Industry  

E-Print Network (OSTI)

INTERACTING WITH THE PHARMACEUTICAL INDUSTRY Stephen R.to interactions with the pharmaceutical industry! This is ancome from the pharmaceutical industry. It is also reality

Hayden, Stephen R

2003-01-01T23:59:59.000Z

488

Benteler Industries | Open Energy Information  

Open Energy Info (EERE)

Industries Jump to: navigation, search Name: Benteler Industries Place: Grand Rapids, MI Website: http:www.bentelerindustries. References: Benteler Industries1 Information...

489

LANSCE | Lujan Center | Industrial Users  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Users The Lujan Neutron Scattering Center offers a diverse set of capabilities and instruments for industrial projects. Industrial users are invited to contact the Lujan...

490

Fact Sheet for Industrial Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

for Industrial Facilities May 2012 Overview Public utilities in the Pacific Northwest serve more than 2,200 megawatts of industrial load, making industrial sector users a vitally...

491

Uranium industry annual 1998  

SciTech Connect

The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

NONE

1999-04-22T23:59:59.000Z

492

Uranium industry annual 1994  

SciTech Connect

The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

NONE

1995-07-05T23:59:59.000Z

493

Users from Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Users from Industry Print Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial users to access our user facilities and engage in productive relationships with our scientific and engineering staff. Examples of past and current research conducted at the ALS can be viewed on the Industry @ ALS Web page. There are several modes of access; the ALS User and Scientific Support Groups are especially committed to helping new industrial users gain a foothold in our user community and welcome inquiries about how to make that happen.

494

Reporting Conservation Results in the Chemical Industry  

E-Print Network (OSTI)

In 1974, the Manufacturing Chemists Association (MCA) developed an energy rate method for reporting the energy conservation results of the chemical industry to the Federal Energy Administration. The MCA Energy Rate Method has served as a model...

Doerr, R. E.

1979-01-01T23:59:59.000Z

495

Videos | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Videos Videos Browse By - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel ---Electric drive technology ---Fuel economy ---Fuel injection ---Heavy-duty vehicles ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction ---Industrial heating & cooling ---Industrial lighting --Manufacturing -Energy sources --Renewable energy ---Bioenergy ---Geothermal energy ---Hydropower ---Solar energy ---Wind energy --Fossil fuels ---Coal ----Carbon capture & sequestration ---Oil ---Natural Gas --Hydrogen --Nuclear energy ---Nuclear energy modeling & simulation ---Nuclear fuel cycle ----Geology & disposal

496

Downloads | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Downloads Downloads Topic - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel ---Electric drive technology ---Fuel economy ---Fuel injection ---Heavy-duty vehicles ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction ---Industrial heating & cooling ---Industrial lighting --Manufacturing -Energy sources --Renewable energy ---Bioenergy ---Geothermal energy ---Hydropower ---Solar energy ---Wind energy --Fossil fuels ---Coal ----Carbon capture & sequestration ---Oil ---Natural Gas --Hydrogen --Nuclear energy ---Nuclear energy modeling & simulation ---Nuclear fuel cycle ----Geology & disposal

497

Photos | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Photos Photos Browse By - Any - General Argonne Information -Awards -Honors Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Biofuels ---Diesel ---Electric drive technology ---Fuel economy ---Fuel injection ---Heavy-duty vehicles ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Maglev systems ---Powertrain research ---Vehicle testing --Building design ---Construction ---Industrial heating & cooling ---Industrial lighting --Manufacturing -Energy sources --Renewable energy ---Bioenergy ---Geothermal energy ---Hydropower ---Solar energy ---Wind energy --Fossil fuels ---Coal ----Carbon capture & sequestration ---Oil ---Natural Gas --Hydrogen --Nuclear energy ---Nuclear energy modeling & simulation ---Nuclear fuel cycle ----Geology & disposal