Powered by Deep Web Technologies
Note: This page contains sample records for the topic "national high magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

SAFETY PROCEDURE SP-24 NATIONAL HIGH MAGNETIC  

E-Print Network [OSTI]

SAFETY PROCEDURE SP-24 NATIONAL HIGH MAGNETIC FIELD LABORATORY NHMFL FLORIDA STATE UNIVERSITY SAFETY PROCEDURE SP-24 VISITOR AND CONTRACTOR SAFETY DIRECTOR, ENVIRONMENTAL, HEALTH, SAFETY & SECURITY Angela Sutton

Weston, Ken

2

National High Magnetic Field Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ANNUAL REPORT RESEARCH HIGHLIGHTS: CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

3

National High Magnetic Field Laboratory moves closer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleetEngineeringAnnual Report ThisNationalNationalview

4

National High Magnetic Field Laboratory: Magnetic Thin Films  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

recorded work with magnetic thin films took place in the 1880s and was carried out by German physicist August Kundt. Well known for his research on sound and optics, Kundts...

5

Coexisting Superconductivity and Magnetism in UCoGe Gregory S. Boebinger, National High Magnetic Field Laboratory  

E-Print Network [OSTI]

Coexisting Superconductivity and Magnetism in UCoGe Gregory S. Boebinger, National High Magnetic focused on the coexistence of superconductivity and ferromagnetism, including UGe2, URhGe, and UCoGe. In these materials, superconductivity develops below the ferromagnetic Curie temperature TC without destroying

Weston, Ken

6

National High Magnetic Field Laboratory - Magnets and Materials...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Loss Measurements of a Cable-in-Conduit Conductor with Nb3Sn Strands for the High Field Section of the Series-Connected Hybrid Outsert Coil, IEEE Trans. Appl. Supercond., 19 (3,...

7

NATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSVOLUME 11 N0.1 2004  

E-Print Network [OSTI]

NATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSVOLUME 11 · N0.1 · 2004 OPERATED BY: FLORIDA STATE R E V I E W BIOLOGY BIOCHEMISTRY CHEMISTRY CRYOGENICS ENGINEERING MATERIALS GEOCHEMISTRY INSTRUMENTATION KONDO/HEAVY FERMION SYSTEMS MAGNET TECHNOLOGY MAGNETIC RESONANCE TECHNIQUES MAGNETISMAND MAGNETIC

Weston, Ken

8

National High Magnetic Field Laboratory - Publications of the...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Morika, Japan, October 20-24 (2003) 7 Walsh, R.P. and Toplosky, V.J., Axial Reverse-Cycle Fatigue Tests of High Strength Pulse Magnet Conductors at 77 K, CECICMC 2003,...

9

National High Magnetic Field Laboratory Audio Dictionary: Hybrid...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Magnet? Now Playing: What's a Hybrid Magnet? Enable Javascript and Flash to stream the Magnet Minute Scott Hannahs Associated Links The World's Strongest Magnet (audio...

10

National High Magnetic Field Laboratory - Series Connected Hybrid  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Magnet Lab Series Connected Hybrid for Magnet Lab Figure 1. Vertical Section of the Series Connected Hybrid Magnet for the Mag Lab. The Magnet Lab has embarked on innovative...

11

National High Magnetic Field Laboratory Press Release: October...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tested a groundbreaking new magnet design that could literally shed new light on nanoscience and semiconductor research. Split Florida Helix magnet Model of the Split Florida...

12

2011 Annual Report, National High Magnetic Field Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 The Year in Review 06 Chapter 2 Research Highlights 10 Condensed Matter Science 12 Graphene, Kondoheavy fermion systems, magnetism & magnetic materials, molecular conductors,...

13

National High Magnetic Field Laboratory - Policies and Procedures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lab Policies & Procedures Arrow Magnet Lab Policies and Procedures Numerous policies and procedures are in place at the Magnet Lab. Follow these links to learn more about them:...

14

NHMFL Breaks the 100 Tesla Barrier Gregory S. Boebinger, National High Magnetic Field Laboratory  

E-Print Network [OSTI]

NHMFL Breaks the 100 Tesla Barrier Gregory S. Boebinger, National High Magnetic Field Laboratory. 109no. 31 12404-12407 On March 22nd 2012, the NHMFL ­ Pulsed Field Facility broke the 100T tesla barrier, setting a world record of 100.75 tesla for a non-destructive magnet. By using advanced

Weston, Ken

15

Presented by the National High Magnetic Field Laboratory  

E-Print Network [OSTI]

! Cooling holes on the Bitter plates let cold water run through the magnet so it doesn't get too hot. l magnets found in houses. The answers will fit into the crossword puzzle below. ACROSS Where you store milk

Weston, Ken

16

National High Magnetic Field Laboratory: Museum of Electricity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Schweigger Multiplier Schweigger Multiplier In 1820, the news that the current traveling through an electrical wire could deflect the magnetic needle of a compass astounded the...

17

National High Magnetic Field Laboratory: Museum of Electricity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

which is why it can be used repeatedly after it has been initially charged via friction. Related Electricity & Magnetism Pages Pioneers: Alessandro Volta Timeline: 1750 ...

18

National High Magnetic Field Laboratory - Series Connected Hybrid...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Spallation Neutron Source Series Connected Hybrid Figure 3. Vertical Section of the Series Connected Hybrid Magnet and Cryostat for the SNS. The SCH for the Spallation Neutron...

19

National High Magnetic Field Laboratory: Team Tesla - How we...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

read all about how our DC Field Facility's world-record magnets are powered, take a virtual look at how the many components of this amazing system work together. Click on any...

20

National High Magnetic Field Laboratory - About This Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About This Site In 2006, the Magnet Lab Public Affairs Group and Web team redesigned this site in an effort both to better showcase our existing content as well as provide a...

Note: This page contains sample records for the topic "national high magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Table of Contents Page 2National High Magnetic Field Laboratory and Its Forecasted Impact on the Florida Economy  

E-Print Network [OSTI]

Impact on the Florida Economy History and Evaluation of the Economic Impact of the Magnet Lab Forecasted Impact on the Florida Economy The National Science Foundation (NSF) awarded the National High generated by Magnet Lab activities across the broader statewide economy. Since 1990, the Magnet Lab has

Weston, Ken

22

Symmetry Breaking in Graphene Gregory S. Boebinger, National High Magnetic Field Laboratory  

E-Print Network [OSTI]

Symmetry Breaking in Graphene Gregory S. Boebinger, National High Magnetic Field Laboratory DMR. In this experiment, Landau levels in graphene were used to study the breaking of SU(4) symmetry--a higher dimensional states by their spin polarization. It was found that graphene turns into either a spin ferromagnet

Weston, Ken

23

Fermi Surface of Uranium at Ambient Pressure Gregory S. Boebinger, National High Magnetic Field Laboratory  

E-Print Network [OSTI]

Fermi Surface of ­Uranium at Ambient Pressure Gregory S. Boebinger, National High Magnetic Field Laboratory DMR-Award 0654118 DC Field Facility User Program The fermi surface of ­Uranium has been measured surface of alpha-uranium at ambient pressure, Phys. Rev. B Rapid Commun., 80, 241101 (2009). B//c-axis B

Weston, Ken

24

VOLUME 17 No. 4VOLUME 17 NO. 4 NATIONAL HIGH MAGNETIC FIELD LABORATORY  

E-Print Network [OSTI]

your carbon footprint? Sign up for an online subscription by typing "Subscribe"in the search box on our, and has survived several 89 T shots. We are con dent we can make a huge/substantial/ noticeable step in the large, generator-driven outsert magnet, enabled by successful fabrication of high-strength copper

Weston, Ken

25

A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion  

SciTech Connect (OSTI)

This report summarizes the work of the National Fusion Collaboratory (NFC) Project to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. The original objective of the NFC project was to develop and deploy a national FES ??Grid (FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid'??s resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

Schissel, David P. [Princeton Plasma Physics Lab., NJ (United States); Abla, G. [Princeton Plasma Physics Lab., NJ (United States); Burruss, J. R. [Princeton Plasma Physics Lab., NJ (United States); Feibush, E. [Princeton Plasma Physics Lab., NJ (United States); Fredian, T. W. [Massachusetts Institute of Technology, Cambridge, MA (United States); Goode, M. M. [Lawrence Berkeley National Lab., CA (United States); Greenwald, M. J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Keahey, K. [Argonne National Lab., IL (United States); Leggett, T. [Argonne National Lab., IL (United States); Li, K. [Princeton Univ., NJ (United States); McCune, D. C. [Princeton Plasma Physics Lab., NJ (United States); Papka, M. E. [Argonne National Lab., IL (United States); Randerson, L. [Princeton Plasma Physics Lab., NJ (United States); Sanderson, A. [Univ. of Utah, Salt Lake City, UT (United States); Stillerman, J. [Massachusetts Institute of Technology, Cambridge, MA (United States); Thompson, M. R. [Lawrence Berkeley National Lab., CA (United States); Uram, T. [Argonne National Lab., IL (United States); Wallace, G. [Princeton Univ., NJ (United States)

2012-12-20T23:59:59.000Z

26

A NATIONAL COLLABORATORY TO ADVANCE THE SCIENCE OF HIGH TEMPERATURE PLASMA PHYSICS FOR MAGNETIC FUSION  

SciTech Connect (OSTI)

This report summarizes the work of the University of Utah, which was a member of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it the NFC built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was itself a collaboration, itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, and Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. The complete finial report is attached as an addendum. The In the collaboration, the primary technical responsibility of the University of Utah in the collaboration was to develop and deploy an advanced scientific visualization service. To achieve this goal, the SCIRun Problem Solving Environment (PSE) is used on FusionGrid for an advanced scientific visualization service. SCIRun is open source software that gives the user the ability to create complex 3D visualizations and 2D graphics. This capability allows for the exploration of complex simulation results and the comparison of simulation and experimental data. SCIRun on FusionGrid gives the scientist a no-license-cost visualization capability that rivals present day commercial visualization packages. To accelerate the usage of SCIRun within the fusion community, a stand-alone application built on top of SCIRun was developed and deployed. This application, FusionViewer, allows users who are unfamiliar with SCIRun to quickly create visualizations and perform analysis of their simulation data from either the MDSplus data storage environment or from locally stored HDF5 files. More advanced tools for visualization and analysis also were created in collaboration with the SciDAC Center for Extended MHD Modeling. Versions of SCIRun with the FusionViewer have been made available to fusion scientists on the Mac OS X, Linux, and other Unix based platforms and have been downloaded 1163 times. SCIRun has been used with NIMROD, M3D, BOUT fusion simulation data as well as simulation data from other SciDAC application areas (e.g., Astrophysics). The subsequent visualization results - including animations - have been incorporated into invited talks at multiple APS/DPP meetings as well as peer reviewed journal articles. As an example, SCIRun was used for the visualization and analysis of a NIMROD simulation of a disruption that occurred in a DIII-D experiment. The resulting animations and stills were presented as part of invited talks at APS/DPP meetings and the SC04 conference in addition to being highlighted in the NIH/NSF Visualization Research Challenges Report. By achieving its technical goals, the University of Utah played a key role in the successful development of a persistent infrastructure to enable scientific collaboration for magnetic fusion research. Many of the visualization tools developed as part of the NFC continue to be used by Fusion and other SciDAC application scientists and are currently being supported and expanded through follow-on up on SciDAC projects (Visualization and Analytics Center for Enabling Technology, and the Visualization and Analysis in Support of Fusion SAP).

Allen R. Sanderson; Christopher R. Johnson

2006-08-01T23:59:59.000Z

27

R E P O R T SThe National High Magnetic Field Laboratory Operated by: FLORIDA STATE UNIVERSITY UNIVERSITY OF FLORIDA LOS ALAMOS NATIONAL LABORATORY  

E-Print Network [OSTI]

· UNIVERSITY OF FLORIDA · LOS ALAMOS NATIONAL LABORATORY CAPS continued on page 4 CIRL/ST&U continued on page 5 is in the works at Innovation Park (between the Magnet Lab and the College of Engineering) that will provide CAPS S ALAMOS STATEFLOR IDA UN IVE R SITY #12;2 From the Director's Desk Jack Crow National Science Board

Weston, Ken

28

Table of Contents flux a publication of the national high magnetic field laboratory  

E-Print Network [OSTI]

......Kitchen Table Science How to make an electromagnet of your own, step by step. PG. 0......Great experiments ­ everything from the mechanics of cancer to the behavior of particles that make up matter in its most to building and mentoring the next generation of scientists. At the heart of the Magnet Lab's mission

Weston, Ken

29

Journal of Magnetism and Magnetic Materials 281 (2004) 272275 Effects of high magnetic field annealing on texture and  

E-Print Network [OSTI]

Journal of Magnetism and Magnetic Materials 281 (2004) 272­275 Effects of high magnetic field annealing on texture and magnetic properties of FePd D.S. Lia, *, H. Garmestania , Shi-shen Yanb , M China c National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive

Garmestani, Hamid

30

Heat treatment and Magnetic Field Procedure A 32mm diameter bore resistive magnet with a 33T maximum field strength at the National High  

E-Print Network [OSTI]

-heating coil set-up has been designed to heat and cool the specimen while inside the bore of the magnetC/s to the annealing temperature. A 3-minute hold at 1000ºC was performed to fully transform the initial microstructure for the field to reach 30T. Specimen cooling was controlled via feedback loop such that by decreasing power

Cambridge, University of

31

SciDAC Fusiongrid Project--A National Collaboratory to Advance the Science of High Temperature Plasma Physics for Magnetic Fusion  

SciTech Connect (OSTI)

This report summarizes the work of the National Fusion Collaboratory (NFC) Project funded by the United States Department of Energy (DOE) under the Scientific Discovery through Advanced Computing Program (SciDAC) to develop a persistent infrastructure to enable scientific collaboration for magnetic fusion research. A five year project that was initiated in 2001, it built on the past collaborative work performed within the U.S. fusion community and added the component of computer science research done with the USDOE Office of Science, Office of Advanced Scientific Computer Research. The project was a collaboration itself uniting fusion scientists from General Atomics, MIT, and PPPL and computer scientists from ANL, LBNL, Princeton University, and the University of Utah to form a coordinated team. The group leveraged existing computer science technology where possible and extended or created new capabilities where required. Developing a reliable energy system that is economically and environmentally sustainable is the long-term goal of Fusion Energy Science (FES) research. In the U.S., FES experimental research is centered at three large facilities with a replacement value of over $1B. As these experiments have increased in size and complexity, there has been a concurrent growth in the number and importance of collaborations among large groups at the experimental sites and smaller groups located nationwide. Teaming with the experimental community is a theoretical and simulation community whose efforts range from applied analysis of experimental data to fundamental theory (e.g., realistic nonlinear 3D plasma models) that run on massively parallel computers. Looking toward the future, the large-scale experiments needed for FES research are staffed by correspondingly large, globally dispersed teams. The fusion program will be increasingly oriented toward the International Thermonuclear Experimental Reactor (ITER) where even now, a decade before operation begins, a large portion of national program efforts are organized around coordinated efforts to develop promising operational scenarios. Substantial efforts to develop integrated plasma modeling codes are also underway in the U.S., Europe and Japan. As a result of the highly collaborative nature of FES research, the community is facing new and unique challenges. While FES has a significant track record for developing and exploiting remote collaborations, with such large investments at stake, there is a clear need to improve the integration and reach of available tools. The NFC Project was initiated to address these challenges by creating and deploying collaborative software tools. The original objective of the NFC project was to develop and deploy a national FES 'Grid' (FusionGrid) that would be a system for secure sharing of computation, visualization, and data resources over the Internet. The goal of FusionGrid was to allow scientists at remote sites to participate as fully in experiments and computational activities as if they were working on site thereby creating a unified virtual organization of the geographically dispersed U.S. fusion community. The vision for FusionGrid was that experimental and simulation data, computer codes, analysis routines, visualization tools, and remote collaboration tools are to be thought of as network services. In this model, an application service provider (ASP) provides and maintains software resources as well as the necessary hardware resources. The project would create a robust, user-friendly collaborative software environment and make it available to the US FES community. This Grid's resources would be protected by a shared security infrastructure including strong authentication to identify users and authorization to allow stakeholders to control their own resources. In this environment, access to services is stressed rather than data or software portability.

SCHISSEL, D.P.; ABLA, G.; BURRUSS, J.R.; FEIBUSH, E.; FREDIAN, T.W.; GOODE, M.M.; GREENWALD, M.J.; KEAHEY, K.; LEGGETT, T.; LI, K.; McCUNE, D.C.; PAPKA, M.E.; RANDERSON, L.; SANDERSON, A.; STILLERMAN, J.; THOMPSON, M.R.; URAM, T.; WALLACE, G.

2006-08-31T23:59:59.000Z

32

Advanced measurements and techniques in high magnetic fields  

SciTech Connect (OSTI)

This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). High magnetic fields present a unique environment for studying the electronic structure of materials. Two classes of materials were chosen for experiments at the national high Magnetic Field Laboratory at Los Alamos: highly correlated electron systems and semiconductors. Magnetotransport and thermodynamic experiments were performed on the renormalized ground states of highly correlated electron systems (such as heavy fermion materials and Kondo insulators) in the presence of magnetic fields that are large enough to disrupt the many-body correlations. A variety of optical measurements in high magnetic fields were performed on semiconductor heterostructures including GaAs/AlGaAs single heterojunctions (HEMT structure), coupled double quantum wells (CDQW), asymmetric coupled double quantum wells (ACDQW), multiple quantum wells and a CdTe single crystal thin film.

Campbell, L.J.; Rickel, D.G. [Los Alamos National Lab., NM (United States); Lacerda, A.H. [Florida State Univ., Tallahassee, FL (United States); Kim, Y. [Northeastern Univ., Boston, MA (United States)

1997-07-01T23:59:59.000Z

33

HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS  

E-Print Network [OSTI]

D. C. 'Niobium-Titanium Superconducting Material s ', in S.14, 1982 HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS C.SUMAG-68 HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS* C.

Taylor, C.

2011-01-01T23:59:59.000Z

34

Memorandum Approval of a Permanenet Variance Regarding Static Magnetic Fields at Brookhaven National Laboratory (Variance 1021)  

Broader source: Energy.gov [DOE]

Approval of a Permanenet Variance Regarding Static Magnetic Fields at Brookhaven National Laboratory (Variance 1021)

35

High Temperature, Permanent Magnet Biased Magnetic Bearings  

E-Print Network [OSTI]

performance, high speed and high temperature applications like space vehicles, jet engines and deep sea equipment. The bearing system had a target design to carry a load equal to 500 lb-f (2225N). Another objective was to design and build a test rig fixture...

Gandhi, Varun R.

2010-07-14T23:59:59.000Z

36

American Heart Month National High Blood  

E-Print Network [OSTI]

FEBRUARY American Heart Month MAY National High Blood Pressure Education Month SEPTEMBER National Cholesterol Education Month Texas AgriLife Extension Service Texas A&M University System Eat Smart for Heart for Heart Health # P2-2 Risk Factors - High Blood Pressure # P2-3 Sodium is needed to. . . # P2-4 Sources

37

Quantitative Modeling of High Temperature Magnetization Dynamics  

SciTech Connect (OSTI)

Final Technical Report Project title: Quantitative Modeling of High Temperature Magnetization Dynamics DOE/Office of Science Program Manager Contact: Dr. James Davenport

Zhang, Shufeng

2009-03-01T23:59:59.000Z

38

High temperature, permanent magnet biased, homopolar magnetic bearing actuator  

E-Print Network [OSTI]

current resistance and improves the system efficiency because the magnetic field of the HTPM can suspend the major portion of the static load on bearing. A high temperature radial magnetic bearing was designed via an iterative search employing 3D finite...

Hossain, Mohammad Ahsan

2006-10-30T23:59:59.000Z

39

American Heart Month National High Blood  

E-Print Network [OSTI]

FEBRUARY American Heart Month MAY National High Blood Pressure Education Month SEPTEMBER National Cholesterol Education Month Texas AgriLife Extension Service Texas A&M University System Eat Smart for Heart-1 Eat Smart for Heart Health - Cholesterol/Saturated Fat # P3-2 Cardiovascular Disease Statistics # P3

40

American Heart Month National High Blood  

E-Print Network [OSTI]

FEBRUARY American Heart Month MAY National High Blood Pressure Education Month SEPTEMBER National Cholesterol Education Month Texas AgriLife Extension Service Texas A&M University System Eat Smart for Heart Health Heart Health - Lesson 1 Contents: Lesson - Heart Health Power Point # P1-1 Eat Smart for Heart

Note: This page contains sample records for the topic "national high magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Cryogenic properties of dispersion strengthened copper for high magnetic fields  

SciTech Connect (OSTI)

Cold deformed copper matrix composite conductors, developed for use in the 100 tesla multi-shot pulsed magnet at the National High Magnetic Field Laboratory (NHMFL), have been characterized. The conductors are alumina strengthened copper which is fabricated by cold drawing that introduces high dislocation densities and high internal stresses. Both alumina particles and high density of dislocations provide us with high tensile strength and fatigue endurance. The conductors also have high electrical conductivities because alumina has limited solubility in Cu and dislocations have little scattering effect on conduction electrons. Such a combination of high strength and high conductivity makes it an excellent candidate over other resistive magnet materials. Thus, characterization is carried out by tensile testing and fully reversible fatigue testing. In tensile tests, the material exceeds the design criteria parameters. In the fatigue tests, both the load and displacement were measured and used to control the amplitude of the tests to simulate the various loading conditions in the pulsed magnet which is operated at 77 K in a non-destructive mode. In order to properly simulate the pulsed magnet operation, strain-controlled tests were more suitable than load controlled tests. For the dispersion strengthened coppers, the strengthening mechanism of the aluminum oxide provided better tensile and fatigue properties over convention copper.

Toplosky, V. J.; Han, K.; Walsh, R. P. [National High Magnetic Field Laboratory, Tallahassee, FL 32310 (United States); Swenson, C. A. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

2014-01-27T23:59:59.000Z

42

Tuning magnetic disorder in diluted magnetic semiconductors using high fields to 89 Tesla  

SciTech Connect (OSTI)

We describe recent and ongoing studies at the National High Magnetic Field Laboratory at Los Alamos using the new '100 Tesla Multi-Shot Magnet', which is presently delivering fields up to {approx}89 T during its commissioning. We discuss the first experiments performed in this magnet system, wherein the linewidth of low-temperature photoluminescence spectra was used to directly reveal the degree of magnetic alloy disorder 'seen' by excitons in single Zn{sub 0.80}Cd{sub 0.22}Mn{sub 0.08}Se quantum wells. The magnetic potential landscape in II-VI diluted magnetic semiconductors (DMS) is typically smoothed when the embedded Mn{sup 2+} spins align in an applied field. However, an important (but heretofore untested) prediction of current models of compositional disorder is that magnetic alloy fluctuations in many DMS compounds should increase again in very large magnetic fields approaching 100 T. We observed precisely this increase above {approx}70 T, in agreement with a simple model of magnetic alloy disorder.

Crooker, Scott A [Los Alamos National Laboratory; Samarth, Nitin [PENN STATE U

2008-01-01T23:59:59.000Z

43

HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS  

E-Print Network [OSTI]

D. C. 'Niobium-Titanium Superconducting Material s ', in S.Nb -Ti and Nb3Sn superconductors. , •• ,""" s. S. Clamp, Tie14, 1982 HIGH-FIELD SUPERCONDUCTING ACCELERATOR MAGNETS C.

Taylor, C.

2011-01-01T23:59:59.000Z

44

Thomas Jefferson High School for Science & Technology National...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thomas Jefferson High School for Science & Technology National Science Bowl Champion Thomas Jefferson High School for Science & Technology National Science Bowl Champion May 2,...

45

CRAD, Conduct of Operations - Oak Ridge National Laboratory High...  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Conduct of Operations - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR February...

46

High Temperature Polymer Membrane Development at Argonne National...  

Broader source: Energy.gov (indexed) [DOE]

Polymer Membrane Development at Argonne National Laboratory High Temperature Polymer Membrane Development at Argonne National Laboratory Summary of ANL's high temperature polymer...

47

CRAD, Fire Protection - Oak Ridge National Laboratory High Flux...  

Broader source: Energy.gov (indexed) [DOE]

Fire Protection - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Fire Protection - Oak Ridge National Laboratory High Flux Isotope Reactor February 2006 A section of...

48

CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope...  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G...

49

CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope...  

Broader source: Energy.gov (indexed) [DOE]

Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of...

50

CRAD, Emergency Management - Oak Ridge National Laboratory High...  

Broader source: Energy.gov (indexed) [DOE]

Emergency Management - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Emergency Management - Oak Ridge National Laboratory High Flux Isotope Reactor...

51

CRAD, Emergency Management - Oak Ridge National Laboratory High...  

Broader source: Energy.gov (indexed) [DOE]

Emergency Management - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Emergency Management - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A...

52

CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux...  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Nuclear Safety - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of...

53

CRAD, Safety Basis - Oak Ridge National Laboratory High Flux...  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Safety Basis - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR February 2007 A...

54

CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope...  

Broader source: Energy.gov (indexed) [DOE]

Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Engineering - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR...

55

CRAD, Radiological Controls - Oak Ridge National Laboratory High...  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Radiological Controls - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C...

56

CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope...  

Broader source: Energy.gov (indexed) [DOE]

Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Maintenance - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR...

57

CRAD, Management- Oak Ridge National Laboratory High Flux Isotope...  

Broader source: Energy.gov (indexed) [DOE]

Management- Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C...

58

Nano-High: Lawrence Berkeley National Laboratory Lecture on the...  

Broader source: Energy.gov (indexed) [DOE]

Nano-High: Lawrence Berkeley National Laboratory Lecture on the "compassionate instinct" Nano-High: Lawrence Berkeley National Laboratory Lecture on the "compassionate instinct"...

59

The National High Magnetic Field Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(2012). FiguRe 19. (Left) simulated 1d NMR spectra of a two-site chemical exchange process. FiguRe 20. (Right) select 1 H- 15 N HsQc spectra of HiV-1 PR in the apo (red) state...

60

National High Magnetic Field Laboratory: Optical Microscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of materials (such as this metallic superlattice) are produced in Optical Microscopy. Web-based Education This department runs four microscopy Web sites that together comprise...

Note: This page contains sample records for the topic "national high magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

National High Magnetic Field Laboratory - Site Index  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Learning Lab-wide Media and Public Affairs Personnel Search Covariance NMR Metabolomics Web Portal Cryogenics Curricula D DC Field Program Dictionary Directions Gainesville Site...

62

National High Magnetic Field Laboratory - Optical Microscopy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Kinetic Evaluations, Inorg. Chem., 20 (52), 5838-5850 (2013) read online 16 Stricker, J.; Beckham, Y.; Davidson, M.W. and Gardel, M.L., Myosin II-Mediated Focal Adhesion...

63

National High Magnetic Field Laboratory: Cryogenics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities The Mag Lab's Cryogenics Laboratory is a fully developed facility for conducting low temperature experimental research and development. The laboratory, which...

64

National High Magnetic Field Laboratory - Recent Publications...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Scientific Activities Peer-Reviewed Publications 1 Besara, T.; Ramirez, D.; Sun, J.; Whalen, J.B.; Tokumoto, T.D.; McGill, S.A.; Singh, D.J. and Siegrist, T., Ba2TeO:...

65

A prototype high-temperature superconducting coil for the 32 T all-superconducting magnet was constructed with YBCO tape and  

E-Print Network [OSTI]

A prototype high-temperature superconducting coil for the 32 T all- superconducting magnet T All-Superconducting Magnet Hubertus W. Weijers, W.D. Markiewicz, H. Bai, S.T. Hannahs National High

Weston, Ken

66

Memorandum, Approval of a Permanent Variance Regarding Static Magnetic Fields at Brookhaven National Laboratory (Variance 102 1)  

Broader source: Energy.gov [DOE]

Approval of a Permanenet Variance Regarding Static Magnetic Fields at Brookhaven National Laboratory (Variance 1021)

67

Permanent magnet design for high-speed superconducting bearings  

DOE Patents [OSTI]

A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure is disclosed. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing. 9 figs.

Hull, J.R.; Uherka, K.L.; Abdoud, R.G.

1996-09-10T23:59:59.000Z

68

Permanent magnet design for high-speed superconducting bearings  

DOE Patents [OSTI]

A high temperature superconducting bearing including a permanent magnet rotor levitated by a high temperature superconducting structure. The rotor preferably includes one or more concentric permanent magnet rings coupled to permanent magnet ring structures having substantially triangular and quadrangular cross-sections. Both alternating and single direction polarity magnet structures can be used in the bearing.

Hull, John R. (5519 S. Bruner, Hinsdale, IL 60521); Uherka, Kenneth L. (830 Ironwood, Frankfort, IL 60423); Abdoud, Robert G. (13 Country Oaks La., Barrington Hills, IL 60010)

1996-01-01T23:59:59.000Z

69

CRAD, Safety Basis - Oak Ridge National Laboratory High Flux...  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Safety Basis - Oak Ridge National Laboratory High Flux Isotope Reactor February 2007 A section of Appendix C to DOE G...

70

Sandia National Laboratories: High-Resolution Computational Algorithms...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WindHigh-Resolution Computational Algorithms for Simulating Offshore Wind Farms High-Resolution Computational Algorithms for Simulating Offshore Wind Farms This Sandia National...

71

Magnetic nanowire based high resolution magnetic force microscope probes  

E-Print Network [OSTI]

-resolution magnetic force microscope probes using preformed magnetic nanowires. Nickel and cobalt nanowires produced by electrodeposition were directly assembled onto the tip of a commercial atomic force microscope cantilever

Qin, Lu-Chang

72

High performance magnetic bearing systems using high temperature superconductors  

DOE Patents [OSTI]

A magnetic bearing apparatus and a method for providing at least one stabilizing force in a magnetic bearing structure with a superconducting magnetic assembly and a magnetic assembly, by providing a superconducting magnetic member in the superconducting magnetic assembly with a plurality of domains and arranging said superconducting magnetic member such that at least one domain has a domain C-axis vector alignment angularly disposed relative to a reference axis of the magnetic member in the magnetic assembly.

Abboud, Robert G. (Barrington Hills, IL)

1998-01-01T23:59:59.000Z

73

High performance magnetic bearing systems using high temperature superconductors  

DOE Patents [OSTI]

Disclosed are a magnetic bearing apparatus and a method for providing at least one stabilizing force in a magnetic bearing structure with a superconducting magnetic assembly and a magnetic assembly, by providing a superconducting magnetic member in the superconducting magnetic assembly with a plurality of domains and arranging said superconducting magnetic member such that at least one domain has a domain C-axis vector alignment angularly disposed relative to a reference axis of the magnetic member in the magnetic assembly. 7 figs.

Abboud, R.G.

1998-05-05T23:59:59.000Z

74

Optical pumping magnetic resonance in high magnetic fields: Characterization of nuclear relaxation during pumping  

E-Print Network [OSTI]

Optical pumping magnetic resonance in high magnetic fields: Characterization of nuclear relaxation during pumping Matthew P. Augustine and Kurt W. Zilm Department of Chemistry, Yale University, New Haven exchange with optically pumped Rb vapor is investigated in high magnetic field. Operation in a high field

Augustine, Mathew P.

75

National High Magnetic Field Laboratory - High B/T Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hrubesh, L.W. and Osheroff, D.D., NMR studies of superfluid He in low density silica aerogels, Physica B, 329-333, 292-295 (2003) 3 Hamida, J.A.; Pilla, S.; Muttalib, K. and...

76

New High Field Magnet for Neutron Scattering at Hahn-Meitner Institute  

E-Print Network [OSTI]

Abstract. The Berlin Neutron Scattering Center BENSC at the Hahn-Meitner-Institute (HMI) is a user facility for the study of structure and dynamics of condensed matter with neutrons and synchrotron radiation with special emphasis on experiments under extreme conditions. Neutron scattering is uniquely suited to study magnetic properties on a microscopic length scale, because neutrons have comparable wavelengths and, due to their magnetic moment, they interact with the atomic magnetic moments. Magnetic interactions and magnetic phenomena depend on thermodynamic parameters like magnetic field, temperature and pressure. At HMI special efforts are being made to offer outstanding sample environments such as very low temperatures or high magnetic fields or combination of both. For the future a dedicated instrument for neutron scattering at extreme fields is under construction, the Extreme Environment Diffractometer ExED. For this instrument the existing superconducting magnets as well as a future hybrid system can be used. The highest fields, above 30 T will be produced by the planned series-connected hybrid magnet system, designed and constructed in collaboration with the National High Magnetic Field Laboratory, Tallahassee, FL. 1.

M Steiner; D A Tennant; P Smeibidl

77

Frontiers in Planetary and Stellar Magnetism through High-Performance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hwang, project co-PI Frontiers in Planetary and Stellar Magnetism through High-Performance Computing PI Name: Jonathan Aurnou PI Email: aurnou@ucla.edu Institution: University...

78

Safe epoxy encapsulant for high voltage magnetics  

SciTech Connect (OSTI)

This paper describes the use of Formula 456, an aliphatic amine cured epoxy for impregnating coils and high voltage transformers. Sandia has evaluated a number of MDA-free epoxy encapsulants which relied on either anhydride or other aromatic amine curing agents. The use of aliphatic amine curing agents was more recently evaluated and has resulted in the definition of Formula 456 resin. Methylene dianiline (MDA) has been used for more than 20 years as the curing agent for various epoxy formulations throughout the Department of Energy and much of industry. Sandia National Laboratories began the process of replacing MDA with other formulations because of regulations imposed by OSHA on the use of MDA. OSHA has regulated MDA because it is a suspect carcinogen. Typically the elimination of OSHA-regulated materials provides a rare opportunity to qualify new formulations in a range of demanding applications. It was important to take full advantage of that opportunity, although the associated materials qualification effort was costly. Small high voltage transformers are one of those demanding applications. The successful implementation of the new formulation for high reliability transformers will be described. The test results that demonstrate the parts are qualified for use in DOE weapon systems will be presented.

Sanchez, R.O.; Archer, W.E.

1998-01-01T23:59:59.000Z

79

Nano-High: Lawrence Berkeley National Laboratory Lecture on Materials...  

Broader source: Energy.gov (indexed) [DOE]

on Materials Nano-High: Lawrence Berkeley National Laboratory Lecture on Materials February 23, 2013 3:00PM EST UC Berkeley campus Nano-High, a program of the Lawrence Berkeley...

80

Nano-High: Lawrence Berkeley National Laboratory Lecture on Good...  

Broader source: Energy.gov (indexed) [DOE]

on Good Sugars Nano-High: Lawrence Berkeley National Laboratory Lecture on Good Sugars February 2, 2013 3:00PM EST UC Berkeley Campus Nano-High, a program of the Lawrence Berkeley...

Note: This page contains sample records for the topic "national high magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

National High Blood Pressure Education Program Prevention,  

E-Print Network [OSTI]

honoraria for serving as a speaker from Monarch, Wyeth, Astra- Zeneca, Solvay, and Bristol-Myers Squibb. Dr, and Solvay; he has received funding/grant support for research pro- jects from National Institutes of Health, and Solvay; he has served as a consul- tant/advisor for Astra-Zeneca, Abbott, Alteon, Biovail, Boerhinger

Bandettini, Peter A.

82

Magnetization and magnetostriction in highly magnetostrictive materials  

SciTech Connect (OSTI)

The majority of this research has been in developing a model to describe the magnetostrictive properties of Terfenol-D, Tb{sub 1{minus}x}Dy{sub x}Fe{sub y} (x = 0.7-0.75 and y = 1.8--2.0), a rare earth-iron alloy which displays much promise for use in device applications. In the first chapter an introduction is given to the phenomena of magnetization and magnetostriction. The magnetic processes responsible for the observed magnetic properties of materials are explained. An overview is presented of the magnetic properties of rare earths, and more specifically the magnetic properties of Terfenol-D. In the second chapter, experimental results are presented on three composition of Tb{sub 1{minus}x}Dy{sub x}Fe{sub y} with x = 0.7, y= 1.9, 1.95, and x= 0.73, y= 1.95. The data were taken for various levels of prestress to show the effects of composition and microstructure on the magnetic and magnetostrictive properties of Terfenol-D. In the third chapter, a theoretical model is developed based on the rotation of magnetic domains. The model is used to explain the magnetic and magnetostrictive properties of Terfenol-D, including the observed negative strictions and large change in strain. The fourth chapter goes on to examine the magnetic properties of Terfenol-D along different crystallographic orientations. In the fifth chapter initial data are presented on the time dependence of magnetization in nickel.

Thoelke, J.B.

1993-05-26T23:59:59.000Z

83

Lithium pellet injection into high pressure magnetically confined plasmas  

E-Print Network [OSTI]

The ablation of solid pellets injected into high temperature magnetically confined plasmas is characterized by rapid oscillations in the ablation rate, and the formation of field aligned filaments in the ablatant. High ...

Böse, Brock (Brock Darrel)

2010-01-01T23:59:59.000Z

84

high explosives | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF8/%2A en Responding toheu | Nationalhigh

85

Survey of National Programs for Managing High-Level Radioactive  

E-Print Network [OSTI]

Survey of National Programs for Managing High-Level Radioactive Waste and Spent Nuclear Fuel-Level Radioactive Waste and Spent Nuclear Fuel A Report to Congress and the Secretary of Energy October 2009 #12 Safety (Germany) Peter De Preter: National Agency for Radioactive Waste and Enriched Fissile Materials

86

Mitigated-force carriage for high magnetic field environments  

SciTech Connect (OSTI)

A carriage for high magnetic field environments includes a first work-piece holding means for holding a first work-piece, the first work-piece holding means being disposed in an operable relationship with a work-piece processing magnet having a magnetic field strength of at least 1 Tesla. The first work-piece holding means is further disposed in operable connection with a second work-piece holding means for holding a second work-piece so that, as the first work-piece is inserted into the magnetic field, the second work-piece is simultaneously withdrawn from the magnetic field, so that an attractive magnetic force imparted on the first work-piece offsets a resistive magnetic force imparted on the second work-piece.

Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Murphy, Bart L

2014-05-20T23:59:59.000Z

87

High-Frequency Resistivity of Soft Magnetic Granular Films  

E-Print Network [OSTI]

permeability was measured and used to predict the power loss expected when granular films are used as high-frequency core materials for film inductors. The power loss is predicted to be lower than that of commercial Ni permeability, power loss, soft magnetic film. I. INTRODUCTION SOFT magnetic granular films are considered ideal

88

Cerium-Based Magnets: Novel High Energy Permanent Magnet Without Critical Elements  

SciTech Connect (OSTI)

REACT Project: Ames Laboratory will develop a new class of permanent magnets based on the more commonly available element cerium for use in both EVs and renewable power generators. Cerium is 4 times more abundant and significantly less expensive than the rare earth element neodymium, which is frequently used in today’s most powerful magnets. Ames Laboratory will combine other metal elements with cerium to create a new magnet that can remain stable at the high temperatures typically found in electric motors. This new magnetic material will ultimately be demonstrated in a prototype electric motor, representing a cost-effective and efficient alternative to neodymium-based motors.

None

2012-01-01T23:59:59.000Z

89

High Explosives Application Facility | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in the Madison SymmetricHigh Carbon

90

Conjugate High Latitude Measurements along the 40 Magnetic Meridian  

E-Print Network [OSTI]

Conjugate High Latitude Measurements along the 40º Magnetic Meridian: Autonomous Adaptive Low the 2014 season marked as red squares. #12;Autonomous Adaptive Low-Power Instrument #12;Conjugate observations of Travelling Convection Vorticies produced by solar wind pressure

Michigan, University of

91

High magnetic field processing of liquid crystalline polymers  

DOE Patents [OSTI]

A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.

Smith, Mark E. (Los Alamos, NM); Benicewicz, Brian C. (Los Alamos, NM); Douglas, Elliot P. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

92

High magnetic field processing of liquid crystalline polymers  

DOE Patents [OSTI]

A process of forming bulk articles of oriented liquid crystalline thermoset material, the material characterized as having an enhanced tensile modulus parallel to orientation of an applied magnetic field of at least 25 percent greater than said material processed in the absence of a magnetic field, by curing a liquid crystalline thermoset precursor within a high strength magnetic field of greater than about 2 Tesla, is provided, together with a resultant bulk article of a liquid crystalline thermoset material, said material processed in a high strength magnetic field whereby said material is characterized as having a tensile modulus parallel to orientation of said field of at least 25 percent greater than said material processed in the absence of a magnetic field.

Smith, M.E.; Benicewicz, B.C.; Douglas, E.P.

1998-11-24T23:59:59.000Z

93

Magnetic Refrigeration Technology for High Efficiency Air Conditioning  

SciTech Connect (OSTI)

Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate heat exchangers or oil distribution issues found in traditional vapor compression systems.

Boeder, A; Zimm, C

2006-09-30T23:59:59.000Z

94

Sandia National Laboratories: Magnetically Stimulated Flow Patterns Offer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos Alamos NationalMHKMeeting:Strategy for

95

High average power magnetic modulator for metal vapor lasers  

DOE Patents [OSTI]

A three-stage magnetic modulator utilizing magnetic pulse compression designed to provide a 60 kV pulse to a copper vapor laser at a 4.5 kHz repetition rate is disclosed. This modulator operates at 34 kW input power. The circuit includes a step up auto transformer and utilizes a rod and plate stack construction technique to achieve a high packing factor.

Ball, Don G. (Livermore, CA); Birx, Daniel L. (Oakley, CA); Cook, Edward G. (Livermore, CA); Miller, John L. (Livermore, CA)

1994-01-01T23:59:59.000Z

96

SUPER HIGH-SPEED MINIATURIZED PERMANENT MAGNET SYNCHRONOUS MOTOR  

E-Print Network [OSTI]

with the design of permanent magnet synchronous motors (PMSM) to operate at super-high speed with high efficiency. The designed and fabricated PMSM was successfully tested to run upto 210,000 rpm The designed PMSM has 2000 W concept of electrical machines. After that, the modeling of PMSM for dynamic simulation is provided

Wu, Thomas

97

CRAD, Engineering- Oak Ridge National Laboratory High Flux Isotope Reactor  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

98

CRAD, Maintenance- Oak Ridge National Laboratory High Flux Isotope Reactor  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Maintenance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

99

CRAD, Training- Oak Ridge National Laboratory High Flux Isotope Reactor  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Training Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

100

CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Management in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

Note: This page contains sample records for the topic "national high magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Apparatus for storing high magnetic fields having reduced mechanical forces and reduced magnetic pollution  

DOE Patents [OSTI]

The present invention identifies several configurations of conducting elements capable of storing extremely high magnetic fields for the purpose of energy storage or for other uses, wherein forces experienced by the conducting elements and the magnetic field pollution produced at locations away from the configuration are both significantly reduced over those which are present as a result of the generation of such high fields by currently proposed techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency. 15 figures.

Prueitt, M.L.; Mueller, F.M.; Smith, J.L.

1991-04-09T23:59:59.000Z

102

Apparatus for storing high magnetic fields having reduced mechanical forces and reduced magnetic pollution  

DOE Patents [OSTI]

The present invention identifies several configurations of conducting elements capable of storing extremely high magnetic fields for the purpose of energy storage or for other uses, wherein forces experienced by the conducting elements and the magnetic field pollution produced at locations away from the configuration are both significantly reduced over those which are present as a result of the generation of such high fields by currently proposed techniques. It is anticipated that the use of superconducting materials will both permit the attainment of such high fields and further permit such fields to be generated with vastly improved efficiency.

Prueitt, Melvin L. (Los Alamos, NM); Mueller, Fred M. (Los Alamos, NM); Smith, James L. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

103

High Performance Imaging Streak Camera for the National Ignition Facility  

SciTech Connect (OSTI)

An x-ray streak camera platform has been characterized and implemented for use at the National Ignition Facility. The camera has been modified to meet the experiment requirements of the National Ignition Campaign and to perform reliably in conditions that produce high EMI. A train of temporal UV timing markers has been added to the diagnostic in order to calibrate the temporal axis of the instrument and the detector efficiency of the streak camera was improved by using a CsI photocathode. The performance of the streak camera has been characterized and is summarized in this paper. The detector efficiency and cathode measurements are also presented.

Opachich, Y. P. [LLNL; Kalantar, D. [LLNL; MacPhee, A. [LLNL; Holder, J. [LLNL; Kimbrough, J. [LLNL; Bell, P. M. [LLNL; Bradley, D. [LLNL; Hatch, B. [LLNL; Brown, C. [LLNL; Landen, O. [LLNL; Perfect, B. H. [LLNL, HMC; Guidry, B. [LLNL; Mead, A. [NSTec; Charest, M. [NSTec; Palmer, N. [LLNL; Homoelle, D. [LLNL; Browning, D. [LLNL; Silbernagel, C. [NSTec; Brienza-Larsen, G. [NSTec; Griffin, M. [NSTec; Lee, J. J. [NSTec; Haugh, M. J. [NSTec

2012-12-01T23:59:59.000Z

104

Conceptual design of the gamma-to-electron magnetic spectrometer for the National Ignition Facility  

SciTech Connect (OSTI)

The Gamma-to-Electron Magnetic Spectrometer (GEMS) diagnostic is designed to measure the prompt ?-ray energy spectrum during high yield deuterium-tritium (DT) implosions at the National Ignition Facility (NIF). The prompt ?-ray spectrum will provide “burn-averaged” observables, including total DT fusion yield, total areal density (?R), ablator ?R, and fuel ?R. These burn-averaged observables are unique because they are essentially averaged over 4?, providing a global reference for the line-of-sight-specific measurements typical of x-ray and neutron diagnostics. The GEMS conceptual design meets the physics-based requirements: ?E/E = 3%–5% can be achieved in the range of 2–25 MeV ?-ray energy. Minimum DT neutron yields required for 15% measurement uncertainty at low-resolution mode are: 5 × 10{sup 14} DT-n for ablator ?R (at 0.2 g/cm{sup 2}); 2 × 10{sup 15} DT-n for total DT yield (at 4.2 × 10{sup ?5} ?/n); and 1 × 10{sup 16} DT-n for fuel ?R (at 1 g/cm{sup 2})

Kim, Y., E-mail: yhkim@lanl.gov; Herrmann, H. W.; Jorgenson, H. J.; Barlow, D. B.; Young, C. S.; Lopez, F. E.; Oertel, J. A.; Batha, S. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Stoeffl, W.; Casey, D.; Clancy, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hilsabeck, T. [General Atomics, San Diego, California 92186 (United States); Moy, K. [National Security Technologies, Special Technologies Laboratory, Santa Barbara, California 93111 (United States)

2014-11-15T23:59:59.000Z

105

High and ulta-high gradient quadrupole magnets  

SciTech Connect (OSTI)

Small bore conventional dc quadrupoles with apertures from 1 to 2.578cm were designed and prototypes built and measured. New fabrication techniques including the use of wire electric discharge milling (EDM) to economically generate the pole tip contours and aperture tolerances are described. Magnetic measurement data from a prototype of a 1cm aperture quadrupole with possible use in future e/sup +//e/sup -/ super colliders are presented. At a current of 400A, the lens achieved a gradient of 2.475 T/cm, and had an efficiency of 76.6%.

Brunk, W.O.; Walz, D.R.

1985-05-01T23:59:59.000Z

106

Homogenous BSCCO-2212 Round Wires for Very High Field Magnets  

SciTech Connect (OSTI)

The performance demands on modern particle accelerators generate a relentless push towards higher field magnets. In turn, advanced high field magnet development places increased demands on superconducting materials. Nb3Sn conductors have been used to achieve 16 T in a prototype dipole magnet and are thought to have the capability for {approx}18 T for accelerator magnets (primarily dipoles but also higher order multipole magnets). However there have been suggestions and proposals for such magnets higher than 20 T. The High Energy Physics Community (HEP) has identified important new physics opportunities that are enabled by extremely high field magnets: 20 to 50 T solenoids for muon cooling in a muon collider (impact: understanding of neutrinos and dark matter); and 20+ T dipoles and quadrupoles for high energy hadron colliders (impact: discovery reach far beyond present). This proposal addresses the latest SBIR solicitation that calls for grant applications that seek to develop new or improved superconducting wire technologies for magnets that operate at a minimum of 12 Tesla (T) field, with increases up to 15 to 20 T sought in the near future (three to five years). The long-term development of accelerator magnets with fields greater than 20 T will require superconducting wires having significantly better high-field properties than those possessed by current Nb{sub 3}Sn or other A15 based wires. Given the existing materials science base for Bi-2212 wire processing, we believe that Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212) round wires can be produced in km-long piece lengths with properties suitable to meet both the near term and long term needs of the HEP community. The key advance will be the translation of this materials science base into a robust, high-yield wire technology. While the processing and application of A15 materials have advanced to a much higher level than those of the copper oxide-based, high T{sub c} (HTS) counterparts, the HTS materials have the very significant advantage of an extremely high H{sub c2}. For this reason, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub y} (Bi-2212, or 2212) in the form of a multifilamentary Ag alloy matrix composite is beginning to attract the interest of the magnet community for future extremely high-field magnets or magnet-insert coils for 4.2K operation. Fig. 1 shows an example of excellent JE (engineering current density) in Bi-2212 round wire at fields up to 45 T, demonstrating the potential for high field applications of this material. For comparison, the Nb{sub 3}Sn wires used in magnets in the 16-18 T range typically perform with J{sub E} in the range 200-500 A/mm{sup 2}; the Bi-2212 wire retains this level of performance to fields at least as high as 45 T, and probably significantly higher. Bi-2212 conductors have in fact been used to generate a 25 T field in a superconducting insert magnet. These two factors- the very high field critical current performance of Bi-2212, and the already demonstrated capability of this material for high field magnets up to 25 T, strongly suggest this material as a leading contender for the next generation high field superconducting (HFS) wire. This potential was recognized by the US Academy of Science's Committee on Opportunities in High Magnetic Field Science. Their report of the same name specifically calls out the high field potential for this material, and suggests that 30 T magnets appear feasible based on the performance of 2212. There are several requirements for HFS conductors. The most obvious is J{sub E} (B, T), the engineering current density at the field and temperature of operation. As shown in Fig. 1, Bi-2212 excels in this regard. Stability requirements for magnets dictate that the effective filament diameter should be less than 30 micrometers, something that Bi-2212 multifilamentary wire can uniquely satisfy among the HFS superconducting wire technologies. Additional requirements include mechanical properties that prevent stress limitation of J{sub E} at the operating conditions, resistive transition index (n-value) suffic

Dr. Scott Campbell

2012-06-30T23:59:59.000Z

107

Use of High Magnetic Field to Control Microstructural Evolution in Metallic and Magnetic Materials  

SciTech Connect (OSTI)

The Amendment 1, referred to as Phase 2, to the original CRADA NFE-06-00414 added tasks 3 through 7 to the original statement of work that had two main tasks that were successfully accomplished in Phase 1 of this project. In this Phase 2 CRADA extension, extensive research and development activities were conducted using high magnetic field processing effects for the purpose of manipulating microstructure in the SAE 5160 steel to refine grain size isothermally and to develop nanocrystalline spacing pearlite during continuous cooling, and to enhance the formability/forgability of the non-ferrous precipitation hardening magnesium alloy AZ90 by applying a high magnetic field during deformation processing to investigate potential magnetoplasticity in this material. Significant experimental issues (especially non-isothermal conditions evolving upon insertion of an isothermal sample in the high magnetic field) were encountered in the isothermal phase transformation reversal experiments (Task 4) that later were determined to be due to various condensed matter physics phenomenon such as the magnetocaloric (MCE) effect that occurs in the vicinity of a materials Curie temperature. Similarly the experimental deformation rig had components for monitoring deformation/strain (Task 3) that were susceptible to the high magnetic field of the ORNL Thermomagnetic Processing facility 9-T superconducting magnet that caused electronic components to fail or record erroneous (very noisy) signals. Limited experiments on developing nanocrystalline spacing pearlite were not sufficient to elucidate the impact of high magnetic field processing on the final pearlite spacing since significant statistical evaluation of many pearlite colonies would need to be done to be conclusive. Since extensive effort was devoted to resolving issues for Tasks 3 and 7, only results for these focused activities are included in this final CRADA report along with those for Task 7 (described in the Objectives Section of this report).

Ludtka, G.M.; Mackiewicz- Ludtka, G.; Wilgen, J.B.; Kisner, R.A.

2010-06-27T23:59:59.000Z

108

General User Safety Training The National High Magnetic Field  

E-Print Network [OSTI]

believes that safety is important for everyone who works here. · This training in your work place and; ü Introduce you to a critical component of the Safety to improve the quality and safety of the work? #12;Integrated Safety Management

McQuade, D. Tyler

109

National High Magnetic Field Laboratory: DC Field Facility Publication...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Taniguchi, T., and Goldhaber-Gordon, D. , Composite fermions and broken symmetries in graphene, Nature Communications, 6, 5838 (2015) 2 Besara, T.; Ramirez, D.; Sun, J.; Whalen,...

110

National High Magnetic Field Laboratory: Museum of Electricity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and steam pressure. Savery generated the latter by forcing steam produced by a boiler into an empty chamber, which was showered with cold water to condense the steam and...

111

Presentado por el National High Magnetic Field Laboratory  

E-Print Network [OSTI]

un electroimán? En la epoca de los 1930s, Francis Bitter hecho imánes simples usando esta tecnologia

Weston, Ken

112

National High Magnetic Field Laboratory: Museum of Electricity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

however, like the one appearing here, were not designed for navigation. Appearing in China around the 4th century BC, primitive compasses showed people the way not literally,...

113

Research on Climate Change National High Magnetic Field Laboratory  

E-Print Network [OSTI]

Program Mountain building affects climate because the erosion of silicate rocks decreases the CO2 content of the Tibetan Plateau. A complementary approach to silicate weathering is provided by lithium isotopes

114

National High Magnetic Field Laboratory - Pioneers in Electricity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

> Pioneers Arrow Wilhelm Weber (1804-1891) Wilhelm Weber Wilhelm Weber was born on October 24, 1804, in Wittenberg, Germany. He was one of 12 children and along with his brothers,...

115

National High Magnetic Field Laboratory: Museum of Electricity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sulfur Globe In the 17th century, German scientist Otto von Guericke built and carried out experiments with a sulfur globe. He described the globe and its use in Experimenta Nova...

116

National High Magnetic Field Laboratory: Museum of Electricity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

be detected by the unaided human senses. Geiger Counter Enter Hans Geiger, a young German scientist on the staff at the University of Manchester. Having received his Ph.D. from...

117

National High Magnetic Field Laboratory: Museum of Electricity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

telegraph created by American inventor Samuel Morse revolutionized communications, two German scientists built their own functional telegraph. Carl Friedrich Gauss (1777 - 1855),...

118

National High Magnetic Field Laboratory: Museum of Electricity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

right direction literally, but figuratively. 1660 - Sulfur Globe In the 17th century, German scientist Otto von Guericke built and carried out experiments with a sulfur globe that...

119

National High Magnetic Field Laboratory - Pulsed Field Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

K.A.D.; Dattelbaum, A.M. and Doorn, S.K., Fluorescent single-walled carbon nanotube aerogels in surfactant-free environments, ACS Nano, 5, 6686 (2011) 10 Franco, Jr, A.; Machado,...

120

National High Magnetic Field Laboratory: Museum of Electricity...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cyrus Field, who had made his fortune in paper manufacturing. Transatlantic Telegraph Cable Field knew little about the telegraph. But after meeting with owners of the...

Note: This page contains sample records for the topic "national high magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

National High Magnetic Field Laboratory - NMR/MRIs Advisory Committee  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Interests: Solution NMR Term ending: 6302016 Myriam Cotten Hamilton College Department of Chemistry 1075 Science Center Clinton, NY 13323 Phone:...

122

National High Magnetic Field Laboratory - Science Starts Here...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

James Leif Smith James Leif Smith James Leif Smith. Name James Leif Smith. Age 36. Current position Assistant Professor, Department of Biological Sciences, Mississippi State...

123

The National High Magnetic Field Laboratory 2013 Annual Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

with the expertise of the two centers. The AMRIS-centered group has utilized 3D printing technology, some in collaboration with the UF Archi- tecture School, to produce rat...

124

Materials Physics Applications: The National High Magnetic Field Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces andMapping the Nanoscale LandscapeImports 5.90 4.86(NHMFL) Search

125

National High Magnetic Field Laboratory - Condensed Matter Publication...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

collaborators. 2015 Publications and Scientific Activities 1 Besara, T.; Ramirez, D.; Sun, J.; Whalen, J.B.; Tokumoto, T.D.; McGill, S.A.; Singh, D.J. and Siegrist, T., Ba2TeO:...

126

Preparation of magnetic anomaly profile and contour maps from DOE-NURE aerial survey data. Volume I: processing procedures. [National Uranium Resource Evaluation  

SciTech Connect (OSTI)

Total intensity magnetic anomaly data acquired as a supplement to radiometric data in the DOE National Uranium Resource Evaluation (NURE) Program are useful in preparing regional profile and contour maps. Survey-contractor-supplied magnetic anomaly data are subjected to a multiprocess, computer-based procedure which prepares these data for presentation. This procedure is used to produce the following machine plotted maps of National Topographic Map Series quadrangle units at a 1:250,000 scale: (1) profile map of contractor-supplied magnetic anomaly data, (2) profile map of high-cut filtered data with contour levels of each profile marked and annotated on the associated flight track, (3) profile map of critical-point data with contour levels indicated, and (4) contour map of filtered and selected data. These quadrangle maps are supplemented with a range of statistical measures of the data which are useful in quality evaluation.

Tinnel, E.P.; Hinze, W.J.

1981-09-01T23:59:59.000Z

127

Developed by: Lawrence Berkeley National Laboratory with input from industry partners representing high tech  

E-Print Network [OSTI]

Energy Technologies Division Ernest Orlando Lawrence Berkeley National Laboratory UniversityLBNL-50599 Developed by: Lawrence Berkeley National Laboratory with input from industry partners For High Tech Buildings #12;DISCLAIMER The Lawrence Berkeley National Laboratory, 1 Cyclotron Road

128

Voltage spike detection in high field superconducting accelerator magnets  

SciTech Connect (OSTI)

A measurement system for the detection of small magnetic flux changes in superconducting magnets, which are due to either mechanical motion of the conductor or flux jump, has been developed at Fermilab. These flux changes are detected as small amplitude, short duration voltage spikes, which are {approx}15mV in magnitude and lasts for {approx}30 {micro}sec. The detection system combines an analog circuit for the signal conditioning of two coil segments and a fast data acquisition system for digitizing the results, performing threshold detection, and storing the resultant data. The design of the spike detection system along with the modeling results and noise analysis will be presented. Data from tests of high field Nb{sub 3}Sn magnets at currents up to {approx}20KA will also be shown.

Orris, D.F.; Carcagno, R.; Feher, S.; Makulski, A.; Pischalnikov, Y.M.; /Fermilab

2004-12-01T23:59:59.000Z

129

Commercial Building Partners Catalyze High Performance Buildings Across the Nation  

SciTech Connect (OSTI)

In 2008 the US Department of Energy (DOE) launched the Commercial Buildings Partnership (CBP) project to accelerate market adoption of commercially available energy saving technologies into the design process for new and upgraded commercial buildings. The CBP represents a unique collaboration between industry leaders and DOE to develop high performance buildings as a model for future construction and renovation. CBP was implemented in two stages. This paper focuses on lessons learned at Pacific Northwest National Laboratory (PNNL) in the first stage and discusses some partner insights from the second stage. In the first stage, PNNL and the National Renewable Energy Laboratory recruited CBP partners that own large portfolios of buildings. The labs provide assistance to the partners' design teams and make a business case for energy investments.

Baechler, Michael C.; Dillon, Heather E.; Bartlett, Rosemarie

2012-08-01T23:59:59.000Z

130

Iron Arsenides--The New Family of High TC Magnetic Superconductors  

E-Print Network [OSTI]

Iron Arsenides--The New Family of High TC Magnetic Superconductors Jeff Lynn NIST Center Superconductors · (Brief) History of Magnetic Superconductors ­ Magnetic Impurities ­ Long Range Magnetic Order: Coexistence and Competition · Cuprate Superconductors--Highly Correlated Electron Systems ­ Undoped systems

Weston, Ken

131

Research on ambient temperature passive magnetic bearings at the Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

Research performed at the Lawrence Livermore National Laboratory on the equilibrium and stability of a new class of ambient-temperature passive bearing systems is described. The basic concepts involved are: (1) Stability of the rotating system is only achieved in the rotating state. That is, disengaging mechanical systems are used to insure stable levitation at rest (when Earnshaw`s theorem applies). (2) Stable levitation by passive magnetic elements can be achieved if the vector sum of the force derivatives of the several elements of the system is net negative (i.e. restoring) for axial, transverse, and tilt-type perturbations from equilibrium. To satisfy the requirements of (2) using only permanent magnet elements we have employed periodic ``Halbach arrays.`` These interact with passive inductive loaded circuits and act as stabilizers, with the primary forces arising from axially symmetric permanent-magnet elements. Stabilizers and other elements needed to create compact passive magnetic bearing systems have been constructed. Novel passive means for stabilizing classes of rotor-dynamic instabilities in such systems have also been investigated.

Post, R.F.; Ryitov, D.D.` Smith, J.R.; Tung, L.S.

1997-04-01T23:59:59.000Z

132

MAGNETIZED GAS IN THE SMITH HIGH VELOCITY CLOUD  

SciTech Connect (OSTI)

We report the first detection of magnetic fields associated with the Smith High Velocity Cloud. We use a catalog of Faraday rotation measures toward extragalactic radio sources behind the Smith Cloud, new H I observations from the Robert C. Byrd Green Bank Telescope, and a spectroscopic map of H? from the Wisconsin H-Alpha Mapper Northern Sky Survey. There are enhancements in rotation measure (RM) of ?100 rad m{sup –2} which are generally well correlated with decelerated H? emission. We estimate a lower limit on the line-of-sight component of the field of ?8 ?G along a decelerated filament; this is a lower limit due to our assumptions about the geometry. No RM excess is evident in sightlines dominated by H I or H? at the velocity of the Smith Cloud. The smooth H? morphology of the emission at the Smith Cloud velocity suggests photoionization by the Galactic ionizing radiation field as the dominant ionization mechanism, while the filamentary morphology and high (?1 Rayleigh) H? intensity of the lower-velocity magnetized ionized gas suggests an ionization process associated with shocks due to interaction with the Galactic interstellar medium. The presence of the magnetic field may contribute to the survival of high velocity clouds like the Smith Cloud as they move from the Galactic halo to the disk. We expect these data to provide a test for magnetohydrodynamic simulations of infalling gas.

Hill, Alex S.; McClure-Griffiths, Naomi M. [CSIRO Astronomy and Space Science, Marsfield, NSW (Australia); Mao, S. A. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI (United States); Benjamin, Robert A. [Department of Physics, University of Wisconsin-Whitewater, Whitewater, WI (United States); Lockman, Felix J., E-mail: alex.hill@csiro.au, E-mail: naomi.mcclure-griffiths@csiro.au, E-mail: mao@astro.wisc.edu, E-mail: benjamir@uww.edu, E-mail: jlockman@nrao.edu [National Radio Astronomy Observatory, Green Bank, WV (United States)

2013-11-01T23:59:59.000Z

133

High Temperature Polymer Membrane Development at Argonne National...  

Broader source: Energy.gov (indexed) [DOE]

Polymer Membrane Development at Argonne National Laboratory Seong-Woo Choi, Suhas Niyogi, John Kopasz, Romesh Kumar, and Debbie Myers Chemical Engineering Division Argonne National...

134

High-field magnets using high-critical-temperature superconducting thin films  

DOE Patents [OSTI]

High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla are disclosed. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field. 4 figures.

Mitlitsky, F.; Hoard, R.W.

1994-05-10T23:59:59.000Z

135

High-field magnets using high-critical-temperature superconducting thin films  

DOE Patents [OSTI]

High-field magnets fabricated from high-critical-temperature superconducting ceramic (HTSC) thin films which can generate fields greater than 4 Tesla. The high-field magnets are made of stackable disk-shaped substrates coated with HTSC thin films, and involves maximizing the critical current density, superconducting film thickness, number of superconducting layers per substrate, substrate diameter, and number of substrates while minimizing substrate thickness. The HTSC thin films are deposited on one or both sides of the substrates in a spiral configuration with variable line widths to increase the field.

Mitlitsky, Fred (Livermore, CA); Hoard, Ronald W. (Livermore, CA)

1994-01-01T23:59:59.000Z

136

Test-Theory Correlation Study for an Ultra High Temperature Thrust Magnetic Bearing  

E-Print Network [OSTI]

Magnetic bearings have been researched by the National Aeronautics and Space Administration (NASA) for a very long time to be used in wide applications. This research was to assemble and test an axial thrust electromagnetic bearing, which can handle...

Desireddy, Vijesh R.

2010-01-14T23:59:59.000Z

137

Simulations of magnetic hysteresis loops at high temperatures  

SciTech Connect (OSTI)

The kinetic Monte-Carlo algorithm as well as standard micromagnetics are used to simulate MH loops of high anisotropy magnetic recording media at both short and long time scales over a wide range of temperatures relevant to heat-assisted magnetic recording. Microscopic parameters, common to both methods, were determined by fitting to experimental data on single-layer FePt-based media that uses the Magneto-Optic Kerr effect with a slow sweep rate of 700?Oe/s. Saturation moment, uniaxial anisotropy, and exchange constants are given an intrinsic temperature dependence based on published atomistic simulations of FePt grains with an effective Curie temperature of 680?K. Our results show good agreement between micromagnetics and kinetic Monte Carlo results over a wide range of sweep rates. Loops at the slow experimental sweep rates are found to become more square-shaped, with an increasing slope, as temperature increases from 300?K. These effects also occur at higher sweep rates, typical of recording speeds, but are much less pronounced. These results demonstrate the need for accurate determination of intrinsic thermal properties of future recording media as input to micromagnetic models as well as the sensitivity of the switching behavior of thin magnetic films to applied field sweep rates at higher temperatures.

Plumer, M. L.; Whitehead, J. P.; Fal, T. J. [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3X7 (Canada); Ek, J. van [Western Digital Corporation, San Jose, California 94588 (United States); Mercer, J. I. [Department of Computer Science, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B 3X7 (Canada)

2014-09-28T23:59:59.000Z

138

Characterization of High Current RRP(R) Wires as a Function of Magnetic Field, Temperature and Strain  

SciTech Connect (OSTI)

A new instrument for the characterization of superconducting materials as a function of Magnetic Field, Temperature and Strain, was designed, constructed and tested at Lawrence Berkeley National Laboratory (LBNL). A U-shaped bending spring was selected, since that design has proven to enable accurate characterizations of a multitude of superconducting materials for more than a decade. The new device is validated though measurements on very high current Rod Restack Processed (RRP) Internal-Tin (IT) wires, for which we will present initial results, including parameterizations of the superconducting phase boundaries and comparisons with other wire types. Accurate parametrization of modern high magnetic field conductors is important for the analysis of the performance of magnet systems.

Godeke, A.; Mentink, M.G.T.; Dietderich, D. R.; den Ouden, A.

2009-08-16T23:59:59.000Z

139

The high current, fast, 100ns, Linear Transformer Driver (LTD) developmental project at Sandia National Laboratories.  

SciTech Connect (OSTI)

Sandia National Laboratories, Albuquerque, N.M., USA, in collaboration with the High Current Electronic Institute (HCEI), Tomsk, Russia, is developing a new paradigm in pulsed power technology: the Linear Transformer Driver (LTD) technology. This technological approach can provide very compact devices that can deliver very fast high current and high voltage pulses straight out of the cavity with out any complicated pulse forming and pulse compression network. Through multistage inductively insulated voltage adders, the output pulse, increased in voltage amplitude, can be applied directly to the load. The load may be a vacuum electron diode, a z-pinch wire array, a gas puff, a liner, an isentropic compression load (ICE) to study material behavior under very high magnetic fields, or a fusion energy (IFE) target. This is because the output pulse rise time and width can be easily tailored to the specific application needs. In this paper we briefly summarize the developmental work done in Sandia and HCEI during the last few years, and describe our new MYKONOS Sandia High Current LTD Laboratory.

Ward, Kevin S.; Long, Finis W.; Sinebryukhov, Vadim A. (High Current Electronic Institute (HCEI), Tomsk, Russia); Kim, Alexandre A. (High Current Electronic Institute (HCEI), Tomsk, RUSSIA); Wakeland, Peter Eric (Ktech Corporation, Albuquerque, NM); McKee, G. Randall; Woodworth, Joseph Ray; McDaniel, Dillon Heirman; Fowler, William E.; Mazarakis, Michael Gerrassimos; Porter, John Larry, Jr.; Struve, Kenneth William; Stygar, William A.; LeChien, Keith R.; Matzen, Maurice Keith

2010-04-01T23:59:59.000Z

140

The High Flux Beam Reactor at Brookhaven National Laboratory  

SciTech Connect (OSTI)

Brookhaven National Laboratory`s High Flux Beam Reactor (HFBR) was built because of the need of the scientist to always want `more`. In the mid-50`s the Brookhaven Graphite reactor was churning away producing a number of new results when the current generation of scientists, led by Donald Hughes, realized the need for a high flux reactor and started down the political, scientific and engineering path that led to the BFBR. The effort was joined by a number of engineers and scientists among them, Chemick, Hastings, Kouts, and Hendrie, who came up with the novel design of the HFBR. The two innovative features that have been incorporated in nearly all other research reactors built since are: (i) an under moderated core arrangement which enables the thermal flux to peak outside the core region where beam tubes can be placed, and (ii) beam tubes that are tangential to the core which decrease the fast neutron background without affecting the thermal beam intensity. Construction began in the fall of 1961 and four years later, at a cost of $12 Million, criticality was achieved on Halloween Night, 1965. Thus began 30 years of scientific accomplishments.

Shapiro, S.M.

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "national high magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Ultra-High Intensity Magnetic Field Generation in Dense Plasma  

SciTech Connect (OSTI)

I. Grant Objective The main objective of this grant proposal was to explore the efficient generation of intense currents. Whereasthefficient generation of electric current in low-­?energy-­? density plasma has occupied the attention of the magnetic fusion community for several decades, scant attention has been paid to carrying over to high-­?energy-­? density plasma the ideas for steady-­?state current drive developed for low-­?energy-­? density plasma, or, for that matter, to inventing new methodologies for generating electric current in high-­?energy-­?density plasma. What we proposed to do was to identify new mechanisms to accomplish current generation, and to assess the operation, physics, and engineering basis of new forms of current drive in regimes appropriate for new fusion concepts.

Fisch, Nathaniel J

2014-01-08T23:59:59.000Z

142

High Field Magnetization measurements of uranium dioxide single crystals (P08358- E003-PF)  

SciTech Connect (OSTI)

Conclusions: Our preliminary high field magnetic measurements of UO2 are consistent with a complex nature of the magnetic ordering in this material, compatible with the previously proposed non-collinear 3-k magnetic structure. Further extensive magnetic studies on well-oriented (<100 > and <111>) UO2 crystals are planned to address the puzzling behavior of UO2 in both antiferromagnetic and paramagnetic states at high fields.

K. Gofryk; N. Harrison; M. Jaime

2014-12-01T23:59:59.000Z

143

High heat flux testing capabilities at Sandia National Laboratories - New Mexico  

SciTech Connect (OSTI)

High heat flux testing for the United States fusion power program is the primary mission of the Plasma Materials Test Facility (PMTF) located at Sandia National Laboratories - New Mexico. This facility, which is owned by the United States Department of Energy, has been in operation for over 17 years and has provided much of the high heat flux data used in the design and evaluation of plasma facing components for many of the world`s magnetic fusion, tokamak experiments. In addition to domestic tokamaks such as Tokamak Fusion Test Reactor (TFTR) at Princeton and the DIII-D tokamak at General Atomics, components for international experiments like TEXTOR, Tore-Supra, and JET also have been tested at the PMTF. High heat flux testing spans a wide spectrum including thermal shock tests on passively cooled materials, thermal response and thermal fatigue tests on actively cooled components, critical heat flux-burnout tests, braze reliability tests and safety related tests. The objective of this article is to provide a brief overview of the high heat flux testing capabilities at the PMTF and describe a few of the experiments performed over the last year.

Youchison, D.L.; McDonald, J.M.; Wold, L.S.

1994-12-31T23:59:59.000Z

144

Capabilities for high explosive pulsed power research at Los Alamos National Laboratory  

SciTech Connect (OSTI)

Research on topics requiring high magnetic fields and high currents have been pursued using high explosive pulsed power (HEPP) techniques since the 1950s at Los Alamos National Laboratory. We have developed many sophisticated HEPr systems through the years, and most of them depend on technology available from the nuclear weapons program. Through the 1980s and 1990s, our budgets would sustain parallel efforts in zpinch research using both HEPr and capacitor banks. In recent years, many changes have occurred that are driven by concerns such as safety, security, and environment, as well as reduced budgets and downsizing of the National Nuclear Security Administration (NNSA) complex due to the end of the cold war era. In this paper, we review the teclmiques developed to date, and adaptations that are driven by changes in budgets and our changing complex. One new Ranchero-based solid liner z-pinch experimental design is also presented. Explosives that are cast to shape instead of being machined, and initiation systems that depend on arrays of slapper detonators are important new tools. Some materials that are seen as hazardous to the environment are avoided in designs. The process continues to allow a wide range of research however, and there are few, if any, experiments that we have done in the past that could not be perform today. The HErr firing facility at Los Alamos continues to have a 2000 lb. high explosive limit, and our 2.4 MJ capacitor bank remains a mainstay of the effort. Modem diagnostic and data analysis capabilities allow fewer personnel to achieve better results, and in the broad sense we continue to have a robust capability.

Goforth, James H [Los Alamos National Laboratory; Oona, Henn [Los Alamos National Laboratory; Tasker, Douglas G [Los Alamos National Laboratory; Kaul, A M [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

145

Effect of high-pressure on molecular magnetism   

E-Print Network [OSTI]

The effect of pressure on a number of magnetically interesting compounds such as single-molecule magnets and dimeric copper and manganese molecules has been investigated to probe the validity of ambient magneto-structural ...

Prescimone, Alessandro

2010-01-01T23:59:59.000Z

146

Studies of Avalanche Photodiode Performance in a High Magnetic Field  

E-Print Network [OSTI]

We report the results of exposing a Hamamatsu avalanche photodiode (APD) to a 7.9 Tesla magnetic field. The effect of the magnetic field on the gain of the APD is shown and discussed. We find APD gain to be unaffected in the presence of such a magnetic field.

J. Marler; T. McCauley; S. Reucroft; J. Swain; D. Budil; S. Kolaczkowski

2000-01-04T23:59:59.000Z

147

High school students use nation's top X-rays to study Illinois...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

industry, medical schools, and other research institutions. Click to enlarge. High school students use nation's top X-rays to study Illinois fossils By Chelsea Leu * October 2,...

148

Design of a High Performance Ferrite Magnet-Assisted Synchronous Reluctance Motor for an  

E-Print Network [OSTI]

Design of a High Performance Ferrite Magnet- Assisted Synchronous Reluctance Motor for an Electric) ferrite-based permanent magnet-assisted synchronous reluctance motor has been designed for an electric vehicle application. The design steps are outlined. Ferrite magnets have been chosen over conventional Nd

Paderborn, Universität

149

Compressing magnetic fields with high-energy lasersa... J. P. Knauer,1,b  

E-Print Network [OSTI]

Compressing magnetic fields with high-energy lasersa... J. P. Knauer,1,b O. V. Gotchev,1,2,3 P. Y, Rochester, New York 14623, USA 3 Department of Mechanical Engineering, University of Rochester, 250 East-driven magnetic-field compression producing a magnetic field of tens of megaGauss is reported for the first time

150

Controlling interactions between highly-magnetic atoms with Feshbach resonances  

E-Print Network [OSTI]

This paper reviews current experimental and theoretical progress in the study of dipolar quantum gases of ground and meta-stable atoms with a large magnetic moment. We emphasize the anisotropic nature of Feshbach resonances due to coupling to fast-rotating resonant molecular states in ultracold s-wave collisions between magnetic atoms in external magnetic fields. The dramatic differences in the distribution of resonances of magnetic $^7$S$_3$ chromium and magnetic lanthanide atoms with a submerged 4f shell and non-zero electron angular momentum is analyzed. We focus on Dysprosium and Erbium as important experimental advances have been recently made to cool and create quantum-degenerate gases for these atoms. Finally, we describe progress in locating resonances in collisions of meta-stable magnetic atoms in electronic P states with ground-state atoms, where an interplay between collisional anisotropies and spin-orbit coupling exists.

Svetlana Kotochigova

2014-10-14T23:59:59.000Z

151

Coil Winding for the Series-Connected Hybrid Magnet Mark D. Bird...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coil Winding for the Series-Connected Hybrid Magnet Mark D. Bird, National High Magnetic Field Laboratory DMR-Award 0603042 Fabrication of the Series-Connected Hybrid magnet is...

152

Symmetry Breaking in Graphene Gregory S. Boebinger, National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Symmetry Breaking in Graphene Gregory S. Boebinger, National High Magnetic Field Laboratory DMR-Award 0654118 DC Field Facility While the laws of physics are often symmetric,...

153

High-Energy Composite Permanent Magnets: High-Energy Permanent Magnets for Hybrid Vehicles and Alternative Energy  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: The University of Delaware is developing permanent magnets that contain less rare earth material and produce twice the energy of the strongest rare earth magnets currently available. The University of Delaware is creating these magnets by mixing existing permanent magnet materials with those that are more abundant, like iron. Both materials are first prepared in the form of nanoparticles via techniques ranging from wet chemistry to ball milling. After that, the nanoparticles must be assembled in a 3-D array and consolidated at low temperatures to form a magnet. With small size particles and good contact between these two materials, the best qualities of each allow for the development of exceptionally strong composite magnets.

None

2010-02-15T23:59:59.000Z

154

Nonlinear Control Design for a High-Precision Contactless Positioning System Using Magnetic Levitation  

E-Print Network [OSTI]

. The paper focuses on the design and testing of a nonlinear controller required for actuating the positioningNonlinear Control Design for a High-Precision Contactless Positioning System Using Magnetic the implementation of a two degree-of-freedom, high-precision, magnetic-levitation- based positioning system

Maggiore, Manfredi

155

High Energy Density Laboratory Plasmas Program | National Nuclear...  

National Nuclear Security Administration (NNSA)

Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home High Energy Density Laboratory Plasmas Program High Energy Density Laboratory Plasmas Program...

156

High Temperature Polymer Membrane Development at Argonne National Laboratory  

Broader source: Energy.gov [DOE]

Summary of ANL’s high temperature polymer membrane work presented to the High Temperature Membrane Working Group Meeting, Orlando FL, October 17, 2003

157

The influence of a magnetic field on turbulent heat transfer of a high Prandtl number fluid  

SciTech Connect (OSTI)

The influence of a transverse magnetic field on the local and average heat transfer of an electrically conducting, turbulent fluid flow with high Prandtl number was studied experimentally. The mechanism of heat transfer modification due to magnetic field is considered with aid of available numerical simulation data for turbulent flow field. The influence of the transverse magnetic field on the heat transfer was to suppress the temperature fluctuation and to steepen the mean temperature gradient in near-wall region in the direction parallel to the magnetic field. The mean temperature gradient is not influenced compared to the temperature fluctuation in the direction vertical to the magnetic field. (author)

Nakaharai, H. [Department of Advanced Energy Engineering Science, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga-kouen 6-1, Kasuga, Fukuoka 816-8580 (Japan); Takeuchi, J.; Morley, N.B.; Abdou, M.A. [Mechanical and Aerospace Engineering Department, University of California, Los Angeles, CA 90095-1597 (United States); Yokomine, T. [Faculty of Energy Engineering Science, Kyushu University, Kasuga-kouen 6-1, Kasuga, Fukuoka 816-8580 (Japan); Kunugi, T. [Department of Nuclear Engineering, Kyoto University, Yoshida, Sakyo, Kyoto 606-8501 (Japan); Satake, S. [Department of Applied Electronics, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510 (Japan)

2007-10-15T23:59:59.000Z

158

High temperature magnetic properties of SmCo5/-Fe(Co) bulk nanocomposite magnets  

E-Print Network [OSTI]

-compaction route. Up to 30% of the Fe soft magnetic phase has been added to the composites with grain size (!150 C) are needed for applica- tions in advanced power systems, including electric vehicles and wind mill turbines.1,2 Nd2Fe14B-based magnets are the material of choice in systems where weight or size

Liu, J. Ping

159

Toroidal magnetic detector for high resolution measurement of muon momenta  

DOE Patents [OSTI]

A muon detector system including central and end air-core superconducting toroids and muon detectors enclosing a central calorimeter/detector. Muon detectors are positioned outside of toroids and all muon trajectory measurements are made in a nonmagnetic environment. Internal support for each magnet structure is provided by sheets, located at frequent and regularly spaced azimuthal planes, which interconnect the structural walls of the toroidal magnets. In a preferred embodiment, the shape of the toroidal magnet volume is adjusted to provide constant resolution over a wide range of rapidity. 4 figs.

Bonanos, P.

1992-01-07T23:59:59.000Z

160

Sandia National Laboratories: structural material at high pressure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational Solar Thermalssls exhibit

Note: This page contains sample records for the topic "national high magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

High Energy Density Laboratory Plasmas | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILLAdministration | National Nuclear Security

162

Belgium Highly Enriched Uranium and Plutonium Removals | National Nuclear  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling atSFO |Alternate| National

163

Effect of high solenoidal magnetic fields on breakdown voltages of high vacuum 805 MHz cavities  

SciTech Connect (OSTI)

There is an on going international collaboration studying the feasibility and cost of building a muon collider or neutrino factory [1,2]. An important aspect of this study is the full understanding of ionization cooling of muons by many orders of magnitude for the collider case. An important muon ionization cooling experiment, MICE [3], has been proposed to demonstrate and validate the technology that could be used for cooling. Ionization cooling is accomplished by passing a high-emittance muon beam alternately through regions of low Z material, such as liquid hydrogen, and very high accelerating RF Cavities within a multi-Tesla solenoidal field. To determine the effect of very large solenoidal magnetic fields on the generation of dark current, x-rays and on the breakdown voltage gradients of vacuum RF cavities, a test facility has been established at Fermilab in Lab G. This facility consists of a 12 MW 805 MHz RF station and a large warm bore 5 T solenoidal superconducting magnet containing a pill box type cavity with thin removable window apertures. This system allows dark current and breakdown studies of different window configurations and materials. The results of this study will be presented. The study has shown that the peak achievable accelerating gradient is reduced by a factor greater than 2 when solenoidal field of greater than 2 T are applied to the cavity.

Moretti, A.; Bross, A.; Geer, S.; Qian, Z.; /Fermilab; Norem, J.; /Argonne; Li, D.; Zisman, M.; /LBL, Berkeley; Torun, Y.; /IIT, Chicago; Rimmer, R.; /Jefferson Lab; Errede,; /Illinois U., Urbana

2005-10-01T23:59:59.000Z

164

High energy product permanent magnet having improved intrinsic coercivity and method of making same  

DOE Patents [OSTI]

A high energy rare earth-ferromagnetic metal permanent magnet is disclosed which is characterized by improved intrinsic coercivity and is made by forming a particulate mixture of a permanent magnet alloy comprising one or more rare earth elements and one or more ferromagnetic metals and forming a second particulate mixture of a sintering alloy consisting essentially of 92-98 wt. % of one or more rare earth elements selected from the class consisting of Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and mixtures of two or more of such rare earth elements, and 2-8 wt. % of one or more alloying metals selected from the class consisting of Al, Nb, Zr, V, Ta, Mo, and mixtures of two or more of such metals. The permanent magnet alloy particles and sintering aid alloy are mixed together and magnetically oriented by immersing the mixture in an axially aligned magnetic field while cold pressing the mixture. The compressed mixture is then sintered at a temperature above the melting point of the sintering aid and below the melting point of the permanent magnet alloy to thereby coat the particle surfaces of the permanent magnetic alloy particles with the sintering aid while inhibiting migration of the rare earth element in the sintering aid into the permanent magnet alloy particles to thereby raise the intrinsic coercivity of the permanent magnet alloy without substantially lowering the high energy of the permanent magnet alloy.

Ramesh, Ramamoorthy (Berkeley, CA); Thomas, Gareth (Berkeley, CA)

1990-01-01T23:59:59.000Z

165

Sandia National Laboratories: High-Fidelity Hydrostructural Analysis...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrostructural Analysis of Ocean Renewable Power Company's (ORPC's) TidGen Turbine High-Fidelity Hydrostructural Analysis of Ocean Renewable Power Company's (ORPC's)...

166

Development of a high quality kicker magnet system  

SciTech Connect (OSTI)

Presently, there are 6 proton and 6 antiproton bunches used for collider operation in the Fermilab Tevatron. As the number of particles in these bunches increases, experimenter`s detectors begin to saturate. To alleviate this situation, protons and antiprotons will be redistributed in 36 bunches instead of 6 to reduce the number of interactions per crossing. In order to carry this out, the rise and fall times of the Tevatron antiproton injection kicker which deflects the antiprotons onto the closed orbit must be reduced to accommodate the increased number of bunches circulating in the machine. To meet these criteria, it is necessary to reduce the inductance per unit length as seen by the driving source in order to achieve the necessary propagation time through the magnet, For a given aperture, this can be readily done using a picture frame design powered with two pulses of opposite polarity. Two magnets are required, each with a magnetic length of 2.41 m.

Dinkel, J.; Hanna, B.; Jensen, C.; Qunell, D.; Reilly, R.

1993-05-01T23:59:59.000Z

167

Nano-High: Lawrence Berkeley National Laboratory Lecture on the "compassionate instinct"  

Broader source: Energy.gov [DOE]

Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

168

Nano-High: Lawrence Berkeley National Laboratory Lecture on Good Sugars  

Broader source: Energy.gov [DOE]

Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

169

Nano-High: Lawrence Berkeley National Laboratory Lecture on Bad Sugars  

Broader source: Energy.gov [DOE]

Nano-High, a program of the Lawrence Berkeley National Laboratory, is a series of free Saturday morning talks by internationally recognized leaders in scientific research. The talks are designed...

170

Magnetic Field Effect on Charmonium Production in High Energy Nuclear Collisions  

E-Print Network [OSTI]

It is important to understand the strong external magnetic field generated at the very beginning of high energy nuclear collisions. We study the effect of the magnetic field on the charmonium yield and anisotropic distribution in Pb+Pb collisions at the LHC energy. The time dependent Schr\\"odinger equation is employed to describe the motion of $c\\bar{c}$ pairs. We compare our model prediction of non- collective anisotropic parameter $v_2$ of $J/\\psi$s with CMS data at high transverse momentum. This is the first attempt to measure the magnetic field in high energy nuclear collisions.

Guo, Xingyu; Xu, Nu; Xu, Zhe; Zhuang, Pengfei

2015-01-01T23:59:59.000Z

171

Future of High Energy Physics | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of High Energy Physics has made dramatic progress in the last several years. The Higgs boson discovery has confirmed the last untested prediction of the Standard Model. We have...

172

Energy deposition studies for the High-Luminosity Large Hadron Collider inner triplet magnets  

E-Print Network [OSTI]

A detailed model of the High Luminosity LHC inner triplet region with new large-aperture Nb3Sn magnets, field maps, corrector packages, and segmented tungsten inner absorbers was built and implemented into the FLUKA and MARS15 codes. In the optimized configuration, the peak power density averaged over the magnet inner cable width is safely below the quench limit. For the integrated luminosity of 3000 fb-1, the peak dose in the innermost magnet insulator ranges from 20 to 35 MGy. Dynamic heat loads to the triplet magnet cold mass are calculated to evaluate the cryogenic capability. In general, FLUKA and MARS results are in a very good agreement.

Mokhov, N V; Tropin, I S; Cerutti, F; Esposito, L S; Lechner, A

2015-01-01T23:59:59.000Z

173

High temperature superconductor micro-superconducting-quantum-interference-device magnetometer for magnetization measurement of a microscale magnet  

SciTech Connect (OSTI)

We have developed a high temperature superconductor (HTS) micrometer-sized dc superconducting quantum interference device (SQUID) magnetometer for high field and high temperature operation. It was fabricated from YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} of 92 nm in thickness with photolithography techniques to have a hole of 4x9 {mu}m{sup 2} and 2 {mu}m wide grain boundary Josephson junctions. Combined with a three dimensional magnetic field coil system, the modulation patterns of critical current I{sub c} were observed for three different field directions. They were successfully used to measure the magnetic properties of a molecular ferrimagnetic microcrystal (23x17x13 {mu}m{sup 3}), [Mn{sub 2}(H{sub 2}O){sub 2}(CH{sub 3}COO)][W(CN){sub 8}]{center_dot}2H{sub 2}O. The magnetization curve was obtained in magnetic field up to 0.12 T between 30 and 70 K. This is the first to measure the anisotropy of hysteresis curve in the field above 0.1 T with an accuracy of 10{sup -12} J T{sup -1} (10{sup -9} emu) with a HTS micro-SQUID magnetometer.

Takeda, Keiji [Institute for Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa-shi, Chiba 277-8581 (Japan); Department of Chemistry, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); CREST, JST, Kawaguchi-shi, Saitama 332-0012 (Japan); Mori, Hatsumi [Institute for Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa-shi, Chiba 277-8581 (Japan); CREST, JST, Kawaguchi-shi, Saitama 332-0012 (Japan); Yamaguchi, Akira; Ishimoto, Hidehiko [Institute for Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa-shi, Chiba 277-8581 (Japan); Nakamura, Takayoshi [CREST, JST, Kawaguchi-shi, Saitama 332-0012 (Japan); Research Institute for Electronic Science, Hokkaido University, Kita 12 Nishi 6, Sapporo-shi, Hokkaido 060-0812 (Japan); Kuriki, Shinya [Research Institute for Electronic Science, Hokkaido University, Kita 12 Nishi 6, Sapporo-shi, Hokkaido 060-0812 (Japan); Hozumi, Toshiya; Ohkoshi, Shin-ichi [Department of Chemistry, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan)

2008-03-15T23:59:59.000Z

174

Magnet Technology for Power Converters: Nanocomposite Magnet Technology for High Frequency MW-Scale Power Converters  

SciTech Connect (OSTI)

Solar ADEPT Project: CMU is developing a new nanoscale magnetic material that will reduce the size, weight, and cost of utility-scale PV solar power conversion systems that connect directly to the grid. Power converters are required to turn the energy that solar power systems create into useable energy for the grid. The power conversion systems made with CMU’s nanoscale magnetic material have the potential to be 150 times lighter and significantly smaller than conventional power conversion systems that produce similar amounts of power.

None

2012-02-27T23:59:59.000Z

175

Hybrid magnet devices for molecule manipulation and small scale high gradient-field applications  

DOE Patents [OSTI]

The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are hybrid magnetic tweezers able to exert approximately 1 nN of force to 4.5 .mu.m magnetic bead. The maximum force was experimentally measured to be .about.900 pN which is in good agreement with theoretical estimations and other measurements. In addition, a new analysis scheme that permits fast real-time position measurement in typical geometry of magnetic tweezers has been developed and described in detail.

Humphries, David E. (El Cerrito, CA); Hong, Seok-Cheol (Seoul, KR); Cozzarelli, legal representative, Linda A. (Berkeley, CA); Pollard, Martin J. (El Cerrito, CA); Cozzarelli, Nicholas R. (Berkeley, CA)

2009-01-06T23:59:59.000Z

176

High-performance computer system installed at Los Alamos National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC High-Rate, High-Capacityand Modeling

177

Highly Enriched Uranium Materials Facility | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC High-Rate,Highlights Highlights Below is aHighly

178

Idaho National Engineering and Environmental Laboratory Development of a High  

E-Print Network [OSTI]

durability and sealing with regard to thermal cycles ­ minimize electrolyte thickness ­ improve material in the electrolysis mode · Specification and testing of hydrogen-permeation-resistant materials for a high to Electrolyser 0 20 40 60 80 100 120 100 300 500 700 900 Temperature (C) EnergyInput(MJ/kgH2) Thermal Energy

179

Highly Parallel Magnetic Resonance Imaging with a Fourth Gradient Channel for Compensation of RF Phase Patterns  

E-Print Network [OSTI]

A fourth gradient channel was implemented to provide slice dependent RF coil phase compensation for arrays in dual-sided or "sandwich" configurations. The use of highly parallel arrays for single echo acquisition magnetic resonance imaging allows...

Bosshard, John 1983-

2012-08-20T23:59:59.000Z

180

The LLNL HFTF (High-Field Test Facility): A flexible superconducting test facility for fusion magnet development  

SciTech Connect (OSTI)

The High-Field Test Facility (HFTF) is a flexible and, in many ways, unique facility at Lawrence Livermore National Laboratory (LLNL) for providing the test capabilities needed to develop the superconducting magnet systems of the next generation fusion machines. The superconducting coil set in HFTF has been operated successfully at LLNL, but in its original configuration, its utility as a test facility was somewhat restricted and cryogenic losses were intolerable. A new cryostat for the coil set allows the magnet system to remain cold indefinitely so the system is available on short notice to provide high fields (about 11 T) inside a reasonably large test volume (0.3-m diam). The test volume is physically and thermally isolated from the coil volume, allowing test articles to be inserted and removed without disturbing the coil cryogenic volume, which is maintained by an on-line refrigerator. Indeed, with the proper precautions, it is even unnecessary to drop the field in the HFTF during such an operation. The separate test volume also allows reduced temperature operation without the expense and complication of subcooling the entire coil set (about 20-t cold mass). The HFTF has thus become a key facility in the LLNL magnet development program, where the primary goal is to demonstrate the technology for producing fields to 15 T with winding-pack current densities of 40 A.mm/sup -2/ in coils sized for fusion applications. 4 refs., 4 figs., 1 tab.

Miller, J.R.; Chaplin, M.R.; Leber, R.L.; Rosdahl, A.R.

1987-09-17T23:59:59.000Z

Note: This page contains sample records for the topic "national high magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Tokamaks with high-performance resistive magnets: advanced test reactors and prospects for commercial applications  

SciTech Connect (OSTI)

Scoping studies have been made of tokamak reactors with high performance resistive magnets which maximize advantages gained from high field operation and reduced shielding requirements, and minimize resistive power requirements. High field operation can provide very high values of fusion power density and n tau/sub e/ while the resistive power losses can be kept relatively small. Relatively high values of Q' = Fusion Power/Magnet Resistive Power can be obtained. The use of high field also facilitates operation in the DD-DT advanced fuel mode. The general engineering and operational features of machines with high performance magnets are discussed. Illustrative parameters are given for advanced test reactors and for possible commercial reactors. Commercial applications that are discussed are the production of fissile fuel, electricity generation with and without fissioning blankets and synthetic fuel production.

Bromberg, L.; Cohn, D.R.; Williams, J.E.C.; Becker, H.; Leclaire, R.; Yang, T.

1981-10-01T23:59:59.000Z

182

High gradient magnetic separation of iron oxide minerals from soil clays  

E-Print Network [OSTI]

HIGH GRADIENT MAGNETIC SEPARATION OF IRON OXIDE MINERALS FROM SOIL CLAYS A Thesis by DARRELL GENE SCHULZE Submitted to the Graduate College of Texas AIM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... December 1977 Major Subject: Soil Science HIGH GRADIENT MAGNETIC SEPARATION OF IRON OXIDE MINERALS FROM SOIL CLAYS A Thesis DARRELL GENE SCHULZE Approved as to style and content by: (Chairman of C ittee) epartm t) j (Member) (Membe December 1977...

Schulze, Darrell Gene

1977-01-01T23:59:59.000Z

183

Sandia National Laboratories: removing the highly radioactive elements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskiteremoving the highly radioactive elements

184

Highly Enriched Uranium Transparency Program | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2MLLC High-Rate,Highlights Highlights Below is

185

High Performancng David Skinner Lawrence Berkeley National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinement plasmas in the Madison SymmetricHighPerformancng David

186

Sandia National Laboratories: Achieving High Pernetrations of PV  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwardsSafeguardsEngineersSandia/New MexicoAchieving High

187

Stable High Beta Plasmas Confined by a Dipole Magnetic Field D. T. Garnier,  

E-Print Network [OSTI]

Stable High Beta Plasmas Confined by a Dipole Magnetic Field D. T. Garnier, A. Hansen, M. E. Mauel Center, MIT, Cambridge, MA 02139 (Dated: October 21, 2005) Abstract Stable high-beta plasma is created we report the first production of high beta plasma confined by a laboratory dipole using neutral gas

Mauel, Michael E.

188

Mountain lion use of an area of high recreational development in Big Bend National Park, Texas  

E-Print Network [OSTI]

/Site Restrictions and Closures Habitat/Site Alterations. . . . . . . . . . . . Protocol for Incidents of Attack or Depredation. 113 113 120 128 135 141 147 150 Recommendations f or Management. . . . . . . . . Education of Visitors and Residents... subadults should be considered high risk. Alternative management actions for reducing risk to visitors were identified and evaluated. ACKNOWLEDGMENTS This study was cooperatively funded by Big Bend National Park (BIBE), Texas; The National Park Service...

Ruth, Toni Karen

1991-01-01T23:59:59.000Z

189

C. Engelmann -University of Reading and Oak Ridge National Laboratory High Availability for Ultra-scale Scientific High-End Computing 1/48  

E-Print Network [OSTI]

June, 2006 C. Engelmann - University of Reading and Oak Ridge National Laboratory High AvailabilityAH, UK 2 Computer Science and Mathematics Division Oak Ridge National Laboratory, Oak Ridge, TN, USA #12;June, 2006 C. Engelmann - University of Reading and Oak Ridge National Laboratory High

Engelmann, Christian

190

High frequency transformers and high Q factor inductors formed using epoxy-based magnetic polymer materials  

DOE Patents [OSTI]

An electrical component in the form of an inductor or transformer is disclosed which includes one or more coils and a magnetic polymer material located near the coils or supporting the coils to provide an electromagnetic interaction therewith. The magnetic polymer material is preferably a cured magnetic epoxy which includes a mercaptan derivative having a ferromagnetic atom chemically bonded therein. The ferromagnetic atom can be either a transition metal or rare-earth atom.

Sanchez, Robert O. (Los Lunas, NM); Gunewardena, Shelton (Walnut, CA); Masi, James V. (Cape Elizabeth, ME)

2007-11-27T23:59:59.000Z

191

740 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 12, NO. 1, MARCH 2002 High-Resolution Nuclear Magnetic Resonance  

E-Print Network [OSTI]

740 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 12, NO. 1, MARCH 2002 High research depend on high- field superconducting magnets with outstanding homogeneity and excellent long term, superconducting magnets, TROSY. I. INTRODUCTION IN THE half century since its discovery, nuclear magnetic

Wider, Gerhard

192

2528 IEEE TRANSACTIONS ON MAGNETICS, VOL. 43, NO. 6, JUNE 2007 A Highly Efficient 200 000 RPM Permanent Magnet Motor System  

E-Print Network [OSTI]

presents the development of an ultra-high-speed permanent magnet synchronous motor (PMSM) that produces large iron loss at high-speed. In ultra-high-speed applications, PMSM offers the advantage of high efficiency, and high stability, is generally considered for high performance PMSM control. However, for ultra

Wu, Thomas

193

High damping properties of magnetic particles doped rubber composites at wide frequency  

SciTech Connect (OSTI)

Highlights: ? A new kind of permanent magnetic rubber was prepared. ? The microstructure and magnetic properties were investigated. ? The mechanical and damping properties were discussed. ? The new material is expected to be an isolator material to a changed frequency. - Abstract: A new kind of rubber composite was prepared by doping SrFe{sub 12}O{sub 19} nanoparticles coated with silane coupling agents (Si-69) into nitrile butadiene rubber (NBR) matrix, which was characterized by the scanning electron microscopy and X-ray spectroscopy. The results showed that the SrFe{sub 12}O{sub 19} nanoparticles were well dispersed in rubber matrix. Furthermore, the mechanical and magnetic properties of the rubber composites were investigated, in which the high tensile strength (15.8 MPa) and high saturation magnetization (22.9 emu/g) were observed. What is more, the high loss factor of the rubber composites was also obtained in a wide frequency range (0–100 Hz) at high loading (80 phr). The result is attributed to that the permanent magnetic field in rubber nanocomposites can absorb shock energy. These results indicate that the new kind of permanent magnetic rubber is expected to be a smart isolator material, in which the isolator will be able to adapt to a changed frequency.

Tian, Ye, E-mail: schtiany@163.com [Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, North University of China, Taiyuan 030051 (China); College of Material Science and Engineering, North University of China, Taiyuan 030051 (China); Liu, Yaqing, E-mail: lyq@nuc.edu.cn [Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, North University of China, Taiyuan 030051 (China); College of Material Science and Engineering, North University of China, Taiyuan 030051 (China); He, Minhong; Zhao, Guizhe; Sun, Youyi [Research Center for Engineering Technology of Polymeric Composites of Shanxi Province, North University of China, Taiyuan 030051 (China); College of Material Science and Engineering, North University of China, Taiyuan 030051 (China)

2013-05-15T23:59:59.000Z

194

High-pressure Magic Angle Spinning Nuclear Magnetic Resonance...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

advantage of ceramic cylinders for withstanding very high-pressure utilized, but also plastic bushings can be glued tightly in place so that other plastic sealing mechanisms...

195

A table-top, repetitive pulsed magnet for nonlinear and ultrafast spectroscopy in high magnetic fields up to 30 T  

SciTech Connect (OSTI)

We have developed a mini-coil pulsed magnet system with direct optical access, ideally suited for nonlinear and ultrafast spectroscopy studies of materials in high magnetic fields up to 30 T. The apparatus consists of a small coil in a liquid nitrogen cryostat coupled with a helium flow cryostat to provide sample temperatures down to below 10 K. Direct optical access to the sample is achieved with the use of easily interchangeable windows separated by a short distance of ?135 mm on either side of the coupled cryostats with numerical apertures of 0.20 and 0.03 for measurements employing the Faraday geometry. As a demonstration, we performed time-resolved and time-integrated photoluminescence measurements as well as transmission measurements on InGaAs quantum wells.

Noe, G. Timothy; Lee, Joseph; Woods, Gary L. [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States)] [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Nojiri, Hiroyuki [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)] [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Léotin, Jean [Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, Toulouse (France)] [Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, Toulouse (France); Kono, Junichiro, E-mail: kono@rice.edu [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States) [Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005 (United States); Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA and Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005 (United States)

2013-12-15T23:59:59.000Z

196

Dynamic Motor Parameter Identification for High Speed Flux Weakening Operation of Brushless Permanent Magnet Synchronous Machines  

E-Print Network [OSTI]

performance torque control. Advanced high speed salient-pole synchronous machine drives use vector control Permanent Magnet Synchronous Machines Abstract: An experimental investigation is conducted to determine the behaviour of brushless PM synchronous machine parameters in the high speed flux weakening operating range

Szabados, Barna

197

Proceedings from the conference on high speed computing: High speed computing and national security  

SciTech Connect (OSTI)

This meeting covered the following topics: technologies/national needs/policies: past, present and future; information warfare; crisis management/massive data systems; risk assessment/vulnerabilities; Internet law/privacy and rights of society; challenges to effective ASCI programmatic use of 100 TFLOPs systems; and new computing technologies.

Hirons, K.P.; Vigil, M.; Carlson, R. [comps.] [comps.

1997-07-01T23:59:59.000Z

198

Superconductivity and Magnetism: Materials Properties  

E-Print Network [OSTI]

.g. within high-Tc superconductivity, magnetic superconductors, MgB2, CMR materials, nanomagnetism and spin#12;#12;Superconductivity and Magnetism: Materials Properties and Developments #12;Copyright 2003 Risø National Laboratory Roskilde, Denmark ISBN 87-550-3244-3 ISSN 0907-0079 #12;Superconductivity

199

THE NATIONAL FUSION COLLABORATORY PROJECT: APPLYING GRID TECHNOLOGY FOR MAGNETIC FUSION RESEARCH  

E-Print Network [OSTI]

of advanced software tools that reduce technical barriers to collaboration and sharing on a national scale. Our vision is to make resources -- data, computers along with analysis, simulation and visualization-institutional collaboration on fusion experiments, and improving comparisons between experiments and theory. The project

Thompson, Mary R.

200

High-frequency nonreciprocal reflection from magnetic films with overlayers  

SciTech Connect (OSTI)

We perform a theoretical study of the nonreciprocal reflection of high-frequency microwave radiation from ferromagnetic films with thin overlayers. Reflection from metallic ferromagnetic films is always near unity and shows no nonreciprocity. In contrast, reflection from a structure which has a dielectric overlayer on top of a film composed of insulated ferromagnetic nanoparticles or nanostructures can show significant nonreciprocity in the 75–80?GHz frequency range, a very high value. This can be important for devices such as isolators or circulators.

Wang, Ying; Nie, Yan; Camley, R. E. [Center for Magnetism and Magnetic Nanostructures, University of Colorado at Colorado Springs, Colorado Springs, Colorado 80918 (United States)

2013-11-14T23:59:59.000Z

Note: This page contains sample records for the topic "national high magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Magnetic Pattern Fabrication and Characterization for Next Generation High Density Magnetic Recording System  

E-Print Network [OSTI]

bit patterned media (BPM), capable of achieving magneticfrom the transitions in the BPM film under study. Throughoutthe EBL-fabricated ultra-high-density BPM media. vi Table of

Lee, Beomseop

2011-01-01T23:59:59.000Z

202

CRAD, Maintenance- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Maintenance Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

203

CRAD, Conduct of Operations- Oak Ridge National Laboratory High Flux Isotope Reactor  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February, 2007 assessment of the Conduct of Operations Program in preparation for restart of the Oak Ridge National Laboratory, High Flux Isotope Reactor.

204

CRAD, Conduct of Operations- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February, 2007 assessment of the Conduct of Operations Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory, High Flux Isotope Reactor.

205

CRAD, Management- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Management portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

206

CRAD, Emergency Management- Oak Ridge National Laboratory High Flux Isotope Reactor  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Emergency Management Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

207

CRAD, Engineering- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Engineering Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

208

CRAD, Environmental Protection- Oak Ridge National Laboratory High Flux Isotope Reactor  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Environmental Compliance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

209

CRAD, Configuration Management- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Configuration Management Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory, High Flux Isotope Reactor.

210

CRAD, Emergency Management- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Emergency Management Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

211

CRAD, Configuration Management- Oak Ridge National Laboratory High Flux Isotope Reactor  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Configuration Management Program in preparation for restart of the Oak Ridge National Laboratory, High Flux Isotope Reactor.

212

CRAD, Training- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Training Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

213

CRAD, Nuclear Safety- Oak Ridge National Laboratory High Flux Isotope Reactor  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Nuclear Safety Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

214

CRAD, Occupational Safety & Health- Oak Ridge National Laboratory High Flux Isotope Reactor  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Industrial Safety and Hygiene Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

215

CRAD, Radiological Controls- Oak Ridge National Laboratory High Flux Isotope Reactor  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Radiation Protection Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

216

CRAD, Safety Basis- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Safety Basis portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

217

CRAD, Safety Basis- Oak Ridge National Laboratory High Flux Isotope Reactor  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Safety Basis in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

218

CRAD, Occupational Safety & Health- Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Occupational Safety and Health Program portion of an Operational Readiness Review of the Oak Ridge National Laboratory High Flux Isotope Reactor.

219

CRAD, Quality Assurance- Oak Ridge National Laboratory High Flux Isotope Reactor  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Quality Assurance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

220

Computer Aided Design and Modeling of High Frequency Magnetic Components *  

E-Print Network [OSTI]

of converters and inverters in high fre- quency power electronics applications is always time and cost consuming University of Paderborn, FB 14 Power Electronics and Electrical Drives Pohlweg 47 33098 Paderborn, Germany Tel. : 0049/5251/603039 FAX : 0049/5251/603443 email: bbeckl@pblea.uni-paderborn.de Abstract A new

Paderborn, Universität

Note: This page contains sample records for the topic "national high magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Method for preparing high cure temperature rare earth iron compound magnetic material  

DOE Patents [OSTI]

Insertion of light elements such as H,C, or N in the R.sub.2 Fe.sub.17 (R=rare earth metal) series has been found to modify the magnetic properties of these compounds, which thus become prospective candidates for high performance permanent magnets. The most spectacular changes are increases of the Curie temperature, T.sub.c, of the magnetization, M.sub.s, and of coercivity, H.sub.c, upon interstitial insertion. A preliminary product having a component R--Fe--C,N phase is produced by a chemical route. Rare earth metal and iron amides are synthesized followed by pyrolysis and sintering in an inert or reduced atmosphere, as a result of which, the R--Fe--C,N phases are formed. Fabrication of sintered rare earth iron nitride and carbonitride bulk magnet is impossible via conventional process due to the limitation of nitridation method.

Huang, Yuhong (West Hills, CA); Wei, Qiang (West Hills, CA); Zheng, Haixing (Oak Park, CA)

2002-01-01T23:59:59.000Z

222

High-Energy Permanent Magnets for Hybrid Vehicles and Alternative Energy Uses  

SciTech Connect (OSTI)

The report summarizes research undertaken by a multidisciplinary team aimed at the development of the next generation high-energy permanent magnets. The principal approach was relied on bottom-up fabrication of anisotropic nanocomposite magnets. Our efforts resulted in further development of the theoretical concept and fabrication principles for the nanocomposites and in synthesis of a range of rare-earth-based hard magnetic nanoparticles. Even though we did not make a breakthrough in the assembly of these hard magnetic particles with separately prepared Fe(Co) nanoparticles and did not obtain a compact nanocomposite magnet, our performed research will help to direct the future efforts, in particular, towards nano-assembly via coating, when the two phases which made the nanocomposite are first organized in core-shell-structured particles. Two other approaches were to synthesize (discover) new materials for the traditional singe-material magnets and the nanocomposite magnets. Integrated theoretical and experimental efforts lead to a significant advance in nanocluster synthesis technique and yielded novel rare-earth-free nanostructured and nanocomposite materials. Examination of fifteen R-Fe-X alloy systems (R = rare earth), which have not been explored earlier due to various synthesis difficulties reveal several new ferromagnetic compounds. The research has made major progress in bottom-up manufacturing of rare-earth-containing nanocomposite magnets with superior energy density and open new directions in development of higher-energy-density magnets that do not contain rare earths. The advance in the scientific knowledge and technology made in the course of the project has been reported in 50 peer-reviewed journal articles and numerous presentations at scientific meetings.

Hadjipanayis, George C. [University of Delaware] [University of Delaware; McCallum, William R. [Ames Laboratory] [Ames Laboratory; Sellmyer, David J. [University of Nebraska, Lincoln] [University of Nebraska, Lincoln; Harris, Vincent [Northeastern University] [Northeastern University; Carpenter, Everett E. [Virginia Commonwealth University] [Virginia Commonwealth University; Liu, Jinfang [Electron Energy Corporation] [Electron Energy Corporation

2013-12-17T23:59:59.000Z

223

Direct high-precision measurement of the magnetic moment of the proton  

E-Print Network [OSTI]

The spin-magnetic moment of the proton $\\mu_p$ is a fundamental property of this particle. So far $\\mu_p$ has only been measured indirectly, analysing the spectrum of an atomic hydrogen maser in a magnetic field. Here, we report the direct high-precision measurement of the magnetic moment of a single proton using the double Penning-trap technique. We drive proton-spin quantum jumps by a magnetic radio-frequency field in a Penning trap with a homogeneous magnetic field. The induced spin-transitions are detected in a second trap with a strong superimposed magnetic inhomogeneity. This enables the measurement of the spin-flip probability as a function of the drive frequency. In each measurement the proton's cyclotron frequency is used to determine the magnetic field of the trap. From the normalized resonance curve, we extract the particle's magnetic moment in units of the nuclear magneton $\\mu_p=2.792847350(9)\\mu_N$. This measurement outperforms previous Penning trap measurements in terms of precision by a factor of about 760. It improves the precision of the forty year old indirect measurement, in which significant theoretical bound state corrections were required to obtain $\\mu_p$, by a factor of 3. By application of this method to the antiproton magnetic moment $\\mu_{\\bar{p}}$ the fractional precision of the recently reported value can be improved by a factor of at least 1000. Combined with the present result, this will provide a stringent test of matter/antimatter symmetry with baryons.

A. Mooser; S. Ulmer; K. Blaum; K. Franke; H. Kracke; C. Leiteritz; W. Quint; C. C. Rodegheri; C. Smorra; J. Walz

2014-06-18T23:59:59.000Z

224

EIS-0291: High Flux Beam Reactor (HFBR) Transition Project at the Brookhaven National Laboratory, Upton, New York  

Broader source: Energy.gov [DOE]

The EIS evaluates the range of reasonable alternatives and their impacts regarding the future management of the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory (BNL).

225

INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK  

SciTech Connect (OSTI)

5098-SR-03-0 FINAL REPORT- INDEPENDENT VERIFICATION SURVEY OF THE HIGH FLUX BEAM REACTOR DECOMMISSIONING PROJECT OUTSIDE AREAS, BROOKHAVEN NATIONAL LABORATORY

P.C. Weaver

2010-12-15T23:59:59.000Z

226

A Permanent-Magnet Microwave Ion Source for a Compact High-Yield Neutron Generator  

SciTech Connect (OSTI)

We present recent work on the development of a microwave ion source that will be used in a high-yield compact neutron generator for active interrogation applications. The sealed tube generator will be capable of producing high neutron yields, 5x1011 n/s for D-T and ~;;1x1010 n/s for D-D reactions, while remaining transportable. We constructed a microwave ion source (2.45 GHz) with permanent magnets to provide the magnetic field strength of 87.5 mT necessary for satisfying the electron cyclotron resonance (ECR) condition. Microwave ion sources can produce high extracted beam currents at the low gas pressures required for sealed tube operation and at lower power levels than previously used RF-driven ion sources. A 100 mA deuterium/tritium beam will be extracted through a large slit (60x6 mm2) to spread the beam power over a larger target area. This paper describes the design of the permanent-magnet microwave ion source and discusses the impact of the magnetic field design on the source performance. The required equivalent proton beam current density of 40 mA/cm2 was extracted at a moderate microwave power of 400 W with an optimized magnetic field.

Waldmann, Ole; Ludewigt, Bernhard

2010-10-11T23:59:59.000Z

227

A High-Order Finite-Volume Algorithm for Fokker-Planck Collisions in Magnetized Plasmas  

SciTech Connect (OSTI)

A high-order finite volume algorithm is developed for the Fokker-Planck Operator (FPO) describing Coulomb collisions in strongly magnetized plasmas. The algorithm is based on a general fourth-order reconstruction scheme for an unstructured grid in the velocity space spanned by parallel velocity and magnetic moment. The method provides density conservation and high-order-accurate evaluation of the FPO independent of the choice of the velocity coordinates. As an example, a linearized FPO in constant-of-motion coordinates, i.e. the total energy and the magnetic moment, is developed using the present algorithm combined with a cut-cell merging procedure. Numerical tests include the Spitzer thermalization problem and the return to isotropy for distributions initialized with velocity space loss cones. Utilization of the method for a nonlinear FPO is straightforward but requires evaluation of the Rosenbluth potentials.

Xiong, Z; Cohen, R H; Rognlien, T D; Xu, X Q

2007-04-18T23:59:59.000Z

228

The High-Energy Polarization-Limiting Radius of Neutron Star Magnetospheres II -- Magnetized Hydrogen Atmospheres  

E-Print Network [OSTI]

In the presence of strong magnetic fields, the vacuum becomes a birefringent medium. We show that this QED effect couples the direction of the polarization of photons leaving the NS surface, to the direction of the magnetic field along the ray's path. We analyze the consequences that this effect has on aligning the polarization vectors to generate large net polarizations, while considering thermal radiation originating from a thermal hydrogen atmosphere. Counter to previous predictions, we show that the thermal radiation should be highly polarized even in the optical. When detected, this polarization will be the first demonstration of vacuum birefringence. It could be used as a tool to prove the high magnetic field nature of AXPs and it could also be used to constrain physical NS parameters, such as $R/M$, to which the net polarization is sensitive.

Jeremy S. Heyl; Don Lloyd; Nir J. Shaviv

2005-02-17T23:59:59.000Z

229

New vertical cryostat for the high field superconducting magnet test station at CERN  

SciTech Connect (OSTI)

In the framework of the R and D program for new superconducting magnets for the Large Hadron Collider accelerator upgrades, CERN is building a new vertical test station to test high field superconducting magnets of unprecedented large size. This facility will allow testing of magnets by vertical insertion in a pressurized liquid helium bath, cooled to a controlled temperature between 4.2 K and 1.9 K. The dimensions of the cryostat will allow testing magnets of up to 2.5 m in length with a maximum diameter of 1.5 m and a mass of 15 tons. To allow for a faster insertion and removal of the magnets and reducing the risk of helium leaks, all cryogenics supply lines are foreseen to remain permanently connected to the cryostat. A specifically designed 100 W heat exchanger is integrated in the cryostat helium vessel for a controlled cooling of the magnet from 4.2 K down to 1.9 K in a 3 m{sup 3} helium bath. This paper describes the cryostat and its main functions, focusing on features specifically developed for this project. The status of the construction and the plans for assembly and installation at CERN are also presented.

Vande Craen, A.; Atieh, S.; Bajko, M.; Benda, V.; Rijk, G. de; Favre, G.; Giloux, C.; Minginette, P.; Parma, V.; Perret, P.; Pirotte, O.; Ramos, D.; Viret, P. [CERN European Organization for Nuclear Research, Meyrin 1211, Geneva 23, CH (Switzerland); Hanzelka, P. [Institute of Scientific Instruments of the ASCR, Kralovopolska 147, 612 64 Brno, CZ (Czech Republic)

2014-01-29T23:59:59.000Z

230

High-intensity positron microprobe at the Thomas Jefferson National Accelerator Facility  

SciTech Connect (OSTI)

We present a conceptual design for a novel continuous wave electron-linac based high-intensity high-brightness slow-positron production source with a projected intensity on the order of 10{sup 10?}e{sup +}/s. Reaching this intensity in our design relies on the transport of positrons (T{sub +} below 600?keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. This design progressed through Monte Carlo optimizations of: electron/positron beam energies and converter target thickness, transport of the e{sup +} beam from the converter to the moderator, extraction of the e{sup +} beam from the magnetic channel, a synchronized raster system, and moderator efficiency calculations. For the extraction of e{sup +} from the magnetic channel, a magnetic field terminator plug prototype has been built and experimental results on the effectiveness of the prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.

Golge, S., E-mail: serkan.golge@nasa.gov; Vlahovic, B. [North Carolina Central University, Durham, North Carolina 27707 (United States); Wojtsekhowski, B. [Jefferson Laboratory, 12000 Jefferson Ave., Newport News, Virginia 23606 (United States)

2014-06-21T23:59:59.000Z

231

IMPACT OF MAGNETIC ENVIRONMENT ON THE GENERATION OF HIGH-ENERGY NEUTRONS AT THE SUN  

E-Print Network [OSTI]

IMPACT OF MAGNETIC ENVIRONMENT ON THE GENERATION OF HIGH-ENERGY NEUTRONS AT THE SUN L. G. KOCHAROV and J. TORSTI Space Research Laboratory, Department of Physics, SF-20014 Turku University, Finland F. TANG and H. ZIRIN Big Bear Solar Observatory, Caltech, Pasadena CA 91125, U.S.A. G. A. KOVALTSOV and I

Usoskin, Ilya G.

232

Biaxial testing of high strength carbon fiber composite cylinders for pulsed magnet reinforcement  

E-Print Network [OSTI]

envelope) of composite materials. This methodology was applied to two different carbon/epoxy basedBiaxial testing of high strength carbon fiber composite cylinders for pulsed magnet reinforcement N A methodology is introduced to test carbon-fiber-reinforced, hoop-wound composite cylinders for their biaxial

Garmestani, Hamid

233

Low Magnetic Reynolds Number Hypersonic MHD Flow Using High Order WENO Schemes  

E-Print Network [OSTI]

Low Magnetic Reynolds Number Hypersonic MHD Flow Using High Order WENO Schemes Jaejin Lee , Manuel diffusion scheme for 3D Navier-Stokes equa- tions. We present results for hypersonic laminar flows around. I. Introduction Hypersonic vehicles generate shocks that can heat the air sufficiently to partially

Zha, Gecheng

234

Design of optimal digital controller for stable super-high-speed permanent-magnet synchronous  

E-Print Network [OSTI]

collaborative design scheme of a super-high-speed permanent-magnet synchronous motor (PMSM) and its digital stability and performance. Since the systematic design of the PMSM can ensure its stability over the full the efficiency and performance of the PMSM. The unique feature in the proposed optimal V/f control is its design

Wu, Thomas

235

National cyber defense high performance computing and analysis : concepts, planning and roadmap.  

SciTech Connect (OSTI)

There is a national cyber dilemma that threatens the very fabric of government, commercial and private use operations worldwide. Much is written about 'what' the problem is, and though the basis for this paper is an assessment of the problem space, we target the 'how' solution space of the wide-area national information infrastructure through the advancement of science, technology, evaluation and analysis with actionable results intended to produce a more secure national information infrastructure and a comprehensive national cyber defense capability. This cybersecurity High Performance Computing (HPC) analysis concepts, planning and roadmap activity was conducted as an assessment of cybersecurity analysis as a fertile area of research and investment for high value cybersecurity wide-area solutions. This report and a related SAND2010-4765 Assessment of Current Cybersecurity Practices in the Public Domain: Cyber Indications and Warnings Domain report are intended to provoke discussion throughout a broad audience about developing a cohesive HPC centric solution to wide-area cybersecurity problems.

Hamlet, Jason R.; Keliiaa, Curtis M.

2010-09-01T23:59:59.000Z

236

Study of the effects of high temperatures during quenches on the performance of a small Nb(3)Sn racetrack magnet  

SciTech Connect (OSTI)

Several high field Nb{sub 3}Sn magnets of different design are under development for future particle accelerators. The high levels of stored energy in these magnets and the high current densities in the conductor can cause high peak temperatures during a quench. The thermal gradients generated in the epoxy-impregnated magnet coils during the fast temperature rise can result in high thermo-mechanical stresses. Considering the sensitivity of Nb{sub 3}Sn to strain and epoxy cracks, it is important to define a maximum acceptable temperature in the coils during a quench which does not cause degradation of the magnet performance. A program was launched at Fermilab to study the effects of thermo-mechanical stress in Nb{sub 3}Sn coils, supported by experiments and by analysis. In collaboration with LBNL, a sub-scaled magnet was built and instrumented to measure the effect of the thermo-mechanical shock during magnet quenches. The magnet consisted of two racetrack coils, assembled in a common coil configuration with a small gap in between. During the test, the magnet reached the maximum field of {approx} 11 T at the short sample current of 9100 A. Temperature excursions up to 400 K did not diminish the magnet quench performance; only after temperature excursions over 430 K, the magnet showed detraining effects, which reduced occasionally the quench current of about 6%. Signs of irreversible degradation (reducing the maximum current of about 3%) appeared only after temperature excursions over 550 K.

Linda Imbasciati et al.

2004-03-23T23:59:59.000Z

237

A design for a high voltage magnet coil ringer test set  

SciTech Connect (OSTI)

By discharging a bank of charged capacitors through a high power SCR switch into an SSC dipole magnet assembly, it is possible to ``ring`` the coil and develop a voltage stress of greater than 50 volts turn-to-turn, thereby verifying the insulation integrity. We will present an overview of the test set design for a 2 kV isolated SCR firing circuit, including safety features, selectable capacitor banks, and digital waveform storage system. Results from testing typical coils and magnets will be included. Possible upgrades are also discussed.

Koska, W. [Fermi National Accelerator Lab., Batavia, IL (United States); Sims, R.E. [Superconducting Super Collider Lab., Dallas, TX (United States)

1992-04-01T23:59:59.000Z

238

A design for a high voltage magnet coil ringer test set  

SciTech Connect (OSTI)

By discharging a bank of charged capacitors through a high power SCR switch into an SSC dipole magnet assembly, it is possible to ring'' the coil and develop a voltage stress of greater than 50 volts turn-to-turn, thereby verifying the insulation integrity. We will present an overview of the test set design for a 2 kV isolated SCR firing circuit, including safety features, selectable capacitor banks, and digital waveform storage system. Results from testing typical coils and magnets will be included. Possible upgrades are also discussed.

Koska, W. (Fermi National Accelerator Lab., Batavia, IL (United States)); Sims, R.E. (Superconducting Super Collider Lab., Dallas, TX (United States))

1992-04-01T23:59:59.000Z

239

Performance of silicon PIN photodiodes at low temperatures and in high magnetic fields  

E-Print Network [OSTI]

The performance of a Si PIN diode (type Hamamatsu S3590-06) as an energy sen- sitive detector operating at cryogenic temperatures (~10 K) and in magnetic fields up to 11 T was investigated, using a 207Bi conversion electron source. It was found that the detector still performs well under these conditions, with small changes in the response function being observed in high magnetic fields, e.g. a 30% to 50% decrease in energy resolution. A GEANT4 Monte Carlo simulation showed that the observed effects are mainly due to the modified trajectories of the electrons due to the influence of the magnetic field, which changes the scattering conditions, rather than to intrinsic changes of the performance of the detector itself.

F. Wauters; I. S. Kraev; M. Tandecki; E. Traykov; S. Van Gorp; D. Zakoucky; N. Severijns

2008-12-31T23:59:59.000Z

240

Cost Effective Open Geometry HTS MRI System amended to BSCCO 2212 Wire for High Field Magnets  

SciTech Connect (OSTI)

The original goal of this Phase II Superconductivity Partnership Initiative project was to build and operate a prototype Magnetic Resonance Imaging (MRI) system using high temperature superconductor (HTS) coils wound from continuously processed dip-coated BSCCO 2212 tape conductor. Using dip-coated tape, the plan was for MRI magnet coils to be wound to fit an established commercial open geometry, 0.2 Tesla permanent magnet system. New electronics and imaging software for a prototype higher field superconducting system would have added significantly to the cost. However, the use of the 0.2 T platform would allow the technical feasibility and the cost issues for HTS systems to be fully established. Also it would establish the energy efficiency and savings of HTS open MRI compared with resistive and permanent magnet systems. The commercial goal was an open geometry HTS MRI running at 0.5 T and 20 K. This low field open magnet was using resistive normal metal conductor and its heat loss was rather high around 15 kolwatts. It was expected that an HTS magnet would dissipate around 1 watt, significantly reduce power consumption. The SPI team assembled to achieve this goal was led by Oxford Instruments, Superconducting Technology (OST), who developed the method of producing commercial dip coated tape. Superconductive Components Inc. (SCI), a leading US supplier of HTS powders, supported the conductor optimization through powder optimization, scaling, and cost reduction. Oxford Magnet Technology (OMT), a joint venture between Oxford Instruments and Siemens and the world’s leading supplier of MRI magnet systems, was involved to design and build the HTS MRI magnet and cryogenics. Siemens Magnetic Resonance Division, a leading developer and supplier of complete MRI imaging systems, was expected to integrate the final system and perform imaging trials. The original MRI demonstration project was ended in July 2004 by mutual consent of Oxford Instruments and Siemens. Between the project start and that date a substantial shift in the MRI marketplace occurred, with rapid growth for systems at higher fields (1.5 T and above) and a consequent decline in the low field market (<1.0 T). While the project aim appeared technically attainable at that time, the conclusion was reached that the system and market economics do not warrant additional investment. The program was redirected to develop BSCCO 2212 multifilament wire development for high field superconducting magnets for NMR and other scientific research upon an agreement between DOE and Oxford Instruments, Superconducting Technology. The work t took place between September, 2004 and the project end in early 2006 was focused on 2212 multifilamentary wire. This report summarizes the technical achievements both in 2212 dip coated for an HTS MRI system and in BSCCO 2212 multifilamentary wire for high field magnets.

Kennth Marken

2006-08-11T23:59:59.000Z

Note: This page contains sample records for the topic "national high magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

296 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 57, NO. 1, JANUARY 2010 Very-High-Speed Slotless Permanent-Magnet  

E-Print Network [OSTI]

cell compressor [9]), machining industry (machine tool [10], micromachining), home appliance industry-High-Speed Slotless Permanent-Magnet Motors: Analytical Modeling, Optimization, Design, and Torque Measurement Methods-high-speed (VHS) slotless permanent-magnet motor design procedure using an analytical model. The model is used

Psaltis, Demetri

242

HIGH-POWER PRECISION CURRENT SUPPLY IST2-1000M FOR ELEMENTS OF MAGNETIC SYSTEMS OF ACCELERATORS AND  

E-Print Network [OSTI]

HIGH-POWER PRECISION CURRENT SUPPLY IST2-1000M FOR ELEMENTS OF MAGNETIC SYSTEMS OF ACCELERATORS. These supplies are intended to power magnetic systems of accelerators, requiring high stability and low ripples for active suppression of pulsation A/s 100 The Supply consists of two boxes (power box PB and box of filters

Kozak, Victor R.

243

The formation of reverse shocks in magnetized high energy density supersonic plasma flows  

SciTech Connect (OSTI)

A new experimental platform was developed, based on the use of supersonic plasma flow from the ablation stage of an inverse wire array z-pinch, for studies of shocks in magnetized high energy density physics plasmas in a well-defined and diagnosable 1-D interaction geometry. The mechanism of flow generation ensures that the plasma flow (Re{sub M}???50, M{sub S}???5, M{sub A}???8, V{sub flow}???100?km/s) has a frozen-in magnetic field at a level sufficient to affect shocks formed by its interaction with obstacles. It is found that in addition to the expected accumulation of stagnated plasma in a thin layer at the surface of a planar obstacle, the presence of the magnetic field leads to the formation of an additional detached density jump in the upstream plasma, at a distance of ?c/?{sub pi} from the obstacle. Analysis of the data obtained with Thomson scattering, interferometry, and local magnetic probes suggests that the sub-shock develops due to the pile-up of the magnetic flux advected by the plasma flow.

Lebedev, S. V., E-mail: s.lebedev@imperial.ac.uk, E-mail: l.suttle10@imperial.ac.uk; Suttle, L.; Swadling, G. F.; Bennett, M.; Bland, S. N.; Burdiak, G. C.; Chittenden, J. P.; Grouchy, P. de; Hall, G. N.; Hare, J. D.; Kalmoni, N.; Niasse, N.; Patankar, S.; Smith, R. A.; Suzuki-Vidal, F. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom)] [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Burgess, D.; Clemens, A. [Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom)] [Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, London E1 4NS (United Kingdom); Ciardi, A. [LERMA, Observatoire de Paris and École Normale Supérieure Université Pierre et Marie Curie, UMR 8112 CNRS, 75231 Paris (France)] [LERMA, Observatoire de Paris and École Normale Supérieure Université Pierre et Marie Curie, UMR 8112 CNRS, 75231 Paris (France); Sheng, L. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom) [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Northwest Institute of Nuclear Technology, Xi'an 710024 (China); Yuan, J. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom) [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China); and others

2014-05-15T23:59:59.000Z

244

The Cyclotron Fundamental Exposed in the High-Field Magnetic Variable V884 Her  

E-Print Network [OSTI]

High-quality phase-resolved optical spectropolarimetry is presented for the magnetic cataclysmic variable V884 Her. The overall circular polarization during active accretion states is low and only slightly variable in the range 5000-8000A. However, the polarization is highly structured with wavelength, showing very broad polarization humps, narrow features that are associated with weak absorption lines in the total spectral flux, and sharp reversals across each major emission line. The polarization reversals arise from Zeeman splitting in the funnel gas in a longitudinal magnetic field B~30kG. The set of narrow, polarized absorption features matches the Zeeman pattern of hydrogen for a nearly uniform magnetic field of B=150MG, indicating that the features are "halo" absorption lines formed in a relatively cool reversing layer above the shock. With this identification, the broad polarization humps centered near 7150A and below 4000A are assigned to cyclotron emission from the fundamental and first harmonic (n=2), respectively. V884 Her is only the second AM Her system known with a field exceeding 100MG, and the first case in which the cyclotron fundamental has been directly observed from a magnetic white dwarf.

G. D. Schmidt; L. Ferrario; D. T. Wickramasinghe; P. S. Smith

2000-12-22T23:59:59.000Z

245

Test Results From The Idaho National Laboratory 15kW High Temperature Electrolysis Test Facility  

SciTech Connect (OSTI)

A 15kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feed-stock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date.

Carl M. Stoots; Keith G. Condie; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

2009-07-01T23:59:59.000Z

246

Development of an Ultra High Frequency Gyrotron with a Pulsed Magnet  

SciTech Connect (OSTI)

An ultra-high frequency gyrotron is being developed as a THz radiation source by using a pulsed magnet. We have achieved the highest field intensity of 20.2 T. High frequency operation at the second harmonic will achieve 1.01 THz; the corresponding cavity mode is TE6,11,1. On the other hand, an ultra-high power gyrotron with a pulsed magnet is also being developed as a millimeter to submillimeter wave radiation source. The gyrotron is a large orbit gyrotron (LOG) using an intense relativistic electron beam (IREB). A pulsed power generator 'ETIGO-IV' is applied for generation of the IREB. A prototype relativistic LOG was constructed for fundamental operation. The output of the LOG will achieve 144 GHz and 9 MW; the corresponding cavity mode is TE1,4,1. Cavities for 2nd and 4th harmonic operations were designed by numerical simulation for achievement of higher frequency. The progress of development for prototype high frequency gyrotrons with pulsed magnets is presented.

Idehara, T.; Kamada, M.; Tsuchiya, H.; Hayashi, T.; Agusu, La; Mitsudo, S.; Ogawa, I. [Research Center for Development of Far Infrared Region, University of Fukui, Bunkyo 3-9-1, Fukui-shi 910-8507 (Japan); Manuilov, V. N. [Research Center for Development of Far Infrared Region, University of Fukui, Bunkyo 3-9-1, Fukui-shi 910-8507 (Japan); Radiophysical Department of Nizhny Novgorod State University, 690005, Gagarin av., 23, Nizhny Novgorod (Russian Federation); Naito, K.; Yuyama, T.; Jiang, W.; Yatsui, K. [Extreme Energy-Density Research Institute, Nagaoka University of Technology, Kamitomioka 1603-1, Nagaoka-shi, Niigata 940-2188 (Japan)

2006-01-03T23:59:59.000Z

247

Soft Magnetic Materials in High-Frequency, High-Power Conversion Applications  

E-Print Network [OSTI]

Voltage DC (HVDC) technologies aim to improve the effi- ciency of power networks and benefit from high

McHenry, Michael E.

248

Effects of intrinsic magnetostriction on tube-topology magnetoelectric sensors with high magnetic field sensitivity  

SciTech Connect (OSTI)

Three quasi-one-dimensional magnetoelectric (ME) magnetic field sensors, each with a different magnetostrictive wire material, were investigated in terms of sensitivity and noise floor. Magnetostrictive Galfenol, iron-cobalt-vanadium, and iron-nickel wires were examined. Sensitivity profiles, hysteresis effects, and noise floor measurements for both optimally biased and zero-biased conditions are presented. The FeNi wire (FN) exhibits high sensitivity (5.36?mV/Oe) at bias fields below 22?Oe and an optimal bias of 10?Oe, whereas FeGa wire (FG) exhibits higher sensitivity (6.89 mW/Oe) at bias fields >22?Oe. The sensor of FeCoV wire (FC) presents relatively low sensitivity (2.12?mV/Oe), due to low magnetostrictive coefficient. Each ME tube-topology sensor demonstrates relatively high sensitivity at zero bias field, which results from a magnetic shape anisotropy and internal strain of the thin magnetostrictive wire.

Gillette, Scott M.; Fitchorov, Trifon; Obi, Ogheneyunume; Chen, Yajie, E-mail: y.chen@neu.edu; Harris, Vincent G. [Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States); Jiang, Liping; Hao, Hongbo; Wu, Shuangxia [Baotou Research Institute of Rare Earths, Baotou, Inner Mongolia 014030 (China)

2014-05-07T23:59:59.000Z

249

Magnetic Field Safety Magnetic Field Safety  

E-Print Network [OSTI]

Magnetic Field Safety Training #12;Magnetic Field Safety Strong Magnetic Fields exist around energized magnets. High magnetic fields alone are a recognized hazard only for personnel with certain medical conditions such as pacemakers, magnetic implants, or embedded shrapnel. In addition, high magnetic

McQuade, D. Tyler

250

Shrink Tube Insulation Apparatus for Rebco Superconducting Tapes for Use in High Field Magnets  

E-Print Network [OSTI]

An increasing number of applications require the use of high temperature superconductors (HTS) such as (RE=Rare Earth) Ba2Cu3O7-x (REBCO) coated conductors [1]. HTS conductors show particularly great potential for high field magnets applications [1] due to their high upper critical fields [2], But several groups have shown that REBCO coated conductors are prone to delamination failure [3] [4] [5]. Under relatively low transverse stress the HTS film separates from the substrate and the conductor degrades [6]. This is problematic due to high transverse stresses that occur in fully epoxy impregnated solenoids wound with this conductor. Application of thin walled heat shrink tubing introduces a weak plane around the conductor, preventing delamination degradation [7]. However, manual application of the shrink tubing is impractical, requiring three operators limited to insulating 100 m lengths or less of REBCO conductor. The high risk of damage to the conductor, also associated with this process, shows the need for...

Whittington, Andrew

251

Determination of the Non-Ideal Response of a High Temperature Tokamak Plasma to a Static External Magnetic Perturbation via  

E-Print Network [OSTI]

that at the other surfaces is rotating. I. INTRODUCTION Tokamak plasmas are highly sensitive to externally generated of "locked" (i.e., non-rotating) magnetic island chains on so-called "ra- tional" magnetic flux that are distributed throughout the bulk of the plasma. In a tokamak equilibrium with a realistic aspect

Fitzpatrick, Richard

252

Physical and magnetic properties of highly aluminum doped strontium ferrite nanoparticles prepared by auto-combustion route  

E-Print Network [OSTI]

Physical and magnetic properties of highly aluminum doped strontium ferrite nanoparticles prepared-Hexaferrite Al doped Sr-Ferrite High Coercivity Ferrite a b s t r a c t Highly Al3þ ion doped nanocrystalline Sr microscope show growth of needle shaped ferrites with high aspect ratio at Al3þ ion content exceeding xZ2. Al

Liu, J. Ping

253

AC transport in p-Ge/GeSi quantum well in high magnetic fields  

SciTech Connect (OSTI)

The contactless surface acoustic wave technique is implemented to probe the high-frequency conductivity of a high-mobility p-Ge/GeSi quantum well structure in the regime of integer quantum Hall effect (IQHE) at temperatures 0.3–5.8 K and magnetic fields up to 18 T. It is shown that, in the IQHE regime at the minima of conductivity, holes are localized and ac conductivity is of hopping nature and can be described within the “two-site” model. The analysis of the temperature and magnetic-field-orientation dependence of the ac conductivity at odd filing factors enables us to determine the effective hole g-factor, |g{sub zz}|?4.5. It is shown that the in-plane component of the magnetic field leads to a decrease in the g-factor as well as increase in the cyclotron mass, which is explained by orbital effects in the complex valence band of germanium.

Drichko, I. L.; Malysh, V. A.; Smirnov, I. Yu.; Golub, L. E.; Tarasenko, S. A. [A.F. Ioffe Physical Technical Institute of Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Suslov, A. V. [National High Magnetic Field Laboratory, Tallahassee, FL 32310 (United States); Mironov, O. A. [Warwick SEMINANO R and D Center, University of Warwick Science Park, Coventry CV4 7EZ (United Kingdom); Kummer, M.; Känel, H. von [Laboratorium für Festkörperphysik ETH Zürich, CH-8093 Zürich (Switzerland)

2014-08-20T23:59:59.000Z

254

The high-foot implosion campaign on the National Ignition Facility  

SciTech Connect (OSTI)

The “High-Foot” platform manipulates the laser pulse-shape coming from the National Ignition Facility laser to create an indirect drive 3-shock implosion that is significantly more robust against instability growth involving the ablator and also modestly reduces implosion convergence ratio. This strategy gives up on theoretical high-gain in an inertial confinement fusion implosion in order to obtain better control of the implosion and bring experimental performance in-line with calculated performance, yet keeps the absolute capsule performance relatively high. In this paper, we will cover the various experimental and theoretical motivations for the high-foot drive as well as cover the experimental results that have come out of the high-foot experimental campaign. At the time of this writing, the high-foot implosion has demonstrated record total deuterium-tritium yields (9.3×10{sup 15}) with low levels of inferred mix, excellent agreement with implosion simulations, fuel energy gains exceeding unity, and evidence for the “bootstrapping” associated with alpha-particle self-heating.

Hurricane, O. A., E-mail: hurricane1@llnl.gov; Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Barrios Garcia, M. A.; Hinkel, D. E.; Berzak Hopkins, L. F.; Kervin, P.; Pape, S. Le; Ma, T.; MacPhee, A. G.; Milovich, J. L.; Moody, J.; Pak, A. E.; Patel, P. K.; Park, H.-S.; Remington, B. A.; Robey, H. F. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); and others

2014-05-15T23:59:59.000Z

255

MAINTAINING HIGH RESOLUTION MASS SPECTROMETRY CAPABILITIES FOR NATIONAL NUCLEAR SECURITY ADMINISTRATION APPLICATIONS  

SciTech Connect (OSTI)

The Department of Energy (DOE) National Nuclear Security Administration (NNSA) has a specialized need for analyzing low mass gas species at very high resolutions. The currently preferred analytical method is electromagnetic sector mass spectrometry. This method allows the NNSA Nuclear Security Enterprise (NSE) to resolve species of similar masses down to acceptable minimum detection limits (MDLs). Some examples of these similar masses are helium-4/deuterium and carbon monoxide/nitrogen. Through the 1980s and 1990s, there were two vendors who supplied and supported these instruments. However, with declining procurements and down turns in the economy, the supply of instruments, service and spare parts from these vendors has become less available, and in some cases, nonexistent. The largest NSE user of this capability is the Savannah River Site (SRS), located near Aiken, South Carolina. The Research and Development Engineering (R&DE) Group in the Savannah River National Laboratory (SRNL) investigated the areas of instrument support that were needed to extend the life cycle of these aging instruments. Their conclusions, as to the focus areas of electromagnetic sector mass spectrometers to address, in order of priority, were electronics, software and hardware. Over the past 3-5 years, the R&DE Group has designed state of the art electronics and software that will allow high resolution legacy mass spectrometers, critical to the NNSA mission, to be operated for the foreseeable future. The funding support for this effort has been from several sources, including the SRS Defense Programs, NNSA Readiness Campaign, Pantex Plant and Sandia National Laboratory. To date, electronics systems have been upgraded on one development system at SRNL, two production systems at Pantex and one production system at Sandia National Laboratory. An NSE working group meets periodically to review strategies going forward. The R&DE Group has also applied their work to the electronics for a Thermal Ionization Mass Spectrometer (TIMS) instrument, which applies a similar mass spectrometric technology for resolving high mass isotopes, such as plutonium and uranium. Due to non-compete clauses for DOE, all work has been performed and applied to instruments which are obsolete and are no longer supported by the original vendor.

Wyrick, S.; Cordaro, J.; Reeves, G.; Mcintosh, J.; Mauldin, C.; Tietze, K.; Varble, D.

2011-06-06T23:59:59.000Z

256

WINTER VOLUME 4 No.WINTER 2007 VOLUME 4 NO. NATIONAL HIGH MAGNETIC FIELD LABORATORY  

E-Print Network [OSTI]

images like those on the front and back of this issue helped Sam Grant and other researchers to compare

Weston, Ken

257

NATIONAL HIGH MAGNETIC FIELD LABORATORY REPORTSWinter EDITION VOLUME 13 N0. 5 2006  

E-Print Network [OSTI]

PPlication to the interaction of Packaging motor With the PolymeraSe comPlex of dSrna BacterioPhage 8 NEWS FROM THE DC FIELD crystal growth program to enhance LAB's materials research efforts 23 Commissioning of 100 Tesla Multi-Shot pushes boundaries of science beyond 80 tesla 24 Cooling power of new dilution refrigerator is world class

Weston, Ken

258

Status and Highlights of Educational Programming Gregory S. Boebinger, National High Magnetic Field Laboratory  

E-Print Network [OSTI]

in Higher Education · REU = 18 students at all three MagLab sites (44% female, 39% African American, 28 in international journals including: The Journal of Women and Minorities in Science and Engineering, the Journal

Weston, Ken

259

Characterization of a high-temperature superconducting conductor on round core cables in magnetic fields up to 20 T  

SciTech Connect (OSTI)

The next generation of high-field magnets that will operate at magnetic fields substantially above 20 T, or at temperatures substantially above 4.2 K, requires high-temperature superconductors (HTS). Conductor on round core (CORC) cables, in which RE-Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} (RE = rare earth) (REBCO) coated conductors are wound in a helical fashion on a fl?exible core, are a practical and versatile HTS cable option for low-inductance, high-field magnets. We performed the first tests of CORC magnet cables in liquid helium in magnetic fields of up to 20 T. A record critical current I{sub c} of 5021 A was measured at 4.2 K and 19 T. In a cable with an outer diameter of 7.5 mm, this value corresponds to an engineering current density J{sub e} of 114 A mm{sup -2} , the highest J{sub e} ever reported for a superconducting cable at such high magnetic fields. Additionally, the first magnet wound from an HTS cable was constructed from a 6 m-long CORC cable. The 12-turn, double-layer magnet had an inner diameter of 9 cm and was tested in a magnetic field of 20 T, at which it had an I{sub c} of 1966 A. The cables were quenched repetitively without degradation during the measurements, demonstrating the feasibility of HTS CORC cables for use in high-field magnet applications.

van der Laan, Danko [Advanced Conductor Technologies; Noyes, Patrick [National High Magnetic Field Laboratory; Miller, George [National High Magnetic Field Laboratory; Weijers, Hubertus [National High Magnetic Field Laboratory; Willering, Gerard [CERN

2013-02-13T23:59:59.000Z

260

THE HIGH-TEMPERATURE ELECTROLYSIS PROGRAM AT THE IDAHO NATIONAL LABORATORY: OBSERVATIONS ON PERFORMANCE DEGRADATION  

SciTech Connect (OSTI)

This paper presents an overview of the high-temperature electrolysis research and development program at the Idaho National Laboratory, with selected observations of electrolysis cell degradation at the single-cell, small stack and large facility scales. The objective of the INL program is to address the technical and scale-up issues associated with the implementation of solid-oxide electrolysis cell technology for hydrogen production from steam. In the envisioned application, high-temperature electrolysis would be coupled to an advanced nuclear reactor for efficient large-scale non-fossil non-greenhouse-gas hydrogen production. The program supports a broad range of activities including small bench-scale experiments, larger scale technology demonstrations, detailed computational fluid dynamic modeling, and system modeling. A summary of the current status of these activities and future plans will be provided, with a focus on the problem of cell and stack degradation.

J. E. O'Brien; C. M. Stoots; J. S. Herring; K. G. Condie; G. K. Housley

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "national high magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

High Temperature Solid-Oxide Electrolyzer 2500 Hour Test Results At The Idaho National Laboratory  

SciTech Connect (OSTI)

The Idaho National Laboratory (INL) has been developing the concept of using solid oxide fuel cells as electrolyzers for large-scale, high-temperature (efficient), hydrogen production. This program is sponsored by the U.S. Department of Energy under the Nuclear Hydrogen Initiative. Utilizing a fuel cell as an electrolyzer introduces some inherent differences in cell operating conditions. In particular, the performance of fuel cells operated as electrolyzers degrades with time faster. This issue of electrolyzer cell and stack performance degradation over time has been identified as a major barrier to technology development. Consequently, the INL has been working together with Ceramatec, Inc. (Salt Lake City, Utah) to improve the long-term performance of high temperature electrolyzers. As part of this research partnership, the INL conducted a 2500 hour test of a Ceramatec designed and produced stack operated in the electrolysis mode. This paper will provide a summary of experimental results to date for this ongoing test.

Carl Stoots; James O'Brien; Stephen Herring; Keith Condie; Lisa Moore-McAteer; Joseph J. Hartvigsen; Dennis Larsen

2009-11-01T23:59:59.000Z

262

Dynamic Jiles-Atherton Model for Determining the Magnetic Power Loss at High Frequency in Permanent Magnet Machines  

E-Print Network [OSTI]

BH curves at frequencies up to several kilohertz. B. Application of the Dynamic Jiles-Atherton Model to the Magnetic Loss of a PMSM (BLDC motor) According to Guo’s review paper, empirical formulae have been derived to model the magnetic properties... of the conventional time stepped FEM [11], [26], [27] to utilize the proposed dynamic Jiles-Atherton model to estimate the magnetic power loss in a PMSM. More mathematical work needs to be done to make the dynamic Jiles-Atherton model and time stepped FEM...

Du, Ruoyang; Student Member; IEEE; Robertson, Paul

2014-12-18T23:59:59.000Z

263

High-resolution spectra of solar magnetic features. I. Analysis of penumbral fine structure  

SciTech Connect (OSTI)

The Swedish Vacuum Telescope on La Palma was used to obtain spectra of the magnetic-sensitive Fe I 630.25 nm line under conditions of exceptional angular resolution (0.32 arcsec) and high spectral resolution (FWHM 2.5 pm). Simultaneous 0.02 s CCD exposures of both the spectrum and the slit-jaw image effectively 'freeze' the atmospheric seeing motions and permit unambiguous identification of the spectra of the various penumbral structures. These spectra reveal the magnetic field strength in penumbral filaments through an intensity fit of the Zeeman splitting of this line. The observations show that: (1) the field strength varies from about 2100 G near the umbra-penumbra boundary to about 900 G at the outer edge of the penumbra, (2) the observed fluctuation of penumbral magnetic field is much less dramatic than the fluctuation in intensity, (3) there is a suggestion of a rapid change in field inclination between some light and dark filaments near the edge of the penumbra, and (4) there is no obvious correlation between Doppler shift (in part due to the Evershed flow) and filament intensity. 43 refs.

Lites, B.W.; Skumanich, A.; Scharmer, G.B. (High Altitude Observatory, Boulder, CO (USA) Kungliga Svenska Vetenskapsakademien, Stockholm (Sweden))

1990-05-01T23:59:59.000Z

264

IEFIT - An Interactive Approach to High Temperature Fusion Plasma Magnetic Equilibrium Fitting  

SciTech Connect (OSTI)

An interactive IDL based wrapper, IEFIT, has been created for the magnetic equilibrium reconstruction code EFIT written in FORTRAN. It allows high temperature fusion physicists to rapidly optimize a plasma equilibrium reconstruction by eliminating the unnecessarily repeated initialization in the conventional approach along with the immediate display of the fitting results of each input variation. It uses a new IDL based graphics package, GaPlotObj, developed in cooperation with Fanning Software Consulting, that provides a unified interface with great flexibility in presenting and analyzing scientific data. The overall interactivity reduces the process to minutes from the usual hours.

Peng, Q.; Schachter, J.; Schissel, D.P.; Lao, L.L.

1999-06-01T23:59:59.000Z

265

High performance electrical, magnetic, electromagnetic and electrooptical devices enabled by three dimensionally ordered nanodots and nanorods  

DOE Patents [OSTI]

Novel articles and methods to fabricate same with self-assembled nanodots and/or nanorods of a single or multicomponent material within another single or multicomponent material for use in electrical, electronic, magnetic, electromagnetic and electrooptical devices is disclosed. Self-assembled nanodots and/or nanorods are ordered arrays wherein ordering occurs due to strain minimization during growth of the materials. A simple method to accomplish this when depositing in-situ films is also disclosed. Device applications of resulting materials are in areas of superconductivity, photovoltaics, ferroelectrics, magnetoresistance, high density storage, solid state lighting, non-volatile memory, photoluminescence, thermoelectrics and in quantum dot lasers.

Goyal, Amit (Knoxville, TN), Kang; Sukill (Knoxville, TN)

2012-02-21T23:59:59.000Z

266

Impact of fluorine based reactive chemistry on structure and properties of high moment magnetic material  

SciTech Connect (OSTI)

The impact of the fluorine-based reactive ion etch (RIE) process on the structural, electrical, and magnetic properties of NiFe and CoNiFe-plated materials was investigated. Several techniques, including X-ray fluorescence, 4-point-probe, BH looper, transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS), were utilized to characterize both bulk film properties such as thickness, average composition, Rs, ?, Bs, Ms, and surface magnetic “dead” layers' properties such as thickness and element concentration. Experimental data showed that the majority of Rs and Bs changes of these bulk films were due to thickness reduction during exposure to the RIE process. ? and Ms change after taking thickness reduction into account were negligible. The composition of the bulk films, which were not sensitive to surface magnetic dead layers with nano-meter scale, showed minimum change as well. It was found by TEM and EELS analysis that although both before and after RIE there were magnetic dead layers on the top surface of these materials, the thickness and element concentration of the layers were quite different. Prior to RIE, dead layer was actually native oxidation layers (about 2?nm thick), while after RIE dead layer consisted of two sub-layers that were about 6?nm thick in total. Sub-layer on the top was native oxidation layer, while the bottom layer was RIE “damaged” layer with very high fluorine concentration. Two in-situ RIE approaches were also proposed and tested to remove such damaged sub-layers.

Yang, Xiaoyu, E-mail: xiaoyu.yang@wdc.com; Chen, Lifan; Han, Hongmei; Fu, Lianfeng; Sun, Ming; Liu, Feng; Zhang, Jinqiu [Western Digital Corporation, 44100 Osgood Road, Fremont, California 94539 (United States)

2014-05-07T23:59:59.000Z

267

Remedial investigation of the High-Explosives (HE) Process Area, Lawrence Livermore National Laboratory Site 300  

SciTech Connect (OSTI)

This report presents the results of a Remedial Investigation (RI) to define the extent of high explosives (HE) compounds and volatile organic compounds (VOCs) found in the soil, rocks, and ground water of the HE Process Area of Lawrence Livermore National Laboratory's (LLNL) Site 300 Facility. The report evaluates potential public health environmental risks associated with these compounds. Hydrogeologic information available before February 15, 1990, is included; however, chemical analyses and water-level data are reported through March 1990. This report is intended to assist the California Regional Water Quality Control Board (RWQCB)--Central Valley Region and the US Environmental Protection Agency (EPA) in evaluating the extent of environmental contamination of the LLNL HE Process Area and ultimately in designing remedial actions. 90 refs., 20 figs., 7 tabs.

Crow, N.B.; Lamarre, A.L.

1990-08-01T23:59:59.000Z

268

High Level Waste Tank Closure Project at the Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

The Department of Energy, Idaho Operations Office (DOE-ID) is making preparations to close two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 300,000 gallon tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). The INTEC Tank Farm Facility (TFF) Closure sequence consists of multiple steps to be accomplished through the existing tank riser access points. Currently, the tank risers contain steam and process waste lines associated with the steam jets, corrosion coupons, and liquid level indicators. As necessary, this equipment will be removed from the risers to allow adequate space for closure equipment and activities.

Wessman, D. L.; Quigley, K. D.

2002-02-27T23:59:59.000Z

269

Thermal effect on magnetic parameters of high-coercivity cobalt ferrite  

SciTech Connect (OSTI)

We prepared very high-coercivity cobalt ferrite nanoparticles synthesized by a combustion method and using short-time high-energy mechanical milling to increase strain and the structural defects density. The coercivity (H{sub C}) of the milled sample reached 3.75 kOe—a value almost five times higher than that obtained for the non-milled material (0.76 kOe). To investigate the effect of the temperature on the magnetic behavior of the milled sample, we performed a thermal treatment on the milled sample at 300, 400, and 600?°C for 30 and 180?min. We analyzed the changes in the magnetic behavior of the nanoparticles due to the thermal treatment using the hysteresis curves, Williamson-Hall analysis, and transmission electron microscopy. The thermal treatment at 600?°C causes decreases in the microstructural strain and density of structural defects resulting in a significant decrease in H{sub C}. Furthermore, this thermal treatment increases the size of the nanoparticles and, as a consequence, there is a substantial increase in the saturation magnetization (M{sub S}). The H{sub C} of the samples treated at 600?°C for 30 and 180?min were 2.24 and 1.93 kOe, respectively, and the M{sub S} of these same samples increased from 57?emu/g to 66 and 70?emu/g, respectively. The H{sub C} and the M{sub S} are less affected by the thermal treatment at 300 and 400?°C.

Chagas, E. F., E-mail: efchagas@fisica.ufmt.br; Ponce, A. S.; Prado, R. J.; Silva, G. M. [Instituto de Física, Universidade Federal de Mato Grosso, 78060-900 Cuiabá-MT (Brazil); Bettini, J. [Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, 13083-970 Campinas (Brazil); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150 Urca. Rio de Janeiro (Brazil)

2014-07-21T23:59:59.000Z

270

RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: STACK TESTS  

SciTech Connect (OSTI)

High temperature steam electrolysis is a promising technology for efficient sustainable large-scale hydrogen production. Solid oxide electrolysis cells (SOECs) are able to utilize high temperature heat and electric power from advanced high-temperature nuclear reactors or renewable sources to generate carbon-free hydrogen at large scale. However, long term durability of SOECs needs to be improved significantly before commercialization of this technology. A degradation rate of 1%/khr or lower is proposed as a threshold value for commercialization of this technology. Solid oxide electrolysis stack tests have been conducted at Idaho National Laboratory to demonstrate recent improvements in long-term durability of SOECs. Electrolytesupported and electrode-supported SOEC stacks were provided by Ceramatec Inc., Materials and Systems Research Inc. (MSRI), and Saint Gobain Advanced Materials (St. Gobain), respectively for these tests. Long-term durability tests were generally operated for a duration of 1000 hours or more. Stack tests based on technology developed at Ceramatec and MSRI have shown significant improvement in durability in the electrolysis mode. Long-term degradation rates of 3.2%/khr and 4.6%/khr were observed for MSRI and Ceramatec stacks, respectively. One recent Ceramatec stack even showed negative degradation (performance improvement) over 1900 hours of operation. A three-cell short stack provided by St. Gobain, however, showed rapid degradation in the electrolysis mode. Improvements on electrode materials, interconnect coatings, and electrolyteelectrode interface microstructures contribute to better durability of SOEC stacks.

X, Zhang; J. E. O'Brien; R. C. O'Brien; J. J. Hartvigsen; G. Tao; N. Petigny

2012-07-01T23:59:59.000Z

271

Couples Magnetic and Structural Transitions in High-Purity Dy and Gd5SbxGe4-x  

SciTech Connect (OSTI)

Magnetic materials exhibiting magnetic phase transitions simultaneously with structural rearrangements of their crystal lattices hold a promise for numerous applications including magnetic refrigeration, magnetomechanical devices and sensors. We undertook a detailed study of a single crystal of dysprosium metal, which is a classical example of a system where magnetic and crystallographic sublattices can be either coupled or decoupled from one another. Magnetocaloric effect, magnetization, ac magnetic susceptibility, and heat capacity of high purity single crystals of dysprosium have been investigated over broad temperature and magnetic field intervals with the magnetic field vector parallel to either the a- or c-axes of the crystal. Notable differences in the behavior of the physical properties when compared to Dy samples studied in the past have been observed between 110 K and 125 K, and between 178 K and {approx}210 K. A plausible mechanism based on the formation of antiferromagnetic clusters in the impure Dy has been suggested in order to explain the reduction of the magnetocaloric effect in the vicinity of the Neel point. Experimental and theoretical investigations of the influence of commensurability effects on the magnetic phase diagram and the value of the magnetocaloric effect have been conducted. The presence of newly found anomalies in the physical properties has been considered as evidence of previously unreported states of Dy. The refined magnetic phase diagram of dysprosium with the magnetic field vector parallel to the a-axis of a crystal has been constructed and discussed. The magnetic and crystallographic properties of Gd{sub 5}Sb{sub x}Ge{sub 4-x} pseudo-binary system were studied by x-ray diffraction (at room temperature), heat capacity, ac-magnetic susceptibility, and magnetization in the temperature interval 5-320 K in magnetic fields up to 100 kOe. The magnetic properties of three composition (x = 0.5, 1,2) were examined in detail. The Gd{sub 5}Sb{sub 2}Ge{sub 2} compound that adopts Tm{sub 5}Sb{sub 2}Si{sub 2}-type of structure (space group is Cmca), shows a second order FM-PM transition at 200 K, whereas Gd{sub 5}Sb{sub x}Ge{sub 4-x} compounds for x = 0.5 and x = 1 (Sm{sub 5}Ge{sub 4}-type of structure, space group is Pnma) exhibit first order phase transformations at 45 K and 37 K, respectively.

Alexander S. Chernyshov

2006-08-09T23:59:59.000Z

272

High resolution simulations of ignition capsule designs for the National Ignition Facility  

SciTech Connect (OSTI)

Ignition capsule designs for the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)] have continued to evolve in light of improved physical data inputs, improving simulation techniques, and - most recently - experimental data from a growing number of NIF sub-ignition experiments. This paper summarizes a number of recent changes to the cryogenic capsule design and some of our latest techniques in simulating its performance. Specifically, recent experimental results indicated harder x-ray drive spectra in NIF hohlraums than were predicted and used in previous capsule optimization studies. To accommodate this harder drive spectrum, a series of high-resolution 2-D simulations, resolving Legendre mode numbers as high as two thousand, were run and the germanium dopant concentration and ablator shell thicknesses re-optimized accordingly. Simultaneously, the possibility of cooperative or nonlinear interaction between neighboring ablator surface defects has motivated a series of fully 3-D simulations run with the massively parallel HYDRA code. These last simulations include perturbations seeded on all capsule interfaces and can use actual measured shell surfaces as initial conditions. 3-D simulations resolving Legendre modes up to two hundred on large capsule sectors have run through ignition and burn, and higher resolution simulations resolving as high as mode twelve hundred have been run to benchmark high-resolution 2-D runs. Finally, highly resolved 3-D simulations have also been run of the jet-type perturbation caused by the fill tube fitted to the capsule. These 3-D simulations compare well with the more typical 2-D simulations used in assessing the fill tube's impact on ignition. Coupled with the latest experimental inputs from NIF, our improving simulation capability yields a fuller and more accurate picture of NIF ignition capsule performance.

Clark, D S; Haan, S W; Cook, A W; Edwards, M J; Hammel, B A; Koning, J M; Marinak, M M

2011-02-17T23:59:59.000Z

273

Optical pumping and spectroscopy of Cs vapor at high magnetic field  

SciTech Connect (OSTI)

We have measured changes in the ground-state populations of Cs vapor induced by optical pumping at high magnetic field. The 2.7-T field of our experiments is strong enough to decouple the nuclear and electronic spins, allowing us to independently measure each population. The spatial dependence of the Cs populations in small amounts of buffer gas obeys a simple coupled diffusion model and the relative populations reveal the details of relaxation within the vapor cell. Optical pumping can produce high nuclear polarization in the Cs vapor due to perturbations of the hyperfine interaction during collisions with buffer-gas particles and depending on the pumping transition, radiation trapping can strongly influence the electronic and nuclear polarizations in the vapor.

Olsen, B. A.; Patton, B.; Jau, Y.-Y.; Happer, W. [Joseph Henry Laboratory, Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States)

2011-12-15T23:59:59.000Z

274

Mode conversion and absorption of fast waves at high ion cyclotron harmonics in inhomogeneous magnetic fields  

SciTech Connect (OSTI)

The propagation and absorption of high harmonic fast waves is of interest for non-inductive current drives in fusion experiments. The fast wave can be coupled with the ion Bernstein wave that propagates in the high magnetic field side of an ion cyclotron harmonic resonance layer. This coupling and the absorption are analyzed using the hot plasma dispersion relation and a wave equation that was converted from an approximate dispersion relation for the case where ?{sub i}=k{sub ?}{sup 2}?{sub i}{sup 2}/2?1 (where k{sub ?} is the perpendicular wave number and ?{sub i} is the ion Larmor radius). It is found that both reflection and conversion may occur near the harmonic resonance layer but that they decrease rapidly, giving rise to a sharp increase in the absorption as the parallel wave number increases.

Cho, Suwon, E-mail: swcho@kgu.ac.kr [Department of Physics, Kyonggi University, Suwon, Kyonggi-Do 443-760 (Korea, Republic of)] [Department of Physics, Kyonggi University, Suwon, Kyonggi-Do 443-760 (Korea, Republic of); Kwak, Jong-Gu [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of)] [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of)

2014-04-15T23:59:59.000Z

275

A compact bellows-driven diamond anvil cell for high-pressure, low-temperature magnetic measurements  

SciTech Connect (OSTI)

We present the design of an efficient bellows-controlled diamond anvil cell that is optimized for use inside the bores of high-field superconducting magnets in helium-3 cryostats, dilution refrigerators, and commercial physical property measurement systems. Design of this non-magnetic pressure cell focuses on in situ pressure tuning and measurement by means of a helium-filled bellows actuator and fiber-coupled ruby fluorescence spectroscopy, respectively. We demonstrate the utility of this pressure cell with ac susceptibility measurements of superconducting, ferromagnetic, and antiferromagnetic phase transitions to pressures exceeding 8 GPa. This cell provides an opportunity to probe charge and magnetic order continuously and with high resolution in the three-dimensional Magnetic Field–Pressure–Temperature parameter space.

Feng, Yejun [The Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States) [The Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); The James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637 (United States); Silevitch, D. M.; Rosenbaum, T. F. [The James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637 (United States)] [The James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637 (United States)

2014-03-15T23:59:59.000Z

276

Design and commissioning of a high magnetic field muon spin relaxation spectrometer at the ISIS pulsed neutron and muon source  

SciTech Connect (OSTI)

The high magnetic field (HiFi) muon instrument at the ISIS pulsed neutron and muon source is a state-of-the-art spectrometer designed to provide applied magnetic fields up to 5 T for muon studies of condensed matter and molecular systems. The spectrometer is optimised for time-differential muon spin relaxation studies at a pulsed muon source. We describe the challenges involved in its design and construction, detailing, in particular, the magnet and detector performance. Commissioning experiments have been conducted and the results are presented to demonstrate the scientific capabilities of the new instrument.

Lord, J. S.; McKenzie, I.; Baker, P. J.; Cottrell, S. P.; Giblin, S. R.; Hillier, A. D.; Holsman, B. H.; King, P. J. C.; Nightingale, J. B.; Pratt, F. L.; Rhodes, N. J. [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX (United Kingdom); Blundell, S. J.; Lancaster, T. [Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); Good, J.; Mitchell, R.; Owczarkowski, M.; Poli, S. [Cryogenic Limited, 30 Acton Park Industrial Estate, The Vale, Acton, London W3 7QE (United Kingdom); Scheuermann, R. [Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Salman, Z. [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Oxon OX11 0QX (United Kingdom); Clarendon Laboratory, Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom)

2011-07-15T23:59:59.000Z

277

Direct X-B mode conversion for high-? national spherical torus experiment in nonlinear regime  

SciTech Connect (OSTI)

Electron Bernstein wave (EBW) can be effective for heating and driving currents in spherical tokamak plasmas. Power can be coupled to EBW via mode conversion of the extraordinary (X) mode wave. The most common and successful approach to study the conditions for optimized mode conversion to EBW was evaluated analytically and numerically using a cold plasma model and an approximate kinetic model. The major drawback in using radio frequency waves was the lack of continuous wave sources at very high frequencies (above the electron plasma frequency), which has been addressed. A future milestone is to approach high power regime, where the nonlinear effects become significant, exceeding the limits of validity for present linear theory. Therefore, one appropriate tool would be particle in cell (PIC) simulation. The PIC method retains most of the nonlinear physics without approximations. In this work, we study the direct X-B mode conversion process stages using PIC method for incident wave frequency f{sub 0}?=?15?GHz, and maximum amplitude E{sub 0}?=?10{sup 5?}V/m in the national spherical torus experiment (NSTX). The modelling shows a considerable reduction in X-B mode conversion efficiency, C{sub modelling}?=?0.43, due to the presence of nonlinearities. Comparison of system properties to the linear state reveals predominant nonlinear effects; EBW wavelength and group velocity in comparison with linear regime exhibit an increment around ?36% and 17%, respectively.

Ali Asgarian, M., E-mail: maliasgarian@ph.iut.ac.ir, E-mail: maa@msu.edu [Physics Department, Isfahan University of Technology, Isfahan 84156 (Iran, Islamic Republic of); Department of Electrical and Computer Engineering, Michigan State University, Michigan 48824-1226 (United States); Parvazian, A.; Abbasi, M. [Physics Department, Isfahan University of Technology, Isfahan 84156 (Iran, Islamic Republic of); Verboncoeur, J. P. [Department of Electrical and Computer Engineering, Michigan State University, Michigan 48824-1226 (United States)

2014-09-15T23:59:59.000Z

278

Magnetic lensing of extremely high energy cosmic rays in a galactic wind  

E-Print Network [OSTI]

We show that in the model of Galactic magnetic wind recently proposed to explain the extremely high energy (EHE) cosmic rays so far observed as originating from a single source (M87 in the Virgo cluster), the magnetic field strongly magnifies the fluxes and produces multiple images of the source. The apparent position on Earth of the principal image moves, for decreasing energies, towards the galactic south. It is typically amplified by an order of magnitude at $E/Z\\sim 2\\times 10^{20}$ eV, but becomes strongly demagnified below $10^{20}$ eV. At energies below $E/Z\\sim 1.3\\times 10^{20}$ eV, all events in the northern galactic hemisphere are due to secondary images, which have huge amplifications ($>10^2$). This model would imply strong asymmetries between the north and south galactic hemispheres, such as a (latitude dependent) upper cut-off value below $2\\times 10^{20}$ eV for CR protons arriving to the south and lower fluxes in the south than in the north above $10^{20}$ eV. The large resulting magnifications reduce the power requirements on the source, but the model needs a significant tunning between the direction to the source and the symmetry axis of the wind. If more modest magnetic field strengths were assumed, a scenario in which the observed EHE events are heavier nuclei whose flux is strongly lensed becomes also plausible and would predict that a transition from a light composition to a heavier one could take place at the highest energies.

Diego Harari; Silvia Mollerach; Esteban Roulet

2000-05-24T23:59:59.000Z

279

Feasibility study of Nb3Al Rutherford cable for high field accelerator magnet application  

SciTech Connect (OSTI)

Feasibility study of Cu stabilized Nb{sub 3}Al strand and Rutherford cable for the application to high field accelerator magnets are being done at Fermilab in collaboration with NIMS. The Nb{sub 3}Al strand, which was developed and manufactured at NIMS in Japan, has a non-copper Jc of about 844 A/mm{sup 2} at 15 Tesla at 4.2 K, a copper content of 50%, and filament size of about 50 microns. Rutherford cables with 27 Nb{sub 3}Al strands of 1.03 mm diameter were fabricated and tested. Quench tests on a short cable were done to study its stability with only its self field, utilizing a high current transformer. A pair of 2 meter long Nb{sub 3}Al cables was tested extensively at CERN at 4.3 and 1.9 K up to 11 Tesla including its self field with a high transport current of 20.2 kA. In the low field test we observed instability near splices and in the central region. This is related to the flux-jump like behavior, because of excessive amount of Nb in the Nb{sub 3}Al strand. There is possibility that the Nb in Nb{sub 3}Al can cause instability below 2 Tesla field regions. We need further investigation on this problem. Above 8 Tesla, we observed quenches near the critical surface at fast ramp rate from 1000 to 3000 A/sec, with quench velocity over 100 m/sec. A small racetrack magnet was made using a 14 m of Rutherford cable and successfully tested up to 21.8 kA, corresponding to 8.7 T.

Yamada, R.; /Fermilab; Kikuchi, A.; /Tsukuba Magnet Lab.; Ambrosio, G.; Andreev, N.; Barzi, E.; Cooper, C.; Feher, S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; /Fermilab; Takeuchi, T.; /Tsukuba Magnet Lab.; Tartaglia, M.; Turrioni, D.; /Fermilab; Verweij, A.P.; /CERN; Wake, M.; Willering, G; /Tsukuba Magnet Lab.; Zlobin, A.V.; /Fermilab

2006-08-01T23:59:59.000Z

280

High-precision description and new properties of a spin-1 particle in a magnetic field  

E-Print Network [OSTI]

The exact Foldy-Wouthuysen Hamiltonian is derived for a pointlike spin-1 particle with a normal magnetic moment in a nonuniform magnetic field. For a uniform magnetic field, it is exactly separated into terms linear and quadratic in spin. New unexpected properties of a particle with an anomalous magnetic moment are found. Spin projections of a particle moving in a uniform magnetic field are not integer and the tensor polarization is asymmetric in the plane orthogonal to the field. Previously described spin-tensor effects caused by the tensor magnetic polarizability exist not only for nuclei but also for pointlike particles.

Alexander J. Silenko

2014-06-09T23:59:59.000Z

Note: This page contains sample records for the topic "national high magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Heating of ions by high frequency electromagnetic waves in magnetized plasmas  

SciTech Connect (OSTI)

The heating of ions by high frequency electrostatic waves in magnetically confined plasmas has been a paradigm for studying nonlinear wave-particle interactions. The frequency of the waves is assumed to be much higher than the ion cyclotron frequency and the waves are taken to propagate across the magnetic field. In fusion type plasmas, electrostatic waves, like the lower hybrid wave, cannot access the core of the plasma. That is a domain for high harmonic fast waves or electron cyclotron waves—these are primarily electromagnetic waves. Previous studies on heating of ions by two or more electrostatic waves are extended to two electromagnetic waves that propagate directly across the confining magnetic field. While the ratio of the frequency of each wave to the ion cyclotron frequency is large, the frequency difference is assumed to be near the ion cyclotron frequency. The nonlinear wave-particle interaction is studied analytically using a two time-scale canonical perturbation theory. The theory elucidates the effects of various parameters on the gain in energy by the ions—parameters such as the amplitudes and polarizations of the waves, the ratio of the wave frequencies to the cyclotron frequency, the difference in the frequency of the two waves, and the wave numbers associated with the waves. For example, the ratio of the phase velocity of the envelope formed by the two waves to the phase velocity of the carrier wave is important for energization of ions. For a positive ratio, the energy range is much larger than for a negative ratio. So waves like the lower hybrid waves will impart very little energy to ions. The theoretical results are found to be in good agreement with numerical simulations of the exact dynamical equations. The analytical results are used to construct mapping equations, simplifying the derivation of the motion of ions, which are, subsequently, used to follow the evolution of an ion distribution function. The heating of ions can then be properly quantified in terms of the wave parameters and can be conveniently used to find ideal conditions needed to heat ions by high frequency electromagnetic waves.

Zestanakis, P. A.; Kominis, Y.; Hizanidis, K. [School of Electrical and Computer Engineering, National Technical University of Athens, Association EURATOM-Hellenic Republic, Zographou GR-15773 (Greece)] [School of Electrical and Computer Engineering, National Technical University of Athens, Association EURATOM-Hellenic Republic, Zographou GR-15773 (Greece); Ram, A. K. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)] [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

2013-07-15T23:59:59.000Z

282

Progress in High-Level Waste Tank Cleaning at the Idaho National Environmental and Engineering Laboratory  

SciTech Connect (OSTI)

The Department of Energy Idaho Operations Office (DOE-ID) is making preparations to close two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy (DOE) orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 300,000 gallon tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). Design, development, and deployment of a remotely operated tank cleaning system were completed in August 2001. The system incorporates many commercially available components, which have been adapted for application in cleaning high-level waste tanks. The system also uses existing waste transfer technology (steam-jets) to remove tank heel solids from the tank bottoms during the cleaning operations. By using this existing transfer system and commercially available equipment, the cost of developing custom designed cleaning equipment can be avoided. Remotely operated directional spray nozzles, automatic rotating wash balls, video monitoring equipment, decontamination spray-rings, and tank specific access interface devices have been integrated to provide a system that efficiently cleans tank walls and heel solids in an acidic, radioactive environment. This system is also compliant with operational and safety performance requirements at INTEC. Through the deployment of the tank cleaning system, the INEEL High Level Waste Program has demonstrated the capability to clean tanks to meet RCRA clean closure standards and DOE closure performance measures. The tank cleaning system deployed at the INTEC offers unique advantages over other approaches evaluated at the INEEL and throughout the DOE Complex. The system's ability to agitate and homogenize the tank heel sludge will simplify verification-sampling techniques and reduce the total quantity of samples required to demonstrate compliance with the performance standards. This will reduce tank closure budget requirements and improve closure-planning schedules.

Lockie, K. A.; McNaught, W. B.

2002-02-26T23:59:59.000Z

283

Competition between cotunneling, Kondo effect, and direct tunneling in discontinuous high-anisotropy magnetic tunnel junctions  

E-Print Network [OSTI]

The transition between Kondo and Coulomb blockade effects in discontinuous double magnetic tunnel junctions is explored as a function of the size of the CoPt magnetic clusters embedded between AlO[subscript x] tunnel ...

Ciudad, David

284

Investigation of a high impedance magnetically insulated transmission line oscillator with hollow load  

SciTech Connect (OSTI)

A novel high-impedance magnetically insulated transmission line oscillator (MILO) with greatly restrained power deposition on the anode has been investigated. Methods to increase the MILO impedance and decrease the anode current are discussed. A MILO with impedance of 30 {Omega} and power conversion efficiency of 25% is presented by particle-in-cell simulations. Compared with the previous MILO in our lab, the anode current of the proposed MILO is reduced about 50%, the power conversion efficiency doubles, and the power deposition on anode is reduced nearly one half. Furthermore, considerations for reducing the power deposition on load have also been carried out in MILO design, and the load current is reduced to 4.6 kA, only 17% of the total anode current. Finally, a hollow load was introduced to reduce the power deposition density on the load, without decreasing the power conversion efficiency.

Zhou Heng; Shu Ting; Li Zhiqiang [College of Opto-electric Science and Engineering, National University of Defense Technology, Hunan 410073 (China)

2012-09-15T23:59:59.000Z

285

Plasma Diagnostics in High-Resolution X-ray Spectra of Magnetic Cataclysmic Variables  

E-Print Network [OSTI]

Using the Chandra HETG spectrum of EX Hya as an example, we discuss some of the plasma diagnostics available in high-resolution X-ray spectra of magnetic cataclysmic variables. Specifically, for conditions appropriate to collisional ionization equilibrium plasmas, we discuss the temperature dependence of the H- to He-like line intensity ratios and the density and photoexcitation dependence of the He-like R line ratios and the Fe XVII I(17.10 A)/I(17.05 A) line ratio. We show that the plasma temperature in EX Hya spans the range from ~ 0.5 to ~ 10 keV and that the plasma density n > 2E14 cm^{-3}, orders of magnitude greater than that observed in the Sun or other late-type stars.

Christopher W. Mauche

2001-10-09T23:59:59.000Z

286

Thermal and high magnetic field treatment of materials and associated apparatus  

DOE Patents [OSTI]

An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.

Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail

2010-06-29T23:59:59.000Z

287

Thermal and high magnetic field treatment of materials and associated apparatus  

DOE Patents [OSTI]

An apparatus and method for altering characteristics, such as can include structural, magnetic, electrical, optical or acoustical characteristics, of an electrically-conductive workpiece utilizes a magnetic field within which the workpiece is positionable and schemes for thermally treating the workpiece by heating or cooling techniques in conjunction with the generated magnetic field so that the characteristics of the workpiece are effected by both the generated magnetic field and the thermal treatment of the workpiece.

Kisner, Roger A.; Wilgen, John B.; Ludtka, Gerard M.; Jaramillo, Roger A.; Mackiewicz-Ludtka, Gail

2007-01-09T23:59:59.000Z

288

Magnetoacoustic tomography with magnetic induction for high-resolution bioimepedance imaging through vector source reconstruction under the static field of MRI magnet  

SciTech Connect (OSTI)

Purpose: Magnetoacoustic tomography with magnetic induction (MAT-MI) is an imaging modality to reconstruct the electrical conductivity of biological tissue based on the acoustic measurements of Lorentz force induced tissue vibration. This study presents the feasibility of the authors' new MAT-MI system and vector source imaging algorithm to perform a complete reconstruction of the conductivity distribution of real biological tissues with ultrasound spatial resolution. Methods: In the present study, using ultrasound beamformation, imaging point spread functions are designed to reconstruct the induced vector source in the object which is used to estimate the object conductivity distribution. Both numerical studies and phantom experiments are performed to demonstrate the merits of the proposed method. Also, through the numerical simulations, the full width half maximum of the imaging point spread function is calculated to estimate of the spatial resolution. The tissue phantom experiments are performed with a MAT-MI imaging system in the static field of a 9.4 T magnetic resonance imaging magnet. Results: The image reconstruction through vector beamformation in the numerical and experimental studies gives a reliable estimate of the conductivity distribution in the object with a ?1.5 mm spatial resolution corresponding to the imaging system frequency of 500 kHz ultrasound. In addition, the experiment results suggest that MAT-MI under high static magnetic field environment is able to reconstruct images of tissue-mimicking gel phantoms and real tissue samples with reliable conductivity contrast. Conclusions: The results demonstrate that MAT-MI is able to image the electrical conductivity properties of biological tissues with better than 2 mm spatial resolution at 500 kHz, and the imaging with MAT-MI under a high static magnetic field environment is able to provide improved imaging contrast for biological tissue conductivity reconstruction.

Mariappan, Leo; Hu, Gang [Department of Biomedical Engineering, University of Minnesota, Minnesota 55455 (United States)] [Department of Biomedical Engineering, University of Minnesota, Minnesota 55455 (United States); He, Bin, E-mail: binhe@umn.edu [Department of Biomedical Engineering, University of Minnesota, Minnesota 55455 and Institute of Engineering in Medicine, University of Minnesota, Minnesota 55455 (United States)] [Department of Biomedical Engineering, University of Minnesota, Minnesota 55455 and Institute of Engineering in Medicine, University of Minnesota, Minnesota 55455 (United States)

2014-02-15T23:59:59.000Z

289

Idaho National Laboratory Experimental Research In High Temperature Electrolysis For Hydrogen And Syngas Production  

SciTech Connect (OSTI)

The Idaho National Laboratory (Idaho Falls, Idaho, USA), in collaboration with Ceramatec, Inc. (Salt Lake City, Utah, USA), is actively researching the application of solid oxide fuel cell technology as electrolyzers for large scale hydrogen and syngas production. This technology relies upon electricity and high temperature heat to chemically reduce a steam or steam / CO2 feedstock. Single button cell tests, multi-cell stack, as well as multi-stack testing has been conducted. Stack testing used 10 x 10 cm cells (8 x 8 cm active area) supplied by Ceramatec and ranged from 10 cell short stacks to 240 cell modules. Tests were conducted either in a bench-scale test apparatus or in a newly developed 5 kW Integrated Laboratory Scale (ILS) test facility. Gas composition, operating voltage, and operating temperature were varied during testing. The tests were heavily instrumented, and outlet gas compositions were monitored with a gas chromatograph. The ILS facility is currently being expanded to ~15 kW testing capacity (H2 production rate based upon lower heating value).

Carl M. Stoots; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

2008-09-01T23:59:59.000Z

290

RECENT ADVANCES IN HIGH TEMPERATURE ELECTROLYSIS AT IDAHO NATIONAL LABORATORY: SINGLE CELL TESTS  

SciTech Connect (OSTI)

An experimental investigation on the performance and durability of single solid oxide electrolysis cells (SOECs) is under way at the Idaho National Laboratory. In order to understand and mitigate the degradation issues in high temperature electrolysis, single SOECs with different configurations from several manufacturers have been evaluated for initial performance and long-term durability. A new test apparatus has been developed for single cell and small stack tests from different vendors. Single cells from Ceramatec Inc. show improved durability compared to our previous stack tests. Single cells from Materials and Systems Research Inc. (MSRI) demonstrate low degradation both in fuel cell and electrolysis modes. Single cells from Saint Gobain Advanced Materials (St. Gobain) show stable performance in fuel cell mode, but rapid degradation in the electrolysis mode. Electrolyte-electrode delamination is found to have significant impact on degradation in some cases. Enhanced bonding between electrolyte and electrode and modification of the microstructure help to mitigate degradation. Polarization scans and AC impedance measurements are performed during the tests to characterize the cell performance and degradation.

X. Zhang; J. E. O'Brien; R. C. O'Brien

2012-07-01T23:59:59.000Z

291

Development of novel high-performance six-axis magnetically levitated instruments for nanoscale applications  

E-Print Network [OSTI]

and the sample. While working in noncontact mode the AFM tip does not touch the sample but gets the topographic image of sample from attractive force [13]. The AFM have resolution up to 10 pm. The basic working principle of AFM is very much like a record...-earth permanent-magnet-biased magnetic-bearing suspension [48]. The permanent magnet provides bias flux and the electromagnet can increase or reduce flux of the permanent magnet. The flux path of the electromagnet does not pass through the permanent magnet so...

Verma, Shobhit

2005-11-01T23:59:59.000Z

292

Design Procedure for a Very High Speed Slotless Permanent Magnet Motor Pierre-Daniel Pfister, Student Member, IEEE and Yves Perriard, Senior Member, IEEE  

E-Print Network [OSTI]

Design Procedure for a Very High Speed Slotless Permanent Magnet Motor Pierre-Daniel Pfister speed slotless permanent magnet motor design procedure using an analyti- cal model. The multiphysics in the center, a magnet, an air gap, and the stator yoke. In our case, the shaft radius is set to zero

Psaltis, Demetri

293

Rotor Design for High Pressure Magic Angle Spinning Nuclear Magnetic Resonance  

SciTech Connect (OSTI)

High pressure magic angle spinning (MAS) nuclear magnetic resonance (NMR) with a sample spinning rate exceeding 2.1 kHz and pressure greater than 165 bar has never been realized. In this work, a new sample cell design is reported, suitable for constructing cells of different sizes. Using a 7.5 mm high pressure MAS rotor as an example, internal pressure as high as 200 bar at a sample spinning rate of 6 kHz is achieved. The new high pressure MAS rotor is re-usable and compatible with most commercial NMR set-ups, exhibiting low 1H and 13C NMR background and offering maximal NMR sensitivity. As an example of its many possible applications, this new capability is applied to determine reaction products associated with the carbonation reaction of a natural mineral, antigorite ((Mg,Fe2+)3Si2O5(OH)4), in contact with liquid water in water-saturated supercritical CO2 (scCO2) at 150 bar and 50 deg C. This mineral is relevant to the deep geologic disposal of CO2, but its iron content results in too many sample spinning sidebands at low spinning rate. Hence, this chemical system is a good case study to demonstrate the utility of the higher sample spinning rates that can be achieved by our new rotor design. We expect this new capability will be useful for exploring solid-state, including interfacial, chemistry at new levels of high-pressure in a wide variety of fields.

Turcu, Romulus V.F.; Hoyt, David W.; Rosso, Kevin M.; Sears, Jesse A.; Loring, John S.; Felmy, Andrew R.; Hu, Jian Z.

2013-01-01T23:59:59.000Z

294

PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK  

SciTech Connect (OSTI)

5098-SR-05-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 1 BROOKHAVEN NATIONAL LABORATORY

E.M. Harpenau

2010-12-15T23:59:59.000Z

295

PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK  

SciTech Connect (OSTI)

5098-SR-04-0 PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PHASE 3 TRENCH 5, BROOKHAVEN NATIONAL LABORATORY

P.C. Weaver

2010-11-03T23:59:59.000Z

296

HIGH LEVEL WASTE TANK CLOSURE PROJECT AT THE IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY  

SciTech Connect (OSTI)

The Department of Energy, Idaho Operations Office (DOE-ID) is in the process of closing two underground high-level waste (HLW) storage tanks at the Idaho National Engineering and Environmental Laboratory (INEEL) to meet Resource Conservation and Recovery Act (RCRA) regulations and Department of Energy orders. Closure of these two tanks is scheduled for 2004 as the first phase in closure of the eleven 1.14 million liter (300,000 gallon) tanks currently in service at the Idaho Nuclear Technology and Engineering Center (INTEC). The INTEC Tank Farm Facility (TFF) Closure sequence consists of multiple steps to be accomplished through the existing tank riser access points. Currently, the tank risers contain steam and process waste lines associated with the steam jets, corrosion coupons, and liquid level indicators. As necessary, this equipment will be removed from the risers to allow adequate space for closure equipment and activities. The basic tank closure sequence is as follows: Empty the tank to the residual heel using the existing jets; Video and sample the heel; Replace steam jets with new jet at a lower position in the tank, and remove additional material; Flush tank, piping and secondary containment with demineralized water; Video and sample the heel; Evaluate decontamination effectiveness; Displace the residual heel with multiple placements of grout; and Grout piping, vaults and remaining tank volume. Design, development, and deployment of a remotely operated tank cleaning system were completed in June 2002. The system incorporates many commercially available components, which have been adapted for application in cleaning high-level waste tanks. The system is cost-effective since it also utilizes existing waste transfer technology (steam jets), to remove tank heel solids from the tank bottoms during the cleaning operations. Remotely operated directional spray nozzles, automatic rotating wash balls, video monitoring equipment, decontamination spray-rings, and tank -specific access interface devices have been integrated to provide a system that efficiently cleans tank walls and heel solids in an acidic, radioactive environment. Through the deployment of the tank cleaning system, the INEEL High Level Waste Program has cleaned tanks to meet RCRA clean closure standards and DOE closure performance measures. Design, development, and testing of tank grouting delivery equipment were completed in October 2002. The system incorporates lessons learned from closures at other DOE facilities. The grout will be used to displace the tank residuals remaining after the cleaning is complete. To maximize heel displacement to the discharge pump, grout was placed in a sequence of five positions utilizing two riser locations. The project is evaluating the use of six positions to optimize the residuals removed. After the heel has been removed and the residuals stabilized, the tank, piping, and secondary containment will be grouted.

Quigley, K.D.; Wessman, D

2003-02-27T23:59:59.000Z

297

Poly-coil design for a 60 tesla quasi-stationary magnet  

SciTech Connect (OSTI)

Among the new facilities to be offered by the National Science Foundation through the National High Magnetic Field Laboratory (NHMFL) are pulsed fields that can only be achieved at a national user facility by virtue of their strength, duration, and volume. In particular, a 44 mm bore pulsed magnet giving a 60 tesla field for 1 00 ms is in the final design stage. This magnet will be powered by a 1.4 GW motor-generator at Los Alamos and is an important step toward proving design principles that will be needed for the higher field quasi-stationary pulsed magnets that this power source is capable of driving.

Boenig, H.J.; Campbell, L.J.; Hodgdon, M.L.; Lopez, E.A.; Rickel, D.G.; Rogers, J.D.; Schillig, J.B.; Sims, J.R. (Los Alamos National Lab., NM (United States)); Pernambuco-Wise, P.; Schneider-Muntau, H.J.; Van Bockstal, L. (Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab.)

1993-01-01T23:59:59.000Z

298

Poly-coil design for a 60 tesla quasi-stationary magnet  

SciTech Connect (OSTI)

Among the new facilities to be offered by the National Science Foundation through the National High Magnetic Field Laboratory (NHMFL) are pulsed fields that can only be achieved at a national user facility by virtue of their strength, duration, and volume. In particular, a 44 mm bore pulsed magnet giving a 60 tesla field for 1 00 ms is in the final design stage. This magnet will be powered by a 1.4 GW motor-generator at Los Alamos and is an important step toward proving design principles that will be needed for the higher field quasi-stationary pulsed magnets that this power source is capable of driving.

Boenig, H.J.; Campbell, L.J.; Hodgdon, M.L.; Lopez, E.A.; Rickel, D.G.; Rogers, J.D.; Schillig, J.B.; Sims, J.R. [Los Alamos National Lab., NM (United States); Pernambuco-Wise, P.; Schneider-Muntau, H.J.; Van Bockstal, L. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab.

1993-02-01T23:59:59.000Z

299

Ultra-high-resolution Observations of MHD Waves in Photospheric Magnetic Structures  

E-Print Network [OSTI]

Here we review the recent progress made in the detection, examination, characterisation and interpretation of oscillations manifesting in small-scale magnetic elements in the solar photosphere. This region of the Sun's atmosphere is especially dynamic, and importantly, permeated with an abundance of magnetic field concentrations. Such magnetic features can span diameters of hundreds to many tens of thousands of km, and are thus commonly referred to as the `building blocks' of the magnetic solar atmosphere. However, it is the smallest magnetic elements that have risen to the forefront of solar physics research in recent years. Structures, which include magnetic bright points, are often at the diffraction limit of even the largest of solar telescopes. Importantly, it is the improvements in facilities, instrumentation, imaging techniques and processing algorithms during recent years that have allowed researchers to examine the motions, dynamics and evolution of such features on the smallest spatial and temporal ...

Jess, David B

2015-01-01T23:59:59.000Z

300

The National Ignition Facility Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network [OSTI]

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control roo...

Moses, E I

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "national high magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NERSC 2011: High Performance Computing Facility Operational Assessment for the National Energy Research Scientific Computing Center  

E-Print Network [OSTI]

NERSC 2011 High Performance Computing Facility Operationalby providing high-performance computing, information, data,s deep knowledge of high performance computing to overcome

Antypas, Katie

2013-01-01T23:59:59.000Z

302

Fast ion absorption of the high harmonic fast wave in the National Spherical Torus Experimenta...  

E-Print Network [OSTI]

, Princeton, New Jersey 08543 R. W. Harvey CompX, Del Mar, California 92014 T. K. Mau University of California, Columbia University, New York, New York 10027 J. Egedal Plasma Science and Fusion Center, Massachusetts on Energetic Particles in Magnetic Confinement Systems, 2000, p. 109 and CONBEAM J. Egedal et al., Phys

Egedal, Jan

303

High-Temperature Elasticity, Cation Disorder and Magnetic Transition in Magnesioferrite  

SciTech Connect (OSTI)

The elastic moduli of magnesioferrite spinel, MgFe2O4, and their temperature dependence have been determined for the first time by ultrasonic measurements on a polycrystalline specimen. The measurements were carried out at 300 MPa and to 700 C in a gas-medium high-pressure apparatus. On heating, both the elastic bulk (K S) and shear (G) moduli decrease linearly to 350 C. By combining with extant thermal-expansion data, the values for the room-temperature K S and G, and their temperature derivatives are as follows: K 0 = 176.3(7) GPa, G 0 = 80.1(2) GPa, ({partial_derivative}K S/{partial_derivative}T) P = -0.032(3) GPa K-1 and ({partial_derivative}G/{partial_derivative}T) P = -0.012(1) GPa K-1. Between 350 and 400 C, there are abrupt increases of 1.4% in both of the elastic moduli; these closely coincide with the magnetic Curie transition that was observed by thermal analyses at about 360 C.

Antao,S.; Jackson, I.; Li, B.; Kung, J.; Chen, J.; Hassan, I.; Liebermann, R.; Parise, J.

2007-01-01T23:59:59.000Z

304

Magnetized Sources of Ultra-high Energy Nuclei and Extragalactic Origin of the Ankle  

E-Print Network [OSTI]

It has recently been suggested that ultra-high energy cosmic rays could have an extragalactic origin down to the "second knee" at ~4x10^{17}eV. In this case the "ankle" or "dip" at ~5x10^{18}eV would be due to pair production of extragalactic protons on the cosmic microwave background which requires an injection spectrum of about E^{-2.6}. It has been pointed out that for injection of a mixed composition of nuclei a harder injection spectrum \\~E^{-2.2} is required to fit the spectra at the highest energies and a galactic component is required in this case to fit the spectrum below the ankle, unless the proton fraction is larger than 85%. Here we perform numerical simulations and find that for sufficiently magnetized sources, observed spectra above 10^{19}eV approach again the case of pure proton injection due to increased path-lengths and more efficient photo-disintegration of nuclei around the sources. This decreases secondary fluxes at a given energy and thus requires injection spectra ~E^{-2.6}, as steep as for pure proton injection. In addition, the ankle may again be sufficiently dominated by protons to be interpreted as a pair production dip.

Guenter Sigl; Eric Armengaud

2005-07-28T23:59:59.000Z

305

Very high energy emission as a probe of relativistic magnetic reconnection in pulsar winds  

E-Print Network [OSTI]

The population of gamma-ray pulsars, including Crab observed in the TeV range, and Vela detected above 50 GeV, challenges existing models of pulsed high-energy emission. Such models should be universally applicable, yet they should account for spectral differences among the pulsars. We show that the gamma-ray emission of Crab and Vela can be explained by synchrotron radiation from the current sheet of a striped wind, expanding with a modest Lorentz factor $\\Gamma\\lesssim100$ in the Crab case, and $\\Gamma\\lesssim50$ in the Vela case. In the Crab spectrum a new synchrotron self-Compton component is expected to be detected by the upcoming experiment CTA. We suggest that the gamma-ray spectrum directly probes the physics of relativistic magnetic reconnection in the striped wind. In the most energetic pulsars, like Crab, with $\\dot{E}_{38}^{3/2}/P_{-2}\\gtrsim0.002$ (where $\\dot{E}$ is the spin down power, $P$ is the pulsar period, and $X=X_i\\times10^i$ in CGS units), reconnection proceeds in the radiative cooling ...

Mochol, Iwona

2015-01-01T23:59:59.000Z

306

Method for high resolution magnetic resonance analysis using magic angle technique  

DOE Patents [OSTI]

A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

Wind, Robert A.; Hu, Jian Zhi

2003-12-30T23:59:59.000Z

307

Method for high resolution magnetic resonance analysis using magic angle technique  

DOE Patents [OSTI]

A method of performing a magnetic resonance analysis of a biological object that includes placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. The object may be reoriented about the magic angle axis between three predetermined positions that are related to each other by 120.degree.. The main magnetic field may be rotated mechanically or electronically. Methods for magnetic resonance imaging of the object are also described.

Wind, Robert A.; Hu, Jian Zhi

2004-12-28T23:59:59.000Z

308

High-efficiency graphene nanomesh magnets realized by controlling mono-hydrogenation of pore edges  

SciTech Connect (OSTI)

We demonstrate a drastic improvement in the efficiency of rare-element-free graphene nanomesh (GNM) magnets with saturation magnetization values as large as ?10{sup ?4?}emu/mm{sup 2}, which are 10–100 times greater than those in previous GNM magnets hydrogenated by only annealing under a hydrogen molecule (H{sub 2}) atmosphere, even at room temperature. This improvement is realized by a significant increase in the area of the mono-H-terminated pore edges by using hydrogen silsesquioxane resist treatment with electron beam irradiation, which can produce mono-H by detaching H-silicon (Si) bonds. This result must open the door for industrial applications of graphene magnets to rare-element-free magnetic and spintronic systems.

Kato, T.; Kamijyo, J.; Kobayashi, T.; Yagi, Y.; Haruyama, J., E-mail: J-haru@ee.aoyama.ac.jp [Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258 (Japan); Nakamura, T. [Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

2014-06-23T23:59:59.000Z

309

Measurements of fuel and ablator ?R in Symmetry-Capsule implosions with the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility  

SciTech Connect (OSTI)

The Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility (NIF) measures the neutron spectrum in the energy range of 4–20 MeV. This paper describes MRS measurements of DT-fuel and CH-ablator ?R in DT gas-filled symmetry-capsule implosions at the NIF. DT-fuel ?R's of 80–140 mg/cm{sup 2} and CH-ablator ?R's of 400–680 mg/cm{sup 2} are inferred from MRS data. The measurements were facilitated by an improved correction of neutron-induced background in the low-energy part of the MRS spectrum. This work demonstrates the accurate utilization of the complete MRS-measured neutron spectrum for diagnosing NIF DT implosions.

Gatu Johnson, M., E-mail: gatu@psfc.mit.edu; Frenje, J. A.; Li, C. K.; Séguin, F. H.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bionta, R. M.; Casey, D. T.; Caggiano, J. A.; Hatarik, R.; Khater, H. Y.; Sayre, D. B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Knauer, J. P.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Herrmann, H. W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kilkenny, J. D. [General Atomics, San Diego, California 92186 (United States)

2014-11-15T23:59:59.000Z

310

Qualification of a high-efficiency, gated spectrometer for x-ray Thomson scattering on the National Ignition Facility  

SciTech Connect (OSTI)

We have designed, built, and successfully fielded a highly efficient and gated Bragg crystal spectrometer for x-ray Thomson scattering measurements on the National Ignition Facility (NIF). It utilizes a cylindrically curved Highly Oriented Pyrolytic Graphite crystal. Its spectral range of 7.4–10?keV is optimized for scattering experiments using a Zn He-? x-ray probe at 9.0 keV or Mo K-shell line emission around 18 keV in second diffraction order. The spectrometer has been designed as a diagnostic instrument manipulator-based instrument for the NIF target chamber at the Lawrence Livermore National Laboratory, USA. Here, we report on details of the spectrometer snout, its novel debris shield configuration and an in situ spectral calibration experiment with a Brass foil target, which demonstrated a spectral resolution of E/?E = 220 at 9.8 keV.

Döppner, T.; Kritcher, A. L.; Bachmann, B.; Burns, S.; Hawreliak, J.; House, A.; Landen, O. L.; LePape, S.; Ma, T.; Pak, A.; Swift, D. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Neumayer, P. [Gesellschaft für Schwerionenphysik, 64291 Darmstadt (Germany); Kraus, D. [University of California, Berkeley, California 94720 (United States); Falcone, R. W. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94309 (United States)

2014-11-15T23:59:59.000Z

311

High speed internal permanent magnet machine and method of manufacturing the same  

DOE Patents [OSTI]

An internal permanent magnet (IPM) machine is provided. The IPM machine includes a stator assembly and a stator core. The stator core also includes multiple stator teeth. The stator assembly is further configured with stator windings to generate a magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface defining a cavity. The IPM machine also includes a rotor assembly and a rotor core. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further includes a shaft. The shaft further includes multiple protrusions alternately arranged relative to multiple bottom structures provided on the shaft. The rotor assembly also includes multiple stacks of laminations disposed on the protrusions and dovetailed circumferentially around the shaft. The rotor assembly further includes multiple permanent magnets for generating a magnetic field, which interacts with the stator magnetic field to produce torque. The permanent magnets are disposed between the stacks. The rotor assembly also includes multiple bottom wedges disposed on the bottom structures of the shaft and configured to hold the multiple stacks and the multiple permanent magnets.

Alexander, James Pellegrino (Ballston Lake, NY); EL-Refaie, Ayman Mohamed Fawzi (Niskayuna, NY); Lokhandwalla, Murtuza (Clifton Park, NY); Shah, Manoj Ramprasad (Latham, NY); VanDam, Jeremy Daniel (West Coxsackie, NY)

2011-09-13T23:59:59.000Z

312

CRAD, DOE Oversight- Oak Ridge National Laboratory High Flux Isotope Reactor  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a DOE independent oversight assessment of the Oak Ridge National Laboratory programs for oversight of its contractors.

313

All-optical high-resolution magnetic resonance using a nitrogen-vacancy spin in diamond  

E-Print Network [OSTI]

We propose an all-optical scheme to prolong the quantum coherence of a negatively charged nitrogen-vacancy (NV) center in diamond. Optical control of the NV spin suppresses energy fluctuations of the $^{3}\\text{A}_{2}$ ground states and forms an energy gap protected subspace. By optical control, the spectral linewidth of magnetic resonance is much narrower and the measurement of the frequencies of magnetic field sources has higher resolution. The optical control also improves the sensitivity of the magnetic field detection and can provide measurement of the directions of signal sources.

Zhen-Yu Wang; Jian-Ming Cai; Alex Retzker; Martin B. Plenio

2014-04-04T23:59:59.000Z

314

A high-current electron gun for the electron beam ion trap at the National Superconducting Cyclotron Laboratory  

SciTech Connect (OSTI)

The Electron Beam Ion Trap (EBIT) in NSCL’s reaccelerator ReA uses continuous ion injection and accumulation. In order to maximize capture efficiency and minimize breeding time into high charge states, the EBIT requires a high-current/high current-density electron beam. A new electron gun insert based on a concave Ba-dispenser cathode has been designed and built to increase the current transmitted through the EBIT’s superconducting magnet. With the new insert, stable EBIT operating conditions with 0.8 A of electron beam have been established. The design of the electron gun is presented together with calculated and measured perveance data. In order to assess the experimental compression of the electron beam, a pinhole CCD camera has been set up to measure the electron beam radius. The camera observes X-rays emitted from highly charged ions, excited by the electron beam. Initial tests with this camera setup will be presented. They indicate that a current density of 640 A/cm{sup 2} has been reached when the EBIT magnet was operated at 4 T.

Schwarz, S., E-mail: schwarz@nscl.msu.edu; Baumann, T. M.; Kittimanapun, K.; Lapierre, A.; Snyder, A. [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University, East Lansing, Michigan 48824 (United States)] [National Superconducting Cyclotron Laboratory (NSCL), Michigan State University, East Lansing, Michigan 48824 (United States)

2014-02-15T23:59:59.000Z

315

NERSC 2011: High Performance Computing Facility Operational Assessment for the National Energy Research Scientific Computing Center  

E-Print Network [OSTI]

Tape System Reliability High Owner: Jason Hick, Systems Storage Group Lead Med X Low Low Med High Impact Trigger: Tape errors exceed observed

Antypas, Katie

2013-01-01T23:59:59.000Z

316

Method for high resolution magnetic resonance analysis using magic angle technique  

DOE Patents [OSTI]

A method of performing a magnetic resonance analysis of a biological object that includes placing the biological object in a main magnetic field and in a radio frequency field, the main magnetic field having a static field direction; rotating the biological object at a rotational frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. According to another embodiment, the radio frequency is pulsed to provide a sequence capable of producing a spectrum that is substantially free of spinning sideband peaks.

Wind, Robert A.; Hu, Jian Zhi

2003-11-25T23:59:59.000Z

317

Multimodal neuroimaging with simultaneous electroencephalogram and high-field functional magnetic resonance imaging  

E-Print Network [OSTI]

Simultaneous recording of electroencephalogram (EEG) and functional magnetic resonance imaging (tMRI) is an important emerging tool in functional neuroimaging with the potential to reveal new mechanisms for brain function ...

Purdon, Patrick L. (Patrick Lee), 1974-

2005-01-01T23:59:59.000Z

318

Interplay of superconductivity and magnetism in a t-t'-J approach to high Tc cuprates  

E-Print Network [OSTI]

We review a recently proposed mechanism for superconductivity in hole-doped cuprates exhibiting a strong interplay between pairing and antiferromagnetism. Starting from the t-t'-J model for the CuO planes, we show that this interplay can explain in a unified framework the pseudogap phenomenology of the spectral weight of the hole, the hourglass-like structure of the magnetic excitation, the critical exponent of the superfluid density, the relation between the scale of the magnetic resonance and Tc.

P. A. Marchetti

2014-11-07T23:59:59.000Z

319

Use of High Magnetic Fields to Improve Material Properties for Hydraulics, Automotive and Truck Components  

SciTech Connect (OSTI)

In this CRADA, research and development activities were successfully conducted on magnetic processing effects for the purpose of manipulating microstructure and the application specific performance of three alloys provided by Eaton (alloys provided were: carburized steel, plain low carbon steel and medium carbon spring steel). Three specific industrial/commercial application areas were considered where HMFP can be used to provide significant energy savings and improve materials performance include using HMFP to: 1.) Produce higher material strengths enabling higher torque bearing capability for drive shafts and other motor components; 2.) Increase the magnetic response in an iron-based material, thereby improving its magnetic permeability resulting in improved magnetic coupling and power density, and 3.) Improve wear resistance. The very promising results achieved in this endeavor include: 1.) a significant increase in tensile strength and a major reduction in volume percent retained austenite for the carburized alloy, and 2.) a substantial improvement in magnetic perm respect to a no-field processed sample (which also represents a significant improvement over the nominal conventional automotive condition of no heat treatment). The successful completion of these activities has resulted in the current 3-year CRADA No. NFE-09-02522 Prototyping Energy Efficient ThermoMagnetic and Induction Hardening for Heat Treat and Net Shape Forming Applications .

Ludtka, Gerard Michael [ORNL; Ludtka, Gail Mackiewicz- [ORNL; Wilgen, John B [ORNL; Kisner, Roger A [ORNL; Ahmad, Aquil [Eaton Corporation

2010-08-01T23:59:59.000Z

320

Design of a high power density, permanent magnet, axial gap dc motor  

SciTech Connect (OSTI)

In the design of drive motors for undersea vehicles, the premium placed on noise suppression suggests the use of a brush-commutated dc motor. The additional constraints of weight and volume, as well as unusual configuration, presents the axial air-gap configuration, with a permanent magnet field, as a viable candidate. In such a configuration the design of the brushes and commutator and the resulting structure becomes critical. The report describes a novel solution to this problem. The basic motor consists of two discs containing permanent magnets on either side of a magnetic structure containing the copper windings. An advantage of this motor concept is that copper cooling may easily be accomplished through the use of liquid circulating through the stator windings. The role of field and armature in a conventional disc motor configuration are reversed. The two discs containing the permanent magnets are rotating. The brushes are on the discs. The magnetic structure with the coils is stationary. The commutator bars are imbedded in the stationary member. Input power is supplied to the brushes through a brush-and-slip ring assembly. An electromagnetic design analysis for a 92 ft-lb, 700 rpm motor was performed. A finite element analysis has been conducted and the results show that magnetic saturation is not a limiting factor in this design. The motor torque is achievable within weight and volume constraints. 9 figs., 1 tab.

Hawsey, R.A.; Daniel, D.S.; Thomas, R.J. (Oak Ridge National Lab., TN (USA)); Bailey, J.M. (Tennessee Univ., Knoxville, TN (USA))

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "national high magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The French national program for spent fuel and high-level waste management  

SciTech Connect (OSTI)

From its very beginning, the French national program for spent fuel and HLW management is aimed at the recycling of energetic materials and the safe disposal of nuclear waste. Spent fuel reprocessing is the cornerstone of this program, since it directly opens the way to energetic material recycling, waste minimization and safe conditioning. It is complemented by the HLW management program which is defined by the HLW disposal regulation and the Waste Act issued in 1991.

Giraud, J.P.; Demontalembert, J.A. [COGEMA, Velizy-Villacoublay (France)

1993-12-31T23:59:59.000Z

322

Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography  

SciTech Connect (OSTI)

This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Melter Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling

Larson, D.E.

1996-09-01T23:59:59.000Z

323

Electron-Irradiation Induced Nanocrystallization of Pb(II) in Silica Gels Prepared in High Magnetic Field  

E-Print Network [OSTI]

In a previous study, structure of silica gels prepared in a high magnetic field was investigated. While a direct application of such anisotropic silica gels is for an optical anisotropic medium possessing chemical resistance, we show here their possibility of medium in materials processing. In this direction, for example, silica hydrogels have so far been used as media of crystal growth. In this paper, as opposed to the soft-wet state, dried silica gels have been investigated. We have found that lead (II) nanocrystallites were formed induced by electron irradiation to lead (II)-doped dried silica gels prepared in a high magnetic field such as B = 10 T. Hydrogels made from a sodium metasilicate solution doped with lead (II) acetate were prepared. The dried specimens were irradiated by electrons in a transmission electron microscope environment. Electron diffraction patterns indicated the crystallinity of lead (II) nanocrystallites depending on B. An advantage of this processing technique is that the crystallin...

Kaito, Takamasa; Kaito, Chihiro

2015-01-01T23:59:59.000Z

324

Magnetic and microwave properties of U-type hexaferrite films with high remanence and low ferromagnetic resonance linewidth  

SciTech Connect (OSTI)

U-type barium hexaferrite films (Ba{sub 4}Ni{sub 1.4}Co{sub 0.6}Fe{sub 36}O{sub 60}) were deposited on (0001) sapphire substrates by pulsed laser deposition. Microstructure and magnetic properties of the films were characterized by X-ray diffraction, scanning electron microscopy and vibrating sample magnetometry. Ferromagnetic resonance (FMR) measurements were performed at X-band. The results indicate an anisotropy field of ?8 kOe, and the saturation magnetization (4?M{sub s}) of ?3.6 kG. An optimal post-deposition annealing of films results in a strong (0 0?n) crystallographic texture and a high hysteresis loop squareness (M{sub r}/M{sub s}?=?92%) leading to self biased properties. Furthermore, the highly self-biased ferrite films exhibited an FMR linewidth of ?200?Oe. The U-type hexaferrite films having low microwave loss, low magnetic anisotropy field, and high squareness are a suitable alternative to Sc or In doped BaM ferrites that have been the choice material for self-biased microwave devices at X-band frequencies.

Su, Zhijuan; Bennett, Steven; Hu, Bolin; Chen, Yajie, E-mail: y.chen@neu.edu; Harris, Vincent G. [Center for Microwave Magnetic Materials and Integrated Circuits, Northeastern University, Boston, Massachusetts 02115, USA and The Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)

2014-05-07T23:59:59.000Z

325

A Design-Oriented Framework to Determine the Parasitic Parameters of High Frequency Magnetics in Switching Power Supplies using Finite Element Analysis Techniques  

E-Print Network [OSTI]

A DESIGN-ORIENTED FRAMEWORK TO DETERMINE THE PARASITIC PARAMETERS OF HIGH FREQUENCY MAGNETICS IN SWITCING POWER SUPPLIES USING FINITE ELEMENT ANALYSIS TECHNIQUES A Thesis by MOHAMMAD BAGHER SHADMAND Submitted to the Office... to Determine the Parasitic Parameters of High Frequency Magnetics in Switching Power Supplies using Finite Element Analysis Techniques Copyright 2012 Mohammad Bagher Shadmand A DESIGN-ORIENTED FRAMEWORK TO DETERMINE THE PARASITIC PARAMETERS OF HIGH...

Shadmand, Mohammad

2012-07-16T23:59:59.000Z

326

Terahertz Spectroscopy of Spin Waves in Multiferroic BiFeO3 in High Magnetic Fields  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

We have studied the magnetic field dependence of far-infrared active magnetic modes in a single ferroelectric domain BiFeO3 crystal at low temperature. The modes soften close to the critical field of 18.8 T along the [001] (pseudocubic) axis, where the cycloidal structure changes to the homogeneous canted antiferromagnetic state and a new strong mode with linear field dependence appears that persists at least up to 31 T. A microscopic model that includes two Dzyaloshinskii-Moriya interactions and easy-axis anisotropy describes closely both the zero-field spectroscopic modes as well as their splitting and evolution in a magnetic field. The good agreement of theory with experiment suggests that the proposed model provides the foundation for future technological applications of this multiferroic material.

Nagel, U.; Fishman, Randy S.; Katuwal, T.; Engelkamp, H.; Talbayev, D.; Yi, Hee Taek; Cheong, S.-W.; Rõõm, T.

2013-06-01T23:59:59.000Z

327

Development of a magnetohydrodynamic code for axisymmetric, high-. beta. plasmas with complex magnetic fields  

SciTech Connect (OSTI)

The Topolotron is an axisymmetric, toroidal magnetic fusion concept in which two-dimensional effects are important, as well as all three magnetic field components. The particular MHD model employed is basically the one-fluid, two-temperature model using classical Braginskii transport with viscous effects ignored. The model is augmented by Saha-Boltzmann dissociation and partial ionization physics, a simple radiation loss mechanism, and an additional resistivity due to electron-neutral collisions. While retaining all velocity and magnetic field components, the assumption of axisymmetry is made, and the resulting equations are expanded in cylindrical coordinates. The major approximation technique is then applied: spline collocation, which reduces these equations to a set of ordinary differential equations.

Cook, G.O. Jr.

1982-12-01T23:59:59.000Z

328

A magnetic liquid deformable mirror for high stroke and low order axially symmetrical aberrations  

E-Print Network [OSTI]

We present a new class of magnetically shaped deformable liquid mirrors made of a magnetic liquid (ferrofluid). Deformable liquid mirrors offer advantages with respect to deformable solid mirrors: large deformations, low costs and the possibility of very large mirrors with added aberration control. They have some disadvantages (e.g. slower response time). We made and tested a deformable mirror, producing axially symmetrical wavefront aberrations by applying electric currents to 5 concentric coils made of copper wire wound on aluminum cylinders. Each of these coils generates a magnetic field which combines to deform the surface of a ferrofluid to the desired shape. We have carried out laboratory tests on a 5 cm diameter prototype mirror and demonstrated defocus as well as Seidel and Zernike spherical aberrations having amplitudes up to 20 microns, which was the limiting measurable amplitude of our equipment

Brousseau, D; Parent, J; Ruel, H J; Borra, Ermanno F.; Brousseau, Denis; Parent, Jocelyn; Ruel, Hubert-Jean

2006-01-01T23:59:59.000Z

329

A magnetic liquid deformable mirror for high stroke and low order axially symmetrical aberrations  

E-Print Network [OSTI]

We present a new class of magnetically shaped deformable liquid mirrors made of a magnetic liquid (ferrofluid). Deformable liquid mirrors offer advantages with respect to deformable solid mirrors: large deformations, low costs and the possibility of very large mirrors with added aberration control. They have some disadvantages (e.g. slower response time). We made and tested a deformable mirror, producing axially symmetrical wavefront aberrations by applying electric currents to 5 concentric coils made of copper wire wound on aluminum cylinders. Each of these coils generates a magnetic field which combines to deform the surface of a ferrofluid to the desired shape. We have carried out laboratory tests on a 5 cm diameter prototype mirror and demonstrated defocus as well as Seidel and Zernike spherical aberrations having amplitudes up to 20 microns, which was the limiting measurable amplitude of our equipment

Denis Brousseau; Ermanno F. Borra; Hubert-Jean Ruel; Jocelyn Parent

2006-11-15T23:59:59.000Z

330

High School Girls Honored for Math, Science Achievements at Sandia National  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi National Accelerator LaboratoryHotOctoberRequestLaboratory |

331

Panhandle Junior High takes second at National Science Bowl Car Race |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven Ashby Dr. Steven Para9EnvironmentalPageIOPamelaNational

332

Students try out high-tech equipment at ASM Materials Camp | National  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration go on moon walk at U.S. Space Center |Nuclear

333

National Library of Energy : Main View : Search Results for Keyword: "high  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart ofMeasuringInformationOfficeneutronsystem

334

EIS-0074: Long-Term Management of Defense High-Level Radioactive Wastes Idaho Chemical Processing Plant, Idaho National Engineering Lab, Idaho  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy prepared this statement to analyze the environmental implications of the proposed selection of a strategy for long- term management of the high- level radioactive wastes generated as part of the national defense effort at the Department's Idaho Chemical Processing Plant a t the Idaho National Engineering Laboratory.

335

Insert Coil Test for HEP High Field Magnets Using YBCO Coated Conductor Tapes  

SciTech Connect (OSTI)

The final beam cooling stages of a Muon Collider may require DC solenoid magnets with magnetic fields of 30-50 T. In this paper we present progress in insert coil development using commercially available YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} Coated Conductor. Technological aspects covered in the development, including coil geometry, insulation, manufacturing process and testing are summarized and discussed. Test results of double pancake coils operated in liquid nitrogen and liquid helium are presented and compared with the performance of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} tape short samples.

Lombardo, V.; Barzi, E.; Turrioni, D.; Zlobin, A.V.; /Fermilab

2011-06-15T23:59:59.000Z

336

Evidence of Magnetic Breakdown on the Defects With Thermally Suppressed Critical Field in High Gradient SRF Cavities  

SciTech Connect (OSTI)

At SRF 2011 we presented the study of quenches in high gradient SRF cavities with dual mode excitation technique. The data differed from measurements done in 80's that indicated thermal breakdown nature of quenches in SRF cavities. In this contribution we present analysis of the data that indicates that our recent data for high gradient quenches is consistent with the magnetic breakdown on the defects with thermally suppressed critical field. From the parametric fits derived within the model we estimate the critical breakdown fields.

Eremeev, Grigory [JLAB; Palczewski, Ari [JLAB

2013-09-01T23:59:59.000Z

337

On the GCR intensity and the inversion of the heliospheric magnetic field during the periods of the high solar activity  

E-Print Network [OSTI]

We consider the long-term behavior of the solar and heliospheric parameters and the GCR intensity in the periods of high solar activity and the inversions of heliospheric magnetic field (HMF). The classification of the HMF polarity structures and the meaning of the HMF inversion are discussed. The procedure is considered how to use the known HMF polarity distribution for the GCR intensity modeling during the periods of high solar activity. We also briefly discuss the development and the nearest future of the sunspot activity and the GCR intensity in the current unusual solar cycle 24.

Krainev, M B

2014-01-01T23:59:59.000Z

338

The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network [OSTI]

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control room presents facility-wide status and orchestrates experiments using operating parameters predicted by physics models. A network of several hundred front-end processors (FEPs) implements device control. The object-oriented software system is implemented in the Ada and Java languages and emphasizes CORBA distribution of reusable software objects. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008.

E. I. Moses

2001-11-09T23:59:59.000Z

339

Preliminary Waste Form Compliance Plan for the Idaho National Engineering and Environmental Laboratory High-Level Waste  

SciTech Connect (OSTI)

The Department of Energy (DOE) has specific technical and documentation requirements for high-level waste (HLW) that is to be placed in a federal repository. This document describes in general terms the strategy to be used at the Idaho National Engineering and Environmental Laboratory (INEEL) to demonstrate that vitrified HLW, if produced at the INEEL, meets these requirements. Waste form, canister, quality assurance, and documentation specifications are discussed. Compliance strategy is given, followed by an overview of how this strategy would be implemented for each specification.

B. A. Staples; T. P. O'Holleran

1999-05-01T23:59:59.000Z

340

High-energy x-ray microscopy of laser-fusion plasmas at the National Ignition Facility  

SciTech Connect (OSTI)

Multi-keV x-ray microscopy will be an important laser-produced plasma diagnostic at future megajoule facilities such as the National Ignition Facility (NIF).In preparation for the construction of this facility, we have investigated several instrumentation options in detail, and we conclude that near normal incidence single spherical or toroidal crystals may offer the best general solution for high-energy x-raymicroscopy at NIF and at similar large facilities. Kirkpatrick-Baez microscopes using multi-layer mirrors may also be good secondary options, particularly if apertures are used to increase the band-width limited field of view.

Koch, J.A.; Landen, O.L.; Hammel, B.A. [and others

1997-08-26T23:59:59.000Z

Note: This page contains sample records for the topic "national high magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

High-precision evaluation of the magnetic moment of the helion  

SciTech Connect (OSTI)

NMR spectra of samples containing a mixture of hydrogen deuteride HD with pressure of about 80 atm and helium-3 with partial pressure of about 1 atm are analyzed. The ratio of the resonance frequencies of the nuclei, F({sup 3}He)/F(H{sub 2}), is determined to be 0.761786594(2), which is equal to the magnetic moment of the helion (bound in a helium atom) in the units of the magnetic moment of a proton (bound in molecular hydrogen). The uncertainty of two digits in the last place corresponds to a relative error of {delta}[F({sup 3}He)/F(H{sub 2})] = 2.6 Multiplication-Sign 10{sup -9}. The use of the known calculated data on the shielding of nuclei in the helium-3 atom ({sigma}({sup 3}He) = 59924(2) Multiplication-Sign 10{sup -9}) and on the shielding of protons in hydrogen ({sigma}(H{sub 2}) = 26288(2) Multiplication-Sign 10{sup -9}) yields a value of {mu}({sup 3}He)/{mu}{sub p} = -0.761812217(3) for the free magnetic moment of the helion in the units of the proton magnetic moment.

Neronov, Yu. I., E-mail: yineronov@mail.ru; Seregin, N. N. [Mendeleev All-Russia Research Institute of Metrology (Russian Federation)

2012-11-15T23:59:59.000Z

342

Transmit field pattern control for high field magnetic resonance imaging with integrated RF current sources  

E-Print Network [OSTI]

in units of radians/tesla and B is the magnetic flux density of the applied field, expressed in units of tesla. The hydrogen nucleus, which consists of a single proton, is the most abundantly present in tissue and is most widely used for MRI...

Kurpad, Krishna Nagaraj

2005-11-01T23:59:59.000Z

343

Recent Progress At The Idaho National Laboratory In High Temperature Electrolysis For Hydrogen And Syngas Production  

SciTech Connect (OSTI)

This paper presents the most recent results of experiments conducted at the Idaho National Laboratory (INL) studying electrolysis of steam and coelectrolysis of steam / carbon dioxide in solid-oxide electrolysis stacks. Single button cell tests as well as multi-cell stack testing have been conducted. Multi-cell stack testing used 10 x 10 cm cells (8 x 8 cm active area) supplied by Ceramatec, Inc (Salt Lake City, Utah, USA) and ranged from 10 cell short stacks to 240 cell modules. Tests were conducted either in a bench-scale test apparatus or in a newly developed 5 kW Integrated Laboratory Scale (ILS) test facility. Gas composition, operating voltage, and operating temperature were varied during testing. The tests were heavily instrumented, and outlet gas compositions were monitored with a gas chromatograph. The ILS facility is currently being expanded to 15 kW testing capacity (H2 production rate based upon lower heating value).

C. Stoots; J. O'Brien; J. Herring; J. Hartvigsen

2008-11-01T23:59:59.000Z

344

A Free Jet Hg Target Operating in a High Magnetic Field Intersecting  

E-Print Network [OSTI]

2005 Venice, Italy August 29 ­ Sept 1, 2005 #12;2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY AccApp05 Background · Proof-of-principle experiment to investigate the interaction of a proton. DEPARTMENT OF ENERGY AccApp05 Participants · BNL, Princeton ­ project oversight, nozzle development, beam

McDonald, Kirk

345

National survey of crystalline rocks and recommendations of regions to be explored for high-level radioactive waste repository sites  

SciTech Connect (OSTI)

A reconnaissance of the geological literature on large regions of exposed crystalline rocks in the United States provides the basis for evaluating if any of those regions warrant further exploration toward identifying potential sites for development of a high-level radioactive waste repository. The reconnaissance does not serve as a detailed evaluation of regions or of any smaller subunits within the regions. Site performance criteria were selected and applied insofar as a national data base exists, and guidelines were adopted that relate the data to those criteria. The criteria include consideration of size, vertical movements, faulting, earthquakes, seismically induced ground motion, Quaternary volcanic rocks, mineral deposits, high-temperature convective ground-water systems, hydraulic gradients, and erosion. Brief summaries of each major region of exposed crystalline rock, and national maps of relevant data provided the means for applying the guidelines and for recommending regions for further study. It is concluded that there is a reasonable likelihood that geologically suitable repository sites exist in each of the major regions of crystalline rocks. The recommendation is made that further studies first be conducted of the Lake Superior, Northern Appalachian and Adirondack, and the Southern Appalachian Regions. It is believed that those regions could be explored more effectively and suitable sites probably could be found, characterized, verified, and licensed more readily there than in the other regions.

Smedes, H.W.

1983-04-01T23:59:59.000Z

346

Effect of Field Dependent Core Size on Reversible Magnetization of High-? Superconductors  

SciTech Connect (OSTI)

The field dependence of the vortex core size {zeta}(B) is incorporated in the London model, in order to describe reversible magnetization M(B,T) for a number of materials with large Ginzburg-Landau parameter {kappa}. The dependence {zeta}(B) is directly related to deviations in M(ln B) from linear behavior prescribed by the standard London model. A simple method to extract {zeta}(B) from the magnetization data is proposed. For most materials examined, {zeta}(B) so obtained decreases with increasing field and is in qualitative agreement both with behavior extracted from {micro}SR and small-angle neutron-scattering data and with that predicted theoretically.

Kogan, V. G. [Ames Laboratory and Iowa State University; Prozorov, R. [Ames Laboratory and Iowa State University; Bud'ko, S. L. [Ames Laboratory; Canfield, P. C. [Ames Laboratory; Thompson, James R [ORNL; Karpinski, J. [Swiss Federal Institute of Technology; Zhigadlo, N. D. [Swiss Federal Institute of Technology; Miranovic, P. [University of Montenegro, Serbia and Montenegro

2006-01-01T23:59:59.000Z

347

Evidence for entanglement at high temperatures in an engineered molecular magnet  

SciTech Connect (OSTI)

The molecular compound [Fe-2(mu(2)-oxo)(C3H4N2)(6)(C2O4)(2)] was designed and synthesized for the first time and its structure was determined using single-crystal X-ray diffraction. The magnetic susceptibility of this compound was measured from 2 to 300 K. The analysis of the susceptibility data using protocols developed for other spin singlet ground-state systems indicates that the quantum entanglement would remain at temperatures up to 732 K, significantly above the highest entanglement temperature reported to date. The large gap between the ground state and the first-excited state (282 K) suggests that the spin system may be somewhat immune to decohering mechanisms. Our measurements strongly suggest that molecular magnets are promising candidate platforms for quantum information processing.

Reis, Mario S [Universidade Federal Fluminense, Brasil; Soriano, Stephane [Universidade Federal Fluminense, Brasil; Moreira Dos Santos, Antonio F [ORNL; Sales, Brian C [ORNL; Soares-Pinto, D O [Centro Brasileiro de Pesquisas Fisicas (CBPF); Brandao, Paula [University of Aveiro, Portugal

2012-01-01T23:59:59.000Z

348

Evidence for entanglement at high temperatures in an engineered molecular magnet  

E-Print Network [OSTI]

The molecular compound [Fe$_{2}$($\\mu_{2}$-oxo)(C$_{3}$H$_{4}$N$_{2}$)$_{6}$(C$_{2}$O$_{4}$)$_{2}$] was designed and synthesized for the first time and its structure was determined using single-crystal X-ray diffraction. The magnetic susceptibility of this compound was measured from 2 to 300 K. The analysis of the susceptibility data using protocols developed for other spin singlet ground-state systems indicates that the quantum entanglement would remain at temperatures up to 732 K, significantly above the highest entanglement temperature reported to date. The large gap between the ground state and the first-excited state (282 K) suggests that the spin system may be somewhat immune to decohering mechanisms. Our measurements strongly suggest that molecular magnets are promising candidate platforms for quantum information processing.

M. S. Reis; S. Soriano; A. M. dos Santos; B. C. Sales; D. O. Soares-Pinto; P. Brandao

2012-12-07T23:59:59.000Z

349

The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

Moses, E

2011-03-25T23:59:59.000Z

350

A "permanent" high-temperature superconducting magnet operated in thermal communication with a mass of solid nitrogen  

E-Print Network [OSTI]

This thesis explores a new design for a portable "permanent" superconducting magnet system. The design is an alternative to permanent low-temperature superconducting (LTS) magnet systems where the magnet is cooled by a ...

Haid, Benjamin J. (Benjamin John Jerome), 1974-

2001-01-01T23:59:59.000Z

351

Assuring safety in high-speed magnetically levitated (maglev) systems : the need for a system safety approach  

E-Print Network [OSTI]

Magnetic levitation is a railway technology that enables vehicles to be magnetically suspended above their tracks. Although this technology is still under development, magnetically levitated (maglev) systems have great ...

Ota, Shuichiro Daniel

2008-01-01T23:59:59.000Z

352

Optical non-reciprocity in magnetic structures related to high-T_c superconductors  

E-Print Network [OSTI]

cuprates. High-T c superconductivity in the cuprates remainstemperature for superconductivity. Instead, the mostrelated to high-T c superconductors J. Orenstein Department

Orenstein, Joseph W

2012-01-01T23:59:59.000Z

353

High field nuclear magnetic resonance in transition metal substituted BaFe{sub 2}As{sub 2}  

SciTech Connect (OSTI)

We report high field {sup 75}As nuclear magnetic resonance (NMR) measurements on Co and Cu substituted BaFe{sub 2}As{sub 2} single crystals displaying same structural/magnetic transition T{sub 0}?128??K. From our anisotropy studies in the paramagnetic state, we strikingly found virtually identical quadrupolar splitting and consequently the quadrupole frequency ?{sub Q}?2.57(1)??MHz for both compounds, despite the claim that each Cu delivers 2 extra 3d electrons in BaFe{sub 2}As{sub 2} compared to Co substitution. These results allow us to conclude that a subtle change in the crystallographic structure, particularly in the Fe–As tetrahedra, must be the most probable tuning parameter to determine T{sub 0} in this class of superconductors rather than electronic doping. Furthermore, our NMR data around T{sub 0} suggest coexistence of tetragonal/paramagnetic and orthorhombic/antiferromagnetic phases between the structural and the spin density wave magnetic phase transitions, similarly to what was reported for K-doped BaFe{sub 2}As{sub 2} [Urbano et al., Phys. Rev. Lett. 105, 107001 (2010)].

Garitezi, T. M., E-mail: thalesmg@ifi.unicamp.br; Lesseux, G. G.; Rosa, P. F. S.; Adriano, C.; Pagliuso, P. G.; Urbano, R. R. [Instituto de Física “Gleb Wataghin,” UNICAMP, Campinas, SP 13083-859 (Brazil); Reyes, A. P.; Kuhns, P. L. [National High Magnetic Field Laboratory, FSU, Tallahassee, Florida 32306-4005 (United States)

2014-05-07T23:59:59.000Z

354

Preparation and characterization of multi-walled carbon nanotubes with nickel–phosphorous layers of high magnetic properties  

SciTech Connect (OSTI)

Highlights: ? Impurities in crude MWNTs were effectively removed after purification treatment. ? Many Ni nanoparticles were homogenously coated on the purified MWNTs. ? The saturation magnetization (Ms) of the MWNTs with Ni–P layers is 91.5 emu/g. -- Abstract: The multi-wall carbon nanotubes (MWNTs) with nickel–phosphorous (Ni–P) layers were prepared by electroless plating method. To obtain the MWNTs with Ni–P layers of high magnetic properties, an effective purification treatment and a pre-treatment procedure were developed. The crude MWNTs, the purified MWNTs and the MWNTs with Ni–P layers were characterized by scanning electron microscope (SEM)/energy dispersive spectroscopy (EDS), transmission electron microscope (TEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). SEM results, TEM images and XRD results indicate that impurities in the crude MWNTs were effectively removed after the purification treatment and a large number of Ni nanoparticles were homogenously coated on the surface of the purified MWNTs. According to the VSM test, the saturation magnetization (Ms) of the MWNTs with Ni–P layers is 91.5 emu/g which is higher than results of other researchers.

Zhang, Yi, E-mail: zhangyi520love@yahoo.com.cn [Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072 (China)] [Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072 (China); Qi, Shuhua; Zhang, Fan [Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072 (China)] [Department of Applied Chemistry, School of Science, Northwestern Polytechnical University, Xi’an 710072 (China)

2012-11-15T23:59:59.000Z

355

On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets  

SciTech Connect (OSTI)

Advanced materials characterization techniques with ever-growing data acquisition speed and storage capabilities represent a challenge in modern materials science, and new procedures to quickly assess and analyze the data are needed. Machine learning approaches are effective in reducing the complexity of data and rapidly homing in on the underlying trend in multi-dimensional data. Here, we show that by employing an algorithm called the mean shift theory to a large amount of diffraction data in high-throughput experimentation, one can streamline the process of delineating the structural evolution across compositional variations mapped on combinatorial libraries with minimal computational cost. Data collected at a synchrotron beamline are analyzed on the fly, and by integrating experimental data with the inorganic crystal structure database (ICSD), we can substantially enhance the accuracy in classifying the structural phases across ternary phase spaces. We have used this approach to identify a novel magnetic phase with enhanced magnetic anisotropy which is a candidate for rare-earth free permanent magnet.

Kusne, Aaron Gilad [University of Maryland; Gao, Tieren [University of Maryland; Mehta, Apurva [SLAC National Accelerator Laboratory; Ke, Liqin [Ames Laboratory; Nguyen, Manh Cuong [Ames Laboratory; Ho, Kai-Ming [Ames Laboratory; Antropov, Vladimir [Ames Laboratory; Wang, Cai-Zhuang [Ames Laboratory; Kramer, Matthew J [Ames Laboratory; Long, Christian [University of Maryland; Takeuchi, Ichiro [University of Maryland

2014-09-15T23:59:59.000Z

356

LARGE SUPERCONDUCTING DETECTOR MAGNETS WITH ULTRA THIN COILS FOR USE IN HIGH ENERGY ACCELERATORS AND STORAGE RINGS  

E-Print Network [OSTI]

and Construction of a SuperconductingAluminum Stabilized·LBL-53S0, Hay 1977. Superconducting Magnet," CLyogenicsthe development of thin superconductiog solenoid magnets for

Green, M.A.

2010-01-01T23:59:59.000Z

357

Process for selecting NEAMS applications for access to Idaho National Laboratory high performance computing resources  

SciTech Connect (OSTI)

INL has agreed to provide participants in the Nuclear Energy Advanced Mod- eling and Simulation (NEAMS) program with access to its high performance computing (HPC) resources under sponsorship of the Enabling Computational Technologies (ECT) program element. This report documents the process used to select applications and the software stack in place at INL.

Michael Pernice

2010-09-01T23:59:59.000Z

358

Fast ion absorption of the high harmonic fast wave in the National Spherical Torus Experiment a...  

E-Print Network [OSTI]

the high harmonic fast wave #HHFW# and energetic particles in a spherical torus #ST# #Ref. 1# is a new, Princeton, New Jersey 08543 R. W. Harvey CompX, Del Mar, California 92014 T. K. Mau University of California, Columbia University, New York, New York 10027 J. Egedal Plasma Science and Fusion Center, Massachusetts

Egedal, Jan

359

Exploration of Quench Initiation Due to Intentional Geometrical Defects in a High Magnetic Field Region of an SRF Cavity  

SciTech Connect (OSTI)

A computer program which was used to simulate and analyze the thermal behaviors of SRF cavities has been developed at Jefferson Lab using C++ code. This code was also used to verify the quench initiation due to geometrical defects in high magnetic field region of SRF cavities. We built a CEBAF single cell cavity with 4 artificial defects near equator, and this cavity has been tested with T-mapping. The preheating behavior and quench initiation analysis of this cavity will be presented here using the computer program.

J. Dai, K. Zhao, G.V. Eremeev, R.L. Geng, A.D. Palczewski; Dai, J. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Palczewski, A. D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Eremeev, G. V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Geng, R. L. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhao, K. [Institute of Heavy Ion Physics, Peking University, Beijing (China)

2011-07-01T23:59:59.000Z

360

Magnetic structure of the high temperature superconductor Gd{sub 1–x}Th{sub x}FeAsO  

SciTech Connect (OSTI)

The magnetic structure of the high temperature superconductor Gd{sub 1–x}Th{sub x}FeAsO (x?=?0, 0.25) has been determined by neutron powder diffraction. The Gd moments were found to order at T{sub N} ? 4?K and to lie in the basal plane, and form alternating ferromagnetic sheets along the c-axis. The orientation of the gadolinium moments in both the doped and undoped compounds has been confirmed using {sup 155}Gd Mössbauer spectroscopy.

Lee-Hone, N. R.; Ryan, D. H., E-mail: dhryan@physics.mcgill.ca [Physics Department and Centre for the Physics of Materials, McGill University, 3600 University Street, Montreal, Quebec H3A 2T8 (Canada); Cadogan, J. M. [School of Physical, Environmental and Mathematical Sciences, UNSW Canberra at the Australian Defence Force Academy, Canberra, BC 2610 (Australia); Sun, Y. L.; Cao, G. H. [Department of Physics, Zhejiang University, Hangzhou 310027 (China)

2014-05-07T23:59:59.000Z

Note: This page contains sample records for the topic "national high magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Preliminary Physics Motivation and Engineering Design Assessment of the National High Power Torus  

SciTech Connect (OSTI)

In April 2006, Dr. Ray Orbach, Director of the DOE Office of Science, challenged the fusion community to "propose a new facility... which will put the U.S. at the lead in world fusion science." Analysis of the gaps between expected ITER performance and the requirements of a demonstration power plant (Demo) pointed to the critical and urgent need to develop fusion-relvant plasma-material interface (PMI) solutions consistent with sustained high plasma performance. A survey of world fusion program indicated that present and planned experimental devices do not advance the PMI issue beyond ITER, and a major dedicated experimental facility is warranted. Such a facility should provide the flexibility and access needed to solve plasma boundary challenges related to divertor heat flux and particle exhaust while also developing methods to minimize hydrogenic isotope retention and remaining compatible with high plasma performance.

Robert D. Woolley

2009-06-11T23:59:59.000Z

362

Characterization of the self magnetic pinch diode at high voltages for flash radiography.  

SciTech Connect (OSTI)

The Sandia Laboratories Advanced Radiographic Technologies Department, in collaboration with the United Kingdom Atomic Weapons Establishment, has been conducting research into the development of the Self-Magnetic-Pinched diode as an x-ray source suitable for flash radiographic experiments. We have demonstrated that this source is capable of meeting and exceeding the initial requirements of 250 rads (measured at one meter) with a 2.75 mm source spot-size. Recent experiments conducted on the RITS-6 accelerator have demonstrated the ability of this diode to meet intermediate requirements with a sub 3 mm source spot size and a dose in excess of 400 rads at one meter.

Cordova, Steve Ray; Portillo, Salvador; Oliver, Bryan Velten; Threadgold, James R. (Atomic Weapons Establishment Aldermaston, Reading Berkshire, U.K.); Crotch, Ian (Atomic Weapons Establishment Aldermaston, Reading Berkshire, U.K.); Ziska, Derek Raymond

2008-10-01T23:59:59.000Z

363

Method for improving performance of high temperature superconductors within a magnetic field  

DOE Patents [OSTI]

The present invention provides articles including a base substrate including a layer of an oriented cubic oxide material having a rock-salt-like structure layer thereon; and, a buffer layer upon the oriented cubic oxide material having a rock-salt-like structure layer, the buffer layer having an outwardly facing surface with a surface morphology including particulate outgrowths of from 10 nm to 500 run in size at the surface, such particulate outgrowths serving as flux pinning centers whereby the article maintains higher performance within magnetic fields than similar articles without the necessary density of such outgrowths.

Wang, Haiyan (Los Alamos, NM); Foltyn, Stephen R. (Los Alamos, NM); Maiorov, Boris A. (Los Alamos, NM); Civale, Leonardo (Los Alamos, NM)

2010-01-05T23:59:59.000Z

364

Controlled interface profile in SmCo/Fe exchange-spring magnets Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439  

E-Print Network [OSTI]

-spring permanent magnets enhances the exchange coupling effectiveness without modifying the local composition are complementary or even mutually exclusive. Exchange-spring nanocomposite magnets1,2 consist of exchange coupled of the exchange-spring magnets. For example, interfacial condi- tions influence the exchange coupling

Liu, J. Ping

365

Optical non-reciprocity in magnetic structures related to high-T_c superconductors  

E-Print Network [OSTI]

related to high-T c superconductors J. Orenstein Departmentphase in cuprate superconductors. This ?nding is independent

Orenstein, Joseph W

2012-01-01T23:59:59.000Z

366

Devices and process for high-pressure magic angle spinning nuclear magnetic resonance  

DOE Patents [OSTI]

A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

Hoyt, David W; Sears, Jr., Jesse A; Turcu, Romulus V.F.; Rosso, Kevin M; Hu, Jian Zhi

2014-04-08T23:59:59.000Z

367

Magnetic-Driven Winds from Post-AGB Stars: Solutions for High Speed Winds and Extreme Collimation  

E-Print Network [OSTI]

This paper explores the effects of post-AGB winds driven solely by magnetic pressure from the stellar surface. It is found that winds can reach high speeds under this assumption, and lead to the formation of highly collimated proto-planetary nebulae. Bipolar knotty jets with periodic features and constant velocity are well reproduced by the models. Several wind models with terminal velocities from a few tens of $\\kms$ up to $10^3$ $\\kms$ are calculated, yielding outflows with linear momenta in the range $10^{36}-10^{40} \\gcms$, and kinetic energies in the range $10^{42}-10^{47} $ erg. These results are in accord with recent observations of proto-planetary nebulae that have pointed out serious energy and momentum deficits if radiation pressure is considered as the only driver for these outflows. Our models strengthen the notion that the large mass-loss rates of post-AGB stars, together with the short transition times from the late AGB to the planetary nebula stage, could be directly linked with the generation of strong magnetic fields during this transition stage.

Guillermo Garcia-Segura; Jose Alberto Lopez; Jose Franco

2004-09-24T23:59:59.000Z

368

The Smallest Stable Fullerene, M@C28 (M = Ti, Zr, U) Gregory S. Boebinger, National High Magnetic Field Laboratory  

E-Print Network [OSTI]

fascinated chemists since the original discovery of C60, leading to the 1996 Nobel Prize in Chemistry, or uranium directly into the buckyball from carbon vapor. Figure 1. The structure proposed for a C28

Weston, Ken

369

Simulating x-ray Thomson scattering signals from high-density, millimetre-scale plasmas at the National Ignition Facility  

SciTech Connect (OSTI)

We have developed a model for analysing x-ray Thomson scattering data from high-density, millimetre-scale inhomogeneous plasmas created during ultra-high pressure implosions at the National Ignition Facility in a spherically convergent geometry. The density weighting of the scattered signal and attenuation of the incident and scattered x-rays throughout the target are included using radial profiles of the density, opacity, ionization state, and temperature provided by radiation-hydrodynamics simulations. These simulations show that the scattered signal is strongly weighted toward the bulk of the shocked plasma and the Fermi degenerate material near the ablation front. We show that the scattered signal provides a good representation of the temperature of this highly nonuniform bulk plasma and can be determined to an accuracy of ca. 15% using typical data analysis techniques with simple 0D calculations. On the other hand, the mean ionization of the carbon in the bulk is underestimated. We suggest that this discrepancy is due to the convolution of scattering profiles from different regions of the target. Subsequently, we discuss modifications to the current platform to minimise the impact of inhomogeneities, as well as opacity, and also to enable probing of conditions more strongly weighted toward the compressed core.

Chapman, D. A., E-mail: david.chapman@awe.co.uk [Plasma Physics Group, Radiation Physics Department, AWE plc, Reading RG7 4PR (United Kingdom); Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Kraus, D.; Falcone, R. W. [Department of Physics, University of California, Berkeley, California 94720 (United States); Kritcher, A. L.; Bachmann, B.; Collins, G. W.; Gaffney, J. A.; Hawreliak, J. A.; Landen, O. L.; Le Pape, S.; Ma, T.; Nilsen, J.; Pak, A.; Swift, D. C.; Döppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Gericke, D. O. [Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94309 (United States); Guymer, T. M. [Plasma Physics Group, Radiation Physics Department, AWE plc, Reading RG7 4PR (United Kingdom); Neumayer, P. [Gesellschaft für Schwerionenforschung, 64291 Darmstadt (Germany); Redmer, R. [Institut für Physik, Universität Rostock, 18051 Rostock (Germany); and others

2014-08-15T23:59:59.000Z

370

Magnetic properties and critical behavior of Fe(tetracyanoethylene){sub 2}(centre dot)x(CH{sub 2}Cl{sub 2}): A high-T{sub c} molecule-based magnet  

SciTech Connect (OSTI)

We report magnetic studies of Fe(TCNE){sub 2}{center_dot}x(CH{sub 2}Cl{sub 2}), a member of the family of high-T{sub c} molecule-based magnets, M(TCNE){sub x}{center_dot}y(solvent) (M=V, Mn, TCNE=tetracyanoethelyne). Based on extensive static and dynamic magnetic measurements we show that this system has a complex magnetic behavior, with a mixture of ferrimagnetic and random anisotropy characteristics. The constricted hysteresis curve with a spin-flop shape, the ac susceptibility in the presence of a dc field, consistent with the spin-flop picture, and the remanent magnetization suggest ferrimagnetic behavior. The ac susceptibility data in zero dc field have modest frequency dependence suggesting glassiness, while the field-cooling/zero-field-cooling magnetization data show irreversibilities, starting at {approx}97 K, and increasing below {approx}20 K, all consistent with the behavior of reentrant random anisotropy magnets (RAM). Ferromagneticlike scaling analyses provide a critical temperature T{sub c}=97 K and the critical exponents {beta}=0.45 and {delta}=2.5, relatively consistent with random anisotropy magnet predictions. Also, the curvature of the Tmagnetic studies and analyzing the similarities with other members of this family of hybrid organic/inorganic compounds, we discuss the origins of anisotropy and randomness and the possible interconnections between ferrimagnetism and RAM (sperimagnetism) in Fe(TCNE){sub 2}{center_dot}x(CH{sub 2}Cl{sub 2}). (c) 2000 The American Physical Society.

Girtu, Mihai A. [Department of Physics, The Ohio State University, Columbus, Ohio 43210-1106 (United States); Wynn, Charles M. [Department of Physics, The Ohio State University, Columbus, Ohio 43210-1106 (United States); Zhang, Jie [Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850 (United States); Miller, Joel S. [Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850 (United States); Epstein, Arthur J. [Department of Physics and Department of Chemistry, The Ohio State University, Columbus, Ohio, 43210-1106 (United States)

2000-01-01T23:59:59.000Z

371

National Hydropower Map  

Broader source: Energy.gov [DOE]

High-resolution map produced by Oak Ridge National Laboratory showing hydropower resources throughout the United States.

372

Formation of Collisionless High-{beta} Plasmas by Odd-Parity Rotating Magnetic Fields  

SciTech Connect (OSTI)

Odd-parity rotating magnetic fields (RMF{sub o}) applied to mirror-configuration plasmas have produced average electron energies exceeding 200 eV at line-averaged electron densities of {approx}10{sup 12} cm{sup -3}. These plasmas, sustained for over 10{sup 3}{tau}{sub Alfven}, have low Coulomb collisionality, v{sub c}*{identical_to}L/{lambda}{sub C}{approx}10{sup -3}, where {lambda}{sub C} is the Coulomb scattering mean free path and L is the plasma's characteristic half length. Divertors allow reduction of the electron-neutral collision frequency to values where the RMF{sub o} coupling indicates full penetration of the RMF{sub o} to the major axis.

Cohen, S. A.; Berlinger, B.; Brunkhorst, C.; Brooks, A.; Ferraro, N.; Lundberg, D. P.; Roach, A. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey (United States); Glasser, A. H. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States)

2007-04-06T23:59:59.000Z

373

Stress Management as an Enabling Technology for High-Field Superconducting Dipole Magnets  

E-Print Network [OSTI]

-Pounds HD High field Dipole HGQ High Gradient Quadrupole HQ High field Quadrupole HT Heat Treatment IC Critical Current IFCC Inter-Filament Coupling Currents ITER International Thermonuclear Experimental Reactor vi LARP LHC Accelerator... pressure impregnation (VPI) vessel using NbTi conductor [1, 2]. TAMU2 verified the heat treatment equipment and tested the stress management technology at low field using low Jc Nb3Sn conductor from the International Thermonuclear Experimental Reactor...

Holik, Eddie Frank

2014-06-03T23:59:59.000Z

374

Advances in High-harmonic Fast Wave Physics in the National Spherical Torus Experiment  

SciTech Connect (OSTI)

Improved core high-harmonic fast wave (HHFW) heating at longer wavelengths and during start-up and plasma current ramp-up, has now been obtained by lowering the edge density with lithium wall conditioning, thereby moving the critical density for perpendicular fast-wave propagation away from the vessel wall. Lithium conditioning allowed significant HHFW core electron heating of deuterium neutral beam injection (NBI) fuelled H-mode plasmas to be observed for the first time. Large edge localized modes were observed immediately after the termination of rf power. Visible and infrared camera images show that fast wave interactions can deposit considerable rf energy on the outboard divertor. HHFW-generated parametric decay instabilities were observed to heat ions in the plasma edge and may be the cause for a measured drag on edge toroidal rotation during HHFW heating. A significant enhancement in neutron rate and fast-ion profile were measured in NBI-fuelled plasmas when HHFW heating was applied. __________________________________________________

Taylor, G; Hosea, J C; LeBlanc, B P; Phillips, C K; Podesta, M; Valeo, E J; Wilson, J R; Ahn, J -W; Chen, G; Green, D L; Jaeger, E F; Maingi, R; Ryan, P M; Wilgen, J B; Heidbrink, W W; Liu, D; Bonoli, P T; Brecht, T; Choi, M

2009-12-01T23:59:59.000Z

375

Sandia National Laboratories: magnetic mirror  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine blade

376

An investigation into high temperature superconducting flux pump technology with the circular type magnetic flux pump devices and YBaCuO films  

E-Print Network [OSTI]

The rapid development of second generation (2G) high temperature superconducting (HTS) wires in the last decade has made it possible to wind high quality 2G HTS coils. These 2G HTS coils show promise for future applications such as magnetic...

Wang, Wei

2014-06-10T23:59:59.000Z

377

Search of Neutrino Magnetic Moments with a High-Purity Germanium Detector at the Kuo-Sheng Nuclear Power Station  

E-Print Network [OSTI]

A search of neutrino magnetic moments was carried out at the Kuo-Sheng Nuclear Power Station at a distance of 28 m from the 2.9 GW reactor core. With a high purity germanium detector of mass 1.06 kg surrounded by scintillating NaI(Tl) and CsI(Tl) crystals as anti-Compton detectors, a detection threshold of 5 keV and a background level of 1 $\\cpd$ near threshold were achieved. Details of the reactor neutrino source, experimental hardware, background understanding and analysis methods are presented. Based on 570.7 and 127.8 days of Reactor ON and OFF data, respectively, at an average Reactor ON electron anti-neutrino flux of $\\rm{6.4 \\times 10^{12} cm^{-2} s^{-1}}$, the limit on the neutrino magnetic moments of $\\rm{\\munuebar < 7.4 \\times 10^{-11} \\mub}$ at 90% confidence level was derived. Indirect bounds on the $\

H. T. Wong; TEXONO Collaboration

2006-11-14T23:59:59.000Z

378

Accurate correction of magnetic field instabilities for high-resolution isochronous mass measurements in storage rings  

E-Print Network [OSTI]

Isochronous mass spectrometry (IMS) in storage rings is a successful technique for accurate mass measurements of short-lived nuclides with relative precision of about $10^{-5}-10^{-7}$. Instabilities of the magnetic fields in storage rings are one of the major contributions limiting the achievable mass resolving power, which is directly related to the precision of the obtained mass values. A new data analysis method is proposed allowing one to minimise the effect of such instabilities. The masses of the previously measured at the CSRe $^{41}$Ti, $^{43}$V, $^{47}$Mn, $^{49}$Fe, $^{53}$Ni and $^{55}$Cu nuclides were re-determined with this method. An improvement of the mass precision by a factor of $\\sim 1.7$ has been achieved for $^{41}$Ti and $^{43}$V. The method can be applied to any isochronous mass experiment irrespective of the accelerator facility. Furthermore, the method can be used as an on-line tool for checking the isochronous conditions of the storage ring.

P. Shuai; H. S. Xu; Y. H. Zhang; Yu. A. Litvinov; M. Wang; X. L. Tu; K. Blaum; X. H. Zhou; Y. J. Yuan; G. Audi; X. L. Yan; X. C. Chen; X. Xu; W. Zhang; B. H. Sun; T. Yamaguchi; R. J. Chen; C. Y. Fu; Z. Ge; W. J. Huang; D. W. Liu; Y. M. Xing; Q. Zeng

2014-07-13T23:59:59.000Z

379

GLOBAL TWIST OF SUNSPOT MAGNETIC FIELDS OBTAINED FROM HIGH-RESOLUTION VECTOR MAGNETOGRAMS  

SciTech Connect (OSTI)

The presence of fine structures in sunspot vector magnetic fields has been confirmed from Hinode as well as other earlier observations. We studied 43 sunspots based on the data sets taken from ASP/DLSP, Hinode (SOT/SP), and SVM (USO). In this Letter, (1) we introduce the concept of signed shear angle (SSA) for sunspots and establish its importance for non-force-free fields. (2) We find that the sign of global {alpha} (force-free parameter) is well correlated with that of the global SSA and the photospheric chirality of sunspots. (3) Local {alpha} patches of opposite signs are present in the umbra of each sunspot. The amplitude of the spatial variation of local {alpha} in the umbra is typically of the order of the global {alpha} of the sunspot. (4) We find that the local {alpha} is distributed as alternately positive and negative filaments in the penumbra. The amplitude of azimuthal variation of the local {alpha} in the penumbra is approximately an order of magnitude larger than that in the umbra. The contributions of the local positive and negative currents and {alpha} in the penumbra cancel each other giving almost no contribution for their global values for the whole sunspot. (5) Arc-like structures (partial rings) with a sign opposite to that of the dominant sign of {alpha} of the umbral region are seen at the umbral-penumbral boundaries of some sunspots. (6) Most of the sunspots studied belong to the minimum epoch of the 23rd solar cycle and do not follow the so-called hemispheric helicity rule.

Tiwari, Sanjiv Kumar; Venkatakrishnan, P. [Udaipur Solar Observatory, Physical Research Laboratory, Dewali, Bari Road, Udaipur-313 001 (India); Sankarasubramanian, K. [Space Astronomy and Instrumentation Division, ISRO Satellite Center, Airport Road, Vimanapura, Bangalore-560017 (India)], E-mail: stiwari@prl.res.in, E-mail: pvk@prl.res.in, E-mail: sankark@isac.gov.in

2009-09-10T23:59:59.000Z

380

Dynamic T{sub 2}-mapping during magnetic resonance guided high intensity focused ultrasound ablation of bone marrow  

SciTech Connect (OSTI)

Focal bone tumor treatments include amputation, limb-sparing surgical excision with bone reconstruction, and high-dose external-beam radiation therapy. Magnetic resonance guided high intensity focused ultrasound (MR-HIFU) is an effective non-invasive thermotherapy for palliative management of bone metastases pain. MR thermometry (MRT) measures the proton resonance frequency shift (PRFS) of water molecules and produces accurate (<1 Degree-Sign C) and dynamic (<5s) thermal maps in soft tissues. PRFS-MRT is ineffective in fatty tissues such as yellow bone marrow and, since accurate temperature measurements are required in the bone to ensure adequate thermal dose, MR-HIFU is not indicated for primary bone tumor treatments. Magnetic relaxation times are sensitive to lipid temperature and we hypothesize that bone marrow temperature can be determined accurately by measuring changes in T{sub 2}, since T{sub 2} increases linearly in fat during heating. T{sub 2}-mapping using dual echo times during a dynamic turbo spin-echo pulse sequence enabled rapid measurement of T{sub 2}. Calibration of T{sub 2}-based thermal maps involved heating the marrow in a bovine femur and simultaneously measuring T{sub 2} and temperature with a thermocouple. A positive T{sub 2} temperature dependence in bone marrow of 20 ms/ Degree-Sign C was observed. Dynamic T{sub 2}-mapping should enable accurate temperature monitoring during MR-HIFU treatment of bone marrow and shows promise for improving the safety and reducing the invasiveness of pediatric bone tumor treatments.

Waspe, Adam C.; Looi, Thomas; Mougenot, Charles; Amaral, Joao; Temple, Michael; Sivaloganathan, Siv; Drake, James M. [Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada); Philips Healthcare Canada, Markham, ON, L6C 2S3 (Canada); Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada); Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1 (Canada); Centre for Image Guided Innovation and Therapeutic Intervention, The Hospital for Sick Children, Toronto, ON, M5G 1X8 (Canada)

2012-11-28T23:59:59.000Z

Note: This page contains sample records for the topic "national high magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Partial Spin Ordering and Complex Magnetic Structure in BaYFeO4: A Neutron Diffraction and High Temperature Susceptibility Study  

SciTech Connect (OSTI)

The novel iron-based compound, BaYFeO4, crystallizes in the Pnma space group with two distinct Fe3+ sites, that are alternately corner-shared [FeO5]7 square pyramids and [FeO6]9 octahedra, forming into [Fe4O18]24 rings, which propagate as columns along the b-axis. A recent report shows two discernible antiferromagnetic (AFM) transitions at 36 and 48 K in the susceptibility, yet heat capacity measurements reveal no magnetic phase transitions at these temperatures. An upturn in the magnetic susceptibility measurements up to 400 K suggests the presence of shortrange magnetic behavior at higher temperatures. In this Article, variable-temperature neutron powder diffraction and hightemperature magnetic susceptibility measurements were performed to clarify the magnetic behavior. Neutron powder diffraction confirmed that the two magnetic transitions observed at 36 and 48 K are due to long-range magnetic order. Below 48 K, the magnetic structure was determined as a spin-density wave (SDW) with a propagation vector, k = (0, 0, 1/3), and the moments along the b-axis, whereas the structure becomes an incommensurate cycloid [k = (0, 0, 0.35)] below 36 K with the moments within the bc-plane. However, for both cases the ordered moments on Fe3+ are only of the order 3.0 B, smaller than the expected values near 4.5 B, indicating that significant components of the Fe moments remain paramagnetic to the lowest temperature studied, 6 K. Moreover, new high-temperature magnetic susceptibility measurements revealed a peak maximum at 550 K indicative of short-range spin correlations. It is postulated that most of the magnetic entropy is thus removed at high temperatures which could explain the absence of heat capacity anomalies at the long-range ordering temperatures. Published spin dimer calculations, which appear to suggest a k = (0, 0, 0) magnetic structure, and allow for neither low dimensionality nor geometric frustration, are inadequate to explain the observed complex magnetic structure.

Thompson, Corey [Florida State University, Tallahassee] [Florida State University, Tallahassee; Greedan, John [McMaster University] [McMaster University; Garlea, Vasile O [ORNL] [ORNL; Flacau, Roxana [National Research Council of Canada] [National Research Council of Canada; Tan, Malinda [California State University, Long Beach (CSULB)] [California State University, Long Beach (CSULB); Derakhshan, Shahab [California State University, Long Beach (CSULB)] [California State University, Long Beach (CSULB)

2014-01-01T23:59:59.000Z

382

Computer Based Motor Parameter Determination for High Speed Operation of Permanent Magnet Synchronous Machines  

E-Print Network [OSTI]

Synchronous Machines B. Szabados and U. Schaible McMaster University 1280 Main St. W., Hamilton, Ontario PM synchronous machine parameters in the high speed operating range. The theory and real interior PM synchronous machine at up to 8000 rpm. Results are presented which show a significant variation

Szabados, Barna

383

Microporous Magnets  

SciTech Connect (OSTI)

Combining porosity and magnetic ordering in a single material presents a significant challenge since magnetic exchange generally requires short bridges between the spin carriers, whereas porosity usually relies on the use of long diamagnetic connecting ligands. Despite this apparent incompatibility, notable successes have been achieved of late in generating truly microporous solids with high magnetic ordering temperatures. In this critical review, we give an overview of this emerging class of multifunctional materials, with particular emphasis on synthetic strategies and possible routes to new materials with improved properties (149 references).

Dechambenoit, Pierre; Long, Jeffrey R.

2011-01-01T23:59:59.000Z

384

Studies of Nb3Sn Strands Based on the Restacked-Rod Process for High-Field Accelerator Magnets Nb3Sn  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

A major thrust in Fermilab's accelerator magnet R&D program is the development of Nb3Sn wires which meet target requirements for high field magnets, such as high critical current density, low effective filament size, and the capability to withstand the cabling process. The performance of a number of strands with 150/169 restack design produced by Oxford Superconducting Technology was studied for round and deformed wires. To optimize the maximum plastic strain, finite element modeling was also used as an aid in the design. Results of mechanical, transport and metallographic analyses are presented for round and deformed wires.

Barzi, E; Bossert, M; Gallo, G; Lombardo, V; Turrioni, D; Yamada, R; Zlobin, A V

2012-06-01T23:59:59.000Z

385

Independent Oversight Review, Oak Ridge National Laboratory ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Laboratory - January 2013 Independent Oversight Review, Oak Ridge National Laboratory - January 2013 January 2013 Review of the Oak Ridge National Laboratory High Flux...

386

Magnetic-dipolar-mode Fano resonances for microwave spectroscopy of high absorption matter  

E-Print Network [OSTI]

Study of interaction between high absorption matter and microwave radiated energy is a subject of great importance. Especially, this concerns microwave spectroscopic characterization of biological liquids. Use of effective testing methods to obtain information about physical properties of different liquids on the molecular level is one of the most important problems in biophysics. However, the standard methods based on the microwave resonant techniques are not sufficiently suitable for biological liquids because the resonance peak in a resonator with high-loss liquids is so broad that the material parameters cannot be measured correctly. Although molecular vibrations of biomolecules may have microwave frequencies, it is not thought that such resonant coupling is significant due to their low energy compared with thermal energy and the strongly dampening aqueous environment. This paper presents an innovative microwave sensing technique for different types of lossy materials, including biological liquids. The te...

Vaisman, G; Shavit, R

2015-01-01T23:59:59.000Z

387

Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600. Proposals for beam time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR)  

E-Print Network [OSTI]

Neutron Scattering Science User Office, neutronusers@ornl.gov or (865) 574-4600. Proposals for beam Wildgruber, wildgrubercu@ornl.gov. VISION CallforProposals neutrons.ornl.gov Neutron Scattering Science - Oak time at Oak Ridge National Laboratory's High Flux Isotope Reactor (HFIR) and Spallation Neutron Source

Pennycook, Steve

388

The spontaneous generation of magnetic fields at high temperature in SU(2)-gluodynamics on a lattice  

E-Print Network [OSTI]

The spontaneous generation of the chromomagnetic field at high temperature is investigated in a lattice formulation of the SU(2)-gluodynamics. The procedure of studying this phenomenon is developed. The Monte Carlo simulations of the free energy on the lattices 2 \\times 8^3, 2\\times 16^3 and 4 \\times 8^3 at various temperatures are carried out. The creation of the field is indicated by means of the \\chi^2-analysis of the data set accumulating 5-10 millions MC configurations. A comparison with the results of other approaches is done.

Vadim Demchik; Vladimir Skalozub

2007-03-15T23:59:59.000Z

389

Measurements of Solid Liner Implosion for Magnetized Target Fusion IC R. Siemon, Los Alamos National Laboratory, Los Alamos, New Mexico, USA  

E-Print Network [OSTI]

National Laboratory, Los Alamos, New Mexico, USA rsiemon@lanl.gov Data are presented on the implosion Alamos National Laboratory, Los Alamos, New Mexico, USA 87545 E-mail: rsiemon@lanl.gov J. DEGNAN, D. GALE, W. SOMMARS, S. COFFEY, Air Force Research Laboratory, Kirtland Air Force Base, New Mexico, USA 87117

390

Measurements of fuel and ablator R in Symmetry-Capsule implosions with the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facilitya)  

E-Print Network [OSTI]

Lawrence Livermore National Laboratory, Livermore, California 94550, USA 3 Laboratory for Laser Energetics Spectrometer (MRS) on the National Ignition Facility (NIF) measures the neutron spectrum in the energy range-filled symmetry-capsule implosions at the NIF. DT-fuel R's of 80­140 mg/cm2 and CH-ablator R's of 400­680 mg/cm2

391

A high current pulse generator for magnetizing thin magnetic films Joseph W. Ting, Daniel J. Rubins, D.-J. Huang, and J. L. Erskine  

E-Print Network [OSTI]

these requirements for po- larized electron spectroscopy/microscopy of thin magnetic films. II. CIRCUIT DESCRIPTION which provide voltages to the logic and firing circuitry. The capacitor bank consists of four 2000 m. diam turns of No. 10 solid copper wire. Sequential pulses of opposite polarity are generated by firing

Erskine, James L.

392

Ultra-High-Energy Cosmic Rays from a Magnetized Strange Star Central Engine for Gamma-Ray Bursts  

E-Print Network [OSTI]

Ultra-high-energy cosmic rays (UHECRs) have been tried to be related to the most varied and powerful sources known in the universe. Gamma-ray bursts (GRBs) are natural candidates. Here, we argue that cosmic rays can be accelerated by large amplitude electromagnetic waves (LAEMWs) when the MHD approximation of the field in the wind generated by the GRB's magnetized central engine breaks down. The central engine considered here is a strange star born with differential rotation from the accretion induced conversion of a neutron star into a strange star in a low-mass X-ray binary system. The LAEMWs generated this way accelerate light ions to the highest energies $E = q\\eta\\Delta\\Phi_{max}$ with an efficiency $\\eta \\sim 10^{-1}$ that accounts for all plausible energy losses. Alternatively, we also consider the possibility that, once formed, the LAEMWs are unstable to creation of a relativistically strong electromagnetic turbulence due to an overturn instability. Under this assumption, a lower limit to the efficiency of acceleration is estimated to be about $\\eta \\sim 10^{-2.5}$. Due to their age, low mass X-ray binary systems can be located in regions of low interstellar medium density as, e.g., globular clusters or even intergalactic medium in case of high proper motion systems, and cosmic ray energy losses due to proton collisions with photons at the decelerating region are avoided, thus opening the possibility for particles to exploit the full voltage available, well beyond that currently observed.

O. Esquivel; D. Page

2008-04-04T23:59:59.000Z

393

Calcium silicate hydrates investigated by solid-state high resolution {sup 1}H and {sup 29}Si nuclear magnetic resonance  

SciTech Connect (OSTI)

This work focuses on phases formed during cement hydration under high pressure and temperature: portlandite Ca(OH){sub 2} (CH); hillebrandite Ca{sub 2}(SiO{sub 3})(OH){sub 2} ({beta}-dicalcium silicate hydrate); calcium silicate hydrate (C-S-H); jaffeite Ca{sub 6}(Si{sub 2}O{sub 7})(OH){sub 6} (tricalcium silicate hydrate); {alpha}-C{sub 2}SH Ca{sub 2}(SiO{sub 3})(OH){sub 2} ({alpha}-dicalcium silicate hydrate); xonotlite Ca{sub 6}(Si{sub 6}O{sub 17})(OH){sub 2} and kilchoanite Ca{sub 6}(SiO{sub 4})(Si{sub 3}O{sub 10}). Portlandite and hillebrandite were synthesized and characterised by high resolution solid-state {sup 1}H and {sup 29}Si Nuclear Magnetic Resonance. In addition, information from the literature concerning the last five phases was gathered. In certain cases, a schematic 3D-structure could be determined. These data allow identification of the other phases present in a mixture. Their morphology was also observed by Scanning Electron Microscopy.

Meducin, Fabienne [Laboratoire de Physique et Mecanique des Milieux Heterogenes, Ecole Superieure de Physique et Chimie Industrielles, 75231 Paris Cedex 05 (France)]. E-mail: meducin@cnrs-orleans.fr; Bresson, Bruno [Laboratoire de Physique Quantique, ESPCI (France); Lequeux, Nicolas [Laboratoire de Physico-Chimie des polymeres et des milieux disperses, ESPCI (France); Noirfontaine, Marie-Noelle de [Laboratoire CECM-CNRS, 15, rue Georges Urbain, 94407 Vitry sur Seine (France); Zanni, Helene [Laboratoire de Physique et Mecanique des Milieux Heterogenes, Ecole Superieure de Physique et Chimie Industrielles, 75231 Paris Cedex 05 (France)

2007-05-15T23:59:59.000Z

394

ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets  

E-Print Network [OSTI]

The affordable, robust, compact (ARC) reactor conceptual design study aims to reduce the size, cost, and complexity of a combined fusion nuclear science facility (FNSF) and demonstration fusion Pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has rare earth barium copper oxide (REBCO) superconducting toroidal field coils, which have joints to enable disassembly. This allows the vacuum vessel to be replaced quickly, mitigating first wall survivability concerns, and permits a single device to test many vacuum vessel designs and divertor materials. The design point has a plasma fusion gain of Q_p~13.6, yet is fully non-inductive, with a modest bootstrap fraction of only ~63%. Thus ARC offers a high power gain with relatively large external control of the current profile. This highly attractive combination is enabled by the ~23 T peak field on coil with newly available REBCO superconductor technology. External cu...

Sorbom, B N; Palmer, T R; Mangiarotti, F J; Sierchio, J M; Bonoli, P; Kasten, C; Sutherland, D A; Barnard, H S; Haakonsen, C B; Goh, J; Sung, C; Whyte, D G

2014-01-01T23:59:59.000Z

395

Magnetic Coordinates for Systems with Imperfect Magnetic Surfaces  

E-Print Network [OSTI]

Magnetic Coordinates for Systems with Imperfect Magnetic Surfaces R. L. Dewar and S. R. Hudson & Engineering, The Australian National University, Canberra, A.C.T. 0200, Australia e-mail: robert-orbits, and the surfaces are formed from a continuous one-parameter family of such orbits. Magnetic field-line flow

Dewar, Robert L.

396

High-resolution measurements of the spatial and temporal evolution of megagauss magnetic fields created in intense short-pulse laser-plasma interactions  

SciTech Connect (OSTI)

A pump-probe polarimetric technique is demonstrated, which provides a complete, temporally and spatially resolved mapping of the megagauss magnetic fields generated in intense short-pulse laser-plasma interactions. A normally incident time-delayed probe pulse reflected from its critical surface undergoes a change in its ellipticity according to the magneto-optic Cotton-Mouton effect due to the azimuthal nature of the ambient self-generated megagauss magnetic fields. The temporal resolution of the magnetic field mapping is typically of the order of the pulsewidth, limited by the laser intensity contrast, whereas a spatial resolution of a few ?m is achieved by this optical technique. High-harmonics of the probe can be employed to penetrate deeper into the plasma to even near-solid densities. The spatial and temporal evolution of the megagauss magnetic fields at the target front as well as at the target rear are presented. The ?m-scale resolution of the magnetic field mapping provides valuable information on the filamentary instabilities at the target front, whereas probing the target rear mirrors the highly complex fast electron transport in intense laser-plasma interactions.

Chatterjee, Gourab, E-mail: gourab@tifr.res.in; Singh, Prashant Kumar; Adak, Amitava; Lad, Amit D.; Kumar, G. Ravindra, E-mail: grk@tifr.res.in [Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400 005 (India)

2014-01-15T23:59:59.000Z

397

Performance of High-Convergence, Layered DT Implosions with Extended-Duration Pulses at the National Ignition Facility  

E-Print Network [OSTI]

Radiation-driven, low-adiabat, cryogenic DT layered plastic capsule implosions were carried out on the National Ignition Facility (NIF) to study the sensitivity of performance to peak power and drive duration. An implosion ...

Gatu Johnson, Maria

398

Simulation of the influence high-frequency (2 MHz) capacitive gas discharge and magnetic field on the plasma sheath near a surface in hypersonic gas flow  

SciTech Connect (OSTI)

The plasma sheath near the surface of a hypersonic aircraft formed under associative ionization behind the shock front shields the transmission and reception of radio signals. Using two-dimensional kinetic particle-in-cell simulations, we consider the change in plasma-sheath parameters near a flat surface in a hypersonic flow under the action of electrical and magnetic fields. The combined action of a high-frequency 2-MHz capacitive discharge, a constant voltage, and a magnetic field on the plasma sheath allows the local electron density to be reduced manyfold.

Schweigert, I. V., E-mail: ischweig@itam.nsc.ru [Russian Academy of Sciences, Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch (Russian Federation)

2012-08-15T23:59:59.000Z

399

Spin-lattice coupling in uranium dioxide probed by magnetostriction measurements at high magnetic fields (P08358-E001-PF)  

SciTech Connect (OSTI)

Conclusions Our preliminary magnetostriction measurements have already shown a strong interplay of lattice dynamic and magnetism in both antiferromagnetic and paramagnetic states, and give unambiguous evidence of strong spin- phonon coupling in uranium dioxide. Further studies are planned to address the puzzling behavior of UO2 in magnetic and paramagnetic states and details of the spin-phonon coupling.

K. Gofryk; M. Jaime

2014-12-01T23:59:59.000Z

400

Cryostat design and analysis of the superconducting magnets for Jefferson Lab's 11-GEV/C super high momentum spectrometer  

SciTech Connect (OSTI)

This paper describes the mechanical design and analysis of the cryostats for the two cos(2theta) quadrupoles and the cos(theta) dipole. All the magnets are currently being bid for commercial fabrication. The results of finite element analysis for the magnet cryostat helium vessels and outer vacuum chambers which investigate the mechanical integrity under maximum allowable internal working pressure, maximum allowable external working pressure, and cryogenic temperature are discussed. The allowable stress criterion is determined based on the allowable stress philosophy of the ASME codes. The computed cryogenic heat load of the magnets is compared with the allowable cryogenic consumption budget. The presented cool-down time of the magnets was studied under the conditions of a limited supply rate and a controlled temperature differential of 50 K in the magnets.

P. Brindza, E. Sun, S. Lassiter, M. Fowler

2010-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "national high magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Magnetic properties and homogeneous distribution of Gd{sup 3+} ions in gadolinium molybdenum borate glass with high Gd{sub 2}O{sub 3} content  

SciTech Connect (OSTI)

Highlights: ? The magnetic susceptibility of Gd{sub 2}O{sub 3}–MoO{sub 3}–B{sub 2}O{sub 3} glass was examined in T = 1.8–300 K. ? The effective magnetic moment was ?{sub eff} = 7.87 ?{sub B}. ? The Weiss constant was ? = ?0.7 K. ? Gd{sup 3+} ions are distributed homogeneously as paramagnetic ions down to T = 1.8 K. -- Abstract: The magnetic susceptibility and specific heat of 21.25Gd{sub 2}O{sub 3}–63.75MoO{sub 3}–15B{sub 2}O{sub 3} (mol%) glass showing the crystallization of ferroelastic ??-Gd{sub 2}(MoO{sub 4}){sub 3} crystals are examined in the temperature range of T = 1.8–300 K to clarify magnetic and distribution states of Gd{sup 3+} ions. The magnetic susceptibility obeys the Curie–Weiss law, giving the effective magnetic moment of ?{sub eff} = 7.87 ?{sub B} and the Weiss constant of ? = ?0.7 K. Any peak such as ?-type anomaly is not observed in the temperature dependence of specific heat in T = 1.8–5 K. It is suggested that Gd{sup 3+} ions in the glass with a high Gd{sub 2}O{sub 3} content of 21.25 mol% are distributed homogeneously and randomly as paramagnetic ions down to T = 1.8 K without inducing any strong magnetic interaction. The present study suggests that glasses based on the MoO{sub 3}–B{sub 2}O{sub 3} system are good hosts for the homogeneous solubility of a large amount of rare-earth oxides.

Suzuki, F.; Honma, T. [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan)] [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan); Doi, Y.; Hinatsu, Y. [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan)] [Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Komatsu, T., E-mail: komatsu@mst.nagaokaut.ac.jp [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka-cho, Nagaoka 940-2188 (Japan)

2012-11-15T23:59:59.000Z

402

Vehicle Technologies Office Merit Review 2014: Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel...

403

A new 3D parallel high resolution electromagnetic nonlinear inversion based on new global magnetic integral and local differential decomposition (GILD)  

SciTech Connect (OSTI)

A new 3D electromagnetic modeling and nonlinear inversion algorithm is presented based on global integral and local differential equations decomposition (GILD). The GILD parallel nonlinear inversion algorithm consists of five parts: (1) the domain is decomposed into subdomain SI and subdomain SII; (2) a new global magnetic integral equation in SI and the local magnetic differential equations IN SII will be used together to obtain the magnetic field in the modeling step; (3) the new global magnetic integral Jacobian equation in SI and the local magnetic differential Jacobian equations in SII will be used together to update the electric conductivity and permittivity from the magnetic field data in the inversion step; (4) the subdomain SII can naturally and uniformly be decomposed into 2{sup n} smaller sub-cubic-domains; the sparse matrix in each sub-cubic-domain can be eliminated separately, in parallel; (5) a new parallel multiple hierarchy substructure algorithm will be used to solve the smaller full matrices in SI, in parallel. The applications of the new 3D parallel GILD EM modeling and nonlinear inversion algorithm and software are: (1) to create high resolution controlled-source electric conductivity and permittivity imaging for interpreting electromagnetic field data acquired from cross hole, surface to borehole, surface to surface, single hole, and multiple holes; (2) to create the magnetotelluric high resolution imaging from the surface impedance and field data. The new GILD parallel nonlinear inversion will be a 3D/2.5D powerful imaging tool for the oil geophysical exploration and environmental remediation and monitoring.

Xie, G.; Li, J. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

1997-05-01T23:59:59.000Z

404

Successful Characterization and Remedial Contour of Highly Contaminated Mercury Soil at the Y-12 National Security Complex - 13593  

SciTech Connect (OSTI)

An area known as the 81-10 pad within the footprint of the Y-12 National Security Complex, suspected to be heavily contaminated with mercury, was slated for characterization in support of a Federal Facilities Agreement (FFA) milestone to be accomplished by September 30, 2012. A full remedial design report (RDR) required the soil in Exposure Unit -9 (EU-9) to be fully characterized for a number of contaminates of concern including mercury. The goal of this characterization effort was to determine what soil, if any, would need to be removed for the protection of industrial workers and impacts to the surface and ground water. Funding for this project was made available using buy-back scope under the American Recovery and Reinvestment Act (ARRA). The EU-9 soil unit involved 3 different classifications which were determined as follows: Class 1: Known to have been impacted, contamination is likely; Class 2: Suspected to have been impacted, contamination is unknown; Class 3: Area not known to have been impacted, contamination unlikely. Due to various sampling and analysis events since the 1980's, significant mercury contamination was expected under the concrete pad of an area known as 81-10. Mercury contamination outside of the boundary of this pad within the EU-9 footprint was not known and therefore an original planned estimate of 1,461 cubic meters of material were expected to be heavily contaminated with mercury requiring removal, treatment and disposal. Through the use of a highly effective nature and extent sampling and analysis design that involved a hybrid of statistically-based and judgmental sampling, the actual remedial contour requiring removal was approximately 717 cubic meters, roughly 12% of the original estimate. This characterization approach was executed in full compliance with the Record of Decision (ROD) [1] documents that were agreed upon by the U.S. Department of Energy, Environmental Protection Agency and Tennessee Department of Environment and Conservation. In addition, the RDR was completed ahead of the FFA milestone date of September 30, 2012. (authors)

White, Aaron; Rigas, Michael [U.S. Department of Energy Oak Ridge Operations, Oak Ridge, TN 37830 (United States)] [U.S. Department of Energy Oak Ridge Operations, Oak Ridge, TN 37830 (United States); Birchfield, Joseph W. III [1528 Paxton Drive Knoxville, TN 37918 (United States)] [1528 Paxton Drive Knoxville, TN 37918 (United States)

2013-07-01T23:59:59.000Z

405

CRAD, Configuration Management - Oak Ridge National Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

Configuration Management - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Configuration Management - Oak Ridge National Laboratory High Flux Isotope Reactor February...

406

CRAD, Configuration Management - Oak Ridge National Laboratory...  

Broader source: Energy.gov (indexed) [DOE]

Configuration Management - Oak Ridge National Laboratory High Flux Isotope Reactor Contractor ORR CRAD, Configuration Management - Oak Ridge National Laboratory High Flux Isotope...

407

Performance of High-Convergence, Layered DT Implosions with Extended-Duration Pulses at the National Ignition Facility  

E-Print Network [OSTI]

. Moran,1 E. I. Moses,1 A. Pak,1 T. Parham,1 H.-S. Park,1 P. K. Patel,1 R. Petrasso,4 J. E. Ralph,1 S. P, California 94550, USA 2 Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA 3 Laboratory

408

The design of a test rig for the identification of dynamic coefficients of a high temperature magnetic bearing  

E-Print Network [OSTI]

This thesis is a report on the research and Micrographics. development to design a test rig for the identification of the dynamic coefficients of a radial magnetic bearing. The test rig development is intended for dynamic coefficient observation...

Rahtika, I Putu Gede Sopan

1998-01-01T23:59:59.000Z

409

Comment on a paper "The origin of high magnetic remanence in fault pseudotachylites: Theoretical considerations and implication for  

E-Print Network [OSTI]

about the commented paper. References Kletetschka, G., Kohout, T., Wasilewski, P.J., 2003. Magnetic.H., Kohout, T., Wasilewski, P.J., Connerney, J.E.P., 2004. An empirical scaling law for acquisition

Kletetschka, Gunther

410

Abstract --For high-speed machines applications, eddy-current losses in the interior permanent magnet of synchronous  

E-Print Network [OSTI]

-current losses in magnets of PMSM, due to time harmonics of stator currents, has been developed [4] to consider of PMSM, due to space harmonics of magnetomotive force (MMF), have been presented in order t

Paris-Sud XI, Université de

411

High magnetic field studies of charged exciton localization in GaAs/Al{sub x}Ga{sub 1?x}As quantum wells  

SciTech Connect (OSTI)

We report on low temperature, polarization resolved, high magnetic field (up to 23?T) photoluminescence experiments on high mobility asymmetric GaAs quantum wells. At high magnetic fields, we detect two strong emission lines of the neutral and positively charged excitons (X and X{sup +}) and a series of weaker lines of the excitons bound to ionized acceptors (AX{sup ?}). From polarization energy splittings of these lines, we determine the hole Landé factors (g{sub h}) of different complexes. For X and X{sup +}, g{sub h} initially grows with magnetic field and then saturates at g{sub h}?=?0.88 and 1.55, respectively; for AX{sup ?}'s, g{sub h} begins from a high value (from 6 to 11 at zero field) and decreases with the field growth. This contrasting behavior is traced to the structure of valence band Landau levels, calculated numerically in the Luttinger model, beyond axial approximation. This points to the coexistence (in the same well) of mobile X and X{sup +} with localized and interface-pressed AX{sup ?} states.

Jadczak, J.; Bryja, L., E-mail: leszek.bryja@pwr.edu.pl; Ryczko, K.; Kubisa, M.; Wójs, A. [Institute of Physics, Wroc?aw University of Technology, 50-370 Wroclaw (Poland); Potemski, M. [Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, Grenoble (France); Liu, F. [Experimentelle Physik 2, Technische Universität Dortmund, D-44221 Dortmund (Germany); Yakovlev, D. R.; Bayer, M. [Experimentelle Physik 2, Technische Universität Dortmund, D-44221 Dortmund (Germany); Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Nicoll, C. A.; Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 OHE (United Kingdom)

2014-09-15T23:59:59.000Z

412

HE0241-0155 - Evidence for a large scale homogeneous field in a highly magnetic white dwarf  

E-Print Network [OSTI]

In the course of the Hamburg/ESO survey we have discovered a white dwarf whose spectrum exhibits many similarities with the prototype of magnetic white dwarfs Grw+70$^{\\circ}$8247. In particular several stationary line components indicative for magnetic fields between about 150 and 400 MG are found in both objects. However, the features between 5000 and 5500 \\AA in the spectrum of HE0241-0155 cannot be explained by stationary line components and demand a relatively homogeneous magnetic field with clustering around 200 MG. For this reason a pure dipole model failed to reproduce this spectral region.An offset-dipole configuration led to some improvement in the fit but a good agreement was only possible for a geometry -- described by an expansion into spherical harmonics -- where most of the surface is covered with magnetic field strengths strongly clustered around 200 MG. This may indicate the presence of a large magnetic spot whose presence could be tested with time resolved spectro-polarimetry.

Dieter Reimers; Stefan Jordan; Norbert Christlieb

2003-11-04T23:59:59.000Z

413

Nuclear magnetic resonance: Its role as a microscopic probe of the electronic and magnetic properties of High-{Tc} superconductors and related materials  

SciTech Connect (OSTI)

NMR experiments are reported for Sr{sub 2}CuO{sub 2}Cl{sub 2}, HgBa{sub 2}CuO{sub 4+d}, YNi{sub 2}B{sub 2}C and YBa{sub 2}Cu{sub 3}O{sub 7}. NMR studies typify three different aspects of microscopic properties of HTSC. In non-superconducting antiferromagnetic (AF) prototype Sr{sub 2}CuO{sub 2}Cl{sub 2}, we used NMR to investigate Cu{sup 2+} correlated spin dynamics and AF phase transition in CuO2 layers. In the superconductors, we used NMR both to investigate the electronic properties of the Fermi-liquid in normal and superconducting states and to investigate flux lattice and flux-line dynamics in the superconducting state in presence of magnetic field. A summary of each study is given: {sup 35}Cl NMR was measured in Sr{sub 2}CuO{sub 2}Cl{sub 2} single crystals with T{sub N}=257K. {sub 35}Cl NMR relaxation rates showed crossover of Cu{sup 2+} spin dynamics from Heisenberg to XY-like correlation at 290 K well above T{sub N}. A field-dependent T{sub N} for H{perpendicular}c was observed and explained by a field-induced Ising-like anisotropy in ab plane. {sup 199}Hg NMR was measured in HgBa{sub 2}CuO{sub 4+d}. Properties of the Fermi-liquid are characterized by a single-spin fluid picture and opening of a spin pseudo-gap at q=0 above {Tc}. Below {Tc}, spin component of Knight shift decreases rapidly in agreement with prediction for d-wave pairing scheme. {sup 11}B and {sup 89}Y NMR/magnetization were measured in YNi{sub 2}B{sub 2}C. Temperature dependence of {sup 11}B Knight shift and of the NSLR gave a normal state which agrees with the Korringa relation, indicating that the AF fluctuations on the Ni sublattice are negligible. Opening of the superconducting gap obeys BCS. A NMR approach to investigate vortex thermal motion in HTSC is presented, based on contribution of thermal flux-lines motion to both T{sub 2}{sup {minus}1} and T{sub 1}{sup {minus}1}. Effects are demonstrated in YBa{sub 2}Cu{sub 3}O{sub 7} and HgBa{sub 2}CuO{sub 4+d}.

Suh, Byoung Jin

1995-12-27T23:59:59.000Z

414

DEEP X-RAY OBSERVATIONS OF THE YOUNG HIGH-MAGNETIC-FIELD RADIO PULSAR J1119-6127 AND SUPERNOVA REMNANT G292.2-0.5  

SciTech Connect (OSTI)

High-magnetic-field radio pulsars are important transition objects for understanding the connection between magnetars and conventional radio pulsars. We present a detailed study of the young radio pulsar J1119-6127, which has a characteristic age of 1900 yr and a spin-down-inferred magnetic field of 4.1 Multiplication-Sign 10{sup 13} G, and its associated supernova remnant G292.2-0.5, using deep XMM-Newton and Chandra X-ray Observatory exposures of over 120 ks from each telescope. The pulsar emission shows strong modulation below 2.5 keV with a single-peaked profile and a large pulsed fraction of 0.48 {+-} 0.12. Employing a magnetic, partially ionized hydrogen atmosphere model, we find that the observed pulse profile can be produced by a single hot spot of temperature 0.13 keV covering about one-third of the stellar surface, and we place an upper limit of 0.08 keV for an antipodal hot spot with the same area. The non-uniform surface temperature distribution could be the result of anisotropic heat conduction under a strong magnetic field, and a single-peaked profile seems common among high-B radio pulsars. For the associated remnant G292.2-0.5, its large diameter could be attributed to fast expansion in a low-density wind cavity, likely formed by a Wolf-Rayet progenitor, similar to two other high-B radio pulsars.

Ng, C.-Y.; Kaspi, V. M. [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Ho, W. C. G. [School of Mathematics, University of Southampton, Southampton SO17 1BJ (United Kingdom); Weltevrede, P. [Jodrell Bank Centre for Astrophysics, University of Manchester, Alan Turing Building, Manchester M13 9PL (United Kingdom); Bogdanov, S. [Columbia Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Shannon, R. [CSIRO Astronomy and Space Sciences, Australia Telescope National Facility, Marsfield, NSW 2210 (Australia); Gonzalez, M. E., E-mail: ncy@physics.mcgill.ca [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada)

2012-12-10T23:59:59.000Z

415

Abstract--This paper discusses an optimum design of an ultra high-speed permanent-magnet synchronous motor  

E-Print Network [OSTI]

-magnet synchronous motor (PMSM), which is applied to a supercharger of an automotive engine. Although the motor (PMSM), which is specifically applied to the electric supercharger of the automotive engines. Although the PMSM is operated by an inverter with a 12-V DC bus voltage for an adjustable-speed drive, it must

Fujimoto, Hiroshi

416

Design of low-power permanent-magnet synchronous motor for use in high-density heat pump  

E-Print Network [OSTI]

An analytical model for the functionality of a permanent-magnet synchronous motor is developed. Taking as input a specific geometry, it predicts steady-state losses of a design at an average rate of 0.85 seconds per analysis, ...

Jenicek, David P. (David Pierre)

2011-01-01T23:59:59.000Z

417

Journal of Magnetism and Magnetic Materials ] (  

E-Print Network [OSTI]

magnetic properties were measured with a vibrating sample magnetometer. The mass-specific power loss.40.Rs Keywords: Nanocrystalline alloys; Amorphous alloys; Field annealing; Power loss; Soft magnets the hysteretic power loss while maintaining high-temperature operability [4]. Other goals have included studies

McHenry, Michael E.

418

Magnet Girder Assembly and Installation  

ScienceCinema (OSTI)

It takes teamwork to assemble and install magnet girders for the storage ring of the National Synchrotron Light Source II. NSLS-II is now under construction at Brookhaven Lab.

None

2013-07-17T23:59:59.000Z

419

Magnetically stimulated fluid flow patterns  

ScienceCinema (OSTI)

Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

Martin, Jim; Solis, Kyle

2014-08-06T23:59:59.000Z

420

Magnet Girder Assembly and Installation  

SciTech Connect (OSTI)

It takes teamwork to assemble and install magnet girders for the storage ring of the National Synchrotron Light Source II. NSLS-II is now under construction at Brookhaven Lab.

None

2012-12-12T23:59:59.000Z

Note: This page contains sample records for the topic "national high magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

High thermal stability and low Gilbert damping constant of CoFeB/MgO bilayer with perpendicular magnetic anisotropy by Al capping and rapid thermal annealing  

SciTech Connect (OSTI)

We demonstrate that the magnetic anisotropy of the CoFeB/MgO bilayer can be manipulated by adding an aluminum capping layer. After rapid thermal annealing, we can achieve large perpendicular magnetic anisotropy of CoFeB with a high thermal stability factor (??=?72) while the Gilbert damping constant can be reduced down to only 0.011 simultaneously. The boron and residual oxygen in the bulk CoFeB layer are properly absorbed by the Al capping layer during annealing, leading to the enhanced exchange stiffness and reduced damping. The interfacial Fe-O bonding can be optimized by tuning annealing temperature and thickness of Al, resulting in enhanced perpendicular anisotropy.

Wang, Ding-Shuo; Lai, Shu-Yu; Lin, Tzu-Ying; Wang, Liang-Wei; Liao, Jung-Wei; Lai, Chih-Huang, E-mail: chlai@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan (China); Chien, Cheng-Wei; Wang, Yung-Hung [Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Chutung, Taiwan (China); Ellsworth, David; Lu, Lei; Wu, Mingzhong [Department of Physics, Colorado State University, Fort Collins, Colorado 80523 (United States)

2014-04-07T23:59:59.000Z

422

High-resolution spectroscopy for Doppler-broadening ion temperature measurements of implosions at the National Ignition Facility  

SciTech Connect (OSTI)

Future implosion experiments at the national ignition facility (NIF) will endeavor to simultaneously measure electron and ion temperatures with temporal and spatial resolution in order to explore non-equilibrium temperature distributions and their relaxation toward equilibrium. In anticipation of these experiments, and with understanding of the constraints of the NIF facility environment, we have explored the use of Doppler broadening of mid-Z dopant emission lines, such as krypton He-{alpha} at 13 keV, as a diagnostic of time- and potentially space-resolved ion temperature. We have investigated a number of options analytically and with numerical raytracing, and we have identified several promising candidate spectrometer designs that meet the expected requirements of spectral and temporal resolution and data signal-to-noise ratio for gas-filled exploding pusher implosions, while providing maximum flexibility for use on a variety of experiments that potentially include burning plasma.

Koch, J. A.; Stewart, R. E.; Beiersdorfer, P.; Shepherd, R.; Schneider, M. B.; Miles, A. R.; Scott, H. A.; Smalyuk, V. A.; Hsing, W. W. [Lawrence Livermore National Laboratory, P.O. Box 808, L-493, Livermore, California 94550 (United States)

2012-10-15T23:59:59.000Z

423

SUMMARY AND RESULTS LETTER REPORT – INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PROJECT, PHASE 3: TRENCHES 2, 3, AND 4 BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK  

SciTech Connect (OSTI)

5098-LR-02-0 SUMMARY AND RESULTS LETTER REPORT – INDEPENDENT VERIFICATION OF THE HIGH FLUX BEAM REACTOR UNDERGROUND UTILITIES REMOVAL PROJECT, PHASE 3 TRENCHES 2, 3, AND 4 BROOKHAVEN NATIONAL LABORATORY

E.M. Harpenau

2010-11-15T23:59:59.000Z

424

Probing high areal-density cryogenic deuterium-tritium implosions using downscattered neutron spectra measured by the magnetic recoil  

E-Print Network [OSTI]

for Laser Energetics, University of Rochester, Rochester, New York 14623, USA 3 Lawrence Livermore National Laboratory, Livermore, California 94550, USA 4 Geneseo State University, Geneseo, New York 14454, USA 5 OMEGA-MRS data and Monte Carlo simulations have shown that the MRS on the NIF G. H. Miller et al., Nucl

425

Rapid Cycling Synchrotron (RCS) sngle-stage kicker magnet  

SciTech Connect (OSTI)

A new single stage kicker magnet system is designed and is being fabricated for the RCS accelerator of the Intense Pulsed Neutron Source (IPNS-I) at the Argonne National Laboratory. This system will replace the two stage kicker in present use. The magnet aperture is 10 cm wide by 5 cm high and the magnetic length is 0.89 m. The magnetic field intensity is 0.1021 T for a 25 milliradian kick to the 500 MeV proton beam. A field rise time (10 to 90%) of 80 ns and a flattop of 100 ns is needed. The magnetic field fall time is not critical so a lumped parameter magnet with a 7.2 ohm load will be used. The electric current required through the single turn magnet is 4863 A. A new energy storage and switching system is designed and is being fabricated for energizing the magnets. The techniques and hardware used will be described along with some of the experience gained in the use of the two stage system which will help to improve the new design.

Suddeth, D.E.; Volk, G.J.

1980-01-01T23:59:59.000Z

426

Magnetic Stereoscopy  

E-Print Network [OSTI]

The space mission STEREO will provide images from two viewpoints. An important aim of the STEREO mission is to get a 3D view of the solar corona. We develop a program for the stereoscopic reconstruction of 3D coronal loops from images taken with the two STEREO spacecraft. A pure geometric triangulation of coronal features leads to ambiguities because the dilute plasma emissions complicates the association of features in image 1 with features in image 2. As a consequence of these problems the stereoscopic reconstruction is not unique and multiple solutions occur. We demonstrate how these ambiguities can be resolved with the help of different coronal magnetic field models (potential, linear and non-linear force-free fields). The idea is that, due to the high conductivity in the coronal plasma, the emitting plasma outlines the magnetic field lines. Consequently the 3D coronal magnetic field provides a proxy for the stereoscopy which allows to eliminate inconsistent configurations. The combination of stereoscopy and magnetic modelling is more powerful than one of these tools alone. We test our method with the help of a model active region and plan to apply it to the solar case as soon as STEREO data become available.

Thomas Wiegelmann; Bernd Inhester

2006-12-21T23:59:59.000Z

427

E-Print Network 3.0 - ac applied magnetic Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- Superconducting Magnet Division, Brookhaven National Laboratory Collection: Physics 97 TEST RESULTS OF HTS COILS AND AN R&D MAGNET FOR RIA* , M. Anerella, M. Harrison, J....

428

Determination of the Planck constant using a watt balance with a superconducting magnet system at the National Institute of Standards and Technology  

E-Print Network [OSTI]

For the past two years, measurements have been performed with a watt balance at the National Institute of Standards and Technology (NIST) to determine the Planck constant. A detailed analysis of these measurements and their uncertainties has led to the value $h=6.626\\,069\\,79(30)\\times 10^{-34}\\,$J$\\,$s. The relative standard uncertainty is $ 45\\times 10^{-9}$. This result is $141\\times 10^{-9}$ fractionally higher than $h_{90}$. Here $h_{90}$ is the conventional value of the Planck constant given by $h_{90}\\equiv 4 /( K_{\\mathrm{J-90}}^2R_{\\mathrm{K-90}})$, where $K_{\\mathrm{J-90}}$ and $R_{\\mathrm{K-90}}$ denote the conventional values of the Josephson and von Klitzing constants, respectively.

Schlamminger, Stephan; Seifert, Frank; Chao, Leon S; Newell, David B; Liu, Ruimin; Steiner, Richard L; Pratt, Jon R

2014-01-01T23:59:59.000Z

429

Fast, High Fidelity Quantum Dot Spin Initialization without a Strong Magnetic Field by Two-Photon Processes  

E-Print Network [OSTI]

We describe a proposal for fast electron spin initialization in a negatively charged quantum dot coupled to a microcavity without the need for a strong magnetic field. We employ two-photon excitation to access trion states that are spin forbidden by one-photon excitation. Our simulation shows a maximum initialization speed of 1.3 GHz and maximum fidelity of 99.7% with realistic system parameters.

Arka Majumdar; Ziliang Lin; Andrei Faraon; Jelena Vuckovic

2009-07-20T23:59:59.000Z

430

Magnetic Resonance Facility (Fact Sheet)  

SciTech Connect (OSTI)

This fact sheet provides information about Magnetic Resonance Facility capabilities and applications at NREL's National Bioenergy Center. Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers as well as an electron paramagnetic resonance (EPR) spectrometer.

Not Available

2012-03-01T23:59:59.000Z

431

Manipulation and sorting of magnetic particles by a magnetic force microscope on a microfluidic magnetic trap platform  

E-Print Network [OSTI]

1 Manipulation and sorting of magnetic particles by a magnetic force microscope on a microfluidic magnetic trap platform Elizabeth Mirowski, John Moreland, Arthur Zhang and Stephen E. Russek Electronics and Electrical Engineering Laboratory, National Institute of Standards and Technology, Boulder, CO 80305 Michael

Donahue, Michael J.

432

Primary Beam Steering Due to Field Leakage from Superconducting SHMS Magnets  

E-Print Network [OSTI]

Simulations of the magnetic fields from the Super High Momentum Spectrometer in Hall C at Thomas Jefferson National Accelerator Facility show significant field leakage into the region of the primary beam line between the target and the beam dump. Without mitigation, these remnant fields will steer the unscattered beam enough to limit beam operations at small scattering angles. Presented here are magnetic field simulations of the spectrometer magnets and a solution using optimal placement of a minimal amount of shielding iron around the beam line.

Michael H. Moore; Buddhini P. Waidyawansa; Silviu Covrig; Roger Carlini; Jay Benesch

2014-08-26T23:59:59.000Z

433

Primary beam steering due to field leakage from superconducting SHMS magnets  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Simulations of the magnetic fields from the Super High Momentum Spectrometer in Hall C at Thomas Jefferson National Accelerator Facility show significant field leakage into the region of the primary beam line between the target and the beam dump. Without mitigation, these remnant fields will steer the unscattered beam enough to limit beam operations at small scattering angles. Presented here are magnetic field simulations of the spectrometer magnets and a solution using optimal placement of a minimal amount of shielding iron around the beam line.

Moore, M.H.; Waidyawansa, B.P.; Covrig, S.; Carlini, R.; Benesch, J.

2014-11-01T23:59:59.000Z

434

Compact, Low-Profile Power Converters: Highly-Laminated, High-Saturation-Flux-Density, Magnetic Cores for On-Chip Inductors in Power Converter Applications  

SciTech Connect (OSTI)

ADEPT Project: Georgia Tech is creating compact, low-profile power adapters and power bricks using materials and tools adapted from other industries and from grid-scale power applications. Adapters and bricks convert electrical energy into useable power for many types of electronic devices, including laptop computers and mobile phones. These converters are often called wall warts because they are big, bulky, and sometimes cover up an adjacent wall socket that could be used to power another electronic device. The magnetic components traditionally used to make adapters and bricks have reached their limits; they can't be made any smaller without sacrificing performance. Georgia Tech is taking a cue from grid-scale power converters that use iron alloys as magnetic cores. These low-cost alloys can handle more power than other materials, but the iron must be stacked in insulated plates to maximize energy efficiency. In order to create compact, low-profile power adapters and bricks, these stacked iron plates must be extremely thin-only hundreds of nanometers in thickness, in fact. To make plates this thin, Georgia Tech is using manufacturing tools used in microelectromechanics and other small-scale industries.

None

2010-09-01T23:59:59.000Z

435

High Level Waste Tank Farm Replacement Project for the Idaho Chemical Processing Plant at the Idaho National Engineering Laboratory. Environmental Assessment  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0831, for the construction and operation of the High-Level Waste Tank Farm Replacement (HLWTFR) Project for the Idaho Chemical Processing Plant located at the Idaho National Engineering Laboratory (INEL). The HLWTFR Project as originally proposed by the DOE and as analyzed in this EA included: (1) replacement of five high-level liquid waste storage tanks with four new tanks and (2) the upgrading of existing tank relief piping and high-level liquid waste transfer systems. As a result of the April 1992 decision to discontinue the reprocessing of spent nuclear fuel at INEL, DOE believes that it is unlikely that the tank replacement aspect of the project will be needed in the near term. Therefore, DOE is not proposing to proceed with the replacement of the tanks as described in this-EA. The DOE`s instant decision involves only the proposed upgrades aspect of the project described in this EA. The upgrades are needed to comply with Resource Conservation and Recovery Act, the Idaho Hazardous Waste Management Act requirements, and the Department`s obligations pursuant to the Federal Facilities Compliance Agreement and Consent Order among the Environmental Protection Agency, DOE, and the State of Idaho. The environmental impacts of the proposed upgrades are adequately covered and are bounded by the analysis in this EA. If DOE later proposes to proceed with the tank replacement aspect of the project as described in the EA or as modified, it will undertake appropriate further review pursuant to the National Environmental Policy Act.

Not Available

1993-06-01T23:59:59.000Z

436

Probes for investigating the effect of magnetic field, field orientation, temperature and strain on the critical current density of anisotropic high-temperature superconducting tapes in a split-pair 15 T horizontal magnet  

SciTech Connect (OSTI)

We present the designs of probes for making critical current density (J{sub c}) measurements on anisotropic high-temperature superconducting tapes as a function of field, field orientation, temperature and strain in our 40 mm bore, split-pair 15 T horizontal magnet. Emphasis is placed on the design of three components: the vapour-cooled current leads, the variable temperature enclosure, and the springboard-shaped bending beam sample holder. The vapour-cooled brass critical-current leads used superconducting tapes and in operation ran hot with a duty cycle (D) of ?0.2. This work provides formulae for optimising cryogenic consumption and calculating cryogenic boil-off, associated with current leads used to make J{sub c} measurements, made by uniformly ramping the current up to a maximum current (I{sub max}) and then reducing the current very quickly to zero. They include consideration of the effects of duty cycle, static helium boil-off from the magnet and Dewar (b{sup ?}), and the maximum safe temperature for the critical-current leads (T{sub max}). Our optimized critical-current leads have a boil-off that is about 30% less than leads optimized for magnet operation at the same maximum current. Numerical calculations show that the optimum cross-sectional area (A) for each current lead can be parameterized by LI{sub max}/A=[1.46D{sup ?0.18}L{sup 0.4}(T{sub max}?300){sup 0.25D{sup ?{sup 0{sup .{sup 0{sup 9}}}}}}+750(b{sup ?}/I{sub max})D{sup 10{sup ?{sup 3I{sub m}{sub a}{sub x}?2.87b{sup ?}}}}]× 10{sup 6}A m{sup ?1} where L is the current lead's length and the current lead is operated in liquid helium. An optimum A of 132 mm{sup 2} is obtained when I{sub max} = 1000 A, T{sub max} = 400 K, D = 0.2, b{sup ?} = 0.3 l?h{sup ?1} and L = 1.0 m. The optimized helium consumption was found to be 0.7 l?h{sup ?1}. When the static boil-off is small, optimized leads have a boil-off that can be roughly parameterized by: b/I{sub max?} ? (1.35 × 10{sup ?3})D{sup 0.41} l?h{sup ?1}?A{sup ?1}. A split-current-lead design is employed to minimize the rotation of the probes during the high current measurements in our high-field horizontal magnet. The variable-temperature system is based on the use of an inverted insulating cup that operates above 4.2 K in liquid helium and above 77.4 K in liquid nitrogen, with a stability of ±80 mK to ±150 mK. Uniaxial strains of ?1.4% to 1.0% can be applied to the sample, with a total uncertainty of better than ±0.02%, using a modified bending beam apparatus which includes a copper beryllium springboard-shaped sample holder.

Sunwong, P.; Higgins, J. S.; Hampshire, D. P. [Superconductivity Group, Centre for Materials Physics, Department of Physics, University of Durham, Durham DH1 3LE (United Kingdom)

2014-06-15T23:59:59.000Z

437

The Heavy Ion Fusion Virtual National Laboratory Status and new physics directions for heavy-ion-driven  

E-Print Network [OSTI]

Laboratories First Point Scientific University of Maryland Tech-X University of Missouri FAR-Tech Stanford Linear Accelerator Center Advanced Magnet Laboratory Idaho National Environmental and Engineering scientific question fundamental to future applications of heavy ion beams to both high energy density physics

438

Perspectives on the National  

E-Print Network [OSTI]

Perspectives on the National Electrical Code ® John Wiles Sponsored by the Photovoltaic Systems systems. Representatives from the photovoltaic (PV) industry, academic institutions, the inspector requirements does not guarantee high levels of performance, higher performance and reliability frequently

Johnson, Eric E.

439

AISES National Conference  

Office of Energy Efficiency and Renewable Energy (EERE)

The AISES National Conference is a one-of-a-kind, three day event convening graduate, undergraduate, and high school junior and senior students, teachers, workforce professionals, corporate and...

440

Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results  

SciTech Connect (OSTI)

This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

Rechard, R.P. [ed.

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "national high magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

TYPE A VERIFICATION REPORT FOR THE HIGH FLUX BEAM REACTOR STACK AND GROUNDS, BROOKHAVEN NATIONAL LABORATORY, UPTON, NEW YORK DCN 5098-SR-08-0  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Order 458.1 requires independent verification (IV) of DOE cleanup projects (DOE 2011). The Oak Ridge Institute for Science and Education (ORISE) has been designated as the responsible organization for IV of the High Flux Beam Reactor (HFBR) Stack and Grounds area at Brookhaven National Laboratory (BNL) in Upton, New York. The IV evaluation may consist of an in-process inspection with document and data reviews (Type A Verification) or a confirmatory survey of the site (Type B Verification). DOE and ORISE determined that a Type A verification of the documents and data for the HFBR Stack and Grounds: Survey Units (SU) 6, 7, and 8 was appropriate based on the initial survey unit classification, the walkover surveys, and the final analytical results provided by the Brookhaven Science Associates (BSA).

Evan Harpenau

2011-11-30T23:59:59.000Z

442

Microstructual investigation of mixed rar earth iron boron processed vis melt-spinning and high-pressure gas-atomization for isotrophic bonded permanent magnets  

SciTech Connect (OSTI)

A solid solution of three rare earths (RE) in the RE{sub 2}Fe{sub 14}B structure have been combined to create the novel mixed rare earth iron boron (MRE{sub 2}Fe{sub 14}B) alloy family. MRE{sub 2}Fe{sub 14}B exhibits reduced temperature dependent magnetic properties; remanence and coercivity. The desired form of MRE{sub 2}Fe{sub 14}B is a powder that can be blended with a polymer binder and compression or injection molded to form an isotropic polymer bonded permanent magnet (PBM). Commercially, Nd{sub 2}Fe{sub 14}B is the alloy of choice for PBMs. Powders of Nd{sub 2}Fe{sub 14}B are made via melt-spinning as can be MRE{sub 2}Fe{sub 14}B which allows for direct comparisons. MRE{sub 2}Fe{sub 14}B made using melt-spinning at high wheel speeds is overquenched and must be annealed to an optimal hard magnetic state. Due to the rare earth content in the MRE{sub 2}Fe{sub 14}B powders, they must be protected from the environment in which they operate. This protection is accomplished by using a modified fluidized bed process to grow a protective fluoride coating nominally 15nm thick, to reduce air oxidation. MRE{sub 2}Fe{sub 14}B has demonstrated reduced temperature dependent magnetic properties in ribbon and PBM form. The real challenge has been modifying alloy designs that were successfully melt-spun to be compatible with high-pressure gas-atomization (HPGA). The cooling rates in HPGA are lower than melt-spinning, as the powders are quenched via convective cooling, compared to melt-spinning, which quenches initially by conductive cooling. Early alloy designs, in gas atomized and melt-spun form, did not have similar phase compositions or microstructures. Alloy additions, such as the addition of zirconium as a nucleation catalyst, were successful in creating similar phases and microstructures in the HPGA powders and melt-spun ribbon of the same MRE{sub 2}Fe{sub 14}B composition.

Buelow, Nicholas Lee

2005-08-01T23:59:59.000Z

443

Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices  

SciTech Connect (OSTI)

This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

Rechard, R.P. [ed.

1993-12-01T23:59:59.000Z

444

Magnetic field measurement of superconducting dipolemagnets with harmonic coil and Hall probe  

SciTech Connect (OSTI)

Magnetic field measurements and field analyses of 1-m long superconducting dipole magnets fabricated at the National Laboratory for High Energy Physics (KEK) have been carried out using a harmonic coil with the bucking scheme. Conditions of the data acquisition are optimized to achieve the accurate and efficient measurements. Not only in the steady state of the magnet excitation by constant currents, but also on the way the excite current increases until the magnet quenches the field measurements have been tried, and the results are discussed in this paper on the possibility of the {open_quotes}on-the-fly{close_quotes} measurement using a harmonic coil. Some results on the so-called remnant field of the magnets measured with a Hall probe are also described.

Nakai, Hirotaka; Kabe, Atsushi; Terashima, Akio [National Lab. for High Energy Physics, Tsukuba-shi, Ibaraki-ken (Japan)] [and others

1996-12-31T23:59:59.000Z

445

Apparatus and method for magnetically processing a specimen  

DOE Patents [OSTI]

An apparatus for magnetically processing a specimen that couples high field strength magnetic fields with the magnetocaloric effect includes a high field strength magnet capable of generating a magnetic field of at least 1 Tesla and a magnetocaloric insert disposed within a bore of the high field strength magnet. A method for magnetically processing a specimen includes positioning a specimen adjacent to a magnetocaloric insert within a bore of a magnet and applying a high field strength magnetic field of at least 1 Tesla to the specimen and to the magnetocaloric insert. The temperature of the specimen changes during the application of the high field strength magnetic field due to the magnetocaloric effect.

Ludtka, Gerard M; Ludtka, Gail M; Wilgen, John B; Kisner, Roger A; Jaramillo, Roger A

2013-09-03T23:59:59.000Z

446

Passive magnetic bearing system  

DOE Patents [OSTI]

An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

Post, Richard F.

2014-09-02T23:59:59.000Z

447

The Need For High Resolution In Studies Of The 3-D Magnetic Field Structure Of AGN Jets  

E-Print Network [OSTI]

We are using "broadband" (4.6 to 43 GHz) multi-frequency VLBA polarization observations of compact AGN to investigate the 3-D structure of their jet magnetic (B) fields. Observing at several frequencies, separated by short and long intervals, enables reliable determination of the distribution of Faraday Rotation, and thereby the intrinsic B field structure. Transverse Rotation Measure (RM) gradients were detected in the jets of 0954+658 and 1418+546, providing evidence for the presence of a helical B field surrounding the jet. The RM in the core regions of 2200+420 (BL Lac), 0954+658 and 1418+546 display different signs in different frequency-intervals (on different spatial scales); we suggest an explanation for this in terms of modest bends in a helical B field surrounding their jets. In future, polarization observations with a combination of VSOP-2 at 8, 22 and 43 GHz and ground arrays at frequencies with corresponding resolution will help map out the distributions of Faraday rotation, spectral index and the 3-D B field structure both across the jet and closer to the central engine, providing strong constraints for any jet B field models.

Shane P. O'Sullivan; Denise C. Gabuzda

2008-01-31T23:59:59.000Z

448

Moment free toroidal magnet  

DOE Patents [OSTI]

A toroidal magnet for confining a high magnetic field for use in fusion reactor research and nuclear particle detection. The magnet includes a series of conductor elements arranged about and fixed at its small major radius portion to the outer surface of a central cylindrical support each conductor element having a geometry such as to maintain the conductor elements in pure tension when a high current flows therein, and a support assembly which redistributes all or part of the tension which would otherwise arise in the small major radius portion of each coil element to the large major radius portion thereof.

Bonanos, Peter (East Brunswick, NJ)

1983-01-01T23:59:59.000Z

449

Safety of high speed guided ground transportation systems: Comparison of magnetic and electric fields of conventional and advanced electrified transportation systems. Final report, September 1992-March 1993  

SciTech Connect (OSTI)

Concerns exist regarding the potential safety, environmental and health effects on the public and on transportation workers due to electrification along new or existing rail corridors, and to proposed maglev and high speed rail operations. Therefore, the characterization of electric and magnetic fields (EMF) produced by both steady (dc) and alternating currents (ac) at power frequency (50 Hz in Europe and 60 Hz in the U.S.) and above, in the Extreme Low Frequency (ELF) range (3-3000 Hz) is of interest. The report summarizes and compares the results of a survey of EMF characteristics (spatial, temporal and frequency bands) for representative conventional railroad and transit and advanced high-speed systems including: the German TR-07 maglev system; the Amtrak Northeast Corridor (NEC) and North Jersey Transit (NJT) trains; the Washington, DC Metrorail (WMATA) and the Boston, MA (MBTA) transit systems; and the French TGV-A high speed rail system. This comprehensive comparative EMF survey produced both detailed data and statistical summaries of EMF profiles, and their variability in time and space. EMF ELF levels for WMATA are also compared to those produced by common environmental sources at home, work, and under power lines, but have specific frequency signatures.

Dietrich, F.M.; Feero, W.E.; Jacobs, W.L.

1993-08-01T23:59:59.000Z

450

Four Star Greenhouse has been producing high quality garden products since 1977 and is the largest partner/supplier of the nationally recognized #1 plant brand Proven Winners.  

E-Print Network [OSTI]

1977 and is the largest partner/supplier of the nationally recognized #1 plant. Ships plants as necessary. QUALIFICATIONS: 1. 2 or 4 yr Horticultural degree or 3

451

Sandia National Laboratories  

E-Print Network [OSTI]

Sandia National Laboratories 7011 East Ave. Livermore, CA 94550 Las Positas College 3000 Campus competitions scheduled for the California Bay Area. The Science Bowl is a Jeopardy-like highly competitive Area competitions: Date (all on Saturdays): Location: Host: Regional HIGH SCHOOL Science Bowls January

452

Magnetic Resonance Facility (Fact Sheet), National Bioenergy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

scientists to run their own liquid sample analysis * Solid-state analysis of biomass feedstocks, biomass- related materials, and polymers * Analysis of compounds with...

453

Sandia National Laboratories: Magnetically Stimulated Flow Patterns...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

said, the technology could be practical in problems ranging from reactor cooling to microfluidics, a multidisciplinary field used, for example, in designing systems that handle...

454

NEW GUN CAPABILITY WITH INTERCHANGABLE BARRELS TO INVESTIGATE LOW VELOCITY IMPACT REGIMES AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY HIGH EXPLOSIVES APPLICATIONS FACILITY  

SciTech Connect (OSTI)

A new gas gun capability is being activated at Lawrence Livermore National Laboratories located in the High Explosives Applications Facility (HEAF). The single stage light gas (dry air, nitrogen, or helium) gun has interchangeable barrels ranging from 25.4 mm to 76.2 mm in diameter with 1.8 meters in length and is being fabricated by Physics Applications, Inc. Because it is being used for safety studies involving explosives, the gun is planned for operation inside a large enclosed firing tank, with typical velocities planned in the range of 10-300 m/s. Three applications planned for this gun include: low velocity impact of detonator or detonator/booster assemblies with various projectile shapes, the Steven Impact test that involves impact initiation of a cased explosive target, and the Taylor impact test using a cylindrical explosive sample impacted onto a rigid anvil for fracture studies of energetic materials. A highlight of the gun features, outline on work in progress for implementing this capability, and discussion of the planned areas of research will be included.

Vandersall, K S; Behn, A; Gresshoff, M; Jr., L F; Chiao, P I

2009-09-16T23:59:59.000Z

455

Method for obtaining large levitation pressure in superconducting magnetic bearings  

DOE Patents [OSTI]

A method and apparatus are disclosed for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap. 4 figs.

Hull, J.R.

1997-08-05T23:59:59.000Z

456

Permanent magnet multipole with adjustable strength  

DOE Patents [OSTI]

Two or more magnetically soft pole pieces are symmetrically positioned along a longitudinal axis to provide a magnetic field within a space defined by the pole pieces. Two or more permanent magnets are mounted to an external magnetically-soft cylindrical sleeve which rotates to bring the permanent magnets into closer coupling with the pole pieces and thereby adjustably control the field strength of the magnetic field produced in the space defined by the pole pieces. The permanent magnets are preferably formed of rare earth cobalt (REC) material which has a high remanent magnetic field and a strong coercive force. The pole pieces and the permanent magnets have corresponding cylindrical surfaces which are positionable with respect to each other to vary the coupling therebetween. Auxiliary permanent magnets are provided between the pole pieces to provide additional magnetic flux to the magnetic field without saturating the pole pieces.

Halbach, Klaus (Berkeley, CA)

1985-01-01T23:59:59.000Z

457

Permanent-magnet multipole with adjustable strength  

DOE Patents [OSTI]

Two or more magnetically soft pole pieces are symmetrically positioned along a longitudinal axis to provide a magnetic field within a space defined by the pole pieces. Two or more permanent magnets are mounted to an external magnetically-soft cylindrical sleeve which rotates to bring the permanent magnets into closer coupling with the pole pieces and thereby adjustably control the field strength of the magnetic field produced in the space defined by the pole pieces. The permanent magnets are preferably formed of rare earth cobalt (REC) material which has a high remanent magnetic field and a strong coercive force. The pole pieces and the permanent magnets have corresponding cylindrical surfaces which are positionable with respect to each other to vary the coupling there between. Auxiliary permanent magnets are provided between the pole pieces to provide additional magnetic flux to the magnetic field without saturating the pole pieces.

Halbach, K.

1982-09-20T23:59:59.000Z

458

High strain in polycrystalline Ni{sub 48.8}Mn{sub 31.4}Ga{sub 19.8} Heusler alloys under overlapped static and oscillating magnetic fields  

SciTech Connect (OSTI)

Martensitic polycrystalline Ni{sub 48.8}Mn{sub 31.4}Ga{sub 19.8} Heusler alloys, with a stacking period of 14 atomic planes at room temperature, were innovatively processed by combining high-energy ball milling and powder metallurgy. Bulk samples were mechanically coupled to a piezoelectric material in a parallel configuration, and the mechanical deformation of the studied system due to the twin's variant motion was investigated under overlapped static and oscillating magnetic fields. A reversible and high mechanical deformation is observed when the frequency of the oscillating magnetic field is tuned with the natural vibration frequency of this system. In this condition, a linear deformation as a function of the static magnetic field amplitude occurs in the ±4 kOe range, and a mechanical deformation of 2% at 10 kOe is observed.

Montanher, D. Z.; Pereira, J. R. D.; Cótica, L. F.; Santos, I. A. [Department of Physics, State University of Maringá, Av. Colombo 5790, Maringá - PR 87020-900 (Brazil); Gotardo, R. A. M. [Technological Federal University of Paraná, Av. Alberto Carazzai 1640, Cornélio Procópio - PR 86300-000 (Brazil); Viana, D. S. F.; Garcia, D.; Eiras, J. A. [Department of Physics, Federal University of São Carlos, Rod. Washington Luiz, Km 235, São Carlos - SP 13565-905 (Brazil)

2014-09-21T23:59:59.000Z

459

Spin dynamics in a spin-correlated radical pair of photosystem I. Pulsed time-resolved EPR at high magnetic field.  

SciTech Connect (OSTI)

Spin-dynamics of the spin-correlated radical pair (SCRP) P{sub 700}{sup +}A{sub 1A}{sup -} in the photosystem I (PSI) reaction center protein have been investigated with high-frequency (HF), time-resolved EPR spectroscopy. The superior spectral resolution of HF EPR enables spin-dynamics for both the donor and acceptor radicals in the pair to be monitored independently. Decay constants of each spin were measured as a function of temperature and compared to data obtained at X-band EPR. Relaxation times, T{sub 1}, and decay rates, k{sub S}, are the same at both X- and D-band magnetic fields. The spin-dynamics within the radical pair were determined from theoretical simulation of experimental time-resolved HF EPR spectra. At low temperatures, T < 60 K, the decay of the SCRP from the singlet state, k{sub S}, is the predominant process, while at high temperatures, T > 130 K, the T{sub 1} relaxation is much faster than k{sub S}. The recombination rate k{sub S} was observed to decrease as the temperature is increased. These EPR spectral results are in agreement with previously reported optical measurements of P{sub 700}{sup +}A{sub 1}{sup -} radical pair recombination.

Poluektov, O. G.; Paschenko, S. V.; Utschig, L. M.; Chemical Sciences and Engineering Division

2009-01-01T23:59:59.000Z

460

Evolution of magnetic and superconducting fluctuations with doping of high-T{sub c} superconductors : an electronic Raman scattering study.  

SciTech Connect (OSTI)

For YBa{sub 2}Cu{sub 3}O{sub 6+{delta}} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 3{+-}{delta}} superconductors, electronic Raman scattering from high- and low-energy excitations has been studied in relation to the hole doping level, temperature, and energy of the incident photons. For underdoped superconductors, it is concluded that short range antiferromagnetic (AF) correlations persist with hole doping and doped single holes are incoherent in the AF environment. Above the superconducting (SC) transition temperature T{sub c} the system exhibits a sharp Raman resonance of B{sub 1g} symmetry and about 75 meV energy and a pseudogap for electron-hole excitations below 75 meV, a manifestation of a partially coherent state forming from doped incoherent quasi-particles. The occupancy of the coherent state increases with cooling until phase ordering at T{sub c} produces a global SC state.

Blumberg, G.

1998-01-14T23:59:59.000Z

Note: This page contains sample records for the topic "national high magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Cryogenic system design of 11 GEV/C super high momentum spectrometer superconducting magnets at Jefferson Lab  

SciTech Connect (OSTI)

The design of the cryogenic system for the 11 GeV/c Super High Momentum Spectrometer (SHMS) is presented. A description of the cryogenic control reservoir and the cryogenic transfer line is given. Details of the cryogenic control reservoirs, cryogenic transfer lines, and pressure piping are summarized. Code compliance is ensured through following the requirements of the ASME Pressure Vessel Code and Pressure Piping Code. An elastic-plastic-analysis-based combined safety factor approach is proposed to meet the low stress requirement of ASME 2007 Section VIII, Division 2 so that Charpy V-notch (CVN) impact testing can be avoided through analysis. Material toughness requirements in ASME 2007 Section VIII, Division 2 are adopted as CVN impact testing rules of stainless steel 304 piping at 4.2 K and 77 K. A formula-based combined safety factor approach for pressure piping is also proposed to check whether the impact testing can be avoided due to low stress. Analysis and calculation have shown that no CVN impact testing of base metal and heat affected zones is required for the helium reservoir, nitrogen reservoir, and their relevant piping. Total heat loads to liquid helium and liquid nitrogen are studied also. The total heat load to LHe for SHMS is estimated to be 137 W, and the total load to LN2 is calculated to be 420 W.

Eric Sun, Paul Brindza, Steven Lassister, Mike Fowler

2012-07-01T23:59:59.000Z

462

Spin rotation and birefringence effect for a particle in a high energy storage ring and measurement of the real part of the coherent elastic zero-angle scattering amplitude, electric and magnetic polarizabilities  

E-Print Network [OSTI]

In the present paper the equations for the spin evolution of a particle in a storage ring are analyzed considering contributions from the tensor electric and magnetic polarizabilities of the particle. Study of spin rotation and birefringence effect for a particle in a high energy storage ring provides for measurement as the real part of the coherent elastic zero-angle scattering amplitude as well as tensor electric and magnetic polarizabilities. We proposed the method for measurement the real part of the elastic coherent zero-angle scattering amplitude of particles and nuclei in a storage ring by the paramagnetic resonance in the periodical in time nuclear pseudoelectric and pseudomagnetic fields.

V. G. Baryshevsky; A. A. Gurinovich

2005-06-14T23:59:59.000Z

463

Generalized Test Plan for the Vitrification of Simulated High-Level -Waste Calcine in the Idaho National Laboratory‘s Bench -Scale Cold Crucible Induction Melter  

SciTech Connect (OSTI)

This Preliminary Idaho National Laboratory (INL) Test Plan outlines the chronological steps required to initially evaluate the validity of vitrifying INL surrogate (cold) High-Level-Waste (HLW) solid particulate calcine in INL's Cold Crucible Induction Melter (CCIM). Its documentation and publication satisfies interim milestone WP-413-INL-01 of the DOE-EM (via the Office of River Protection) sponsored work package, WP 4.1.3, entitled 'Improved Vitrification' The primary goal of the proposed CCIM testing is to initiate efforts to identify an efficient and effective back-up and risk adverse technology for treating the actual HLW calcine stored at the INL. The calcine's treatment must be completed by 2035 as dictated by a State of Idaho Consent Order. A final report on this surrogate/calcine test in the CCIM will be issued in May 2012-pending next fiscal year funding In particular the plan provides; (1) distinct test objectives, (2) a description of the purpose and scope of planned university contracted pre-screening tests required to optimize the CCIM glass/surrogate calcine formulation, (3) a listing of necessary CCIM equipment modifications and corresponding work control document changes necessary to feed a solid particulate to the CCIM, (4) a description of the class of calcine that will be represented by the surrogate, and (5) a tentative tabulation of the anticipated CCIM testing conditions, testing parameters, sampling requirements and analytical tests. Key FY -11 milestones associated with this CCIM testing effort are also provided. The CCIM test run is scheduled to be conducted in February of 2012 and will involve testing with a surrogate HLW calcine representative of only 13% of the 4,000 m3 of 'hot' calcine residing in 6 INL Bin Sets. The remaining classes of calcine will have to be eventually tested in the CCIM if an operational scale CCIM is to be a feasible option for the actual INL HLW calcine. This remaining calcine's make-up is HLW containing relatively high concentrations of zirconium and aluminum, representative of the cladding material of the reprocessed fuel that generated the calcine. A separate study to define the CCIM testing needs of these other calcine classifications in currently being prepared under a separate work package (WP-0) and will be provided as a milestone report at the end of this fiscal year.

Vince Maio

2011-08-01T23:59:59.000Z

464

International magnetic pulse compression workshop: (Proceedings)  

SciTech Connect (OSTI)

A few individuals have tried to broaden the understanding of specific and salient pulsed-power topics. One such attempt is this documentation of a workshop on magnetic switching as it applies primarily to pulse compression (power transformation), affording a truly international perspective by its participants under the initiative and leadership of Hugh Kirbie and Mark Newton of the Lawrence Livermore National Laboratory (LLNL) and supported by other interested organizations. During the course of the Workshop at Granlibakken, a great deal of information was amassed and a keen insight into both the problems and opportunities as to the use of this switching approach was developed. The segmented workshop format proved ideal for identifying key aspects affecting optimum performance in a variety of applications. Individual groups of experts addressed network and system modeling, magnetic materials, power conditioning, core cooling and dielectrics, and finally circuits and application. At the end, they came together to consolidate their input and formulate the workshop's conclusions, identifying roadblocks or suggesting research projects, particularly as they apply to magnetic switching's trump card--its high-average-power-handling capability (at least on a burst-mode basis). The workshop was especially productive both in the quality and quantity of information transfer in an environment conducive to a free and open exchange of ideas. We will not delve into the organization proper of this meeting, rather we wish to commend to the interested reader this volume, which provides the definitive and most up-to-date compilation on the subject of magnetic pulse compression from underlying principles to current state of the art as well as the prognosis for the future of magnetic pulse compression as a consensus of the workshop's organizers and participants.

Kirbie, H.C.; Newton, M.A.; Siemens, P.D.

1991-04-01T23:59:59.000Z

465

Superconducting pipes and levitating magnets  

E-Print Network [OSTI]

Motivated by a beautiful demonstration of the Faraday's and Lenz's law in which a small neodymium magnet falls slowly through a conducting non-ferromagnetic tube, we consider the dynamics of a magnet falling through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be suspended over the front edge. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius $a$ and length $L \\approx a$ decays, in the axial direction, with a characteristic length $\\xi \\approx 0.26 a$. The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices, SQUIDs. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel.

Yan Levin; Felipe B. Rizzato

2006-09-15T23:59:59.000Z

466

Magnetic investigations  

SciTech Connect (OSTI)

Air and ground magnetic anomalies in the Climax stock area of the NTS help define the gross configuration of the stock and detailed configuration of magnetized rocks at the Boundary and Tippinip faults that border the stock. Magnetizations of geologic units were evaluated by measurements of magnetic properties of drill core, minimum estimates of magnetizations from ground magnetic anomalies for near surface rocks, and comparisons of measured anomalies with anomalies computed by a three-dimensional forward program. Alluvial deposits and most sedimentary rocks are nonmagnetic, but drill core measurements reveal large and irregular changes in magnetization for some quartzites and marbles. The magnetizations of quartz monzonite and granodiorite near the stock surface are weak, about 0.15 A/m, and increase at a rate of 0.00196 A/m/m to 1.55 A/m, at depths greater than 700 m (2300 ft). The volcanic rocks of the area are weakly magnetized. Aeromagnetic anomalies 850 m (2800 ft) above the stock are explained by a model consisting of five vertical prisms. Prisms 1, 2, and 3 represent the near surface outline of the stock, prism 4 is one of the models developed by Whitehill (1973), and prism 5 is modified from the model developed by Allingham and Zietz (1962). Most of the anomaly comes from unsampled and strongly-magnetized deep sources that could be either granite or metamorphosed sedimentary rocks. 48 refs., 23 figs., 3 tabs.

Bath, G.D.; Jahren, C.E.; Rosenbaum, J.G. [Geological Survey, Denver, CO (USA); Baldwin, M.J. [Fenix and Scisson, Inc., Mercury, NV (USA)

1983-12-31T23:59:59.000Z

467

Shock initiation and detonation study on high concentration H2O2/H2O solutions using in-situ magnetic gauges  

SciTech Connect (OSTI)

Concentrated hydrogen peroxide (H{sub 2}O{sub 2}) has been known to detonate for many years. However, because of its reactivity and the difficulty in handling and confining it, along with the large critical diameter, few studies providing basic information about the initiation and detonation properties have been published. We are conducting a study to understand and quantify the initiation and detonation properties of highly concentrated H{sub 2}O{sub 2} using a gas-driven two-stage gun to produce well defined shock inputs. Multiple magnetic gauges are used to make in-situ measurements of the growth of reaction and subsequent detonation in the liquid. These experiments are designed to be one-dimensional to eliminate any difficulties that might be encountered with large critical diameters. Because of the concern of the reactivity of the H{sub 2}O{sub 2} with the confining materials, a remote loading system has been developed. The gun is pressurized, then the cell is filled and the experiment shot within less than three minutes. Several experiments have been completed on {approx}98 wt % H{sub 2}O{sub 2}/H{sub 2}O mixtures; homogeneous shock initiation behavior has been observed in the experiments where reaction is observed. The initial shock pressurizes and heats the mixture. After an induction time, a thermal explosion type reaction produces an evolving reactive wave that strengthens and eventually overdrives the first wave producing a detonation. From these experiments, we have determined unreacted Hugoniot points, times-to-detonation points that indicate low sensitivity (an input of 13.5 GPa produces detonation in 1 {micro}s compared to 9.5 GPa for neat nitromethane), and detonation velocities of high concentration H{sub 2}O{sub 2}/H{sub 2}O solutions of over 6.6 km/s.

Sheffield, Stephen A [Los Alamos National Laboratory; Dattelbaum, Dana M [Los Alamos National Laboratory; Stahl, David B [Los Alamos National Laboratory; Gibson, L Lee [Los Alamos National Laboratory; Bartram, Brian D [Los Alamos National Laboratory; Engelke, Ray [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

468

Strange Magnetism  

E-Print Network [OSTI]

We present an analytic and parameter-free expression for the momentum dependence of the strange magnetic form factor of the nucleon and its corresponding radius which has been derived in Heavy Baryon Chiral Perturbation Theory. We also discuss a model-independent relation between the isoscalar magnetic and the strange magnetic form factors of the nucleon based on chiral symmetry and SU(3) only. These limites are used to derive bounds on the strange magnetic moment of the proton from the recent measurement by the SAMPLE collaboration.

Thomas R. Hemmert; Ulf-G. Meissner; Sven Steininger

1998-11-09T23:59:59.000Z

469

Calloway Middle School Honored at DOE National Science Bowl,...  

Office of Environmental Management (EM)

Calloway Middle School Honored at DOE National Science Bowl, Lone Oak Competes Among High Schools Calloway Middle School Honored at DOE National Science Bowl, Lone Oak Competes...

470

Oak Ridge National Laboratory National Security Programs  

E-Print Network [OSTI]

Oak Ridge National Laboratory National Security Programs Dr. Michael A. Kuliasha, Chief Scientist National Security Technologies Oak Ridge National Laboratory #12;2 OAK RIDGE NATIONAL LABORATORY U. S Security Challenges #12;3 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY How Will Our Enemies

471

Large Superconducting Magnet Systems  

E-Print Network [OSTI]

The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb?Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb3Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

Védrine, P

2014-01-01T23:59:59.000Z

472

15 April 2005 Christian Engelmann, Oak Ridge National Laboratory  

E-Print Network [OSTI]

15 April 2005 Christian Engelmann, Oak Ridge National Laboratory High Availability for Ultra Christian Engelmann Oak Ridge National Laboratory #12;15 April 2005 Christian Engelmann, Oak Ridge National. " Computer science at Oak Ridge National Laboratory. " Ultra-scale high-end scientific computing. " High

Engelmann, Christian

473

Magnetic shielding  

DOE Patents [OSTI]

A magnetically-conductive filler material bridges the gap between a multi-part magnetic shield structure which substantially encloses a predetermined volume so as to minimize the ingress or egress of magnetic fields with respect to that volume. The filler material includes a heavy concentration of single-magnetic-domain-sized particles of a magnetically conductive material (e.g. soft iron, carbon steel or the like) dispersed throughout a carrier material which is generally a non-magnetic material that is at least sometimes in a plastic or liquid state. The maximum cross-sectional particle dimension is substantially less than the nominal dimension of the gap to be filled. An epoxy base material (i.e. without any hardening additive) low volatility vacuum greases or the like may be used for the carrier material. The structure is preferably exposed to the expected ambient field while the carrier is in a plastic or liquid state so as to facilitate alignment of the single-magnetic-domain-sized particles with the expected magnetic field lines.

Kerns, J.A.; Stone, R.R.; Fabyan, J.

1985-02-12T23:59:59.000Z

474

Cover image: Soft x-ray microtomography images showing high-resolution reconstructed biofilm cells grown at Pacific Northwest National Laboratory. Characterizing the chemical and physical interactions of  

E-Print Network [OSTI]

National Laboratory (PNNL) scientists in 2012. I am proud of their potential to advance scientific contributes to advances in bioenergy, biogeochemistry of inorganic contaminants and carbon, human health-efficient LeDs. This photobioreactor is used to optimize hydrogen and biofuel production from photosynthetic

475

Magnetic nanotubes  

DOE Patents [OSTI]

A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

Matsui, Hiroshi (Glen Rock, NJ); Matsunaga, Tadashi (Tokyo, JP)

2010-11-16T23:59:59.000Z

476

Understanding and controlling complex states arising from magnetic frustration  

SciTech Connect (OSTI)

Much of our national security relies on capabilities made possible by magnetism, in particular the ability to compute and store huge bodies of information as well as to move things and sense the world. Most of these technologies exploit ferromagnetism, i.e. the global parallel alignment of magnetic spins as seen in a bar magnet. Recent advances in computing technologies, such as spintronics and MRAM, take advantage of antiferromagnetism where the magnetic spins alternate from one to the next. In certain crystal structures, however, the spins take on even more complex arrangements. These are often created by frustration, where the interactions between spins cannot be satisfied locally or globally within the material resulting in complex and often non-coplanar spin textures. Frustration also leads to the close proximity of many different magnetic states, which can be selected by small perturbations in parameters like magnetic fields, temperature and pressure. It is this tunability that makes frustrated systems fundamentally interesting and highly desirable for applications. We move beyond frustration in insulators to itinerant systems where the interaction between mobile electrons and the non-coplanar magnetic states lead to quantum magneto-electric amplification. Here a small external field is amplified by many orders of magnitude by non-coplanar frustrated states. This greatly enhances their sensitivity and opens broader fields for applications. Our objective is to pioneer a new direction for condensed matter science at the Laboratory as well as for international community by discovering, understanding and controlling states that emerge from the coupling of itinerant charges to frustrated spin textures.

Zapf, Vivien [Los Alamos National Laboratory

2012-06-01T23:59:59.000Z

477

Superconducting Magnet Division Mike Harrison  

E-Print Network [OSTI]

Superconducting Magnet Division Mike Harrison The LARP Dipole R&D Program - D1 only Design (high beta lattice location) · Beam heating (first active element from the IP) #12;Superconducting aperture Field quality Issues not (well ?) understood #12;Superconducting Magnet Division Mike Harrison

Large Hadron Collider Program

478

National Spent Nuclear Fuel Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

need to safely and efficiently manage all DOE-owned spent nuclear fuel and high level waste and prepare it for disposal. The National Spent Nuclear Fuel Program is addressing...

479

Successful Characterization Strategies for the Active High Risk Y-12 National Security Complex 9201-5 (Alpha-5) Facility, Oak Ridge, TN - 12164  

SciTech Connect (OSTI)

Building 9201-5 (Alpha 5) was completed in May 1944 and served as a production facility for National Nuclear Security Administration (NNSA) Y-12 Weapons Plant. During the Manhattan Project, it functioned as a uranium enrichment facility. The facility was renovated and altered over the years, converting the calutrons to support other missions. Alpha 5 consists of 4 floors and a basement measuring approximately 600,000 square feet. The facility contains various pieces of equipment remaining from legacy operations. A significant amount (approximately 200,000 kgs) of mercury (Hg) has been spilled in the facility over the operational history of the building. To further complicate matters, beryllium (Be) contamination in 9201-5 is found throughout approximately sixty percent of the facility. Concentrations varying from very low (< 0.2 micrograms (?g)/100 cm{sup 2}) to areas where concentrations are relatively high, approximately 600 ?g/100 cm{sup 2}, in regulated beryllium areas. The primary site related contaminants (SRCs) for the waste in this facility are enriched uranium, depleted uranium, beryllium and mercury. This facility represents the highest environmental risk for DOE-ORO EM and NNSA at Y-12 and must be quickly addressed to minimize impacts to future Y-12 missions, as well as human health and the environment. As part of the American Recovery and Reinvestment Act (ARRA), approximately 700,000 cubic feet of legacy material was removed in 2010 and 2011. In addition, characterization of the 9201-5 facility was scheduled in the winter and spring of 2011. This activity was initiated in January 2011 and was completed in July 2011. Heavy schedule pressure was further complicated by the fact that this building has active utility, security and process systems. Given these complex variables, a unique, out of the box characterization strategy was forged in an effort to bound radiological and chemical contaminants, as well as providing the appropriate level of quality to ensure that this data could be used to develop waste profiles when deactivation, decontamination and demolition (D and D) activities are authorized at a future date. The characterization strategy involved a hybrid model of statistically-based and biased sampling events. To achieve the desired results, traditional intrusive sampling and laboratory analysis, as well as a number of field-based characterization methodologies (e.g., X-ray Fluorescence [XRF], Lumex and Non-Destructive Assay [NDA]) were utilized. Results were captured and synthesized into meaningful, usable conclusions in a facility characterization report that will more accurately aid D and D cost estimates for future remedial actions. This massive characterization campaign involved over 1,200 separate sample locations using 4 separate characterization methods and was successfully completed to meet a performance-based milestone within 8 months of initiation. (authors)

Birchfield, Joseph W. III [Link Technologies (United States); Albrecht, Linda [Alliant Corporation (United States)

2012-07-01T23:59:59.000Z

480

Active magnetic regenerator  

DOE Patents [OSTI]

An apparatus and method for refrigeration are disclosed which provides efficient refrigeration over temperature ranges in excess of 20/sup 0/C and which requires no maintenance and is, therefore, usable on an unmanned satellite. The apparatus comprises a superconducting magnet which may be solenoidal. A piston comprising a substance such as a rare earth substance which is maintained near its Curie temperature reciprocates through the bore of the solenoidal magnet. A magnetic drive rod is connected to the piston and appropriate heat sinks are connected thereto. The piston is driven by a suitable mechanical drive such as an electric motor and cam. In practicing the invention, the body of the piston is magnetized and demagnetized as it moves through the magnetic field of the solenoid to approximate any of the following cycles or a condition thereof as well as, potentially, other cycles: Brayton, Carnot, Ericsson, and Stirling. Advantages of the present invention include: that refrigeration can be accomplished over at least a 20/sup 0/C scale at superconducting temperatures as well as at more conventional temperatures; very high efficiency, high reliability, and small size. (LCL)

Barclay, J.A.; Steyert, W.A.

1981-01-27T23:59:59.000Z

Note: This page contains sample records for the topic "national high magnetic" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Low dimensional magnetism  

E-Print Network [OSTI]

Magnetism in Ultracold Gases 4 Magnetic phase diagram of aMagnetism . . . . . . . . . . . .1.3 Magnetism in condensedIntroduction 1 Brief introduction to magnetism 1.1 Classic

Kjall, Jonas Alexander

2012-01-01T23:59:59.000Z

482