Sample records for national fire protection

  1. CRAD, Fire Protection - Oak Ridge National Laboratory High Flux...

    Broader source: Energy.gov (indexed) [DOE]

    Fire Protection - Oak Ridge National Laboratory High Flux Isotope Reactor CRAD, Fire Protection - Oak Ridge National Laboratory High Flux Isotope Reactor February 2006 A section of...

  2. Fire Protection Program Metrics

    Broader source: Energy.gov [DOE]

    Presenter: Perry E. D ’Antonio, P.E., Acting Sr. Manager, Fire Protection - Sandia National Laboratories

  3. Audit Report, "Fire Protection Deficiencies at Los Alamos National Laboratory"

    SciTech Connect (OSTI)

    None

    2009-06-01T23:59:59.000Z

    The Department of Energy's Los Alamos National Laboratory (Los Alamos) maintains some of the Nation's most important national security assets, including nuclear materials. Many of Los Alamos' facilities are located in close proximity to one another, are occupied by large numbers of contract and Federal employees, and support activities ranging from nuclear weapons design to science-related activities. Safeguarding against fires, regardless of origin, is essential to protecting employees, surrounding communities, and national security assets. On June 1, 2006, Los Alamos National Security, LLC (LANS), became the managing and operating contractor for Los Alamos, under contract with the Department's National Nuclear Security Administration (NNSA). In preparation for assuming its management responsibilities at Los Alamos, LANS conducted walk-downs of the Laboratory's facilities to identify pre-existing deficiencies that could give rise to liability, obligation, loss or damage. The walk-downs, which identified 812 pre-existing fire protection deficiencies, were conducted by subject matter professionals, including fire protection experts. While the Los Alamos Site Office has overall responsibility for the effectiveness of the fire protection program, LANS, as the Laboratory's operating contractor, has a major, day-to-day role in minimizing fire-related risks. The issue of fire protection at Los Alamos is more than theoretical. In May 2000, the 'Cerro Grande' fire burned about 43,000 acres, including 7,700 acres of Laboratory property. Due to the risk posed by fire to the Laboratory's facilities, workforce, and surrounding communities, we initiated this audit to determine whether pre-existing fire protection deficiencies had been addressed. Our review disclosed that LANS had not resolved many of the fire protection deficiencies that had been identified in early 2006: (1) Of the 296 pre-existing deficiencies we selected for audit, 174 (59 percent) had not been corrected; and, (2) A substantial portion of the uncorrected deficiencies, 86 (49 percent) were considered by the walk-down teams to be significant enough to warrant compensatory actions until the deficiency was corrected or was tracked to closure through implementation of corrective actions. Further, we found that 32 of the significant deficiencies had been closed by the previous Los Alamos contractor, prior to LANS assuming responsibility for operation of the Laboratory, even though the deficiencies had not been corrected. A fire protection expert provided technical support during the audit. As an example of uncorrected problems, LANS had not resolved, by performing periodic tests, a deficiency identified in 2006 regarding a kitchen hood fire suppression system in a facility located within the Los Alamos Neutron Science Center. Such systems are required to be tested twice a year by the National Fire Protection Association standard, a standard that had been adopted by Department of Energy under DOE Order 420.1B. Yet, in 2006, the LANS walk-down team recognized that this system had not been inspected since May 2004 and noted that deficient suppression systems could result in significantly high levels of property damage and loss. After we brought this issue to management's attention on February 6, 2009, LANS officials stated that the Laboratory would correct this deficiency. As with the problems involving the fire suppression system, we observed that LANS had not always corrected life safety deficiencies involving building exits at one of its primary facilities. This included providing a secondary emergency exit for a building with occupants on multiple floor levels. LANS had removed personnel from the third floor and improved the sprinkler system of the facility, but it had still not provided a secondary exit for personnel on the second floor by the time we completed our review. NNSA has since stated that this fire protection issue will be completely addressed by relocating personnel from the second floor. Perhaps most serious, our testing revealed that a number of deficien

  4. Memorandum Request for Concurrence on firee Temporary Variance Applications Regarding Fire Protection and Pressure Safety at the Oak Ridge National Laboratory

    Broader source: Energy.gov [DOE]

    Memorandum Request for Concurrence on firee Temporary Variance Applications Regarding Fire Protection and Pressure Safety at the Oak Ridge National Laboratory

  5. Fire Protection Program Manual

    SciTech Connect (OSTI)

    Sharry, J A

    2012-05-18T23:59:59.000Z

    This manual documents the Lawrence Livermore National Laboratory (LLNL) Fire Protection Program. Department of Energy (DOE) Orders 420.1B, Facility Safety, requires LLNL to have a comprehensive and effective fire protection program that protects LLNL personnel and property, the public and the environment. The manual provides LLNL and its facilities with general information and guidance for meeting DOE 420.1B requirements. The recommended readers for this manual are: fire protection officers, fire protection engineers, fire fighters, facility managers, directorage assurance managers, facility coordinators, and ES and H team members.

  6. Memorandum, Request for Concurrence on fire Temporary Variance Applications Regarding Fire Protection and Pressure Safety at the Oak Ridge National Laboratory

    Broader source: Energy.gov [DOE]

    Request for Concurrence on Three Temporary Variance Applications Regarding Fire Protection and Pressure Safety at the Oak Ridge National Laboratory

  7. Fire protection design criteria

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    This Standard provides supplemental fire protection guidance applicable to the design and construction of DOE facilities and site features (such as water distribution systems) that are also provided for fire protection. It is intended to be used in conjunction with the applicable building code, national Fire Protection Association Codes and Standards, and any other applicable DOE construction criteria. This Standard, along with other delineated criteria, constitutes the basic criteria for satisfying DOE fire and life safety objectives for the design and construction or renovation of DOE facilities.

  8. CRAD, Fire Protection- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Fire Protection Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  9. Model Fire Protection Program

    Broader source: Energy.gov [DOE]

    To facilitate conformance with its fire safety directives and the implementation of a comprehensive fire protection program, DOE has developed a number of "model" program documents. These include a comprehensive model fire protection program, model fire hazards analyses and assessments, fire protection system inspection and testing procedures, and related material.

  10. Fire Protection for Laboratories Using Chemicals

    Broader source: Energy.gov (indexed) [DOE]

    Protection Engineer Fire Protection Engineering Pacific Northwest National Laboratory Phone 509-371-7902; Cell 509-308-7658 Fax 509-371-7890 andrew.minister@pnnl.gov Questions?...

  11. FIRE PROTECTION IMPAIRMENTS University Fire Marshal

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    FIRE PROTECTION IMPAIRMENTS University Fire Marshal Guidance Document Approved by: R. Flynn Last system. These are regulations used by the University Fire Marshal and EH&S as guidance to meet compliance, the owner shall be considered the impairment coordinator (The University Fire Marshal has been identified

  12. CRAD, Fire Protection- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Fire Protection program at the Idaho Accelerated Retrieval Project Phase II.

  13. DOE Standard: Fire protection design criteria

    SciTech Connect (OSTI)

    Not Available

    1999-07-01T23:59:59.000Z

    The development of this Standard reflects the fact that national consensus standards and other design criteria do not comprehensively or, in some cases, adequately address fire protection issues at DOE facilities. This Standard provides supplemental fire protection guidance applicable to the design and construction of DOE facilities and site features (such as water distribution systems) that are also provided for fire protection. It is intended to be used in conjunction with the applicable building code, National Fire Protection Association (NFPA) Codes and Standards, and any other applicable DOE construction criteria. This Standard replaces certain mandatory fire protection requirements that were formerly in DOE 5480.7A, ``Fire Protection``, and DOE 6430.1A, ``General Design Criteria``. It also contains the fire protection guidelines from two (now canceled) draft standards: ``Glove Box Fire Protection`` and ``Filter Plenum Fire Protection``. (Note: This Standard does not supersede the requirements of DOE 5480.7A and DOE 6430.1A where these DOE Orders are currently applicable under existing contracts.) This Standard, along with the criteria delineated in Section 3, constitutes the basic criteria for satisfying DOE fire and life safety objectives for the design and construction or renovation of DOE facilities.

  14. Independent Oversight Review of the Fire Protection Program and...

    Office of Environmental Management (EM)

    Tanks NFPA National Fire Protection Association OFI Opportunity for Improvement OREM Oak Ridge Environmental Management ORNL Oak Ridge National Laboratory PB Process Building...

  15. Fire protection for relocatable structures

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    This standard supersedes DOE/EV-0043, ``Standard on Fire Protection for Portable Structures.`` It was revised to address the numerous types of relocatable structures, such as trailers, tension-supported structures, and tents being used by DOE and contractors.

  16. Model Fire Protection Assessment Guide

    Broader source: Energy.gov [DOE]

    This Assessment guide covers the implementation of the DOE's responsibility of assuring that DOE and the DOE Contractors have established Fire Protection Programs that are at the level required for the area being assessed.

  17. Model Baseline Fire Department/Fire Protection Engineering Assessment

    Broader source: Energy.gov [DOE]

    The purpose of the document is to comprehensively delineate and rationalize the roles and responsibilities of the Fire Department and Fire Protection (Engineering).

  18. DOE Fire Protection Handbook, Volume I

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The Department of Energy (DOE) Fire Protection Program is delineated in a number of source documents including; the Code of Federal Regulations (CFR), DOE Policy Statements and Orders, DOE and national consensus standards (such as those promulgated by the National Fire Protection Association), and supplementary guidance, This Handbook is intended to bring together in one location as much of this material as possible to facilitate understanding and ease of use. The applicability of any of these directives to individual Maintenance and Operating Contractors or to given facilities and operations is governed by existing contracts. Questions regarding applicability should be directed to the DOE Authority Having Jurisdiction for fire safety. The information provided within includes copies of those DOE directives that are directly applicable to the implementation of a comprehensive fire protection program. They are delineated in the Table of Contents. The items marked with an asterisk (*) are included on the disks in WordPerfect 5.1 format, with the filename noted below. The items marked with double asterisks are provided as hard copies as well as on the disk. For those using MAC disks, the files are in Wordperfect 2.1 for MAC.

  19. Fire Simulation, Evacuation Analysis and Proposal of Fire Protection Systems Inside an Underground Cavern

    E-Print Network [OSTI]

    Stella, Carlo

    Fire Simulation, Evacuation Analysis and Proposal of Fire Protection Systems Inside an Underground Cavern

  20. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment

    SciTech Connect (OSTI)

    Irving, John S

    2003-04-01T23:59:59.000Z

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  1. Idaho National Engineering and Environmental Laboratory Wildland Fire Management Environmental Assessment - April 2003

    SciTech Connect (OSTI)

    Irving, J.S.

    2003-04-30T23:59:59.000Z

    DOE prepared an environmental assessment (EA)for wildland fire management activities on the Idaho National Engineering and Environmental Laboratory (INEEL) (DOE/EA-1372). The EA was developed to evaluate wildland fire management options for pre-fire, fire suppression, and post fire activities. Those activities have an important role in minimizing the conversion of the native sagebrush steppe ecosystem found on the INEEL to non-native weeds. Four alternative management approaches were analyzed: Alternative 1 - maximum fire protection; Alternative 2 - balanced fire protection; Alternative 2 - balanced fire protection; Alternative 3 - protect infrastructure and personnel; and Alternative 4 - no action/traditional fire protection.

  2. Independent Oversight Review of the Fire Protection Program at...

    Energy Savers [EERE]

    (wdata) * System Design Description, Fire Suppression System, Plutonium Facility * Preventive Maintenance Procedures- Plutonium Facility Fire Protection (Various) *...

  3. Planning Rural Fire Protection for Texas.

    E-Print Network [OSTI]

    Jones, Jack L.

    1981-01-01T23:59:59.000Z

    , and shall have full authority to carry out the objects of their creation and to that end are authorized to acquire, purchase, hold, lease, manage, occupy and sell real and personal property or any interest therein; to enter into and to perform any and all... to make fire protection feasible, the citizens of the rural area must organize their own fire department to protect their property and their lives. ORGANIZING A FIRE PROTECTION PROGRAM Before planning can begin, a community must determine whether rural...

  4. Wildland Fire Management Plan for Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Green,T.

    2009-10-23T23:59:59.000Z

    This Wildland Fire Management Plan (FMP) for Brookhaven National Lab (BNL) updates the 2003 plan incorporating changes necessary to comply with DOE Order 450.1 and DOE P 450.4, Federal Wildland Fire Management Policy and Program Review; Wildland and Prescribed Fire Management Policy and implementation Procedures Reference Guide. This current plan incorporates changes since the original draft of the FMP that result from new policies on the national level. This update also removes references and dependence on the U.S. Fish & Wildlife Service and Department of the Interior, fully transitioning Wildland Fire Management responsibilities to BNL. The Department of Energy policy for managing wildland fires requires that all areas, managed by the DOE and/or its various contractors, that can sustain fire must have a FMP that details fire management guidelines for operational procedures associated with wild fire, operational, and prescribed fires. Fire management plans provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled, 'prescribed' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered, threatened, and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL. This FMP will be reviewed periodically to ensure the fire program advances and evolves with the missions of the DOE and BNL. This Fire Management Plan is presented in a format that coverers all aspects specified by DOE guidance documents which are based on the national template for fire management plans adopted under the National Fire Plan. The DOE is one of the signatory agencies on the National Fire Plan. This FMP is to be used and implemented for the entire BNL site including the Upton Reserve and has been reviewed by, The Nature Conservancy, New York State Department of Environmental Conservation Forest Rangers, and DOE, as well as appropriate BNL emergency services personnel. The BNL Fire Department is the lead on wildfire suppression. However, the BNL Natural Resource Manager will be assigned to all wildland fires as technical resource advisor.

  5. WILDLAND FIRE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.

    SciTech Connect (OSTI)

    ENVIRONMENTAL AND WASTE MANAGEMENT SERVICES DIVISION

    2003-09-01T23:59:59.000Z

    This Wildland Fire Management Plan (FMP) for Brookhaven National Lab (BNL) and the Upton Ecological and Research Reserve (Upton Reserve) is based on the U.S. Fish & Wildlife Service (FWS) fire management planning procedures and was developed in cooperation with the Department of Energy (DOE) by Brookhaven Science Associates. As the Upton Reserve is contained within the BNL 5,265-acre site, it is logical that the plan applies to both the Upton Reserve and BNL. The Department of the Interior policy for managing wildland fires requires that all areas managed by FWS that can sustain fire must have an FMP that details fire management guidelines for operational procedures and specifies values to be protected or enhanced. Fire management plans provide guidance on fire preparedness, fire prevention, wildfire suppression, and the use of controlled, ''prescribed'' fires and mechanical means to control the amount of available combustible material. Values reflected in the BNL/Upton Reserve Wildland FMP include protecting life and public safety; Lab properties, structures and improvements; cultural and historical sites; neighboring private and public properties; and endangered and threatened species and species of concern. Other values supported by the plan include the enhancement of fire-dependent ecosystems at BNL and the Upton Reserve. This FMP will be reviewed periodically to ensure the fire program advances and evolves with the missions of FWS, BNL, and the Upton Reserve. This Fire Management Plan is a modified version of the Long Island National Wildlife Refuge Complex Fire plan (updated in 2000), which contains all FWS fire plan requirements and is presented in the format specified by the national template for fire management plans adopted under the National Fire Plan. The DOE is one of the signatory agencies on the National Fire Plan. FWS shall be, through an Interagency Agreement dated November 2000 (Appendix C), responsible for coordinating and implementing prescribed burns and fuel reduction projects in the Upton Reserve. Prescribed fire and fuel reduction in locations outside the Upton Reserve will be coordinated through the Natural Resource Management Program at BNL, and done in consultation with FWS. This FMP is to be used and implemented for the entire BNL site including the Upton Reserve and has been reviewed by FWS, The Nature Conservancy, New York State Department of Environmental Conservation Forest Rangers, and DOE, as well as appropriate BNL emergency services personnel.

  6. Guidance for the Quality Assurance of Fire Protection Systems

    Broader source: Energy.gov [DOE]

    This quality assurance document is intended to provide guidance for the DOE fire protection community in the continuing effort to ensure the reliability of fire protection systems. This guidance document applies the concepts of DOE Order 5700.6C, Quality Assurance, to the management of fire protection systems.

  7. GLOVEBOX WINDOWS, FIRE PROTECTION AND VOICES FROM THE PAST

    SciTech Connect (OSTI)

    Till, W

    2009-04-15T23:59:59.000Z

    'Study the past--what is past is prologue'. These words appear as the motto on a pair of statues at the National Archives Building in Washington DC. They are also the opening sentence in the preface of a document written in August of 1956 entitled 'A Summary of Accidents and Incidents Involving Radiation in Atomic Energy Activities--June 1945 thru December 1955'. This document, one of several written by D.F. Hayes of the Safety and Fire Protection Branch, Division of Organization and Personnel, U.S. Atomic Energy Commission in Washington DC, and many others are often forgotten even though they contain valuable glovebox fire protection lessons for us today.

  8. Fire Protection Database | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.Financial Statement:Fire Protection Database

  9. Project examples Install new HVAC, electrical, fire protection,

    E-Print Network [OSTI]

    Blanchette, Robert A.

    Project examples Install new HVAC, electrical, fire protection, and plumbing systems in Mechanical. · Totransformthisspaceandincreaseaccessibility, anelevatorisrequired.Currently,Blakelydoesnot haveone. Replace HVAC and electrical system

  10. Fire Protection Program Assessment, Building 9116- Y12 Plant, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This assessment is intended to evaluate the fire hazards, life safety and fire protection features inherent in Building 9116.

  11. Sandia National Laboratories: National Fire Protection Association

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt Storage System ArevaNRG

  12. Sandia National Laboratories: Fire Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit at Explora Museum OnFactFiber-opticAssessmentFire

  13. Fire protection program fiscal year 1997 site support program plan - Hanford fire department

    SciTech Connect (OSTI)

    Good, D.E., Westinghouse Hanford

    1996-07-01T23:59:59.000Z

    The mission of the Hanford Fires Department (HFD) is to support the safe and timely cleanup of the Hanford Site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. this includes response to surrounding fire department districts under mutual aids agreements and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System) and various commercial entities operating on site. the fire department also provides site fire marshal overview authority, fire system testing, and maintenance, respiratory protection services, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention and education.

  14. DALHOUSIE UNIVERSITY Fire Protection Design Guidelines Nov 2013

    E-Print Network [OSTI]

    Brownstone, Rob

    DALHOUSIE UNIVERSITY Fire Protection Design Guidelines Nov 2013 Department of Facilities Management for fire water backflow preventers are Cold, Ames, Conbraco and Watts. 2. Sprinkler System Addition (Table F): Pipe material for over 2" inside sprinkler water to be Sch10, thin wall. New Section: Standpipes

  15. Cold Vacuum Drying (CVD) Facility Diesel Generator Fire Protection

    SciTech Connect (OSTI)

    SINGH, G.

    2000-04-25T23:59:59.000Z

    This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the Fire Protection and Detection System installed by Project W-441 (Cold Vacuum Drying Facility and Diesel Generator Building) functions as required by project specifications.

  16. Influence of safeguards and fire protection on criticality safety

    SciTech Connect (OSTI)

    Six, D E

    1980-01-01T23:59:59.000Z

    There are several positive influences of safeguards and fire protection on criticality safety. Experts in each discipline must be aware of regulations and requirements of the others and work together to ensure a fault-tree design. EG and G Idaho, Inc., routinely uses an Occupancy-Use Readiness Manual to consider all aspects of criticality safety, fire protection, and safeguards. The use of the analytical tree is described.

  17. Research Overview Department of Fire Protection Engineering

    E-Print Network [OSTI]

    Shapiro, Benjamin

    J.A. Milke structures, detection, egress S.I. Stoliarov pyrolysis, flammability, fire growth P spray interactions with fire plumes (kinematic), flame sheets (cooling and dilution), and flame: Detailed Experiments and Model Development for Thrust Chamber Film Cooling Sponsor: NASA Marshall

  18. Contained Firing Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartmentStewardshipAdministration| National Nuclear SecurityContained Firing

  19. Fire Protection Program Assessment, Building 9203 & 9203A Complex- Y12 Plant, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This assessment is intended to evaluate the fire hazards, life safety and fire protection features inherent in the Building 9203 and 9203A complex.

  20. Voluntary Protection Program Onsite Review, Bechtel National...

    Broader source: Energy.gov (indexed) [DOE]

    Bechtel National Inc., Waste Treatment Plant Construction Site - November 2013 Voluntary Protection Program Onsite Review, Bechtel National Inc., Waste Treatment Plant Construction...

  1. Research Overview Department of Fire Protection Engineering

    E-Print Network [OSTI]

    Shapiro, Benjamin

    . Tang Title: Inclination Effects on Flame Spread Sponsor: National Science Foundation Collaborators transport in green buildings. The addition of wind on smoke dispersion will enhance the benefit

  2. Fire Protection Training | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal Registry CommentsOverview »FINDING OF NO|Training Fire

  3. Fire Protection Program | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs Find Jobs Clean energy jobsFire

  4. Resistance after firing protected electric match. [Patent application

    DOE Patents [OSTI]

    Montoya, A.P.

    1980-03-20T23:59:59.000Z

    An electric match having electrical leads embedded in flame-producing compound is protected against an accidental resistance across the leads after firing by a length of heat-shrinkable tubing encircling the match body and having a skirt portion extending beyond the leads. The heat of the burning match and an adjacent thermal battery causes the tubing to fold over the end of the match body, covering the ends of the leads and protecting them from molten pieces of the battery.

  5. CRAD, Fire Protection- Idaho Accelerated Retrieval Project Phase II

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Fire Protection program at the Idaho Accelerated Retrieval Project Phase II.

  6. Office of Enterprise Assessments Targeted Review of the Idaho National Laboratory Fire Protection Program as Implemented at the Irradiated Materials Characterization Laboratory - December 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLC OrderEfficiencyOceanOctober Field ElementIdaho National

  7. Nationwide: National Fire Protection Association Provides Training...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and emergency medical personnel on safely responding to accidents involving plug-in electric vehicles. Because of these vehicles' unique technology, first responders must use...

  8. Voluntary Protection Program Onsite Review, Bechtel National...

    Office of Environmental Management (EM)

    Bechtel National Incorporated Waste Treatment and Immobilization Plant Construction Site Report from the Department of Energy Voluntary Protection Program Onsite Review November...

  9. Annual Fire Protection Summary Information Reporting Guide | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access to OUOAlaskaMoneyEnergy Fire Protection

  10. Needs assessment for fire department services and resources for the Los Alamos National Laboratory, Los Alamos, New Mexico. Final report

    SciTech Connect (OSTI)

    NONE

    1995-11-15T23:59:59.000Z

    This report has been developed in response to a request from the Los Alamos National Laboratory (LANL) to evaluate the need for fire department services so as to enable the Laboratory to plan effective fire protection and thereby: meet LANL`s regulatory and contractual obligations; interface with the Department of Energy (DOE) and other agencies on matters relating to fire and emergency services; and ensure appropriate protection of the community and environment. This study is an outgrowth of the 1993 Fire Department Needs Assessment (prepared for DOE) but is developed from the LANL perspective. Input has been received from cognizant and responsible representatives at LANL, DOE, Los Alamos County (LAC) and the Los Alamos Fire Department (LAFD).

  11. Microsoft Word - 2010 LASO Fire Protection Oversight at LANL

    Broader source: Energy.gov (indexed) [DOE]

    of the fire flow test method and associated equipment to validate the accuracy of Hydro Flow Products pitotless nozzle for use by the Los Alamos Fire Department. This...

  12. Cold Vacuum Dryer (CVD) Facility Fire Protection System Design Description (SYS 24)

    SciTech Connect (OSTI)

    SINGH, G.

    2000-10-17T23:59:59.000Z

    This system design description (SDD) addresses the Cold Vacuum Drying (CVD) Facility fire protection system (FPS). The primary features of the FPS for the CVD are a fire alarm and detection system, automatic sprinklers, and fire hydrants. The FPS also includes fire extinguishers located throughout the facility and fire hydrants to assist in manual firefighting efforts. In addition, a fire barrier separates the operations support (administrative) area from the process bays and process bay support areas. Administrative controls to limit combustible materials have been established and are a part of the overall fire protection program. The FPS is augmented by assistance from the Hanford Fire Department (HED) and by interface systems including service water, electrical power, drains, instrumentation and controls. This SDD, when used in conjunction with the other elements of the definitive design package, provides a complete picture of the FPS for the CVD Facility.

  13. Protecting Oregon Old-Growth Forests from Fires: How Much Is It Worth?1

    E-Print Network [OSTI]

    Standiford, Richard B.

    ), but not for protecting these old-growth ecosystems from fire. The USDI Fish and Wildlife Service has designated about 2 (Gregory and von Winterfeldt 1992). This paper describes the performance of contingent valuation method) for protecting old-growth forests in Oregon from catastrophic fires. Methods Contingent valuation is a widely

  14. Forest fire near Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note: Since theNationalSites Meetings,

  15. Fire Protection Program fiscal year 1996, site support program plan Hanford Fire Department. Revision 2

    SciTech Connect (OSTI)

    Good, D.E.

    1995-09-01T23:59:59.000Z

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under a mutual aid agreement and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System). The fire department also provides site fire marshal overview authority, fire system testing and maintenance, self-contained breathing apparatus maintenance, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This report gives a program overview, technical program baselines, and cost and schedule baseline.

  16. Fire protection program fiscal year 1995 site support program plan, Hanford Fire Department

    SciTech Connect (OSTI)

    Good, D.E.

    1994-09-01T23:59:59.000Z

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the US Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under a mutual aid agreement and contractual fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System). The fire department also provides site fire marshal overview authority, fire system testing and maintenance, self-contained breathing apparatus maintenance, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This report describes the specific responsibilities and programs that the HFD must support and the estimated cost of this support for FY1995.

  17. Nuclear power plant fire protection: philosophy and analysis. [PWR; BWR

    SciTech Connect (OSTI)

    Berry, D. L.

    1980-05-01T23:59:59.000Z

    This report combines a fire severity analysis technique with a fault tree methodology for assessing the importance to nuclear power plant safety of certain combinations of components and systems. Characteristics unique to fire, such as propagation induced by the failure of barriers, have been incorporated into the methodology. By applying the resulting fire analysis technique to actual conditions found in a representative nuclear power plant, it is found that some safety and nonsafety areas are both highly vulnerable to fire spread and impotant to overall safety, while other areas prove to be of marginal importance. Suggestions are made for further experimental and analytical work to supplement the fire analysis method.

  18. Fire History in the Cherokee Nation of Oklahoma Michael C. Stambaugh & Richard P. Guyette &

    E-Print Network [OSTI]

    Stambaugh, Michael C

    Fire History in the Cherokee Nation of Oklahoma Michael C. Stambaugh & Richard P. Guyette & Joseph history in northeastern Oklahoma on lands once occupied by the Cherokee Nation. A fire event chronology American groups includ- ing Cherokee was significantly correlated (r=0.84) with the number of fires per

  19. Cold Vacuum Drying facility fire protection system design description (SYS 24)

    SciTech Connect (OSTI)

    PITKOFF, C.C.

    1999-07-06T23:59:59.000Z

    This document describes the Cold Vacuum Drying Facility (CVDF) fire protection system (FPS). The FPS provides fire detection, suppression, and loss limitation for the CVDF structure, personnel, and in-process spent nuclear fuel. The system provides, along with supporting interfacing systems, detection, alarm, and activation instrumentation and controls, distributive piping system, isolation valves, and materials and controls to limit combustibles and the associated fire loadings.

  20. Surveillance Guide - FPS 12.2 Fire Protection and Prevention

    Broader source: Energy.gov (indexed) [DOE]

    whose anticontamination clothing ignited. Contributing factors included untreated cotton clothing, the lack of a fire watch, and the welder's senses limited by the use of a...

  1. Rules for fire Protection Ludwig-Maximilians-University

    E-Print Network [OSTI]

    Kersting, Roland

    , processed or stored, or where explosive gases, steam, smoke or dust or any other explosive substances may inflammable substances are produced, processed or stored, or where explosive gases, steam, smoke or dust. #12;Headline Part B A. Fire Prevention 1. Smoking is prohibited in areas with increased fire risk

  2. Design criteria document, Fire Protection Task, K Basin Essential Systems Recovery, Project W-405

    SciTech Connect (OSTI)

    Johnson, B.H.

    1994-12-14T23:59:59.000Z

    The K Basin were constructed in the early 1950`s with a 20 year design life. The K Basins are currently in their third design life and are serving as a near term storage facility for irradiated N Reactor fuel until an interim fuel storage solution can be implemented. In April 1994, Project W-405, K Basin Essential Systems Recovery, was established to address (among other things) the immediate fire protection needs of the 100K Area. A Fire Barrier Evaluation was performed for the wall between the active and inactive areas of the 105KE and 105KW buildings. This evaluation concludes that the wall is capable of being upgraded to provide an equivalent level of fire resistance as a qualified barrier having a fire resistance rating of 2 hours. The Fire Protection Task is one of four separate Tasks included within the scope of Project W405, K Basin Essential systems Recovery. The other three Tasks are the Water Distribution System Task, the Electrical System Task, and the Maintenance Shop/Support Facility Task. The purpose of Project W-405`s Fire Protection Task is to correct Life Safety Code (NFPA 101) non-compliances and to provide fire protection features in Buildings 105KE, 105KW and 190KE that are essential for assuring the safe operation and storage of spent nuclear fuel at the 100K Area Facilities` Irradiated Fuel Storage Basins (K Basins).

  3. Voluntary Protection Program Onsite Review, Y-12 National Security...

    Office of Environmental Management (EM)

    Y-12 National Security Complex - April 2012 Voluntary Protection Program Onsite Review, Y-12 National Security Complex - April 2012 April 2012 Evaluation to determine whether Y-12...

  4. Nevada National Security Site Radiation Protection Program

    SciTech Connect (OSTI)

    none,

    2013-04-30T23:59:59.000Z

    Title 10 Code of Federal Regulations (CFR) Part 835, “Occupational Radiation Protection,” establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada National Security Site (NNSS), related (on-site or off-site) U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) operations, and environmental restoration off-site projects. This RPP section consists of general statements that are applicable to the NNSS as a whole. The RPP also includes a series of appendices which provide supporting detail for the associated NNSS Tennant Organizations (TOs). Appendix H, “Compliance Demonstration Table,” contains a cross-walk for the implementation of 10 CFR 835 requirements. This RPP does not contain any exemptions from the established 10 CFR 835 requirements. The RSPC and TOs are fully compliant with 10 CFR 835 and no additional funding is required in order to meet RPP commitments. No new programs or activities are needed to meet 10 CFR 835 requirements and there are no anticipated impacts to programs or activities that are not included in the RPP. There are no known constraints to implementing the RPP. No guides or technical standards are adopted in this RPP as a means to meet the requirements of 10 CFR 835.

  5. Fire protection guide for solid waste metal drum storage

    SciTech Connect (OSTI)

    Bucci, H.M.

    1996-09-16T23:59:59.000Z

    This guide provides a method to assess potential fire development in drum storage facilities. The mechanism of fire propagation/spread through stored drum arrays is a complex process. It involves flame heat transfer, transient conduction,convection, and radiation between drums (stored in an array configuration). There are several phenomena which may occur when drums are exposed to fire. The most dramatic is violent lid failure which results in total lid removal. When a drum loses its lid due to fire exposure, some or all of the contents may be ejected from the drum, and both the ejected combustible material and the combustible contents remaining within the container will burn. The scope of this guide is limited to storage arrays of steel drums containing combustible (primarily Class A) and noncombustible contents. Class B combustibles may be included in small amounts as free liquid within the solid waste contents.Storage arrays, which are anticipated in this guide, include single or multi-tier palletized (steel or wood pallets) drums,high rack storage of drums, and stacked arrays of drums where plywood sheets are used between tiers. The purpose of this guide is to describe a simple methodology that estimates the consequences of a fire in drum storage arrays. The extent of fire development and the resulting heat release rates can be estimated. Release fractions applicable to this type of storage are not addressed, and the transport of contaminants away from the source is not addressed. However, such assessments require the amount of combustible material consumed and the surface area of this burning material. The methods included in this guide do provide this information.

  6. Fire Protection System Account Request Form | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResourcesFLASH2011-11-OPAMFY 2007 TotalFinalJobs Find Jobs Clean energy jobsFireFire

  7. Passive fire protection for ELf`s N`Kossa floating production barge

    SciTech Connect (OSTI)

    Petit, P.

    1996-06-01T23:59:59.000Z

    The project to develop Elf`s N`Kossa offshore field called for an original design which included a floating production barge, 220 m long by 46 m wide, supporting six large modules, to provide both production facilities and living quarters. At sea, fire is a major concern and many different systems, both active and passive, have been used on offshore platforms. To provide passive fire protection of five of the six modules on this massive structure, a new high solubility glass fiber product called Insulfrax was used. This product is manufactured in Europe by the Carborundum Co. and is used in chimneys and domestic appliances, as well as for onshore and offshore fire protection. This paper reviews the sound and fire resistant qualities of this material.

  8. warhead protection | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareAi-rapter |warhead protection |

  9. weapons material protection | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareAi-rapter |warhead protection

  10. Floodplain Assessment for the Proposed Outdoor Fire Range Upgrades at TA-72 in Lower Sandia Canyon, Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Hathcock, Charles D. [Los Alamos National Laboratory

    2012-08-27T23:59:59.000Z

    Los Alamos National Laboratory (LANL) is preparing to implement actions in Sandia Canyon at Technical Area (TA) 72. Los Alamos National Security (LANS) biologists conducted a floodplain determination and this project is partially located within a 100-year floodplain. The proposed project is to upgrade the existing outdoor shooting range facilities at TA-72. These upgrades will result in increased safety and efficiencies in the training for Protective Force personnel. In order to remain current on training requirements, the firing ranges at TA-72 will be upgraded which will result in increased safety and efficiencies in the training for Protective Force personnel (Figure 1). These upgrades will allow for an increase in class size and more people to be qualified at the ranges. Some of these upgrades will be built within the 100-year floodplain. The upgrades include: concrete pads for turning target systems and shooting positions, new lighting to illuminate the firing range for night fire, a new speaker system for range operations, canopies at two locations, an impact berm at the far end of the 300-yard mark, and a block wall for road protection.

  11. DOE Fire Protection Handbook, Volume II. Fire effects and electrical and electronic equipment

    SciTech Connect (OSTI)

    NONE

    1994-08-18T23:59:59.000Z

    Electrical and electronic equipment, including computers, are used at critical facilities throughout the Department of Energy (DOE). Hughes Associates, Inc. was tasked to evaluate the potential thermal and nonthermal effects of a fire on the electrical and electronic equipment and methods to analyze, evaluate, and assist in controlling the potential effects. This report is a result of a literature review and analysis on the effects of fire on electrical equipment. It is directed at three objectives: (1) Provide a state-of-the-art review and analysis of thermal and nonthermal damage to electrical and electronic equipment; (2) Develop a procedure for estimating thermal and nonthermal damage considerations using current knowledge; and (3) Develop an R&D/T&E program to fill gaps in the current knowledge needed to further perfect the procedure. The literature review was performed utilizing existing electronic databases. Sources searched included scientific and engineering databases including Dialog, NTIS, SciSearch and NIST BFRL literature. Incorporated in the analysis is unpublished literature and conversations with members of the ASTM E-5.21, Smoke Corrosivity, and researchers in the electronics field. This report does not consider the effects of fire suppression systems or efforts. Further analysis of the potential impact is required in the future.

  12. Safety in Mine Research EstablishmentPresent-day requirements for protection against fire in coal mines 

    E-Print Network [OSTI]

    Kushnarev, A.; Koslyuk, A.; Petrov, P.

    Analysis of a statistical data shows that, on an average, about 50% of the total underground emergencies occurring in coal mines in the USSR are due to fires. Great attention is, therefore, paid in our country to the problem of protection against...

  13. Nationwide: National Fire Protection Association Provides Training to First

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergyHydrogenRegistration is OPEN!N ti

  14. History of the Laboratory Protection Division Oak Ridge National Laboratory

    E-Print Network [OSTI]

    i i #12;#12;History of the Laboratory Protection Division Oak Ridge National Laboratory 1942, Emergency Preparedness Date Published: March 1992 Prepared by the Oak Ridge National Laboratory Oak Ridge stations should be tucked comfortably away in isolated places. As such, the Oak Ridge area seemed perfect

  15. Fire Protection

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal Registry CommentsOverview »FINDING OF NO| Department ofNOT

  16. Clinch River breeder reactor sodium fire protection system design and development

    SciTech Connect (OSTI)

    Foster, K.W.; Boasso, C.J.; Kaushal, N.N.

    1984-04-13T23:59:59.000Z

    To assure the protection of the public and plant equipment, improbable accidents were hypothesized to form the basis for the design of safety systems. One such accident is the postulated failure of the Intermediate Heat Transfer System (IHTS) piping within the Steam Generator Building (SGB), resulting in a large-scale sodium fire. This paper discusses the design and development of plant features to reduce the consequences of the accident to acceptable levels. Additional design solutions were made to mitigate the sodium spray contribution to the accident scenario. Sodium spill tests demonstrated that large sodium leaks can be safely controlled in a sodium-cooled nuclear power plant.

  17. material protection | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration goSecuritycdns ||fors |hrpleadership

  18. Recommended practice for fire protection for electric generating plants and high voltage direct current converter stations. 2005 ed.

    SciTech Connect (OSTI)

    NONE

    2005-07-01T23:59:59.000Z

    The standard outlines fire safety recommendations for gas, oil, coal, and alternative fuel electric generating plants including high voltage direct current converter stations and combustion turbine units greater than 7500 hp used for electric generation. Provisions apply to both new and existing plants. The document provides fire prevention and fire protection recommendations for the: safety of construction and operating personnel; physical integrity of plant components; and continuity of plant operations. The 2005 edition includes revisions and new art that clarify existing provisions. 5 annexes.

  19. Alternative approach for fire suppression of class A, B and C fires in gloveboxes

    SciTech Connect (OSTI)

    Rosenberger, Mark S [Los Alamos National Laboratory; Tsiagkouris, James A [Los Alamos National Laboratory

    2011-02-10T23:59:59.000Z

    Department of Energy (DOE) Orders and National Fire Protection Association (NFPA) Codes and Standards require fire suppression in gloveboxes. Several potential solutions have been and are currently being considered at Los Alamos National Laboratory (LANL). The objective is to provide reliable, minimally invasive, and seismically robust fire suppression capable of extinguishing Class A, B, and C fires; achieve compliance with DOE and NFPA requirements; and provide value-added improvements to fire safety in gloveboxes. This report provides a brief summary of current approaches and also documents the successful fire tests conducted to prove that one approach, specifically Fire Foe{trademark} tubes, is capable of achieving the requirement to provide reliable fire protection in gloveboxes in a cost-effective manner.

  20. Measurements of air contaminants during the Cerro Grande fire at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Eberhart, Craig

    2010-08-01T23:59:59.000Z

    Ambient air sampling for radioactive air contaminants was continued throughout the Cerro Grande fire that burned part of Los Alamos National Laboratory. During the fire, samples were collected more frequently than normal because buildup of smoke particles on the filters was decreasing the air flow. Overall, actual sampling time was 96% of the total possible sampling time for the May 2000 samples. To evaluate potential human exposure to air contaminants, the samples were analyzed as soon as possible and for additional specific radionuclides. Analyses showed that the smoke from the fire included resuspended radon decay products that had been accumulating for many years on the vegetation and the forest floor that burned. Concentrations of plutonium, americium, and depleted uranium were also measurable, but at locations and concentrations comparable to non-fire periods. A continuous particulate matter sampler measured concentrations that exceeded the National Ambient Air Quality Standard for PM-10 (particles less than 10 micrometers in diameter). These high concentrations were caused by smoke from the fire when it was close to the sampler.

  1. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    SciTech Connect (OSTI)

    Coty, J

    2009-03-16T23:59:59.000Z

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site is largely developed yet its surface water system encompasses two arroyos, an engineered detention basin (Lake Haussmann), storm channels, and wetlands. Conversely, the more rural Site 300 includes approximately 7,000 acres of largely undeveloped land with many natural tributaries, riparian habitats, and wetland areas. These wetlands include vernal pools, perennial seeps, and emergent wetlands. The watersheds within which the Laboratory's sites lie provide local and community ecological functions and services which require protection. These functions and services include water supply, flood attenuation, groundwater recharge, water quality improvement, wildlife and aquatic habitats, erosion control, and (downstream) recreational opportunities. The Laboratory employs a watershed approach to protect these surface water systems. The intent of this approach, presented in this document, is to provide an integrated effort to eliminate or minimize any adverse environmental impacts of the Laboratory's operations and enhance the attributes of these surface water systems, as possible and when reasonable, to protect their value to the community and watershed. The Laboratory's watershed approach to surface water protection will use the U.S. Environmental Protection Agency's Watershed Framework and guiding principles of geographic focus, scientifically based management and partnerships1 as a foundation. While the Laboratory's unique site characteristics result in objectives and priorities that may differ from other industrial sites, these underlying guiding principles provide a structure for surface water protection to ensure the Laboratory's role in environmental stewardship and as a community partner in watershed protection. The approach includes pollution prevention, continual environmental improvement, and supporting, as possible, community objectives (e.g., protection of the San Francisco Bay watershed).

  2. Impacts of the Cerro Grande fire on Homestead era and Manhattan Project properties at Los Alamos National Laboratory.

    SciTech Connect (OSTI)

    McGehee, E. D. (Ellen D.); Isaacson, J. (John)

    2001-01-01T23:59:59.000Z

    In May of 2000, the Cerro Grande Fire burned approximately 8,000 acres of Department of Energy (DOE) managed land at the Los Alamos National Laboratory (LANL). Although the fire was generally of low intensity, it impacted a significant number of LANL's cultural resources. Historic wooden properties were affected more heavily than prehistoric archaeological sites. This paper will provide an overview of the Homestead and Manhattan Project Periods at LANL and will discuss the effects of the Cerro Grande Fire on historic wooden properties. Post-fire cultural resource management issues will also be discussed.

  3. Fire Safety Training: Fire Modeling- NUREG 1934

    Broader source: Energy.gov [DOE]

    Presenter: Frederick W. Mowrer, Ph.D., P.E. Director Fire Protection Engineering Programs - Cal Poly – SLO

  4. Implementation Guide for DOE Fire Protection and Emergency Services Programs for Use with DOE O 420.1B, Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-09-27T23:59:59.000Z

    This Guide facilitates the implementation of requirements of DOE O 420.1B by providing an acceptable approach to meet the requirements for Fire Protection Programs. Cancels DOE G 440.1-5.

  5. FPS 12.2 Fire Protection and Prevention 5/23/2000

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to ensure that the contractor is implementing an effective program to minimize the potential for fires that could threaten the health and safety of the public...

  6. Fire-protection research for energy technology: FY 80 year-end report. [For fusion energy experiments and other energy research

    SciTech Connect (OSTI)

    Hasegawa, H.K.; Alvares, N.J.; Lipska, A.E.; Ford, H.; Priante, S.; Beason, D.G.

    1981-05-26T23:59:59.000Z

    This continuing research program was initiated in 1977 in order to advance fire protection strategies for Fusion Energy Experiments (FEE). The program has since been expanded to encompass other forms of energy research. Accomplishments for fiscal year 1980 were: finalization of the fault-tree analysis of the Shiva fire management system; development of a second-generation, fire-growth analysis using an alternate moel and new LLNL combustion dynamics data; improvements of techniques for chemical smoke aerosol analysis; development and test of a simple method to assess the corrosive potential of smoke aerosols; development of an initial aerosol dilution system; completion of primary small-scale tests for measurements of the dynamics of cable fires; finalization of primary survey format for non-LLNL energy technology facilities; and studies of fire dynamics and aerosol production from electrical insulation and computer tape cassettes.

  7. Observations on the Impact of Leased Facilities to The DOE’s Fire Protection Program

    Broader source: Energy.gov [DOE]

    Presenter: Robert F. Bitter, P.E., Staff Engineer - National Nuclear Security Administration's Kansas City Plant

  8. Voluntary Protection Program Review, Pacific Northwest National Laboratory- June 2009

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Pacific Northwest National Laboratory is continuing to perform at a level deserving DOE-VPP Star recognition.

  9. Voluntary Protection Program Onsite Review, Idaho National Laboratory- October 2009

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Idaho National Laboratory is continuing to perform at a level deserving DOE-VPP Star recognition.

  10. DOE Releases Maturity Model to Better Protect the Nation's Grid...

    Office of Environmental Management (EM)

    the Nation's Grid from Cybersecurity Threats May 31, 2012 - 4:32pm Addthis The Electricity Subsector Cybersecurity Capability Maturity Model, which allows electric utilities...

  11. Voluntary Protection Program Onsite Review, Bechtel National Incorporated- October 2008

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Bechtel National Incorporated Waste Treatment Plant is continuing to perform at a level deserving DOE-VPP Star recognition.

  12. Implementation Guide, Wildland Fire Management Program for Use with DOE O 450.1, Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-02-11T23:59:59.000Z

    This Guide provides a full range of activities and functions to plan, prepare, and respond to potential fires and rehabilitate undeveloped lands following a fire. Canceled by DOE N 251.82.

  13. How Much is Too Much ? Carrying capacity of National Parks and Protected Areas

    E-Print Network [OSTI]

    Robert E. Manning

    2002-01-01T23:59:59.000Z

    Abstract: Increasing recreational use of national parks and protected areas can impact natural and cultural resources and the quality of the visitor experience. Determining how much recreational use can ultimately be accommodated in a park or protected area is often addressed through the concept of carrying capacity. Contemporary approaches to carrying capacity – including the Visitor Experience and Resource Protection (VERP) framework developed by the U.S. National Park Service – rely on formulation of indicators and standards of quality of natural/cultural resources and the visitor experience. This paper describes the VERP framework and its application in the U.S. national park system, including a program of research designed to help formulate indicators and standards of quality.

  14. Improve the design of fire emergency relief systems

    SciTech Connect (OSTI)

    Stickles, R.P.; Melhem, G.A.; Eckhardt, D.R.

    1995-11-01T23:59:59.000Z

    In recognition of the potential severe consequences of a process vessel rupture under fire exposure, industry codes such as the National Fire Protection Association (NFPA) 30 and the American Petroleum Institute (API) Standard 2000 have been established for the specification of emergency relief systems (ERSs). The intent is to reduce the risk of human injury and asset losses associated with process plant fires. These codes are largely prescriptive in nature. That is, they provide specific details on how to achieve safe design. Prescriptive standards are easy to apply, because they are simplified approaches which generally apply to many (but not all) situations. But they also have limitations, including the tendency to result in, at best, suboptimal (overly conservative) designs, and in some instances potentially unsafe designs. As the fire community moves toward performance-based standards for building protection, perhaps it is time to consider a similar approach for vessel protection in a fire. The design issues addressed in this article include: Use of heat input based on actual fuel burning rate, heat of combustion, and flame emissive power, vs. NFPA 30 and API 2000 heat-input equations; Effect of drainage (from vessel to sump) on fire duration, rather than heat input; Use of risk assessment to determine the relative frequency of fire and process-induced incidents; and design for containment, rather than vessel protection when fire probability is low

  15. Material control and accountability (MC&A) recovery from the Cerro Grande fire at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Haag, William Earl

    2001-01-01T23:59:59.000Z

    During the week of May 10-14, 2000, the Cerro Grande Fire scorched over 40,000 acres of prime forestland and destroyed over 400 homes in the Los Alamos community and several structures at the Los Alamos National Laboratory (LANL). Of the land affected by the fire, nearly one quarter of it was Laboratory property. All of LANL's 64 material balance areas (MBAs) were affected to some degree, but one Category I technical area and several Category I11 and IV areas sustained heavy damage. When the MC&A personnel were allowed to return to work on May 23, they addressed the following problems: How do we assure both ourselves and the Department of Energy (DOE) that no nuclear materials had been compromised? How do we assist the nuclear material (NM) custodians and their operating groups so that they can resume normal MC&A operations? Immediately after the return to work, the Laboratory issued emergency MC&A assurance actions for Category I through Category IV facilities. We conducted special inventories, area walkthroughs, and other forms of evaluation so that within a month after the fire, we were able to release the last MBA to resume work and assure that all nuclear material had been accounted for. This paper discusses the measures LANL adopted to ensure that none of its nuclear material had been compromised.

  16. Office of Nuclear Warhead Protection | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF CIVIL RIGHTS NA-1.2APAC w/

  17. Office of Weapons Material Protection | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF CIVIL RIGHTS

  18. Exploring the tug of war between positive and negative interactions among savanna trees: Competition, dispersal, and protection from fire

    E-Print Network [OSTI]

    Bacelar, Flora S; Hernández-García, Emílio

    2013-01-01T23:59:59.000Z

    Savannas are characterized by a discontinuous tree layer superimposed on a continuous layer of grass. Identifying the mechanisms that facilitate this tree-grass coexistence has remained a persistent challenge in ecology and is known as the "savanna problem". In this work, we propose a model that combines a previous savanna model (Calabrese et al., 2010), which includes competitive interactions among trees and dispersal, with the Drossel-Schwabl forest fire model, therefore representing fire in a spatially explicit manner. The model is used to explore how the pattern of fire-spread, coupled with an explicit, fire-vulnerable tree life stage, affects tree density and spatial pattern. Tree density depends strongly on both fire frequency and tree-tree competition although the fire frequency, which induces indirect interactions between trees and between trees and grass, appears to be the crucial factor controlling the tree-extinction transition in which the savanna becomes grassland. Depending on parameters, adult ...

  19. Y-12 Fire Protection Operations has new chief | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL Home SRNL mainEmployees & Retirees /

  20. Worker Protection Program for DOE (Including the National Nuclear Security Administration) Federal Employees

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-05-17T23:59:59.000Z

    The Order establishes the framework for an effective worker protection program that will reduce or prevent injuries, illnesses, and accidental losses by providing Department of Energy (DOE), including National Nuclear Security Administration (NNSA), Federal workers with a safe and healthful workplace. Cancels DOE O 440.1A. Certified 6/17/2011. Canceled by DOE O 440.1B Chg 1.

  1. Marine Conservation UK's national charity dedicated to the protection of marine wildlife.

    E-Print Network [OSTI]

    will urge all troops in Iraq to uphold international law and will welcome "the firm commitmentMarine Conservation UK's national charity dedicated to the protection of marine wildlife. Public Discussion Contact Us Sitemap Japan-EU summit in Tokyo to focus on enlargement, investment 20 June 2004

  2. Fire Classifications Fires involving the ordinary

    E-Print Network [OSTI]

    Jia, Songtao

    , plastics, etc. Fires involving combustible or flammable liquids such as gasoline, kerosene, oils, grease is protected by various devices such as smoke detectors, sprinkler systems, and manual fire alarm pull stations. Manual pull stations are strategically located throughout the University. Usually located by each exit

  3. Fire Protection Engineer

    Broader source: Energy.gov [DOE]

    *This position was previously advertised under announcement number DOE-HQ-MA-14-00377-CR, candidates that previously applied must reapply to be considered.* This position is located in the Office...

  4. Computational fire modeling for aircraft fire research

    SciTech Connect (OSTI)

    Nicolette, V.F.

    1996-11-01T23:59:59.000Z

    This report summarizes work performed by Sandia National Laboratories for the Federal Aviation Administration. The technical issues involved in fire modeling for aircraft fire research are identified, as well as computational fire tools for addressing those issues, and the research which is needed to advance those tools in order to address long-range needs. Fire field models are briefly reviewed, and the VULCAN model is selected for further evaluation. Calculations are performed with VULCAN to demonstrate its applicability to aircraft fire problems, and also to gain insight into the complex problem of fires involving aircraft. Simulations are conducted to investigate the influence of fire on an aircraft in a cross-wind. The interaction of the fuselage, wind, fire, and ground plane is investigated. Calculations are also performed utilizing a large eddy simulation (LES) capability to describe the large- scale turbulence instead of the more common k-{epsilon} turbulence model. Additional simulations are performed to investigate the static pressure and velocity distributions around a fuselage in a cross-wind, with and without fire. The results of these simulations provide qualitative insight into the complex interaction of a fuselage, fire, wind, and ground plane. Reasonable quantitative agreement is obtained in the few cases for which data or other modeling results exist Finally, VULCAN is used to quantify the impact of simplifying assumptions inherent in a risk assessment compatible fire model developed for open pool fire environments. The assumptions are seen to be of minor importance for the particular problem analyzed. This work demonstrates the utility of using a fire field model for assessing the limitations of simplified fire models. In conclusion, the application of computational fire modeling tools herein provides both qualitative and quantitative insights into the complex problem of aircraft in fires.

  5. Fire performance of gable frame structures

    E-Print Network [OSTI]

    Qian, Congyi

    2013-01-01T23:59:59.000Z

    Fire protection engineering and structural engineering are two relevant but separated fields of study. Many experiments conducted by fire protection engineers are under certain ideal boundary conditions, which may not be ...

  6. analysis fire simulation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    16 Brookhaven National Laboratory LIGHT SOURCES DIRECTORATE Subject: Building 725 Fire Hazard AnalysisFire Hazard Assessment Physics Websites Summary: Brookhaven National...

  7. Grazing Management in National Parks and Protected Areas: Science, Socio-economics and Legislation (Tenure)

    E-Print Network [OSTI]

    Wangchuk, Sangay

    2002-01-01T23:59:59.000Z

    functions as: 1. Depletion. Taking out (utilizing, exploiting) environmental resources (e.g. plants, nutrients, animals, etc.) in excess of regeneration rates; 2. Pollution. Putting in quantities of damaging elements in excess of rate of decomposition... Management in National Parks and Protected Areas 77 Activity Core Zone Multiple-Use Zone (Within Park Boundary) Buffer Zone (Outside Park Boundary) Construction (Including Roads, Fences, Any Physical Structures) No With Permit Yes Industry...

  8. Fire Modeling Examples in a Nuclear World

    Broader source: Energy.gov [DOE]

    Presenter: Mark Schairer, P.E.,Technical Manager, Fire Protection Engineering Division - Engineering Planning and Management (EPM), Inc.

  9. Fire alarm system improvement

    SciTech Connect (OSTI)

    Hodge, S.G.

    1994-10-01T23:59:59.000Z

    This document contains the Fire Alarm System Test Procedure for Building 234-5Z, 200-West Area on the Hanford Reservation, Richland, Washington. This Acceptance Test Procedure (ATP) has been prepared to demonstrate that the modifications to the Fire Protection systems function as required by project criteria. The ATP will test the Fire Alarm Control Panels, Flow Alarm Pressure Switch, Heat Detectors, Smoke Detectors, Flow Switches, Manual Pull Stations, and Gong/Door by Pass Switches.

  10. Fire Hazard Analysis for the Cold Vacuum Drying (CVD) Facility

    SciTech Connect (OSTI)

    JOHNSON, B.H.

    1999-08-19T23:59:59.000Z

    This Fire Hazard Analysis assesses the risk from fire within individual fire areas in the Cold Vacuum Drying Facility at the Hanford Site in relation to existing or proposed fire protection features to ascertain whether the objectives of DOE Order 5480.7A Fire Protection are met.

  11. Cerro Grande Fire Impact to Water Quality and Stream Flow near Los Alamos National Laboratory: Results of Four Years of Monitoring

    SciTech Connect (OSTI)

    B.M. Gallaher; R.J. Koch

    2004-09-15T23:59:59.000Z

    In May 2000, the Cerro Grande fire burned about 7400 acres of mixed conifer forest on the Los Alamos National Laboratory (LANL), and much of the 10,000 acres of mountainside draining onto LANL was severely burned. The resulting burned landscapes raised concerns of increased storm runoff and transport of contaminants by runoff in the canyons traversing LANL. The first storms after the fire produced runoff peaks that were more than 200 times greater than prefire levels. Total runoff volume for the year 2000 increased 50% over prefire years, despite a decline in total precipitation of 13% below normal and a general decrease in the number of monsoonal thunderstorms. The majority of runoff in 2000 occurred in the canyons at LANL south of Pueblo Canyon (70%), where the highest runoff volume occurred in Water Canyon and the peak discharge occurred in Pajarito Canyon. This report describes the observed effects of the Cerro Grande fire and related environmental impacts to watersheds at and near Los Alamos National Laboratory (LANL) for the first four runoff seasons after the fire, from 2000 through 2003. Spatial and temporal trends in radiological and chemical constituents that were identified as being associated with the Cerro Grande fire and those that were identified as being associated with historic LANL discharges are evaluated with regard to impacts to the Rio Grande and area reservoirs downstream of LANL. The results of environmental sampling performed by LANL, the New Mexico Environment Department (NMED), and U.S. Geological Survey (USGS) after the Cerro Grande fire are included in the evaluation. Effects are described for storm runoff, baseflow, stream sediments, and area regional reservoir sediment.

  12. Flooding and Fire Ants

    E-Print Network [OSTI]

    Nester, Paul

    2008-08-05T23:59:59.000Z

    Fire ants can be a serious problem during and after a flood. This publication explains how to protect yourself when you must return to flooded structures or deal with storm debris....

  13. Fire hazard analysis for the fuel supply shutdown storage buildings

    SciTech Connect (OSTI)

    REMAIZE, J.A.

    2000-09-27T23:59:59.000Z

    The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility.

  14. FIRE HAZARDS ANALYSIS - BUSTED BUTTE

    SciTech Connect (OSTI)

    R. Longwell; J. Keifer; S. Goodin

    2001-01-22T23:59:59.000Z

    The purpose of this fire hazards analysis (FHA) is to assess the risk from fire within individual fire areas at the Busted Butte Test Facility and to ascertain whether the DOE fire safety objectives are met. The objective, identified in DOE Order 420.1, Section 4.2, is to establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees. (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. Critical process controls and safety class systems being damaged as a result of a fire and related events.

  15. Special Report on "Allegations of Conflict of Interest Regarding Licensing of PROTECT by Argonne National Laboratory"

    SciTech Connect (OSTI)

    None

    2009-08-01T23:59:59.000Z

    In February 2009, the Office of Inspector General received a letter from Congressman Mark Steven Kirk of Illinois, which included constituent allegations that an exclusive technology licensing agreement by Argonne National Laboratory was tainted by inadequate competition, conflicts of interest, and other improprieties. The technology in question was for the Program for Response Options and Technology Enhancements for Chemical/Biological Terrorism, commonly referred to as PROTECT. Because of the importance of the Department of Energy's technology transfer program, especially as implementation of the American Recovery and Reinvestment Act matures, we reviewed selected aspects of the licensing process for PROTECT to determine whether the allegations had merit. In summary, under the facts developed during our review, it was understandable that interested parties concluded that there was a conflict of interest in this matter and that Argonne may have provided the successful licensee with an unfair advantage. In part, this was consistent with aspects of the complaint from Congressman Kirk's constituent.

  16. ENVIRONMENT, SAFETY & HEALTH DIVISION Chapter 12: Fire and Life Safety

    E-Print Network [OSTI]

    Wechsler, Risa H.

    -fired heaters 2. Heaters that lack a nationally recognized testing laboratory (NRTL) listing sticker 3. Radiant

  17. Protective Force

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26T23:59:59.000Z

    Establishes requirements for management and operation of the DOE Protective Force (PF), establishes requirements for firearms operations and defines the firearms courses of fire. Cancels: DOE M 473.2-1A DOE M 473.2-2

  18. Fire Hazards Analysis for the Inactive Equipment Storage Sprung Structure

    SciTech Connect (OSTI)

    MYOTT, C.F.

    2000-02-03T23:59:59.000Z

    The purpose of the analysis is to comprehensively assess the risk from fire within individual fire areas in relation to proposed fire protection so as to ascertain whether the fire protection objective of DOE Order 5480.1A are met. The order acknowledges a graded approach commensurate with the hazards involved.

  19. Live Fire Range Environmental Assessment

    SciTech Connect (OSTI)

    None

    1993-08-01T23:59:59.000Z

    The Central Training Academy (CTA) is a DOE Headquarters Organization located in Albuquerque, New Mexico, with the mission to effectively and efficiently educate and train personnel involved in the protection of vital national security interests of DOE. The CTA Live Fire Range (LFR), where most of the firearms and tactical training occurs, is a complex separate from the main campus. The purpose of the proposed action is to expand the LFR to allow more options of implementing required training. The Department of Energy has prepared this Environmental Assessment (EA) for the proposed construction and operation of an expanded Live Fire Range Facility at the Central Training Academy in Albuquerque, New Mexico. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

  20. Cermet composite thermal spray coatings for erosion and corrosion protection in combustion environments of advanced coal-fired boilers. Semiannual technical report, January 14, 1997--August 14, 1997

    SciTech Connect (OSTI)

    Schorr, B.S.; Levin, B.F.; DuPont, J.N.; Marder, A.R.

    1997-08-31T23:59:59.000Z

    Research is presently being conducted to determine the optimum ceramic/metal combination in thermally sprayed metal matrix composite coatings for erosion and corrosion resistance in new coal-fired boilers. The research will be accomplished by producing model cermet composites using powder metallurgy and electrodeposition methods in which the effect of ceramic/metal combination for the erosion and corrosion resistance will be determined. These results will provide the basis for determining the optimum hard phase constituent size and volume percent in thermal spray coatings. Thermal spray coatings will be applied by our industrial sponsor and tested in our erosion and corrosion laboratories. Bulk powder processed Ni-Al{sub 2}O{sub 3} composites were produced at Idaho National Engineering Laboratory. The composite samples contained 0, 21, 27, 37, and 45 volume percent Al{sub 2}O{sub 3} with an average particle size of 12 um. Also, to deposit model Ni-Al{sub 2}O{sub 3} coatings, an electrodeposition technique was developed and coatings with various volume fractions (0-35%) of Al{sub 2}O{sub 3} were produced. The powder and electrodeposition processing of Ni-Al{sub 2}O{sub 3} Composites provide the ability to produce two phase microstructure without changing the microstructure of the matrix material. Therefore, the effect of hard second phase particles size and volume fraction on erosion resistance could be analyzed.

  1. The National Natural Landmark Program: A Natural Areas Protection Technique for the 1980s and Beyond

    E-Print Network [OSTI]

    Cohen, Russell A.

    1982-01-01T23:59:59.000Z

    protected is more or less available for passive recreation by the public unless it is an extremely sensitive natural area.

  2. The War on Terrorism and What We Can Learn from our War with Fire

    SciTech Connect (OSTI)

    WHITLEY, JOHN B.; YONAS, GEROLD

    2002-07-01T23:59:59.000Z

    The highly leveraged, asymmetric attacks of September 11th have launched the nation on a vast ''War on Terrorism''. Now that our vulnerabilities and the enemies' objectives and determination have been demonstrated, we find ourselves rapidly immersed in a huge, complex problem that is virtually devoid of true understanding while being swamped with resources and proposed technologies for solutions. How do we win this war? How do we make sure that we are making the proper investments? What things or freedoms or rights do we have to give up to win? Where do we even start? In analyzing this problem, many similarities to mankind's battle with uncontrolled fire and the threat it presented to society were noted. Major fires throughout history have destroyed whole cities and caused massive loss of life and property. Solutions were devised that have gradually, over several hundred years, reduced this threat to a level that allows us to co-exist with the threat of fire by applying constant vigilance and investments in fire protection, but without living in constant fear and dread from fire. We have created a multi-pronged approach to fire protection that involves both government and individuals in the prevention, mitigation, and response to fires. Fire protection has become a virtually unnoticed constant in our daily lives; we will have to do the same for terrorism. This paper discusses the history of fire protection and draws analogies to our War on Terrorism. We have, as a society, tackled and successfully conquered a problem as big as terrorism. From this battle, we can learn and take comfort.

  3. MARGINAL VALUATION OF FIRE EFFECTS

    E-Print Network [OSTI]

    in the planning unit's land, resource and fire management plans. These goals and objectives can assist you with identifying the resources that are important to protect or improve through fire management activities. As you and cultural attributes of the landscape that have value. Defining the resource considered for value change 2

  4. WHC fire hazards analysis policy

    SciTech Connect (OSTI)

    Evans, C.B.

    1994-04-01T23:59:59.000Z

    The purpose of this document is to establish the fire protection policy for Westinghouse Hanford Company (WHC) relative to US Department of Energy (DOE) directives for Fire Hazards Analyses (FHAs) and their relationship to facility Safety Analysis Reports (SARs) as promulgated by the DOE Richland Operations Office.

  5. Sandia National Laboratories, Livermore Environmental Protection Implementation Plan for the period November 9, 1991--November 9, 1992

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    Sandia National Laboratories, as part of the DOE complex, is committed to full compliance with all applicable environmental laws and regulations. This Environmental Protection Implementation Plan (EPIP) is intended to ensure that the environmental program objectives of DOE Order 5400.1 are achieved at SNL, Livermore. The EPIP will serve as an aid to management and staff to implement these new programs in a timely manner. 23 refs., 4 figs., 1 tab.

  6. Fire hazards evaluation for light duty utility arm system

    SciTech Connect (OSTI)

    HUCKFELDT, R.A.

    1999-02-24T23:59:59.000Z

    In accordance with DOE Order 5480.7A, Fire Protection, a Fire Hazards Analysis must be performed for all new facilities. LMHC Fire Protection has reviewed and approved the significant documentation leading up to the LDUA operation. This includes, but is not limited to, development criteria and drawings, Engineering Task Plan, Quality Assurance Program Plan, and Safety Program Plan. LMHC has provided an appropriate level of fire protection for this activity as documented.

  7. Reaching an agreement to build a new coal-fired power plant near a national park by mitigating potential environmental impacts

    SciTech Connect (OSTI)

    Miller, R.L. [Oak Ridge National Lab., TN (United States); Ruppel, T.C.; Evans, E.W.; Heintz, S.J. [USDOE Pittsburgh Energy Technology Center, PA (United States)

    1994-12-31T23:59:59.000Z

    This paper presents an interesting example of compromise through comprehensive environmental analysis and intensive negotiation to build a coal-fired power plant near an environmentally sensitive area. In December 1993, the US Department of Energy (DOE) completed the final environmental impact statement (EIS) for the Healy Clean Coal Project (HCCP), a proposed demonstration project that would be cost-shared by DOE and the Alaska Industrial Development and Export Authority (AIDEA). The HCCP would be built adjacent to the existing coal-fired Golden Valley Electric Association, Inc. (GVEA) Unit No. 1 in Healy, Alaska, about 4 miles north of Denali National Park and Preserve (DNPP). In response to US Department of the Interior (DOI) concerns about potential air quality related impacts on DNPP, DOE facilitated negotiations among DOI, AIDEA, and GVEA which overcame a ``stalemate`` situation. A Memorandum of Agreement was signed by all four parties, enabling DOI to withdraw its objections. The cornerstone of the Agreement is the planned retrofit of Unit No. 1 to reduce emissions of sulfur dioxide and oxides of nitrogen. if the demonstration technologies operate as expected, combined emissions from the Healy site would increase by only about 8% but electrical generation would triple. The Agreement is a ``win/win`` outcome: DOE can demonstrate the new technologies, AIDEA can build a new power plant for GVEA to operate, and DOI can safeguard the pristine environment of DNPP.

  8. Fire Protection Account Request Form

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal Registry CommentsOverview »FINDING OF NO| Department ofNOTFire

  9. Synthesis and Summary: Land Use Decisions and Fire Risk1

    E-Print Network [OSTI]

    Standiford, Richard B.

    was spent in fire suppres- sion. The bill for all costs and damages amounted to more than $1 billion. Given of fuel management and fire protection. The complexity of watershed manage- ment was defined growth on fuel management and fire protection, concerns stated or implied in all presentations. Jim Davis

  10. Protective Force

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-03-07T23:59:59.000Z

    The manual establishes requirements for management and operation of the DOE Protective Force, establishes requirements for firearms operations and defines the firearms courses of fire. Chg 1 dated 3/7/06. DOE M 470.4-3A cancels DOE M 470.4-3, Chg 1, Protective Force, dated 3-7-06, Attachment 2, Contractor Requirement Document (CRD) only (except for Section C). Chg 1, dated 3-7-06, cancels DOE M 470.4-3

  11. Voluntary Protection Program Onsite Review, Battelle Pacific Northwest National Laboratory- October 2007

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Pacific Northwest National Laboratory is continuing to perform at a level deserving DOE-VPP Star recognition.

  12. Voluntary Protection Program Onsite Review, Nevada National Security Sites- February 2012

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Nevada National Security Sites is continuing to perform at a level deserving DOE-VPP Star recognition.

  13. Voluntary Protection Program Onsite Review, Pacific Northwest National Laboratory Battelle Memorial Institute- November 2012

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Pacific Northwest National Laboratory site is continuing to perform at a level deserving DOE-VPP Star recognition.

  14. Voluntary Protection Program Onsite Review, Los Alamos National Laboratory- April 2010

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether the Los Alamos National Laboratory is continuing to perform at a level deserving DOE-VPP Star recognition.

  15. Voluntary Protection Program Onsite Review, Los Alamos National Security, LLC, LANL – June 2013

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Los Alamos National Security, LLC, LANL is performing at a level deserving DOE-VPP Star recognition.

  16. Voluntary Protection Program Onsite Review, Los Alamos National Laboratory- November 2011

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Los Alamos National Laboratory is continuing to perform at a level deserving DOE-VPP Star recognition.

  17. Voluntary Protection Program Onsite Review, Bechtel National Inc., Waste Treatment Plant Construction Site – November 2013

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Bechtel National Inc., Waste Treatment Plant Construction Site is performing at a level deserving DOE-VPP Star recognition.

  18. Voluntary Protection Program Onsite Review, Battelle Energy Alliance LLC, Idaho National Laboratory – September 2013

    Broader source: Energy.gov [DOE]

    Evaluation to determine whether Battelle Energy Alliance LLC, Idaho National Laboratory is performing at a level deserving DOE-VPP Star recognition.

  19. Worker Protection Program for DOE (Including the National Nuclear Security Administration) Federal Employees

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-05-17T23:59:59.000Z

    The Order establishes the framework for an effective worker protection program that will reduce or prevent injuries, illnesses, and accidental losses by providing DOE and NNSA Federal workers with a safe and healthful workplace. Chg 1 dated 8-21-12. Cancels DOE M 440.1-1A. Admin Chg 1, dated 3-14-13.

  20. Lawrence Livermore National Laboratory Emergency Response Capability 2009 Baseline Needs Assessment Performance Assessment

    SciTech Connect (OSTI)

    Sharry, J A

    2009-12-30T23:59:59.000Z

    This document was prepared by John A. Sharry, LLNL Fire Marshal and Division Leader for Fire Protection and was reviewed by Sandia/CA Fire Marshal, Martin Gresho. This document is the second of a two-part analysis of Emergency Response Capabilities of Lawrence Livermore National Laboratory. The first part, 2009 Baseline Needs Assessment Requirements Document established the minimum performance criteria necessary to meet mandatory requirements. This second part analyses the performance of Lawrence Livermore Laboratory Emergency Management Department to the contents of the Requirements Document. The document was prepared based on an extensive review of information contained in the 2004 BNA, a review of Emergency Planning Hazards Assessments, a review of building construction, occupancy, fire protection features, dispatch records, LLNL alarm system records, fire department training records, and fire department policies and procedures. On October 1, 2007, LLNL contracted with the Alameda County Fire Department to provide emergency response services. The level of service called for in that contract is the same level of service as was provided by the LLNL Fire Department prior to that date. This Compliance Assessment will evaluate fire department services beginning October 1, 2008 as provided by the Alameda County Fire Department.

  1. Worker Protection Program for DOE (Including the National Nuclear Security Administration) Federal Employees

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-05-17T23:59:59.000Z

    The Order establishes the framework for an effective worker protection program that will reduce or prevent injuries, illnesses, and accidental losses by providing DOE and NNSA Federal workers with a safe and healthful workplace. Chg 1 dated 8-21-12, cancels DOE M 440.1-1A. Admin Chg 1, dated 3-14-13, cancels DOE O 440.1B Chg 1.

  2. Lowering of the firing voltage and reducing of the discharge delay time in alternating current plasma display panels by a discontinuous spin-coated LaB{sub 6} film on the MgO protective layer

    SciTech Connect (OSTI)

    Deng, Jiang, E-mail: dj78291@163.com [School of Physical Electronic, University of Electronic Science and Technology of China, No.4, Section 2, Jianshe North Road, 610054 Chengdu (China)] [School of Physical Electronic, University of Electronic Science and Technology of China, No.4, Section 2, Jianshe North Road, 610054 Chengdu (China); Zeng, Baoqing [School of Physical Electronic, University of Electronic Science and Technology of China, No.4, Section 2, Jianshe North Road, 610054 Chengdu (China) [School of Physical Electronic, University of Electronic Science and Technology of China, No.4, Section 2, Jianshe North Road, 610054 Chengdu (China); Zhongshan Institute, University of Electronic Science and Technology of China, 528402 zhongshan (China); Wang, Xiaoju; Lin, Zulun; Qi, Kangcheng; Cao, Guichuan [School of Opto-electronic Information, University of Electronic Science and Technology of China, No.4, Section 2, Jianshe North Road, 610054 Chengdu (China)] [School of Opto-electronic Information, University of Electronic Science and Technology of China, No.4, Section 2, Jianshe North Road, 610054 Chengdu (China)

    2014-03-15T23:59:59.000Z

    A spin coated LaB{sub 6} discontinuous film is covered on MgO protective layer to improve the discharge performance of alternating current plasma display panels. Under the premise of high transmittance of more than 90%, a very small amount of polycrystal LaB{sub 6} powders added in an organic solvent are chosen as the coating solution. The discharge characteristics results show that with 250 torr 5% Xe-Ne pressure, the firing voltage and discharge delay time of the test panel with LaB{sub 6}/MgO double protective layer are decreased by 13.4% and 36.5%, respectively, compared with that of conventional MgO protective layer, likely owing to the low work function of LaB{sub 6.} Furthermore, the aging time of the proposed structure is comparable to that of pure MgO protective layer. Therefore, it will not increase the production costs and is highly suitable to be applied for alternating current plasma display panels with low electrical power consumption.

  3. CRAD, Environmental Protection- Oak Ridge National Laboratory High Flux Isotope Reactor

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2007 assessment of the Environmental Compliance Program in preparation for restart of the Oak Ridge National Laboratory High Flux Isotope Reactor.

  4. CRAD, Environmental Protection- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Environmental Compliance Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

  5. Independent Activity Report, Lawrence Livermore National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    technicians, and the Alameda County Fire Department to a fire in a fume hood containing a depleted uranium part. Independent Activity Report, Lawrence Livermore National Laboratory...

  6. Fire hazard analysis of the radioactive mixed waste trenchs

    SciTech Connect (OSTI)

    McDonald, K.M. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-04-27T23:59:59.000Z

    This Fire Hazards Analysis (FHA) is intended to assess comprehensively the risk from fire associated with the disposal of low level radioactive mixed waste in trenches within the lined landfills, provided by Project W-025, designated Trench 31 and 34 of the Burial Ground 218-W-5. Elements within the FHA make recommendations for minimizing risk to workers, the public, and the environment from fire during the course of the operation`s activity. Transient flammables and combustibles present that support the operation`s activity are considered and included in the analysis. The graded FHA contains the following elements: description of construction, protection of essential safety class equipment, fire protection features, description of fire hazards, life safety considerations, critical process equipment, high value property, damage potential--maximum credible fire loss (MCFL) and maximum possible fire loss (MPFL), fire department/brigade response, recovery potential, potential for a toxic, biological and/or radiation incident due to a fire, emergency planning, security considerations related to fire protection, natural hazards (earthquake, flood, wind) impact on fire safety, and exposure fire potential, including the potential for fire spread between fire areas. Recommendations for limiting risk are made in the text of this report and printed in bold type. All recommendations are repeated in a list in Section 18.0.

  7. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    SciTech Connect (OSTI)

    Richard C. Logan

    2002-03-28T23:59:59.000Z

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment; Vital U.S. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events.

  8. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    SciTech Connect (OSTI)

    J. L. Kubicek

    2001-09-07T23:59:59.000Z

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: (1) The occurrence of a fire or related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment. (3) Vital US. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. (5) Critical process controls and safety class systems being damaged as a result of a fire and related events.

  9. Protecting environment, national security, and health, earth and environment sciences 1996 annual report

    SciTech Connect (OSTI)

    Davis, J.C.; Younker, L.; Proctor, I.; Bannevik, B.; Layton, D.; Jackson, K.; Hannon, J.

    1996-01-01T23:59:59.000Z

    In 1994, Lawrence Livermore National Laboratory established a new directorate, called Environmental Program, to form one organization combining most of the Laboratory`s capabilities in the geosciences and ecological sciences with its supporting technologies in analytical areas such as molecular, radiation, and particle spectrometry; high-pressure physics; and bioscience applied to bioremediation. Current areas of research include atmospheric radiative transfer, chemistry, dynamics, and climate processes; physics of the atmospheric boundary layer and cloud processes; seismic processes; geochemistry and geophysics; pathway, dosimetry, and risk analysis of radioactive and toxic substances; isotopic and ion-beam sciences; modeling of subsurface flow and transport; subsurface imaging and characterization; in situ environmental remediation using natural and engineered processes; and design, analysis, and testing of advanced waste-treatment technologies.

  10. The Sandia National Laboratories technology transfer program for physical protection technologies

    SciTech Connect (OSTI)

    Green, M.; Miyoshi, D.; Dry, B.

    1990-01-01T23:59:59.000Z

    As the Lead Laboratory for the Department of Energy in the field of physical security, Sandia National Laboratories has had the opportunity to collect extensive amounts of information on the technologies of physical security. Over the past 15 years, the volume of this knowledge has become so extensive that Sandia is now taking steps to make this information as available as possible to the DOE community and, where possible, other government agencies and NRC licensees. Through these technology transfer efforts, there are also programs available that allow cooperative research agreements between Sandia and the private sector as well. Six different technology transfer resources are being developed and used by the Safeguards Engineering Department: (1) tech transfer manuals; (2) SAND documents; (3) safeguards libraries; (4) training courses conferences; (5) technical assistance tours; and (6) cooperative research developments agreements (CRADAs).

  11. WILDLAND FIRE SERVICES CENTER FOR ENVIRONMENTAL MANAGEMENT OF MILITARY LANDS

    E-Print Network [OSTI]

    is already in place. Fire Management Planning CEMML provides high quality fire management planning adviceWILDLAND FIRE SERVICES CENTER FOR ENVIRONMENTAL MANAGEMENT OF MILITARY LANDS CEMML | 1490 Campus installations present a serious risk to people, infrastructure, quality training areas, and important protected

  12. Phase 2 fire hazard analysis for the canister storage building

    SciTech Connect (OSTI)

    Sadanaga, C.T., Westinghouse Hanford

    1996-07-01T23:59:59.000Z

    The fire hazard analysis assesses the risk from fire in a facility to ascertain whether the fire protection policies are met. This document provides a preliminary FHA for the CSB facility. Open items have been noted in the document. A final FHA will be required at the completion of definitive design, prior to operation of the facility.

  13. 22012 Georgia Tech Campus Fire Safety Report ANNUAL STUDENT HOUSING FIRE SAFETY REPORT IN ACCORDANCE WITH THE

    E-Print Network [OSTI]

    with the following: · No halogen-touchier lights. The intense heat generated by these bulbs creates a fire hazard fire protection to slow the spread of fire. · Storing bicycles in stairwells or any other location, hazardous materials, etc., is also prohibited. Smoking · Smoking is prohibited in all residence hall areas

  14. Repository Subsurface Preliminary Fire Hazard Analysis

    SciTech Connect (OSTI)

    Richard C. Logan

    2001-07-30T23:59:59.000Z

    This fire hazard analysis identifies preliminary design and operations features, fire, and explosion hazards, and provides a reasonable basis to establish the design requirements of fire protection systems during development and emplacement phases of the subsurface repository. This document follows the Technical Work Plan (TWP) (CRWMS M&O 2001c) which was prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''; Attachment 4 of AP-ESH-008, ''Hazards Analysis System''; and AP-3.11Q, ''Technical Reports''. The objective of this report is to establish the requirements that provide for facility nuclear safety and a proper level of personnel safety and property protection from the effects of fire and the adverse effects of fire-extinguishing agents.

  15. Sandia National Laboratories: Fire Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (NESL) Brayton Lab SCO2 Brayton Cycle Technology Videos Heat Exchanger Development Diffusion Bonding Characterization Mechanical Testing Deep Borehole Disposal Nuclear...

  16. Fire hazards analysis for the uranium oxide (UO{sub 3}) facility

    SciTech Connect (OSTI)

    Wyatt, D.M.

    1994-12-06T23:59:59.000Z

    The Fire Hazards Analysis (FHA) documents the deactivation end-point status of the UO{sub 3} complex fire hazards, fire protection and life safety systems. This FHA has been prepared for the Uranium Oxide Facility by Westinghouse Hanford Company in accordance with the criteria established in DOE 5480.7A, Fire Protection and RLID 5480.7, Fire Protection. The purpose of the Fire Hazards Analysis is to comprehensively and quantitatively assess the risk from a fire within individual fire areas in a Department of Energy facility so as to ascertain whether the objectives stated in DOE Order 5480.7, paragraph 4 are met. Particular attention has been paid to RLID 5480.7, Section 8.3, which specifies the criteria for deactivating fire protection in decommission and demolition facilities.

  17. Proceedings of the Second International Symposium on Fire Economics, Planning, and Policy: A Global View Proceedings of the Second International Symposium on Fire Economics, Planning, and Policy: A Global View

    E-Print Network [OSTI]

    Standiford, Richard B.

    : A Global View Macroeconomic Analysis of Investment in Fire Protection Using Social Accounting Matrixes an analysis which evaluates the effects of investments in fire protection on the regional economy from Poster--Analysis of Investments in Fire Protection Using SAM--Pellitero, Suarez As a direct consequence

  18. Fire Department, City of New York Fire SaFety education

    E-Print Network [OSTI]

    Salzman, Daniel

    ! Is your family fire safe? Protect yourself, your family and your neighbors. T here are special areas building. Your primary or first exit is your apartment door that leads into either an unenclosed (not sep- jured in a fire in your building. o Maintain your apartment door or doors lead- ing into the public hall

  19. Cyber Friendly Fire

    SciTech Connect (OSTI)

    Greitzer, Frank L.; Carroll, Thomas E.; Roberts, Adam D.

    2011-09-01T23:59:59.000Z

    Cyber friendly fire (FF) is a new concept that has been brought to the attention of Department of Defense (DoD) stakeholders through two workshops that were planned and conducted by the Air Force Research Laboratory (AFRL) and research conducted for AFRL by the Pacific Northwest National Laboratory. With this previous work in mind, we offer a definition of cyber FF as intentional offensive or defensive cyber/electronic actions intended to protect cyber systems against enemy forces or to attack enemy cyber systems, which unintentionally harms the mission effectiveness of friendly or neutral forces. Just as with combat friendly fire, a fundamental need in avoiding cyber FF is to maintain situation awareness (SA). We suggest that cyber SA concerns knowledge of a system's topology (connectedness and relationships of the nodes in a system), and critical knowledge elements such as the characteristics and vulnerabilities of the components that comprise the system (and that populate the nodes), the nature of the activities or work performed, and the available defensive (and offensive) countermeasures that may be applied to thwart network attacks. A training implication is to raise awareness and understanding of these critical knowledge units; an approach to decision aids and/or visualizations is to focus on supporting these critical knowledge units. To study cyber FF, we developed an unclassified security test range comprising a combination of virtual and physical devices that present a closed network for testing, simulation, and evaluation. This network offers services found on a production network without the associated costs of a real production network. Containing enough detail to appear realistic, this virtual and physical environment can be customized to represent different configurations. For our purposes, the test range was configured to appear as an Internet-connected Managed Service Provider (MSP) offering specialized web applications to the general public. The network is essentially divided into a production component that hosts the web and network services, and a user component that hosts thirty employee workstations and other end devices. The organization's network is separated from the Internet by a Cisco ASA network security device that both firewalls and detects intrusions. Business sensitive information is stored in various servers. This includes data comprising thousands of internal documents, such as finance and technical designs, email messages for the organization's employees including the CEO, CFO, and CIO, the organization's source code, and Personally Identifiable client data. Release of any of this information to unauthorized parties would have a significant, detrimental impact on the organization's reputation, which would harm earnings. The valuable information stored in these servers pose obvious points of interest for an adversary. We constructed several scenarios around this environment to support studies in cyber SA and cyber FF that may be run in the test range. We describe mitigation strategies to combat cyber FF including both training concepts and suggestions for decision aids and visualization approaches. Finally, we discuss possible future research directions.

  20. FIRE WATCH FORM University Fire Marshal

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    FIRE WATCH FORM University Fire Marshal Guidance Document Approved by: R. Flynn Last revised by: R. These are regulations used by the University Fire Marshal and EH&S as guidance to meet compliance pertaining the impairment coordinator (The University Fire Marshal has been identified as the Impairment Coordinator for all

  1. Tiger Team Assessment of the Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-11-01T23:59:59.000Z

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services.

  2. National Infrastructure Protection Plan

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergyHydrogen Storage » DOE R&D

  3. Building Retrofits for Increased Protection Against Airborne

    E-Print Network [OSTI]

    Building Retrofits for Increased Protection Against Airborne Chemical and Biological Releases of Standards and Technology William A. Jeffrey, Director Building Retrofits for Increased Protection Against Dols Heather Davis Priya Lavappa Amy Rushing Building and Fire Research Laboratory Prepared for: U

  4. Annual Fire Safety Report

    E-Print Network [OSTI]

    Loudon, Catherine

    2010 Annual Fire Safety Report University of California, Irvine HIGHER EDUCATION OPPORTUNITY to the Fire Safety in Student Housing Buildings of current or perspective students and employees be reported publish an annual fire safety report, keep a fire log, and report fire statistics to the Secretary

  5. Fire suppressing apparatus. [sodium fires

    DOE Patents [OSTI]

    Buttrey, K.E.

    1980-12-19T23:59:59.000Z

    Apparatus for smothering a liquid sodium fire comprises a pan, a perforated cover on the pan, and tubed depending from the cover and providing communication between the interior of the pan and the ambient atmosphere through the perforations in the cover. Liquid caught in the pan rises above the lower ends of the tubes and thus serves as a barrier which limits the amount of air entering the pan.

  6. MODELING VENTILATION SYSTEM RESPONSE TO FIRE

    SciTech Connect (OSTI)

    Coutts, D

    2007-04-17T23:59:59.000Z

    Fires in facilities containing nuclear material have the potential to transport radioactive contamination throughout buildings and may lead to widespread downwind dispersal threatening both worker and public safety. Development and implementation of control strategies capable of providing adequate protection from fire requires realistic characterization of ventilation system response which, in turn, depends on an understanding of fire development timing and suppression system response. This paper discusses work in which published HEPA filter data was combined with CFAST fire modeling predictions to evaluate protective control strategies for a hypothetical DOE non-reactor nuclear facility. The purpose of this effort was to evaluate when safety significant active ventilation coupled with safety class passive ventilation might be a viable control strategy.

  7. Pine Ridge Area Community Wildfire Protection Plan

    E-Print Network [OSTI]

    Farritor, Shane

    Pine Ridge Area Community Wildfire Protection Plan Update 2013 West Ash Fire: Wednesday August 29 the boundary of the original plan to include all the area within the Upper Niobrara White Natural Resource, 2012 #12;Facilitated by: Nebraska Forest Service In cooperation with: Region 23 Fire Protection

  8. Protected Areas Stacy Philpott

    E-Print Network [OSTI]

    Gottgens, Hans

    · Convention of Biological Diversity, 1992 #12;IUCN Protected Area Management Categories Ia. Strict Nature. Protected Landscape/ Seascape VI. Managed Resource Protected Area #12;Ia. Strict Nature Preserves and Ib. Wilderness Areas · Natural preservation · Research · No · No #12;II. National Parks · Ecosystem protection

  9. Cermet composite thermal spray coatings for erosion and corrosion protection in combustion environments of advanced coal-fired boilers. Semiannual technical progress report, August 14, 1996--January 14, 1997

    SciTech Connect (OSTI)

    Levin, B.F.; DuPont, J.N.; Marder, A.R.

    1997-02-01T23:59:59.000Z

    Research is presently being conducted to determine the optimum ceramic/metal combination in thermally sprayed metal matrix composite coatings for erosion and corrosion resistance in new coal-fired boilers. The research will be accomplished by producing model cermet composites using powder metallurgy and electrodeposition methods in which the effect of ceramic/metal combination for the erosion and corrosion resistance will be determined. These results will provide the basis for determining the optimum hard phase constituent size and volume percent in thermal spray coatings. Thermal spray coatings will be applied by our industrial sponsor and tested in our erosion and corrosion laboratories. In the first six months of this project, bulk powder processed Ni-Al{sub 2}O{sub 3} composites were produced at Idaho National Engineering Laboratory. The results of microstructural characterization of these alloys were presented in the first semiannual report. The composite samples contained 0, 21, 27, 37, and 45 volume percent Al{sub 2}O{sub 3} with an average particle size of 12 um. An increase in the volume fraction of alumina in the nickel matrix from 0 to 45% led to a significant increase in hardness of these composites.

  10. Voluntary Protection Program Onsite Review, CH2M HILL B&W West...

    Office of Environmental Management (EM)

    nuclear criticality protection program, fire protection program, and the conduct of operations program. In addition, there are technical safety requirements that include...

  11. Baseline Combined Fire Hazards Analysis and Fire Protection Facility...

    Broader source: Energy.gov (indexed) [DOE]

    is a flat built up membrane over a fluted steel deck supported by the main building beams. The roof construction is a FM Approved Class I assembly. Interior partitions are...

  12. Baseline Combined Fire Hazards Analysis and Fire Protection Facility...

    Broader source: Energy.gov (indexed) [DOE]

    from the water treatment plant to the grid distribution system are provided. In the section of the plant where the 9203 building complex is located, the feeds consist of two...

  13. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-07-23T23:59:59.000Z

    This Manual establishes requirements for the physical protection of interests under the U.S. Department of Energys (DOEs) purview ranging from facilities, buildings, Government property, and employees to national security interests such as classified information, special nuclear material (SNM), and nuclear weapons. Cancels Section A of DOE M 470.4-2 Chg 1. Canceled by DOE O 473.3.

  14. Los Alamos National Laboratory to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    instrument that helps ensure the integrity of the nation's nuclear stockpile without nuclear testing. Scientists and engineers at DARHT can now begin test firings of the...

  15. Y-12 Groundwater Protection Program CY 2009 Triennial Report Of The Monitoring Well Inspection And Maintenance Program, Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    none,

    2013-06-01T23:59:59.000Z

    This document is the triennial report for the Well Inspection and Maintenance Program of the Y- 12 Groundwater Protection Program (GWPP), at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12). This report formally documents well inspection events conducted on active and inactive wells at Y-12 during calendar years (CY) 2007 through 2009; it documents well maintenance and plugging and abandonment activities completed since the last triennial inspection event (CY 2006); and provides summary tables of well inspection events, well maintenance events, and well plugging and abandonment events during the reference time period.

  16. Health-Hazard Evaluation Report HETA 85-150-1767, Warwick Fire Department, Warwick, Rhode Island

    SciTech Connect (OSTI)

    Keenlyside, R.A.; House, L.A.; Kent, G.; Durand, J.M.

    1987-01-01T23:59:59.000Z

    In answer to a request from the International Association of Fire Fighters (IAFF), an evaluation was made of health complaints noted by fire fighters exposed to plastic products and pesticides during two separate fires attended to by the Warwick Fire Department, located in Warwick, Rhode Island. Questionnaires were administered to 43 persons who were only present at the plastics fire and 46 who were only present at the pesticide fire and to 13 present at both fires. The men who fought the plastic products fire and the pesticide fire apparently experienced acute symptoms related to smoke and chemical inhalation during the fires, including headache, cough, sore throat, wheezing, shortness of breath, rash, dizziness, nausea, blurred vision, and numbness. The authors conclude that fire fighters at these two fires experienced acute irritant symptoms from smoke and chemical inhalation. The authors recommend use of protective clothing, use of protective equipment, prefire planning, implementation of medical surveillance for all fire fighters, and the proper cleanup of protective clothing and equipment after fires.

  17. Fire Foe: A Glovebox Fire Suppression System | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Envirogel Extinguishing Agent NRTL Qualification Fire Test Proof-of-Concept Testing Seismic Reliability Fire Foe: A Glovebox Fire Suppression System More Documents &...

  18. Wild Fire Computer Model Helps Firefighters

    ScienceCinema (OSTI)

    Canfield, Jesse

    2014-06-02T23:59:59.000Z

    A high-tech computer model called HIGRAD/FIRETEC, the cornerstone of a collaborative effort between U.S. Forest Service Rocky Mountain Research Station and Los Alamos National Laboratory, provides insights that are essential for front-line fire fighters. The science team is looking into levels of bark beetle-induced conditions that lead to drastic changes in fire behavior and how variable or erratic the behavior is likely to be.

  19. Thermo-mechanical study of bare 48Y UF6 containers exposed to the regulatory fire environment.

    SciTech Connect (OSTI)

    Ammerman, Douglas James; Lopez, Carlos; Morrow, Charles; Korbmacher, Tim (Urenco Enrichment Co. Ltd., Gronau, Germany); Charette, Marc-Andre (Cameco Corporation, Port Hope, ON, Canada)

    2010-11-01T23:59:59.000Z

    Most of the regulatory agencies world-wide require that containers used for the transportation of natural UF6 and depleted UF6 must survive a fully-engulfing fire environment for 30 minutes as described in 10CFR71 and in TS-R-1. The primary objective of this project is to examine the thermo-mechanical performance of 48Y transportation cylinders when exposed to the regulatory hypothetical fire environment without the thermal protection that is currently used for shipments in those countries where required. Several studies have been performed in which UF6 cylinders have been analyzed to determine if the thermal protection currently used on UF6 cylinders of type 48Y is necessary for transport. However, none of them could clearly confirm neither the survival nor the failure of the 48Y cylinder when exposed to the regulatory fire environment without the additional thermal protection. A consortium of five companies that move UF6 is interested in determining if 48Y cylinders can be shipped without the thermal protection that is currently used. Sandia National Laboratories has outlined a comprehensive testing and analysis project to determine if these shipping cylinders are capable of withstanding the regulatory thermal environment without additional thermal protection. Sandia-developed coupled physics codes will be used for the analyses that are planned. A series of destructive and non-destructive tests will be performed to acquire the necessary material and behavior information to benchmark the models and to answer the question about the ability of these containers to survive the fire environment. Both the testing and the analysis phases of this project will consider the state of UF6 under thermal and pressure loads as well as the weakening of the steel container due to the thermal load. Experiments with UF6 are also planned to collect temperature- and pressure-dependent thermophysical properties of this material.

  20. FAQS Qualification Card – Fire Protection Engineering

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  1. Fire Protection Systems Program Program Manual

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    ://sharepoint.rmps.cornell.edu:8445/ehs/HSE Documents/FPS_Program_Manual_Template.docx Table of Contents 1. Introduction ..................................................................................................... 3 5.1 Program Manager of this document is available electronically at: https://sharepoint.rmps.cornell.edu:8445/ehs/HSE Documents

  2. Fire Protection Engineering Functional Area Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal Registry CommentsOverview »FINDING OF NO| Department

  3. Fire Protection Program Guidelines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal Registry CommentsOverview »FINDING OF NO| Department

  4. Fire Protection Program Publications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal Registry CommentsOverview »FINDING OF NO| DepartmentProgram

  5. Fire Protection Related Sites | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal Registry CommentsOverview »FINDING OF NO|

  6. Model Fire Protection Program | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32 MasterAcquisitiTechnologyPotomacRidgeMobile VisitorsModel

  7. Fire Protection - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibilityField Office FinalFinancingFingerprintingFinite66-2012,

  8. Uncertainty and sensitivity analysis of a fire-induced accident scenario involving binary variables and mechanistic codes

    E-Print Network [OSTI]

    Minton, Mark A. (Mark Aaron)

    2010-01-01T23:59:59.000Z

    In response to the transition by the United States Nuclear Regulatory Commission (NRC) to a risk-informed, performance-based fire protection rulemaking standard, Fire Probabilistic Risk Assessment (PRA) methods have been ...

  9. POST-FIRE REVEGETATION AT HANFORD

    SciTech Connect (OSTI)

    ROOS RC; JOHNSON AR; CAUDILL JG; RODRIGUEZ JM; WILDE JW

    2010-01-05T23:59:59.000Z

    Range fires on the Hanford Site can have a long lasting effect on native plant communities. Wind erosion following removal of protective vegetation from fragile soils compound the damaging effect of fires. Dust storms caused by erosion create health and safety hazards to personnel, and damage facilities and equipment. The Integrated Biological Control Program (IBC) revegetates burned areas to control erosion and consequent dust. Use of native, perennial vegetation in revegetation moves the resulting plant community away from fire-prone annual weeds, and toward the native shrub-steppe that is much less likely to burn in the future. Over the past 10 years, IBC has revegetated major fire areas with good success. IBC staff is monitoring the success of these efforts, and using lessons learned to improve future efforts.

  10. Project 93L-EWL-097, fire alarm system improvements, 300 Area

    SciTech Connect (OSTI)

    Scott, M.V.

    1995-01-01T23:59:59.000Z

    This document contains the Acceptance Test Procedure (ATP) which will demonstrate that the modifications to the Fire Protection systems in the 338 Building function as intended. The ATP will test the fire alarm control panel, flow alarm pressure switch, post indicator valve tamper switch, heat detectors, flow switches, and fire alarm signaling devices.

  11. Empirical validation of the conceptual design of the LLNL 60-kg contained-firing facility

    SciTech Connect (OSTI)

    Pastrnak, J.W.; Baker, C.F.; Simmons, L.F.

    1995-02-24T23:59:59.000Z

    In anticipation of increasingly stringent environmental regulations, Lawrence Livermore National Laboratory (LLNL) is proposing to modify an existing facility to add a 60-kg firing chamber and related support areas. This modification will provide blast-effects containment for most of its open-air, high-explosive, firing operations. Even though these operations are within current environmental limits, containment of the blast effects and hazardous debris will further drastically reduce emissions to the environment and minimize the hazardous waste generated. The major design consideration of such a chamber is its overall structural dynamic response in terms of its long-term ability to contain all blast effects from repeated internal detonations of high explosives. Another concern is how much other portions of the facility outside the firing chamber must be hardened to ensure personnel protection in the event of an accidental detonation while the chamber door is open. To assess these concerns, a 1/4-scale replica model of the planned contained firing chamber was engineered, constructed, and tested with scaled explosive charges ranging from 25 to 125% of the operational explosives limit of 60 kg. From 16 detonations of high explosives, 880 resulting strains, blast pressures, and temperatures within the model were measured to provide information for the final design.

  12. Electrical Sitchgear Building No. 5010-ESF Fire Hazards Technical Report

    SciTech Connect (OSTI)

    N.M. Ruonavaara

    2001-05-08T23:59:59.000Z

    The purpose of this Fire Hazards Analysis Technical Report (hereinafter referred to as Technical Report) is to assess the risk from fire within individual fire areas to ascertain whether the U.S. Department of Energy (DOE) fire safety objectives are met. The objectives, identified in DOE Order 420.1, Change 2, Fire Safety, Section 4.2, establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire or related event; (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of the employees, the public, and the environment; (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards; (4) Property losses from a fire and related events exceeding defined limits established by DOE; and (5) Critical process controls and safety class systems being damaged as a result of a fire and related event.

  13. Preliminary fire hazards analysis for W-211, Initial Tank Retrieval Systems

    SciTech Connect (OSTI)

    Huckfeldt, R.A.

    1995-03-16T23:59:59.000Z

    A fire hazards analysis (FHA) was performed for Project W-211, Initial Tank Retrieval System (ITRS), at the Department of Energy (DOE) Hanford site. The objectives of this FHA was to determine (1) the fire hazards that expose the Initial Tank Retrieval System or are inherent in the process, (2) the adequacy of the fire-safety features planned, and (3) the degree of compliance of the project with specific fire safety provisions in DOE orders and related engineering codes and standards. The scope included the construction, the process hazards, building fire protection, and site wide fire protection. The results are presented in terms of the fire hazards present, the potential extent of fire damage, and the impact on employees and public safety. This study evaluated the ITRS with respect to its use at Tank 241-SY-101 only.

  14. Fire in Buildings 

    E-Print Network [OSTI]

    Shorter, G.

    During the lifetime of any building in Canada it is probable that one or more "unwanted" fires will occur. "Fire Loss in Canada, 1959," the report of the Dominion Fire Commissioner, states that for the period 1950-1959 the average number of reported...

  15. Y-12 Groundwater Protection Program CY2012 Triennial Report Of The Monitoring Well Inspection And Maintenance Program Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    none,

    2013-09-01T23:59:59.000Z

    This document is the triennial report for the Well Inspection and Maintenance Program of the Y- 12 Groundwater Protection Program (GWPP), at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12). This report formally documents well inspections completed by the GWPP on active and inactive wells at Y-12 during calendar years (CY) 2010 through 2012. In addition, this report also documents well inspections performed under the Y-12 Water Resources Restoration Program, which is administered by URS|CH2M Oak Ridge (UCOR). This report documents well maintenance activities completed since the last triennial inspection event (CY 2009); and provides summary tables of well inspections and well maintenance activities during the reference time period.

  16. NREL Supports Development of New National Code for Hydrogen Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    On December 14, 2010, the National Fire Protection Association (NFPA) issued a new national code for hydrogen technologies - NFPA 2 Hydrogen Technologies Code - which covers critical applications and operations such as hydrogen dispensing, production, and storage. The new code consolidates existing hydrogen-related NFPA codes and standards requirements into a single document and also introduces new requirements. This consolidation makes it easier for users to prepare code-compliant permit applications and to review/approve these applications. The National Renewable Energy Laboratory helped support the development of NFPA 2 on behalf of the U.S. Department of Energy Fuel Cell Technologies Program.

  17. Y-12 Groundwater Protection Program Extent Of The Primary Groundwater Contaminants At The Y-12 National Security Complex

    SciTech Connect (OSTI)

    none,

    2013-12-01T23:59:59.000Z

    This report presents data summary tables and maps used to define and illustrate the approximate lateral extent of groundwater contamination at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. The data tables and maps address the primary (i.e., most widespread and mobile) organic, inorganic, and radiological contaminants in the groundwater. The sampling locations, calculated contaminant concentrations, plume boundary values, and paired map format used to define, quantify, delineate, and illustrate the approximate extent of the primary organic, inorganic, and radiological contaminants in groundwater at Y-12 are described.

  18. DynCorp Tricities Services, Inc. Hanford fire department FY 1998 annual work plan

    SciTech Connect (OSTI)

    Good, D.E.

    1997-08-19T23:59:59.000Z

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, or interest of the U.S. Department of Energy operated Hanford site. This includes response to surrounding fire departments/districts under mutual aid and state mobilization agreements and fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System) and various commercial entities operating on site through Requests for Service from DOE-RL. This fire department also provides site fire marshal overview authority, fire system testing and maintenance, respiratory protection services, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education. This plan provides a program overview, program baselines, and schedule baseline.

  19. Surface Fire Hazards Analysis Technical Report-Constructor Facilities

    SciTech Connect (OSTI)

    R.E. Flye

    2000-10-24T23:59:59.000Z

    The purpose of this Fire Hazards Analysis Technical Report (hereinafter referred to as Technical Report) is to assess the risk from fire within individual fire areas to ascertain whether the U.S. Department of Energy (DOE) fire safety objectives are met. The objectives identified in DOE Order 420.1, Change 2, Facility Safety, Section 4.2, establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public, or the environment; Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding defined limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events.

  20. Tiger Team assessment of the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Not Available

    1991-08-01T23:59:59.000Z

    The purpose of the Safety and Health (S H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG G Idaho, Inc. (EG G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety.

  1. Fire hazard analysis for Plutonium Finishing Plant complex

    SciTech Connect (OSTI)

    MCKINNIS, D.L.

    1999-02-23T23:59:59.000Z

    A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41, Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards.

  2. Enterprise Assessments Review, Los Alamos National Laboratory...

    Energy Savers [EERE]

    - November 2014 November 2014 Review of the Los Alamos National Laboratory Weapons Engineering Tritium Facility Fire Suppression System The Department of Energy Office of...

  3. Critical Fire Weather Patterns

    E-Print Network [OSTI]

    Clements, Craig

    .1 Sundowner Winds FAT -- 1.1 Southeastern U.S. Fire Weather LIT -- 1.1 East Winds MFR -- 1.1 East Winds OLM

  4. Co-firing biomass

    SciTech Connect (OSTI)

    Hunt, T.; Tennant, D. [Hunt, Guillot & Associates LLC (United States)

    2009-11-15T23:59:59.000Z

    Concern about global warming has altered the landscape for fossil-fuel combustion. The advantages and challenges of co-firing biomass and coal are discussed. 2 photos.

  5. DATA SHARING REPORT CHARACTERIZATION OF POPULATION 7: PERSONAL PROTECTIVE EQUIPMENT, DRY ACTIVE WASTE, AND MISCELLANEOUS DEBRIS, SURVEILLANCE AND MAINTENANCE PROJECT OAK RIDGE NATIONAL LABORATORY OAK RIDGE, TENNESSEE

    SciTech Connect (OSTI)

    Harpenau, Evan M

    2013-10-10T23:59:59.000Z

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support under the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested that ORAU plan and implement a sampling and analysis campaign targeting certain URS|CH2M Oak Ridge, LLC (UCOR) surveillance and maintenance (S&M) process inventory waste. Eight populations of historical and reoccurring S&M waste at the Oak Ridge National Laboratory (ORNL) have been identified in the Waste Handling Plan for Surveillance and Maintenance Activities at the Oak Ridge National Laboratory, DOE/OR/01-2565&D2 (WHP) (DOE 2012) for evaluation and processing to determine a final pathway for disposal. Population 7 (POP 7) consists of 56 containers of aged, low-level and potentially mixed S&M waste that has been staged in various locations around ORNL. Several of these POP 7 containers primarily contain personal protective equipment (PPE) and dry active waste (DAW), but may contain other miscellaneous debris. This data sharing report addresses the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) specified waste in a 13-container subpopulation (including eight steel boxes, three 55-gal drums, one sealand, and one intermodal) that lacked sufficient characterization data for possible disposal at the Environmental Management Waste Management Facility (EMWMF) using the approved Waste Lot (WL) 108.1 profile.

  6. Y-12 Groundwater Protection Program Monitoring Optimization Plan For Groundwater Monitoring Wells At The U.S. Department Of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    none,

    2013-09-01T23:59:59.000Z

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee. The plan describes the technical approach that is implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 that provide the most useful hydrologic and groundwater quality monitoring data. The technical approach is based on the GWPP status designation for each well. Under this approach, wells granted ?active? status are used by the GWPP for hydrologic monitoring and/or groundwater quality sampling, whereas wells granted ?inactive? status are not used for either purpose. The status designation also defines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP. Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans. This plan applies to groundwater wells associated with Y-12 and related waste management areas and facilities located within three hydrogeologic regimes.

  7. Benchmark enclosure fire suppression experiments - phase 1 test report.

    SciTech Connect (OSTI)

    Figueroa, Victor G.; Nichols, Robert Thomas; Blanchat, Thomas K.

    2007-06-01T23:59:59.000Z

    A series of fire benchmark water suppression tests were performed that may provide guidance for dispersal systems for the protection of high value assets. The test results provide boundary and temporal data necessary for water spray suppression model development and validation. A review of fire suppression in presented for both gaseous suppression and water mist fire suppression. The experimental setup and procedure for gathering water suppression performance data are shown. Characteristics of the nozzles used in the testing are presented. Results of the experiments are discussed.

  8. Fire science at LLNL: A review

    SciTech Connect (OSTI)

    Hasegawa, H.K. (ed.)

    1990-03-01T23:59:59.000Z

    This fire sciences report from LLNL includes topics on: fire spread in trailer complexes, properties of welding blankets, validation of sprinkler systems, fire and smoke detectors, fire modeling, and other fire engineering and safety issues. (JEF)

  9. Protection 1 Protection 1

    E-Print Network [OSTI]

    Lampson, Butler W.

    Protection 1 Protection 1 Butler W. Lampson Xerox Corporation Palo Alto, California Abstract is a malicious act or accident that crashes the system--- this might be considered the ultimate degradation. 1, p 437. It was reprinted in ACM Operating Systems Rev. 8, 1 (Jan. 1974), p 18. This version

  10. Protection 1 Protection1

    E-Print Network [OSTI]

    Lampson, Butler W.

    Protection 1 Protection1 Butler W. Lampson Xerox Corporation Palo Alto, California Abstract is a malicious act or accident that crashes the system-- this might be considered the ultimate degradation. 1, p 437. It was reprinted in ACM Operating Systems Rev. 8, 1 (Jan. 1974), p 18. This version

  11. E-Print Network 3.0 - acadia national park Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Service, ... Source: National Oceanic and Atmospheric Administration (NOAA), Fishery Bulletin Collection: Environmental Sciences and Ecology 87 Fire and biofuel...

  12. Cermet composite thermal spray coatings for erosion and corrosion protection in combustion environments of advanced coal-fired boilers. Semi-annual technical progress report, February 1996--July 1996

    SciTech Connect (OSTI)

    Banovic, S.W.; Levin, B.F.; DuPont, J.N.; Marder, A.R.

    1996-08-01T23:59:59.000Z

    Present coal-fired boiler environments remain hostile to the materials of choice since corrosion and erosion can be a serious problem in certain regions of the boiler. Recently, the Clean Air Act Amendment is requiring electric power plants to reduce NO{sub x}, emissions to the environment. To reduce NO{sub x}, emissions, new low NO{sub x}, combustors are utilized which burn fuel with a substoichiometric amount of oxygen (i.e., low oxygen partial pressure). In these low NO{sub x} environments, H{sub 2}S gas is a major source of sulfur. Due to the sulfidation process, corrosion rates in reducing parts of boilers have increased significantly and existing boiler tube materials do not always provide adequate corrosion resistance. Combined attack due to corrosion and erosion is a concern because of the significantly increased operating costs which result in material failures. One method to combat corrosion and erosion in coal-fired boilers is to apply coatings to the components subjected to aggressive environments. Thermal spray coatings, a cermet composite comprised of hard ceramic phases of oxide and/or carbide in a metal binder, have been used with some success as a solution to the corrosion and erosion problems in boilers. However, little is known on the effect of the volume fraction, size, and shape of the hard ceramic phase on the erosion and corrosion resistance of the thermally sprayed coatings. It is the objective of this research to investigate metal matrix composite (cermet) coatings in order to determine the optimum ceramic/metal combination that will give the best erosion and corrosion resistance in new advanced coal-fired boilers.

  13. Impacts of TMDLs on coal-fired power plants.

    SciTech Connect (OSTI)

    Veil, J. A.; Environmental Science Division

    2010-04-30T23:59:59.000Z

    The Clean Water Act (CWA) includes as one of its goals restoration and maintenance of the chemical, physical, and biological integrity of the Nation's waters. The CWA established various programs to accomplish that goal. Among the programs is a requirement for states to establish water quality standards that will allow protection of the designated uses assigned to each water body. Once those standards are set, state agencies must sample the water bodies to determine if water quality requirements are being met. For those water bodies that are not achieving the desired water quality, the state agencies are expected to develop total maximum daily loads (TMDLs) that outline the maximum amount of each pollutant that can be discharged to the water body and still maintain acceptable water quality. The total load is then allocated to the existing point and nonpoint sources, with some allocation held in reserve as a margin of safety. Many states have already developed and implemented TMDLs for individual water bodies or regional areas. New and revised TMDLs are anticipated, however, as federal and state regulators continue their examination of water quality across the United States and the need for new or revised standards. This report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) Existing Plants Research Program, which has an energy-water research effort that focuses on water use at power plants. This study complements its overall research effort by evaluating water issues that could impact power plants. One of the program missions of the DOE's NETL is to develop innovative environmental control technologies that will enable full use of the Nation's vast coal reserves, while at the same time allowing the current fleet of coal-fired power plants to comply with existing and emerging environmental regulations. Some of the parameters for which TMDLs are being developed are components in discharges from coal-fired power plants. If a state establishes a new or revised TMDL for one of these pollutants in a water body where a power plant is located, the next renewal of the power plant's National Pollution Discharge Elimination System (NPDES) permit is likely to include more restrictive limits. Power generators may need to modify existing operational and wastewater treatment technologies or employ new ones as TMDLs are revised or new ones are established. The extent to which coal-fired power plants may be impacted by revised and new TMDL development has not been well established. NETL asked Argonne to evaluate how current and potential future TMDLs might influence coal-fired power plant operations and discharges. This information can be used to inform future technology research funded by NETL. The scope of investigation was limited to several eastern U.S. river basins rather than providing a detailed national perspective.

  14. Fish passage and protection

    SciTech Connect (OSTI)

    Rinehart, B.N.

    1993-11-01T23:59:59.000Z

    This report consists of reprints on fish passage and protection topics from: American Fisheries Society; American Society of Civil Engineers; Harza Engineering Company; Hydro Review Magazine; Idaho National Engineering Laboratory; Independent Energy Magazine; National Hydropower Association; Northwest Hydroelectric Association; United States Army Corps of Engineers; United States Committee on large dams; and the United States Department of the Interior.

  15. Electronic firing systems and methods for firing a device

    DOE Patents [OSTI]

    Frickey, Steven J. (Boise, ID); Svoboda, John M. (Idaho Falls, ID)

    2012-04-24T23:59:59.000Z

    An electronic firing system comprising a control system, a charging system, an electrical energy storage device, a shock tube firing circuit, a shock tube connector, a blasting cap firing circuit, and a blasting cap connector. The control system controls the charging system, which charges the electrical energy storage device. The control system also controls the shock tube firing circuit and the blasting cap firing circuit. When desired, the control system signals the shock tube firing circuit or blasting cap firing circuit to electrically connect the electrical energy storage device to the shock tube connector or the blasting cap connector respectively.

  16. Microsoft Word - 11-12-10_WCH_WeeklyReport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Provided the following fire danger awareness to support National Fire Protection Month: - Hanford burn restrictions - Bedroom fire safety - Carbon monoxide safety tips - Home fire...

  17. Environmental Protection | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGas EnvironmentalEnvironmental

  18. Contained Firing Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Related Topics Maintaining the Stockpile stockpile stewardship R&D llnl Related News SOLAR POWER PURCHASE FOR DOE LABORATORIES NNSA's Stockpile Stewardship Program Quarterly...

  19. Wildland Fire Safety Enhancements

    Broader source: Energy.gov (indexed) [DOE]

    OPERATIONS OFFICE MANAGERS DOE FUXD OFFICE MANAGERS BILL RIcHARDsoN L%@ WILDLAND FIRE SAFETY ENHAN&MENTS By memorandum dated October 22000, I directed several actions & part of a...

  20. Safety, Security & Fire Report

    E-Print Network [OSTI]

    Straight, Aaron

    2013 Safety, Security & Fire Report Stanford University #12;Table of Contents Public Safety About the Stanford University Department of Public Safety Community Outreach & Education Programs Emergency Access Transportation Safety Bicycle Safety The Jeanne Clery and Higher Education Act Timely Warning

  1. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23, 2013-Nearly 400 Los Alamos National Laboratory employees on 47 teams received Pollution Prevention awards for protecting the environment and saving taxpayers more than 8...

  2. EPRI/NRC-RES fire human reliability analysis guidelines.

    SciTech Connect (OSTI)

    Lewis, Stuart R. (Electric Power Research Institute, Charlotte, NC); Cooper, Susan E. (U.S. Nuclear Regulatory Commission, Rockville, MD); Najafi, Bijan (SAIC, Campbell, CA); Collins, Erin (SAIC, Campbell, CA); Hannaman, Bill (SAIC, Campbell, CA); Kohlhepp, Kaydee (Scientech, Tukwila, WA); Grobbelaar, Jan (Scientech, Tukwila, WA); Hill, Kendra (U.S. Nuclear Regulatory Commission, Rockville, MD); Hendrickson, Stacey M. Langfitt; Forester, John Alan; Julius, Jeff (Scientech, Tukwila, WA)

    2010-03-01T23:59:59.000Z

    During the 1990s, the Electric Power Research Institute (EPRI) developed methods for fire risk analysis to support its utility members in the preparation of responses to Generic Letter 88-20, Supplement 4, 'Individual Plant Examination - External Events' (IPEEE). This effort produced a Fire Risk Assessment methodology for operations at power that was used by the majority of U.S. nuclear power plants (NPPs) in support of the IPEEE program and several NPPs overseas. Although these methods were acceptable for accomplishing the objectives of the IPEEE, EPRI and the U.S. Nuclear Regulatory Commission (NRC) recognized that they required upgrades to support current requirements for risk-informed, performance-based (RI/PB) applications. In 2001, EPRI and the USNRC's Office of Nuclear Regulatory Research (RES) embarked on a cooperative project to improve the state-of-the-art in fire risk assessment to support a new risk-informed environment in fire protection. This project produced a consensus document, NUREG/CR-6850 (EPRI 1011989), entitled 'Fire PRA Methodology for Nuclear Power Facilities' which addressed fire risk for at power operations. NUREG/CR-6850 developed high level guidance on the process for identification and inclusion of human failure events (HFEs) into the fire PRA (FPRA), and a methodology for assigning quantitative screening values to these HFEs. It outlined the initial considerations of performance shaping factors (PSFs) and related fire effects that may need to be addressed in developing best-estimate human error probabilities (HEPs). However, NUREG/CR-6850 did not describe a methodology to develop best-estimate HEPs given the PSFs and the fire-related effects. In 2007, EPRI and RES embarked on another cooperative project to develop explicit guidance for estimating HEPs for human failure events under fire generated conditions, building upon existing human reliability analysis (HRA) methods. This document provides a methodology and guidance for conducting a fire HRA. This process includes identification and definition of post-fire human failure events, qualitative analysis, quantification, recovery, dependency, and uncertainty. This document provides three approaches to quantification: screening, scoping, and detailed HRA. Screening is based on the guidance in NUREG/CR-6850, with some additional guidance for scenarios with long time windows. Scoping is a new approach to quantification developed specifically to support the iterative nature of fire PRA quantification. Scoping is intended to provide less conservative HEPs than screening, but requires fewer resources than a detailed HRA analysis. For detailed HRA quantification, guidance has been developed on how to apply existing methods to assess post-fire fire HEPs.

  3. Worker Protection Program for DOE (including the National Nuclear Security Administration) Federal Employees Guide for Use with DOE O 440.1B

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-06-04T23:59:59.000Z

    The Guide provides suggestions and alternative approaches that DOE elements may consider in implementing their worker protection program. Cancels DOE G 440.1-1.

  4. Rethinking Biodiversity Conservation Effectiveness and Evaluation in the National Protected Areas Systems of Tropical Islands: The Case of Jamaica and the Dominican Republic.

    E-Print Network [OSTI]

    Davis, Suzanne Mae Camille

    2010-01-01T23:59:59.000Z

    ??Island conservation theory and practice with regard to conservation of tropical terrestrial biodiversity in protected areas systems has yet to be adequately addressed in conservation… (more)

  5. Proceedings of the Fourth International Symposium on Fire Economics, Planning, and Policy: Climate Change and Wildfires

    E-Print Network [OSTI]

    Standiford, Richard B.

    Proceedings of the Fourth International Symposium on Fire Economics, Planning, and Policy: Climate of the forestry enterprise in terms of the amount of investments that are required to implement activities related valuation, economic return, forest fires. Introduction Despite the adoption of protection practices, each

  6. UF{sub 6} cylinder fire test

    SciTech Connect (OSTI)

    Park, S.H. [Oak Ridge K-25 Site, Oak Ridge, TN (United States)

    1991-12-31T23:59:59.000Z

    With the increasing number of nuclear reactors for power generation, there is a comparable increase in the amount of UF{sub 6} being transported. Likewise, the probability of having an accident involving UF{sub 6}-filled cylinders also increases. Accident scenarios which have been difficult to assess are those involving a filled UF{sub 6} cylinder subjected to fire. A study is underway at the Oak Ridge K-25 Site, as part of the US DOE Enrichment Program, to provide empirical data and a computer model that can be used to evaluate various cylinder-in-fire scenarios. It is expected that the results will provide information leading to better handling of possible fire accidents as well as show whether changes should be made to provide different physical protection during shipment. The computer model being developed will be capable of predicting the rupture of various cylinder sizes and designs as well as the amount of UF{sub 6}, its distribution in the cylinder, and the conditions of the fire.

  7. Hanford Site Fire June 2000 AM

    SciTech Connect (OSTI)

    2000-06-29T23:59:59.000Z

    The Hanford Site Fire on the morning of June 29, 2000. Fire crews working to contain a fire on the Hanford Site in June 2000.

  8. Y-12 Groundwater Protection Program Monitoring Optimization Plan For Groundwater Monitoring Wells At The U.S. Department Of Energy Y-12 National Security Complex, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Elvado Environmental LLC

    2009-12-01T23:59:59.000Z

    This document is the monitoring optimization plan for groundwater monitoring wells associated with the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee (Figure A.1). The plan describes the technical approach that will be implemented under the Y-12 Groundwater Protection Program (GWPP) to focus available resources on the monitoring wells at Y-12 that provide the most useful hydrologic and groundwater quality monitoring data. The technical approach is based on the GWPP status designation for each well (Section 2.0). Under this approach, wells granted 'active' status are used by the GWPP for hydrologic monitoring and/or groundwater quality sampling (Section 3.0), whereas wells granted 'inactive' status are not used for either purpose. The status designation also defines the frequency at which the GWPP will inspect applicable wells, the scope of these well inspections, and extent of any maintenance actions initiated by the GWPP (Section 3.0). Details regarding the ancillary activities associated with implementation of this plan (e.g., well inspection) are deferred to the referenced GWPP plans and procedures (Section 4.0). This plan applies to groundwater wells associated with Y-12 and related waste management areas and facilities located within three hydrogeologic regimes (Figure A.1): the Bear Creek Hydrogeologic Regime (Bear Creek Regime), the Upper East Fork Poplar Creek Hydrogeologic Regime (East Fork Regime), and the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime). The Bear Creek Regime encompasses a section of Bear Creek Valley (BCV) immediately west of Y-12. The East Fork Regime encompasses most of the Y-12 process, operations, and support facilities in BCV and, for the purposes of this plan, includes a section of Union Valley east of the DOE Oak Ridge Reservation (ORR) boundary along Scarboro Road. The Chestnut Ridge Regime encompasses a section of Chestnut Ridge directly south of Y-12 that is bound on the west by a surface drainage feature (Dunaway Branch) and on the east by Scarboro Road. For this plan, the Chestnut Ridge Regime includes an area known as the South Campus Facility that is located west of Scarboro Road and south of Bethel Valley Road. The GWPP maintains an extensive database of construction details and related information for the monitoring wells in each hydrogeologic regime (including wells that have been destroyed or intentionally plugged and abandoned); the most recent hardcopy version of the database was issued in February 2003 (BWXT Y-12, L.L.C. [BWXT] 2003). As specified in the Y-12 GWPP Management Plan (Babcock & Wilcox Technical Services Y-12, LLC [B&W Y-12] 2009a), this plan will be reviewed and updated every three years.

  9. Comprehensive assessment of toxic emissions from coal-fired power plants

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    The 1990 Clean Air Act Amendments (CAAA) have two primary goals: pollution prevention and a market-based least-cost approach to emission control. To address air quality issues as well as permitting and enforcement, the 1990 CAAA contain 11 sections or titles. The individual amendment titles are as follows: Title I - National Ambient Air Quality Standards Title II - Mobile Sources Title III - Hazardous Air Pollutants Title IV - Acid Deposition Control Title V - Permits Title VI - Stratospheric Ozone Protection Chemicals Title VII - Enforcement Title VIII - Miscellaneous Provisions Title IX - Clean Air Research Title X - Disadvantaged Business Concerns Title XI - Clean Air Employment Transition Assistance Titles I, III, IV, and V will change or have the potential to change how operators of coal-fired utility boilers control, monitor, and report emissions. For the purpose of this discussion, Title III is the primary focus.

  10. The Phoenix series large scale LNG pool fire experiments.

    SciTech Connect (OSTI)

    Simpson, Richard B.; Jensen, Richard Pearson; Demosthenous, Byron; Luketa, Anay Josephine; Ricks, Allen Joseph; Hightower, Marion Michael; Blanchat, Thomas K.; Helmick, Paul H.; Tieszen, Sheldon Robert; Deola, Regina Anne; Mercier, Jeffrey Alan; Suo-Anttila, Jill Marie; Miller, Timothy J.

    2010-12-01T23:59:59.000Z

    The increasing demand for natural gas could increase the number and frequency of Liquefied Natural Gas (LNG) tanker deliveries to ports across the United States. Because of the increasing number of shipments and the number of possible new facilities, concerns about the potential safety of the public and property from an accidental, and even more importantly intentional spills, have increased. While improvements have been made over the past decade in assessing hazards from LNG spills, the existing experimental data is much smaller in size and scale than many postulated large accidental and intentional spills. Since the physics and hazards from a fire change with fire size, there are concerns about the adequacy of current hazard prediction techniques for large LNG spills and fires. To address these concerns, Congress funded the Department of Energy (DOE) in 2008 to conduct a series of laboratory and large-scale LNG pool fire experiments at Sandia National Laboratories (Sandia) in Albuquerque, New Mexico. This report presents the test data and results of both sets of fire experiments. A series of five reduced-scale (gas burner) tests (yielding 27 sets of data) were conducted in 2007 and 2008 at Sandia's Thermal Test Complex (TTC) to assess flame height to fire diameter ratios as a function of nondimensional heat release rates for extrapolation to large-scale LNG fires. The large-scale LNG pool fire experiments were conducted in a 120 m diameter pond specially designed and constructed in Sandia's Area III large-scale test complex. Two fire tests of LNG spills of 21 and 81 m in diameter were conducted in 2009 to improve the understanding of flame height, smoke production, and burn rate and therefore the physics and hazards of large LNG spills and fires.

  11. EHSO TRAINING CLASSES Fire Safety Program Training

    E-Print Network [OSTI]

    EHSO TRAINING CLASSES Fire Safety Program Training 1. Fire Safety (60 minutes) Instruction includes an actual fire eperience. 2. Fire Extinguisher Training (30 minutes) A practical demonstration on actual burnable liquid fires. This practical extinguisher training is a critical portion of the fire

  12. FIRE Diagnostics Kenneth M. Young

    E-Print Network [OSTI]

    FIRE Diagnostics Kenneth M. Young Princeton Plasma Physics Laboratory Workshop on Physics Issues. Young 5/2/00 #12;FIRE: Diagnostics Schedule 1 2YEAR 3 4 5 6 7 8 9 10 11 12 16151413 First Plasma Vac for FIRE PPPL May 1 - 3, 2000 #12;Role for the Plasma Measurements · 1) Provide data for physics studies

  13. Control of nutrient pollution to U.S. waterways is an urgent issue for the nation. In 2013, the U.S. Environmental Protection Agency

    E-Print Network [OSTI]

    Control of nutrient pollution to U.S. waterways is an urgent issue for the nation. In 2013, the U solutions to nutrient pollution problems. Sustainable nitrogen (N) and phosphorus (P) management solutions sustainable solutions for reduction of nutrient pollution in the nation's water resources. The CLEAN CENTER

  14. Direct fired heat exchanger

    SciTech Connect (OSTI)

    Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

    1986-01-01T23:59:59.000Z

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  15. Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia

    E-Print Network [OSTI]

    Tosca, M. G; Randerson, J. T; Zender, C. S; Nelson, D. L; Diner, D. J; Logan, J. A

    2011-01-01T23:59:59.000Z

    of carbon released from peat and forest fires in Indo- nesiasmoke clouds associated with peat and deforestation fires insmoke clouds associated with peat and deforestation fires in

  16. Health-hazard evaluation report HETA 84-484-1754, Detroit Fire Fighters, Detroit, Michigan

    SciTech Connect (OSTI)

    Anderson, K.E.; Melius, J.M.

    1986-12-01T23:59:59.000Z

    In response to a request from the International Association of Fire Fighters on behalf of the Detroit Fire Fighters Association, Detroit, Michigan, a health hazard evaluation was made of respiratory symptoms and skin irritation in fire fighters involved in a large fire and explosion at a warehouse. Over 200 fire fighters from fire-fighting organizations in three communities were involved in the incident. Site runoff water contained chlordane and malathion in low parts per million; other samples were negative. Nose and throat irritation, cough, and shortness of breath were experienced by a large proportion of fire fighters following the fire, and in 14, 15, and 17 percent, respectively, symptoms persisted over 2 months. Symptoms were significantly associated with time spent at the scene and time spent in heavy smoke. Pulmonary function tests were abnormal in 14 cases, ten due to obstructive lung disease, three to restrictive lung disease, and one to a combination. The authors conclude that better protective equipment is needed for fire fighters at chemical fires. Recommendations include development of a hazardous-materials response team, and implementation of a routine medical surveillance program.

  17. Fire exposure of empty 30B cylinders

    SciTech Connect (OSTI)

    Ziehlke, K.T. [MJB Technical Associates, Inc., Knoxville, TN (United States)

    1991-12-31T23:59:59.000Z

    Cylinders for UF{sub 6} handling, transport, and storage are designed and built as unfired pressure vessels under ASME Boiler and Pressure Vessel Code criteria and standards. They are normally filled and emptied while UF{sub 6} is in its liquid phase. Transport cylinders such as the Model 30B are designed for service at 200 psi and 250{degrees}F, to sustain the process conditions which prevail during filling or emptying operations. While in transport, however, at ambient temperature the UF{sub 6} is solid, and the cylinder interior is well below atmospheric pressure. When the cylinders contain isotopically enriched product (above 1.0 percent U-235), they are transported in protective overpacks which function to guard the cylinders and their contents against thermal or mechanical damage in the event of possible transport accidents. Two bare Model 30B cylinders were accidentally exposed to a storage warehouse fire in which a considerable amount of damage was sustained by stored materials and the building structure, as well as by the cylinder valves and valve protectors. The cylinders were about six years old, and had been cleaned, inspected, hydrotested, and re-certified for service, but were still empty at the time of the fire. The privately-owned cylinders were transferred to DOE for testing and evaluation of the fire damage.

  18. Figure 1. Day 1 SPC Fire Weather Outlook graphic showing a critical area over parts of the western U.S.,

    E-Print Network [OSTI]

    Figure 1. Day 1 SPC Fire Weather Outlook graphic showing a critical area over parts of the western. INTRODUCTION The Storm Prediction Center (SPC) in Norman, OK prepares national Fire Weather Outlooks valid thunderstorms, result in a significant threat of wildfires. The SPC Fire Weather Outlook contains both a text

  19. Forest fire management in Portugal : developing system insights through models of social and physical dynamics

    E-Print Network [OSTI]

    Collins, Ross D. (Ross Daniel)

    2012-01-01T23:59:59.000Z

    Managing forest fires is a serious national problem in Portugal. Burned area has increased steadily over the past several decades, with particularly devastating years in 2003 and 2005. Ignitions also spike dramatically in ...

  20. SYNTHESIS OF SAFETY ANALYSIS AND FIRE HAZARD ANALYSIS METHODOLOGIES

    SciTech Connect (OSTI)

    Coutts, D

    2007-04-17T23:59:59.000Z

    Successful implementation of both the nuclear safety program and fire protection program is best accomplished using a coordinated process that relies on sound technical approaches. When systematically prepared, the documented safety analysis (DSA) and fire hazard analysis (FHA) can present a consistent technical basis that streamlines implementation. If not coordinated, the DSA and FHA can present inconsistent conclusions, which can create unnecessary confusion and can promulgate a negative safety perception. This paper will compare the scope, purpose, and analysis techniques for DSAs and FHAs. It will also consolidate several lessons-learned papers on this topic, which were prepared in the 1990s.

  1. PANEL DISCUSSION: Barriers to Fuel Management One of the traditional roles that prescribed fire has played in

    E-Print Network [OSTI]

    Standiford, Richard B.

    must complement protection needs and provide a smooth transition to sustained ecosystem managementPANEL DISCUSSION: Barriers to Fuel Management One of the traditional roles that prescribed fire has played in the fire management arena is reduction of hazardous fuel buildups under controlled, well

  2. Fire Impacts on the Mojave Desert Ecosystem: Literature Review

    SciTech Connect (OSTI)

    Fenstermaker Lynn

    2012-01-01T23:59:59.000Z

    The Nevada National Security Site (NNSS) is located within the Mojave Desert, which is the driest region in North America. Precipitation on the NNSS varies from an annual average of 130 millimeters (mm; 5.1 inches) with a minimum of 47 mm (1.9 inches) and maximum of 328 mm (12.9 inches) over the past 15 year period to an annual average of 205 mm (8.1 inches) with an annual minimum of 89 mm (3.5 inches) and maximum of 391 mm (15.4 inches) for the same time period; for a Frenchman Flat location at 970 meters (m; 3182 feet) and a Pahute Mesa location at 1986 m (6516 feet), respectively. The combination of aridity and temperature extremes has resulted in sparsely vegetated basins (desert shrub plant communities) to moderately vegetated mountains (mixed coniferous forest plant communities); both plant density and precipitation increase with increasing elevation. Whereas some plant communities have evolved under fire regimes and are dependent upon fire for seed germination, plant communities within the Mojave Desert are not dependent on a fire regime and therefore are highly impacted by fire (Brown and Minnich, 1986; Brooks, 1999). As noted by Johansen (2003) natural range fires are not prevalent in the Mojave and Sonoran Deserts because there is not enough vegetation present (too many shrub interspaces) to sustain a fire. Fire research and hence publications addressing fires in the Southwestern United States (U.S.) have therefore focused on forest, shrub-steppe and grassland fires caused by both natural and anthropogenic ignition sources. In the last few decades, however, invasion of mid-elevation shrublands by non-native Bromus madritensis ssp. rubens and Bromus tectorum (Hunter, 1991) have been highly correlated with increased fire frequency (Brooks and Berry, 2006; Brooks and Matchett, 2006). Coupled with the impact of climate change, which has already been shown to be playing a role in increased forest fires (Westerling et al., 2006), it is likely that the fire frequency will further increase in the Mojave Desert (Knapp 1998; Smith et al., 1987; Smith et al., 2000).

  3. Durham Fire Department 51 College Rd

    E-Print Network [OSTI]

    Pohl, Karsten

    information on what to do during an emergency. Students also receive annual fire drills to ensure hands-on practical traning of fire extinguisher that utilizes live fire exercises is available upon because most fires can be prevented. The best way to avoid fires is to avoid the hazards, which create

  4. The Environmental Protection Agency has identified agriculture as the leading contributor of pollutants to the nation's rivers, streams, lakes, and reservoirs. These

    E-Print Network [OSTI]

    Collins, Gary S.

    - demand access to the nation's best science-based resources that is responsive to priority and emerging), and antibiotic resistance in bacteria. Adopting farm practices that minimize the environmental impact is a significant weakness in current research and outreach infrastructure. There is a need for real time and on-demand

  5. Fire and Ice Issue 9

    E-Print Network [OSTI]

    Multiple Contributors

    2005-01-01T23:59:59.000Z

    £s FIRE AND ICE # 9 IB FIRE ICE #9 A Blake/Avon slash fanzine r Available from: Kathleen Resch POBox 1766 Temple City, CA 91780 Kathleener@aol.com FIRE AND ICE # 9copyright © May, 2005 by Kathleen Resch for the contributors. No reprints... or reproduction without the written permission ofthe author/artist This is an amateur publication and is not p intended to infringe upon the rights ofany holders of"Blake's 7" copyrights. FIRE AND ICE 9 TABLE OF CONTENTS LEAVING ROOM 101 by Nova 2 TOO MANY...

  6. ANNUAL SECURITY FIRE SAFETY REPORT

    E-Print Network [OSTI]

    ANNUAL SECURITY AND FIRE SAFETY REPORT OCTOBER 1, 2013 DARTMOUTH COLLEGE http................................................................................................................................................................... 7 ANNUAL SECURITY REPORT........................................................................................................................9 PREPARATION OF THE REPORT AND DISCLOSURE OF CRIME STATISTICS

  7. Chapter 14 -Severe Weather Lightning Protection for the Farm

    E-Print Network [OSTI]

    of farm fires. A well-installed and maintained lightning protection system routes lightning along a known of the electric power lines. Properly designed lightning arrestors should be placed between the power circuit and ground where the circuit enters the building. Large trees need protection from lightning. In addition

  8. Hanford fire department FY 99 annual work plan WBS 6.5.7

    SciTech Connect (OSTI)

    GOOD, D.E.

    1999-02-24T23:59:59.000Z

    The mission of the Hanford Fire Department (HFD) is to support the safe and timely cleanup of the Hanford site by providing a full range of services at the lowest possible cost to customers. These services include fire suppression, fire prevention, emergency rescue, emergency medical service, and hazardous materials response; and to be capable of dealing with and terminating emergency situations which could threaten the operations, employees, the general public, or interest of the U. S. Department of Energy operated Hanford Site. This includes response to surrounding fire departments/districts under mutual aid and state mobilization agreements and fire fighting, hazardous materials, and ambulance support to Washington Public Power Supply System (Supply System) and various commercial entities operating on site through Requests for Service from DOE-RL. The fire department also provides site fire marshal overview authority, fire system testing and maintenance, respiratory protection services, building tours and inspections, ignitable and reactive waste site inspections, prefire planning, and employee fire prevention education.

  9. BlueFire Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO)andDepartment13,EnergyBlueFire

  10. Fire Safety Committee Meeting Minutes- May 2014

    Broader source: Energy.gov [DOE]

    DOE Fire Safety Committee Meeting Minutes, May, 2014 Topics included discussions on Fire modeling, revisions to DOE regulations and other important items relating to DOE and Fire Safety Community.

  11. 2003 U.S. Department of Energy Strategic Plan: Protecting National, Energy, and Economic Security with Advanced Science and Technology and Ensuring Environmental Cleanup

    SciTech Connect (OSTI)

    None,

    2003-09-30T23:59:59.000Z

    The Department of Energy contributes to the future of the Nation by ensuring energy security, maintaining the safety, security and reliability of the nuclear weapons stockpile, cleaning up the environment from the legacy of the Cold War, and developing innovations in science and technology. After 25 years in existence, the Department now operates 24 preeminent research laboratories and facilities and four power marketing administrations, and manages the environmental cleanup from 50 years of nuclear defense activities that impacted two million acres in communities across the country. The Department has an annual budget of about $23 billion and employs about 14,500 Federal and 100,000 contractor employees. The Department of Energy is principally a national security agency and all of its missions flow from this core mission to support national security. That is true not just today, but throughout the history of the agency. The origins of the Department can be traced to the Manhattan Project and the race to develop the atomic bomb during World War II. Following the war, Congress engaged in a vigorous and contentious debate over civilian versus military control of the atom. The Atomic Energy Act of 1946 settled the debate by creating the Atomic Energy Commission, which took over the Manhattan Project’s sprawling scientific and industrial complex.

  12. Test One: The ‘Uncontrolled’ Fire 

    E-Print Network [OSTI]

    Abecassis Empis, Cecilia; Cowlard, Adam; Welch, Stephen; Torero, Jose L

    2007-11-14T23:59:59.000Z

    The first of the Dalmarnock Fire Tests was a post-flashover compartment fire experiment held on July 25th, 2006, in a two-bedroom single-family flat on the 4th floor of the 23- storey reinforced concrete tower in Dalmarnock, ...

  13. Fire and Ice Issue 2

    E-Print Network [OSTI]

    Multiple Contributors

    1993-01-01T23:59:59.000Z

    ^ $$% i&l /P^ \\0 rffej FIRE AND ICE AVAILABLE FROM Kathleen Resch PO Box 1766 Temple City, CA 91780 FIRE AND ICE II TABLE OF CONTENTS COVER by Phoenix FRONTISPIECE by Gayle Feyrer "Flashpoint" by Rachel Duncan 1 PEDESTAL by Thomas 2 "A Damn Fine...

  14. ANNUAL SECURITY & FIRE SAFETY REPORT

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    ANNUAL SECURITY & FIRE SAFETY REPORT 2014 A guide to policies, procedures, practices, and programs implemented to keep students, faculty, and staff safe and facilities secure. www.montana.edu/reports/security.pdf #12;Inside this Report 2014 Annual Security and Fire Safety Report for Reporting Year 2013

  15. Fire hazards analysis of central waste complex

    SciTech Connect (OSTI)

    Irwin, R.M.

    1996-05-30T23:59:59.000Z

    This document analyzes the fire hazards associated with operational the Central Waste Complex. It provides the analysis and recommendations necessary to ensure compliance with applicable fire codes.

  16. fire & fuels management Spruce Beetle-Induced Changes to Engelmann

    E-Print Network [OSTI]

    . Keywords: crown fire, bark beetles, heat of combustion, fire behavior, time to ignition E ngelmann spruce

  17. Fire Hazard Analysis for the Cold Vacuum Drying facility (CVD) Facility

    SciTech Connect (OSTI)

    SINGH, G.

    2000-09-06T23:59:59.000Z

    The CVDF is a nonreactor nuclear facility that will process the Spent Nuclear Fuels (SNF) presently stored in the 105-KE and 105-KW SNF storage basins. Multi-canister overpacks (MCOs) will be loaded (filled) with K Basin fuel transported to the CVDF. The MCOs will be processed at the CVDF to remove free water from the fuel cells (packages). Following processing at the CVDF, the MCOs will be transported to the CSB for interim storage until a long-term storage solution can be implemented. This operation is expected to start in November 2000. A Fire Hazard Analysis (FHA) is required for all new facilities and all nonreactor nuclear facilities, in accordance with U.S. Department of Energy (DOE) Order 5480.7A, Fire Protection. This FHA has been prepared in accordance with DOE 5480.7A and HNF-PRO-350, Fire Hazard Analysis Requirements. Additionally, requirements or criteria contained in DOE, Richland Operations Office (RL) RL Implementing Directive (RLID) 5480.7, Fire Protection, or other DOE documentation are cited, as applicable. This FHA comprehensively assesses the risk of fire at the CVDF to ascertain whether the specific objectives of DOE 5480.7A are met. These specific fire protection objectives are: (1) Minimize the potential for the occurrence of a fire. (2) Ensure that fire does not cause an onsite or offsite release of radiological and other hazardous material that will threaten the public health and safety or the environment. (3) Establish requirements that will provide an acceptable degree of life safety to DOE and contractor personnel and ensure that there are no undue hazards to the public from fire and its effects in DOE facilities. (4) Ensure that vital DOE programs will not suffer unacceptable delays as a result of fire and related perils. (5) Ensure that property damage from fire and related perils does not exceed an acceptable level. (6) Ensure that process control and safety systems are not damaged by fire or related perils. This FHA is based on the facility as constructed and with planned operation at the time of document preparation. Changes in facility planned and actual operation require that the identified fire risks associated with the CVDF be re-evaluated. Consequently, formal documentation and future revision of this FHA may be required.

  18. BNL Compressed Natural Gas Release Investigation

    Broader source: Energy.gov [DOE]

    Presenter: Michael Kretschmann, P.E., Manager, Fire Protection Engineering - Brookhaven National Laboratory

  19. Simulated combined abnormal environment fire calculations for aviation impacts.

    SciTech Connect (OSTI)

    Brown, Alexander L.

    2010-08-01T23:59:59.000Z

    Aircraft impacts at flight speeds are relevant environments for aircraft safety studies. This type of environment pertains to normal environments such as wildlife impacts and rough landings, but also the abnormal environment that has more recently been evidenced in cases such as the Pentagon and World Trade Center events of September 11, 2001, and the FBI building impact in Austin. For more severe impacts, the environment is combined because it involves not just the structural mechanics, but also the release of the fuel and the subsequent fire. Impacts normally last on the order of milliseconds to seconds, whereas the fire dynamics may last for minutes to hours, or longer. This presents a serious challenge for physical models that employ discrete time stepping to model the dynamics with accuracy. Another challenge is that the capabilities to model the fire and structural impact are seldom found in a common simulation tool. Sandia National Labs maintains two codes under a common architecture that have been used to model the dynamics of aircraft impact and fire scenarios. Only recently have these codes been coupled directly to provide a fire prediction that is better informed on the basis of a detailed structural calculation. To enable this technology, several facilitating models are necessary, as is a methodology for determining and executing the transfer of information from the structural code to the fire code. A methodology has been developed and implemented. Previous test programs at the Sandia National Labs sled track provide unique data for the dynamic response of an aluminum tank of liquid water impacting a barricade at flight speeds. These data are used to validate the modeling effort, and suggest reasonable accuracy for the dispersion of a non-combustible fluid in an impact environment. The capability is also demonstrated with a notional impact of a fuel-filled container at flight speed. Both of these scenarios are used to evaluate numeric approximations, and help provide an understanding of the quantitative accuracy of the modeling methods.

  20. THE HYPOTHETICAL EFFECTS ON VADOSE ZONE & GROUNDWATER CONTAMINATION BY FIRE SUPPRESSION OF HANFORD SITE BUILDINGS AWAITING DECOMMISSIONING

    SciTech Connect (OSTI)

    DAVIS, J.D.

    2005-03-18T23:59:59.000Z

    Numerical modeling was used to assess the effects of nearby contamination of hypothetical fire-suppression activities. The modeling focused on the 333 Building as being representative of a ''worst case'' situation in deactivated buildings at the Hanford Nuclear Site in Washington State. For purposes of the analysis, the fire-suppression sprinkler systems of these buildings were assumed to have been deactivated, requiring that the hypothetical fires be extinguished using water supplied by nearby fire hydrants. The amount of water specified by Fire-Protection personnel as needed to extinguish a hypothetical fire was specified as 1,500 gpm for 2 hours, for a total of 180,000 gallons or about 681 m{sup 3}.

  1. E-Print Network 3.0 - acs national meeting Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physics questions critical to fusion... and a new design for NDCX-II 12;Lawrence Livermore National Laboratory ... Source: Fusiongnition Research Experiment (FIRE) Collection:...

  2. FAQS Gap Analysis Qualification Card – Fire Protection Engineering

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  3. Baseline Fire Protection Facility Assessment for Building 9116...

    Broader source: Energy.gov (indexed) [DOE]

    is a flat built up membrane over a fluted steel deck supported by the main building beams. The roof construction is a FM Approved Class I assembly. Interior partitions are...

  4. Baseline Fire Protection Facility Assessment for Building 9203...

    Broader source: Energy.gov (indexed) [DOE]

    from the water treatment plant to the grid distribution system are provided. In the section of the plant where the 9203 building complex is located, the feeds consist of two...

  5. Office of Enterprise Assessments Review of the Fire Protection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CDNS NNSA Chief, Defense Nuclear Safety CFR Code of Federal Regulations CMR Chemistry and Metallurgy Research Facility CRAD Criteria, Review, and Approach Document CRD...

  6. Fire Protection Engineering Functional Area Qualification Standard, 2000

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal Registry CommentsOverview »FINDING OF NO| Department NOT

  7. Fire Protection Engineering Functional Area Qualification Standard, 2007

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal Registry CommentsOverview »FINDING OF NO| Department NOT37-2007

  8. Nuclear Criticality Safety Guide for Fire Protection | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2EnergyDepartment511Laws MeetingNovemberCriticality

  9. DOE-STD-1066-99; Fire Protection Design Criteria

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2ConsolidatedDepartment2-932-24562 Revision4-93 June3-97

  10. FAQS Job Task Analyses - Fire Protection Engineering | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department of Energy56Executive212-2012 June;'FAQ:EnergyFAQS

  11. FAQS Reference Guide - Fire Protection Engineering | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department of Energy56Executive212-2012FAQS JobAviationFAQS

  12. CRAD, Fire Protection - October 12, 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:June 2015 <Ones |Laboratory, JuneDid y ouRev. 0)of

  13. Fire and Ice Issue 3

    E-Print Network [OSTI]

    Multiple Contributors

    1995-01-01T23:59:59.000Z

    ,fpl ^1 FIRE AND ICE Available from: Kathleen Resch PO Box 1766 Temple City,CA 91780 III © May, 1995 by Kathleen Resch for the contributors. No reprints or reproduction without the written permission of the author/artist. This is an amateur... publication and is not intended to infringe upon the rightsof "Blake's 7" copyright holders.. FIRE AND ICE TABLE OF CONTENTS THE GIFT by Pat Terra 1 "innerspace" by Pat Terra 24 WILD, BEAUTIFUL AND DAMNED by Gemini 25 SET THE NIGHT ON FIRE by Riley Cannon 40...

  14. Firing of pulverized solvent refined coal

    DOE Patents [OSTI]

    Derbidge, T. Craig (Sunnyvale, CA); Mulholland, James A. (Chapel Hill, NC); Foster, Edward P. (Macungie, PA)

    1986-01-01T23:59:59.000Z

    An air-purged burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired without the coking thereof on the burner components. The air-purged burner is designed for the firing of pulverized solvent refined coal in a tangentially fired boiler.

  15. FIRE SAFETY PROGRAM TABLE OF CONTENTS

    E-Print Network [OSTI]

    Lin, Zhiqun

    FIRE SAFETY PROGRAM TABLE OF CONTENTS Overview................................................................................................. 5 Health and Life Safety Fund........................................................................................................... 5 Hot work

  16. Fire Behavior at the Landscape Scale

    E-Print Network [OSTI]

    Stephens, Scott L.

    Fire Behavior at the Landscape Scale Scott Stephens, ESPMScott Stephens, ESPM DepartmentStrategies for Landscape Fuel TreatmentsLandscape Fuel Treatments Fire Containment · Fuelbreaks Fire Modification · Area (WUI) ·· Maintenance? Must maintain into futureMaintenance? Must maintain into future #12;Tyee Fire

  17. Fire Effects in Blue Oak Woodland1 Patricia K. Haggerty2

    E-Print Network [OSTI]

    Standiford, Richard B.

    relationship between fire dates and new establishment on two Yuba County sites. Mensing (1988) reported Sierra Nevada, Tulare County, California. Land ownership included Bureau of Land Management, National Forestry Technician, Sequoia and Kings Canyon National Parks, Three Rivers, California, and Graduate

  18. Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia

    E-Print Network [OSTI]

    Zender, Charles

    Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia), Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia, J. Geophys. Res., 116, D08207, doi:10.1029/2010JD015148. 1. Introduction [2] Peat and deforestation fires

  19. Corrosion protection

    DOE Patents [OSTI]

    Brown, Donald W.; Wagh, Arun S.

    2003-05-27T23:59:59.000Z

    There has been invented a chemically bonded phosphate corrosion protection material and process for application of the corrosion protection material for corrosion prevention. A slurry of iron oxide and phosphoric acid is used to contact a warm surface of iron, steel or other metal to be treated. In the presence of ferrous ions from the iron, steel or other metal, the slurry reacts to form iron phosphates which form grains chemically bonded onto the surface of the steel.

  20. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26T23:59:59.000Z

    Establishes requirements for the physical protection of safeguards and security interests. Copies of Section B, Safeguards and Security Alarm Management System, which contains Unclassified Controlled Nuclear Information, and Appendix 1, Security Badge Specifications, which contains Official Use Only information, are only available, by request, from the program manager, Protection Program Operations, 301-903-6209. Cancels: DOE M 473.1-1 and DOE M 471.2-1B.

  1. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26T23:59:59.000Z

    This Manual establishes requirements for the physical protection of safeguards and security interests. Copies of Section B, Safeguards and Security Alarm Management System, which contains Unclassified Controlled Nuclear Information, and Appendix 1, Security Badge Specifications, which contains Official Use Only information, are only available, by request, from the program manager, Protection Program Operations, 301-903-6209. Chg 1, dated 3/7/06. Cancels: DOE M 473.1-1 and DOE M 471.2-1B

  2. Test Two: The ‘Controlled Fire’ 

    E-Print Network [OSTI]

    Cowlard, Adam; Steinhaus, Thomas; Abecassis Empis, Cecilia; Torero, Jose L

    2007-11-14T23:59:59.000Z

    The main objective of Test Two was to demonstrate the effectiveness of ventilation changes and smoke management on the growth of a compartment fire and to display the potential for these techniques to be incorporated ...

  3. Unified Fire Recovery Command Center

    E-Print Network [OSTI]

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Checking Propane Tanks Checking Home Heating Oil Tanks Miscellaneous Safety Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Removing Debris Heating Fuels or heat penetrated the bark. Where fire has burnt deep into the tree trunk, the tree should be considered

  4. Introduction to FireGrid 

    E-Print Network [OSTI]

    Welch, Stephen; Usmani, Asif; Upadhyay, Rochan; Berry, Dave; Potter, Stephen; Torero, Jose L

    2007-11-14T23:59:59.000Z

    FireGrid is an ambitious and innovative project, seeking to develop the technology to support a new way of managing emergency response in the modern built environment. Specific novel aspects include the integration of ...

  5. Response of breeding seaside sparrows to fire on the upper Texas Coast

    E-Print Network [OSTI]

    Whitbeck, Matthew W

    2002-01-01T23:59:59.000Z

    such as Schoerioplectus americanns (Chabreck 1981). On the National Wildlife Refuges of the Texas Chenier Plain, fire is one of the primary tools used to manage marshes (U. S. Fish and Wildlife Service 1994, USFWS 2000). Most of the work done regarding Seaside... to levels similar to first year post-fire by the Fire is one of the primary tools used to manage marshes of the Texas Chenier Plain, yet we know little about its etfects on Louisiana Seaside Sparrow habitat and populations. This study examined the effects...

  6. Incipient fire detection system

    DOE Patents [OSTI]

    Brooks, Jr., William K. (Newport News, VA)

    1999-01-01T23:59:59.000Z

    A method and apparatus for an incipient fire detection system that receives gaseous samples and measures the light absorption spectrum of the mixture of gases evolving from heated combustibles includes a detector for receiving gaseous samples and subjecting the samples to spectroscopy and determining wavelengths of absorption of the gaseous samples. The wavelengths of absorption of the gaseous samples are compared to predetermined absorption wavelengths. A warning signal is generated whenever the wavelengths of absorption of the gaseous samples correspond to the predetermined absorption wavelengths. The method includes receiving gaseous samples, subjecting the samples to light spectroscopy, determining wavelengths of absorption of the gaseous samples, comparing the wavelengths of absorption of the gaseous samples to predetermined absorption wavelengths and generating a warning signal whenever the wavelengths of absorption of the gaseous samples correspond to the predetermined absorption wavelengths. In an alternate embodiment, the apparatus includes a series of channels fluidically connected to a plurality of remote locations. A pump is connected to the channels for drawing gaseous samples into the channels. A detector is connected to the channels for receiving the drawn gaseous samples and subjecting the samples to spectroscopy. The wavelengths of absorption are determined and compared to predetermined absorption wavelengths is provided. A warning signal is generated whenever the wavelengths correspond.

  7. Lawrence Livermore National Laboratory Emergency Response Capability Baseline Needs Assessment Requirement Document

    SciTech Connect (OSTI)

    Sharry, J A

    2009-12-30T23:59:59.000Z

    This revision of the LLNL Fire Protection Baseline Needs Assessment (BNA) was prepared by John A. Sharry, LLNL Fire Marshal and LLNL Division Leader for Fire Protection and reviewed by Martin Gresho, Sandia/CA Fire Marshal. The document follows and expands upon the format and contents of the DOE Model Fire Protection Baseline Capabilities Assessment document contained on the DOE Fire Protection Web Site, but only address emergency response. The original LLNL BNA was created on April 23, 1997 as a means of collecting all requirements concerning emergency response capabilities at LLNL (including response to emergencies at Sandia/CA) into one BNA document. The original BNA documented the basis for emergency response, emergency personnel staffing, and emergency response equipment over the years. The BNA has been updated and reissued five times since in 1998, 1999, 2000, 2002, and 2004. A significant format change was performed in the 2004 update of the BNA in that it was 'zero based.' Starting with the requirement documents, the 2004 BNA evaluated the requirements, and determined minimum needs without regard to previous evaluations. This 2010 update maintains the same basic format and requirements as the 2004 BNA. In this 2010 BNA, as in the previous BNA, the document has been intentionally divided into two separate documents - the needs assessment (1) and the compliance assessment (2). The needs assessment will be referred to as the BNA and the compliance assessment will be referred to as the BNA Compliance Assessment. The primary driver for separation is that the needs assessment identifies the detailed applicable regulations (primarily NFPA Standards) for emergency response capabilities based on the hazards present at LLNL and Sandia/CA and the geographical location of the facilities. The needs assessment also identifies areas where the modification of the requirements in the applicable NFPA standards is appropriate, due to the improved fire protection provided, the remote location and low population density of some the facilities. As such, the needs assessment contains equivalencies to the applicable requirements. The compliance assessment contains no such equivalencies and simply assesses the existing emergency response resources to the requirements of the BNA and can be updated as compliance changes independent of the BNA update schedule. There are numerous NFPA codes and standards and other requirements and guidance documents that address the subject of emergency response. These requirements documents are not always well coordinated and may contain duplicative or conflicting requirements or even coverage gaps. Left unaddressed, this regulatory situation results in frequent interpretation of requirements documents. Different interpretations can then lead to inconsistent implementation. This BNA addresses this situation by compiling applicable requirements from all identified sources (see Section 5) and analyzing them collectively to address conflict and overlap as applicable to the hazards presented by the LLNL and Sandia/CA sites (see Section 7). The BNA also generates requirements when needed to fill any identified gaps in regulatory coverage. Finally, the BNA produces a customized simple set of requirements, appropriate for the DOE protection goals, such as those defined in DOE O 420.1B, the hazard level, the population density, the topography, and the site layout at LLNL and Sandia/CA that will be used as the baseline requirements set - the 'baseline needs' - for emergency response at LLNL and Sandia/CA. A template approach is utilized to accomplish this evaluation for each of the nine topical areas that comprise the baseline needs for emergency response. The basis for conclusions reached in determining the baseline needs for each of the topical areas is presented in Sections 7.1 through 7.9. This BNA identifies only mandatory requirements and establishes the minimum performance criteria. The minimum performance criteria may not be the level of performance desired Lawrence Livermore National Laboratory or Sandia/CA

  8. Status Report on Protected Domains for Cyber Infrastructure Management

    E-Print Network [OSTI]

    Irvine, Cynthia E.

    through the use of distributed, highly secure, protected domains. Instead of creating a costly physically, Network Security, Information Assurance 1 Introduction Currently, our national cyber infrastructure to the President for Cyber Space Security and Chairman, President's Critical Infrastructure Protection Board

  9. The radiological impact of the 2000 Hanford Fire (24-Command Fire).

    E-Print Network [OSTI]

    Henderson, Ashley David

    2012-01-01T23:59:59.000Z

    ??The range fire at the Hanford facility in late June 2000 coupled with the fire at Los Alamos during the same year have raised a… (more)

  10. CRAD, Maintenance - Los Alamos National Laboratory Waste Characterizat...

    Broader source: Energy.gov (indexed) [DOE]

    and Repackaging Facility CRAD, Environmental Protection - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Conduct of Operations...

  11. Protections: Sampling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16HamadaBaO/Al2O3Protecting Lab land andProtections

  12. Financing Capture Ready Coal-Fired Power Plants in China by Issuing Capture Options

    E-Print Network [OSTI]

    Liang, Xi; Reiner, David; Gibbons, Jon; Li, Jia

    Combined Cycle) IPCC (Intergovernmental Panel on Climate Change) LHV (Low Heating Value) Local EPA (Local Environment Protection Administration in China) MLR (Ministry of Land and Resource in China) MOF (Ministry of Finance in China) 2 NPV (Net... Fired Power Plant) SEPA (State Environment Protection Administration in China) SERC (State Electricity Regulatory Commission in China) Solar PV Power (Solar Photovoltaic Power) Std Dev (Standard Deviation) USC-PC Power Plant (Ultra Supercritical...

  13. Cyber Friendly Fire: Research Challenges for Security Informatics

    SciTech Connect (OSTI)

    Greitzer, Frank L.; Carroll, Thomas E.; Roberts, Adam D.

    2013-06-06T23:59:59.000Z

    This paper addresses cognitive implications and research needs surrounding the problem of cyber friendly fire (FF). We define cyber FF as intentional offensive or defensive cyber/electronic actions intended to protect cyber systems against enemy forces or to attack enemy cyber systems, which unintention-ally harms the mission effectiveness of friendly or neutral forces. Just as with combat friendly fire, maintaining situation awareness (SA) is paramount to avoiding cyber FF incidents. Cyber SA concerns knowledge of a system’s topology (connectedness and relationships of the nodes in a system), and critical knowledge elements such as the characteristics and vulnerabilities of the components that comprise the system and its nodes, the nature of the activities or work performed, and the available defensive and offensive countermeasures that may be applied to thwart network attacks. Mitigation strategies to combat cyber FF— including both training concepts and suggestions for decision aids and visualization approaches—are discussed.

  14. MANAGING AUSTRALIA'S PROTECTED AREAS a review of visitor management models, frameworks and processes

    E-Print Network [OSTI]

    Brown, Gregory G.

    MANAGING AUSTRALIA'S PROTECTED AREAS a review of visitor management models, frameworks and processes Greg Brown, Barbara Koth, Glenn Kreag & Delene Weber #12;MANAGING AUSTRALIA'S PROTECTED AREAS ii National Library of Australia Cataloguing in Publication Data Managing Australia's protected areas : review

  15. Identifying and Protecting Official Use Only Information

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-04-09T23:59:59.000Z

    To establish a program within the Department of Energy (DOE), including the National Nuclear Security Administration (NNSA), to identify certain unclassified controlled information as Official Use Only (OUO) and to identify, mark, and protect documents containing such information.

  16. Fire Ants and Their Control.

    E-Print Network [OSTI]

    Hamman, Philip J.; Drees, Bastiaan M.; Vinson, S. Bradleigh

    1986-01-01T23:59:59.000Z

    fire ant control usually are labeled only for certain treatment sites. The techniques for applying these products also vary with the treatment sites. Care must be taken to select the best combination of control agents and application methods... in each situation to attain optimum results. The Non-Control Option - Why Consider it? In areas where fire ants are not causing a problem, it may be best not to attempt any control measures. The reason is that a unit area, sue as an acre ofland, ill...

  17. Test Plan to Assess Fire Effects on the Function of an Engineered Surface Barrier

    SciTech Connect (OSTI)

    Ward, Anderson L.; Berlin, Gregory T.; Cammann, Jerry W.; Leary, Kevin D.; Link, Steven O.

    2008-09-29T23:59:59.000Z

    Wildfire is a frequent perturbation in shrub steppe ecosystems, altering the flora, fauna, atmosphere, and soil of these systems. Research on the fire effects has focused mostly on natural ecosystems with essentially no attention on engineered systems like surface barriers. The scope of the project is to use a simulated wildfire to induce changes in an engineered surface barrier and document the effects on barrier performance. The main objective is to quantify the effects of burning and the resulting post-fire conditions on alterations in soil physical properties; hydrologic response, particularly the water balance; geochemical properties; and biological properties. A secondary objective is to use the lessons learned to maximize fire protection in the design of long-term monitoring systems based on electronic sensors. A simulated wildfire will be initiated, controlled and monitored at the 200-BP-1 barrier in collaboration with the Hanford Fire Department during the fall of 2008. The north half of the barrier will be divided into nine 12 x 12 m plots, each of which will be randomly assigned a fuel load of 2 kg m-2 or 4 kg m-2. Each plot will be ignited around the perimeter and flames allowed to carry to the centre. Any remaining unburned vegetation will be manually burned off using a drip torch. Progress of the fire and its effects will be monitored using point measurements of thermal, hydrologic, and biotic variables. Three measures of fire intensity will be used to characterize fire behavior: (1) flame height, (2) the maximum temperature at three vertical profile levels, and (3) total duration of elevated temperature at these levels. Pre-burn plant information, including species diversity, plant height, and canopy diameter will be measured on shrubs from the plots to be burned and from control plots at the McGee ranch. General assessments of shrub survival, recovery, and recruitment will be made after the fire. Near-surface soil samples will be collected pre- and post-burn to determine changes in the gravel content of the surface layer so as to quantify inflationary or deflationary responses to fire and to reveal the ability of the surface to resist post-fire erosive stresses. Measures of bulk density, water repellency, water retention, and hydraulic conductivity will be used to characterize changes in infiltration rates and water storage capacity following the fire. Samples will also be analyzed to quantify geochemical changes including changes in soil pH, cation exchange capacity, specific surface area, and the concentration of macro nutrients (e.g. N, P, K) and other elements such as Na, Mg, Ca, that are critical to the post-fire recovery revegetation. Soil CO2 emissions will be measured monthly for one year following the burn to document post-fire stimulation of carbon turnover and soil biogenic emissions. Surface and subsurface temperature measurements at and near monitoring installations will be used to document fire effects on electronic equipment. The results of this study will be used to bridge the gaps in knowledge on the effects of fire on engineered ecosystems (e.g. surface barriers), particularly the hydrologic and biotic characteristics that govern the water and energy balance. These results will also support the development of practical fire management techniques for barriers that are compatible with wildfire suppression strategies. Furthermore, lessons learned will be use to develop installation strategies needed to protect electronic monitoring equipment from the intense heat of fire and the potential damaging effects of smoke and fire extinguishing agents. Such information is needed to better understand long-term barrier performance under extreme conditions, especially if site maintenance and operational funding is lost for activities such as barrier revegetation.

  18. Solid waste drum array fire performance

    SciTech Connect (OSTI)

    Louie, R.L. [Westinghouse Hanford Co., Richland, WA (United States); Haecker, C.F. [Los Alamos Technical Associates, Inc., Kennewick, WA (United States); Beitel, J.J.; Gottuck, D.T.; Rhodes, B.T.; Bayier, C.L. [Hughes Associates, Inc., Baltimore, MD (United States)

    1995-09-01T23:59:59.000Z

    Fire hazards associated with drum storage of radioactively contaminated waste are a major concern in DOE waste storage facilities. This report is the second of two reports on fire testing designed to provide data relative to the propagation of a fire among storage drum arrays. The first report covers testing of individual drums subjected to an initiating fire and the development of the analytical methodology to predict fire propagation among storage drum arrays. This report is the second report, which documents the results of drum array fire tests. The purpose of the array tests was to confirm the analytical methodology developed by Phase I fire testing. These tests provide conclusive evidence that fire will not propagate from drum to drum unless an continuous fuel source other than drum contents is provided.

  19. Fire and the Design of Buildings 

    E-Print Network [OSTI]

    McGuire, J

    Fire is one of the major hazards to life and property in buildings. Regulations in respect of fire safety therefore constitute a major part of every building bylaw. These regulations naturally influence the design of almost every building. Good...

  20. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    SciTech Connect (OSTI)

    Dennis H. LeMieux

    2002-04-01T23:59:59.000Z

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  1. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    SciTech Connect (OSTI)

    Dennis H. LeMieux

    2005-10-01T23:59:59.000Z

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Power Generation, Inc proposed a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Power Generation, Inc. has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  2. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    SciTech Connect (OSTI)

    Dennis H. LeMieux

    2003-07-01T23:59:59.000Z

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  3. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    SciTech Connect (OSTI)

    Dennis H. LeMieux

    2005-04-01T23:59:59.000Z

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  4. On-Line Thermal Barrier Coating Monitoring for Real-Time Failure Protection and Life Maximization

    SciTech Connect (OSTI)

    Dennis H. LeMieux

    2004-10-01T23:59:59.000Z

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization'', to develop, build and install the first generation of an on-line TBC monitoring system for use on land -based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability availability maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can therefore accelerate the degradation of substrate components materials and eventually lead to a premature failure of critical component and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems; a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization.

  5. ON-LINE THERMAL BARRIER COATING MONITORING FOR REAL-TIME FAILURE PROTECTION AND LIFE MAXIMIZATION

    SciTech Connect (OSTI)

    Dennis H. LeMieux

    2003-10-01T23:59:59.000Z

    Under the sponsorship of the U. S. Department of Energy's National Energy Laboratory, Siemens Westinghouse Power Corporation proposes a four year program titled, ''On-Line Thermal Barrier Coating (TBC) Monitor for Real-Time Failure Protection and Life Maximization,'' to develop, build and install the first generation of an on-line TBC monitoring system for use on land-based advanced gas turbines (AGT). Federal deregulation in electric power generation has accelerated power plant owner's demand for improved reliability, availability, and maintainability (RAM) of the land-based advanced gas turbines. As a result, firing temperatures have been increased substantially in the advanced turbine engines, and the TBCs have been developed for maximum protection and life of all critical engine components operating at these higher temperatures. Losing TBC protection can, therefore, accelerate the degradation of substrate component materials and eventually lead to a premature failure of critical components and costly unscheduled power outages. This program seeks to substantially improve the operating life of high cost gas turbine components using TBC; thereby, lowering the cost of maintenance leading to lower cost of electricity. Siemens Westinghouse Power Corporation has teamed with Indigo Systems, a supplier of state-of-the-art infrared camera systems, and Wayne State University, a leading research organization in the field of infrared non-destructive examination (NDE), to complete the program.

  6. University Fire Marshal's 2014 Annual Fire InspectionTraining

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    of 2000 led to NYS Governor's Task Force on Campus Fire Safety #12;Results of the Governors Task Force inspection of all educational buildings in New York State Enhanced detection/alarms in dorms Install Residential Code Building Code #12;Impacts to Cornell Annual Inspections of all Cornell buildings

  7. Wildland fire emissions, carbon, and climate: Wildland fire detection and burned area in the United States

    E-Print Network [OSTI]

    Wildland fire emissions, carbon, and climate: Wildland fire detection and burned area in the United Wildland fires can be an important source of greenhouse gases as well as black carbon emissions that have of climate response to fire emissions compared to other emission sources of GHG, aerosols, and black carbon

  8. Fire and the Compartmentation of Buildings 

    E-Print Network [OSTI]

    McGuire, J

    No building is free from the threat of fire. A designer, however, can ensure that only limited damage will result if fire breaks out by reducing the over-all fire risk. There are various means at his disposal, but the single design feature...

  9. FIRE AND CLIMATE CHANGE IN CALIFORNIA

    E-Print Network [OSTI]

    FIRE AND CLIMATE CHANGE IN CALIFORNIA Changes in the Distribution and Frequency of Fire's California Climate Change Center JULY 2012 CEC5002012026 Prepared for: California Energy Commission to climate change has the potential to induce alteration of future fire activity. This research presents just

  10. Spatiotemporal Dynamics of Insect-Fire Interactions

    E-Print Network [OSTI]

    Moorcroft, Paul R.

    Spatiotemporal Dynamics of Insect-Fire Interactions A thesis presented by Heather Joan Lynch Heather Joan Lynch Spatiotemporal Dynamics of Insect-Fire Interactions Abstract Insect outbreaks on the dynamics and composition of forest ecosystems. Although it has long been speculated that forest fires

  11. GTRI's Nuclear and Radiological Material Protection | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at civilian sites worldwide; Provide specialized alarm response training for on-site security and local law enforcement agencies responsible for monitoring and responding to...

  12. protective forces | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08 Joint JOULECorrective Actions3Images of

  13. Protection of People | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for PlutoniumAbout Us / Our Programs / Powering

  14. Protection of People | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for PlutoniumAbout Us / Our Programs / PoweringOur

  15. Protective Forces | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for PlutoniumAbout Us / Our Programs /

  16. National Infrastructure Protection Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugust 2012NEVADAEnergyEnergy 1

  17. ENVIRONMENTAL PROTECTION AT THE IDAHO NATIONAL LAB

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct:DirectivesSAND2015-21271 7AnUserFAQ Search EMSL Home

  18. Sandia National Laboratories: critical infrastructure protection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Releasehy-drogenmaterialcraftsmanship

  19. Spent Fuel Transportation Package Response to the Baltimore Tunnel Fire Scenario

    SciTech Connect (OSTI)

    Adkins, Harold E.; Cuta, Judith M.; Koeppel, Brian J.; Guzman, Anthony D.; Bajwa, Christopher S.

    2006-11-15T23:59:59.000Z

    On July 18, 2001, a freight train carrying hazardous (non-nuclear) materials derailed and caught fire while passing through the Howard Street railroad tunnel in downtown Baltimore, Maryland. The United States Nuclear Regulatory Commission (USNRC), one of the agencies responsible for ensuring the safe transportation of radioactive materials in the United States, undertook an investigation of the train derailment and fire to determine the possible regulatory implications of this particular event for the transportation of spent nuclear fuel by railroad. Shortly after the accident occurred, the USNRC met with the National Transportation Safety Board (NTSB, the U.S. agency responsible for determining the cause of transportation accidents), to discuss the details of the accident and the ensuing fire. Following these discussions, the USNRC assembled a team of experts from the National Institute of Standards and Technology (NIST), the Center for Nuclear Waste Regulatory Analyses (CNWRA), and Pacific Northwest National Laboratory (PNNL) to determine the thermal conditions that existed in the Howard Street tunnel fire and analyze the effects of this fire on various spent fuel transportation package designs. The Fire Dynamics Simulator (FDS) code, developed by NIST, was used to determine the thermal environment present in the Howard Street tunnel during the fire. The FDS results were used as boundary conditions in the COBRA-SFS and ANSYS® computer codes to evaluate the thermal performance of different package designs. The staff concluded that larger transportation packages resembling the HOLTEC Model No. HI STAR 100 and TransNuclear Model No. TN-68 would withstand a fire with thermal conditions similar to those that existed in the Baltimore tunnel fire event with only minor damage to peripheral components. This is due to their sizable thermal inertia and design specifications in compliance with currently imposed regulatory requirements. The staff also concluded that some components of smaller transportation packages resembling the NAC Model No. LWT, despite placement within an ISO container, could degrade. USNRC staff evaluated the radiological consequences of the package responses to the Baltimore tunnel fire. Though components in some packages heated up beyond their service temperatures, the staff determined that there would be no significant dose as a result of the fire for any of these and similar packages.

  20. Numerical prediction of heat-flux to massive calorimeters engulfed in regulatory fires with the cask analysis fire environment (CAFE) model

    SciTech Connect (OSTI)

    KOSKI,JORMAN A.; SUO-ANTITLA,AHTI; KRAMER,M. ALEX; GREINER,MILES

    2000-05-11T23:59:59.000Z

    Recent observations show that the thermal boundary conditions within large-scale fires are significantly affected by the presence of thermally massive objects. These objects cool the soot and gas near their surfaces, and these effects reduce the incoming radiant heat-flux to values lower than the levels expected from simple {sigma}T{sub fire}{sup 4} models. They also affect the flow and temperature fields in the fire far from their surfaces. The Cask Analysis Fire Environment (CAFE) code has been developed at Sandia National Laboratories to provide an enhanced fire boundary condition for the design of radioactive material packages. CAFE is a set of computer subroutines that use computational fluid mechanics methods to predict convective heat transfer and mixing. It also includes models for fuel and oxygen transport, chemical reaction, and participating-media radiation heat transfer. This code uses two-dimensional computational models so that it has reasonably short turnaround times on standard workstations and is well suited for design and risk studies. In this paper, CAFE is coupled with a commercial finite-element program to model a large cylindrical calorimeter fully engulfed in a pool fire. The time-dependent heat-flux to the calorimeter and the calorimeter surface temperature are determined for several locations around the calorimeter circumference. The variation of heat-flux with location is determined for calorimeters with different diameters and wall thickness, and the observed effects discussed.

  1. Idaho National Laboratory Cultural Resource Monitoring Report for FY 2008

    SciTech Connect (OSTI)

    Brenda R. Pace

    2009-01-01T23:59:59.000Z

    This report describes the cultural resource monitoring activities of the Idaho National Laboratory’s (INL) Cultural Resource Management (CRM) Office during fiscal year 2008 (FY 2008). Throughout the year, 45 cultural resource localities were revisited including: two locations of heightened Shoshone-Bannock tribal sensitivity, four caves, one butte, twenty-eight prehistoric archaeological sites, three historic homesteads, two historic stage stations, one historic canal construction camp, three historic trails, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2008 to assess project compliance with cultural resource recommendations, confirm the locations of previously recorded cultural resources in relation to project activities, to assess the damage caused by fire-fighting efforts, and to watch for cultural materials during ground disturbing activities. Although impacts were documented at a few locations, no significant adverse effects that would threaten the National Register eligibility of any resource were observed. Monitoring also demonstrated that INL projects generally remain in compliance with recommendations to protect cultural resources

  2. UNIVERSITY OF GLASGOW 1 Safety & Environmental Protection Services

    E-Print Network [OSTI]

    Glasgow, University of

    , air conditioning and heat pump technology. However, certain fire protection equipment that contains F temperature, e.g. cold rooms, large scale water chillers · Air-conditioning equipment · Heat pumps ­ heating devices that use a refrigeration machine to extract energy from a waste heat source and deliver useful

  3. Protecting Wildlife

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromising Science for Plutonium CleanupProposalTeam:RightsProtecting

  4. Protecting Software

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16HamadaBaO/Al2O3Protecting Lab land and the

  5. Pigments which reflect infrared radiation from fire

    DOE Patents [OSTI]

    Berdahl, P.H.

    1998-09-22T23:59:59.000Z

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer ({micro}m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 {micro}m or, for cool smoky fires, about 2 {micro}m to about 16 {micro}m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 {micro}m to about 2 {micro}m and thin leafing aluminum flake pigments. 4 figs.

  6. Pigments which reflect infrared radiation from fire

    DOE Patents [OSTI]

    Berdahl, Paul H. (Oakland, CA)

    1998-01-01T23:59:59.000Z

    Conventional paints transmit or absorb most of the intense infrared (IR) radiation emitted by fire, causing them to contribute to the spread of fire. The present invention comprises a fire retardant paint additive that reflects the thermal IR radiation emitted by fire in the 1 to 20 micrometer (.mu.m) wavelength range. The important spectral ranges for fire control are typically about 1 to about 8 .mu.m or, for cool smoky fires, about 2 .mu.m to about 16 .mu.m. The improved inventive coatings reflect adverse electromagnetic energy and slow the spread of fire. Specific IR reflective pigments include titanium dioxide (rutile) and red iron oxide pigments with diameters of about 1 .mu.m to about 2 .mu.m and thin leafing aluminum flake pigments.

  7. An integrated approach to fire penetration seal program management

    SciTech Connect (OSTI)

    Rispoli, R.D. [Entergy Operations, Russellville, AR (United States)

    1996-07-01T23:59:59.000Z

    This paper discusses the utilization of a P.C. based program to facilitate the management of Entergy Operations Arkansas Nuclear One (ANO) fire barrier penetration seal program. The computer program was developed as part of a streamlining process to consolidate all aspects of the ANO Penetration Seal Program under one system. The program tracks historical information related to each seal such as maintenance activities, design modifications and evaluations. The program is integrated with approved penetration seal design details which have been substantiated by full scale fire tests. This control feature is intended to prevent the inadvertent utilization of an unacceptable penetration detail in a field application which may exceed the parameters tested. The system is also capable of controlling the scope of the periodic surveillance of penetration seals by randomly selecting the inspection population and generating associated inspection forms. Inputs to the data base are required throughout the modification and maintenance process to ensure configuration control and maintain accurate data base information. These inputs are verified and procedurally controlled by Fire Protection Engineering (FPE) personnel. The implementation of this system has resulted in significant cost savings and has minimized the allocation of resources necessary to ensure long term program viability.

  8. Nevada Test Site Radiation Protection Program

    SciTech Connect (OSTI)

    Radiological Control Managers' Council, Nevada Test Site

    2007-08-09T23:59:59.000Z

    Title 10 Code of Federal Regulations (CFR) 835, 'Occupational Radiation Protection', establishes radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of U.S. Department of Energy (DOE) activities. 10 CFR 835.101(a) mandates that DOE activities be conducted in compliance with a documented Radiation Protection Program (RPP) as approved by DOE. This document promulgates the RPP for the Nevada Test Site (NTS), related (onsite or offsite) DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO) operations, and environmental restoration offsite projects.

  9. Control of SO{sub 2} and NOx emissions from fossil fuel-fired power plants: Research and practice of TPRI

    SciTech Connect (OSTI)

    Ming-Chuan Zhang

    1993-12-31T23:59:59.000Z

    The generation of electric power in China has been dominated by coal for many years. By the end of 1990, total installed generating capacity reached 135 GW, of which fossil fuel-fired plants accounted for 74 percent. The total electricity generated reached 615 TWh, with fossil fuels accounting for 80.5 percent. About 276 million tons of raw coal are consumed in these fossil fuel-burning units per year, accounting for about 25 percent of the total output of the country. According to the government, by the year 2000, the total installed capacity of Chinese power systems should be at least 240 GW, of which fossil fuels will account for about 77 percent. The coal required for power generation will increase to about 530 million tons per year, accounting for about 38 percent of the total coal output. So, it is obvious that coal consumed in coal-fired power plants occupies a very important place in the national fuel balance. The current environmental protection standards, which are based on ground-level concentrations of pollutants, do not effectively lead to the control of pollution emission concentrations or total SO{sub 2} emissions. Due to the practical limitations of the Chinese economy, there is a limited capability to introduce advanced sulfur emission control technologies. Thus, except for the two 360 MW units imported from Japan for the Luohuang Power Plant in Shichuan province, all the other fossil fuel-fired units have not yet adopted any kind of SO{sub 2} removal measures. The Luohuang units are equipped with Mitsubishi limestone flue gas desulfurization systems. Because of the lack of effective pollution control technologies, large areas of the country have been seriously polluted by SO{sub 2}, and some of them even by acid rain.

  10. Radiological Protection

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review ofElectronicNORTH LAS VEGASEly DistrictNOT

  11. material protection

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF8/%2A en Responding6/%2A

  12. protective forces

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF8/%2A ennike |1/%2A en Planning3/%2A

  13. BIOFUELS FOR TRANSPORT IN THE 21st WHY FIRE SAFETY IS A REAL ISSUE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BIOFUELS FOR TRANSPORT IN THE 21st CENTURY: WHY FIRE SAFETY IS A REAL ISSUE Guy Marlair1 , Patricia's), with thé new century venue we are assisting of a booming industry regarding biofuels of biofuels for transport. This contribution is a fîrst output from a National research program named

  14. National Security System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-03-08T23:59:59.000Z

    The manual provides baseline requirements and controls for the graded protection of the confidentiality, integrity, and availability of classified information and information systems used or operated by the Department of Energy (DOE), contractors, and any other organization on behalf of DOE, including the National Nuclear Security Administration. Cancels DOE M 471.2-2. Canceled by DOE O 205.1B.

  15. Los Alamos National Laboratory A National Science Laboratory

    SciTech Connect (OSTI)

    Chadwick, Mark B. [Los Alamos National Laboratory

    2012-07-20T23:59:59.000Z

    Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) Ensure the safety, security, and reliability of the US nuclear deterrent; (2) Protect against the nuclear threat; and (3) Solve Energy Security and other emerging national security challenges.

  16. Los Alamos National Laboratory: Las Conchas Fire Update | Department of

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't Happen toLeveragingLindseyLong-Term Storage1940s

  17. Fire Safety Tests for Spherical Resorcinol Formaldehyde Resin: Data Summary Report

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Peterson, Reid A.; Schweiger, Michael J.

    2012-07-30T23:59:59.000Z

    A draft safety evaluation of the scenario for spherical resorcinol-formaldehyde (SRF) resin fire inside the ion exchange column was performed by the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Fire Safety organization. The result of this draft evaluation suggested a potential change of the fire safety classification for the Cesium Ion Exchange Process System (CXP) emergency elution vessels, equipment, and piping, which may be overly bounding based on the fire performance data from the manufacturer of the ion exchange resin selected for use at the WTP. To resolve this question, the fire properties of the SRF resin were measured by Southwest Research Institute (SwRI), following the American Society for Testing and Materials (ASTM) standard procedures, through a subcontract managed by Pacific Northwest National Laboratory (PNNL). For some tests, the ASTM standard procedures were not entirely appropriate or practical for the SRF resin material, so the procedures were modified and deviations from the ASTM standard procedures were noted. This report summarizes the results of fire safety tests performed and reported by SwRI. The efforts by PNNL were limited to summarizing the test results provided by SwRI into one consolidated data report. All as-received SwRI reports are attached to this report in the Appendix. Where applicable, the precision and bias of each test method, as given by each ASTM standard procedure, are included and compared with the SwRI test results of the SRF resin.

  18. Good Fire, Bad Fire How to think about

    E-Print Network [OSTI]

    of the forest machine, preserving its health, assuring its future, protecting the quality of our air and water Center for Geography of the Southern Rockies #12;The first rule of tinkering is to save all the parts

  19. Cryogenic slurry for extinguishing underground fires

    DOE Patents [OSTI]

    Chaiken, Robert F. (Pittsburgh, PA); Kim, Ann G. (Pittsburgh, PA); Kociban, Andrew M. (Wheeling, WV); Slivon, Jr., Joseph P. (Tarentum, PA)

    1994-01-01T23:59:59.000Z

    A cryogenic slurry comprising a mixture of solid carbon dioxide particles suspended in liquid nitrogen is provided which is useful in extinguishing underground fires.

  20. Issues in Numerical Simulation of Fire Suppression

    SciTech Connect (OSTI)

    Tieszen, S.R.; Lopez, A.R.

    1999-04-12T23:59:59.000Z

    This paper outlines general physical and computational issues associated with performing numerical simulation of fire suppression. Fire suppression encompasses a broad range of chemistry and physics over a large range of time and length scales. The authors discuss the dominant physical/chemical processes important to fire suppression that must be captured by a fire suppression model to be of engineering usefulness. First-principles solutions are not possible due to computational limitations, even with the new generation of tera-flop computers. A basic strategy combining computational fluid dynamics (CFD) simulation techniques with sub-grid model approximations for processes that have length scales unresolvable by gridding is presented.

  1. LNG fire and vapor control system technologies

    SciTech Connect (OSTI)

    Konzek, G.J.; Yasutake, K.M.; Franklin, A.L.

    1982-06-01T23:59:59.000Z

    This report provides a review of fire and vapor control practices used in the liquefied natural gas (LNG) industry. Specific objectives of this effort were to summarize the state-of-the-art of LNG fire and vapor control; define representative LNG facilities and their associated fire and vapor control systems; and develop an approach for a quantitative effectiveness evaluation of LNG fire and vapor control systems. In this report a brief summary of LNG physical properties is given. This is followed by a discussion of basic fire and vapor control design philosophy and detailed reviews of fire and vapor control practices. The operating characteristics and typical applications and application limitations of leak detectors, fire detectors, dikes, coatings, closed circuit television, communication systems, dry chemicals, water, high expansion foam, carbon dioxide and halogenated hydrocarbons are described. Summary descriptions of a representative LNG peakshaving facility and import terminal are included in this report together with typical fire and vapor control systems and their locations in these types of facilities. This state-of-the-art review identifies large differences in the application of fire and vapor control systems throughout the LNG industry.

  2. Gas reburning in tangentially-fired, wall-fired and cyclone-fired boilers

    SciTech Connect (OSTI)

    May, T.J. [Illinois Power Co., Decatur, IL (United States); Rindahl, E.G. [Public Service Co. of Colorado, Denver, CO (United States); Booker, T. [City Water Light and Power, Springfield, IL (United States)] [and others

    1994-12-31T23:59:59.000Z

    Gas Reburning has been successfully demonstrated for over 4,428 hours on three coal fired utility boilers as of March 31, 1994. Typically, NO{sub x} reductions have been above 60% in long-term, load-following operation. The thermal performance of the boilers has been virtually unaffected by Gas Reburning. At Illinois Power`s Hennepin Station, Gas Reburning in a 71 MWe tangentially-fired boiler achieved an average NO{sub x} reduction of 67% from the original baseline NO{sub x} level of 0.75 lb NO{sub x}/10{sup 6} Btu over a one year period. The nominal natural gas input was 18% of total heat input. Even at 10% gas heat input, NO{sub x} reduction of 55% was achieved. At Public Service Company of Colorado`s Cherokee Station, a Gas Reburning-Low NO{sub x} Burner system on a 172 MWe wall-fired boiler has achieved overall NO{sub x} reductions of 60--73% in parametric and long-term testing, based on the original baseline NO{sub x} level of 0.73 lb/10{sup 6} Btu. NO{sub x} reduction is as high as 60--65% even at relatively low natural gas usage (5--10% of total heat input). The NO{sub x} reduction by Low NO{sub x} Burners alone is typically 30--40%. NO{sub x} reduction has been found to be insensitive to changes in recirculated flue gas (2--7% of total flue gas) injected with natural gas. At City Water, Light and Power Company`s Lakeside Station in Springfield, Illinois, Gas Reburning in a 33 MWe cyclone-fired boiler has achieved an average NO{sub x} reduction of 66% (range 52--77%) at gas heat inputs of 20--26% in long-term testing, based on a baseline NO{sub x} level of 1.0 lb/10{sup 6} Btu (430 mg/MJ). This paper presents a summary of the operating experience at each site and discusses the long term impacts of applying this technology to units with tangential, cyclone and wall-fired (with Low NO{sub x} Burner) configurations.

  3. No material is "fire proof;" however, proper use and assembly of fire-rated building materials

    E-Print Network [OSTI]

    General No material is "fire proof;" however, proper use and assembly of fire-rated building materials can reduce a fire's spread and extend the amount of time it takes for a home to ignite and burn. (Structural assembly is the process of layering materials when building exterior walls and roof.) Your roof

  4. Activate the nearest fire alarm pull station Call 911 to report the fire

    E-Print Network [OSTI]

    Azevedo, Ricardo

    as designated by emergency responders, well away from the building. Do not touch or disturb the objectActivate the nearest fire alarm pull station Call 911 to report the fire Notify and assist people not re-enter the building until authorized to do so by emergency personnel. When the fire alarm

  5. (BSET) FIRE SAFETY ENGINEERING TECHNOLOGY CURRICULUM FOUR YEAR FIRE SAFETY CONCENTRATION CURRICULUM

    E-Print Network [OSTI]

    Raja, Anita

    . ETFS 4323 3 Intro to Performance-based Fire Safety8 ETFS 32338 3 Ethical Issues and Cultural Critique3(BSET) FIRE SAFETY ENGINEERING TECHNOLOGY CURRICULUM FOUR YEAR FIRE SAFETY CONCENTRATION CURRICULUM 3 Technical Drawing I ETGR 1103 2 Western Culture and Hist. Awareness LBST 2101 3 Total Hours 16

  6. Commercialization Development of Oxygen Fired CFB for Greenhouse Gas Control

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl; David G. Turek

    2007-03-31T23:59:59.000Z

    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic (i.e., man-made) CO{sub 2} emissions. In 2001, ALSTOM Power Inc. (ALSTOM) began a two-phase program to investigate the feasibility of various carbon capture technologies. This program was sponsored under a Cooperative Agreement from the US Department of Energy's National Energy Technology Laboratory (DOE). The first phase entailed a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen cases, representing various levels of technology development, were evaluated. Seven cases represented coal combustion in CFB type equipment. Four cases represented Integrated Gasification Combined Cycle (IGCC) systems. Two cases represented advanced Chemical Looping Combined Cycle systems. Marion, et al. reported the details of this work in 2003. One of the thirteen cases studied utilized an oxygen-fired circulating fluidized bed (CFB) boiler. In this concept, the fuel is fired with a mixture of oxygen and recirculated flue gas (mainly CO{sub 2}). This combustion process yields a flue gas containing over 80 percent (by volume) CO{sub 2}. This flue gas can be processed relatively easily to enrich the CO{sub 2} content to over 96 percent for use in enhanced oil or gas recovery (EOR or EGR) or simply dried for sequestration. The Phase I study identified the O{sub 2}-fired CFB as having a near term development potential, because it uses conventional commercial CFB technology and commercially available CO{sub 2} capture enabling technologies such as cryogenic air separation and simple rectification or distillation gas processing systems. In the long term, air separation technology advancements offer significant reductions in power requirements, which would improve plant efficiency and economics for the oxygen-fired technology. The second phase consisted of pilot-scale testing followed by a refined performance and economic evaluation of the O{sub 2} fired CFB concept. As a part of this workscope, ALSTOM modified its 3 MW{sub th} (9.9 MMBtu/hr) Multiuse Test Facility (MTF) pilot plant to operate with O{sub 2}/CO{sub 2} mixtures of up to 70 percent O{sub 2} by volume. Tests were conducted with coal and petroleum coke. The test objectives were to determine the impacts of oxygen firing on heat transfer, bed dynamics, potential agglomeration, and gaseous and particulate emissions. The test data results were used to refine the design, performance, costs, and economic models developed in Phase-I for the O{sub 2}-fired CFB with CO{sub 2} capture. Nsakala, Liljedahl, and Turek reported results from this study in 2004. ALSTOM identified several items needing further investigation in preparation for large scale demonstration of the oxygen-fired CFB concept, namely: (1) Operation and performance of the moving bed heat exchanger (MBHE) to avoid recarbonation and also for cost savings compared to the standard bubbling fluid bed heat exchanger (FBHE); (2) Performance of the back-end flash dryer absorber (FDA) for sulfur capture under high CO{sub 2}/high moisture flue gas environment using calcined limestone in the fly ash and using fresh commercial lime directly in the FDA; (3) Determination of the effect of recarbonation on fouling in the convective pass; (4) Assessment of the impact of oxygen firing on the mercury, other trace elements, and volatile organic compound (VOC) emissions; and (5) Develop a proposal-level oxygen-fired retrofit design for a relatively small existing CFB steam power plant in preparation for a large-scale demonstration of the O{sub 2} fired CFB concept. Hence, ALSTOM responded to a DOE Solicitation to address all these issues with further O{sub 2} fired MTF pilot testing and a subsequent retrofit design study of oxygen firing and CO{s

  7. First National Technology Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review:Department ofDistributionFire Protection Program FireCoast-to-Coast CleanFirst

  8. Proceedings of the Second International Symposium on Fire Economics, Planning, and Policy: A Global View Proceedings of the Second International Symposium on Fire Economics, Planning, and Policy: A Global View

    E-Print Network [OSTI]

    Standiford, Richard B.

    of current protection resources, supported by cartography which aids decision making, fuel maps, fire risk of counting on this planning indubitably constitutes an important technical support tool, which will assist it provides a cartographic and alphanumerical base for consultation and analysis within the framework of GIS

  9. Climate regulation of fire emissions and deforestation in equatorial Asia

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    different types of fire, with peat fires emitting up to fourof carbon released from peat and forest fires in IndonesiaM, Wo¨sten H, Page S (2006) PEAT-CO2: assessment of CO2

  10. Real-time fire detection in low quality video

    E-Print Network [OSTI]

    True, Nicholas James

    2010-01-01T23:59:59.000Z

    Motivation for a Robust Video-based Fire Detection SystemFigure 3.1: Screen shots of training videos with fire inshots of training videos with no fire in them. . . . . . .

  11. The Influence of Travelling Fires on a Concrete Frame 

    E-Print Network [OSTI]

    Law, Angus; Stern-Gottfried, Jamie; Gillie, Martin; Rein, Guillermo

    2011-01-01T23:59:59.000Z

    . Current structural fire design methods do not account for these types of fires. This paper applies a novel methodology for defining a family of possible heating regimes to a framed concrete structure using the concept of travelling fires. A finite...

  12. Fire Hazard Analysis for the Cold Vacuum Drying facility (CVD) Facility

    E-Print Network [OSTI]

    Singh, G

    2000-01-01T23:59:59.000Z

    The CVDF is a nonreactor nuclear facility that will process the Spent Nuclear Fuels (SNF) presently stored in the 105-KE and 105-KW SNF storage basins. Multi-canister overpacks (MCOs) will be loaded (filled) with K Basin fuel transported to the CVDF. The MCOs will be processed at the CVDF to remove free water from the fuel cells (packages). Following processing at the CVDF, the MCOs will be transported to the CSB for interim storage until a long-term storage solution can be implemented. This operation is expected to start in November 2000. A Fire Hazard Analysis (FHA) is required for all new facilities and all nonreactor nuclear facilities, in accordance with U.S. Department of Energy (DOE) Order 5480.7A, Fire Protection. This FHA has been prepared in accordance with DOE 5480.7A and HNF-PRO-350, Fire Hazard Analysis Requirements. Additionally, requirements or criteria contained in DOE, Richland Operations Office (RL) RL Implementing Directive (RLID) 5480.7, Fire Protection, or other DOE documentation are cite...

  13. Protecting Life on Earth

    E-Print Network [OSTI]

    Anderson, Byron P.

    2011-01-01T23:59:59.000Z

    Review: Protecting Life on Earth: An Introduction to thePeter B. Protecting Life on Earth: An Introduction to theof Protecting Life on Earth is “to explain to an intelligent

  14. Coal-fired diesel generator

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    The objective of the proposed project is to test the technical, environmental, and economic viability of a coal-fired diesel generator for producing electric power in small power generating markets. Coal for the diesel generator would be provided from existing supplies transported for use in the University`s power plant. A cleanup system would be installed for limiting gaseous and particulate emissions. Electricity and steam produced by the diesel generator would be used to supply the needs of the University. The proposed diesel generator and supporting facilities would occupy approximately 2 acres of land adjacent to existing coal- and oil-fired power plant and research laboratory buildings at the University of Alaska, Fairbanks. The environmental analysis identified that the most notable changes to result from the proposed project would occur in the following areas: power plant configuration at the University of Alaska, Fairbanks; air emissions, water use and discharge, and the quantity of solid waste for disposal; noise levels at the power plant site; and transportation of coal to the power plant. No substantive adverse impacts or environmental concerns were identified in analyzing the effects of these changes.

  15. Inverse Modelling to Forecast Enclosure Fire Dynamics 

    E-Print Network [OSTI]

    Jahn, Wolfram

    . This thesis proposes and studies a method to use measurements of the real event in order to steer and accelerate fire simulations. This technology aims at providing forecasts of the fire development with a positive lead time, i.e. the forecast of future events...

  16. Managing Imported Fire Ants in Urban Areas

    E-Print Network [OSTI]

    Drees, Bastiaan M.

    2006-08-17T23:59:59.000Z

    The imported fire ant is found in much of Texas and across the southeastern U.S. This publication describes options for managing the pest in specific locations such as home lawns, gardens and buildings. Other topics include fire ant treatment...

  17. Diagnostics for FIRE Kenneth M. Young

    E-Print Network [OSTI]

    Diagnostics for FIRE Kenneth M. Young Princeton Plasma Physics Laboratory Burning Plasma Workshop May 1 - 3, 2001 General Atomics San Diego, CA #12;Aspects of Plasma Diagnostics to achieve Burning Plasma Physics Goals in FIRE · The diagnostic set should provide the same quality of data as in best

  18. Diagnostics for FIRE Kenneth M. Young

    E-Print Network [OSTI]

    Diagnostics for FIRE Kenneth M. Young Princeton Plasma Physics Laboratory NSO PAC 2 Meeting January 17, 2001 MIT Plasma Fusion Center Cambridge, MA #12;Aspects of Plasma Diagnostics to achieve Burning Plasma Physics Goals in FIRE · The diagnostic set should provide the same quality of data as in best

  19. Risk assessment compatible fire models (RACFMs)

    SciTech Connect (OSTI)

    Lopez, A.R.; Gritzo, L.A.; Sherman, M.P.

    1998-07-01T23:59:59.000Z

    A suite of Probabilistic Risk Assessment Compatible Fire Models (RACFMs) has been developed to represent the hazard posed by a pool fire to weapon systems transported on the B52-H aircraft. These models represent both stand-off (i.e., the weapon system is outside of the flame zone but exposed to the radiant heat load from fire) and fully-engulfing scenarios (i.e., the object is fully covered by flames). The approach taken in developing the RACFMs for both scenarios was to consolidate, reconcile, and apply data and knowledge from all available resources including: data and correlations from the literature, data from an extensive full-scale fire test program at the Naval Air Warfare Center (NAWC) at China Lake, and results from a fire field model (VULCAN). In the past, a single, effective temperature, T{sub f}, was used to represent the fire. The heat flux to an object exposed to a fire was estimated using the relationship for black body radiation, {sigma}T{sub f}{sup 4}. Significant improvements have been made by employing the present approach which accounts for the presence of temperature distributions in fully-engulfing fires, and uses best available correlations to estimate heat fluxes in stand-off scenarios.

  20. Carbon Dioxide Capture from Coal-Fired

    E-Print Network [OSTI]

    . LFEE 2005-002 Report #12;#12;i ABSTRACT Investments in three coal-fired power generation technologiesCarbon Dioxide Capture from Coal-Fired Power Plants: A Real Options Analysis May 2005 MIT LFEE 2005 environment. The technologies evaluated are pulverized coal (PC), integrated coal gasification combined cycle

  1. GREAT PLAINS INTERSTATE FOREST FIRE COOPERATIVE

    E-Print Network [OSTI]

    GREAT PLAINS INTERSTATE FOREST FIRE COMPACT COOPERATIVE ANNUAL OPERATING PLAN 2011 #12;Great Plains are located in Appendices F through K. II. Purpose This cooperative operating plan facilitates assistance ordered through the Compact and used on joint US Federal/State fires will be considered agents

  2. Fire Department Gets New Trucks, Saves Money

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. – Last year, the Hanford Fire Department (HFD) set out to replace its aging chemical truck used for metal fires. Originally purchased to respond to potential incidents at the Fast Flux Test Facility, the 31-year-old vehicle was at the end of its lifecycle.

  3. Fire and explosion hazards of oil shale

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

  4. Chevron Richmond Refinery Pipe Rupture and Fire Animation - Work...

    Broader source: Energy.gov (indexed) [DOE]

    Chevron Richmond Refinery Pipe Rupture and Fire Animation - Work Planning and Control is Not Chevron Richmond Refinery Pipe Rupture and Fire Animation - Work Planning and Control...

  5. assess fire hazard: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandra 7 Fire Climbing in the Forest: A Semiqualitative, Semiquantitative Approach to Assessing Ladder Environmental Sciences and Ecology Websites Summary: Fire Climbing in the...

  6. Shore Protection Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Shore Protection Act is the primary legal authority for protection and management of Georgia's shoreline features including sand dunes, beaches, sandbars, and shoals, collectively known as the...

  7. Office of Physical Protection

    Broader source: Energy.gov [DOE]

    The Office of Physical Protection is comprised of a team of security specialists engaged in providing Headquarters-wide physical protection.

  8. Geospatial Intelligence at the Environmental Protection Agency

    E-Print Network [OSTI]

    McLaughlin, Casey

    2013-01-24T23:59:59.000Z

    Geospatial Intelligence at the Environmental Protection Agency Casey McLaughlin, GISP Mclaughlin.casey@epa.gov http://blog.epa.gov/bigbluethread GIS DAY 2012 2 Kansas Was an Ocean “Protect Human Health and the Environment” ? Develop... • Whats GeoSpatial • National Projects • What we do regionally 4 http://nationalmap.gov/ustopo/history.html Cartography Roots 5 Chat Piles Waste Discharge EPA Cleans up Waste Geospatial Intelligence Geospatial Intelligence: it is the means...

  9. Hydrogen Codes and Standards National Renewable Energy Laboratory

    E-Print Network [OSTI]

    to form working groups to develop hydrogen standards under International Organization for Standards (ISO. These efforts have help in encouraging organizations such as International Code Council (ICC), the National FireHydrogen Codes and Standards James Ohi National Renewable Energy Laboratory 1617 Cole Blvd. Golden

  10. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009)

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    of carbon released from peat and forest fires in Indonesiaforest, agricultural, and peat fires (1997–2009) G. R. vanin 2004: Importance of peat burn- ing and pyroconvective

  11. Seismic Fragility of the LANL Fire Water Distribution System

    SciTech Connect (OSTI)

    Greg Mertz

    2007-03-30T23:59:59.000Z

    The purpose of this report is to present the results of a site-wide system fragility assessment. This assessment focuses solely on the performance of the water distribution systems that supply Chemical and Metallurgy Research (CMR), Weapons Engineering and Tritium Facility (WETF), Radioactive Liquid Waste Treatment Facility (RLWTF), Waste Characterization, Reduction, Repackaging Facility (WCRRF), and Transuranic Waste Inspectable Storage Project (TWISP). The analysis methodology is based on the American Lifelines Alliance seismic fragility formulations for water systems. System fragilities are convolved with the 1995 LANL seismic hazards to develop failure frequencies. Acceptance is determined by comparing the failure frequencies to the DOE-1020 Performance Goals. This study concludes that: (1) If a significant number of existing isolation valves in the water distribution system are closed to dedicate the entire water system to fighting fires in specific nuclear facilities; (2) Then, the water distribution systems for WETF, RLWTF, WCRRF, and TWISP meet the PC-2 performance goal and the water distribution system for CMR is capable of surviving a 0.06g earthquake. A parametric study of the WETF water distribution system demonstrates that: (1) If a significant number of valves in the water distribution system are NOT closed to dedicate the entire water system to fighting fires in WETF; (2) Then, the water distribution system for WETF has an annual probability of failure on the order of 4 x 10{sup -3} that does not meet the PC-2 performance goal. Similar conclusions are expected for CMR, RLWTF, WCRRF, and TWISP. It is important to note that some of the assumptions made in deriving the results should be verified by personnel in the safety-basis office and may need to be incorporated in technical surveillance requirements in the existing authorization basis documentation if credit for availability of fire protection water is taken at the PC-2 level earthquake levels. Assumptions are presented in Section 2.2 of this report.

  12. The NRAO Green Bank Site is a unique resource for Radio Astronomy. We are located in the National Radio Quiet Zone (NRQZ) which provides protection from permanent, fixed, licensed transmitter services. Our location,

    E-Print Network [OSTI]

    Groppi, Christopher

    additionally attempt to protect this most sensitive zone by limiting motorized traffic to diesel vehicles: · If your work involves installing equipment in Zone 1, bear in mind that it must be tested in the anechoic as "installed". · Only diesel vehicles are allowed in Zone 1. · Remember that the GBT isn't the only instrument

  13. A Wildfire Behavior Modeling System at Los Alamos National Laboratory for Operational Applications

    SciTech Connect (OSTI)

    S.W. Koch; R.G.Balice

    2004-11-01T23:59:59.000Z

    To support efforts to protect facilities and property at Los Alamos National Laboratory from damages caused by wildfire, we completed a multiyear project to develop a system for modeling the behavior of wildfires in the Los Alamos region. This was accomplished by parameterizing the FARSITE wildfire behavior model with locally gathered data representing topography, fuels, and weather conditions from throughout the Los Alamos region. Detailed parameterization was made possible by an extensive monitoring network of permanent plots, weather towers, and other data collection facilities. We also incorporated a database of lightning strikes that can be used individually as repeatable ignition points or can be used as a group in Monte Carlo simulation exercises and in other randomization procedures. The assembled modeling system was subjected to sensitivity analyses and was validated against documented fires, including the Cerro Grande Fire. The resulting modeling system is a valuable tool for research and management. It also complements knowledge based on professional expertise and information gathered from other modeling technologies. However, the modeling system requires frequent updates of the input data layers to produce currently valid results, to adapt to changes in environmental conditions within the Los Alamos region, and to allow for the quick production of model outputs during emergency operations.

  14. Fire Safety Tests for Cesium-Loaded Spherical Resorcinol Formaldehyde Resin: Data Summary Report

    SciTech Connect (OSTI)

    Kim, Dong-Sang; Schweiger, Michael J.; Peterson, Reid A.

    2012-09-01T23:59:59.000Z

    A draft safety evaluation of the scenario for spherical resorcinol formaldehyde (SRF) resin fire inside the ion exchange column was performed by the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Fire Safety organization. The result of this draft evaluation suggested a potential change of the fire safety classification for the Cesium Ion Exchange Process System (CXP) emergency elution vessels, equipment, and piping. To resolve this question, the fire properties of the SRF resin were measured by Southwest Research Institute (SwRI) through a subcontract managed by Pacific Northwest National Laboratory (PNNL). The results of initial fire safety tests on the SRF resin were documented in a previous report (WTP-RPT-218). The present report summarizes the results of additional tests performed by SwRI on the cesium-loaded SRF resin. The efforts by PNNL were limited to summarizing the test results provided by SwRI into one consolidated data report. The as-received SwRI report is attached to this report in the Appendix A. Where applicable, the precision and bias of each test method, as given by each American Society for Testing and Materials (ASTM) standard procedure, are included and compared with the SwRI test results of the cesium-loaded SRF resin.

  15. CRAD, Emergency Management - Los Alamos National Laboratory TA...

    Broader source: Energy.gov (indexed) [DOE]

    CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Conduct of Operations - Los Alamos National Laboratory TA 55 SST Facility CRAD, Training -...

  16. Los Alamos National Laboratory announces strategy for long-term...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategy for long-term environmental sustainability Los Alamos National Laboratory announces strategy for long-term environmental sustainability Provides a blueprint for protecting...

  17. Kuwaiti oil fires: Composition of source smoke

    SciTech Connect (OSTI)

    Cofer, W.R. III; Cahoon, D.R. [Langley Research Center, Hampton, VA (United States); Stevens, R.K.; Pinto, J.P. [Environmental Protection Agency, Research Triangle Park, NC (United States); Winstead, E.L.; Sebacher, D.I. [Hughes STX Corp., Hampton, VA (United States); Abdulraheem, M.Y. [Kuwait Environmental Protection Dept., Kuwait City (Kuwait); Al-Sahafi, M. [Ministry of Defense and Aviation, Eastern Province (Saudi Arabia); Mazurek, M.A. [Brookhaven National Lab., Upton, NY (United States); Rasmussen, R.A. [Oregon Graduate Institute of Science and Technology, Beaverton, OR (United States)] [and others

    1992-09-20T23:59:59.000Z

    While the Kuwaiti oil-fire smoke plumes manifested a pronounced impact on solar radiation in the Gulf region (visibility, surface temperatures, etc.), smoke plume concentrations of combustion-generated pollutants suggest that the overall chemical impact on the atmosphere of the smoke from these fires was probably much less than anticipated. Combustion in the Kuwaiti oil fires was surprisingly efficient, releasing on average more than 93% of the combusted hydrocarbon fuels as carbon dioxide (CO{sub 2}). Correspondingly, combustion-produced quantities of carbon monoxide (CO) and carbonaceous particles were low, each {approximately} 2% by weight. The fraction of methane (CH{sub 4}) produced by the fires was also relatively low ({approximately} 0.2%), but source emissions of nonmethane hydrocarbons were high ({approximately} 2%). Processes other than combustion (e.g., volatilization) probably contributed significantly to the measured in-plume hydrocarbon concentrations. Substantially, different elemental to organic carbon ratios were obtained for aerosol particles from several different types of fires/smokes. Sulfur emissions (particulate and gaseous) measured at the source fires were lower ({approximately} 0.5%) than predicted based on average sulfur contents in the crude. Sulfur dioxide measurements (SO{sub 2}) reported herein, however, were both limited in actual number and in the number of well fires sampled. Nitrous oxide (N{sub 2}O) emissions from the Kuwaiti oil fires were very low and often could not be distinguished from background concentrations. About 25-30% of the fires produced white smoke plumes that were found to be highly enriched in sodium and calcium chlorides. 18 refs., 1 fig., 4 tabs.

  18. Mercury control for coal-fired power plants

    SciTech Connect (OSTI)

    Haase, P.

    2005-06-30T23:59:59.000Z

    On 15 March 2005 the US Environmental Protection Agency issued its Clean Air Mercury Rule (CAMP) to regulate mercury emissions from coal-fired power plants. EPRI is working with the US Department of Energy and the power industry to develop mercury control technologies needed to meet the final 2018 emission limits. Some improvements can be made by modifying existing SO{sub 2} or NOx control devices. Precombustion cleaning reduces mercury content of eastern coals by about one third. Adding a little halogen is another technology being researched - this promotes oxidation improving short-term mercury capture. EPRI is developing the TOXECON{trademark} technology to address a major problem of using sorbents to control mercury emissions: contamination of fly ash. 5 figs.

  19. Material Analysis for a Fire Assessment.

    SciTech Connect (OSTI)

    Brown, Alexander; Nemer, Martin

    2014-08-01T23:59:59.000Z

    This report consolidates technical information on several materials and material classes for a fire assessment. The materials include three polymeric materials, wood, and hydraulic oil. The polymers are polystyrene, polyurethane, and melamine- formaldehyde foams. Samples of two of the specific materials were tested for their behavior in a fire - like environment. Test data and the methods used to test the materials are presented. Much of the remaining data are taken from a literature survey. This report serves as a reference source of properties necessary to predict the behavior of these materials in a fire.

  20. Method of locating underground mines fires

    DOE Patents [OSTI]

    Laage, Linneas (Eagam, MN); Pomroy, William (St. Paul, MN)

    1992-01-01T23:59:59.000Z

    An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

  1. Justification to remove 333 Building fire suppression system

    SciTech Connect (OSTI)

    Benecke, M.W.

    1995-12-04T23:59:59.000Z

    Justification to remove the 333 Building fire suppression system is provided. The Maximum Possible Fire Loss (MPFL) is provided (approximately $800K), potential radiological and toxicological impacts from a postulated fire are discussed, Life Safety Code issues are addressed, and coordination with the Hanford Fire Department is assured.

  2. Climate change-induced shifts in fire for Mediterranean ecosystems

    E-Print Network [OSTI]

    Moritz, Max A.

    RESEARCH PAPER Climate change-induced shifts in fire for Mediterranean ecosystems Enric Batllori1 Climate change, climate uncertainty, fire-climate relationship, fire shifts, Mediterranean biome Mediterranean biome and identify potential shifts in fire activity under an ensemble of global climate

  3. Fire hazards analysis for solid waste burial grounds

    SciTech Connect (OSTI)

    McDonald, K.M.

    1995-09-28T23:59:59.000Z

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation.

  4. The behaviour of concrete structures in fire 

    E-Print Network [OSTI]

    Fletcher, Ian A; Welch, Stephen; Torero, Jose L; Carvel, Ricky O; Usmani, Asif

    2007-03-29T23:59:59.000Z

    The nature of concrete-based structures means that they generally perform very well in fire. However, concrete is a complex material and its properties can change dramatically when exposed to high temperatures. This paper provides a ‘state...

  5. ANNUAL FIRE CODE COMPLIANCE INSPECTION PROCESS

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    ://SHAREPOINT.RMPS.CORNELL.EDU:8445/EHS/HSE DOCUMENTS/FIRE_CODE_INSPECTION_2014_REVISION.DOCX Table of Contents 1. Introduction................................................................................. 3 3.15 M.M. = Maintenance Management

  6. Experiments and Observation of Peat Smouldering Fires 

    E-Print Network [OSTI]

    Ashton, Clare; Rein, Guillermo; Dios, JD; Torero, Jose L; Legg, C; Davies, M; Gray, A

    2007-01-30T23:59:59.000Z

    If a subsurface layer of peat is ignited, it smoulders (flameless combustion) slowly but steadily. These fires propagate for long periods of time (days, weeks, even years), are particularly difficult to extinguish and can spread over very extensive...

  7. Tall building collapse mechanisms initiated by fire 

    E-Print Network [OSTI]

    Usmani, Asif; Roben, Charlotte; Johnston, Louise; Flint, Graeme

    This paper introduces the hypothesis of two possible failure mechanisms for tall buildings in multiple floor fires. This paper extends the previous work done on the WTC towers by investigating more "generic" tall building frames made of standard...

  8. Trace gas measurements in the Kuwait oil fire smoke plume

    SciTech Connect (OSTI)

    Luke, W.T.; Kok, G.L.; Schillawski, R.D.; Zimmerman, P.R.; Greenberg, J.P.; Kadavanich, M. [National Center for Atmospheric Research, Boulder, CO (United States)

    1992-09-20T23:59:59.000Z

    The authors report trace gas measurements made both inside and outside the Kuwait oil-fire smoke plume during a flight of an instrumented research aircraft on May 30, 1991. Concentrations of SO{sub 2}, CO, and NO{sub x} averaged vertically and horizontally throughout the plume 80 km downwind of Kuwait City were 106, 127, and 9.1 parts per billion by volume (ppbv), respectively, above background concentrations. With the exception of SO{sub 2}, trace gas concentrations were far below typical US urban levels and primary national ambient air quality standards. Ambient ozone was titrated by NO in the dark, dense core of the smoke plume close to the fires, and photochemical ozone production was limited to the diffuse edge of the plume. Photochemical O{sub 3} production was noted throughout the plume at a distance of 160 km downwind of Kuwait City, and averaged 2.3 ppbv per hour during the first 3 hours of transport. Little additional photochemical production was noted at a downwind range of 340 km. The fluxes of sulfur dioxide, carbon monoxide, and reactive nitrogen from the roughly 520 fires still burning on May 30, 1991 are estimated at 1.4 x 10{sup 7} kg SO{sub 2}/d, 6.9 x 10{sup 6} kg CO/d, and 2.7 x 10{sup 5} kg N/d, respectively. Generally low concentrations of CO and NO{sub x} indicate that the combustion was efficient and occurred at low temperatures. Low total nonmethane hydrocarbon concentrations suggest that the volatile components of the petroleum were burned efficiently. 37 refs., 4 figs., 4 tabs.

  9. Reducing NOx in Fired Heaters and Boilers

    E-Print Network [OSTI]

    Garg, A.

    -6, 2000 Reducing NOx in Fired Heaters Air Pollution Control and Boilers Keeping the environment clean Presented by Ashutosh Garg Furnace Improvements Low cost solutions for fired heaters Trace compounds ? Nitric oxides ? Carbon monoxide ? Sulfur... it is essential to estimate accurately baseline NOx emissions. ? This will establish each units current compliance status. ? Emissions ? Current excess air level ? Carbon monoxide ? Combustibles ? NOx corrected to 3% 02 314 ESL-IE-00-04-46 Proceedings...

  10. A Wood-Fired Gas Turbine Plant

    E-Print Network [OSTI]

    Powell, S. H.; Hamrick, J. T.

    A WOOD-FIRED GAS TURBINE PLANT Sam H. Powell, Tennessee Valley Authority, Chattanooga, Tennessee Joseph T. Hamrick, Aerospace Research Corporation, RBS Electric, Roanoke, VA Abstract This paper covers the research and development of a wood...-fired gas turbine unit that is used for generating electricity. The system uses one large cyclonic combustor and a cyclone cleaning system in series to provide hot gases to drive an Allison T-56 aircraft engine (the industrial version is the 50l-k). A...

  11. Georgia Institute of Technology Fire Watch Procedures

    E-Print Network [OSTI]

    -385-1000) Area II (404-385-2000) Area III (404-385-3000) Area IV (404-385-4000) Area V (404-385-5000) II. Fire Marshal 404-894-2990 2. Georgia Tech Police Department 404-894-2500 3. Facilities-Area 1 (404 the fire watch is in effect. 2. Patrol the entire area affected by the service outage every 30 minutes

  12. National Oceanic and Atmospheric Administration | NOAA Satellite and Information Service Two Orbits, One Mission

    E-Print Network [OSTI]

    National Oceanic and Atmospheric Administration | NOAA Satellite and Information Service Two Orbits, One Mission Mission The NATIONAL ENVIRONMENTAL SATELLITE, DATA AND INFORMATION SERVICE (NESDIS to promote, protect and enhance the Nation's economy, security, environment and quality of life. To fulfill

  13. Spent Fuel Transportation Cask Response to the Caldecott Tunnel Fire Scenario

    SciTech Connect (OSTI)

    Adkins, Harold E.; Koeppel, Brian J.; Cuta, Judith M.

    2007-01-01T23:59:59.000Z

    On April 7, 1982, a tank truck and trailer carrying 8,800 gallons of gasoline was involved in an accident in the Caldecott tunnel on State Route 24 near Oakland, California. The tank trailer overturned and subsequently caught fire. The United States Nuclear Regulatory Commission (USNRC), one of the agencies responsible for ensuring the safe transportation of radioactive materials in the United States, undertook analyses to determine the possible regulatory implications of this particular event for the transportation of spent nuclear fuel by truck. The Fire Dynamics Simulator (FDS) code developed by National Institute of Standards and Technology (NIST) was used to determine the thermal environment in the Caldecott tunnel during the fire. The FDS results were used to define boundary conditions for a thermal transient model of a truck transport cask containing spent nuclear fuel. The Nuclear Assurance Corporation (NAC) Legal Weight Truck (LWT) transportation cask was selected for this evaluation, as it represents a typical truck (over-the-road) cask, and can be used to transport a wide variety of spent nuclear fuels. Detailed analysis of the cask response to the fire was performed using the ANSYS® computer code to evaluate the thermal performance of the cask design in this fire scenario. This report describes the methods and approach used to assess the thermal response of the selected cask design to the conditions predicted in the Caldecott tunnel fire. The results of the analysis are presented in detail, with an evaluation of the cask response to the fire. The staff concluded that some components of smaller transportation casks resembling the NAC LWT, despite placement within an ISO container, could degrade significantly. Small transportation casks similar to the NAC LWT would probably experience failure of seals in this severe accident scenario. USNRC staff evaluated the radiological consequences of the cask response to the Caldecott tunnel fire. Although some components heated up beyond their service temperatures, the staff determined that there would be no significant release as a result of the fire for the NAC LWT and similar casks.

  14. Protective Force Program Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-30T23:59:59.000Z

    Provides detailed requirements to supplement DOE O 473.2, Protective Force Program, which establishes the requirements and responsibilities for management and operation of the Department of Energy (DOE) Protective Force (PF) Program. Does not cancel other directives.

  15. Livestock Risk Protection

    E-Print Network [OSTI]

    Thompson, Bill; Bennett, Blake; Jones, Diana

    2008-10-21T23:59:59.000Z

    Livestock risk protection (LRP) insurance policies protect producers from adverse price changes in the livestock market. This publication explains how LRP works, discusses the advantages and disadvantages of these polices, and gives examples...

  16. Protection Program Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-10-14T23:59:59.000Z

    This Order establishes requirements for the management and operation of the Department of Energy (DOE) Federal Protective Forces (FPF), Contractor Protective Forces (CPF), and the Physical Security of property and personnel under the cognizance of DOE.

  17. Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation

    E-Print Network [OSTI]

    Tosca, M. G; Randerson, J. T; Zender, C. S

    2013-01-01T23:59:59.000Z

    smoke clouds associated with peat and deforestation fires inforest, agricultural, and peat fires (1997– 2009), Atmos.of carbon released from peat and forest fires in Indonesia

  18. E-Print Network 3.0 - anthropogenic fire mosaics Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    landscape mosaic on fire size distribution in mixedwood boreal forest using... , plus 13 forest mosaic scenarios whose compositions reflected lengths of fire cycle. Three fire...

  19. RADIONUCLIDE RADIATION PROTECTION

    E-Print Network [OSTI]

    Healy, Kevin Edward

    COPYRIGHT 2002 Nuclear Technology Publishing #12;3 #12;4 #12;5 Radiation Protection Dosimetry Vol. 98, No'Energie Atomique, CEA/Saclay, France ISBN 1 870965 87 6 RADIATION PROTECTION DOSIMETRY Vol. 98 No 1, 2002 Published by Nuclear Technology Publishing #12;RADIONUCLIDE AND RADIATION PROTECTION DATA HANDBOOK 2nd Edition (2002

  20. Corium protection assembly

    DOE Patents [OSTI]

    Gou, Perng-Fei (Saratoga, CA); Townsend, Harold E. (Campbell, CA); Barbanti, Giancarlo (Sirtori, IT)

    1994-01-01T23:59:59.000Z

    A corium protection assembly includes a perforated base grid disposed below a pressure vessel containing a nuclear reactor core and spaced vertically above a containment vessel floor to define a sump therebetween. A plurality of layers of protective blocks are disposed on the grid for protecting the containment vessel floor from the corium.

  1. After a Fire, Is the Food Safe? esidential fires are, unfortunately, a common

    E-Print Network [OSTI]

    to salvage their lives and belongings. Whether it is the whole house involved or just a fire in the kitchen The American Red Cross recommends that you: s Make your home fire-safe by installing battery-powered smoke- guisher in the kitchen. s Plan two emergency escape routes from each room in the house. Have rope or chain

  2. Fuel Treatment, Prescribed Fire, and Fire Restoration: Are the Benefits Worth It?

    E-Print Network [OSTI]

    Standiford, Richard B.

    Fuel Treatment, Prescribed Fire, and Fire Restoration: Are the Benefits Worth It? Chairs: Susan Husari and Melanie Miller #12;Applying Simulation and Optimization to Plan Fuel Treatments at Landscape Scales1 J. Greg Jones,2 Jimmie D. Chew,2 Hans R. Zuuring3 Abstract Fuel treatment activities are analyzed

  3. NIST Technical Note 1629 Fire Fighting Tactics Under Wind Driven Fire Conditions

    E-Print Network [OSTI]

    Bentz, Dale P.

    (FEMA) Assistance to Firefighters Research and Development Grant Program and the United States Fire Administrator United States Fire Administration Glenn A. Gaines, Acting Assistant Administrator U.S. Department to differences in staffing, equipment, building stock, typical weather conditions, etc. There is uniformity

  4. Coastal Marshlands Protection Act (Georgia

    Broader source: Energy.gov [DOE]

    The Coastal Marshlands Protection Act provides the Coastal Resources Division with the authority to protect tidal wetlands. The Coastal Marshlands Protection Act limits certain activities and...

  5. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS

    SciTech Connect (OSTI)

    Nsakala ya Nsakala; Gregory N. Liljedahl

    2003-05-15T23:59:59.000Z

    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US Department of Energy National Energy Technology Laboratory (DOE) in 2001 to carry out a project entitled ''Greenhouse Gas Emissions Control by Oxygen Firing in Circulating Fluidized Bed Boilers.'' This two-phased project is in effect from September 28, 2001, to October 27, 2004. (U.S. DOE NETL Cooperative Agreement No. DE-FC26-01NT41146). Phase I consisted of an evaluation of the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants, and supporting bench-scale testing. And Phase II consists of pilot-scale testing, supporting a refined performance and economic evaluation of the oxygen-fired AFC concept. Phase I, detailed in this report, entails a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture technologies applied to Greenfield US coal-fired electric generation power plants. Thirteen separate but related cases (listed below), representing various levels of technology development, were evaluated as described herein. The first seven cases represent coal combustion cases in CFB type equipment. The next four cases represent Integrated Gasification Combined Cycle (IGCC) systems. The last two cases represent advanced Chemical Looping systems, which were completely paid for by ALSTOM and included herein for completeness.

  6. http://www.cityofnorthlasvegas.com/departments/fire/fire.shtm

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Reviewwill help prepareA ReviewManual 8400 -EconomicSearch I

  7. Mitsubishi FGD plants for lignite fired boilers

    SciTech Connect (OSTI)

    Kotake, Shinichiro; Okazoe, Kiyoshi; Iwashita, Koichiro; Yajima, Satoru

    1998-07-01T23:59:59.000Z

    In order to respond to the increasing electric energy demand for sustaining economic growth, construction of coal-fired thermal power plants worldwide is indispensable. As a countermeasure for environmental pollution which otherwise may reach a serious proportion from the operation of these plants, construction of flue gas desulfurization (FGD) plants is being promoted. Among these power stations where lignite fuel is burnt, the FGD plants concerned have to be designed to cope with high gas volume and SO{sub x} concentration as well as violent fluctuations in their values caused by such features of lignite as high sulfur content, low calorific volume, and unstable properties. Mitsubishi Heavy Industries (MHI) has received construction awards for a total of seven (7) FGD plants for lignite-fired boilers in succession starting from that for CEZ as, Czech Republic followed by those for EGAT, Thailand in 1993. All these plants are presently operating satisfactorily since successful completion of their performance tests in 1996. Further, a construction award of three (3) more FGD plants for lignite-fired boilers was received from ENDESA (Spain) in 1995 which are now being outfitted and scheduled to start commercial operation in 1998. In this paper, the authors discuss the outline design of FGD plants for lignite-fired boilers based on experience of FGD plants constructed since 1970 for heavy oil--as well as black coal-fired boilers, together with items confirmed from the operation and design guideline hereafter.

  8. GASIFICATION BASED BIOMASS CO-FIRING

    SciTech Connect (OSTI)

    Babul Patel; Kevin McQuigg; Robert Toerne; John Bick

    2003-01-01T23:59:59.000Z

    Biomass gasification offers a practical way to use this widespread fuel source for co-firing traditional large utility boilers. The gasification process converts biomass into a low Btu producer gas that can be used as a supplemental fuel in an existing utility boiler. This strategy of co-firing is compatible with a variety of conventional boilers including natural gas and oil fired boilers, pulverized coal fired conventional and cyclone boilers. Gasification has the potential to address all problems associated with the other types of co-firing with minimum modifications to the existing boiler systems. Gasification can also utilize biomass sources that have been previously unsuitable due to size or processing requirements, facilitating a wider selection of biomass as fuel and providing opportunity in reduction of carbon dioxide emissions to the atmosphere through the commercialization of this technology. This study evaluated two plants: Wester Kentucky Energy Corporation's (WKE's) Reid Plant and TXU Energy's Monticello Plant for technical and economical feasibility. These plants were selected for their proximity to large supply of poultry litter in the area. The Reid plant is located in Henderson County in southwest Kentucky, with a large poultry processing facility nearby. Within a fifty-mile radius of the Reid plant, there are large-scale poultry farms that generate over 75,000 tons/year of poultry litter. The local poultry farmers are actively seeking environmentally more benign alternatives to the current use of the litter as landfill or as a farm spread as fertilizer. The Monticello plant is located in Titus County, TX near the town of Pittsburgh, TX, where again a large poultry processor and poultry farmers in the area generate over 110,000 tons/year of poultry litter. Disposal of this litter in the area is also a concern. This project offers a model opportunity to demonstrate the feasibility of biomass co-firing and at the same time eliminate poultry litter disposal problems for the area's poultry farmers.

  9. Talking About Disaster: Guide for Standard Messages 1 Talking About Disaster

    E-Print Network [OSTI]

    Fire Extinguishers March 2007 188 Arc-Fault Circuit Interrupters (AFCIs) March 2007 189 Home Fire Earthquakes March 2007 14 Fires, Residential March 2007 23 Fires, Wildland March 2007 33 Floods and Flash · International Association of Emergency Managers · National Fire Protection Association · National Interagency

  10. Risk Assessment Methodology for Protecting Our Critical Physical Infrastructures

    SciTech Connect (OSTI)

    BIRINGER,BETTY E.; DANNEELS,JEFFREY J.

    2000-12-13T23:59:59.000Z

    Critical infrastructures are central to our national defense and our economic well-being, but many are taken for granted. Presidential Decision Directive (PDD) 63 highlights the importance of eight of our critical infrastructures and outlines a plan for action. Greatly enhanced physical security systems will be required to protect these national assets from new and emerging threats. Sandia National Laboratories has been the lead laboratory for the Department of Energy (DOE) in developing and deploying physical security systems for the past twenty-five years. Many of the tools, processes, and systems employed in the protection of high consequence facilities can be adapted to the civilian infrastructure.

  11. Firing of pulverized solvent refined coal

    DOE Patents [OSTI]

    Lennon, Dennis R. (Allentown, PA); Snedden, Richard B. (McKeesport, PA); Foster, Edward P. (Macungie, PA); Bellas, George T. (Library, PA)

    1990-05-15T23:59:59.000Z

    A burner for the firing of pulverized solvent refined coal is constructed and operated such that the solvent refined coal can be fired successfully without any performance limitations and without the coking of the solvent refined coal on the burner components. The burner is provided with a tangential inlet of primary air and pulverized fuel, a vaned diffusion swirler for the mixture of primary air and fuel, a center water-cooled conical diffuser shielding the incoming fuel from the heat radiation from the flame and deflecting the primary air and fuel steam into the secondary air, and a watercooled annulus located between the primary air and secondary air flows.

  12. 24 Command Fire Improvement Action Program Plan

    SciTech Connect (OSTI)

    GRIFFIN, G.B.

    2000-12-01T23:59:59.000Z

    Fluor Hanford (FH) is responsible for providing support to the Department of Energy Richland Operations Office (RL) in the implementation of the Hanford Emergency Preparedness (EP) program. During fiscal year 2000, a number of program improvements were identified from various sources including a major range fire (24 Command Fire). Evaluations of the emergency preparedness program have confirmed that it currently meets all requirements and that performance of personnel involved is good, however the desire to effect continuous improvement resulted in the development of this improvement program plan. This program plan defines the activities that will be performed in order to achieve the desired performance improvements.

  13. NAVIGATING A QUALITY ROUTE TO A NATIONAL SAFETY AWARD

    SciTech Connect (OSTI)

    PREVETTE SS

    2009-05-26T23:59:59.000Z

    Deming quality methodologies applied to safety are recognized with the National Safety Council's annual Robert W. Campbell Award. Over the last ten years, the implementation of Statistical Process Control and quality methodologies at the U.S. Department of Energy's Hanford Site have contributed to improved safety. Improvements attributed to Statistical Process Control are evidenced in Occupational Safety and Health records and documented through several articles in Quality Progress and the American Society of Safety Engineers publication, Professional Safety. Statistical trending of safety, quality, and occurrence data continues to playa key role in improving safety and quality at what has been called the world's largest environmental cleanup project. DOE's Hanford Site played a pivotal role in the nation's defense beginning in the 1940s, when it was established as part of the Manhattan Project. After more than 50 years of producing material for nuclear weapons, Hanford, which covers 586 square miles in southeastern Washington state, is now focused on three outcomes: (1) Restoring the Columbia River corridor for multiple uses; (2) Transitioning the central plateau to support long-term waste management; and (3) Putting DOE assets to work for the future. The current environmental cleanup mission faces challenges of overlapping technical, political, regulatory, environmental, and cultural interests. From Oct. 1, 1996 through Sept. 30, 2008, Fluor Hanford was a prime contractor to the Department of Energy's Richland Operations Office. In this role, Fluor Hanford managed several major cleanup activities that included dismantling former nuclear-processing facilities, cleaning up the Site's contaminated groundwater, retrieving and processing transuranic waste for shipment and disposal off-site, maintaining the Site's infrastructure, providing security and fire protection, and operating the Volpentest HAMMER Training and Education Center. On October 1,2008, a transition occurred that changed Fluor's role at Hanford. Fluor's work at Hanford was split in two with the technical scope being assumed by the CH2M HILL Plateau Remediation Company (CHPRC) CHPRC is now spearheading much of the cleanup work associated with former nuclear-processing facilities, contaminated groundwater, and transuranic waste. Fluor is an integrated subcontractor to CH PRC in this effort. In addition, at the time of this writing, while the final outcome is being determined for the new Mission Support Contract, Fluor Hanford has had its contract extended to provide site-wide services that include security, fire protection, infrastructure, and operating the HAMMER facility. The emphasis has to be on doing work safely, delivering quality work, controlling costs, and meeting deadlines. Statistical support is provided by Fluor to the PRC, within Fluor Hanford, and to a third contractor, Washington Closure Hanford, which is tasked with cleaning up approximately 210 square miles designated as the Columbia River corridor along the outer edge of the Hanford Site. The closing months of Fluor Hanford's 12 year contract were busy, characterized by special events that capped its work as a prime cleanup contractor, transitions of work scope and personnel, and the completion numerous activities. At this time, Fluor's work and approach to safety were featured in state and national forums. A 'Blockbuster' presentation at the Washington State Governor's Industrial Safety Conference in September 2008 featured Fluor Hanford's Chief Operating Officer, a company Safety Representative, and me. Simultaneously, an award ceremony in Anaheim, Calif. recognized Fluor Hanford as the winner of the 2008 Robert W. Campbell Award. The Robert W. Campbell Award is co-sponsored by Exxon Mobil Corporation and the National Safety Council. Named after a pioneer of industrial safety, the Campbell Award recognizes organizations that demonstrate how integration of environmental, health and safety (EHS) management into business operations is a cornerstone of their corporate success. Fluor Hanford rec

  14. Residential gas-fired sorption heat Test and technology evaluation

    E-Print Network [OSTI]

    ..........................................................................................10 1.3.2 Adsorption heat pumpsResidential gas-fired sorption heat pumps Test and technology evaluation Energiforskningsprogram EFP05 Journal nr: 33031-0054 December 2008 #12;Residential gas-fired sorption heat pumps Test

  15. The FIRE infrared spectrometer at Magellan: construction and commissioning

    E-Print Network [OSTI]

    Simcoe, Robert A.

    We describe the construction and commissioning of FIRE, a new 0.8-2.5?m echelle spectrometer for the Magellan/ Baade 6.5 meter telescope. FIRE delivers continuous spectra over its full bandpass with nominal spectral ...

  16. Savanna and shrubland fire behavior modeling in South Texas

    E-Print Network [OSTI]

    Streeks, Tamara Jean

    2012-06-07T23:59:59.000Z

    The vegetation of South Texas has changed from mesquite savanna to mixed mesquite/acacia (Prosopis/Acacia) shrubland over the last hundred years. Fire reduction due to lack of fine fuel and suppression of fires is cited as reasons...

  17. Management of Imported Fire Ants in Cattle Production Systems

    E-Print Network [OSTI]

    Fuchs, Thomas W.; Drees, Bastiaan M.

    2004-03-31T23:59:59.000Z

    This publication can help ranch managers develop integrated pest management plans for managing fire ant problems in cattle operations. It covers the specifics of managing fire ants in hay pastures and rangelands, around farm ponds, and near...

  18. CLIMATE-FIRE RELATIONSHIPS IN THE SOUTHERN APPALACHIAN MOUNTAINS

    E-Print Network [OSTI]

    Baker, Ralph C.

    2011-01-11T23:59:59.000Z

    This study is meant to explain the fire regime of the southern Appalachian Mountain Range of the southeastern United States by analyzing spatial statistics and climate-fire relationships. The spatial statistics were created by obtaining...

  19. Initial Joint Review, Wildland Fire Safety at DOE Sites - December...

    Broader source: Energy.gov (indexed) [DOE]

    Fire Safety Enchancements - Jan 19, 2001 Audit Report: IG-0760 Type B Accident Investigation, Response to the 24 Command Wildland Fire on the Hanford Site, June 27-July 1, 200...

  20. Modelling of the Growth Phase of Dalmarnock Fire Test One 

    E-Print Network [OSTI]

    Rein, Guillermo; Jahn, Wolfram; Torero, Jose L

    The challenge of modelling a well characterized full-scale fire test using computational fluid dynamics is illustrated in this work comparing a priori and a posteriori simulations. In 2006, The Dalmarnock Fire Tests were ...

  1. Investigation of a Fatal Fire in a Moving Vehicle 

    E-Print Network [OSTI]

    Alvares, Norman; Staggs, Kirk; Rein, Guillermo

    2007-01-01T23:59:59.000Z

    This paper summarizes the essentials of an investigation conducted by the authors to test conflicting scenarios regarding the cause and origin of an accidental fire. Fire investigators proposed that an underbody fuel-leak ...

  2. Geothermal system saving money at fire station | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal system saving money at fire station Geothermal system saving money at fire station April 9, 2010 - 3:45pm Addthis Joshua DeLung What will the project do? A geothermal...

  3. Asset Protection Analysis Guide

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-08-21T23:59:59.000Z

    The Guide provides examples of the application of as set protection analysis to several common problems. Canceled by DOE N 251.80.

  4. Protected Water Sources (Iowa)

    Broader source: Energy.gov [DOE]

    This chapter designates protected water sources, which are subject to additional special conditions regarding water use. Permit applications for water withdrawals from these sources may still be...

  5. Protective Actions and Reentry

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21T23:59:59.000Z

    This volume defines appropriate protective actions and reentry of a site following an emergency. Canceled by DOE G 151.1-4.

  6. Radiation Protection Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This Act combines the radiation safety provisions of The Atomic Energy Development and Radiation Control Act and the Environmental Radiation Protection Act, and empowers the Department of...

  7. Environmental Protection Specialist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will serve as an environmental protection specialist within the Environmental Planning and Analysis department (KEC) of the Environment, Fish, and Wildlife ...

  8. System Protection Control Craftman

    Broader source: Energy.gov [DOE]

    A successful candidate will perform preventative and corrective maintenance on protective relays, revenue meters, telemetering schemes, substation control systems and various kinds of substation...

  9. DOE Advanced Protection Project

    Broader source: Energy.gov (indexed) [DOE]

    Circuit Fault Status - Four Faults Recorded * 10212007 (high winds) - Relay pick-ups, but no trip * 12252007 (high winds) - Protection operated correctly - Post-fault...

  10. Physical Protection Program Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-12-23T23:59:59.000Z

    Supplements DOE O 473.1, by establishing requirements for the physical protection of safeguards and security interests. Cancels: DOE M 5632.1C-1

  11. Simulating Historic Landscape Patterns of Fire in the Southern Appalachian Mountains: Implications for Fire History and Management

    E-Print Network [OSTI]

    Gass, Ellen R

    2014-05-21T23:59:59.000Z

    Fire suppression policies implemented in the early 20th century led to a decrease in fire-associated species and ecosystems in the southern Appalachian Mountains. As managers work towards restoration, a greater understanding of the pre...

  12. Fire-grazing interactions in a mixed grass prairie

    E-Print Network [OSTI]

    Hubbard, John Andrew

    2004-09-30T23:59:59.000Z

    ?)............................................................................................. 28 8 Effects (?between subjects?) of fall (October 1998) and spring (February 1999) prescribed fire on aboveground (a) live and (b) standing dead biomass during 1999.........................................................................................................................84 x LIST OF TABLES TABLE 1 Fire characteristics for cool season (March 1998, February 1999) and warm season (October 1998) prescribed fires................................................................ 24 2 ANOSIM and SIMPER...

  13. A Spatial Planning and Analysis System for Wildland Fire Management

    E-Print Network [OSTI]

    STARFIRE 11/29/2011 A Spatial Planning and Analysis System for Wildland Fire Management Welcome is an advanced and powerful spatial fire management planning and analysis system which is designed to provide visual and analytic support for fire management planning, decisions and communication. The system

  14. FireViz : a personal firewall visualizing tool

    E-Print Network [OSTI]

    Sharma, Nidhi

    2005-01-01T23:59:59.000Z

    In this thesis, I present FireViz, a personal firewall visualizing tool. FireViz visually displays activities of a personal firewall in real time. The primary goal of FireViz is to educate typical computer users of the ...

  15. Retrofitted coal-fired firetube boiler and method employed therewith

    DOE Patents [OSTI]

    Wagoner, C.L.; Foote, J.P.

    1995-07-04T23:59:59.000Z

    A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler are disclosed. The converted boiler includes a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones. 19 figs.

  16. Coal-fired generation staging a comeback. 2nd ed.

    SciTech Connect (OSTI)

    NONE

    2007-07-01T23:59:59.000Z

    The report is an overview of the renewed U.S. market interest in coal-fired power generation. It provides a concise look at what is driving interest in coal-fired generation, the challenges faced in implementing coal-fired generation projects, and the current and future state of coal-fired generation. Topics covered in the report include: An overview of coal-fired generation including its history, the current market environment, and its future prospects; An analysis of the key business factors that are driving renewed interest in coal-fired generation; An analysis of the challenges that are hindering the implementation of coal-fired generation projects; A description of coal-fired generation technologies; A review of the economic drivers of coal-fired generation project success; An evaluation of coal-fired generation versus other generation technologies; A discussion of the key government initiatives supporting new coal-fired generation; and A listing of planned coal-fired generation projects. 13 figs., 12 tabs., 1 app.

  17. Grid Computing for Fire Evolution Simulation Diploma Thesis

    E-Print Network [OSTI]

    Toronto, University of

    - p. 1/41 Grid Computing for Fire Evolution Simulation Diploma Thesis Thomas Diamantis University of Thessaly July 15, 2005 #12;Outline Grid computing overview Middleware overview Fire Dynamics Simulator Experiments and Results - p. 2/41 Outline Fire Dynamics Simulatior (FDS) and Grid Computing s Grid computing

  18. Grid cell firing patterns signal environmental novelty by expansion

    E-Print Network [OSTI]

    Burgess, Neil

    Grid cell firing patterns signal environmental novelty by expansion Caswell Barrya,b,c,1 , Lin Lin novelty causes the spatial firing patterns of grid cells to expand in scale and reduce in regularity firing fields remapped and showed a smaller, temporary expansion. Grid expansion provides a potential

  19. Carbon dioxide emission during forest fires ignited by lightning

    E-Print Network [OSTI]

    Magdalena Pelc; Radoslaw Osuch

    2009-03-31T23:59:59.000Z

    In this paper we developed the model for the carbon dioxide emission from forest fire. The master equation for the spreading of the carbon dioxide to atmosphere is the hyperbolic diffusion equation. In the paper we study forest fire ignited by lightning. In that case the fores fire has the well defined front which propagates with finite velocity.

  20. Wildland fire emissions, carbon, and climate: Emission factors Shawn Urbanski

    E-Print Network [OSTI]

    Wildland fire emissions, carbon, and climate: Emission factors Shawn Urbanski Missoula Fire burning Greenhouse gases Emission factors a b s t r a c t While the vast majority of carbon emitted wildland fire greenhouse gas and aerosol (organic aerosol (OA) and black carbon (BC)) emission inventories

  1. Retrofitted coal-fired firetube boiler and method employed therewith

    DOE Patents [OSTI]

    Wagoner, Charles L. (Tullahoma, TN); Foote, John P. (Tullahoma, TN)

    1995-01-01T23:59:59.000Z

    A coal-fired firetube boiler and a method for converting a gas-fired firetube boiler to a coal-fired firetube boiler, the converted boiler including a plurality of combustion zones within the firetube and controlled stoichiometry within the combustion zones.

  2. Dynamics of fire plumes and smoke clouds associated with peat and deforestation fires in Indonesia

    E-Print Network [OSTI]

    Tosca, M. G; Randerson, J. T; Zender, C. S; Nelson, D. L; Diner, D. J; Logan, J. A

    2011-01-01T23:59:59.000Z

    biomass burning in Indonesia since 1960, Nat. Geosci. , 2,and deforestation fires in Indonesia M. G. Tosca, 1 J. T.unnatural disasters in Indonesia, Geogr. Rev. , 94, 55–79,

  3. Unbonded Post Tensioned Concrete in Fire: A Review of Data from Furnace Tests and Real Fires 

    E-Print Network [OSTI]

    Gales, John; Bisby, Luke; Gillie, Martin

    The fire-safe design of concrete structures which incorporate post-tensioned prestressing tendons has recently been the subject of debate within the structural engineering community, particularly when unbonded post-tensioned ...

  4. PFB coal fired combined cycle development program. Annual report, July 1978-June 1979

    SciTech Connect (OSTI)

    Not Available

    1980-05-01T23:59:59.000Z

    The Coal Fired Combined Cycle (CFCC) is the unique powerplant concept developed under the leadership of the General Electric Company to provide a direct coal-burning gas turbine and steam turbine combined cycle powerplant. On the basis of previous studies and confirming work under this contract, General Electric continues to believe that the CFCC approach offers important advantages over alternate approaches: higher powerplant efficiency in the combustor temperature range of interest; reduced combustor/steam generator corrosion potential, due to low fluid-bed tube temperature (as contrasted to the air in tube cycle); and increased gas turbine bucket life from improved material protection systems. The objective of this program is to evaluate the coal fired combined cycle powerplant conceptual design, and to conduct a supporting development program. The supporting development is required for evaluating the pressurized fluidized bed combustion concept, for developing engineering correlations to be used in optimizing the commercial plant concept, and for evaluating the combustor/steam generator, the hot-gas cleanup, and the advanced gas turbine materials approach for this application. Work to date has identified the need to protect the gas turbine from corrosion caused by substantial amounts of alkali in the submicron aerosol and vapor phase and to protect the turbine from erosion caused by multi-micron-sized particulates. We believe that a solution to the corrosion protection challenge can more confidently and quickly be found by extending turbine materials work in dirty liquid fuels to the PFB environmental levels. Particulate removal for erosion protection has as its objective a better quantification of the erosion tolerance level coupled with work to improve the performance of inertial separators, including electrostatic augmentation, in the less-than-10-..mu..m-particle-size region. A few other testing programs are described briefly.

  5. Fired heater for coal liquefaction process

    DOE Patents [OSTI]

    Ying, David H. S. (Macungie, PA)

    1984-01-01T23:59:59.000Z

    A fired heater for a coal liquefaction process is constructed with a heat transfer tube having U-bends at regular intervals along the length thereof to increase the slug frequency of the multi-phase mixture flowing therethrough to thereby improve the heat transfer efficiency.

  6. FIRE Project Action Plan in Response to

    E-Print Network [OSTI]

    . The project should review other mission statements from the Office of Science in order to understand better, the Next Generation Space Telescope, etc. The project will also solicit input from the science community1 FIRE Project Action Plan in Response to Next Step Options Program Advisory Committee Report (PAC1

  7. Direct fired absorption machine flue gas recuperator

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

    1985-01-01T23:59:59.000Z

    A recuperator which recovers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine. The recuperator includes a housing with liquid flowing therethrough, the liquid being in direct contact with the combustion gas for increasing the effectiveness of the heat transfer between the gas and the liquid.

  8. Blank fire configuration for automatic pistol

    DOE Patents [OSTI]

    Teague, Tommy L. (Albuquerque, NM)

    1990-01-01T23:59:59.000Z

    A pistol configured to fire blank cartridges includes a modified barrel with a breech portion connected to an aligned inner sleeve. Around the inner sleeve, there is disposed an outer sleeve having a vent therein through which the cartridge discharges. The breech portion is connected to a barrel anchor to move backward in a slight arc when the pistol is fired. A spring retention rod projects from the barrel anchor and receives a shortened recoil spring therearound which recoil spring has one end abutting a stop on the barrel anchor and the other end in abutment with the end of a spring retaining cup. The spring retaining cup is engaged by a flange projecting from a slide so that when the pistol is fired, the slide moves rearwardly against the compression of the spring to eject the spent cartridge and then moves forwardly under the urging of the spring to load a fresh cartridge into the breech portion. The spring then returns all of the slidable elements to their initial position so that the pistol may again be fired.

  9. Fire Induced Collapse of Tall Buildings 

    E-Print Network [OSTI]

    Flint, Graeme

    This research was designed to investigate possible mechanisms that fires could initiate that might lead to collapse of a tall building of similar design to the WTC Towers. It was not designed to be a forensic study and no initial damage was applied...

  10. Posteriori Modelling of Fire Test One 

    E-Print Network [OSTI]

    Jahn, Wolfram; Rein, Guillermo; Torero, Jose L

    2007-10-14T23:59:59.000Z

    This work shows that reproducing fire behaviour of a full-scale enclosure on a detailed level using CFD simulations is possible to certain degree but is a very challenging task. A posteriori (ie after the test) numerical simulations of the growth...

  11. Environmental Health & Safety Fire Safety Unit

    E-Print Network [OSTI]

    Portman, Douglas

    materials (gas, lighter fluid, charcoal, propane, solvents, etc.) All items powered by combustible fuels heat to start a fire if used improperly). Including but not limited to: George Foreman grills portable heating devices (space heaters of any type) What other items are not allowed in my room? Non

  12. Characterization of Oxy-combustion Impacts in Existing Coal-fired Boilers

    SciTech Connect (OSTI)

    Adams, Bradley; Davis, Kevin; Senior, Constance; Shim, Hong Shim; Otten, Brydger; Fry, Andrew; Wendt, Jost; Eddings, Eric; Paschedag, Alan; Shaddix, Christopher; Cox, William; Tree, Dale

    2013-09-30T23:59:59.000Z

    Reaction Engineering International (REI) managed a team of experts from University of Utah, Siemens Energy, Praxair, Vattenfall AB, Sandia National Laboratories, Brigham Young University (BYU) and Corrosion Management Ltd. to perform multi-scale experiments, coupled with mechanism development, process modeling and CFD modeling, for both applied and fundamental investigations. The primary objective of this program was to acquire data and develop tools to characterize and predict impacts of CO{sub 2} flue gas recycle and burner feed design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) inherent in the retrofit of existing coal-fired boilers for oxy-coal combustion. Experimental work was conducted at Sandia National Laboratories’ Entrained Flow Reactor, the University of Utah Industrial Combustion Research Facility, and Brigham Young University. Process modeling and computational fluid dynamics (CFD) modeling was performed at REI. Successful completion of the project objectives resulted in the following key deliverables: 1) Multi-scale test data from 0.1 kW bench-scale, 100 kW and 200 kW laboratory-scale, and 1 MW semi-industrial scale combustors that describe differences in flame characteristics, fouling, slagging and corrosion for coal combustion under air-firing and oxygen-firing conditions, including sensitivity to oxy-burner design and flue gas recycle composition. 2) Validated mechanisms developed from test data that describe fouling, slagging, waterwall corrosion, heat transfer, char burnout and sooting under coal oxy-combustion conditions. The mechanisms were presented in a form suitable for inclusion in CFD models or process models. 3) Principles to guide design of pilot-scale and full-scale coal oxy-firing systems and flue gas recycle configurations, such that boiler operational impacts from oxy-combustion retrofits are minimized. 4) Assessment of oxy-combustion impacts in two full-scale coal-fired utility boiler retrofits based on computational fluid dynamics (CFD) modeling of air-fired and oxygen-fired operation. This research determined that it is technically feasible to retrofit the combustion system in an air-fired boiler for oxy-fired operation. The impacts of CO{sub 2} flue gas recycle and burner design on flame characteristics (burnout, NO{sub x}, SO{sub x}, mercury and fine particle emissions, heat transfer) and operational concerns (fouling, slagging and corrosion) were minimal, with the exception of high sulfur levels resulting from untreated flue gas recycle with medium and high-sulfur coals. This work focused on combustion in the radiant and convective sections of the boiler and did not address boiler system integration issues, plant efficiencies, impacts on downstream air pollution control devices, or CO{sub 2} capture and compression. The experimental data, oxy-firing system principles and oxy-combustion process mechanisms provided by this work can be used by electric utilities, boiler OEMs, equipment suppliers, design firms, software vendors, consultants and government agencies to assess retrofit applications of oxy-combustion technologies to existing boilers and to guide development of new designs.

  13. No material is "fire proof." However, the proper use and assembly of fire-rated building materials

    E-Print Network [OSTI]

    General No material is "fire proof." However, the proper use and assembly of fire-rated building materials can reduce a fire's spread and lengthen the amount of time it takes for a home to ignite and burn. Structural assembly is the process of layering materials when building exterior walls and roof. Your home

  14. No material is "fire proof." However, the proper use and assembly of fire-rated building materials

    E-Print Network [OSTI]

    General No material is "fire proof." However, the proper use and assembly of fire-rated building materials can reduce a fire's spread, and extend the amount of time it takes for a home to ignite and burn your home. However, radiant energy can eventually ignite materials behind the window even with glass

  15. Though no material is "fire proof," the proper use and assembly of fire-rated building materials

    E-Print Network [OSTI]

    General Though no material is "fire proof," the proper use and assembly of fire-rated building materials can reduce a fire's spread, and lengthen the amount of time it takes for a home to ignite and burn. Structural assembly is the layering of building materials. Decks are a very popular, well-used feature

  16. Protection of Human Subjects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-05-15T23:59:59.000Z

    To establish DOE procedures and responsibilities for implementing the policy and requirements set forth in 10 CFR Part 745, Protection of Human Subjects, ad in DOE P 443.1, Policy on the Protection of Human Subjects. Cancels DOE O 1300.3. Canceled by DOE O 443.1A.

  17. Protection of Human Subjects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-12-20T23:59:59.000Z

    The order establishes Department of Energy (DOE) procedures and responsibilities for implementing the policy and requirements set forth in 10 Code of Federal Regulations (CFR) Part 745, Protection of Human Subjects; and in DOE P 443.1A, Protection of Human Subjects, dated 12-20-07. Cancels DOE O 443.1. Canceled by DOE O 443.1B.

  18. Protective Force Program Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-12-20T23:59:59.000Z

    Provides detailed requirements to supplement DOE O 473.2, PROTECTIVE FORCE PROGRAM, which establishes the requirements and responsibilities for management and operation of the Department of Energy (DOE) Protective Force (PF) Program. Change 1 revised pages in Chapters IV and VI on 12/20/2001.

  19. Environmental protection Implementation Plan

    SciTech Connect (OSTI)

    R. C. Holland

    1999-12-01T23:59:59.000Z

    This ``Environmental Protection Implementation Plan'' is intended to ensure that the environmental program objectives of Department of Energy Order 5400.1 are achieved at SNL/California. This document states SNL/California's commitment to conduct its operations in an environmentally safe and responsible manner. The ``Environmental Protection Implementation Plan'' helps management and staff comply with applicable environmental responsibilities.

  20. Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-01-15T23:59:59.000Z

    To implement sound stewardship practices that are protective of the air, water, land, and other natural and cultural resources impacted by the Department of Energy (DOE) operations and by which DOE cost effectively meets or exceeds compliance with applicable environmental; public health; and resource protection laws, regulations, and DOE requirements. Cancels DOE 5400.1 and DOE N 450.4.

  1. Environmental Protection Implementation Plan

    SciTech Connect (OSTI)

    Brekke, D.D.

    1994-01-01T23:59:59.000Z

    This Environmental Protection Implementation Plan is intended to ensure that the environmental program objectives of Department of Energy Order 5400.1 are achieved at SNL/California. The Environmental Protection Implementation Plan serves as an aid to management and staff to implement new environmental programs in a timely manner.

  2. Is the situation and immediate threat to life and health? Spill/Leak/Release Medical Emergency Fire or Flammable Gas Spill/Leak/Release Medical Emergency Fire or Flammable Gas Chemical Odor? Possible Fire / Natural Gas

    E-Print Network [OSTI]

    ? Possible Fire / Natural Gas (including chemicals and bio agents") (not including chemicals or bio agents Fire or Flammable Gas Spill/Leak/Release Medical Emergency Fire or Flammable Gas Chemical Odor

  3. Proposed finding of no significant impact for the Sakakawea Medical Center coal-fired heating plant

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The Department of Energy (the Department) has prepared an environmental assessment (Assessment) (DOE/EA-0949) to identify and evaluate the potential environmental impacts of a proposed action at the Sakakawea Medical Center (the Center) in Hazen, North Dakota. The proposed action would replace the existing No. 2 fuel oil-fired boilers supplemented by electric reheat with a new coal-fired hot water heating plant, using funds provided from a grant under the Institutional Conservation Program. Based on the analysis in DOE/EA-0949, the Department has determined that the proposed action is not a major federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969, as amended. Therefore, preparation of an Environmental Impact Statement is not required, and the Department is issuing this Finding of No Significant Impact (Finding).

  4. Content Protection for Optical Media Content Protection for Optical Media

    E-Print Network [OSTI]

    Amir, Yair

    Content Protection for Optical Media Content Protection for Optical Media A Comparison of Self-Protecting Digital Content and AACS Independent Security Evaluators www.securityevaluators.com May 3, 2005 Copyright for Optical Media 2 #12;Content Protection for Optical Media Content Protection for Optical Media 3 Executive

  5. Enhancing fire safety at Hydro plants with dry transformers

    SciTech Connect (OSTI)

    Clemen, D.M. (Harza Engineering Company, Chicago, IL (United States))

    1993-06-01T23:59:59.000Z

    Hydroelectric plant owners and engineers can use dry-type transformers to reduce fire hazards in auxiliary power systems. The decision to replace a liquid-immersed transformer with a dry-type product has a price: higher unit cost and a need to be more vigilant in detailing transformer specifications. But, whether the change affects only one failed transformer or is part of a plant rehabilitation project, the benefits in safety can be worth it. Voltages on hydroelectric plant auxiliary power systems can range from a 20 kV medium-voltage system to the normal 480-208/120 V low-voltage system. Dry transformers typically are used in such systems to reduce the fire hazard present with liquid-filled transformers. For a hydro plant owner or engineer seeking alternatives to liquid-filled transformers, there are two main kinds of dry-type transformers to consider: vacuum pressure impregnated (VPI) and cast coil epoxy resin. VPI transformers normally are manufactured in sizes up to 6,000 kVA with primary voltage ratings up to 20 kV. Cast coil transformers can be made in sizes from 75 to 10,000 kVA, with primary voltage ratings up to 34,500 V. Although the same transformer theory applies to dry transformers as to liquid-filled units, the cooling medium, air, required different temperature rise ratings, dielectric tests, and construction techniques to ensure reliability. Consequently, the factory and field tests for dry units are established by a separate set of American National Standards Institute (ANSI)/Institute of Electrical and Electronics Engineers (IEEE) standards. Cast coil transformers have several important advantages over VPI units.

  6. Review Reports | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Oversight Review, Lawrence Livermore National Laboratory - September 2013 Review of the Fire Protection Program at Lawrence Livermore National Laboratory September 23, 2013...

  7. November 2007 Standards Actions

    Broader source: Energy.gov (indexed) [DOE]

    1 American National Standards Institute (ANSI) 1 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society (ANS) 2 National Fire Protection...

  8. February 2008 Standards Actions

    Broader source: Energy.gov (indexed) [DOE]

    2 American National Standards Institute (ANSI) 2 American Society of Mechanical Engineers (ASME) 2 ASTM International 2 American Nuclear Society (ANS) 2 National Fire Protection...

  9. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    SciTech Connect (OSTI)

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30T23:59:59.000Z

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further improve NOx emissions and related combustion performance. Three coals were evaluated during the bench-scale and large pilot-scale testing tasks. The three coals ranged from a very reactive Powder River Basin coal (PRB) to a moderately reactive Midwestern bituminous coal (HVB) to a less reactive medium volatile Eastern bituminous coal (MVB). Bench-scale testing was comprised of standard ASTM properties evaluation, plus more detailed characterization of fuel properties through drop tube furnace testing and thermogravimetric analysis.

  10. Fire Hazards Analysis for the 200 Area Interim Storage Area

    SciTech Connect (OSTI)

    JOHNSON, D.M.

    2000-01-06T23:59:59.000Z

    This documents the Fire Hazards Analysis (FHA) for the 200 Area Interim Storage Area. The Interim Storage Cask, Rad-Vault, and NAC-1 Cask are analyzed for fire hazards and the 200 Area Interim Storage Area is assessed according to HNF-PRO-350 and the objectives of DOE Order 5480 7A. This FHA addresses the potential fire hazards associated with the Interim Storage Area (ISA) facility in accordance with the requirements of DOE Order 5480 7A. It is intended to assess the risk from fire to ensure there are no undue fire hazards to site personnel and the public and to ensure property damage potential from fire is within acceptable limits. This FHA will be in the form of a graded approach commensurate with the complexity of the structure or area and the associated fire hazards.

  11. Technological developments to improve combustion efficiency and pollution control in coal-fired power stations in Japan

    SciTech Connect (OSTI)

    Miyasaka, Tadahisa

    1993-12-31T23:59:59.000Z

    In 1975, approximately 60 percent of all power generating facilities in Japan were oil fired. The oil crisis in the 1970s, however, led Japanese power utilities to utilize alternatives to oil as energy sources, including nuclear power, coal, LNG, and others. As a result, by 1990, the percentage of oil-fired power generation facilities had declined to approximately 31 percent. On the other hand, coal-fired power generation, which accounted for 5.7 percent of all facilities in 1975, increased its share to 7.5 percent in 1990 and is anticipated to expand further to 13 percent by the year 2000. In order to increase the utilization of coal-fired power generation facilities in Japan, it is necessary to work out thorough measures to protect the environment, mainly to control air pollution. The technologies that are able to do this are already available. The second issue is how to improve efficiency. In this chapter, I would like to introduce technological developments that improve efficiency and that protect the environment which have been implemented in coal-fired power stations in Japan. Examples of the former, include the atmospheric fluidized bed combustion (AFBC) boiler, the pressurized fluidized bed combustion (PFBC) boiler, and the ultra super-critical (USC) steam condition turbine, and an example of the latter is the dry deSOx/deNOx. Although details are not provided in this paper, there are also ongoing projects focusing on the development of technology for integrated gasification combined cycle generation, fuel cells and other systems undertaken by the government, i.e., the Ministry of International Trade and Industry (MITI), which is committed to the New Energy and Industrial Technology Development Organization (NEDO).

  12. Methodology for developing and implementing alternative temperature-time curves for testing the fire resistance of barriers for nuclear power plant applications

    SciTech Connect (OSTI)

    Cooper, L.Y.; Steckler, K.D.

    1996-08-01T23:59:59.000Z

    Advances in fire science over the past 40 years have offered the potential for developing technically sound alternative temperature-time curves for use in evaluating fire barriers for areas where fire exposures can be expected to be significantly different than the ASTM E-119 standard temperature-time exposure. This report summarizes the development of the ASTM E-119, standard temperature-time curve, and the efforts by the federal government and the petrochemical industry to develop alternative fire endurance curves for specific applications. The report also provides a framework for the development of alternative curves for application at nuclear power plants. The staff has concluded that in view of the effort necessary for the development of nuclear power plant specific temperature-time curves, such curves are not a viable approach for resolving the issues concerning Thermo-Lag fire barriers. However, the approach may be useful to licensees in the development of performance-based fire protection methods in the future.

  13. Environmental Protection, Safety, and Health Protection Program for DOE Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1980-05-05T23:59:59.000Z

    This order establishes the Environmental Protection, Safety, and Health Protection Program for Department of Energy (DOE) operations. Cancels Interim Management Directive No. 5001, Safety, Health And Environmental Protection dated 9-29-77.

  14. FIREPLUME model for plume dispersion from fires: Application to uranium hexafluoride cylinder fires

    SciTech Connect (OSTI)

    Brown, D.F.; Dunn, W.E. [Univ. of Illinois, Champaign-Urbana, IL (United States). Dept. of Mechanical Engineering; Policastro, A.J.; Maloney, D. [Argonne National Lab., IL (United States)

    1997-06-01T23:59:59.000Z

    This report provides basic documentation of the FIREPLUME model and discusses its application to the prediction of health impacts resulting from releases of uranium hexafluoride (UF{sub 6}) in fires. The model application outlined in this report was conducted for the Draft Programmatic Environmental Impact Statement for Alternative Strategies for the Long-Term Management and Use of Depleted UF{sub 6}. The FIREPLUME model is an advanced stochastic model for atmospheric plume dispersion that predicts the downwind consequences of a release of toxic materials from an explosion or a fire. The model is based on the nonbuoyant atmospheric dispersion model MCLDM (Monte Carlo Lagrangian Dispersion Model), which has been shown to be consistent with available laboratory and field data. The inclusion of buoyancy and the addition of a postprocessor to evaluate time-varying concentrations lead to the current model. The FIREPLUME model, as applied to fire-related UF{sub 6} cylinder releases, accounts for three phases of release and dispersion. The first phase of release involves the hydraulic rupture of the cylinder due to heating of the UF{sub 6} in the fire. The second phase involves the emission of material into the burning fire, and the third phase involves the emission of material after the fire has died during the cool-down period. The model predicts the downwind concentration of the material as a function of time at any point downwind at or above the ground. All together, five fire-related release scenarios are examined in this report. For each scenario, downwind concentrations of the UF{sub 6} reaction products, uranyl fluoride and hydrogen fluoride, are provided for two meteorological conditions: (1) D stability with a 4-m/s wind speed, and (2) F stability with a 1-m/s wind speed.

  15. Testing of a coal-fired diesel power plant

    SciTech Connect (OSTI)

    Wilson, R.P.; Balles, E.N.; Benedek, K.R.; Benson, C.E. (Little (Arthur D.), Inc., Cambridge, MA (United States)); Rao, K.; Schaub, F. (Cooper-Bessemer, Mount Vernon, OH (United States)); Kimberley, J. (AMBAC, West Springfield, MA (United States)); Itse, D. (PSI Technology Co., Andover, MA (United States))

    1993-01-01T23:59:59.000Z

    The POC coal-fired power plant consists of a Cooper-Bessemer LSC-6 engine (15.5 inch bore, 22 inch stroke) rated at 400 rev/min and 208 psi bmep producing approximately 1.8 MW of power. The power plant is fueled with 'engine grade' coal slurry which has been physically cleaned to an ash level of approximately 1.5 to 2% (dry basis) and has a mean particle size of approximately 12 micron. CWS is injected directly into the combustion chamber through a fuel injector (one per cylinder) which was designed and developed to be compatible with the fuel. Each injector is fitted with a 19 orifice nozzle tip made with sapphire inserts in each orifice. The combustion chambers are fitted with twin diesel pilot injectors which provide a positive ignition source and substantially shorten the ignition delay period of the CWS fuel. Durable coatings (typically tungsten carbide) are used for the piston rings and cylinder liners to reduce wear rates. The emission control system consists of SCR for NO[sub x] control, sodium sorbent injection for SO[sub x] control, and a cyclone plus baghouse for particulate capture. The cyclone is installed upstream of the engine turbocharger which helps protect the turbine blades.

  16. Testing of a coal-fired diesel power plant

    SciTech Connect (OSTI)

    Wilson, R.P.; Balles, E.N.; Benedek, K.R.; Benson, C.E. [Little (Arthur D.), Inc., Cambridge, MA (United States); Rao, K.; Schaub, F. [Cooper-Bessemer, Mount Vernon, OH (United States); Kimberley, J. [AMBAC, West Springfield, MA (United States); Itse, D. [PSI Technology Co., Andover, MA (United States)

    1993-01-01T23:59:59.000Z

    The POC coal-fired power plant consists of a Cooper-Bessemer LSC-6 engine (15.5 inch bore, 22 inch stroke) rated at 400 rev/min and 208 psi bmep producing approximately 1.8 MW of power. The power plant is fueled with `engine grade` coal slurry which has been physically cleaned to an ash level of approximately 1.5 to 2% (dry basis) and has a mean particle size of approximately 12 micron. CWS is injected directly into the combustion chamber through a fuel injector (one per cylinder) which was designed and developed to be compatible with the fuel. Each injector is fitted with a 19 orifice nozzle tip made with sapphire inserts in each orifice. The combustion chambers are fitted with twin diesel pilot injectors which provide a positive ignition source and substantially shorten the ignition delay period of the CWS fuel. Durable coatings (typically tungsten carbide) are used for the piston rings and cylinder liners to reduce wear rates. The emission control system consists of SCR for NO{sub x} control, sodium sorbent injection for SO{sub x} control, and a cyclone plus baghouse for particulate capture. The cyclone is installed upstream of the engine turbocharger which helps protect the turbine blades.

  17. River Protection Project (RPP) Project Management Plan

    SciTech Connect (OSTI)

    NAVARRO, J.E.

    2001-03-07T23:59:59.000Z

    The Office of River Protection (ORP) Project Management Plan (PMP) for the River Protection Project (RPP) describes the process for developing and operating a Waste Treatment Complex (WTC) to clean up Hanford Site tank waste. The Plan describes the scope of the project, the institutional setting within which the project must be completed, and the management processes and structure planned for implementation. The Plan is written from the perspective of the ORP as the taxpayers' representative. The Hanford Site, in southeastern Washington State, has one of the largest concentrations of radioactive waste in the world, as a result of producing plutonium for national defense for more than 40 years. Approximately 53 million gallons of waste stored in 177 aging underground tanks represent major environmental, social, and political challenges for the U.S. Department of Energy (DOE). These challenges require numerous interfaces with state and federal environmental officials, Tribal Nations, stakeholders, Congress, and the US Department of Energy-Headquarters (DOE-HQ). The cleanup of the Site's tank waste is a national issue with the potential for environmental and economic impacts to the region and the nation.

  18. Kuwait summons more fire fighting teams

    SciTech Connect (OSTI)

    Not Available

    1991-08-05T23:59:59.000Z

    Kuwait is calling in more muscle to help kill its wild wells. This paper reports on the latest action in Kuwait, the leasing of well control contracts to Abel Engineering/Well Control Inc., Houston, and China Petroleum Engineering Construction Co. (CPEC). Abel is the sixth North American well control company called to the scene, while CPEC is the first summoned from the East. In addition, the service responsible for combating well fires and blowouts in the U.S.S.R.'s Azerbaijan oil fields signed an agreement with Kuwait's government, apparently involving a contract valued at more than $100 million, to extinguish fires at 150 Kuwaiti wells, reported Eastern Bloc Energy, a publication of Eastern Bloc Research Ltd., Newton Kyme, U.K. More help likely is on the way.

  19. Protective Force Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-02-13T23:59:59.000Z

    To prescribe Department of Energy policy, responsibilities, and requirements for the management and operation of the Protective Force Program. Chg 1 dated 2-13-95. Cancels DOE O 5632.7 and DOE O 5632.8.

  20. Environmental Protection Act (Illinois)

    Broader source: Energy.gov [DOE]

    This Act states general provisions for the protection of the environment. It also states specific regulations for air, water and land pollution as well as atomic radiation, toxic chemical and oil...

  1. United States Environmental Protection

    E-Print Network [OSTI]

    environmental problems today and building a science knowledge base necessary to manage our ecological resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risksUnited States Environmental Protection Agency Hydrogeologic Framework, Ground-Water Geochemistry

  2. Protection of Tidewaters (Georgia)

    Broader source: Energy.gov [DOE]

    The Protection of Tidewaters Act establishes the State of Georgia as the owner of the beds of all tidewaters within the State, except where title by a private party can be traced to a valid British...

  3. Protective Coatings for Turbomachinery

    E-Print Network [OSTI]

    McCune, B.; Hilty, L.

    for power plant efficiency and reliability, the need to prevent corrosion and erosion is growing. Operators, overhaulers, and manufacturers have been using protective coatings for over twenty-five years to prevent erosion and corrosion. The evolution...

  4. Groundwater Protection Act (Iowa)

    Broader source: Energy.gov [DOE]

    The Commissioner of the Iowa Department of Natural Resources is required to determine a general groundwater protection strategy and groundwater quality standards for the state, to be approved by...

  5. Protection of Human Subjects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-12-20T23:59:59.000Z

    The Policy is to establish DOE-specific principles for the protection of human subjects involved in DOE research. Cancels DOE P 443.1. Canceled by DOE O 443.1B

  6. Protection of Human Subjects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-05-15T23:59:59.000Z

    The purpose of this Policy is to establish DOE-specific policy for the protection of human subjects involved in DOE research. Canceled by DOE P 443.1A.

  7. Physical Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-12-23T23:59:59.000Z

    Establishes Department of Energy management objectives, requirements and responsibilities for the physical protection of safeguards and security interests. Cancels DOE 5632.1C. Canceled by DOE O 470.4.

  8. Mondriaan memory protection

    E-Print Network [OSTI]

    Witchel, Emmett Jethro, 1970-

    2004-01-01T23:59:59.000Z

    Reliability and security are quickly becoming users' biggest concern due to the increasing reliance on computers in all areas of society. Hardware-enforced, fine-grained memory protection can increase the reliability and ...

  9. Cavern Protection (Texas)

    Broader source: Energy.gov [DOE]

    It is public policy of the state to provide for the protection of caves on or under Texas lands. For the purposes of this legislation, “cave” means any naturally occurring subterranean cavity, and...

  10. Federal Protective Force

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-07-15T23:59:59.000Z

    This Manual establishes requirements for the management and operation of the Department of Energy (DOE) Federal protective forces (FPFs). Cancels DOE M 470.4-3, Chg 1. Canceled by DOE O 473.3.

  11. June 5, 2001 1 FIRE Cost Estimate

    E-Print Network [OSTI]

    ign Aw ard & Mobilize Ex c av ation Construct FIRE Building EA FONSI EIS PSA R DOE Approval FSA R ORR Systems $343.8M$78.5M$266.3M1 ­ Fusion Core Systems Total (FY99M$) Contingency (FY99M$) Cost (FY99M$) WBS Element #12;June 5, 2001 6 Fusion Core Systems Estimate $343.8M$78.5M$266.3MTotal Fusion Core Systems $10

  12. Agee, J. K. (1993). Fire Ecology of Pacific Northwest Forests. Washington, DC: Island Aldrich, J. W. 1963. Geographic orientation of North American Tetraonidae. J. Wildl.

    E-Print Network [OSTI]

    References A Agee, J. K. (1993). Fire Ecology of Pacific Northwest Forests. Washington, DC: Island in beaver. J. Mammal. 49(4):759-762. Aleksiuk, M. 1970. The seasonal food regime of arctic beavers. Ecology classification of ecological communities: terrestrial vegetation of the United States. Volume II. The National

  13. Voluntary Protection Program- Basics

    Broader source: Energy.gov [DOE]

    The Department of Energy Voluntary Protection Program (DOE-VPP) promotes safety and health excellence through cooperative efforts among labor, management, and government at the Department of Energy (DOE) contractor sites. DOE has also formed partnerships with other Federal agencies and the private sector for both advancing and sharing its Voluntary Protection Program (VPP) experiences and preparing for program challenges in the next century. The safety and health of contractor and federal employees are a high priority for the Department.

  14. Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-06-04T23:59:59.000Z

    The objective is to implement sound stewardship practices that are protective of the air, water, land, and other natural and cultural resources impacted by DOE operations, and meet or exceed compliance with applicable environmental, public health, and resource protection requirements cost effectively. The revision provides specific expectations for implementation of Executive Order 13423, Strengthening Federal Environment, Energy, and Transportation Management. Cancels DOE O 450.1. Canceled by DOE O 436.1.

  15. Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-01-15T23:59:59.000Z

    To implement sound stewardship practices that are protective of the air, water, land, and other natural and cultural resources impacted by the Department of Energy (DOE) operations and by which DOE cost effectively meets or exceeds compliance with applicable environmental; public health; and resource protection laws, regulations, and DOE requirements. Chg 1, dated 1-24-05; Chg 2, dated 12-7-05; Admin Chg 1, dated 1-3-07. Cancels DOE 5400.1 and DOE N 450.4.

  16. General Environmental Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1990-06-29T23:59:59.000Z

    To establish environmental protection program requirements, authorities, and responsibilities for Department of Energy (DOE) Operations for assuring compliance with applicable Federal, State and local environmental protection laws and regulations, Executive Orders, and internal Department policies. Cancels DOE O 5480.1A. Para. 2b, 4b, and 4c of Chap. II and para. 2d and 3b of Chap. III canceled by DOE O 231.1.

  17. National Historic Preservation Act and Related Legislation. Environmental Guidance Program reference book

    SciTech Connect (OSTI)

    Not Available

    1990-05-01T23:59:59.000Z

    This document contains information regarding the National Historic Preservation Act and related legislation. The act was designed to protect archaeological and historic resources.

  18. Radiation Protection | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Protection Radiation Protection Regulations: The Federal Regulation governing the use of radioactive materials at Ames Laboratory is 10 CFR 835. To implement this...

  19. NSTX-U Digital Coil Protection System Software Detailed Design

    SciTech Connect (OSTI)

    none,

    2014-06-01T23:59:59.000Z

    The National Spherical Torus Experiment (NSTX) currently uses a collection of analog signal processing solutions for coil protection. Part of the NSTX Upgrade (NSTX-U) entails replacing these analog systems with a software solution running on a conventional computing platform. The new Digital Coil Protection System (DCPS) will replace the old systems entirely, while also providing an extensible framework that allows adding new functionality as desired.

  20. Sandia National Laboratories: Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Study Shows Large LNG Fires Hotter but Smaller Than Expected On December 6, 2011, in Analysis, Energy Assurance, Infrastructure Security, Modeling, Modeling & Analysis,...