National Library of Energy BETA

Sample records for national electric transmission

  1. National Electric Transmission Congestion Study Webinars | Department...

    Energy Savers [EERE]

    Services Electricity Policy Coordination and Implementation Transmission Planning National Electric Transmission Congestion Study National Electric Transmission...

  2. 2015 National Electric Transmission Congestion Study | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 National Electric Transmission Congestion Study 2015 National Electric Transmission Congestion Study 2015 National Electric Transmission Congestion Study Section 1221(a) of...

  3. 2012 National Electric Transmission Congestion Study: Presentation...

    Energy Savers [EERE]

    2012 National Electric Transmission Congestion Study: Presentation from Congestion Study Webinar Series 2012 National Electric Transmission Congestion Study: Presentation from...

  4. 2009 National Electric Transmission Congestion Study Workshops...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Congestion Studies 2009 Congestion Study 2009 National Electric Transmission Congestion Study Workshops 2009 National Electric Transmission Congestion Study Workshops DOE...

  5. 2009 National Electric Transmission Congestion Study | Department...

    Energy Savers [EERE]

    Congestion Studies 2009 National Electric Transmission Congestion Study 2009 National Electric Transmission Congestion Study Section 216(a) of the Federal Power Act, as amended...

  6. 2006 National Electric Transmission Congestion Study Federal...

    Office of Environmental Management (EM)

    6 National Electric Transmission Congestion Study Federal Register Notice & Comments 2006 National Electric Transmission Congestion Study Federal Register Notice & Comments The...

  7. 2006 National Electric Transmission Congestion Study | Department...

    Office of Environmental Management (EM)

    6 National Electric Transmission Congestion Study 2006 National Electric Transmission Congestion Study Section 216(a) of the Federal Power Act, as amended by the Energy Policy Act...

  8. DOE Affirms National Interest Electric Transmission Corridor...

    Broader source: Energy.gov (indexed) [DOE]

    requests for rehearing of the Mid-Atlantic and the Southwest Area National Interest Electric Transmission Corridors (National Corridors) designated by DOE in October 2007 as...

  9. 2006 National Electric Transmission Congestion Study and Related...

    Office of Environmental Management (EM)

    6 National Electric Transmission Congestion Study and Related Materials 2006 National Electric Transmission Congestion Study and Related Materials The 2006 National Congestion...

  10. Draft National Electric Transmission Congestion Study Now Available...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Electric Transmission Congestion Study Now Available for Public Comment Draft National Electric Transmission Congestion Study Now Available for Public Comment August 19,...

  11. 2009 National Electric Transmission Congestion Study Notice of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Inquiry: Federal Register Notice Volume 73, No. 108 - Jun. 4, 2008 2009 National Electric Transmission Congestion Study Notice of Inquiry: Federal Register Notice Volume...

  12. 2009 National Electric Transmission Congestion Study - San Francisco...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - San Francisco Workshop 2009 National Electric Transmission Congestion Study - San Francisco Workshop On June 11, 2008, DOE hosted a regional pre-study workshop in San Francisco,...

  13. National Electric Transmission Congestion Study - Draft for Public...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Draft for Public Comment August 2014 National Electric Transmission Congestion Study - Draft for Public Comment August 2014 On August 19, 2014, the Department issued a Federal...

  14. 2009 National Electric Transmission Congestion Study- Oklahoma City Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    On June 18, 2008, DOE hosted a regional pre-study workshop in Oklahoma City, OK to receive input and suggestions concerning the 2009 National Electric Transmission Congestion Study. The agenda,...

  15. 2009 National Electric Transmission Congestion Study- Hartford Workshop

    Broader source: Energy.gov [DOE]

    On July 9, 2008, DOE hosted a regional pre-study workshop in Hartford, CT to receive input and suggestions concerning the 2009 National Electric Transmission Congestion Study. The agenda, full...

  16. National Electric Transmission Congestion Study - Philadelphia Workshop |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing SwimmingMicrosoft TheDepartmentNational Drive Electric

  17. National Electric Transmission Congestion Studies | Department...

    Office of Environmental Management (EM)

    congestion where it is significant enough to merit remediation. These are: 1), reduce electricity demand in the congested area through energy efficiency and demand management...

  18. 2012 National Electricity Forum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy U.S. Department of Energy National Electric Transmission Congestion Study Workshop - December 6, 2011 National Electric Transmission Congestion Study...

  19. Proceedings of the March 25-26, 2009 Conference for the 2009 National Electric Transmission Congestion Study- Welcome

    Broader source: Energy.gov [DOE]

    A technical workshop on the 2009 National Electric Transmission Congestion Study was held on March 25-26, 2009 to receive input from subject matter experts on the historical transmission data and...

  20. Proceedings of the March 25-26, 2009 Conference for the 2009 National Electric Transmission Congestion Study- Session 2

    Broader source: Energy.gov [DOE]

    A technical workshop on the 2009 National Electric Transmission Congestion Study was held on March 25-26, 2009 to receive input from subject matter experts on the historical transmission data and...

  1. Proceedings of the March 25-26, 2009 Conference for the 2009 National Electric Transmission Congestion Study- Session 1

    Broader source: Energy.gov [DOE]

    A technical workshop on the 2009 National Electric Transmission Congestion Study was held on March 25-26, 2009 to receive input from subject matter experts on the historical transmission data and...

  2. National Electric Transmission Congestion Study 2006 Area Maps

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department ofDepartment of Energy San Diego WorkshopElectric

  3. National Electric Transmission Congestion Study - San Diego Workshop |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department ofDepartment of Energy San Diego Workshop National

  4. National Electric Transmission Congestion Study Webinars | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing SwimmingMicrosoft TheDepartmentNational

  5. National Electric Transmission Congestion Study Workshops | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing SwimmingMicrosoft TheDepartmentNationalEnergy DOE hosted

  6. 2009 Electric Transmission Congestion Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2009 Electric Transmission Congestion Study 2009 Electric Transmission Congestion Study The 2009 National Congestion Electric Transmission Study, required by section 216(a) of the...

  7. National transmission grid study

    SciTech Connect (OSTI)

    Abraham, Spencer

    2003-05-31

    The National Energy Policy Plan directed the U.S. Department of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to address them. DOE began by conducting an independent analysis of U.S. electricity markets and identifying transmission system bottlenecks using DOE’s Policy Office Electricity Modeling System (POEMS). DOE’s analysis, presented in Section 2, confirms the central role of the nation’s transmission system in lowering costs to consumers through increased trade. More importantly, DOE’s analysis also confirms the results of previous studies, which show that transmission bottlenecks and related transmission system market practices are adding hundreds of millions of dollars to consumers’ electricity bills each year. A more detailed technical overview of the use of POEMS is provided in Appendix A. DOE led an extensive, open, public input process and heard a wide range of comments and recommendations that have all been considered.1 More than 150 participants registered for three public workshops held in Detroit, MI (September 24, 2001); Atlanta, GA (September 26, 2001); and Phoenix, AZ (September 28, 2001).

  8. 2012 National Electricity Forum

    Energy Savers [EERE]

    U.S. Department of Energy 2012 National Electric Transmission Congestion Study Eastern Regional Workshops December 6, 2011 - Philadelphia, Pennsylvania Hilton Philadelphia Airport...

  9. Designing electricity transmission auctions

    E-Print Network [OSTI]

    Greve, Thomas; Pollitt, Michael G.

    2012-10-26

    The UK has ambitious plans for exploiting offshore wind for electricity production in order to meet its challenging target under the EU Renewable Energy Directive. This could involve investing up to 20bn in transmission assets to bring electricity...

  10. Electricity Transmission, A Primer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Transmission, A Primer Electricity Transmission, A Primer This primer on electric transmission is intended to help policymakers understand the physics of the...

  11. 2012 National Electric Transmission Congestion Study Workshop Â… December 13, 2011

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s t a nsecondof2011ofNational Electric

  12. National Transmission Grid Study: 2002 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy (DOE) to conduct a study to examine the benefits of establishing a national electricity transmission grid and to identify transmission bottlenecks and measures to...

  13. A Survey of National Transmission Grid Modeling Capabilities at DOE

    E-Print Network [OSTI]

    Howle, Victoria E.

    711712003 A Survey of National Transmission Grid Modeling Capabilities at DOE Laboratories Steve Data Sheets.................................................................... 9 Electricity Market Complex Adaptive Systems (EMCAS)..................10 Generation and Transmission Maximization (GTMAX

  14. Electricity Transmission, Pipelines, and National Trails. An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, Alaska, and Hawaii

    SciTech Connect (OSTI)

    Kuiper, James A; Krummel, John R; Hlava, Kevin J; Moore, H Robert; Orr, Andrew B; Schlueter, Scott O; Sullivan, Robert G; Zvolanek, Emily A

    2014-03-25

    As has been noted in many reports and publications, acquiring new or expanded rights-of-way for transmission is a challenging process, because numerous land use and land ownership constraints must be overcome to develop pathways suitable for energy transmission infrastructure. In the eastern U.S., more than twenty federally protected national trails (some of which are thousands of miles long, and cross many states) pose a potential obstacle to the development of new or expanded electricity transmission capacity. However, the scope of this potential problem is not well-documented, and there is no baseline information available that could allow all stakeholders to study routing scenarios that could mitigate impacts on national trails. This report, Electricity Transmission, Pipelines, and National Trails: An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, was prepared by the Environmental Science Division of Argonne National Laboratory (Argonne). Argonne was tasked by DOE to analyze the “footprint” of the current network of National Historic and Scenic Trails and the electricity transmission system in the 37 eastern contiguous states, Alaska, and Hawaii; assess the extent to which national trails are affected by electrical transmission; and investigate the extent to which national trails and other sensitive land use types may be affected in the near future by planned transmission lines. Pipelines are secondary to transmission lines for analysis, but are also within the analysis scope in connection with the overall directives of Section 368 of the Energy Policy Act of 2005, and because of the potential for electrical transmission lines being collocated with pipelines. Based on Platts electrical transmission line data, a total of 101 existing intersections with national trails on federal land were found, and 20 proposed intersections. Transmission lines and pipelines are proposed in Alaska; however there are no locations that intersect national trails. Source data did not indicate any planned transmission lines or pipelines in Hawaii. A map atlas provides more detailed mapping of the topics investigated in this study, and the accompanying GIS database provides the baseline information for further investigating locations of interest. In many cases the locations of proposed transmission lines are not accurately mapped (or a specific route may not yet be determined), and accordingly the specific crossing locations are speculative. However since both national trails and electrical transmission lines are long linear systems, the characteristics of the crossings reported in this study are expected to be similar to both observed characteristics of the existing infrastructure provided in this report, and of the new infrastructure if these proposed projects are built. More focused study of these siting challenges is expected to mitigate some of potential impacts by choosing routes that minimize or eliminate them. The current study primarily addresses a set of screening-level characterizations that provide insights into how the National Trail System may influence the siting of energy transport facilities in the states identified under Section 368(b) of the Energy Policy Act of 2005. As such, it initializes gathering and beginning analysis of the primary environmental and energy data, and maps the contextual relationships between an important national environmental asset and how this asset intersects with energy planning activities. Thus the current study sets the stage for more in-depth analyses and data development activities that begin to solve key transmission siting constraints. Our recommendations for future work incorporate two major areas: (1) database development and analytics and (2) modeling and scenario analysis for energy planning. These recommendations provide a path forward to address key issues originally developed under the Energy Policy Act of 2005 that are now being carried forward under the President’s Climate Action Plan.

  15. Proceedings of the March 29, 2006 Conference for the 2006 National Electric Transmission Congestion Study- Session 2

    Broader source: Energy.gov [DOE]

    A public technical conference on the 2006 congestion study and criteria for designating National Interest Electric Tranmission Corridors was held on March 29, 2006.

  16. Proceedings of the March 29, 2006 Conference for the 2006 National Electric Transmission Congestion Study- Session 3

    Broader source: Energy.gov [DOE]

    A public technical conference on the 2006 congestion study and criteria for designating National Interest Electric Tranmission Corridors was held on March 29, 2006.

  17. Proceedings of the March 29, 2006 Conference for the 2006 National Electric Transmission Congestion Study- Session 1

    Broader source: Energy.gov [DOE]

    A public technical conference on the 2006 congestion study and criteria for designating National Interest Electric Tranmission Corridors was held on March 29, 2006. 

  18. Electrical transmission line diametrical retainer

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

    2004-12-14

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within down hole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to with stand the tension and compression of drill pipe during routine drilling cycles.

  19. Colorado Electrical Transmission Grid

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Originator: Xcel Energy Publication Date: 2012 Title: Colorado XcelEnergy NonXcel Transmission Network Edition: First Publication Information: Publication Place: Earth Science & Observation Center, Cooperative Institute for Research in Environmental Science (CIRES), University of Colorado, Boulder Publisher: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Description: This layer contains transmission network of Colorado Spatial Domain: Extent: Top: 4540689.017558 m Left: 160606.141934 m Right: 758715.946645 m Bottom: 4098910.893397m Contact Information: Contact Organization: Earth Science &Observation Center (ESOC), CIRES, University of Colorado at Boulder Contact Person: Khalid Hussein Address: CIRES, Ekeley Building Earth Science & Observation Center (ESOC) 216 UCB City: Boulder State: CO Postal Code: 80309-0216 Country: USA Contact Telephone: 303-492-6782 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System ’1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shapefile

  20. Regulating Electricity Transmission in the European Union -How Many

    E-Print Network [OSTI]

    1 Regulating Electricity Transmission in the European Union - How Many Agencies? chapter 4 in A-77 Claude Crampes (TSE) Lucile Rives (CRE) National electric grids in Europe have been interconnected since, the more national electric systems need to be interconnected to provide one another mutual assistance

  1. Transmission and Generation Investment in Electricity Markets

    E-Print Network [OSTI]

    Mar 4, 2015 ... Transmission and Generation Investment in Electricity Markets: The Effects of Market Splitting and Network Fee Regimes.

  2. BPA, Electric Transmission Overview, October 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B O N N E V I L L E P O W E R A D M I N I S T R A T I O N Electric Transmission Overview Electric transmission Electric transmission is the process by which large amounts of...

  3. Electricity transmission congestion costs: A review of recent reports

    E-Print Network [OSTI]

    Lesieutre, Bernard C.; Eto, Joseph H.

    2003-01-01

    Commission). 2001. Electric Transmission Constraint Study.by the Office of Electric Transmission and Distribution ofCommission (FERC), Electric Transmission Constraint Study (

  4. Electricity transmission congestion costs: A review of recent reports

    E-Print Network [OSTI]

    Lesieutre, Bernard C.; Eto, Joseph H.

    2003-01-01

    LBNL-54049 Electricity Transmission Congestion Costs: Astate of U.S. electricity transmission system and whether itof the U.S. electricity transmission system for enabling

  5. Allocating Transmission to Mitigate Market Power in Electricity Markets

    E-Print Network [OSTI]

    Gilbert, Richard; Neuhoff, Karsten; Newberry, David

    2002-01-01

    A. In Europe most electricity transmission auctions areare possible on every electricity transmission link in thepassive transmission rights in congested electricity systems

  6. National Transmission Grid Study

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department ofDepartment ofEnergyIncreasedNational104-113] |Grid

  7. Modeling Interregional Transmission Congestion in the National Energy Modeling System

    E-Print Network [OSTI]

    Gumerman, Etan; Chan, Peter; Lesieutre, Bernard; Marnay, Chris; Wang, Juan

    2006-01-01

    NEMS does not track electricity transmission within regions,international electricity transmission with Canada andwhen solving for electricity transmission, the coal plants

  8. Comments of New England Electric Transmission Corporation on...

    Office of Environmental Management (EM)

    out of time and comments of New England Electric Transmission Corporation, New England Hydro-Transmission Electric Company, Inc. and New England Hydro-Transmission Corporation and...

  9. WESTERN MONTANA ELECTRIC GENERATING & TRANSMISSION COOPERATIVE, INC.

    E-Print Network [OSTI]

    1 WESTERN MONTANA ELECTRIC GENERATING & TRANSMISSION COOPERATIVE, INC. 1001 SW Higgins, Panorama, but not the more fundamental issues of stakeholder definition, future role, governance and structure. We

  10. Coordination of Federal Authorizations for Electric Transmission...

    Broader source: Energy.gov (indexed) [DOE]

    rulemaking and opportunity for comment on the coordination of federal authorizations for electric transmission facilities, September 19, 2008 Coordination of Federal...

  11. Trends In U.S. Electric Power Transmission

    SciTech Connect (OSTI)

    NONE

    2007-11-15

    The report provides an overview of the changes that are occurring in the industry to implement the goals of improved reliability and reduced congestion costs. As the electric industry works to become a more efficient market, transmission stands as a key link between the competitive generation and the regulated distribution sectors. In this role as a key link, transmission is a major focus of government efforts to improve reliability and reduce congestion costs. The scope of the report is to analyze the dominant reliability, investment, siting, and competition/open access trends that are occurring in the domestic electric transmission industry. Topics covered include: the impact of the 2003 Northeast blackout on reliability rules; the move from voluntary to mandatory reliability standards; the advent of real-time transmission system monitoring; ISO/RTO efforts to improve system reliability; the drivers of government intervention in transmission investment; the move towards incentive-based rates for transmission investment; legislative and regulatory efforts to spur transmission investment to support renewable energy resources; the emergence of merchant transmission; the need for federal backstop authority on regional transmission projects; the designation of national interest electric transmission corridors; FERC Orders on siting transmission; the need for changes in open access and competition regulations; FERC efforts to increase open access and competition; legislative efforts to increase competition; and, current competitive issues in the industry.

  12. Chapter 5. Transmission networks and electricity markets

    E-Print Network [OSTI]

    Ernst, Damien

    of the world: assumptions that electrical energy can be traded as if all generators were connected to the same for electrical energy. In this lesson: we study the effects that a transmission network has on trading of electrical energy and the special techniques that can be used to hedge against these limitations. 2 #12

  13. Improving Electricity Resource-Planning Processes by Considering the Strategic Benefits of Transmission

    E-Print Network [OSTI]

    Budhraja, Vikram

    2010-01-01

    impacts of new electricity transmission projects generallyof high- voltage electricity transmission projects, such asby others. Electricity transmission facilities fit these

  14. Transmission Design at the National Level: Benefits, Risks and Possible Paths Forward

    E-Print Network [OSTI]

    Electric Energy System #12;Transmission Design at the National Level: Benefits, Risks and Possible Paths Electricity Coordinating Council (WECC) Dale Osborn, Consulting Advisor, Transmission Management, MidwestTransmission Design at the National Level: Benefits, Risks and Possible Paths Forward Future Grid

  15. Electric Power Generation and Transmission (Iowa)

    Broader source: Energy.gov [DOE]

    Electric power generating facilities with a combined capacity greater than 25 MW, as well as associated transmission lines, may not be constructed or begin operation prior to the issuance of a...

  16. Updating the Electric Grid: An Introduction to Non-Transmission...

    Energy Savers [EERE]

    Updating the Electric Grid: An Introduction to Non-Transmission Alternatives for Policymakers Updating the Electric Grid: An Introduction to Non-Transmission Alternatives for...

  17. Plan to Conduct Electric Transmission Congestion Study: Federal...

    Office of Environmental Management (EM)

    Plan to Conduct Electric Transmission Congestion Study: Federal Register Volume 76, No. 218 - Nov. 10, 2011 Plan to Conduct Electric Transmission Congestion Study: Federal Register...

  18. DOE EAC Electricity Adequacy Report. Transmission Chapter DRAFT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EAC Electricity Adequacy Report. Transmission Chapter DRAFT- September 18, 2008 DOE EAC Electricity Adequacy Report. Transmission Chapter DRAFT- September 18, 2008 The purpose of...

  19. QER Public Meeting in Portland, OR: Electricity Transmission...

    Energy Savers [EERE]

    Portland, OR: Electricity Transmission, Storage and Distribution - West QER Public Meeting in Portland, OR: Electricity Transmission, Storage and Distribution - West Meeting Date...

  20. Transmission Design at the National Level: Benefits, Risks and Possible Paths Forward

    E-Print Network [OSTI]

    Electric Energy System #12;Transmission Design at the National Level: Benefits, Risks and Possible Paths Planning, Western Electricity Coordinating Council (WECC) · Dale Osborn, Consulting Advisor, Transmission to move electric energy interregionally is limited to the capacity of the existing transmission system

  1. Electrical Transmission Line Diametrical Retention Mechanism

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

    2006-01-03

    The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within downhole components. The invention allows a transmission line to be attached to the internal diameter of drilling components that have a substantially uniform drilling diameter. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to withstand the tension and compression of drill pipe during routine drilling cycles.

  2. Corrigendum Corrigendum to "Gap junction-mediated electrical transmission

    E-Print Network [OSTI]

    Rash, John E.

    Corrigendum Corrigendum to "Gap junction-mediated electrical transmission: Regulatory mechanisms, show variability in the electrical conductance of the synaptic transmission, even though the pre chemical component. Thus, electrical synapses from neighboring club endings coexist at different degrees

  3. Cellular/Molecular Connexin35 Mediates Electrical Transmission at Mixed

    E-Print Network [OSTI]

    Rash, John E.

    Cellular/Molecular Connexin35 Mediates Electrical Transmission at Mixed Synapses on Mauthner Cells regions, suggesting that connexin35-mediated electrical transmission is common in goldfish brain" (electrical and chemical) synaptic terminals that offer the unique opportunity to correlate physiological

  4. National Electric Transmission Congestion Study

    Office of Environmental Management (EM)

    DOE U.S. Department of Energy DSIRE Database of State Incentives for Renewables & Efficiency EIA Energy Information Administration EISPC Eastern Interconnection States Planning...

  5. National Electric Transmission Congestion Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOriginMaterials byNatasha

  6. Electric Transmission Line Siting Compact

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofApril 25,EVtheEnergyPrepared for WesternElectric

  7. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01

    DOE). 2006. National Electric Transmission Congestion Study.Division. 2003. Electric Transmission Plan for RenewableIdentifying Minnesota’s Electric Transmission Infrastructure

  8. Sixth Northwest Conservation and Electric Power Plan Chapter 7: Transmission

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Chapter 7: Transmission Summary of Key..................................................................................................................................... 1 Northwest Transmission Planning), there was concern that there had been little progress on addressing the developing transmission issues in the region

  9. J.S. 24 POWER TRANSMISSION AND DISTRIBUTION; VECTORS; ELECTRIC...

    Office of Scientific and Technical Information (OSTI)

    power and power factor of instantaneous phasors Hsu, J.S. 24 POWER TRANSMISSION AND DISTRIBUTION; VECTORS; ELECTRIC CURRENTS; ELECTRIC POTENTIAL; MONITORING; POWER SYSTEMS;...

  10. Scheduling Planned Maintenance of Electrical Power Transmission Networks Using

    E-Print Network [OSTI]

    Fernandez, Thomas

    Scheduling Planned Maintenance of Electrical Power Transmission Networks Using Genetic Algorithms Technical Report: CSRP­97­26 10 November 1997 Abstract The maintenance of the electrical power transmission Plan­ ning, Electricity Transmission Networks. 1 To appear in In Gennady K. Voronovsky and Serguey A

  11. Improving Electricity Resource-Planning Processes by Considering the Strategic Benefits of Transmission

    E-Print Network [OSTI]

    Budhraja, Vikram

    2010-01-01

    Upgrading California’s Electric Transmission System: Issuesshould be adapted to transmission electric system planning,Mobasheri, (Electric Power Group, LLC). 2008. Transmission

  12. Identification and definition of unbundled electric generation and transmission services

    SciTech Connect (OSTI)

    Kirby, B.; Hirst, E.; Vancoevering, J.

    1995-03-01

    State and federal regulators, private and public utilities, large and small customers, power brokers and marketers, and others are engaged in major debates about the future structure of the electric industry. Although the outcomes are far from certain, it seems clear that customers will have much greater choices about the electric services they purchase and from whom they buy these services. This report examines the ``ancillary`` services that are today buried within the typical vertically integrated utility. These ancillary services support and make possible the provision of the basic services of generating capacity, energy supply, and power delivery. These ancillary services include: Management of generating units; reserve generating capacity to follow variations in customer loads, to provide capacity and energy when generating units or transmission lines suddenly fall, to maintain electric-system stability, and to provide local-area security; transmission-system monitoring and control; replacement of real power and energy losses; reactive-power management and voltage regulation; transmission reserves; repair and maintenance of the transmission network; metering, billing, and communications; and assurance of appropriate levels of power quality. Our focus in this report, the first output from a larger Oak Ridge National Laboratory project, is on identification and definition of these services. Later work in this project will examine more closely the costs and pricing options for each service.

  13. Transmission rights and market power on electric power networks

    E-Print Network [OSTI]

    Joskow, Paul L.

    2000-01-01

    We analyze whether and how the allocation of transmission rights associated with the use of electric power networks affects the behavior of electricity generators and electricity consumers with market power. We consider ...

  14. VULNERABILITY OF BLUETOOTH TO IMPULSIVE NOISE IN ELECTRICITY TRANSMISSION SUBSTATIONS

    E-Print Network [OSTI]

    Atkinson, Robert C

    be routed around electricity substation compounds wirelessly. Furthermore, wireless communication with the deployment of Bluetooth (and other similar wireless technologies) in electricity substations for controlVULNERABILITY OF BLUETOOTH TO IMPULSIVE NOISE IN ELECTRICITY TRANSMISSION SUBSTATIONS S A Bhattil

  15. National Electrical Manufacturers Association (NEMA) Response...

    Office of Environmental Management (EM)

    Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI National Electrical Manufacturers Association (NEMA) Response to Smart Grid RFI The National Electrical...

  16. Gap junction-mediated electrical transmission: Regulatory mechanisms and plasticity

    E-Print Network [OSTI]

    Rash, John E.

    Gap junction-mediated electrical transmission: Regulatory mechanisms and plasticity Alberto E of synaptic transmission: chemical and electrical. While most efforts have been dedicated to the understanding in revised form 16 May 2012 Accepted 23 May 2012 Available online 31 May 2012 Keywords: Electrical synapse

  17. Transmission investment and expansion planning in a restructured electricity market

    E-Print Network [OSTI]

    Leung, Ka-Cheong

    Transmission investment and expansion planning in a restructured electricity market F.F Wua,b , F.L. Zhengb,c , F.S. Wena,b, * a Center for Electrical Energy Systems, University of Hong Kong, Pokfulam Road, Guangzhou, 510640, China Abstract Transmission planning in a restructured electricity market becomes

  18. Notice of Technical Workshop in Support of 2009 Electric Transmission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Workshop in Support of 2009 Electric Transmission Congestion Study: Federal Register Volume 74, No. 32 - Feb. 19, 2009 Notice of Technical Workshop in Support of 2009...

  19. Edison Electric Institute State Generation and Transmission Siting...

    Open Energy Info (EERE)

    Edison Electric Institute State Generation and Transmission Siting Directory Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance -...

  20. Today's electrical transmission system delivers high levels of

    E-Print Network [OSTI]

    Post, Wilfred M.

    #12;Today's electrical transmission system delivers high levels of reliability, and society's needs for electricity demand that reliability be maintained as we transition to clean electricity generation of conventional and superconducting conductors. The power grid is a complex machine in which electricity is gener

  1. Electricity generation with looped transmission networks: Bidding to an ISO

    E-Print Network [OSTI]

    Ferris, Michael C.

    Electricity generation with looped transmission networks: Bidding to an ISO Xinmin Hu Daniel Ralph to model markets for delivery of electrical power on looped transmission networks. It analyzes, 2323 Audubon St, New Orleans, LA 70125-4117, USA; www.EKonomicsLLC.com ¶ Department of Economics

  2. 10 Year Transmission Plan for the Western Electricity Interconnection Released

    Broader source: Energy.gov [DOE]

    The Western Electricity Coordinating Council (WECC) announced the release of its first 10-Year Regional Transmission Plan (Plan) for the Western Interconnection. The Office of Electricity Delivery and Energy Reliability awarded WECC a $14.5 million grant under the American Recovery and Reinvestment Act to expand on its transmission planning activities.

  3. TRANSMISSION EFFECTS IN MARKET POWER ANALYSIS OF ELECTRICITY MARKETS

    E-Print Network [OSTI]

    Gross, George

    TRANSMISSION EFFECTS IN MARKET POWER ANALYSIS OF ELECTRICITY MARKETS Thomas J. Overbye George Gross-weber@uiuc.edu Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801 ABSTRACT This paper discusses the assessment of market power in bulk electricity markets, with the explicit

  4. Optimal Transmission Switching in Electric Networks for Improved Economic Operations1

    E-Print Network [OSTI]

    Ferris, Michael C.

    1 Optimal Transmission Switching in Electric Networks for Improved Economic Operations1 Emily. Abstract Growing demand for electric power seems to necessitate new transmission lines, but obstacles" bulk electric grid, one that is more controllable and flexible. Optimal transmission switching

  5. California's electricity system of the future scenario analysis in support of public-interest transmission system R&D planning

    E-Print Network [OSTI]

    Eto, Joseph; Stovall, John P.

    2003-01-01

    The Future of Electric Transmission in the United States.Environmental Impacts of Electric Transmission In order toTransmission R&D Planning Underwater application of electric

  6. California's electricity system of the future scenario analysis in support of public-interest transmission system R&D planning

    E-Print Network [OSTI]

    Eto, Joseph; Stovall, John P.

    2003-01-01

    Impacts of Electricity Transmission Scenario Analysis forImpacts of Electricity Transmission Scenario Analysis forhas also commissioned Electricity Transmission Research and

  7. Exotic Electricity Options and the Valuation of Electricity Generation and Transmission

    E-Print Network [OSTI]

    Exotic Electricity Options and the Valuation of Electricity Generation and Transmission Assets a methodology for valuing electricity deriva- tives by constructing replicating portfolios from electricity-storable nature of electricity, which rules out the traditional spot mar- ket, storage-based method of valuing

  8. EIS-0166: Bangor Hydro-Electric Transmission Line, Maine

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Department of Energy prepared this environmental impact statement while considering whether to authorize a Presidential permit for Bangor Hydro to construct a new electric transmission facility at the U.S. border with Canada.

  9. Idaho - IC 61-516 - Priority Designation for Electric Transmission...

    Open Energy Info (EERE)

    Idaho - IC 61-516 - Priority Designation for Electric Transmission Projects Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation:...

  10. Transmission Pricing Issues for Electricity Generation From Renewable Resources

    Reports and Publications (EIA)

    1999-01-01

    This article discusses how the resolution of transmission pricing issues which have arisen under the Federal Energy Regulatory Commission's (FERC) open access environment may affect the prospects for renewable-based electricity.

  11. Electrical and Biological Effects of Transmission Lines: A Review.

    SciTech Connect (OSTI)

    Lee, Jack M.

    1989-06-01

    This review describes the electrical properties of a-c and d-c transmission lines and the resulting effects on plants, animals, and people. Methods used by BPA to mitigate undesirable effects are also discussed. Although much of the information in this review pertains to high-voltage transmission lines, information on distribution lines and electrical appliances is included. The electrical properties discussed are electric and magnetic fields and corona: first for alternating-current (a-c) lines, then for direct current (d-c).

  12. Infrastructure Needs: Natural Gas/Electricity Transmission,...

    Broader source: Energy.gov (indexed) [DOE]

    miles of transmission lines, 72,000 miles of distribution lines, and 6,300 miles of natural gas pipelines. Our over 8,600 employees are committed to our mission to deliver...

  13. Case Study - National Rural Electric Cooperative Association...

    Office of Environmental Management (EM)

    National Rural Electric Cooperative Association Smart Grid Investment Grant 1 Helping America's Electric Cooperatives Build a Smarter Grid to Streamline Operations and Improve...

  14. Coordinating Interstate Electric Transmission Siting: An Introduction...

    Open Energy Info (EERE)

    experts have started drawing att ention to the need to improve the system that transmits electricity from power plants to demand centers. Congestion on existing lines, increased...

  15. Economics of Electric Compressors for Gas Transmission 

    E-Print Network [OSTI]

    Schmeal, W. R.; Hibbs, J. J.

    1994-01-01

    Three new factors are coming together to motivate gas pipeline firms to consider electric motors for replacement of older reciprocating gas engines for compressor systems, and for new compressor installations. These factors are environmental...

  16. Electric Transmission Siting | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence,NewInformation at SantaTransmission Siting Jump

  17. Financing a National Transmission Grid: What Are the Issues?

    E-Print Network [OSTI]

    Metcalf, Gilbert E.

    The United States requires a substantial investment in transmission capacity over the next several decades. This investment is needed to ensure system reliability, to accommodate growth in demand for electricity, and to ...

  18. Wireless Sensor Network for Electric Transmission Line Monitoring

    SciTech Connect (OSTI)

    Alphenaar, Bruce

    2009-06-30

    Generally, federal agencies tasked to oversee power grid reliability are dependent on data from grid infrastructure owners and operators in order to obtain a basic level of situational awareness. Since there are many owners and operators involved in the day-to-day functioning of the power grid, the task of accessing, aggregating and analyzing grid information from these sources is not a trivial one. Seemingly basic tasks such as synchronizing data timestamps between many different data providers and sources can be difficult as evidenced during the post-event analysis of the August 2003 blackout. In this project we investigate the efficacy and cost effectiveness of deploying a network of wireless power line monitoring devices as a method of independently monitoring key parts of the power grid as a complement to the data which is currently available to federal agencies from grid system operators. Such a network is modeled on proprietary power line monitoring technologies and networks invented, developed and deployed by Genscape, a Louisville, Kentucky based real-time energy information provider. Genscape measures transmission line power flow using measurements of electromagnetic fields under overhead high voltage transmission power lines in the United States and Europe. Opportunities for optimization of the commercial power line monitoring technology were investigated in this project to enable lower power consumption, lower cost and improvements to measurement methodologies. These optimizations were performed in order to better enable the use of wireless transmission line monitors in large network deployments (perhaps covering several thousand power lines) for federal situational awareness needs. Power consumption and cost reduction were addressed by developing a power line monitor using a low power, low cost wireless telemetry platform known as the ''Mote''. Motes were first developed as smart sensor nodes in wireless mesh networking applications. On such a platform, it has been demonstrated in this project that wireless monitoring units can effectively deliver real-time transmission line power flow information for less than $500 per monitor. The data delivered by such a monitor has during the course of the project been integrated with a national grid situational awareness visualization platform developed by Oak Ridge National Laboratory. Novel vibration energy scavenging methods based on piezoelectric cantilevers were also developed as a proposed method to power such monitors, with a goal of further cost reduction and large-scale deployment. Scavenging methods developed during the project resulted in 50% greater power output than conventional cantilever-based vibrational energy scavenging devices typically used to power smart sensor nodes. Lastly, enhanced and new methods for electromagnetic field sensing using multi-axis magnetometers and infrared reflectometry were investigated for potential monitoring applications in situations with a high density of power lines or high levels of background 60 Hz noise in order to isolate power lines of interest from other power lines in close proximity. The goal of this project was to investigate and demonstrate the feasibility of using small form factor, highly optimized, low cost, low power, non-contact, wireless electric transmission line monitors for delivery of real-time, independent power line monitoring for the US power grid. The project was divided into three main types of activity as follows; (1) Research into expanding the range of applications for non-contact power line monitoring to enable large scale low cost sensor network deployments (Tasks 1, 2); (2) Optimization of individual sensor hardware components to reduce size, cost and power consumption and testing in a pilot field study (Tasks 3,5); and (3) Demonstration of the feasibility of using the data from the network of power line monitors via a range of custom developed alerting and data visualization applications to deliver real-time information to federal agencies and others tasked with grid reliability (Tasks 6,8)

  19. National Electric Transmission Congestion Study Workshops | Department...

    Office of Environmental Management (EM)

    incorrectly stated that the four regional workshops would be simulcast over the Internet and that advanced registration for the Webcasts was required. The workshops were not...

  20. National Electric Transmission Congestion Study - Portland Workshop |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department of

  1. National Electric Transmission Congestion Study: Preliminary Findings |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department ofDepartment of Energy San DiegoEXECUTIVE

  2. Electricity Transmission and Distribution Technologies Available for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find what youSummer InternshipPower ElectricLicensing - Energy

  3. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, Jerome B. (Fredericksburg, VA); Boothe, Richard W. (Roanoke, VA); Konrad, Charles E. (Roanoke, VA)

    1995-01-01

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox.

  4. Electric vehicle drive train with direct coupling transmission

    DOE Patents [OSTI]

    Tankersley, J.B.; Boothe, R.W.; Konrad, C.E.

    1995-04-04

    An electric vehicle drive train includes an electric motor and an associated speed sensor, a transmission operable in a speed reduction mode or a direct coupled mode, and a controller responsive to the speed sensor for operating the transmission in the speed reduction mode when the motor is below a predetermined value, and for operating the motor in the direct coupled mode when the motor speed is above a predetermined value. The controller reduces the speed of the motor, such as by regeneratively braking the motor, when changing from the speed reduction mode to the direct coupled mode. The motor speed may be increased when changing from the direct coupled mode to the speed reduction mode. The transmission is preferably a single stage planetary gearbox. 6 figures.

  5. Electric Utility Transmission and Distribution Line Engineering Program

    SciTech Connect (OSTI)

    Peter McKenny

    2010-08-31

    Economic development in the United States depends on a reliable and affordable power supply. The nation will need well educated engineers to design a modern, safe, secure, and reliable power grid for our future needs. An anticipated shortage of qualified engineers has caused considerable concern in many professional circles, and various steps are being taken nationwide to alleviate the potential shortage and ensure the North American power system's reliability, and our world-wide economic competitiveness. To help provide a well-educated and trained workforce which can sustain and modernize the nation's power grid, Gonzaga University's School of Engineering and Applied Science has established a five-course (15-credit hour) Certificate Program in Transmission and Distribution (T&D) Engineering. The program has been specifically designed to provide working utility engineering professionals with on-line access to advanced engineering courses which cover modern design practice with an industry-focused theoretical foundation. A total of twelve courses have been developed to-date and students may select any five in their area of interest for the T&D Certificate. As each course is developed and taught by a team of experienced engineers (from public and private utilities, consultants, and industry suppliers), students are provided a unique opportunity to interact directly with different industry experts over the eight weeks of each course. Course material incorporates advanced aspects of civil, electrical, and mechanical engineering disciplines that apply to power system design and are appropriate for graduate engineers. As such, target students for the certificate program include: (1) recent graduates with a Bachelor of Science Degree in an engineering field (civil, mechanical, electrical, etc.); (2) senior engineers moving from other fields to the utility industry (i.e. paper industry to utility engineering or project management positions); and (3) regular working professionals wishing to update their skills or increase their knowledge of utility engineering design practices and procedures. By providing graduate educational opportunities for the above groups, the T&D Program will help serve a strong industry need for training the next generation of engineers in the cost-effective design, construction, operation, and maintenance of modern electrical transmission and distribution systems. In addition to developing the on-line engineering courses described above, the T&D Program also focused significant efforts towards enhancing the training opportunities available to power system operators in the northwest. These efforts have included working with outside vendors to provide NERC-approved training courses in Gonzaga University's (GU) system operator training facility, support for an accurate system model which can be used in regional blackstart exercises, and the identification of a retired system operator who could provide actual regional training courses. The GU system operator training facility is also being used to recruit young workers, veterans, and various under-represented groups to the utility industry. Over the past three years students from Columbia Gorge Community College, Spokane Falls Community College, Walla Walla Community College, Central Washington University, Eastern Washington University, Gonzaga University, and various local high schools have attended short (one-day) system operator training courses free of charge. These collaboration efforts has been extremely well received by both students and industry, and meet T&D Program objectives of strengthening the power industry workforce while bridging the knowledge base across power worker categories, and recruiting new workers to replace a predominantly retirement age workforce. In the past three years the T&D Program has provided over 170 utility engineers with access to advanced engineering courses, been involved in training more than 300 power system operators, and provided well over 500 college and high school students with an experienc

  6. Furnace Blower Electricity: National and Regional Savings Potential

    E-Print Network [OSTI]

    Franco, Victor; Florida Solar Energy Center

    2008-01-01

    Inc. Pigg, Scott. 2003. Electricity Use by New Furnaces: Astage furnaces offer national electricity savings, but withABORATORY Furnace Blower Electricity: National and Regional

  7. Record of Categorical Exclusion (CX) Determination: National...

    Office of Environmental Management (EM)

    National Electric Transmission Congestion Study Record of Categorical Exclusion (CX) Determination: National Electric Transmission Congestion Study Based on OE's review of the...

  8. Idaho/Transmission/State Regulations | Open Energy Information

    Open Energy Info (EERE)

    direct authority to site high-voltage transmission lines is limited to transmission lines located within National Interstate Electric Transmission Corridors (NIETC); however,...

  9. Electric and magnetic field reduction by alternative transmission line options

    SciTech Connect (OSTI)

    Stewart, J.R. (Power Technologies, Inc., Schenectady, NY (United States)); Dale, S.J. (Oak Ridge National Lab., TN (United States)); Klein, K.W. (Energetics, Inc., Columbia, MD (United States))

    1991-01-01

    Ground level electric, and more recently magnetic, fields from overhead power transmission lines are increasingly important considerations in right of way specification, with states setting or planning to set edge of right of way limits. Research has been conducted in high phase order power transmission wherein six of twelve phases are used to transmit power in less physical space and with reduced electrical environmental effects than conventional designs. The first magnetic field testing, as reported in this paper, has verified predictive methods for determination of magnetic fields from high phase order lines. Based on these analytical methods, field profiles have been determined for lines of different phase order of comparable power capacity. Potential advantages of high phase order as a means of field mitigation are discussed. 10 refs., 12 figs., 3 tabs.

  10. Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2009-12-01

    The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

  11. Electricity Transmission Pricing: How much does it cost to get it wrong?

    E-Print Network [OSTI]

    California at Berkeley. University of

    PWP-058 Electricity Transmission Pricing: How much does it cost to get it wrong? Richard Green Channing Way Berkeley, California 94720-5180 www.ucei.berkeley.edu/ucei #12;Electricity Transmission optimal prices for electricity transmission. These are rarely applied in practice. This paper develops

  12. A stochastic framework for uncertainty analysis in electric power transmission systems with wind generation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of generating units, the transfer of electric power over networks of transmission lines and, finally1 A stochastic framework for uncertainty analysis in electric power transmission systems with wind an electric transmission network with wind power generation and their impact on its reliability. A stochastic

  13. 2012 National Electricity Forum: February 8-9, 2012 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012 National Electricity Forum: February 8-9, 2012 2012 National Electricity Forum: February 8-9, 2012 January 4, 2012 - 11:28am Addthis The 2012 National Electricity Forum will...

  14. A National Grid Energy Storage Strategy - Electricity Advisory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Grid Energy Storage Strategy - Electricity Advisory Committee - January 2014 A National Grid Energy Storage Strategy - Electricity Advisory Committee - January 2014 The...

  15. Number and propagation of line outages in cascading events in electric power transmission systems

    E-Print Network [OSTI]

    Dobson, Ian

    Number and propagation of line outages in cascading events in electric power transmission systems that progressively weakens the system. Large electric power transmission systems occasionally have cascading failures of transmission lines. The multiple mechanisms involved these cascading outages are many and varied, and the power

  16. Firm-based Measurements of Market Power in Transmission-Constrained Electricity

    E-Print Network [OSTI]

    Baldick, Ross

    Firm-based Measurements of Market Power in Transmission-Constrained Electricity Markets: Technical: Transmission constraints, electricity markets, market power, market power index, residual supply index. 1 approaches to analyzing firm-based market power con- sidering transmission constraints are proposed. One

  17. AN INFINITE DIMENSIONAL DESCRIPTOR SYSTEM MODEL FOR ELECTRICAL CIRCUITS WITH TRANSMISSION LINES

    E-Print Network [OSTI]

    Reis, Timo

    AN INFINITE DIMENSIONAL DESCRIPTOR SYSTEM MODEL FOR ELECTRICAL CIRCUITS WITH TRANSMISSION LINES TIMO REIS Abstract. In this paper a model of linear electrical circuits with transmission lines is de-coupled with the telegraph equations who describe the behavior of the transmission lines. The resulting system of equations

  18. Comments by the American Electric Power System on Proposed Coordination of Federal Authorizations for Electric Transmission Facilities

    Office of Energy Efficiency and Renewable Energy (EERE)

     Proposed Coordination of Federal Authorizations for Electric Transmission Facilities – Interim Final Rule and Proposed Rule (DOE, 10 CR Part 900): The utility operating companies of the American...

  19. Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Eyer, James M.

    2009-06-01

    The work documented in this report was undertaken as part of an ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Electricity Storage Systems (ESS) Program. This study characterizes one especially attractive value proposition for modular electricity storage (MES): electric utility transmission and distribution (T&D) upgrade deferral. The T&D deferral benefit is characterized in detail. Also presented is a generalized framework for estimating the benefit. Other important and complementary (to T&D deferral) elements of possible value propositions involving MES are also characterized.

  20. Corruption of Pulsed Electric Thruster Voltage Fluctuation Measurements by Transmission Line

    E-Print Network [OSTI]

    Choueiri, Edgar

    Corruption of Pulsed Electric Thruster Voltage Fluctuation Measurements by Transmission Line to transmission line corruption--as an experimental example of the extent to which the power transmission line can termination resistance s Laplace variable V (t) transmission line driving signal Vn Laplace transform

  1. Electricity transmission pricing : how much does it cost to get it wrong?

    E-Print Network [OSTI]

    Green, Richard

    2004-01-01

    Economists know how to calculate optimal prices for electricity transmission. These are rarely applied in practice. This paper develops a thirteen node model of the transmission system in England and Wales, incorporating ...

  2. Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition

    SciTech Connect (OSTI)

    Rogers, J.; Porter, K.

    2011-03-01

    The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

  3. Transmission and Grid Integration: Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    Factsheet developed to describe the activites of the Transmission and Grid Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  4. Transmission and Grid Integration: Electricity, Resources, & Building Systems Integration (Fact Sheet)

    SciTech Connect (OSTI)

    2009-09-01

    Factsheet developed to describe the activities of the Transmission and Grid Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  5. Unbundling generation and transmission services for competitive electricity markets

    SciTech Connect (OSTI)

    Hirst, E.; Kirby, B.

    1998-01-01

    Ancillary services are those functions performed by the equipment and people that generate, control, and transmit electricity in support of the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission (FERC) defined such services as those `necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.` The nationwide cost of ancillary services is about $12 billion a year, roughly 10% of the cost of the energy commodity. More important than the cost, however, is the necessity of these services for bulk-power reliability and for the support of commercial transactions. FERC`s landmark Order 888 included a pro forma tariff with provision for six key ancillary services. The Interconnected Operations Services Working Group identified another six services that it felt were essential to the operation of bulk-power systems. Several groups throughput the United States have created or are forming independent system operators, which will be responsible for reliability and commerce. To date, the electricity industry (including traditional vertically integrated utilities, distribution utilities, power markets and brokers, customers, and state and federal regulators) has paid insufficient attention to these services. Although the industry had made substantial progress in identifying and defining the key services, much remains to be doe to specify methods to measure the production, delivery, and consumption of these services; to identify the costs and cost-allocation factors for these services; and to develop market and operating rules for their provision and pricing. Developing metrics, determining costs, and setting pricing rules are important because most of these ancillary services are produced by the same pieces of equipment that produce the basic electricity commodity. Thus, the production of energy and ancillary services is highly interactive, sometimes complementary and sometimes competing. In contrast to today`s typical time-invariant, embedded-cost prices, competitive prices for ancillary services would vary with system loads and spot prices for energy.

  6. Proceedings of the March 29, 2006 Conference for the 2006 National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9, 2006 Conference for the 2006 National Electric Transmission Congestion Study Proceedings of the March 29, 2006 Conference for the 2006 National Electric Transmission Congestion...

  7. Market Opportunities for Electric Drive Compressors for Gas Transmission, Storage, and Processing 

    E-Print Network [OSTI]

    Parent, L. V.; Ralph, H. D.; Schmeal, W. R.

    1995-01-01

    There is great interest in the large potential market for electric drives in the gas transmission, gas storage, and gas processing industries. Progressive electric utilities and astute vendors are moving to meet the needs of these industries...

  8. Risk-based Maintenance Allocation and Scheduling for Bulk Electric Power Transmission System Equipment

    E-Print Network [OSTI]

    risk of wide-area bulk transmission system failures. The work makes use of two previously developed1 Risk-based Maintenance Allocation and Scheduling for Bulk Electric Power Transmission System for bulk transmission equipment that is based on the cumulative long-term risk caused by each piece

  9. Electricity transmission congestion costs: A review of recent reports

    E-Print Network [OSTI]

    Lesieutre, Bernard C.; Eto, Joseph H.

    2003-01-01

    in Restructured Electricity Markets Upliftrestructured U.S. electricity markets: Uplift Charges SystemElectricity Markets Congestion costs = dispatch payments out of merit order Uplift

  10. A Service-Oriented Architecture for Electric Power Transmission System Asset Management

    E-Print Network [OSTI]

    Honavar, Vasant

    A Service-Oriented Architecture for Electric Power Transmission System Asset Management Jyotishman,tua,honavar,jdm}@iastate.edu Abstract. In electric power transmission systems, the assets include transmis- sion lines, transformers number of distributed, autonomously managed, capital-intensive as- sets. Such assets include power plants

  11. Modeling Interregional Transmission Congestion in the National Energy Modeling System

    E-Print Network [OSTI]

    Gumerman, Etan; Chan, Peter; Lesieutre, Bernard; Marnay, Chris; Wang, Juan

    2006-01-01

    to a load center via a DC transmission line such that flowsD.C. 127 pages. Modeling Interregional Transmission

  12. National Fuel Cell Electric Vehicle Learning Demonstration Final...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Electric Vehicle Learning Demonstration Final Report National Fuel Cell Electric Vehicle Learning Demonstration Final Report This report discusses key analysis results...

  13. Furnace Blower Electricity: National and Regional Savings Potential

    E-Print Network [OSTI]

    Franco, Victor; Florida Solar Energy Center

    2008-01-01

    Solar Energy Center ABSTRACT Currently, total electricityElectricity: National and Regional Savings Potential Victor Franco, James Lutz, Alex Lekov, and Lixing Gu (Florida Solar Energy

  14. Forced cooling of underground electric power transmission lines : design manual

    E-Print Network [OSTI]

    Brown, Jay A.

    1978-01-01

    The methodology utilized for the design of a forced-cooled pipe-type underground transmission system is presented. The material is divided into three major parts: (1) The Forced-cooled Pipe-Type Underground Transmission ...

  15. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    SciTech Connect (OSTI)

    Milligan, M.; Ela, E.; Hein, J.; Schneider, T.; Brinkman, G.; Denholm, P.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  16. Renewable Electricity Futures Study. Volume 4: Bulk Electric Power Systems. Operations and Transmission Planning

    SciTech Connect (OSTI)

    Milligan, Michael; Ela, Erik; Hein, Jeff; Schneider, Thomas; Brinkman, Gregory; Denholm, Paul

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  17. Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels

    SciTech Connect (OSTI)

    Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A.

    1994-11-01

    This report provides background information about (1) the electric and magnetic fields (EMFs) of high-voltage transmission lines at typical voltages and line configurations and (2) typical transmission line costs to assist on alternatives in environmental documents. EMF strengths at 0 {+-} 200 ft from centerline were calculated for ac overhead lines, and for 345 and 230-kV ac underground line and for a {+-}450-kV dc overhead line. Compacting and height sensitivity factors were computed for the variation in EMFs when line conductors are moved closer or raised. Estimated costs for the lines are presented and discussed so that the impact of using alternative strategies for reducing EMF strengths and the implications of implementing the strategies can be better appreciated.

  18. Renewable Electricity Futures Study Volume 4: Bulk Electric Power Systems: Operations and Transmission Planning

    Office of Energy Efficiency and Renewable Energy (EERE)

    This volume focuses on the role of variable renewable generation in creating challenges to the planning and operations of power systems and the expansion of transmission to deliver electricity from remote resources to load centers. The technical and institutional changes to power systems that respond to these challenges are, in many cases, underway, driven by the economic benefits of adopting more modern communication, information, and computation technologies that offer significant operational cost savings and improved asset utilization. While this volume provides background information and numerous references, the reader is referred to the literature for more complete tutorials.

  19. Abstract--This paper proposes an optimization based method of planning reactive power control for electric transmission

    E-Print Network [OSTI]

    Kumar, Ratnesh

    for electric transmission systems to endow them with the capability of being reconfigured to a secure of the electric transmission system. There are three basic options for strengthening transmission systems: (1-term planning to strengthen transmission capability is necessary to increase future reliability levels

  20. Proposal to negotiate extensions of the existing contracts for the back-up supply of electricity and its transmission

    E-Print Network [OSTI]

    2015-01-01

    Proposal to negotiate extensions of the existing contracts for the back-up supply of electricity and its transmission

  1. Computing Cournot Equilibria in Two Settlement Electricity Markets with Transmission Constraints1

    E-Print Network [OSTI]

    Oren, Shmuel S.

    1 Computing Cournot Equilibria in Two Settlement Electricity Markets with Transmission Constraints1}@ieor.berkeley.edu Abstract-- We formulate a two-settlement equilibrium in com- petitive electricity markets as a subgame decade has witnessed a fundamental transformation of the electric power industry around the world from

  2. Computing Cournot Equilibria in Two Settlement Electricity Markets with Transmission Constraints

    E-Print Network [OSTI]

    1 Computing Cournot Equilibria in Two Settlement Electricity Markets with Transmission ConstraintsŁ @ieor.berkeley.edu Abstract-- We formulate a two-settlement equilibrium in com- petitive electricity. I. INTRODUCTION The last decade has witnessed a fundamental transformation of the electric power

  3. Do Generation Firms in Restructured Electricity Markets Have Incentives to Support Socially-Efficient Transmission Investments? *

    E-Print Network [OSTI]

    .S. transmission system is under stress (Abraham, 2002). Growth of electricity demand and new generation capacity investment in new generation and growth in electricity demand. Much of the current underinvestment1 Do Generation Firms in Restructured Electricity Markets Have Incentives to Support Socially

  4. A Unifying Market Power Measure for Deregulated Transmission-Constrained Electricity Markets

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    markets, electricity cannot be stored cheaply; therefore generators have signif- icant short-run capacity1 A Unifying Market Power Measure for Deregulated Transmission-Constrained Electricity Markets concern when designing a deregulated electricity market. In this paper, we propose a new functional market

  5. Electric Transmission Network: A Multi-Region Analysis, The

    Reports and Publications (EIA)

    2000-01-01

    This paper examines the ability of the existing transmission network to respond efficiently to increased trade over four reliability regions in the northeastern United States.

  6. The U.S. Electric Transmission Grid: Essential Infrastructure...

    Open Energy Info (EERE)

    Grid: Essential Infrastructure in need of Comprehensive Legislation Abstract Renewable Energy Transmission Company Inc (Retco) is a small, start-up company dedicated to building...

  7. Coordinating Interstate ElectricTransmission Siting: An Introduction...

    Broader source: Energy.gov (indexed) [DOE]

    the near future. While improved demand-side management (including energy effi ciency and demand response), bett er utilization of the existing transmission grid, and other...

  8. ELECTRICITY TRANSMISSION IN DEREGULATED MARKETS; CONFERENCE AT CARNEGIE MELLON UNIVERSITY, PITTSBURGH PA USA DECEMBER 2004 1 A criticality approach to monitoring cascading

    E-Print Network [OSTI]

    ELECTRICITY TRANSMISSION IN DEREGULATED MARKETS; CONFERENCE AT CARNEGIE MELLON UNIVERSITY the risk of cascading failure of electric power transmission systems as overall loading is increased failure is the usual mechanism for large blackouts of electric power transmission systems. For example

  9. Electricity transmission investment in the United States : an investigation of adequacy

    E-Print Network [OSTI]

    Kwok, Peter Jordan

    2010-01-01

    There is a prevailing sentiment that the United States is underinvested in its electric transmission infrastructure. The standard claim is that poor regulation has caused insufficient levels of capital to be devoted to the ...

  10. A Comprehensive Approach for Computation and Implementation of Efficient Electricity Transmission Network Charges

    E-Print Network [OSTI]

    Pérez-Arriaga, Ignacio J.

    This paper presents a comprehensive design of electricity transmission charges that are meant to recover regulated network costs. In addition, these charges must be able to meet a set of inter-related objectives. Most ...

  11. EIS-0011: New Melones 230-kV Electrical Transmission Line, Central Valley Project, California

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Western Area Power Administration prepared this statement to evaluate the environmental impacts of proposed development of an electrical transmission system for the New Melones Power Plant.

  12. Design of wide-area electric transmission networks under uncertainty : methods for dimensionality reduction

    E-Print Network [OSTI]

    Donohoo-Vallett, Pearl Elizabeth

    2014-01-01

    The growth of location-constrained renewable generators and the integration of electricity markets in the United States and Europe are forcing transmission planners to consider the design of interconnection-wide systems. ...

  13. Definition of a Balancing Point for Electricity Transmission Contracts

    E-Print Network [OSTI]

    Olmos, Luis; Neuhoff, Karsten

    2004-06-16

    exchanges of electricity”, Report for the European Commission, Directorate-General Energy and Transport Institute of Power Systems and Power Economics (IAEW) and CONSENTEC Consulting fur Energiewirtschaft und -technik, Aachen, “Analysis of Electricity...

  14. Light transmissive electrically conductive oxide electrode formed in the presence of a stabilizing gas

    DOE Patents [OSTI]

    Tran, Nang T. (Cottage Grove, MN); Gilbert, James R. (Maplewood, MN)

    1992-08-04

    A light transmissive, electrically conductive oxide is doped with a stabilizing gas such as H.sub.2 and H.sub.2 O. The oxide is formed by sputtering a light transmissive, electrically conductive oxide precursor onto a substrate at a temperature from 20.degree. C. to 300.degree. C. Sputtering occurs in a gaseous mixture including a sputtering gas and the stabilizing gas.

  15. National Drive Electric Week | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing SwimmingMicrosoft TheDepartmentNational Drive Electric Week

  16. Market-based Investment in Electricity Transmission Networks: Controllable Flow

    E-Print Network [OSTI]

    Brunekreeft, Gert

    2004-06-16

    of under-investment, as it will be difficult to persuade each network regulator to pass through those costs that benefit out-of-area users. As a result there is a presumption that some (and perhaps considerable) further investment in interconnectors... difference between the two ends of the line is also called link-based and applies in particular to interconnectors. Why allow unregulated third-party transmission investors in the first place? After all, transmission is considered to be the domain...

  17. Coordinating Interstate ElectricTransmission Siting: An Introduction...

    Office of Environmental Management (EM)

    experts have started drawing att ention to the need to improve the system that transmits electricity from power plants to demand centers. Congestion on existing lines, increased...

  18. Interdependencies of Electricity Markets with Gas Markets A Case Study of Transmission System Operators

    E-Print Network [OSTI]

    Dixon, Juan

    ISO-NE PJM Chile Chile Chile USA USA SUMMARY Electricity Energy markets do not operate in isolation1 Interdependencies of Electricity Markets with Gas Markets ­ A Case Study of Transmission System USA Brazil Canada Columbia S. Mocarquer, R. Moreno, H. Rudnick, P. Wong, A. DiCaprio Systep Systep PUC

  19. Security analysis of the interaction between the UK gas and electricity transmission systems 

    E-Print Network [OSTI]

    Whiteford, James Raymond George

    2012-06-25

    Natural gas has become the UK’s foremost primary energy source, providing some 39% of our energy needs. The National Transmission System (NTS) has developed from its humble beginnings when natural gas was first discovered ...

  20. EIS-0339: Presidential Permit Application, GenPower 500 kV Submarine Electric Transmission Cable from Nova Scotia to New York

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) announced its intent to prepare an Environmental Impact Statement (EIS) in accordance with the National Environmental Policy Act of 1969 (NEPA) for GenPower New York, L.L.C.’s (GenPower) request for a Presidential permit for a proposed international electric transmission line.

  1. Challenges for Creating a Comprehensive National Electricity Policy

    E-Print Network [OSTI]

    Joskow, Paul

    2008-01-01

    This is a speech given to the National Press Club, September 26, 2008 outlining the need for comprehensive reform of the electric power sector in the U.S. It outlines the centrality of the electricity sector to the economy ...

  2. Electric Generating and Transmission Facilities – Emissions Management (Iowa)

    Broader source: Energy.gov [DOE]

    This section details responsibilities of the Iowa Utility Board, including the policies for electricity rate-making for the state of Iowa, certification of natural gas providers, and other policies...

  3. Electricity transmission: an overview of the current debate

    E-Print Network [OSTI]

    Brunekreeft, Gert; Neuhoff, Karsten; Newbery, David

    2006-03-14

    submitted each day, but was replaced by the New Electricity Trading Arrangements in 2001. At that point the pool and compulsory bidding ended, to be replaced by bilateral and OTC markets, a voluntary day-ahead power exchange, and a short term Balancing... than any other electricity power exchange, and there is a well-defined price to use for zonal differentiation. 8 Nordpool uses the term market splitting to deal with the case in which constraints...

  4. DOE Marks First Anniversary of EPAct & Releases National Electric...

    Broader source: Energy.gov (indexed) [DOE]

    Congestion Study is an important step on the path to modernizing our nation's aging electric power infrastructure and is a crucial step toward realizing the President...

  5. The integration of renewable energy sources into electric power transmission systems

    SciTech Connect (OSTI)

    Barnes, P.R.; Dykas, W.P.; Kirby, B.J.; Purucker, S.L. [Oak Ridge National Lab., TN (United States); Lawler, J.S. [Univ. of Tennessee, Knoxville, TN (United States)

    1995-07-01

    Renewable energy technologies such as photovoltaics, solar thermal power plants, and wind turbines are nonconventional, environmentally attractive sources of energy that can be considered for electric power generation. Many of the areas with abundant renewable energy resources (very sunny or windy areas) are far removed from major load centers. Although electrical power can be transmitted over long distances of many hundreds of miles through high-voltage transmission lines, power transmission systems often operate near their limits with little excess capacity for new generation sources. This study assesses the available capacity of transmission systems in designated abundant renewable energy resource regions and identifies the requirements for high-capacity plant integration in selected cases. In general, about 50 MW of power from renewable sources can be integrated into existing transmission systems to supply local loads without transmission upgrades beyond the construction of a substation to connect to the grid. Except in the Southwest, significant investment to strengthen transmission systems will be required to support the development of high-capacity renewable sources of 1000 MW or greater in areas remote from major load centers. Cost estimates for new transmission facilities to integrate and dispatch some of these high-capacity renewable sources ranged from several million dollars to approximately one billion dollars, with the latter figure an increase in total investment of 35%, assuming that the renewable source is the only user of the transmission facility.

  6. Abstract--Policy surrounding the North American transmission grid, particularly in the wake of electric-industry

    E-Print Network [OSTI]

    Blumsack, Seth

    1 Abstract--Policy surrounding the North American transmission grid, particularly in the wake of electric-industry restructuring and following the blackout of August, 2003, has treated network congestion, Wheatstone network, merchant transmission, available transfer capability, reliability, congestion

  7. Dynamics of electrical transmission at club endings on the Mauthner cells Alberto E. Peredaa,*, John E. Rashb

    E-Print Network [OSTI]

    Rash, John E.

    Review Dynamics of electrical transmission at club endings on the Mauthner cells Alberto E. Peredaa Available online 31 July 2004 Abstract Identifiable mixed electrical and chemical synapses on Mauthner cells, the club endings, have historically provided a window for the study of electrical transmission

  8. Do Generation Firms in Restructured Electricity Markets Have Incentives to Support Social-Welfare-Improving Transmission Investments? *

    E-Print Network [OSTI]

    Oren, Shmuel S.

    Transmission Grid Study of the U.S. Department of Energy (Abraham, 2002) declares: "Growth in electricity of incentives for investment in the U.S. electricity transmission system are sparse. Moreover, noneDo Generation Firms in Restructured Electricity Markets Have Incentives to Support Social

  9. 152 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 53, NO. 1, JANUARY 2005 High-Speed Electrical Backplane Transmission

    E-Print Network [OSTI]

    Palermo, Sam

    -Speed Electrical Backplane Transmission Using Duobinary Signaling Jeffrey H. Sinsky, Senior Member, IEEE, Marcus to binary. For 10-Gb/s data transmission, we demonstrate a bit error rate 10 13 through electrical backplane Duelk, Member, IEEE, and Andrew Adamiecki, Member, IEEE Abstract--High-speed electrical data

  10. State Research, Outreach, and Technical Assistance to Imrove the Nation's Transmission & Distribution System

    SciTech Connect (OSTI)

    J. Fox; M. Keogh; A. Spahn

    2009-05-20

    The broad purpose of this project was to work cooperatively with the DOE to explore technology nad policy issues associated with more efficient, reliable, and affordable electric transmission and distribution use.

  11. Transmission Expansion in Argentina 5: The Regional Electricity Forum of Buenos Aires Province

    E-Print Network [OSTI]

    Littlechild, Stephen C.; Ponzano, Eduardo A.

    stream_source_info 0762&EPRG0729.pdf.txt stream_content_type text/plain stream_size 138347 Content-Encoding UTF-8 stream_name 0762&EPRG0729.pdf.txt Content-Type text/plain; charset=UTF-8 Transmission expansion in Argentina 5... consumers, but this does not require the regulator to lead or monitor the detail of the process. Key words: Argentina, electricity, transmission, regulation. JEL classification: L33, L51, L94, L98...

  12. Electrical Collection and Transmission Systems for Offshore Wind Power: Preprint

    SciTech Connect (OSTI)

    Green, J.; Bowen, A.; Fingersh, L.J.; Wan, Y.

    2007-03-01

    The electrical systems needed for offshore wind farms to collect power from wind turbines--and transmit it to shore--will be a significant cost element of these systems. This paper describes the development of a simplified model of the cost and performance of such systems.

  13. Modeling Interregional Transmission Congestion in the National Energy Modeling System

    E-Print Network [OSTI]

    Gumerman, Etan; Chan, Peter; Lesieutre, Bernard; Marnay, Chris; Wang, Juan

    2006-01-01

    cheapest availably supply cannot be used; therefore a less-congested system can lead to lower electricity

  14. Modeling Interregional Transmission Congestion in the National Energy Modeling System

    E-Print Network [OSTI]

    Gumerman, Etan; Chan, Peter; Lesieutre, Bernard; Marnay, Chris; Wang, Juan

    2006-01-01

    Central Area Reliability Coordination Council EMM region Electricity Capacity Planning submodule of NEMS Energy Efficiency and Renewable

  15. High renewable energy penetrations in the Australian National Electricity Market

    E-Print Network [OSTI]

    New South Wales, University of

    Distribution Sector: - DNSPS Electricity flow Multi-region five-minute energy & FCAS markets Intentions, offers by AEMO ­ A multi-region gross wholesale electricity spot market with dynamic intra-regional loss factorsHigh renewable energy penetrations in the Australian National Electricity Market: key challenges

  16. Coordinating Interstate ElectricTransmission Siting: An Introduction to the

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June2012 | DepartmentFederalCooperatingDebate |

  17. Puget Sound Area Electric Reliability Plan : Appendix E, Transmission Reinforcement Analysis.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1992-04-01

    The purpose of this appendix to the draft environmental impact statement (EIS) report is to provide an update of the latest study work done on transmission system options for the Puget Sound Area Electric Reliability Plan. Also included in the attachments to the EIS are 2 reports analyzing the voltage stability of the Puget Sound transmission system and a review by Power Technologies, Inc. of the BPA voltage stability analysis and reactive options. Five transmission line options and several reactive options are presently being considered as possible solutions to the PSAFRP by the Transmission Team. The first two line options would be built on new rights-of way adjacent (as much as possible) to existing corridors. The reactive options would optimize the existing transmission system capability by adding new stations for series capacitors and/or switchgear. The other three line options are rebuilds or upgrades of existing cross mountain transmission lines. These options are listed below and include a preliminary assessment of the additional transmission system reinforcement required to integrate the new facilities into the existing transmission system. Plans were designed to provide at least 500 MVAR reactive margin.

  18. 2009 Electric Transmission Congestion Study | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| Department ofAppliance Standards Activities Data2009 National

  19. DOE Issues Two Draft National Interest Electric Transmission...

    Broader source: Energy.gov (indexed) [DOE]

    and Memos Technology Development Technology Development Home Smart Grid Smart Grid Home Demand Response Federal Smart Grid Task Force Distributed Energy Microgrids Recovery Act...

  20. National Electric Transmission Congestion Study 2012 Eastern Workshops

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive Summary In the Energy Policy Act of 2005

  1. National Electric Transmission Congestion Study 2012 Western Workshops

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996How to ApplytheExecutive Summary In the Energy Policy Act of 2005

  2. 2009 National Electric Transmission Congestion Study - Atlanta Workshop |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 -EnergyEnergySenior2007

  3. 2009 National Electric Transmission Congestion Study - Las Vegas Workshop |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 -EnergyEnergySenior2007Department of Energy

  4. National Electric Transmission Congestion Study 2009 Executive Summary

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgram | DepartmentEnergy6 3 9 12Executive Summary

  5. Full Text of the National Electric Transmission Congestion Study 2009

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nA Guide to Tapping intoand

  6. DOE Issues Two Draft National Interest Electric Transmission Corridor

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOE Federal AviationSynchrophasor

  7. DOE Affirms National Interest Electric Transmission Corridor Designations |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartmentEnergyEveryCustomerD=DISCLAIMER:1904-AC23,T AETHICS

  8. 2006 National Electric Transmission Congestion Study Federal Register

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s t a n t S eOFCommercialsummary of the

  9. 2009 National Electric Transmission Congestion Study - Chicago Workshop |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s t a n t SClean-up ofFourth AnnualISM and

  10. 2009 National Electric Transmission Congestion Study Notice of Inquiry:

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s t a n t SClean-up ofFourth AnnualISM

  11. 2009 National Electric Transmission Congestion Study Workshops | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s t a n t SClean-up ofFourth AnnualISMof

  12. Draft National Electric Transmission Congestion Study Now Available for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of2 Federal Register /1Department

  13. Full Text of the National Electric Transmission Congestion Study 2006

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy gdr.openei.orgReservoirFull Service

  14. National Electric Transmission Congestion Study - Draft for Public Comment

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department of EnergyNEW1forEnergyatEnergyRequest,August

  15. National Electric Transmission Congestion Study - St. Louis Workshop |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department ofDepartment of Energy San Diego Workshop

  16. National Electric Transmission Congestion Study 2006 Eastern Interconnection Analysis

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department ofDepartment of Energy San Diego

  17. National Electric Transmission Congestion Study 2006 Executive Summary

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department ofDepartment of Energy San DiegoEXECUTIVE SUMMARY

  18. National Electric Transmission Congestion Study 2012 Workshops | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department ofDepartment of Energy San DiegoEXECUTIVE SUMMARYof

  19. National Electric Transmission Study 2006 Western Interconnection Analysis

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department ofDepartment of Energy San DiegoEXECUTIVEWestern

  20. 2012 National Electric Transmission Congestion Study: Presentation from

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| Department ofAppliance Standards2011-2020

  1. 2015 National Electric Transmission Congestion Study Now Available |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks25 AMO Peer ReviewDepartment of Energy 5

  2. 2015 National Electric Transmission Congestion Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks25 AMO Peer ReviewDepartment of Energy

  3. 2006 National Electric Transmission Congestion Study and Related Materials

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks Y-12 Beta-3of/Energy 1Energy 6 Federal|

  4. 2006 National Electric Transmission Congestion Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks Y-12 Beta-3of/Energy 1Energy 6 Federal|6

  5. 2009 National Electric Transmission Congestion Study - San Francisco

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks Y-12 Beta-3of/Energy|20082009 ECR9 Fuel

  6. 2009 National Electric Transmission Congestion Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks Y-12 Beta-3of/Energy|20082009 ECR9 Fuel9

  7. National Electric Transmission Congestion Studies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 |DepartmentMultimedia andScience &Advance to

  8. 2015 National Electric Transmission Congestion Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar: Demonstration ofDepartment1of Energy 20152015

  9. Economic Inefficiency of Passive Transmission Rights in Congested Electricity Systems with Competitive Generation

    E-Print Network [OSTI]

    Oren, Shmuel S.

    Economic Inefficiency of Passive Transmission Rights in Congested Electricity Systems (1997), pp. 63-83 Published by: International Association for Energy Economics Stable URL: http@jstor.org. . International Association for Energy Economics is collaborating with JSTOR to digitize, preserve and extend

  10. Improving Electricity Resource-Planning Processes by Consideringthe Strategic Benefits of Transmission

    SciTech Connect (OSTI)

    Budhraja, Vikram; Mobasheri, Fred; Ballance, John; Dyer, Jim; Silverstein, Alison; Eto, Joseph

    2009-03-02

    Current methods of evaluating the economic impacts of new electricity transmission projects fail to capture the many strategic benefits of these projects, such as those resulting from their long life, dynamic changes to the system, access to diverse fuels, and advancement of public policy goals to integrate renewable-energy resources and reduce greenhouse gas emissions.

  11. Flexible gas insulated transmission line having regions of reduced electric field

    DOE Patents [OSTI]

    Cookson, Alan H. (Pittsburgh, PA); Fischer, William H. (Wilkins Township, Allegheny County, PA); Yoon, Kue H. (Pittsburgh, PA); Meyer, Jeffry R. (Penn Hills Township, Allegheny County, PA)

    1983-01-01

    A gas insulated transmission line having radially flexible field control means for reducing the electric field along the periphery of the inner conductor at predetermined locations wherein the support insulators are located. The radially flexible field control means of the invention includes several structural variations of the inner conductor, wherein careful controlling of the length to depth of surface depressions produces regions of reduced electric field. Several embodiments of the invention dispose a flexible connector at the predetermined location along the inner conductor where the surface depressions that control the reduced electric field are located.

  12. Understanding Cognitive and Collaborative Work: Observations in an Electric Transmission Operations Control Center

    SciTech Connect (OSTI)

    Obradovich, Jodi H.

    2011-09-30

    This paper describes research that is part of an ongoing project to design tools to assist in the integration of renewable energy into the electric grid. These tools will support control room dispatchers in real-time system operations of the electric power transmission system which serves much of the Western United States. Field observations comprise the first phase of this research in which 15 operators have been observed over various shifts and times of day for approximately 90 hours. Findings describing some of the cognitive and environmental challenges of managing the dynamically changing electric grid are presented.

  13. Opportunities for Efficiency Improvements in the U.S. Electricity Transmission and Distribution System

    SciTech Connect (OSTI)

    Jackson, Roderick K.; Onar, Omer C.; Kirkham, Harold; Fisher, Emily; Burkes, Klaehn; Starke, Michael R.; Mohammed, Olama; Weeks, George

    2015-04-01

    Since 2000, more than 172 quads of electricity have been transmitted on the US transmission and distribution (T&D) grid. Given this significant amount of energy flow, establishing and maintaining an efficient T&D grid is paramount. As shown in the figure below, the total percentage of overall losses in the US electric grid is approximately 6% (5.12% in 2012) (30% lower than the world average since 2000). While these efficiency losses appear to be relatively small from a percentage perspective, the total estimated electricity loss during this time is 10.8 quads.

  14. Energy efficiency of information transmission by electrically coupled neurons

    E-Print Network [OSTI]

    Torrealdea, Francisco J; d'Anjou, Alicia; Moujahid, Abdelmalik; de Mendizábal, N Vélez; 10.1016/j.biosystems.2009.04.004

    2012-01-01

    The generation of spikes by neurons is energetically a costly process. This paper studies the consumption of energy and the information entropy in the signalling activity of a model neuron both when it is supposed isolated and when it is coupled to another neuron by an electrical synapse. The neuron has been modelled by a four dimensional Hindmarsh-Rose type kinetic model for which an energy function has been deduced. For the isolated neuron values of energy consumption and information entropy at different signalling regimes have been computed. For two neurons coupled by a gap junction we have analyzed the roles of the membrane and synapse in the contribution of the energy that is required for their organized signalling. Computational results are provided for cases of identical and nonidentical neurons coupled by unidirectional and bidirectional gap junctions. One relevant result is that there are values of the coupling strength at which the organized signalling of two neurons induced by the gap junction take...

  15. Energy efficiency of information transmission by electrically coupled neurons

    E-Print Network [OSTI]

    Francisco J. Torrealdea; Cecilia Sarasola; Alicia d'Anjou; Abdelmalik Moujahid; N. Vélez de Mendizábal

    2012-04-17

    The generation of spikes by neurons is energetically a costly process. This paper studies the consumption of energy and the information entropy in the signalling activity of a model neuron both when it is supposed isolated and when it is coupled to another neuron by an electrical synapse. The neuron has been modelled by a four dimensional Hindmarsh-Rose type kinetic model for which an energy function has been deduced. For the isolated neuron values of energy consumption and information entropy at different signalling regimes have been computed. For two neurons coupled by a gap junction we have analyzed the roles of the membrane and synapse in the contribution of the energy that is required for their organized signalling. Computational results are provided for cases of identical and nonidentical neurons coupled by unidirectional and bidirectional gap junctions. One relevant result is that there are values of the coupling strength at which the organized signalling of two neurons induced by the gap junction takes place at relatively low values of energy consumption and the ratio of mutual information to energy consumption is relatively high. Therefore, communicating at these coupling values could be energetically the most efficient option.

  16. National Electric Delivery Technologies Roadmap: Transforming...

    Broader source: Energy.gov (indexed) [DOE]

    Act Blog Leadership Budget Our Organization Strategic Plan Our History Offices This Roadmap provides a framework for all of the stakeholders that comprise the electric industry...

  17. Notices ADDRESSES: National Rural Electric Cooperative Association...

    Broader source: Energy.gov (indexed) [DOE]

    of Electricity Delivery and Energy Reliability, U.S. Department of Energy, Forrestal Building, Room 8G-017, 1000 Independence Avenue SW., Washington, DC 20585; Telephone:...

  18. National Grid (Electric) - Residential Energy Efficiency Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    https:www1.nationalgridus.comEnergyEfficiencyPrograms Expiration Date 12312015 State New York Program Type Rebate Program Rebate Amount Electric Water heaters ENERGY STAR Heat...

  19. Electric Car Competition | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Car Competition March 19, 2016 8:00AM to 12:30PM Location Building Offsite Type Meeting Series Educational Outreach Program Event Argonne will host the 2016 Regional...

  20. Abstract--There is currently a national push to create a smarter grid. Currently, the full control of transmission assets is

    E-Print Network [OSTI]

    Oren, Shmuel S.

    as the `from' node. m, n Nodes. Parameters Bk Electrical susceptance of transmission element k. cg Cost. INTRODUCTION HE electric transmission network is unique and complex. In practice, the modeling of the network infrastructure: just-in-time transmission and flowgate bidding. Transmission within electrical networks

  1. Transmission grid extensions during the build-up of a fully renewable pan-European electricity supply

    E-Print Network [OSTI]

    Becker, Sarah; Andresen, Gorm B; Schramm, Stefan; Greiner, Martin

    2013-01-01

    Spatio-temporal generation patterns for wind and solar photovoltaic power in Europe are used to investigate the future rise in transmission needs with an increasing penetration of these variable renewable energy sources (VRES) on the pan-European electricity system. VRES growth predictions according to the official National Renewable Energy Action Plans of the EU countries are used and extrapolated logistically up to a fully VRES-supplied power system. We find that keeping today's international net transfer capacities (NTCs) fixed over the next forty years reduces the final need for backup energy by 13% when compared to the situation with no NTCs. An overall doubling of today's NTCs will lead to a 26% reduction, and an overall quadrupling to a 33% reduction. The remaining need for backup energy is due to correlations in the generation patterns, and cannot be further reduced by transmission. The main investments in transmission lines are due during the ramp-up of VRES from 15% (as planned for 2020) to 80%. Add...

  2. Conflicting Investment Incentives in Electricity Transmission Enzo Sauma, Student Member, IEEE and Shmuel S. Oren, Fellow, IEEE

    E-Print Network [OSTI]

    , this principle is not always true in deregulated electricity systems, where transfers are not always feasible composed of two nodes satisfying their electricity demand with local generators. Assume the1 Conflicting Investment Incentives in Electricity Transmission Enzo Sauma, Student Member, IEEE

  3. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Bulk Electric Power Systems: Operations and Transmission by the Alliance for Sustainable Energy, LLC. #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Suggested Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory

  4. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOE Patents [OSTI]

    Cookson, Alan H. (Churchill Borough, PA); Dale, Steinar J. (Monroeville, PA); Bolin, Philip C. (Wilkins Township, Allegheny County, PA)

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections.

  5. Semi-flexible gas-insulated transmission line using electric field stress shields

    DOE Patents [OSTI]

    Cookson, A.H.; Dale, S.J.; Bolin, P.C.

    1982-12-28

    A gas-insulated transmission line includes an outer sheath, an inner conductor, an insulating gas electrically insulating the inner conductor from the outer sheath, and insulating supports insulatably supporting the inner conductor within the outer sheath. The inner conductor is provided with flexibility by use of main conductor sections which are joined together through a conductor hub section and flexible flexing elements. Stress shields are provided to control the electric field at the locations of the conductor hub sections where the insulating supports are contacting the inner conductor. The flexing elements and the stress shields may also be utilized in connection with a plug and socket arrangement for providing electrical connection between main conductor sections. 10 figs.

  6. Incentive Regulation in Theory and Practice: Electricity Distribution and Transmission Networks

    E-Print Network [OSTI]

    Joskow, Paul

    2006-03-14

    . The first relates to the System Operator (SO) incentive schemes that have been offered to the National Grid Company in England and Wales discussed below. The second is the menu of sliding scale mechanisms offered to the electric distribution companies... ) the introduction of new products and services, and stimulate efficient investment in and pricing of access to regulated infrastructure services. 1 Prepared for the National Bureau of Economic Research Conference...

  7. Sandia National Laboratories: Careers: Electrical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuelInnovationScience & Technology,BusinessElectrical

  8. Transmission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout / Transforming Y-12 Transforming Y-12ComplexTransmission

  9. National Electrical Manufacturers Association Comment | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergy Managing SwimmingMicrosoft TheDepartmentNationalEnergy DOE

  10. Electrical Control of Broadband Terahertz Wave Transmission with Two-Terminal Graphene Oxide Devices

    E-Print Network [OSTI]

    Lee, Seungwoo; Lee, Won Jun; Park, Byung Cheol; Kang, Byungsoo; Hwang, Euyheon; Kim, Sang Ouk

    2015-01-01

    Carbon nanomaterials such as carbon nanotubes and graphene have proved to be efficient building blocks for active optoelectronic devices. Especially, the exotic properties of crystalline graphene, such as a linear/gapless energy dispersion, offer a generic route to the development of active photonic modulator at the infrared (IR) and terahertz (THz) regime with large modulation depth. Here, we show that graphene oxide (GO), an oxygenated derivative of graphene with randomly distributed molecular defects (e.g., adsorbed water molecules and punched holes), can provide a different way to effectively control broadband THz transmission amplitude, when incorporated into two-terminal electrode devices. Electrically trapped charge carriers within localized impurity states (LIS) of GO, which originate from fully randomized defective structure of GO, results in a large modulation of transmission amplitude (~30%) for broadband THz waves (0.3 ~ 2.0 THz) even at room temperature. Interesting hysteretic behavior observed i...

  11. Vacuum decay and the transmission resonances in space-dependent electric fields

    E-Print Network [OSTI]

    Cesim K. Dumlu

    2014-02-25

    We investigate the decay of quantum electrodynamical (QED) vacuum in arbitrary space-dependent electric fields. In particular, we analyze the resonance peaks of the positron emission spectrum for the external fields with subcycle structure. For this, we study the transmission probability in the framework of scattering approach to vacuum pair production. In under-the-barrier scattering regime, we show that the width of a transmission resonance can be enhanced when the effective scattering potential contains multiple wells. Such a broadening in the resonance width corresponds to a decrease in the tunneling time. This may be relevant for observing the vacuum decay at shorter timescales before the external field is adiabatically turned off. In above-the-barrier scattering regime, we give a set of coupled differential equations for the numerical computation of the Bogoliubov coefficients.

  12. Overhead electric power transmission line jumpering system for bundles of five or more subconductors

    DOE Patents [OSTI]

    Winkelman, Paul F. (Beaverton, OR)

    1982-01-01

    Jumpering of electric power transmission lines at a dead end tower. Two transmission line conductor bundles each contain five or more spaced apart subconductors (5) arranged in the shape of a cylinder having a circular cross section. The ends of each bundle of subconductors are attached with insulators to a dead end tower (1). Jumpering allows the electric current to flow between the two bundles of subconductors using jumper buses, internal jumper conductors, and external jumper conductors. One or more current collecting jumper buses (37) are located inside each bundle of subconductors with each jumper bus being attached to the end of a subconductor. Small-diameter internal jumper conductors (33) are located in the inherently electrically shielded area inside each bundle of subconductors with each subconductor (except ones having an attached jumper bus) having one internal jumper conductor connected between that subconductor's end and a jumper bus. Large-diameter external jumper conductors (9) are located outside each bundle of subconductors with one or more external jumper conductors being connected between the jumper buses in one bundle of subconductors and the jumper buses in the other bundle.

  13. Evaluating the potential impact of transmission constraints on the operation of a competitive electricity market in Illinois.

    SciTech Connect (OSTI)

    Cirillo, R.; Thimmapuram, P.; Veselka, T.; Koritarov, V.; Conzelmann, G.; Macal, C.; Boyd, G.; North, M.; Overbye, T.; Cheng, X.; Decision and Information Sciences; Univ. of Illinois

    2006-04-30

    Despite the current adequacy of the generation and transmission system in Illinois, there is concern that the uncertainties of electricity restructuring warrant a more detailed analysis to determine if there might be pitfalls that have not been identified under current conditions. The problems experienced elsewhere in the country emphasize the need for an evaluation of how Illinois might fare under a restructured electricity market. The Illinois Commerce Commission (ICC) commissioned this study to be undertaken as a joint effort by the University of Illinois at Urbana-Champaign and Argonne National Laboratory to evaluate the Illinois situation in the 2007 period when restructuring is scheduled to be fully implemented in the State. The purpose of this study is to make an initial determination if the transmission system in Illinois and the surrounding region would be able to support a competitive electricity market, would allow for effective competition to keep prices in check, and would allow for new market participants to effectively compete for market share. The study seeks to identify conditions that could reasonably be expected to occur that would enable a company to exercise market power in one or more portions of the State and thereby create undue pressure on the prices charged to customers and/or inhibit new market participants from entering the market. The term 'market power' has many different definitions, and there is no universal agreement on how to measure it. For the purposes of this study, the term is defined as the ability to raise prices and increase profitability by unilateral action. A more complete definition is provided later. With this definition, the central question of this analysis becomes: 'Can a company, acting on its own, raise electricity prices and increase its profits?' It should be noted that the intent of the study is not to predict whether or not such market power would be exercised by any company. Rather, it is designed to determine if a set of reasonably expected conditions could allow any company to do so. It should also be emphasized that this study is not intended to be a comprehensive evaluation of the electric power system in the State. Rather, it is intended to identify some issues that may impact the effective functioning of a competitive market.

  14. Modelling Quantum Mechanics by the Quantumlike Description of the Electric Signal Propagation in Transmission Lines

    E-Print Network [OSTI]

    R. Fedele; M. A. Man'ko; V. I. Man'ko; V. G. Vaccaro

    2002-07-30

    It is shown that the transmission line technology can be suitably used for simulating quantum mechanics. Using manageable and at the same time non-expensive technology, several quantum mechanical problems can be simulated for significant tutorial purposes. The electric signal envelope propagation through the line is governed by a Schrodinger-like equation for a complex function, representing the low-frequency component of the signal, In this preliminary analysis, we consider two classical examples, i.e. the Frank-Condon principle and the Ramsauer effect.

  15. Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions

    E-Print Network [OSTI]

    Jacobson, Mark

    . To quantify general features of such a weather dependent electricity supply in the contiguous US, windFeatures of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions Sarah Becker a, b, * , Bethany A. Frew b , Gorm B. Andresen d, b , Timo Zeyer c

  16. The design, construction, and operation of long-distance high-voltage electricity transmission technologies.

    SciTech Connect (OSTI)

    Molburg, J. C.; Kavicky, J. A.; Picel, K. C.

    2008-03-03

    This report focuses on transmission lines, which operate at voltages of 115 kV and higher. Currently, the highest voltage lines comprising the North American power grid are at 765 kV. The grid is the network of transmission lines that interconnect most large power plants on the North American continent. One transmission line at this high voltage was built near Chicago as part of the interconnection for three large nuclear power plants southwest of the city. Lines at this voltage also serve markets in New York and New England, also very high demand regions. The large power transfers along the West Coast are generally at 230 or 500 kV. Just as there are practical limits to centralization of power production, there are practical limits to increasing line voltage. As voltage increases, the height of the supporting towers, the size of the insulators, the distance between conductors on a tower, and even the width of the right-of-way (ROW) required increase. These design features safely isolate the electric power, which has an increasing tendency to arc to ground as the voltage (or electrical potential) increases. In addition, very high voltages (345 kV and above) are subject to corona losses. These losses are a result of ionization of the atmosphere, and can amount to several megawatts of wasted power. Furthermore, they are a local nuisance to radio transmission and can produce a noticeable hum. Centralized power production has advantages of economies of scale and special resource availability (for instance, hydro resources), but centralized power requires long-distance transfers of power both to reach customers and to provide interconnections for reliability. Long distances are most economically served at high voltages, which require large-scale equipment and impose a substantial footprint on the corridors through which power passes. The most visible components of the transmission system are the conductors that provide paths for the power and the towers that keep these conductors at a safe distance from each other and from the ground and the natural and built environment. Common elements that are generally less visible (or at least more easily overlooked) include the maintained ROW along the path of the towers, access roads needed for maintenance, and staging areas used for initial construction that may be restored after construction is complete. Also visible but less common elements along the corridor may include switching stations or substations, where lines of similar or different voltages meet to transfer power.

  17. EIS-0164: Pacific Gas Transmission/Pacific Gas and Electric and Altamont Natural Gas Pipeline Project

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) has prepared the PGT/PG&E and Altamont Natural Gas Pipeline Projects Environmental Impact Statement to satisfy the requirements of the National Environmental Policy Act. This project addresses the need to expand the capacity of the pipeline transmission system to better transfer Canadian natural gas to Southern California and the Pacific Northwest. The U.S. Department of Energy cooperated in the preparation of this statement because Section 19(c) of the Natural Gas Act applies to the Department’s action of authorizing import/export of natural gas, and adopted this statement by the spring of 1992. "

  18. Abstract--Currently, there are multiple national directives that call for the development of a smarter electrical grid. This

    E-Print Network [OSTI]

    Oren, Shmuel S.

    of a smarter electrical grid. This includes, but is not limited to, the development of advanced transmission of the electric transmission grid. The USA Energy Policy Act of 2005, Sec.1223.a.5, includes: "encourage technologies as well as optimizing the use of transmission. Transmission control has been identified

  19. Photovoltaic power systems and the National Electrical Code: Suggested practices

    SciTech Connect (OSTI)

    Wiles, J.

    1996-12-01

    This guide provides information on how the National Electrical Code (NEC) applies to photovoltaic systems. The guide is not intended to supplant or replace the NEC; it paraphrases the NEC where it pertains to photovoltaic systems and should be used with the full text of the NEC. Users of this guide should be thoroughly familiar with the NEC and know the engineering principles and hazards associated with electrical and photovoltaic power systems. The information in this guide is the best available at the time of publication and is believed to be technically accurate; it will be updated frequently. Application of this information and results obtained are the responsibility of the user.

  20. National Fuel Cell Electric Vehicle Learning Demonstration Final Report

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-07-01

    This report discusses key analysis results based on data from early 2005 through September 2011 from the U.S. Department of Energy’s (DOE’s) Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration. It is the fifth and final such report in a series, with previous reports being published in July 2007, November 2007, April 2008, and September 2010.

  1. Flexible Transmission in the Smart Grid

    E-Print Network [OSTI]

    Hedman, Kory Walter

    2010-01-01

    models of the electric transmission network flow problem.requirements in the electric transmission grid is provided.operations of the electric transmission grid. It also

  2. Furnace Blower Electricity: National and Regional Savings Potential

    SciTech Connect (OSTI)

    Florida Solar Energy Center; Franco, Victor; Franco, Victor; Lutz, Jim; Lekov, Alex; Gu, Lixing

    2008-05-16

    Currently, total electricity consumption of furnaces is unregulated, tested at laboratory conditions using the DOE test procedure, and is reported in the GAMA directory as varying from 76 kWh/year to 1,953 kWh/year. Furnace blowers account for about 80percent of the total furnace electricity consumption and are primarily used to distribute warm air throughout the home during furnace operation as well as distribute cold air during air conditioning operation. Yet the furnace test procedure does not provide a means to calculate the electricity consumption during cooling operation or standby, which account for a large fraction of the total electricity consumption. Furthermore, blower electricity consumption is strongly affected by static pressure. Field data shows that static pressure in the house distribution ducts varies widely and that the static pressure used in the test procedure as well as the calculated fan power is not representative of actual field installations. Therefore, accurate determination of the blower electricity consumption is important to address electricity consumption of furnaces and air conditioners. This paper compares the potential regional and national energy savings of two-stage brushless permanent magnet (BPM) blower motors (the blower design option with the most potential savings that is currently available in the market) to single-stage permanent split capacitor (PSC) blower motors (the most common blower design option). Computer models were used to generate the heating and cooling loads for typical homes in 16 different climates which represent houses throughout the United States. The results show that the potential savings of using BPM motors vary by region and house characteristics, and are very strongly tied to improving house distribution ducts. Savings decrease dramatically with increased duct pressure. Cold climate locations will see savings even in the high static pressure duct situations, while warm climate locations will see less savings overall and negative savings in the high static pressure duct situations. Moderate climate locations will see little or no savings.

  3. Furnace Blower Electricity: National and Regional Savings Potential

    E-Print Network [OSTI]

    Franco, Victor; Florida Solar Energy Center

    2008-01-01

    Currently, total electricity consumption of furnaces isthe total furnace electricity consumption and are primarilyto calculate the electricity consumption during cooling

  4. Model documentation: Natural gas transmission and distribution model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1995-02-17

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of integrated Analysis and Forecasting of the Energy information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The methodology employed allows the analysis of impacts of regional capacity constraints in the interstate natural gas pipeline network and the identification of pipeline capacity expansion requirements. There is an explicit representation of core and noncore markets for natural gas transmission and distribution services, and the key components of pipeline tariffs are represented in a pricing algorithm. Natural gas pricing and flow patterns are derived by obtaining a market equilibrium across the three main elements of the natural gas market: the supply element, the demand element, and the transmission and distribution network that links them. The NGTDM consists of four modules: the Annual Flow Module, the Capacity F-expansion Module, the Pipeline Tariff Module, and the Distributor Tariff Module. A model abstract is provided in Appendix A.

  5. Hawaii International Conference on System Science, January 2003, Hawaii, 2003 IEEE Blackout Mitigation Assessment in Power Transmission Systems

    E-Print Network [OSTI]

    Newman, David

    @engr.wisc.edu Abstract Electric power transmission systems are a key infrastructure and blackouts of these systems have by the dynamics. 1. Introduction Electric power transmission systems are an important element of the national Mitigation Assessment in Power Transmission Systems B. A. Carreras Oak Ridge National Laboratory, Oak Ridge

  6. A versatile three-contact electrical biasing transmission electron microscope specimen holder for electron holography and electron tomography of working devices

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    A versatile three-contact electrical biasing transmission electron microscope specimen holder to characterize nanoscale materials and devices under operating conditions in the transmission electron microscope in the transmission electron microscope (TEM) at a spatial resolution that can approach the nanometer scale

  7. A CRITICAL REVIEW OF WIND TRANSMISSION COST ESTIMATES FROM MAJOR TRANSMISSION PLANNING EFFORTS

    E-Print Network [OSTI]

    Mills, Andrew; Wiser, Ryan; Porter, Kevin

    2007-01-01

    Generation Outlet Electric Transmission Study. May.Identifying Minnesota’s Electric Transmission InfrastructureGeneration Outlet Electric Transmission Study Xcel-31A

  8. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01

    additional transmission costs to new electricity generators,additional transmission costs to new electricity generators,Electricity Coordinating Council / California - 13 transmission

  9. National Fuel Cell Electric Vehicle Learning Demonstration Final Report

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

    2012-07-01

    This report discusses key analysis results based on data from early 2005 through September 2011 from the U.S. Department of Energy's (DOE's) Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project, also referred to as the National Fuel Cell Electric Vehicle (FCEV) Learning Demonstration. This report serves as one of many mechanisms to help transfer knowledge and lessons learned within various parts of DOE's Fuel Cell Technologies Program, as well as externally to other stakeholders. It is the fifth and final such report in a series, with previous reports being published in July 2007, November 2007, April 2008, and September 2010.

  10. ELECTRICITY TRANSMISSION IN DEREGULATED MARKETS; CONFERENCE AT CARNEGIE MELLON UNIVERSITY, PITTSBURGH PA USA DECEMBER 2004 1 A criticality approach to monitoring cascading

    E-Print Network [OSTI]

    Dobson, Ian

    ELECTRICITY TRANSMISSION IN DEREGULATED MARKETS; CONFERENCE AT CARNEGIE MELLON UNIVERSITY, PITTSBURGH PA USA DECEMBER 2004 1 A criticality approach to monitoring cascading failure risk and failure the risk of cascading failure of electric power transmission systems as overall loading is increased

  11. In situ transmission electron microscopy study of electric-field-induced microcracking in single crystal Pb,,Mg13Nb23...O3 PbTiO3

    E-Print Network [OSTI]

    Chen, Haydn H.

    In situ transmission electron microscopy study of electric-field-induced microcracking in single March 2000; accepted for publication 2 May 2000 In this letter, we report in situ transmission electron microscopy TEM study of effect of a cyclic electric field on microcracking in a single crystal piezoelectric

  12. Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1998-01-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. The NGTDM is the model within the NEMS that represents the transmission, distribution, and pricing of natural gas. The model also includes representations of the end-use demand for natural gas, the production of domestic natural gas, and the availability of natural gas traded on the international market based on information received from other NEMS models. The NGTDM determines the flow of natural gas in an aggregate, domestic pipeline network, connecting domestic and foreign supply regions with 12 demand regions. The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. Subsequent chapters of this report provide: an overview of NGTDM; a description of the interface between the NEMS and NGTDM; an overview of the solution methodology of the NGTDM; the solution methodology for the Annual Flow Module; the solution methodology for the Distributor Tariff Module; the solution methodology for the Capacity Expansion Module; the solution methodology for the Pipeline Tariff Module; and a description of model assumptions, inputs, and outputs.

  13. A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility

    SciTech Connect (OSTI)

    Moore, A S; Guymer, T M; Kline, J L; Morton, J; Taccetti, M; Lanier, N E; Bentley, C; Workman, J; Peterson, B; Mussack, K; Cowan, J; Prasad, R; Richardson, M; Burns, S; Kalantar, D H; Benedetti, L R; Bell, P; Bradley, D; Hsing, W; Stevenson, M

    2012-05-01

    A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors (GXD) it records sixteen time-gated spectra between 250 and 1000eV with 100ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and VUV beamline at the National Synchrotron Light Source (NSLS), evidence a <100{micro}m spatial resolution in combination with a source-size limited spectral resolution that is <10eV at photon energies of 300eV.

  14. Regional Transmission Projects: Finding Solutions

    SciTech Connect (OSTI)

    The Keystone Center

    2005-06-15

    The Keystone Center convened and facilitated a year-long Dialogue on "Regional Transmission Projects: Finding Solutions" to develop recommendations that will help address the difficult and contentious issues related to expansions of regional electric transmission systems that are needed for reliable and economic transmission of power within and across regions. This effort brought together a cross-section of affected stakeholders and thought leaders to address the problem with the collective wisdom of their experience and interests. Transmission owners sat at the table with consumer advocates and environmental organizations. Representatives from regional transmission organizations exchanged ideas with state and federal regulators. Generation developers explored common interests with public power suppliers. Together, the Dialogue participants developed consensus solutions about how to begin unraveling some of the more intractable issues surrounding identification of need, allocation of costs, and reaching consensus on siting issues that can frustrate the development of regional transmission infrastructure. The recommendations fall into three broad categories: 1. Recommendations on appropriate institutional arrangements and processes for achieving regional consensus on the need for new or expanded transmission infrastructure 2. Recommendations on the process for siting of transmission lines 3. Recommendations on the tools needed to support regional planning, cost allocation, and siting efforts. List of Dialogue participants: List of Dialogue Participants: American Electric Power American Transmission Company American Wind Energy Association California ISO Calpine Corporation Cinergy Edison Electric Institute Environmental Defense Federal Energy Regulatory Commission Great River Energy International Transmission Company ISO-New England Iowa Public Utility Board Kanner & Associates Midwest ISO National Association of Regulatory Utility Commissioners National Association of State Utility Consumer Advocates National Grid Northeast Utilities PA Office of Consumer Advocates Pacific Gas & Electric Corporation Pennsylvania Public Utility Commission PJM Interconnection The Electricity Consumers Resource Council U.S. Department of Energy US Department of the Interior Van Ness Feldman Western Interstate Energy Board Wind on the Wires Wisconsin Public Service Commission Xcel Energy

  15. EA-1896: Williston to Stateline Transmission Line Project, Mountrail Williams Electric Cooperative, Williston, North Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of interconnecting the proposed Stateline I transmission line, in Williston, North Dakota, to Western’s transmission system.

  16. Federal Register Notice: Plan for Conduct of 2012 Electric Transmissio...

    Broader source: Energy.gov (indexed) [DOE]

    a Federal Register Notice initiating preparations for development of the 2012 National Electric Transmission Congestion Study. The Department is seeking comments on what...

  17. Electric vehicles: Likely consequences of US and other nations` programs and policies

    SciTech Connect (OSTI)

    Chan, Kwai-Cheung

    1994-12-30

    This report examines international electric vehicle development and commercialization programs. The study encompassed a review of current barriers to widespread electric vehicle implementation, field visits in seven nations and the United States to examine electric vehicle programs and policies, and analyses of electric vehicle effects on economics, energy, and the environment.

  18. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    mechanism for electricity transmission expansion. Journal ofpolicy,  electricity  reliability,  transmission  planning, transmission investment in restructured electricity 

  19. California's electricity system of the future scenario analysis in support of public-interest transmission system R&D planning

    SciTech Connect (OSTI)

    Eto, Joseph; Stovall, John P.

    2003-04-01

    The California Energy Commission directed the Consortium for Electric Reliability Technology Solutions to analyze possible future scenarios for the California electricity system and assess transmission research and development (R&D) needs, with special emphasis on prioritizing public-interest R&D needs, using criteria developed by the Energy Commission. The scenarios analyzed in this report are not predictions, nor do they express policy preferences of the project participants or the Energy Commission. The public-interest R&D needs that are identified as a result of the analysis are one input that will be considered by the Energy Commission's Public Interest Energy Research staff in preparing a transmission R&D plan.

  20. Natural gas transmission and distribution model of the National Energy Modeling System

    SciTech Connect (OSTI)

    1997-02-01

    The Natural Gas Transmission and Distribution Model (NGTDM) is the component of the National Energy Modeling System (NEMS) that is used to represent the domestic natural gas transmission and distribution system. NEMS was developed in the Office of Integrated Analysis and Forecasting of the Energy Information Administration (EIA). NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the EIA and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. From 1982 through 1993, the Intermediate Future Forecasting System (IFFS) was used by the EIA for its analyses, and the Gas Analysis Modeling System (GAMS) was used within IFFS to represent natural gas markets. Prior to 1982, the Midterm Energy Forecasting System (MEFS), also referred to as the Project Independence Evaluation System (PIES), was employed. NEMS was developed to enhance and update EIA`s modeling capability by internally incorporating models of energy markets that had previously been analyzed off-line. In addition, greater structural detail in NEMS permits the analysis of a broader range of energy issues. The time horizon of NEMS is the midterm period (i.e., through 2015). In order to represent the regional differences in energy markets, the component models of NEMS function at regional levels appropriate for the markets represented, with subsequent aggregation/disaggregation to the Census Division level for reporting purposes.

  1. Model documentation Natural Gas Transmission and Distribution Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    1996-02-26

    The Natural Gas Transmission and Distribution Model (NGTDM) of the National Energy Modeling System is developed and maintained by the Energy Information Administration (EIA), Office of Integrated Analysis and Forecasting. This report documents the archived version of the NGTDM that was used to produce the natural gas forecasts presented in the Annual Energy Outlook 1996, (DOE/EIA-0383(96)). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic approach, and provides detail on the methodology employed. Previously this report represented Volume I of a two-volume set. Volume II reported on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.

  2. Puget Sound Area Electric Reliability Plan. Appendix E: Transmission Reinforcement Analysis : Draft Environmental Impact Statement.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1991-09-01

    Five transmission line options and several reactive (voltage support) options are presently being considered as possible solutions to the PSAERP by the Transmission Team. The first two line options would be built on new rights-of way adjacent (as much as possible) to existing corridors. The reactive options would optimize the existing transmission system capability by adding new stations for series capacitors and/or switchgear. The other three line options are rebuilds or upgrades of existing cross mountain transmission lines. These options are listed below and include a preliminary assessment of the additional transmission system reinforcement required to integrate the new facilities into the existing transmission system. These options were derived from earlier study work that was summarized in Puget Sound Reinforcement Transmission Options'' and New Cross Mountain Transmission Line Alternative: The Crosstie'', which are attached. The initial Transmission Options study report recognized the value to system performance of adding an entirely new circuit rather than rebuilding an existing one. However, siting realities require that rebuild options be considered. Typically, the most attractive rebuild options would be the lowest capacity (lowest voltage) circuits. But because of corridor location, length and terminal proximity, the rebuild options listed below appear to be the most promising. Schematic diagrams and QV Curves of each option are also attached. It should be noted that Snoqualmie and Echo Lake refer to the same station east of Puget Sound and Naneum and Kittitas refer to the same station in the Ellensburg area. 100 figs., 20 tabs.

  3. Model documentation: Natural Gas Transmission and Distribution Model of the National Energy Modeling System; Volume 1

    SciTech Connect (OSTI)

    1994-02-24

    The Natural Gas Transmission and Distribution Model (NGTDM) is a component of the National Energy Modeling System (NEMS) used to represent the domestic natural gas transmission and distribution system. NEMS is the third in a series of computer-based, midterm energy modeling systems used since 1974 by the Energy Information Administration (EIA) and its predecessor, the Federal Energy Administration, to analyze domestic energy-economy markets and develop projections. This report documents the archived version of NGTDM that was used to produce the natural gas forecasts used in support of the Annual Energy Outlook 1994, DOE/EIA-0383(94). The purpose of this report is to provide a reference document for model analysts, users, and the public that defines the objectives of the model, describes its basic design, provides detail on the methodology employed, and describes the model inputs, outputs, and key assumptions. It is intended to fulfill the legal obligation of the EIA to provide adequate documentation in support of its models (Public Law 94-385, Section 57.b.2). This report represents Volume 1 of a two-volume set. (Volume 2 will report on model performance, detailing convergence criteria and properties, results of sensitivity testing, comparison of model outputs with the literature and/or other model results, and major unresolved issues.) Subsequent chapters of this report provide: (1) an overview of the NGTDM (Chapter 2); (2) a description of the interface between the National Energy Modeling System (NEMS) and the NGTDM (Chapter 3); (3) an overview of the solution methodology of the NGTDM (Chapter 4); (4) the solution methodology for the Annual Flow Module (Chapter 5); (5) the solution methodology for the Distributor Tariff Module (Chapter 6); (6) the solution methodology for the Capacity Expansion Module (Chapter 7); (7) the solution methodology for the Pipeline Tariff Module (Chapter 8); and (8) a description of model assumptions, inputs, and outputs (Chapter 9).

  4. Comments of the National Rural Electric Cooperative Association...

    Energy Savers [EERE]

    rural electric Cooperatives (-Cooperatives). Most of NRECA's members are distribution Cooperatives, providing retail electric service to more than 42 million consumers...

  5. National Congestion Study Notice of Public Comment: Federal Register...

    Energy Savers [EERE]

    a Federal Register Notice announcing the availability of a draft of its current National Electric Transmission Congestion Study for public comment. The Notice is available below....

  6. Testing of T-odd, P-even interactions by nonpolarized neutron transmission through a nonpolarized nuclear target placed into electric field

    E-Print Network [OSTI]

    V. G. Baryshevsky

    2003-12-01

    A new possibility for the study of time-reversal violation is described. It consists in measurement of nonpolarized neutron transmission through nonpolarized nuclear target placed into electric field

  7. Improving Electricity Resource-Planning Processes by Considering the Strategic Benefits of Transmission

    E-Print Network [OSTI]

    Budhraja, Vikram

    2010-01-01

    capacity can help mitigate market dysfunction and vulnerability to runaway market prices by reducing local scarcity of electricity

  8. A Supply Chain Network Perspective for Electric Power Generation, Supply, Transmission, and Consumption

    E-Print Network [OSTI]

    Nagurney, Anna

    , Berlin, Germany, pp. 3-27. Abstract: A supply chain network perspective for electric power production qualita- tive properties of the equilibrium electric power flow and price patterns and to propose, residential electricity prices and industrial elec- tricity prices in the US rose 13% and 28% in real terms

  9. EA-1972: Electric District 2 to Saguaro No. 2 Transmission Line...

    Energy Savers [EERE]

    an EA that assesses the potential environmental impacts of the proposed rebuild of a 35.6-mile transmission line that Western operates and maintains under an agreement with the...

  10. Plug-In Hybrid Electric Vehicles | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plug-In Hybrid Electric Vehicles 2014 BMW i3-REX 2013 Chevrolet Volt 2013 Ford Cmax Energi 2013 Ford Fusion Energi 2013 Toyota Prius 2012 Chevrolet Volt 2012 Toyota Prius Electric...

  11. Convective Heat Transfer Coefficients of Automatic Transmission Fluid Jets with Implications for Electric Machine Thermal Management: Preprint

    SciTech Connect (OSTI)

    Bennion, Kevin; Moreno, Gilberto

    2015-09-29

    Thermal management for electric machines (motors/ generators) is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. Cooling of the electric machine(s) in some electric vehicle traction drive applications is accomplished by impinging automatic transmission fluid (ATF) jets onto the machine's copper windings. In this study, we provide the results of experiments characterizing the thermal performance of ATF jets on surfaces representative of windings, using Ford's Mercon LV ATF. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients. Fluid temperatures were varied from 50 degrees C to 90 degrees C to encompass potential operating temperatures within an automotive transaxle environment. The jet nozzle velocities were varied from 0.5 to 10 m/s. The experimental ATF heat transfer coefficient results provided in this report are a useful resource for understanding factors that influence the performance of ATF-based cooling systems for electric machines.

  12. HVDC power transmission technology assessment

    SciTech Connect (OSTI)

    Hauth, R.L.; Tatro, P.J.; Railing, B.D.; Johnson, B.K.; Stewart, J.R.; Fink, J.L.

    1997-04-01

    The purpose of this study was to develop an assessment of the national utility system`s needs for electric transmission during the period 1995-2020 that could be met by future reduced-cost HVDC systems. The assessment was to include an economic evaluation of HVDC as a means for meeting those needs as well as a comparison with competing technologies such as ac transmission with and without Flexible AC Transmission System (FACTS) controllers. The role of force commutated dc converters was to be assumed where appropriate. The assessment begins by identifying the general needs for transmission in the U.S. in the context of a future deregulated power industry. The possible roles for direct current transmission are then postulated in terms of representative scenarios. A few of the scenarios are illustrated with the help of actual U.S. system examples. non-traditional applications as well as traditional applications such as long lines and asynchronous interconnections are discussed. The classical ``break-even distance`` concept for comparing HVDC and ac lines is used to assess the selected scenarios. The impact of reduced-cost converters is reflected in terms of the break-even distance. This report presents a comprehensive review of the functional benefits of HVDC transmission and updated cost data for both ac and dc system components. It also provides some provocative thoughts on how direct current transmission might be applied to better utilize and expand our nation`s increasingly stressed transmission assets.

  13. Improving Electricity Resource-Planning Processes by Considering the Strategic Benefits of Transmission

    E-Print Network [OSTI]

    Budhraja, Vikram

    2010-01-01

    renewable and fuel based), new transmission, and energy conservation. Extreme- Event Benefits (Renewable Energy and Energy Efficiency Stakeholder Consensus – Delphi Approach Assemble stakeholders Define societal benefitrenewable energy resources and reduce greenhouse gas emissions. Incorporating more formal evaluations of these important benefits

  14. Transmission Enhancement Technology Report

    E-Print Network [OSTI]

    a recommendation of the most cost-effective methods and technologies to enhance electricity transmission from a review of methods and technologies with potential to enhance electricity transmission capability-traditional methods and technologies to increase the capacity of the high voltage electric power transmission system

  15. FROM: Keith Dennis, National Rural Electric Cooperative Association...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    standards for large (>55 gallon) residential electric storage water heaters used in demand response and thermal energy storage programs (Docket No. EERE-2012-BT-STD-0022). In...

  16. Comments of the National Rural Electric Cooperative Association...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    more than 900 not-for-profit, member-owned, member-controlled rural electric Cooperatives (-Cooperatives). Most of NRECA's members are distribution Cooperatives,...

  17. Elimination of Competition and Duplication of Electricity Generation and Transmission Facilities (Nebraska)

    Broader source: Energy.gov [DOE]

    This statute establishes as state policy the goal to furnish electricity as efficiently and cheaply as possible, and therefore to, “avoid and eliminate conflict and competition between public power...

  18. Pricing Carbon for Electricity Generation: National and International Dimensions

    E-Print Network [OSTI]

    Grubb, Michael; Newbery, David

    In this paper, which forms a chapter in the forthcoming Book �Delivering a Low Carbon Electricity System: Technologies, Economics and Policy�, Grubb and Newbery examine how carbon for electricity generation should be priced. They begin...

  19. Planning and processing of new or upgraded electric transmission systems in New Mexico

    SciTech Connect (OSTI)

    Toole, Gasper Loren [Los Alamos National Laboratory

    2009-01-01

    RETA has been requested to identify and prioritize renewable energy resource zones in New Mexico that have a potential to support industry development among renewable energy developers for renewable resource generation projects. Moreover, Senate Memorial 44 requests that RETA identify and prioritize the best viable options for potential transmission corridors to accommodate renewable energy export from New Mexico in accordance with a defined time-line and to convene a working group to submit recommendations to the legislature for establishing a process to streamline procedures for establishing renewable energy transmission projects in New Mexico. RETA's July 9, 2009 request for comments outlined seven topical areas of specific value to Senate Memorial 44. This document addresses Topics 1, 3 and 4.

  20. Obtaining statistics of cascading line outages spreading in an electric transmission network from standard utility data

    E-Print Network [OSTI]

    Dobson, Ian

    2015-01-01

    We show how to use standard transmission line outage historical data to obtain the network topology in such a way that cascades of line outages can be easily located on the network. Then we obtain statistics quantifying how cascading outages typically spread on the network. Processing real outage data is fundamental for understanding cascading and for evaluating the validity of the many different models and simulations that have been proposed for cascading in power networks.

  1. EA-1247: Electrical Power System Upgrades at Los Alamos National Laboratory, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to upgrade the electrical power supply system for the U.S. Department of Energy Los Alamos National Laboratory to increase the...

  2. Faculty Position Openings The Division of Electrical Engineering, National Taiwan University, has several openings for

    E-Print Network [OSTI]

    Hung, Shih-Hao

    Energy, and Smart Grid. 3. Computer Science and Engineering. 4. Embedded Systems, Cloud, Communications and Signal Processing, Integrated Circuit and Systems, Nano-Electronics, and Electronic DesignFaculty Position Openings The Division of Electrical Engineering, National Taiwan University, has

  3. If I generate 20 percent of my national electricity from wind...

    Open Energy Info (EERE)

    If I generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home I think that the economics of fossil fuesl are well...

  4. Transmission Line Security Monitor: Final Report

    SciTech Connect (OSTI)

    John Svoboda

    2011-04-01

    The Electric Power Transmission Line Security Monitor System Operational Test is a project funded by the Technical Support Working Group (TSWG). TSWG operates under the Combating Terrorism Technical Support Office that functions under the Department of Defense. The Transmission Line Security Monitor System is based on technology developed by Idaho National Laboratory. The technology provides a means for real-time monitoring of physical threats and/or damage to electrical transmission line towers and conductors as well as providing operational parameters to transmission line operators to optimize transmission line operation. The end use is for monitoring long stretches of transmission lines that deliver electrical power from remote generating stations to cities and industry. These transmission lines are generally located in remote transmission line corridors where security infrastructure may not exist. Security and operational sensors in the sensor platform on the conductors take power from the transmission line and relay security and operational information to operations personnel hundreds of miles away without relying on existing infrastructure. Initiated on May 25, 2007, this project resulted in pre-production units tested in realistic operational environments during 2010. A technology licensee, Lindsey Manufacturing of Azusa California, is assisting in design, testing, and ultimately production. The platform was originally designed for a security monitoring mission, but it has been enhanced to include important operational features desired by electrical utilities.

  5. A National Grid Energy Storage Strategy - Electricity Advisory...

    Broader source: Energy.gov (indexed) [DOE]

    industry stakeholders. This document presents the EAC's vision for a national energy storage strategic plan. It provides an outline for guidance, alignment, coordination, and...

  6. California's electricity system of the future scenario analysis in support of public-interest transmission system R&D planning

    E-Print Network [OSTI]

    Eto, Joseph; Stovall, John P.

    2003-01-01

    asset monitoring and analysis tools for reliability management B. Transmission power-asset monitoring and analysis tools for reliability management. B. Transmission power-asset monitoring and analysis tools for reliability management. B. Transmission power-

  7. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle Replacement U.S. Residential and69 Energy747144 Electric

  8. Downhole transmission system

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Fox, Joe (Spanish Fork, UT)

    2008-01-15

    A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. An electrical conductor connects both the transmission elements. The electrical conductor comprises at least three electrically conductive elements insulated from each other. In the preferred embodiment the electrical conductor comprises an electrically conducting outer shield, an electrically conducting inner shield and an electrical conducting core. In some embodiments of the present invention, the electrical conductor comprises an electrically insulating jacket. In other embodiments, the electrical conductor comprises a pair of twisted wires. In some embodiments, the electrical conductor comprises semi-conductive material.

  9. Smart Grid Week: Working to Modernize the Nation's Electric Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Specialist, Office of Public Affairs Learn More about the Smart Grid Visit smartgrid.gov for access to videos, maps and data on the effort to transform the nation's...

  10. QER- Comment of National Rural Electric Cooperative Association

    Broader source: Energy.gov [DOE]

    Please find attached comments regarding the agenda item, “RAIL - HOW A CRITICAL COMPONENT OF OUR NATION'S ENERGY INFRASTRUCTURE IS ADAPTING TO 21ST CENTURY ENERGY TRANSPORTATION CHALLENGES” submitted by Steve Sharp on behalf of Consumers United for Rail Equity.

  11. Fuel Cell Electric Vehicle Evaluation; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Kurtz, Jennifer; Sprik, Sam; Ainscough, Chris; Saur, Genevieve

    2015-06-10

    This presentation provides a summary of NREL's FY15 fuel cell electric vehicle evaluation project activities and accomplishments. It was presented at the U.S. Department of Energy Hydrogen and Fuel Cells Program 2015 Annual Merit Review and Peer Evaluation Meeting on June 10, 2015, in Arlington, Virginia.

  12. Chapter 3: Enabling Modernization of the Electric Power System Technology Assessment | Transmission and Distribution Components

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouthApplying caulk to 13.1 -Chapter 3ControlsControls

  13. Simulating a Nationally Representative Housing Sample Using EnergyPlus

    E-Print Network [OSTI]

    Hopkins, Asa S.

    2011-01-01

    efficiency of electricity generation and transmission, andlosses in electricity generation and transmission. We also

  14. Graphical Contingency Analysis for the Nation's Electric Grid

    ScienceCinema (OSTI)

    Zhenyu (Henry) Huang

    2012-12-31

    PNNL has developed a new tool to manage the electric grid more effectively, helping prevent blackouts and brownouts--and possibly avoiding millions of dollars in fines for system violations. The Graphical Contingency Analysis tool monitors grid performance, shows prioritized lists of problems, provides visualizations of potential consequences, and helps operators identify the most effective courses of action. This technology yields faster, better decisions and a more stable and reliable power grid.

  15. Graphical Contingency Analysis for the Nation's Electric Grid

    SciTech Connect (OSTI)

    Zhenyu Huang

    2011-04-01

    PNNL has developed a new tool to manage the electric grid more effectively, helping prevent blackouts and brownouts--and possibly avoiding millions of dollars in fines for system violations. The Graphical Contingency Analysis tool monitors grid performance, shows prioritized lists of problems, provides visualizations of potential consequences, and helps operators identify the most effective courses of action. This technology yields faster, better decisions and a more stable and reliable power grid.

  16. Generation, transmission, and detection of terahertz photons on an electrically driven single chip

    SciTech Connect (OSTI)

    Ikushima, Kenji; Ito, Atsushi; Okano, Shun [Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588 (Japan)

    2014-02-03

    We demonstrate single photon counting of terahertz (THz) waves transmitted from a local THz point source through a coplanar two-wire waveguide on a GaAs/AlGaAs single heterostructure crystal. In the electrically driven all-in-one chip, quantum Hall edge transport is used to achieve a noiseless injection current for a monochromatic point source of THz fields. The local THz fields are coupled to a coplanar two-wire metal waveguide and transmitted over a macroscopic scale greater than the wavelength (38??m in GaAs). THz waves propagating on the waveguide are counted as individual photons by a quantum-dot single-electron transistor on the same chip. Photon counting on integrated high-frequency circuits will open the possibilities for on-chip quantum optical experiments.

  17. Climate, extreme heat, and electricity demand in California

    E-Print Network [OSTI]

    Miller, N.L.

    2008-01-01

    and blackouts. Electricity transmission lines and relatedhave resulted. Electricity generation and transmissioncapacity, and electricity line transmission system have not

  18. Transmission Power Allocation for Cooperative Relay-BasedNeighborhood Area Networks for Smart Grid

    E-Print Network [OSTI]

    Spanos, Costas; Kai, Ma; Guo-Qiang, HU

    2013-01-01

    the electricity cost by improving the transmission rates,transforms the transmission rate to the electricity cost,electricity reservation strategy by improving the transmission

  19. Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative

    E-Print Network [OSTI]

    Mills, Andrew

    2010-01-01

    physics of electricity flow in transmission networks. Thefact that the electricity lost through transmission lines isthe resulting electricity to the nearest transmission system

  20. Electric Power Produced from Nuclear Reactor | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submitKansas Nuclear ProfileMultiferroic Electric FieldAdministration

  1. Comments of the National Rural Electric Cooperative Association, Request

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June 22, 2015 |AT&TThe

  2. DOE Marks First Anniversary of EPAct & Releases National Electric

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10nominate anDepartment ofTraining|LoanpageThis

  3. CCPG Update U.S. Department Of Energy 2012 National Electric Transmission Congestion

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l DeInsulation at04-86) (All Previous EditionsOfficeCarolina

  4. U.S. Department of Energy 2012 National Electric Transmission Congestion Study

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeed forUnruhDepartment ofM I OFFICE OFReport440.2012

  5. UNITED STATES OF AMERICA DEPARTMENT OF ENERGY National Electric Transmission Congestion Study )

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedof Energy FishMANAGEMENTAMERICA BEFORE

  6. Center for Electrical Energy Storage Tailored Interfaces Argonne National Laboratory, University of Illinois at Urbana-Champaign, Northwestern University

    E-Print Network [OSTI]

    Kemner, Ken

    Center for Electrical Energy Storage ­ Tailored Interfaces Argonne National Laboratory, University lithium batteries. Follow us at http://www.anl.gov/energy-storage-science Autogenic reactions at high

  7. Sandia National Laboratories and the Electric Power Research Institute (EPRI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming Release of the University of2013National Nuclear

  8. National Electricity Delivery Division (NEDD) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 |DepartmentMultimedia andScience &Advance toNational

  9. Abstract--Improvements in transmission and distribution networks can be noticed in most countries that had their system

    E-Print Network [OSTI]

    Morton, David

    , the National Electricity Regulatory Agency has established that the monthly amount of transmission system usage1 Abstract--Improvements in transmission and distribution networks can be noticed in most one of the biggest challenges is the transmission and distribution open access. In Brazil

  10. Patterns of transmission investment

    E-Print Network [OSTI]

    Joskow, Paul L.

    2005-01-01

    This paper examines a number of issues associated with alternative analytical approaches for evaluating investments in electricity transmission infrastructure and alternative institutional arrangements to govern network ...

  11. QER- Comment of Mitsubishi Electric

    Broader source: Energy.gov [DOE]

    Dear Karen: On behalf of Brian Heery, president and CEO of Mitsubishi Electric Power Products, attached are comments regarding the Quadrennial Energy Review. As a US-based manufacturer of large transformers and other energy infrastructure technologies, we welcome the opportunity to meet with you on issues affecting the Nation’s transmission grid.

  12. Concurrent Wind Cooling in Power Transmission Lines

    SciTech Connect (OSTI)

    Jake P Gentle

    2012-08-01

    Idaho National Laboratory and the Idaho Power Company, with collaboration from Idaho State University, have been working on a project to monitor wind and other environmental data parameters along certain electrical transmission corridors. The combination of both real-time historical weather and environmental data is being used to model, validate, and recommend possibilities for dynamic operations of the transmission lines for power and energy carrying capacity. The planned results can also be used to influence decisions about proposed design criteria for or upgrades to certain sections of the transmission lines.

  13. Automated manual transmission controller

    DOE Patents [OSTI]

    Lawrie, Robert E. (Whitmore Lake, MI); Reed, Jr., Richard G. (Royal Oak, MI); Bernier, David R. (Rochester Hills, MI)

    1999-12-28

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  14. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    flow constraints on electric transmission The  objective relations  for  electric  transmission  lines  (we  used A ?A E : Set of AC electric transmission arcs, which satisfy

  15. Occupational Electric Shocks, Electromagnetic Fields and Amyotrophic Lateral Sclerosis

    E-Print Network [OSTI]

    Vergara, Ximena Patricia

    2012-01-01

    study of UK electricity generation and transmission workers,study of UK electricity generation and transmission workers,study of UK electricity generation and transmission workers,

  16. Hydrogen and electricity: Parallels, interactions,and convergence

    E-Print Network [OSTI]

    Yang, Christopher

    2008-01-01

    comparing hydrogen and electricity transmission, storage andlong-distance electricity transmission such as high voltageCompared to electricity transmission for large quantities of

  17. From: Carl Daffron To: Congestion Study Comments Subject: National Interest Energy Transmission Corridors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescent LampFortDepartmentNationalCarl Daffron To:

  18. Economic analysis of the N-1 reliable unit commitment and transmission switching problem using duality concepts

    E-Print Network [OSTI]

    O’Neill, Richard P.; Hedman, Kory W.; Krall, Eric A.; Papavasiliou, Anthony; Oren, Shmuel S.

    2010-01-01

    nomic operations of the electric transmission grid. It alsoelectric network optimization models. Optimal transmission

  19. Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program.

    SciTech Connect (OSTI)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA); Butler, Paul Charles; Iannucci, Joseph J., Jr.

    2005-11-01

    This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.

  20. Electric Transmission System Workshop

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ,Local Government NonprofitPrepared for Western Senior

  1. Electricity Transmission, A Primer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatementofAprilof Energy 2ofU.S.

  2. Scenarios for Deep Carbon Emission Reductions from Electricity by 2050 in Western North America Using the SWITCH Electric Power Sector Planning Model

    E-Print Network [OSTI]

    Nelson, James Henry

    2013-01-01

    power  cost  and  electricity  demand  by  investment  transmission,   and   electricity   demand   in   2030  transmission,   and   electricity   demand   in   2050  

  3. From: Alex Free To: Congestion Study Comments Subject: National Interest Energy Transmission Corridors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescent LampFortDepartmentNational Interest0:59 PM I05:34 PM

  4. From: Alex Free To: Congestion Study Comments Subject: National Interest Energy Transmission Corridors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescent LampFortDepartmentNational Interest0:59 PM I05:34

  5. From: Carol Johnson To: Congestion Study Comments Subject: Re: National Interest Energy Transmission Corridors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescent LampFortDepartmentNationalCarl Daffron To:Johnson

  6. Plug-In Hybrid Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    electricity production and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in...

  7. Public Opinions of Building Additional High-Voltage Electric Power Lines

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    Public Opinions of Building Additional High-Voltage Electric Power Lines A Report to the National-Voltage Electric Power Lines: A Report to the National Science Foundation and the Electric Power Research Center to build new power lines. Residents living in counties with planned routes for new transmission lines

  8. 2012 National Electricity Forum: February 8-9, 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks2 DOE Sustainability Awards2 National Electricity

  9. Report of the Task Force on Statewide Transmission Siting and...

    Open Energy Info (EERE)

    and disadvantages of a statewide transmission siting and permitting framwork for electric transmission facilities, and provides recommendations for improvement. Author...

  10. EA-1863: Vegetation Management on the Glen Canyon-Pinnacle Peak Transmission Lines Spanning the Coconino National Forest, Coconino County, Arizona

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of updating the vegetation management and right-of-way maintenance program for Western’s Glen Canyon to Pinnacle Peak 345-kV transmission lines, which cross the Coconino National Forest, Coconino County, Arizona.

  11. Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 3055, Victoria, Canada, V8W 3P6

    E-Print Network [OSTI]

    Brolo, Alexandre G.

    Strong Polarization in the Optical Transmission through Elliptical Nanohole Arrays R. Gordon* Department of Electrical and Computer Engineering, University of Victoria, P.O. Box 3055, Victoria, Canada, V transmission through nanohole arrays in metals. It is shown that the degree of polarization is determined

  12. Abstract--Transmission expansion in fast growing economies imposes severe challenges to electricity markets, given the need

    E-Print Network [OSTI]

    Dixon, Juan

    and persistent increases in the per capita energy consumption bring about high electricity load growth rates to electricity markets, given the need for planning and executing major midterm investments in an environment, renewable energy, renewable integration, electricity regulation I. INTRODUCTION EALING with uncertainty has

  13. NWTC Transmission and Grid Integration (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-04-01

    The rapid growth of alternative power sources, especially wind power, is creating challenges that affect the existing electric grid. To keep up with this rapid growth, researchers in the Transmission and Grid Integration Group provide scientific, engineering, and analytical expertise to help advance alternative energy and accelerate its integration into the nation's electrical grid. For example, we evaluate U.S. wind energy resources and collect and analyze data about the impact of wind development on the electrical grid. Researchers in the Transmission and Grid Integration Group offer assistance to utility industry partners in the following integration areas.

  14. Do Generation Firms in Restructured Electricity Markets Have Incentives to Support Social-Welfare-Improving Transmission Investments? *

    E-Print Network [OSTI]

    transmission rights, power systems economics. * The work reported in this paper was partially supported. This lack of flexibility has increased the risk of power failures and blackouts. From an economic

  15. Interconnection-Wide Transmission Planning Initiative: Topic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Agency Input Regarding Electric Resource and Transmission Planning in the Texas Interconnection Interconnection-Wide Transmission Planning Initiative: Topic B, State Agency...

  16. Superconductivity for Electric Systems Annual Peer Review Washington, DC July 27-29, 2004. OAK RIDGE NATIONAL LABORATORY

    E-Print Network [OSTI]

    Superconductivity for Electric Systems Annual Peer Review Washington, DC ­ July 27-29, 2004. OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY American Superconductor Corporation U. Schoop, M. W&D support #12;Superconductivity for Electric Systems Annual Peer Review Washington, DC ­ July 27-29, 2004

  17. Superconductivity for Electric Systems Annual Peer Review Washington, DC July 23-25, 2003 OAK RIDGE NATIONAL LABORATORY

    E-Print Network [OSTI]

    Superconductivity for Electric Systems Annual Peer Review Washington, DC ­ July 23-25, 2003 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY American Superconductor Corporation M. W. Rupich, D-in ORNL-AMSC CRADA: Development of 2G YBCO-RABiTS Wires #12;Superconductivity for Electric Systems Annual

  18. DOE Designates Southwest Area and Mid-Atlantic Area National...

    Energy Savers [EERE]

    Corridors DOE Designates Southwest Area and Mid-Atlantic Area National Interest Electric Transmission Corridors October 2, 2007 - 2:50pm Addthis WASHINGTON, DC - U.S. Department...

  19. Cap-and-Trade Modeling and Analysis: Congested Electricity Market Equilibrium

    E-Print Network [OSTI]

    Limpaitoon, Tanachai

    2012-01-01

    using a 24-bus IEEE electric transmission system. The secondmodel where electric power flows on transmission lines arelocation. Electric power flows on the transmission lines are

  20. Essays on empirical analysis of multi-unit auctions -- impacts of financial transmission rights on the restructured electricity industry 

    E-Print Network [OSTI]

    Zang, Hailing

    2005-11-01

    -price, sealed-bid auctions. The first part of the dissertation studies the auctions on the spot market of the wholesale electricity industry. I derive structural empirical models to test theoretical predictions as to whether bidders fully internalize the effect...

  1. Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions

    E-Print Network [OSTI]

    Jacobson, Mark

    in FERC (Federal Energy Regulatory Commission)-level LCOE (Levelized Costs Of Electricity) for wind and solar PV due to differing weather conditions. Regional LCOE vary by up to 29%, and LCOE-optimal mixes

  2. California's electricity system of the future scenario analysis in support of public-interest transmission system R&D planning

    E-Print Network [OSTI]

    Eto, Joseph; Stovall, John P.

    2003-01-01

    energy cost/value; and electricity system reliability, quality, and sufficiency are all CaliforniaCalifornia to increase energy self-sufficiency and reliability Greater Regional Coordination Maturing regional processes for equitable sharing of cost and

  3. EIS-0025: Miles City-New Underwood 230-kV Electrical Transmission Line, Montana, North Dakota, and South Dakota

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Western Area Power Administration prepared this statement to assess the environmental and socioeconomic implications of its proposed action to construct a 3.28-mile, 230-kV transmission line between Miles City and Baker, Montana, Hettinger, North Dakota, and New Underwood, South Dakota, in Custer and Fallon Counties in Montana, Adams, Bowman, and Slope Counties in North Dakota and Meade, Pennington, and Perkins Counties in South Dakota.

  4. Transmission Expansion Planning with Re-design

    E-Print Network [OSTI]

    2010-05-17

    Expanding an electrical transmission network requires heavy investments that ... would be too complex to handle, electrical transmission and energy genera- ... Our new modelling introduces more flexibility and is general, in the sense that it ...

  5. Down hole transmission system

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT)

    2007-07-24

    A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. The electrically conducting coil comprises at least two generally fractional loops. In the preferred embodiment, the transmission elements are connected by an electrical conductor. Preferably, the electrical conductor is a coaxial cable. Preferably, the MCEI trough comprises ferrite. In the preferred embodiment, the fractional loops are connected by a connecting cable. In one aspect of the present invention, the connecting cable is a pair of twisted wires. In one embodiment the connecting cable is a shielded pair of twisted wires. In another aspect of the present invention, the connecting cable is a coaxial cable. The connecting cable may be disposed outside of the MCEI circular trough.

  6. Transmission Planning | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    visualization, control, operations, and market structure will ultimately modernize the electricity transmission infrastructure to ease congestion, allow for increases in demand,...

  7. Transmission Workshop | Department of Energy

    Energy Savers [EERE]

    which addressed the challenges and opportunities presented by the integration of 21st century energy technologies into the electricity transmission system. Parallel sessions...

  8. Electric trade in the United States 1992

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This publication, Electric Trade in the US 1992 (ELECTRA), is the fourth in a series of reports on wholesale power transactions prepared by the Electric Data Systems Branch, Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data, and this report provides information on the electric power industry during 1992. The electric trade data collected and presented in this report furnish important information on the wholesale structure found within the US electric power industry. The patterns of interutility trade in the report support analyses of wholesale power transactions and provide input for a broader understanding of bulk power market issues that define the emerging national electric energy policies. The report includes information on the quantity of power purchased, sold, exchanged, and wheeled; the geographical locations of transactions and ownership classes involved; and the revenues and costs. Information on the physical transmission system are being included for the first time in this publication. Transmission data covering investor-owned electric utilities were shifted from the Financial Statistics of Selected Investor-Owned Electric Utilities to the ELECTRA publication. Some of the prominent features of this year`s report include information and data not published before on transmission lines for publicly owned utilities and transmission lines added during 1992 by investor-owned electric utilities.

  9. Estimating the Actual Cost of Transmission System Congestion

    E-Print Network [OSTI]

    with electric transmission. One such component is transmission system conEstimating the Actual Cost of Transmission System Congestion Thomas J. Overbye Department of Electrical and Computer Engineering University of Illinois at Urbana-Champaign Urbana, IL 61801 USA overbye

  10. Did geomagnetic activity challenge electric power reliability during solar cycle 23? Evidence from the PJM regional transmission

    E-Print Network [OSTI]

    Schrijver, Karel

    geomagnetic storm on 13 March 1989 contributed to the collapse of the Hydro-Quebec power system in CanadaDid geomagnetic activity challenge electric power reliability during solar cycle 23? Evidence from addresses whether geomagnetic activity challenged power system reliability during Solar Cycle 23. Operations

  11. Electricity Advisory Committee Meeting Presentations October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interconnection-Wide Transmission Planning Processes Electricity Advisory Committee Meeting Presentations October 2011 - Interconnection-Wide Transmission Planning Processes Panel...

  12. Automated manual transmission clutch controller

    DOE Patents [OSTI]

    Lawrie, Robert E. (9375 Kearney Rd., Whitmore Lake, MI 48189); Reed, Jr., Richard G. (3003 Bembridge, Royal Oak, MI 48073); Rausen, David J. (519 S. Gaylord St., Denver, CO 80209)

    1999-11-30

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  13. TRANSMISSION AND GENERATION INVESTMENT IN ...

    E-Print Network [OSTI]

    2015-03-04

    Mar 4, 2015 ... generation capacity by private firms in liberalized electricity markets. ... Electricity Markets, Network Expansion, Transmission Management. 1 ...... renewables: Using two-stage optimisation to evaluate flexibility and the cost of.

  14. The Inherent Inefficiency of Simultaneously Feasible Financial Transmission Rights Auctions

    E-Print Network [OSTI]

    transmission right, electricity auction, simultaneous feasibility, transmission pricing. I. INTRODUCTION POINTThe Inherent Inefficiency of Simultaneously Feasible Financial Transmission Rights Auctions Shi as financial transmission rights (FTRs), resulting from centralized auctions conducted by Independent System

  15. FY2009 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery

    SciTech Connect (OSTI)

    Olszewski, Mitchell

    2009-11-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), all electric vehicles, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher-temperature environments while achieving high reliability; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control and packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2009 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.

  16. Transmission Planning Process and Opportunities for Utility-Scale Solar Engagement within the Western Electricity Coordinating Council (WECC)

    SciTech Connect (OSTI)

    Hein, J.; Hurlbut, D.; Milligan, M.; Coles, L.; Green, B.

    2011-11-01

    This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. Market barriers unrelated to technology often limit the expansion of utility-scale solar power, even in areas with exceptional resource potential. Many of these non-technical barriers have to do with policy, regulation, and planning, and hardly ever do they resolve themselves in a timely fashion. In most cases, pre-emptive intervention by interested stakeholders is the easiest way to remove/address such barriers, but it requires knowing how to navigate the institutional waters of the relevant agencies and boards. This report is a primer for solar developers who wish to engage directly in expediting the regulatory process and removing market barriers related to policy and planning. It focuses on the Western Interconnection (WI), primarily because the quality of solar resources in the Southwest makes utility-scale concentrating solar power (CSP) and photovoltaics (PV) economically feasible, and because the relevant institutions have evolved in a way that has opened up opportunities for removing non-technical market barriers. Developers will find in this report a high-level field manual to identify the venues for mitigating and possibly eliminating systemic market obstacles and ensuring that the economic playing field is reasonably level. Project-specific issues such as siting for transmission and generation resources are beyond the scope of this report. Instead, the aim is to examine issues that pervasively affect all utility-scale PV and CSP in the region regardless of where the project may be. While the focus is on the WI, many of the institutions described here also have their counterparts in the Eastern and the Texas interconnections. Specifically, this report suggests a number of critical engagement points relating to generation and transmission planning.

  17. Transmission grid access and pricing in Norway, Spain, and California: A comparative study

    SciTech Connect (OSTI)

    Gronli, H.; Gomez San Ramon, T.; Marnay, C.

    1999-09-01

    The openness of the transmission grid and the incentives given by transmission pricing form the foundation for retail and wholesale competition in the electricity market. The deregulated markets of Norway, Spain, and California all have introduced retail access and wholesale competition, although with different approaches to pricing of transmission grid services. This paper will briefly describe the three different solutions, and discuss some of their implications. Of the three electricity systems, Norway was the first to open the grid to competition in electricity trade. The Norwegian Energy Law of 1990 introduced open competition to wholesale and retail trade starting January 1991. In Spain, the Electricity Law of 1997 came into force early in 1998. Wholesale and retail markets in California were opened for competition on April 1, 1998, following the passage of Assembly Bill 1890, in August 1996. Introducing competition in electricity markets also implies introducing Third Party Access to the transmission grid. All potential competitors have to be given access to the grid in order to compete, no matter who owns the actual wires. This principle raises several challenges, notably, how to price transmission services. Who is to pay for which transmission services? The Norwegian grid is divided into three levels depending on its function. The transmission grid includes all parts of the national grid having a transmission function, meaning that some lower voltage levels also are included. In Spain, the definition of the transmission grid is similar, including the 400 kV and 220 kV national grid as well as lower voltage installations that could affect transmission operation or generation dispatch. For historic reasons, wholesale electricity transactions in the US are regulated by the federal government through the FERC. However, operations of utility systems within one state fall primarily under state jurisdiction. Because the utility systems in California generally are large and exchanges between them limited, the role of FERC was small prior to restructuring, although the state is a large importer of power.

  18. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, M.

    2008-10-15

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors, and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs, and fuel-cell-powered automobiles that meet the goals of the Vehicle Technologies Program. A key element in making HEVs practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies.

  19. Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, M.

    2006-10-31

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel Partnership and the 21st Century Truck Partnership through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes speci

  20. Planning electricity transmission to accommodate renewables: Using two-stage programming to evaluate flexibility and the cost of disregarding uncertainty

    E-Print Network [OSTI]

    van der Weijde, Adriaan Hendrik; Hobbs, Benjamin F.

    2011-01-31

     Niall Duncan (Univ. Edinburgh) for generating the hydro output data and to  lex Haffner  (National  Grid)  for  supplying  the  demand  data.  However,  any  errors  or  views  expressed  are  ntirely our own responsibility.  A e   2  A at...   system. The resulting model is then used to determine the optimally expansion plan under  uncertainty. We compare  these  results  to  those  that would occur under more  traditional  planning methods...

  1. OAK RIDGE NATIONAL LABORATORY SPALLATION NEUTRON SOURCE ELECTRICAL SYSTEMS AVAILABILITY AND IMPROVEMENTS

    SciTech Connect (OSTI)

    Cutler, Roy I [ORNL; Peplov, Vladimir V [ORNL; Wezensky, Mark W [ORNL; Norris, Kevin Paul [ORNL; Barnett, William E [ORNL; Hicks, Jim [ORNL; Weaver, Joey T [ORNL; Moss, John [ORNL; Rust, Kenneth R [ORNL; Mize, Jeffery J [ORNL; Anderson, David E [ORNL

    2011-01-01

    SNS electrical systems have been operational for 4 years. System availability statistics and improvements are presented for AC electrical systems, DC and pulsed power supplies and klystron modulators.

  2. Electrical utilities relay settings

    SciTech Connect (OSTI)

    HACHE, J.M.

    1999-02-24

    This document contains the Hanford transmission and distribution system relay settings that are under the control of Electrical Utilities.

  3. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01

    Estimates of Congestion Costs. The Electricity Journal 17,Incremental Transmission Costs Due to Wind Power. Rockville,and Intermittency Really Cost? Supply Curves for Electricity

  4. Cap-and-Trade Modeling and Analysis: Congested Electricity Market Equilibrium

    E-Print Network [OSTI]

    Limpaitoon, Tanachai

    2012-01-01

    model where electric power flows on transmission lines arelocation. Electric power flows on the transmission lines are

  5. Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions

    E-Print Network [OSTI]

    Becker, Sarah; Andresen, Gorm B; Zeyer, Timo; Schramm, Stefan; Greiner, Martin; Jacobson, Mark Z

    2014-01-01

    Wind and solar PV generation data for the entire contiguous US are calculated, on the basis of 32 years of weather data with temporal resolution of one hour and spatial resolution of 40x40km$^2$, assuming site-suitability-based as well as stochastic wind and solar PV capacity distributions throughout the country. These data are used to investigate a fully renewable electricity system, resting primarily upon wind and solar PV power. We find that the seasonal optimal mix of wind and solar PV comes at around 80% solar PV share, owing to the US summer load peak. By picking this mix, long-term storage requirements can be more than halved compared to a wind only mix. The daily optimal mix lies at about 80% wind share due to the nightly gap in solar PV production. Picking this mix instead of solar only reduces backup energy needs by about 50%. Furthermore, we calculate shifts in FERC (Federal Energy Regulatory Commission)-level LCOE (Levelized Costs Of Electricity) for wind and solar PV due to their differing resour...

  6. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01

    Generation and Transmission and Western Area Power Administration Clean and Diversified Energy Advisory Committee (CDEAC) Transmission Task Force NorthWestern Energy ElectricGeneration and Transmission and Western Area Power Administration Clean and Diversified Energy Advisory Committee (CDEAC) Transmission Task Force NorthWestern Energy Electric

  7. ECE 438 Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric

    E-Print Network [OSTI]

    ECE 438 ­ Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric vehicle configurations. Vehicle mechanics. Energy sources and storage. Range prediction. Motor for HEVs. Electric drive components. Vehicle transmission system. Credits

  8. ELECTRIC

    Office of Legacy Management (LM)

    you nay give us will be greatly uppreckted. VPry truly your23, 9. IX. Sin0j3, Mtinager lclectronics and Nuclear Physics Dept. omh , WESTINGHOUSE-THE NAT KING IN ELECTRICITY...

  9. The role of transmission investment in the coordination between generation and transmission

    E-Print Network [OSTI]

    Boyer, Edmond

    1 The role of transmission investment in the coordination between generation and transmission Abstract This paper examines how transmission coordinates with generation to the long term in a liberalized generation and transmission of electricity into distinct modules. The governance structure of transmission

  10. Model documentation: Electricity Market Module, Electricity Capacity Planning submodule

    SciTech Connect (OSTI)

    Not Available

    1994-04-07

    The National Energy Modeling System (NEMS) is a computer modeling system developed by the Energy Information Administration (EIA). The NEMS produces integrated forecasts for energy markets in the United States by achieving a general equilibrium solution for energy supply and demand. Currently, for each year during the period from 1990 through 2010, the NEMS describes energy supply, conversion, consumption, and pricing. The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The supply of electricity is a conversion activity since electricity is produced from other energy sources (e.g., fossil, nuclear, and renewable). The EMM represents the generation, transmission, and pricing of electricity. The EMM consists of four main submodules: Electricity Capacity Planning (ECP), Electricity Fuel Dispatching (EFD), Electricity Finance and Pricing (EFP), and Load and Demand-Side Management (LDSM). The ECP evaluates changes in the mix of generating capacity that are necessary to meet future demands for electricity and comply with environmental regulations. The EFD represents dispatching (i.e., operating) decisions and determines how to allocate available capacity to meet the current demand for electricity. Using investment expenditures from the ECP and operating costs from the EFD, the EFP calculates the price of electricity, accounting for state-level regulations involving the allocation of costs. The LDSM translates annual demands for electricity into distributions that describe hourly, seasonal, and time-of-day variations. These distributions are used by the EFD and the ECP to determine the quantity and types of generating capacity that are required to insure reliable and economical supplies of electricity. The EMM also represents nonutility suppliers and interregional and international transmission and trade. These activities are included in the EFD and the ECP.

  11. From: Martin Meyer To: Congestion Study Comments Subject: National Interest Electric Transmission Corridors (NIETC"s)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDan O"Hagan To:J BLuke LowensteinMartin Meyer

  12. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Renewable Electricity Generation and Storage Technologies for Sustainable Energy, LLC. #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable;Suggested Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory

  13. The Cost of Transmission for Wind Energy: A Review of Transmission Planning Studies

    E-Print Network [OSTI]

    Mills, Andrew D.

    2009-01-01

    in Transmission Service. ” Washington, D.C. : Federal EnergyNational Transmission Grid Study. Washington, D.C. : U.S.California Transmission Options Study NTAC - 2A Submarine DC

  14. Invited paper for the 2001 IESNA National Conference Daylighting, Dimming, and the Electricity Crisis in California

    E-Print Network [OSTI]

    of California's energy crisis and the consequent increases in electricity rates, is daylighting now a cost, and the Electricity Crisis in California Francis Rubinstein, Danielle Neils and Nesrin Colak Ernest Orlando Lawrence Contract No. DE-AC03-76SF00098. #12;Daylighting, Dimming and California Electricity Crisis Rubinstein

  15. Cap-and-Trade Modeling and Analysis: Congested Electricity Market Equilibrium

    E-Print Network [OSTI]

    Limpaitoon, Tanachai

    2012-01-01

    the California’s electricity transmission and distributionelectricity markets with strategic behavior and transmission.regulation on transmission-constrained electricity market.

  16. Mid-term evaluation of the NRECA (National Rural Electric Cooperative Association) Central America Rural Electrification Support Program (CARES)

    SciTech Connect (OSTI)

    Perlack, R.D. (Oak Ridge National Lab., TN (USA)); Jones, H.G. (Oak Ridge Associated Universities, Inc., TN (USA)); Garcia, A. III (Texas A and M Univ., College Station, TX (USA). Dept. of Agricultural Engineering); Flores, E. (Flores (Edgar), Guatemala City (Guatemala))

    1990-09-01

    Oak Ridge National Laboratory was requested by the Regional Office for Central America and Panama to conduct a mid-term evaluation of the Cares Project, which is being implemented by the National Rural Electric Cooperative Association. This evaluation was conducted over a three week period by a four person team. Overall, the project has had numerous successes and is highly valued by local counterpart utilities and USAID Missions. Notwithstanding the significant results of the project, changes can be made in certain operating procedures and in the direction of some programmatic activities that can lead to an even more effective project.

  17. Analysis of Class 8 Hybrid-Electric Truck Technologies Using Diesel, LNG, Electricity, and Hydrogen, as the Fuel for Various Applications

    E-Print Network [OSTI]

    Zhao, Hengbing

    2013-01-01

    shaft as the electric motor and the transmission. The clutchFuel Cell Electric Powertrain Configuration Pre-transmissionusing one electric motor in the pre-transmission position,

  18. Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006

    E-Print Network [OSTI]

    2008-01-01

    National Interest Electric Transmission Corridors, and thedraft National Interest Electric Transmission CorridorNational Interest Electric Transmission Corridors, one in

  19. Coordination of Transmission Line Transfer Capabilities

    E-Print Network [OSTI]

    Coordination of Transmission Line Transfer Capabilities Final Project Report Power Systems since 1996 PSERC #12;Power Systems Engineering Research Center Coordination of Transmission Line Industry Representative Richard Goddard Portland General Electric Research Team Students Yuan Li Yonghong

  20. Policy Issues for Retail Beamed Power Transmission

    E-Print Network [OSTI]

    electric power on Earth is transmitted using wired power transmission systems. In this system, electricalPolicy Issues for Retail Beamed Power Transmission Girish Chowdhary, Rajeev Gadre, Narayanan solar electric power using retail delivery of beamed power. Recent advances in power beaming have made

  1. $18.8 Million Award for Power Systems Engineering Research Center Continues Collaboration of 13 Universities and 35 Utilities for Electric Power Research, Building the Nation's Energy Workforce

    Broader source: Energy.gov [DOE]

    The Department of Energy awarded a cooperative agreement on January 16, 2009, to the Arizona State University (ASU) Board of Regents to operate the Power Systems Engineering Research Center (PSERC). PSERC is a collaboration of 13 universities with 35 electricity industry member organizations including utilities, transmission companies, vendors and research organizations.

  2. ELECTRIC

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and Myers CoMadison -T: Designation ofSEPE.ELECTRIC

  3. From: Austin Bird To: Congestion Study Comments Subject: Citizen Comment: National Interest Energy Transmission Corridors (NIETC"s)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescent LampFortDepartmentNational Interest0:59Austin Bird

  4. IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 4, NOVEMBER 2007 1563 Transmission-Constrained Residual Demand

    E-Print Network [OSTI]

    Baldick, Ross

    . However, in an electricity market, the market is embedded in a transmission network. When, electricity market, residual demand, supply function equilibrium, transmission constraint. I. INTRODUCTION important issues comes from the special nature of electricity transmission networks [1]. Although numerical

  5. Electric Resistance Heating | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    about 30% of the fuel's energy into electricity. Because of electricity generation and transmission losses, electric heat is often more expensive than heat produced in homes or...

  6. Electricity Generation, Transmission and Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES Science NetworkMediator EffectsDepartment of2015A

  7. DOE Electricity Transmission System Workshop

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pState Efficiency,Energy Newssuccessfully|

  8. NDN, VOLUME TRANSMISSION, AND SELF-ORGANIZATION IN BRAIN DYNAMICS

    E-Print Network [OSTI]

    Freeman, Walter J.

    NDN, VOLUME TRANSMISSION, AND SELF- ORGANIZATION IN BRAIN DYNAMICS WALTER J FREEMAN Department for the field synchrony: electric fields; magnetic fields; electromagnetic fields (radio waves); diffusion transmission by nonsynaptic diffusion transmission, in concert with the self- organization of the textured

  9. Transmission enhancement through deep subwavelength apertures using connected split

    E-Print Network [OSTI]

    Transmission enhancement through deep subwavelength apertures using connected split ring resonators transmission enhancement factors through a subwavelength aperture at microwave frequencies by placing connected transmission through a deep subwavelength aperture with an electrical size of /31×/12 (width × length

  10. The Inherent Inefficiency of Simultaneously Feasible Financial Transmission Rights Auctions

    E-Print Network [OSTI]

    such convergence. Index Terms-- financial transmission right, electricity auction, simultaneous feasibilityThe Inherent Inefficiency of Simultaneously Feasible Financial Transmission Rights Auctions Shi as financial transmission rights (FTRs), resulting from centralized auctions conducted by Independent System

  11. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    AC electric transmission arcs, which satisfy DC power flowof  transmission  constraints  (that  is,  DC?based power flow, DC,  and  AC.   In  addition,  standard  transmission 

  12. Autonomous data transmission apparatus

    DOE Patents [OSTI]

    Kotlyar, O.M.

    1997-03-25

    A autonomous borehole data transmission apparatus is described for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters. 4 figs.

  13. Autonomous data transmission apparatus

    DOE Patents [OSTI]

    Kotlyar, Oleg M. (4675 W. 3825 S, Salt Lake City, UT 84120)

    1997-01-01

    A autonomous borehole data transmission apparatus for transmitting measurement data from measuring instruments at the downhole end of a drill string by generating pressure pulses utilizing a transducer longitudinally responsive to magnetic field pulses caused by electrical pulses corresponding to the measured downhole parameters.

  14. Microsoft Word - DOE RFI on Transmission Planning - PGE Comments...

    Broader source: Energy.gov (indexed) [DOE]

    California. PG&E engages in the businesses of electricity and natural gas distribution, electricity generation, procurement and transmission, and natural gas procurement,...

  15. OAHU Wind Integration And Transmission Study: Summary Report...

    Office of Environmental Management (EM)

    OAHU Wind Integration And Transmission Study: Summary Report, NREL (National Renewable Energy Laboratory) OAHU Wind Integration And Transmission Study: Summary Report, NREL...

  16. Electric System Update: Sunday August 17, 2003 | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 17, 2003 The electric transmission system is now operating reliably. All electric power transmission lines that were removed from service during the blackout on August 14,...

  17. The Market Value and Cost of Solar Photovoltaic Electricity Production

    E-Print Network [OSTI]

    Borenstein, Severin

    2008-01-01

    dissipation during electricity transmission and distributionelectricity, and also ignores the potential savings in transmissionin an electricity grid re?ect the incremental transmission

  18. Interconnection-Wide Transmission Planning Initiative: Topic...

    Office of Environmental Management (EM)

    Interconnection on Electric Resource Planning and Priorities Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation Among States in the Eastern...

  19. Energy Department, Arizona Utilities Announce Transmission Infrastruct...

    Office of Environmental Management (EM)

    Group, a collection of public power companies that include several Western firm electric and transmission service customers. Western's borrowing authority, received as part...

  20. Recovery Act Interconnection Transmission Planning | Department...

    Energy Savers [EERE]

    - are identifying transmission requirements under a broad range of alternative electricity futures (including intensive application of demand-side technologies), and...

  1. California/Transmission | Open Energy Information

    Open Energy Info (EERE)

    San Diego Gas & Electric, Sacramento Municipal Utility District, PacifiCorp, Bonneville Power Administration, Transmission Agency of Northern California, and Western Area Power...

  2. Nevada/Transmission | Open Energy Information

    Open Energy Info (EERE)

    own transmission facilities in the State of Nevada: NV Energy, Bonneville Power Administration, and Valley Electric Association, Colorado River Commission, Los...

  3. Oregon/Transmission | Open Energy Information

    Open Energy Info (EERE)

    Electric Cooperative, Columbia Grid, Northern Tier Transmission Group, and Bonneville Power Administration. Oregon Energy Policy The Oregon Department of Energy's Governor's...

  4. Renewable Electricity: How Do You Know You Have It?; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-08-01

    When electricity is generated - either from a renewable or non-renewable power plant - the electrons added to the grid are indistinguishable. So, on what basis can a consumer of electricity claim to be using renewables? In the United States, renewable energy certificates (RECs) were developed as states passed renewable portfolio standards (RPSs) and were requiring fuel mix disclosure labels. RECs are also used in the voluntary market, where customers are buying renewables to meet sustainability goals. The concept of RECs is used most widely in the United States, but international markets also have tradable renewable electricity certificates. This fact sheet reviews how to ensure that RECs are not double-counted, roles of electricity regulators, renewable generators and purchasers. It concludes with a discussion of the international use of RECs.

  5. Proceedings of the March 29, 2006 Conference for the 2006 National Electric

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget | Department Primus PowerEffects on RiversTransmission

  6. Biennial Assessment of the Fifth Power Plan Transmission Issues

    E-Print Network [OSTI]

    unscheduled electricity flows over transmission lines leading to increased risks to electric system-construction alternatives to transmission; · Inability to effectively monitor the wholesale electricity market, identifyBiennial Assessment of the Fifth Power Plan Transmission Issues INTRODUCTION The Fifth Power Plan

  7. Transmission Pricing and Congestion Management: Efficiency, Simplicity and Open Access

    E-Print Network [OSTI]

    Oren, Shmuel S.

    to the transmission grid is the essential centerpiece for a competitive electricity market. Order 888 and Order 889 for the electric power industry restructuring. These orders provide guidelines for nondiscriminatory transmission functions of the ISO. In an open access, competitive electricity system a transmission pricing scheme should

  8. MARKET DESIGN AND ELECTRICITY RESTRUCTURING

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    ) took the lead in Order 888 (1996) by opening access to the electric transmission grid. Market Design discrimination in access to the monopoly owned transmission wires that control whether and to whom electricity, aka available transmission capacity). · Defining reliability standards while certifying the Electric

  9. Automated manual transmission mode selection controller

    DOE Patents [OSTI]

    Lawrie, Robert E. (Whitmore Lake, MI)

    1999-11-09

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  10. Automated manual transmission shift sequence controller

    DOE Patents [OSTI]

    Lawrie, Robert E. (Whitmore Lake, MI); Reed, Richard G. (Royal Oak, MI); Rausen, David J. (Denver, CO)

    2000-02-01

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both, an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  11. Vehicle Technologies Office Merit Review 2015: Multi-Speed Transmission for Commercial Delivery Medium Duty Plug-In Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Eaton at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-speed transmission for commercial...

  12. NATIONAL CENTRE FOR BIOLOGICAL SCIENCES Annual Maintenance Contract for Electrical Systems in

    E-Print Network [OSTI]

    Udgaonkar, Jayant B.

    Maintenance Contract for Electrical systems including substations in Mandara hostel-CB site, NCBS : Rs.47,729.00 4. COST OF TENDER DOCUMENT : Rs. 500/- 5. SALE PERIOD : 13/12/2013 TO 23/12/2013 6. TIME:________________DATE:____________ __________________________________ FOR A SUM OF RS. ________________ TOWARDS __________________________________THE COST OF TENDER DOCUMENT

  13. he prospect of millions of vehicles plugging into the nation's electric grid in the coming decades

    E-Print Network [OSTI]

    Firestone, Jeremy

    : Tesla Motors recently intro- duced an all-electric vehicle. See sidebar, p. 34.) Two startup firms plan-board battery pack. These conversions kits offer the potential to almost double an HEV's fuel efficiency rating to 100+ miles per gallon by increasing the size of the battery stor- age system and installing

  14. Electrically tunable coplanar transmission line resonators using YBa{sub 2}Cu{sub 3}O{sub 7{minus}{ital x}}/SrTiO{sub 3} bilayers

    SciTech Connect (OSTI)

    Findikoglu, A.T.; Jia, Q.X.; Campbell, I.H.; Wu, X.D.; Reagor, D.; Mombourquette, C.B.; McMurry, D.

    1995-06-26

    We have prepared electrically tunable microwave resonators incorporating superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}{ital x}} (YBCO) and paraelectric SrTiO{sub 3} (STO) layers on LaAlO{sub 3} substrates. The top YBCO layer for each sample was patterned into a 8 mm long coplanar transmission line with a 40 {mu}m gap and a 20 {mu}m center line width. The microwave transmission through the coplanar transmission line exhibits resonances corresponding to standing microwaves along the coplanar transmission line. These resonances are modulated by applying a bias voltage between the center line and the ground planes. Samples with a 0.5 {mu}m thick (2 {mu}m thick) bottom STO layer show, for a resonance at around 8 GHz (5 GHz), a frequency modulation of about 4% (24%) and a quality factor {ital Q} of about 200 (50) under 100 V bias at 80 K. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  15. Topic A Awardee: Western Electricity Coordinating Council | Department...

    Energy Savers [EERE]

    Western Electricity Coordinating Council Topic A Awardee: Western Electricity Coordinating Council Regional Transmission Expansion Planning (RTEP) The America Recovery and...

  16. FY2014 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Motors Program

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-11-01

    The US Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the US Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE’s commitment to developing public–private partnerships to fund high-risk–high-reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from “Freedom” and “Cooperative Automotive Research”) that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. Oak Ridge National Laboratory’s (ORNL’s) Advanced Power Electronics and Electric Motors (APEEM) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor, and traction drive system (TDS) technologies that will leapfrog current on-the-road technologies, leading to lower cost and better efficiency in transforming battery energy to useful work. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow’s automobiles will function as a unified system to improve fuel efficiency through research in more efficient TDSs.

  17. July 2, 2007 1 Optimal Transmission Switching

    E-Print Network [OSTI]

    Mangasarian, Olvi L.

    . INTRODUCTION n large electric networks, transmission is traditionally characterized as a static systemJuly 2, 2007 1 Optimal Transmission Switching Emily Bartholomew Fisher, Student Member, IEEE an optimal generation dispatch and transmission topology to meet a specific inflexible load as a mixed

  18. Smart Grid Application of Optimal Transmission Switching

    E-Print Network [OSTI]

    Ferris, Michael C.

    ;6 Introduction continued Electric Transmission Network Flow Problem Optimal Power Flow (OPF) AlternatingSmart Grid Application of Optimal Transmission Switching By, Kory W. Hedman, et al.* University (Professor, UC Berkeley) #12;2 Motivation Co-optimize transmission topology and generation dispatch

  19. Did English Generators Play Cournot? Capacity Withholding in the Electricity Pool

    E-Print Network [OSTI]

    Green, Richard J.

    2004-06-16

    The electricity industry in England and Wales was restructured in March 1990. The integrated Central Electricity Generating Board was divided into three generating companies and the National Grid Company (NGC), responsible for transmission. NGC also operated... published the load factors of its stations, while the MMC published information on the load factors of National Power and PowerGen’s coal-fired stations in its 1996 reports into their merger proposals. NGC provided load-duration curves, showing...

  20. FY2010 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, Mitchell

    2010-10-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public-private partnerships to fund high risk, high payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Advanced Power Electronics and Electric Machines (APEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE) and electric motor technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the APEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the PE and electrical machines subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency, with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor/inverter concepts. ORNL's Power Electronics and Electric Machines Research Program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2010 and conveys highlights of their accomplishment

  1. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01

    of Plug-in Hybrid Electric Vehicles on Regional PowerTransmission Area, in Electric Vehicle Symposium, Anaheim,of Plug-in Hybrid Electric Vehicles, ANL/ESD/09-2, Argonne

  2. EIS-0067: 230-kV International Transmission Line San Diego County, California to Tijuana, Mexico, San Diego Gas and Electric Company

    Broader source: Energy.gov [DOE]

    The Economic Regulatory Administration and the California Public Utilities Commission jointly prepared this EIS to evaluate the environmental impacts of the construction, maintenance and operation of a 10-mile, 230-kilovolt transmission line across the U.S./Mexico border for the purpose of economic exchange of power and increased reliability.

  3. Dynamic Wireless Charging of Electric Vehicle Demonstrated at Oak Ridge National Laboratory: Benefit of Electrochemical Capacitor Smoothing

    SciTech Connect (OSTI)

    Miller, John M; Onar, Omer C; White, Cliff P; Campbell, Steven L; Coomer, Chester; Seiber, Larry Eugene

    2014-01-01

    Abstract Wireless charging of an electric vehicle while in motion presents challenges in terms of low latency communications for roadway coil excitation sequencing, and maintenance of lateral alignment, plus the need for power flow smoothing. This paper summarizes the experimental results on power smoothing of in-motion wireless EV charging performed at Oak Ridge National Laboratory using various combinations of electrochemical capacitors at the grid-side and in-vehicle. Electrochemical capacitors of the symmetric carbon-carbon type from Maxwell Technologies comprised the in-vehicle smoothing of wireless charging current to the EV battery pack. Electro Standards Laboratories fabricated the passive and active parallel lithium-capacitor unit used to smooth grid-side power. Power pulsation reduction was 81% on grid by LiC, and 84% on vehicle for both lithium-capacitor and the carbon ultracapacitors.

  4. FY2011 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, Mitchell

    2011-10-01

    The U.S. Department of Energy (DOE) announced in May 2011 a new cooperative research effort comprising DOE, the U.S. Council for Automotive Research (composed of automakers Ford Motor Company, General Motors Company, and Chrysler Group), Tesla Motors, and representatives of the electric utility and petroleum industries. Known as U.S. DRIVE (Driving Research and Innovation for Vehicle efficiency and Energy sustainability), it represents DOE's commitment to developing public-private partnerships to fund high risk-high reward research into advanced automotive technologies. The new partnership replaces and builds upon the partnership known as FreedomCAR (derived from 'Freedom' and 'Cooperative Automotive Research') that ran from 2002 through 2010 and the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machines (PEEM) subprogram within the DOE Vehicle Technologies Program (VTP) provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on developing revolutionary new power electronics (PE), electric motor (EM), and traction drive system technologies that will leapfrog current on-the-road technologies. The research and development (R&D) is also aimed at achieving a greater understanding of and improvements in the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of advanced vehicle propulsion systems, the PEEM subprogram has enabled the development of technologies that will significantly improve efficiency, costs, and fuel economy. The PEEM subprogram supports the efforts of the U.S. DRIVE partnership through a three phase approach intended to: (1) identify overall propulsion and vehicle related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component R&D activities; (2) develop and validate individual subsystems and components, including EMs and PE; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), battery electric vehicles, and fuel-cell-powered automobiles that meet the goals of the VTP. A key element in making these advanced vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, efficiency, and cost targets for the PE and EM subsystems of the traction drive system. Areas of development include: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency with the ability to accommodate higher temperature environments while achieving high reliability; (3) converter concepts that use methods of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) new onboard battery charging concepts that result in decreased cost and size; (5) more effective thermal control through innovative packaging technologies; and (6) integrated motor-inverter traction drive system concepts. ORNL's PEEM research program conducts fundamental research, evaluates hardware, and assists in the technical direction of the VTP Advanced Power Electronics and Electric Motors (APEEM) program. In this role, ORNL serves on the U.S. DRIVE Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for

  5. Introduction Literature Review Integrated Electric Power Supply Chains Empirical Examples Conclusions An Integrated Electric Power Supply Chain and Fuel

    E-Print Network [OSTI]

    Nagurney, Anna

    Power Supply Chains Empirical Examples Conclusions A Simple Example of Transmission Congestion #12 Example of Transmission Congestion #12;Introduction Literature Review Integrated Electric Power Supply of Transmission Congestion #12;Introduction Literature Review Integrated Electric Power Supply Chains Empirical

  6. Draft environmental impact statement for construction and operation of the proposed Bangor Hydro-Electric Company`s second 345-kV transmission tie line to New Brunswick

    SciTech Connect (OSTI)

    1993-10-01

    This Draft Environmental Impact Statement (DEIS) was prepared by the US Department of Energy (US DOE). The proposed action is the issuance of Presidential Permit PP-89 by DOE to Bangor Hydro-Electric Company to construct and operate a new international transmission line interconnection to New Brunswick, Canada that would consist of an 83.8 mile (US portion), 345-kilovolt (kV) alternating current transmission line from the US-Canadian border at Baileyville, Maine to an existing substation at Orrington, Maine. The principal environmental impacts of the construction and operation of the transmission line would be incremental in nature and would include the conversion of forested uplands (mostly commercial timberlands) and wetlands to right-of-way (small trees, shrubs, and herbaceous vegetation). The proposed line would also result in localized minor to moderate visual impacts and would contribute a minor incremental increase in the exposure of some individuals to electromagnetic fields. This DEIS documents the purpose and need for the proposed action, describes the proposed action and alternatives considered and provides a comparison of the proposed and alternatives routes, and provides detailed information on analyses of the environmental consequences of the proposed action and alternatives, as well as mitigative measures to minimize impacts.

  7. IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 19, NO. 2, MAY 2004 889 Congestion Management and Transmission Rights in

    E-Print Network [OSTI]

    Dixon, Juan

    and Transmission Rights in Centralized Electric Markets Roberto Méndez and Hugh Rudnick, Fellow, IEEE Abstract implementation unattractive. Index Terms--Congestion management, electric markets, nodal pricing, transmission by congestions in transmission lines. These rights can have physical or financial attributes

  8. Cost-Effectivenessof PhotovoltaicGenerationIn A Transmission-Constrained Load Area of An InterconnectedSystem

    E-Print Network [OSTI]

    Gross, George

    Abstract: Electric power systems of today are experiencing a difficulty of constrained transmission lines, present electric system networks are experiencing the difficulty of constrained transmission lines: Photovoltaic Generation, Power System Economics, Dispersed Generation, Transmission-Constrained Interconnected

  9. FY2007 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, Mitchell

    2007-10-01

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and Chrysler) announced in January 2002 a new cooperative research effort. Known as 'FreedomCAR' (derived from 'Freedom' and 'Cooperative Automotive Research'), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieving the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Advanced Power Electronics and Electric Machines (APEEM) subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles will function as a unified system to improve fuel efficiency. In supporting the development of hybrid propulsion systems, the APEEM effort has enabled the development of technologies that will significantly improve advanced vehicle efficiency, costs, and fuel economy. The APEEM subprogram supports the efforts of the FreedomCAR and Fuel Partnership through a three-phase approach intended to: (1) identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements and then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) develop and validate individual subsystems and components, including electric motors and power electronics; and (3) determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under this subprogram will help remove technical and cost barriers to enable the development of technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR and Vehicle Technologies Program. A key element in making hybrid electric vehicles (HEVs) practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include these: (1) novel traction motor designs that result in increased power density and lower cost; (2) inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) more effective thermal control and packaging technologies; and (5) integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, APEEM subprogram. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following report discusses those projects carried out in FY 2007 and conveys highlights of their accomplishments. Numerous project reviews, technical reports, and papers have been published for these efforts, if the reader is interested in pursuing details of the work.

  10. FY 2005 Oak Ridge National Laboratory Annual Progress Report for the Power Electronics and Electric Machinery Program

    SciTech Connect (OSTI)

    Olszewski, M

    2005-11-22

    The U.S. Department of Energy (DOE) and the U.S. Council for Automotive Research (composed of automakers Ford, General Motors, and DaimlerChrysler) announced in January 2002 a new cooperative research effort. Known as FreedomCAR (derived from ''Freedom'' and ''Cooperative Automotive Research''), it represents DOE's commitment to developing public/private partnerships to fund high-risk, high-payoff research into advanced automotive technologies. Efficient fuel cell technology, which uses hydrogen to power automobiles without air pollution, is a very promising pathway to achieve the ultimate vision. The new partnership replaces and builds upon the Partnership for a New Generation of Vehicles initiative that ran from 1993 through 2001. The Vehicle Systems subprogram within the FreedomCAR and Vehicle Technologies Program provides support and guidance for many cutting-edge automotive and heavy truck technologies now under development. Research is focused on understanding and improving the way the various new components of tomorrow's automobiles and heavy trucks will function as a unified system to improve fuel efficiency. This work also supports the development of advanced automotive accessories and the reduction of parasitic losses (e.g., aerodynamic drag, thermal management, friction and wear, and rolling resistance). In supporting the development of hybrid propulsion systems, the Vehicle Systems subprogram has enabled the development of technologies that will significantly improve fuel economy, comply with projected emissions and safety regulations, and use fuels produced domestically. The Vehicle Systems subprogram supports the efforts of the FreedomCAR and Fuel and the 21st Century Truck Partnerships through a three-phase approach intended to: (1) Identify overall propulsion and vehicle-related needs by analyzing programmatic goals and reviewing industry's recommendations and requirements, then develop the appropriate technical targets for systems, subsystems, and component research and development activities; (2) Develop and validate individual subsystems and components, including electric motors, emission control devices, battery systems, power electronics, accessories, and devices to reduce parasitic losses; and (3) Determine how well the components and subsystems work together in a vehicle environment or as a complete propulsion system and whether the efficiency and performance targets at the vehicle level have been achieved. The research performed under the Vehicle Systems subprogram will help remove technical and cost barriers to enable technology for use in such advanced vehicles as hybrid and fuel-cell-powered automobiles that meet the goals of the FreedomCAR Program. A key element in making hybrid electric vehicles practical is providing an affordable electric traction drive system. This will require attaining weight, volume, and cost targets for the power electronics and electrical machines subsystems of the traction drive system. Areas of development include: (1) Novel traction motor designs that result in increased power density and lower cost; (2) Inverter technologies involving new topologies to achieve higher efficiency and the ability to accommodate higher-temperature environments; (3) Converter concepts that employ means of reducing the component count and integrating functionality to decrease size, weight, and cost; (4) More effective thermal control and packaging technologies; and (5) Integrated motor/inverter concepts. The Oak Ridge National Laboratory's (ORNL's) Power Electronics and Electric Machinery Research Center conducts fundamental research, evaluates hardware, and assists in the technical direction of the DOE Office of FreedomCAR and Vehicle Technologies Program, Power Electronics and Electric Machinery Program. In this role, ORNL serves on the FreedomCAR Electrical and Electronics Technical Team, evaluates proposals for DOE, and lends its technological expertise to the direction of projects and evaluation of developing technologies. ORNL also executes specific projects for DOE. The following

  11. Texas - PUC Substantive Rule 25.198 - Electric Service Providers...

    Open Energy Info (EERE)

    Texas - PUC Substantive Rule 25.198 - Electric Service Providers-Open Access Comparable Transmission Service for Electric Utilities in the Electric Reliability Council of Texas...

  12. Office of Electricity Delivery And Energy Reliability To Hold...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Electricity Delivery And Energy Reliability To Hold Technical Conference On The Design Of Future Electric Transmission Office of Electricity Delivery And Energy...

  13. Assistance to States on Electric Industry Issues

    SciTech Connect (OSTI)

    Glen Andersen

    2010-10-25

    This project seeks to educate state policymakers through a coordinated approach involving state legislatures, regulators, energy officials, and governors’ staffs. NCSL’s activities in this project focus on educating state legislators. Major components of this proposal include technical assistance to state legislatures, briefing papers, coordination with the National Council on Electricity Policy, information assistance, coordination and outreach, meetings, and a set of transmission-related activities.

  14. Implementation Scenarios for Electric Vehicle Roadway Wireless Power Transfer; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Meintz, A.; Markel, T.; Burton, E.; Wang, L.; Gonder, J.; Brooker, A.

    2015-06-05

    Analysis has been performed on the Transportation Secure Data Center (TSDC) warehouse of collected GPS second-by-second driving profile data of vehicles in the Atlanta, Chicago, Fresno, Kansas City, Los Angeles, Sacramento, and San Francisco Consolidated Statistical Areas (CSAs) to understand in-motion wireless power transfer introduction scenarios. In this work it has been shown that electrification of 1% of road miles could reduce fuel use by 25% for Hybrid Electric Vehicles (HEVs) in these CSAs. This analysis of strategically located infrastructure offers a promising approach to reduced fuel consumption; however, even the most promising 1% of road miles determined by these seven analysis scenarios still represent an impressive 2,700 miles of roadway to electrify. Therefore to mitigate the infrastructure capital costs, integration of the grid-tied power electronics in the Wireless Power Transfer (WPT) system at the DC-link to photovoltaic and/or battery storage is suggested. The integration of these resources would allow for the hardware to provide additional revenue through grid services at times of low traffic volumes and conversely at time of high traffic volumes these resources could reduce the peak demand that the WPT system would otherwise add to the grid.

  15. Transmission Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Services BPA Clarifications on the DSO216 1 Document updated on 2242015 at 3:29:25 PM B O N N E V I L L E P O W E R A D M I N I S T R A T I O N BPA Clarifications on...

  16. Superconductivity for Electric Systems

    E-Print Network [OSTI]

    Superconductivity Program Oak Ridge National Laboratory For: Department of Energy Office of Electricity Delivery and Energy Reliability ­ Superconductivity for Electric Systems #12;3 Control Milestones and Status ControlSuperconductivity for Electric Systems Superconductivity Program Quarterly Progress Report

  17. Transmission line capital costs

    SciTech Connect (OSTI)

    Hughes, K.R.; Brown, D.R.

    1995-05-01

    The displacement or deferral of conventional AC transmission line installation is a key benefit associated with several technologies being developed with the support of the U.S. Department of Energy`s Office of Energy Management (OEM). Previous benefits assessments conducted within OEM have been based on significantly different assumptions for the average cost per mile of AC transmission line. In response to this uncertainty, an investigation of transmission line capital cost data was initiated. The objective of this study was to develop a database for preparing preliminary estimates of transmission line costs. An extensive search of potential data sources identified databases maintained by the Bonneville Power Administration (BPA) and the Western Area Power Administration (WAPA) as superior sources of transmission line cost data. The BPA and WAPA data were adjusted to a common basis and combined together. The composite database covers voltage levels from 13.8 to 765 W, with cost estimates for a given voltage level varying depending on conductor size, tower material type, tower frame type, and number of circuits. Reported transmission line costs vary significantly, even for a given voltage level. This can usually be explained by variation in the design factors noted above and variation in environmental and land (right-of-way) costs, which are extremely site-specific. Cost estimates prepared from the composite database were compared to cost data collected by the Federal Energy Regulatory Commission (FERC) for investor-owned utilities from across the United States. The comparison was hampered because the only design specifications included with the FERC data were voltage level and line length. Working within this limitation, the FERC data were not found to differ significantly from the composite database. Therefore, the composite database was judged to be a reasonable proxy for estimating national average costs.

  18. Nuclear electromagnetic pulse (EMP) and electric power systems

    SciTech Connect (OSTI)

    Barnes, P.R.; Vance, E.F.; Askins, H.W. Jr.

    1984-04-01

    A nuclear detonation at high altitudes produces a transient electromagnetic pulse (EMP) of high-intensity electromagnetic fields. A single high-altitude burst can subject most of the continental United States to a strong EMP. These intense fields induce voltage and current transients in electrical conductors. Surges would be induced by EMP in transmission and distribution circuits and in control and communication elements in electric power systems throughout the national grid. Such widespread disturbances could upset the stability of electrical energy systems and result in massive power failures. The extent and nature of EMP-caused damages are not well known for utility electric power systems. Failures are likely to be associated with insulation damage and failures of low-voltage and solid-state components. It is concluded from a review of past studies that EMP may pose a serious threat to the nation's electrical energy supply.

  19. Transmission INTRODUCTION

    E-Print Network [OSTI]

    that the incentives to assure the reliable and economic operation of regulated, vertically integrated utility service for monopoly electricity generation by vertically integrated utilities. New generating technologies such as combined cycle combustion turbines, cogeneration, wind power, and geothermal generation tended

  20. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Exploration of High-Penetration Renewable Electricity Futures PDF Volume 4 PDF #12;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Citations Renewable Electricity Futures Study (Entire Report) National Renewable Energy Laboratory. (2012

  1. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study End-use Electricity Demand Volume 3 of 4 Volume 2 PDF Volume 3;Renewable Electricity Futures Study Edited By Hand, M.M. National Renewable Energy Laboratory Baldwin, S. U Sandor, D. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study

  2. Planning India's long-term energy shipment infrastructures for electricity and coal

    SciTech Connect (OSTI)

    Brian H. Bowen; Devendra Canchi; Vishal Agarwal Lalit; Paul V. Precke; F.T. Sparrow; Marty W. Irwin

    2010-01-15

    The Purdue Long-Term Electricity Trading and Capacity Expansion Planning Model simultaneously optimizes both the expansion of transmission and generation capacity. Most commercial electricity system planning software is limited to only transmission planning. An application of the model to India's national power grid, for 2008-2028, indicates substantial transmission expansion is the cost-effective means of meeting the needs of the nation's growing economy. An electricity demand growth rate of 4% over the 20-year planning horizon requires more than a 50% increase in the Government's forecasted transmission capacity expansion, and 8% demand growth requires more than a six-fold increase in the planned transmission capacity expansion. The model minimizes the long-term expansion costs (operational and capital) for the nation's five existing regional power grids and suggests the need for large increases in load-carrying capability between them. Changes in coal policy affect both the location of new thermal power plants and the optimal pattern inter-regional transmission expansions. 15 refs., 10 figs., 7 tabs.

  3. A Plea for Simpler Electricity Tariffs Philip E. Coleman and Christopher T. Payne, Lawrence Berkeley National Laboratory

    E-Print Network [OSTI]

    A Plea for Simpler Electricity Tariffs Philip E. Coleman and Christopher T. Payne, Lawrence asserts that electric rate structures in the United States are often so confusing that even large a simplified declaration (in tariffs and/or bills) to electricity customers of what their marginal costs are

  4. EIS-0285: Transmission System Vegetation Management Program

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration (Bonneville) is responsible for maintaining a network of 24,000 kilometers (km) or 15,000 miles (mi.) of electric transmission lines and 350 substations. This...

  5. Transmission policy in the United States

    E-Print Network [OSTI]

    Joskow, Paul L.

    2004-01-01

    This paper provides an overview of the development of electric power transmission access, pricing and investment policies in the U.S. over the last 15 years and evaluates the current state of those policies. Pre-liberalization ...

  6. Integrated System Transmission and Ancillary Services Rate Calculation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Western Area Power Administration Basin Electric Power Cooperative Heartland Consumers Power District 1 Integrated System Transmission and Ancillary Services Rate Calculation...

  7. Integrated System Transmission and Ancillary Services Rate Calculation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System Transmission and Ancillary Services 2013 Rate True-up Calculation Western Area Power Administration Basin Electric Power Cooperative Heartland Consumers Power District 1...

  8. Coordination of Federal Transmission Permitting on Federal Lands...

    Energy Savers [EERE]

    federal agencies, states and tribes involved in the siting and permitting process for electric transmission facilities on Federal land. The MOU will improve uniformity,...

  9. Plains and Eastern Clean Line Transmission Line: Federal Register...

    Energy Savers [EERE]

    Clean Line project. The project would include an overhead 600-kilovolt (kv) high voltage, direct current electric transmission system and associated facilities with the capacity to...

  10. EIS-0486: Plains & Eastern Clean Line Transmission Project |...

    Broader source: Energy.gov (indexed) [DOE]

    Project. The proposed project would include an overhead 600 kilovolt (kV) high voltage direct current (HVDC) electric transmission system and associated facilities with the...

  11. Final EIS for Champlain Hudson Power Express Transmission Project...

    Broader source: Energy.gov (indexed) [DOE]

    operation, maintenance, and connection of a 336-mile, 1,000 megawatt, high-voltage direct current, electric transmission system that would cross the international border...

  12. Proposed Project: Plains & Eastern Clean Line Transmission Line...

    Energy Savers [EERE]

    & Eastern Clean Line project (the proposed project) would include an overhead +- 600 kV direct current electric transmission system and associated facilities with the capacity to...

  13. Electrical Engineer- OPEN CONTINUOUS ANNOUNCEMENT

    Broader source: Energy.gov [DOE]

    This recruitment is an OPEN CONTINUOUS ANNOUNCEMENT (OCA) being utilized to fill current and future Electrical Engineer vacancies within BPA's Transmission Field Services organization. Positions...

  14. Sandia Energy - National SCADA Testbed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National SCADA Testbed Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for Electric Infrastructure National...

  15. Comments of Lawrence J. Reilly Chairman, Vermont Electric Power...

    Broader source: Energy.gov (indexed) [DOE]

    an interconnected electric transmission grid capable of sharing access to clean hydro power. VELCO currently manages a system that includes: 738 miles of transmission...

  16. Low Frequency Transmission Final Project Report

    E-Print Network [OSTI]

    Low Frequency Transmission Final Project Report Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;Low Frequency Transmission Final Project This is the final report for the Power Systems Engineering Research Center (PSERC) research project S-42 titled "Low

  17. Ecological benefits of dc power transmission

    SciTech Connect (OSTI)

    Kutuzova, N. B.

    2011-05-15

    The environmental effects of dc overhead transmission lines are examined. The major effects of ac and dc transmission lines are compared. Dc lines have advantages compared to ac lines in terms of electrical safety for people under the lines, biological effects, corona losses, and clearance width.

  18. Climate, extreme heat, and electricity demand in California

    E-Print Network [OSTI]

    Miller, N.L.

    2008-01-01

    markets, suppliers, and consumers. The nation’s energy infrastructure, its refinery capacity, and electricity

  19. Analysis of FERC's Final EIS for Electricity Open Access & Recovery of Stranded Costs

    Reports and Publications (EIA)

    1996-01-01

    Reviews the Final Environmental Impact Statement (FEIS) prepared by the Federal Energy Regulatory Commission for its electricity transmission system open access prepared in April 1996 and uses the National Energy Modeling System (NEMS) to analyze the open access rule (Orders 888 and 889).

  20. 2012 National Electricity Forum

    Office of Environmental Management (EM)

    Commission 10:30 am - 10:45 am Break 10:45 am - 12:00 pm Panel II - Industry * Bob Smith, Director, Director, Energy Delivery Asset Management and Planning, Arizona Public...

  1. 2012 National Electricity Forum

    Office of Environmental Management (EM)

    I - Regulators * John Savage, Commissioner, Oregon Public Utilities Commission * Marsha Smith, Commissioner, Idaho Public Utilities Commission * Steve Oxley, Deputy Chairman,...

  2. National Electrical Manufacturers Association

    Broader source: Energy.gov (indexed) [DOE]

    for incandescent reflector lamps do not need to be amended and let the marketplace transition to more energy efficient lighting technologies combined with other regulatory...

  3. 2012 National Electricity Forum

    Office of Environmental Management (EM)

    What evidence -- quantitative or qualitative -- supports your conclusions regarding current or conditional congestion in your area or region today? (Please provide such...

  4. 2012 National Electricity Forum

    Broader source: Energy.gov (indexed) [DOE]

    region and the San Francisco Bay Area were congestion areas of concern, and that the Phoenix-Tucson area was no longer a congestion area of concern. The study also identified...

  5. National Electrical Manufacturers Association

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgram | DepartmentEnergy6 3 9Interconnection

  6. 2012 National Electricity Forum

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s tDistributedDISCLAIMER This reportAt U.S.

  7. 2012 National Electricity Forum

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s tDistributedDISCLAIMER This reportAt U.S.

  8. 2012 National Electricity Forum

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s tDistributedDISCLAIMER This reportAt

  9. 2012 National Electricity Forum

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s tDistributedDISCLAIMER This reportAt-

  10. 2012 National Electricity Forum

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s tDistributedDISCLAIMER This reportAt-Regional

  11. 2012 National Electricity Forum

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s tDistributedDISCLAIMER This

  12. National Electricity Delivery Division

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department ofDepartment of Energy San

  13. PROSPECTS FOR DYNAMIC TRANSMISSION CIRCUIT RATINGS K. E. Holbert, G. T. Heydt

    E-Print Network [OSTI]

    transmission line thermal ratings take on increased importance in the deregulated electric power industry, since transmission capacity is sold as a deregulated commodity. Also, the electric utilities are under pressure to utilize all their transmission resources to the fullest. 1. INTRODUCTION The U.S. electric

  14. Downhole transmission system comprising a coaxial capacitor

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Pixton, David S. (Lehi, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Hall, Jr., H. Tracy (Provo, UT); Rawle, Michael (Springville, UT)

    2011-05-24

    A transmission system in a downhole component comprises a plurality of data transmission elements. A coaxial cable having an inner conductor and an outer conductor is disposed within a passage in the downhole component such that at least one capacitor is disposed in the passage and having a first terminal coupled to the inner conductor and a second terminal coupled to the outer conductor. Preferably the transmission element comprises an electrically conducting coil. Preferably, within the passage a connector is adapted to electrically connect the inner conductor of the coaxial cable and the lead wire. The coaxial capacitor may be disposed between and in electrically communication with the connector and the passage. In another embodiment a connector is adapted to electrical connect a first and a second portion of the inner conductor of the coaxial cable and a coaxial capacitor is in electrical communication with the connector and the passage.

  15. Transmission Investment Timing and Sizing under Uncertainty Afzal Siddiqui

    E-Print Network [OSTI]

    Guillas, Serge

    than cost reduction. In deregulated electricity industries with functioning markets, transmission situation has changed dramatically. After the deregulation of North American electricity markets in 1996 approach, we determine both the optimal investment timing and line capacity under uncertain congestion

  16. United States Electricity Industry Primer

    Broader source: Energy.gov [DOE]

    The United States Electricity Industry Primer provides a high-level overview of the U.S. electricity supply chain, including generation, transmission, and distribution; markets and ownership structures, including utilities and regulatory agencies; and system reliability and vulnerabilities.

  17. What can transmission do for a fully renewable Europe?

    E-Print Network [OSTI]

    Becker, Sarah; Andresen, Gorm B; Greiner, Martin O W; Schramm, Stefan

    2014-01-01

    Our research is centred around the question how to best integrate the variable renewable energy sources (VRES), wind power and solar photovoltaics, into the European electricity grid. The future electricity supply will be based to a large extend on these fluctuating resources. We have conducted a study, extrapolating national historical and targeted wind and solar power penetrations in Europe up to 100% VRES (R.A. Rodriguez et al, Renewable Energy 63, p. 467, Mar 2014 and S. Becker et al, Energy 64, p. 404, Jan 2014). A high share of VRES means large fluctuations in the generation, causing overproduction and deficits. One way to reduce such mismatches is power transmission spatially smoothing out the fluctuations. This has the potential to reduce the remaining shortages by sharing the surplus production of others. We find that shortages can at maximum be reduced by 40% in the hypothetical case of unlimited transmission capacities across all of Europe. A more realistic extension of the transmission grid, rough...

  18. 1394 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 4, NOVEMBER 2007 Economic Criteria for Planning Transmission

    E-Print Network [OSTI]

    Oren, Shmuel S.

    for Planning Transmission Investment in Restructured Electricity Markets Enzo E. Sauma, Member, IEEE. In reality, however, since the impacts of an electricity transmission project on different players may vary that should be considered when planning electricity transmission investments. We propose an electricity

  19. Missing Money--Will the Current Electricity Market Structure Support High (~50%) Wind/Solar?; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Milligan, Michael

    2015-05-15

    This presentation summarizes the missing money problem and whether the current electricity market structure will support high penetration levels of wind and solar.

  20. Executive Forum on Solutions to Transmission Investment

    E-Print Network [OSTI]

    National Rural Electric Coop. Assn. New York ISO New York Power Authority Pacific Gas and Electric PJM. California ISO CenterPoint Energy Duke Energy Entergy EPRI Exelon FirstEnergy GE Energy Institut de recherche d'Hydro-Québec (IREQ) ISO New England Korea Electric Power Research Institute Michigan Electric

  1. Modeling and Computing Two-settlement Oligopolistic Equilibrium in a Congested Electricity Network

    E-Print Network [OSTI]

    Yao, Jian; Adler, Ilan; Oren, Shmuel S

    2006-01-01

    electricity, the lack of demand elasticity, high market concentration and limited transmission capacities.

  2. Data transmission element for downhole drilling components

    DOE Patents [OSTI]

    Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

    2006-01-31

    A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

  3. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Most electric generating units are able to produce a certain amount of reactive power. As power travels over transmission lines the share of reactive power increases. The goal is...

  4. HVDC transmission: a path to the future?

    SciTech Connect (OSTI)

    Teichler, Stephen L.; Levitine, Ilia

    2010-05-15

    Direct current transmission has been the poor stepchild of the U.S. electric industry. Although early-generation plants were based on DC technology, it was soon deemed uneconomical to transmit electricity over long distances, but it now appears poised for a change. Both the increasing technical potential and changing economics of HVDC lines promise a growing role in the future. (author)

  5. 12827Federal Register / Vol. 77, No. 42 / Friday, March 2, 2012 / Notices National Grid Transmission Services Corporation Bangor Hydro Electric Company .............................................. Docket No. EL1149000.

    E-Print Network [OSTI]

    for potential acquisition by the State of Alaska under the Alaska Statehood Act, state lands administered .............................................. Docket No. EL11­49­000. Rock Island Clean Line LLC of the General Counsel; David Maranville, Office of the General Counsel; and David Hunger, Office of Energy

  6. From: Dan O"Hagan To: Congestion Study Comments Subject: FMPA Comments on2014 Draft National Electric Transmission Congestion Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDan O"Hagan To: Congestion Study Comments

  7. From: Stolar, Olena To: Congestion Study Comments Subject: NextEra Energy Inc."s Comments on the DOE Draft National Electric Transmission Congestion Study submitted

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDan O"Hagan To:JMulveny,NoCongestionStolar,

  8. Metallic transmission screen for sub-wavelength focusing

    E-Print Network [OSTI]

    an approach to designing a general transmission func- tion T(x), which converts an arbitrary electric fieldMetallic transmission screen for sub-wavelength focusing A.M.H. Wong, C.D. Sarris and G.V. Eleftheriades A simple metallic transmission screen is proposed that is capable of focusing an incident plane

  9. OLA with Transmission Threshold for Strip Aravind Kailas

    E-Print Network [OSTI]

    Ingram, Mary Ann

    OLA with Transmission Threshold for Strip Networks Aravind Kailas School of Electrical and Computer-0250, USA Email: mai@ece.gatech.edu Abstract--The opportunistic large array (OLA) with transmission threshold (OLA-T) is a simple form of co- operative transmission that limits node participation

  10. Renewable Electricity Futures Study

    E-Print Network [OSTI]

    Renewable Electricity Futures Study Executive Summary NREL is a national laboratory of the U for Sustainable Energy, LLC. Volume 2 PDF Volume 3 PDF Volume 1 PDF Volume 4 PDF #12;Renewable Electricity Futures. National Renewable Energy Laboratory Suggested Citations Renewable Electricity Futures Study (Entire Report

  11. Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project

    SciTech Connect (OSTI)

    Woodford, D.

    2011-02-01

    This report provides an independent review included an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric transmission systems as a result of interconnecting the islands.

  12. Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project

    SciTech Connect (OSTI)

    Woodford, D.

    2011-02-01

    This report provides an independent review including an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric transmission systems as a result of interconnecting the islands

  13. Open Transmission and Spot Markets for Power: Models of Power and Transmission Pricing on the Western Network

    E-Print Network [OSTI]

    White, Douglas R.

    of an efficient and stable wholesale power market. If the retail market were to achieve a comparable efficiencyMBS 97-07 Open Transmission and Spot Markets for Power: Models of Power and Transmission Pricing markets for electric power by requiring utilities to open their transmission systems to wholesale power

  14. OAHU Wind Integration And Transmission Study: Summary Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OAHU WIND INTEGRATION AND TRANSMISSION STUDY: SUMMARY REPORT NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy,...

  15. Phase 2 Report: Oahu Wind Integration and Transmission Study...

    Office of Environmental Management (EM)

    OAHU Wind Integration And Transmission Study: Summary Report, NREL (National Renewable Energy Laboratory) Initial Economic Analysis of Utility-scale Wind Integration in Hawaii...

  16. Office of the Assistant General Counsel for Electricity and Fossil...

    Energy Savers [EERE]

    Administration matters including review of rate orders, and electricity transmission, hydro power, electric reliability, and legislative issues. Further, the office represents...

  17. Using EPECs to model bilevel games in restructured electricity ...

    E-Print Network [OSTI]

    nodes by lines), and the electrical properties of lines such as susceptance. It worth pointing out ...... Contract networks for electric power transmission. Journal of ...

  18. Recovery Act: State Assistance for Recovery Act Related Electricity...

    Energy Savers [EERE]

    energy, carbon capture and storage, transmission lines, energy storage, smart grid, demand response equipment, and electric and hybrid-electric vehicles. View a full list of...

  19. ENGNEERING ITENABLED ELECTRICITY SERVICES Marija Ilic

    E-Print Network [OSTI]

    (implications on candidate architectures) The man-made electric power network, its governance system Today's Transmission Grid Tomorrow's Transmission Grid Deliver supply to meet given demand Deliver power connected to a stable grid Build new transmission lines for forecast demand Build new transmission lines

  20. Survey of Transmission Cost Allocation Methodologies for Regional Transmission Organizations

    SciTech Connect (OSTI)

    Fink, S.; Porter, K.; Mudd, C.; Rogers, J.

    2011-02-01

    The report presents transmission cost allocation methodologies for reliability transmission projects, generation interconnection, and economic transmission projects for all Regional Transmission Organizations.