National Library of Energy BETA

Sample records for national corn growers

  1. Small Wind Electric Systems: A Guide for the American Corn Growers Association

    U.S. Energy Information Administration (EIA) Indexed Site

    Guide Produced for the American Corn Growers Foundation Small Wind Electric Systems Small Wind Electric Systems U.S. Department of Energy Energy Efficiency and Renewable Energy Wind and Hydropower Technologies Program Small Wind Electric Systems Cover photo: This AOC 15/50 wind turbine on a farm in Clarion, Iowa, saves the Clarion-Goldfield Community School about $9,000 per year on electrical purchase and provides a part of the school's science curriculum. Photo credit - Robert Olson/PIX11649 A

  2. Northern Growers LLC | Open Energy Information

    Open Energy Info (EERE)

    Farmer cooperative that provides corn to Northern Lights Ethanol LLC (a 77% owned joint venture with Broin Companies). References: Northern Growers LLC1 This article is a...

  3. Understanding the Impact of Higher Corn Prices on Consumer Food Prices

    SciTech Connect (OSTI)

    none,

    2007-04-18

    In an effort to assess the true effects of higher corn prices, the National Corn Growers Association (NCGA) commissioned an analysis on the impact of increased corn prices on retail food prices. This paper summarizes key results of the study and offers additional analysis based on information from a variety of other sources.

  4. New Mexico grape growers unite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico grape growers unite, increase production Grape Growers Association enlivens ... land, enlivens production, protects water rights for Northern New Mexico agriculturists. ...

  5. Grand Opening for Project LIBERTY: Nation's First Plant to Use Corn Waste

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as a Feedstock | Department of Energy for Project LIBERTY: Nation's First Plant to Use Corn Waste as a Feedstock Grand Opening for Project LIBERTY: Nation's First Plant to Use Corn Waste as a Feedstock August 28, 2014 - 12:33pm Addthis POET-DSM's Project LIBERTY in Emmetsburg, Iowa, will celebrate its grand opening September 3, 2014, becoming the first commercial-scale cellulosic ethanol plant to use corn waste as a feedstock. Developed through a joint venture between POET LLC in Sioux

  6. J & K Growers Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    J & K Growers Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name J & K Growers Greenhouse Low Temperature Geothermal Facility Facility J & K Growers...

  7. New Mexico grape growers unite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for modeling lung cancer. In other news December, 1 2015 - Novel therapy for stomach cancer; grand opening of Manhattan Project National Historical Park; 2015 Northern New...

  8. Owens Corning

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OWENS CORNING GOVERNMENT AND PUBLIC AFFAIRS 900 19 TH STREET N.W. SUITE 250 WASHINGTON, DC 20006 202.639.6900 FAX: 202.639.0247 OWENS CORNING September 20, 2013 By email: expartecommunications@hq.doe.gov Daniel Cohen Assistant General Counsel for Legislation and Regulatory Law Office of General Counsel Department of Energy 1000 Independence Ave., SW Washington DC 20585-0121 RE: Ex Parte Memo Dear Mr. Cohen: On Thursday, August 29, 2013, Julian Francis, VP & Managing Director Residential

  9. Development of a Wet Logistics System for Bulk Corn Stover

    Broader source: Energy.gov (indexed) [DOE]

    a Wet Logistics System for Bulk Corn Stover March 25, 2015 Lynn M. Wendt, William A. Smith, Austin Murphy, and Ian J. Bonner Idaho National Laboratory This presentation does not ...

  10. PRELIMINARY SURVEY OF SYLVANIA-CORNING NUCLEAR CORPORATION METALLURGICAL LABORATORY

    Office of Legacy Management (LM)

    SYLVANIA-CORNING NUCLEAR CORPORATION METALLURGICAL LABORATORY BAYSIDE, NEW YORK Work performed by the Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 March 1980 OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY as part of the Formerly Utilized Sites-- Remedial Action Program SYLVANIA-CORNING NUCLEAR CORPORATION METALLURGICAL LABORATORY BAYSIDE, NEW YORK At the request of the Department of Energy (DOE), a

  11. Grand Opening for Project LIBERTY: Nation's First Plant to Use...

    Energy Savers [EERE]

    for Project LIBERTY: Nation's First Plant to Use Corn Waste as a Feedstock Grand Opening for Project LIBERTY: Nation's First Plant to Use Corn Waste as a Feedstock August 28, 2014 ...

  12. Al Corn Clean Fuel | Open Energy Information

    Open Energy Info (EERE)

    Corn Clean Fuel Jump to: navigation, search Name: Al-Corn Clean Fuel Place: Claremont, North Dakota Product: Al-Corn is an ethanol plant located in Claremont, North Dakota, which...

  13. Corn Plus | Open Energy Information

    Open Energy Info (EERE)

    Plus Jump to: navigation, search Name: Corn Plus Place: Winnebago, Minnesota Product: Farmer Coop which owns an Ethanol plant in Winnebago Mn. Coordinates: 42.236095,...

  14. Heartland Corn Products | Open Energy Information

    Open Energy Info (EERE)

    55396 Product: Heartland Corn Products is farmer-owned cooperative that produces corn-derived ethanol. Coordinates: 48.47373, -120.177559 Show Map Loading map......

  15. Tall Corn Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    Tall Corn Ethanol LLC Jump to: navigation, search Name: Tall Corn Ethanol LLC Place: Coon Rapids, Iowa Zip: 50058 Product: Farmer owned bioethanol production company which owns a...

  16. Greenhouse gases in the corn-to-fuel ethanol pathway.

    SciTech Connect (OSTI)

    Wang, M. Q.

    1998-06-18

    Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota, and Nebraska), the model was used to estimate energy requirements and GHG emissions of corn farming; the manufacture, transportation to farms, and field application of fertilizer and pesticide; transportation of harvested corn to ethanol plants; nitrous oxide emissions from cultivated cornfields; ethanol production in current average and future technology wet and dry mills; and operation of cars and light trucks using ethanol fuels. For all cases examined on the basis of mass emissions per travel mile, the corn-to-ethanol fuel cycle for Midwest-produced ethanol used in both E85 and E10 blends with gasoline outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG production. Also, GHG reductions (but not energy use) appear surprisingly sensitive to the value chosen for combined soil and leached N-fertilizer conversion to nitrous oxide. Co-product energy-use attribution remains the single key factor in estimating ethanol's relative benefits because this value can range from 0 to 50%, depending on the attribution method chosen.

  17. Ethanol extraction of phytosterols from corn fiber

    DOE Patents [OSTI]

    Abbas, Charles; Beery, Kyle E.; Binder, Thomas P.; Rammelsberg, Anne M.

    2010-11-16

    The present invention provides a process for extracting sterols from a high solids, thermochemically hydrolyzed corn fiber using ethanol as the extractant. The process includes obtaining a corn fiber slurry having a moisture content from about 20 weight percent to about 50 weight percent solids (high solids content), thermochemically processing the corn fiber slurry having high solids content of 20 to 50% to produce a hydrolyzed corn fiber slurry, dewatering the hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, washing the residual corn fiber, dewatering the washed, hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, and extracting the residual corn fiber with ethanol and separating at least one sterol.

  18. Corn Plus Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Plus Wind Farm Jump to: navigation, search Name Corn Plus Wind Farm Facility Corn Plus Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  19. BloombergBusiness: Viewed from space: less corn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Viewed from space: less corn Viewed from space: less corn U.S. corn production is 2.8 percent smaller than government estimates, according to a daily analysis of infrared satellite images taken of more than 1 million corn fields. September 13, 2015 Domestic corn production will be 13.34 billion bushels, Descartes Labs forecast. Source: Descartes Labs via Bloomberg Domestic corn production will be 13.34 billion bushels, Descartes Labs forecast. Source: Descartes Labs via Bloomberg Corn crop

  20. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel

    SciTech Connect (OSTI)

    Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo; Wang, Michael

    2015-11-04

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of both ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and

  1. Influence of corn oil recovery on life-cycle greenhouse gas emissions of corn ethanol and corn oil biodiesel

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Zhichao; Dunn, Jennifer B.; Han, Jeongwoo; Wang, Michael

    2015-11-04

    Corn oil recovery and conversion to biodiesel has been widely adopted at corn ethanol plants recently. The US EPA has projected 2.6 billion liters of biodiesel will be produced from corn oil in 2022. Corn oil biodiesel may qualify for federal renewable identification number (RIN) credits under the Renewable Fuel Standard, as well as for low greenhouse gas (GHG) emission intensity credits under California’s Low Carbon Fuel Standard. Because multiple products [ethanol, biodiesel, and distiller’s grain with solubles (DGS)] are produced from one feedstock (corn), however, a careful co-product treatment approach is required to accurately estimate GHG intensities of bothmore » ethanol and corn oil biodiesel and to avoid double counting of benefits associated with corn oil biodiesel production. This study develops four co-product treatment methods: (1) displacement, (2) marginal, (3) hybrid allocation, and (4) process-level energy allocation. Life-cycle GHG emissions for corn oil biodiesel were more sensitive to the choice of co-product allocation method because significantly less corn oil biodiesel is produced than corn ethanol at a dry mill. Corn ethanol life-cycle GHG emissions with the displacement, marginal, and hybrid allocation approaches are similar (61, 62, and 59 g CO2e/MJ, respectively). Although corn ethanol and DGS share upstream farming and conversion burdens in both the hybrid and process-level energy allocation methods, DGS bears a higher burden in the latter because it has lower energy content per selling price as compared to corn ethanol. As a result, with the process-level allocation approach, ethanol’s life-cycle GHG emissions are lower at 46 g CO2e/MJ. Corn oil biodiesel life-cycle GHG emissions from the marginal, hybrid allocation, and process-level energy allocation methods were 14, 59, and 45 g CO2e/MJ, respectively. Sensitivity analyses were conducted to investigate the influence corn oil yield, soy biodiesel, and defatted DGS displacement

  2. Grand Opening of Abengoa's Biorefinery: Nation's Third Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The nation's third commercial-scale cellulosic ethanol biorefinery celebrates its grand ... The plant will produce cellulosic ethanol from non-edible corn stalks, stems, and leaves ...

  3. Update of distillers grains displacement ratios for corn ethanol life-cycle analysis.

    SciTech Connect (OSTI)

    Arora, S.; Wu, M.; Wang, M.; Energy Systems

    2011-02-01

    Production of corn-based ethanol (either by wet milling or by dry milling) yields the following coproducts: distillers grains with solubles (DGS), corn gluten meal (CGM), corn gluten feed (CGF), and corn oil. Of these coproducts, all except corn oil can replace conventional animal feeds, such as corn, soybean meal, and urea. Displacement ratios of corn-ethanol coproducts including DGS, CGM, and CGF were last updated in 1998 at a workshop at Argonne National Laboratory on the basis of input from a group of experts on animal feeds, including Prof. Klopfenstein (University of Nebraska, Lincoln), Prof. Berger (University of Illinois, Urbana-Champaign), Mr. Madson (Rapheal Katzen International Associates, Inc.), and Prof. Trenkle (Iowa State University) (Wang 1999). Table 1 presents current dry milling coproduct displacement ratios being used in the GREET model. The current effort focuses on updating displacement ratios of dry milling corn-ethanol coproducts used in the animal feed industry. Because of the increased availability and use of these coproducts as animal feeds, more information is available on how these coproducts replace conventional animal feeds. To glean this information, it is also important to understand how industry selects feed. Because of the wide variety of available feeds, animal nutritionists use commercial software (such as Brill Formulation{trademark}) for feed formulation. The software recommends feed for the animal on the basis of the nutritional characteristics, availability, and price of various animal feeds, as well as on the nutritional requirements of the animal (Corn Refiners Association 2006). Therefore, feed formulation considers both the economic and the nutritional characteristics of feed products.

  4. BloombergBusiness: Viewed from space: less corn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Viewed from space: less corn Viewed from space: less corn U.S. corn production is 2.8 percent smaller than government estimates, according to a daily analysis of infrared satellite ...

  5. Dow Corning Europe S A | Open Energy Information

    Open Energy Info (EERE)

    Corning Europe S A Jump to: navigation, search Name: Dow Corning Europe S.A. Place: Seneffe, Belgium Zip: 7180 Product: Seneffe is the headquarters for Dow Corning's operations in...

  6. Pro Corn LLC | Open Energy Information

    Open Energy Info (EERE)

    Pro-Corn LLC Place: Preston, Minnesota Zip: 55965 Product: Minnesotan farmer owned bioethanol production company. Coordinates: 47.526531, -121.936019 Show Map Loading map......

  7. Corn Belt Power Cooperative Rebate Program

    Broader source: Energy.gov [DOE]

    Corn Belt Power Cooperative is a generation and transmission electric cooperative that provides power to nine distribution rural electric cooperatives and one municipal electric cooperative. These...

  8. City of Corning, Iowa (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Corning, Iowa (Utility Company) Jump to: navigation, search Name: Corning Municipal Utilities Place: Iowa Phone Number: (641) 322-3920 Outage Hotline: (641) 322-3920 References:...

  9. Biochemical Production of Ethanol from Corn Stover: 2007 State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biochemical Production of Ethanol from Corn Stover: 2007 State of Technology Model Biochemical Production of Ethanol from Corn Stover: 2007 State of Technology Model An update to ...

  10. Multipass rotary shear comminution process to produce corn stover particles

    DOE Patents [OSTI]

    Dooley, James H; Lanning, David N

    2015-04-14

    A process of comminution of corn stover having a grain direction to produce a mixture of corn stover, by feeding the corn stover in a direction of travel substantially randomly to the grain direction one or more times through a counter rotating pair of intermeshing arrays of cutting discs (D) arrayed axially perpendicular to the direction of corn stover travel.

  11. Corning, Iowa: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Map This article is a stub. You can help OpenEI by expanding it. Corning is a city in Adams County, Iowa. It falls under Iowa's 5th congressional district.12 References ...

  12. Logs Wood Chips Straw Corn Switchgrass

    Broader source: Energy.gov (indexed) [DOE]

    Clean energy can come from the sun. The energy in wind can make electricity. Bioenergy comes from plants we can turn into fuel. Logs Wood Chips Straw Corn Switchgrass We can use ...

  13. WMU Power Generation Study Task 2.0 Corn Cob Co-Combustion Study

    SciTech Connect (OSTI)

    2009-09-30

    analysis anticipated only positive results from the combustion of corn cobs with coal in the WMU power plant boiler, and therefore recommended that the project proceed. The study proceeded with a review of the existing WMU Power Plant configuration; cob fuel analyses; an application for an Air Quality Permit from the Minnesota Pollution Control Agency to conduct the co-combustion test burns; identification of and a site visit to a similar facility in Iowa; an evaluation of cob grinding machines; and agreements with a corn grower, a cob harvester, and the City of Willmar to procure, harvest, and store cobs. The WMU power plant staff constructed a temporary cob feed system whereby the cobs could be injected into the #3 Boiler firebox, at rates up to 40% of the boiler total heat input. Test burns were conducted, during which air emissions were monitored and fuel and ash samples analyzed. The results of the test burns indicated that the monitored flue gas quality improved slightly during the test burns. The WMU was able to determine that modifications to the #3 Boiler fuel feed system to accept com cobs on a permanent basis would be technically feasible and would enable the WMU to generate electricity from renewable fuels on a dispatchable basis.

  14. Gary Calabrese > Corning Inc. > Scientific Advisory Board > The Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Center at Cornell Gary Calabrese Corning Inc

  15. Acidogenic fermentation of corn stover

    SciTech Connect (OSTI)

    Datta, R.

    1981-01-01

    Corn stover was fermentd by anaerobic acidogenic bacteria to produce volatile (C2-C6) organic acids. Mild pretreatment with dilute alkali solutions produced a two-fold increase in fermentability. A mixture of lime and sodium carbonate was found to be a better pretreatment agent than sodium hydroxide. Methane generation was inhibited by low temperature less than or equal to 25 degrees Celcius and high solids greater than or equal to 2.5% (w/v) fermentation. Volatile acid yields of 0.5-0.55 g acetic acid equivalent/g dry ash-free (DAF) stover could be obtained in batch fermentations. Several extractants and extraction solvents for organic acids were found to be nontoxic to acidogenic fermentation. The data show that acidogenic fermentation can produce useful volatile fatty acids in high yields from a complex lignocellulosic feedstock. These fermentation are nonsterile, need no stirring, and are easy to run. Moreover, cellulose, pentosans, and other carbohydrates are directly utilized by acidogenic bacteria. Hence, acidogenic fermentation could be useful in converting biomass to chemical feedstocks and fuel.

  16. Agroecology of corn production in Tlaxcala, Mexico

    SciTech Connect (OSTI)

    Altieri, M.A.; Trujillo, J.

    1987-06-01

    The primary components of Tlaxcalan corn agriculture are described, including cropping patterns employed, resource management strategies, and interactions of human and biological factors. Tlaxcalan farmers grow corn in an array of polyculture and agroforestry designs that result in a series of ecological processes important for insect pest and soil fertility management. Measurements derived from a few selected fields show that trees integrated into cropping systems modify the aerial and soil environment of associated understory corn plants, influencing their growth and yields. With decreasing distance from trees, surface concentrations of most soil nutrients increase. Certain tree species affect corn yields more than others. Arthropod abundance also varies depending on their degree of association with one or more of the vegetational components of the system. Densities of predators and the corn pest Macrodactylus sp. depend greatly on the presence and phenology of adjacent alfalfa strips. Although the data were derived from nonreplicated fields, they nevertheless point out some important trends, information that can be used to design new crop association that will achieve sustained soil fertility and low pest potentials.

  17. Innovative methods for corn stover collecting, handling, storing and transporting

    SciTech Connect (OSTI)

    Atchison, J. E.; Hettenhaus, J. R.

    2004-04-01

    Investigation of innovative methods for collecting, handling, storing, and transporting corn stover for potential use for production of cellulosic ethanol.

  18. AmeriFlux US-Tw2 Twitchell Corn

    SciTech Connect (OSTI)

    Baldocchi, Dennis

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Tw2 Twitchell Corn. Site Description - The Twitchell Corn site is a corn field on peat soil. The tower was installed on May 17, 2012 and was equipped to analyze energy, H2O and CO2 fluxes. The field was planted in early May 2012 and harvested in early November 2012. The field was fallow during the non-growing season. The variety of corn used was ES-7477 hybrid corn commercialized by Eureka seeds. The site is near US-Tw1, US-Tw3 and US-Twt sites.

  19. Energy Department Helping Lower Biofuel Costs for the Nation | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Helping Lower Biofuel Costs for the Nation Energy Department Helping Lower Biofuel Costs for the Nation January 29, 2015 - 9:31am Addthis Biofuels are produced in a biorefinery (bottom left) from feedstocks such as corn stover (bottom right) and switchgrass (top left). Biofuels are produced in a biorefinery (bottom left) from feedstocks such as corn stover (bottom right) and switchgrass (top left). Alicia Moulton Communications Specialist, Bioenergy Technologies Office U.S.

  20. Owens Corning and Silicon Valley Power Partner to Make Energy...

    Broader source: Energy.gov (indexed) [DOE]

    DOE energy assessments and Silicon Valley Power utility incentives to save 252,000 annually through plant-wide improvements. Owens Corning and Silicon Valley Power Partner to ...

  1. Corn LP formerly Central Iowa Renewable Energy | Open Energy...

    Open Energy Info (EERE)

    Place: Goldfield, Iowa Zip: 50542 Product: Bioethanol producer using corn as raw material Coordinates: 37.707559, -117.233459 Show Map Loading map... "minzoom":false,"map...

  2. Owens Corning and Silicon Valley Power Partner to Make Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    49, the Owens Corning Santa Clara, California, plant was the first industrial plant in the United States designed specifically to manufacture insulation. Today, the plant employs ...

  3. Corn fiber hulls as a food additive or animal feed

    DOE Patents [OSTI]

    Abbas, Charles; Beery, Kyle E.; Cecava, Michael J.; Doane, Perry H.

    2010-12-21

    The present invention provides a novel animal feed or food additive that may be made from thermochemically hydrolyzed, solvent-extracted corn fiber hulls. The animal feed or food additive may be made, for instance, by thermochemically treating corn fiber hulls to hydrolyze and solubilize the hemicellulose and starch present in the corn fiber hulls to oligosaccharides. The residue may be extracted with a solvent to separate the oil from the corn fiber, leaving a solid residue that may be prepared, for instance by aggolmerating, and sold as a food additive or an animal feed.

  4. Corning, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Corning, New York: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.1428521, -77.0546903 Show Map Loading map... "minzoom":false,"mappingserv...

  5. Improved Multivariate Calibration Models for Corn Stover Feedstock and Dilute-Acid Pretreated Corn Stover

    SciTech Connect (OSTI)

    Wolfrum, E. J.; Sluiter, A. D.

    2009-01-01

    We have studied rapid calibration models to predict the composition of a variety of biomass feedstocks by correlating near-infrared (NIR) spectroscopic data to compositional data produced using traditional wet chemical analysis techniques. The rapid calibration models are developed using multivariate statistical analysis of the spectroscopic and wet chemical data. This work discusses the latest versions of the NIR calibration models for corn stover feedstock and dilute-acid pretreated corn stover. Measures of the calibration precision and uncertainty are presented. No statistically significant differences (p = 0.05) are seen between NIR calibration models built using different mathematical pretreatments. Finally, two common algorithms for building NIR calibration models are compared; no statistically significant differences (p = 0.05) are seen for the major constituents glucan, xylan, and lignin, but the algorithms did produce different predictions for total extractives. A single calibration model combining the corn stover feedstock and dilute-acid pretreated corn stover samples gave less satisfactory predictions than the separate models.

  6. Corn Storage Protein - A Molecular Genetic Model

    SciTech Connect (OSTI)

    Messing, Joachim

    2013-05-31

    Corn is the highest yielding crop on earth and probably the most valuable agricultural product of the United States. Because it converts sun energy through photosynthesis into starch and proteins, we addressed energy savings by focusing on protein quality. People and animals require essential amino acids derived from the digestion of proteins. If proteins are relatively low in certain essential amino acids, the crop becomes nutritionally defective and has to be supplemented. Such deficiency affects meat and fish production and countries where corn is a staple. Because corn seed proteins have relatively low levels of lysine and methionine, a diet has to be supplemented with soybeans for the missing lysine and with chemically synthesized methionine. We therefore have studied genes expressed during maize seed development and their chromosomal organization. A critical technical requirement for the understanding of the molecular structure of genes and their positional information was DNA sequencing. Because of the length of sequences, DNA sequencing methods themselves were insufficient for this type of analysis. We therefore developed the so-called “DNA shotgun sequencing” strategy, where overlapping DNA fragments were sequenced in parallel and used to reconstruct large DNA molecules via overlaps. Our publications became the most frequently cited ones during the decade of 1981-1990 and former Associate Director of Science for the Office of Basic Energy Sciences Patricia M. Dehmer presented our work as one of the great successes of this program. A major component of the sequencing strategy was the development of bacterial strains and vectors, which were also used to develop the first biotechnology crops. These crops possessed new traits thanks to the expression of foreign genes in plants. To enable such expression, chimeric genes had to be constructed using our materials and methods by the industry. Because we made our materials and methods freely available to

  7. Corning and Kroger turn whey to yeast

    SciTech Connect (OSTI)

    Not Available

    1981-11-16

    It is reported that Corning and Kroger intend to build a 35,000 sq. ft. plant in Winchester, Ky., that will turn whey into bakers' yeast. The plant will convert whey from Kroger's dairies into bakers' yeast, supplying about 60% of the yeast needed for nine Kroger bakeries. It will also produce syrups and whey protein concentrate for use in other food processing activities. In addition to making useful products, the project will convert the whey to glucose and galactose. The protein component of the whey will be concentrated and used in various foods and feeds.

  8. Life-cycle assessment of corn-based butanol as a potential transportation fuel.

    SciTech Connect (OSTI)

    Wu, M.; Wang, M.; Liu, J.; Huo, H.; Energy Systems

    2007-12-31

    Butanol produced from bio-sources (such as corn) could have attractive properties as a transportation fuel. Production of butanol through a fermentation process called acetone-butanol-ethanol (ABE) has been the focus of increasing research and development efforts. Advances in ABE process development in recent years have led to drastic increases in ABE productivity and yields, making butanol production worthy of evaluation for use in motor vehicles. Consequently, chemical/fuel industries have announced their intention to produce butanol from bio-based materials. The purpose of this study is to estimate the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. The study employs a well-to-wheels analysis tool--the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) model developed at Argonne National Laboratory--and the Aspen Plus{reg_sign} model developed by AspenTech. The study describes the butanol production from corn, including grain processing, fermentation, gas stripping, distillation, and adsorption for products separation. The Aspen{reg_sign} results that we obtained for the corn-to-butanol production process provide the basis for GREET modeling to estimate life-cycle energy use and greenhouse gas emissions. The GREET model was expanded to simulate the bio-butanol life cycle, from agricultural chemical production to butanol use in motor vehicles. We then compared the results for bio-butanol with those of conventional gasoline. We also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. Our study shows that, while the use of corn-based butanol achieves energy benefits and reduces greenhouse gas emissions, the results are affected by the methods used to treat the acetone that is co-produced in butanol plants.

  9. Little Sioux Corn Processors LP | Open Energy Information

    Open Energy Info (EERE)

    LP Place: Iowa Zip: 51035 Product: Owners and operators of the 40m gallon per year bioethanol plant in Marcus, Iowa. References: Little Sioux Corn Processors LP1 This article...

  10. Advanced Biorefinery of Distriller's Grain and Corn Stover Blends

    SciTech Connect (OSTI)

    2006-04-01

    Fuel ethanol can be produced via the dry milling process, which converts corn grain to ethanol. The co-product, distiller’s grain (DG), is sold as a low-cost, high-protein feed source for livestock.

  11. DOE - Office of Legacy Management -- Sylvania Corning Nuclear...

    Office of Legacy Management (LM)

    Documents Related to SYLVANIA CORNING NUCLEAR CORP., INC., SYLVANIA LABORATORIES NY.07-1 - Letter, Smith to Norris, Contract at (30-1)-1293- U Metal Requirements, March 5, 1953 ...

  12. Biochemical Production of Ethanol from Corn Stover: 2007 State of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Model | Department of Energy Biochemical Production of Ethanol from Corn Stover: 2007 State of Technology Model Biochemical Production of Ethanol from Corn Stover: 2007 State of Technology Model An update to the FY 2005 assessment of the state of technical research progress toward biochemical process goals. This assessment containins research results from 2006 and 2007. 43205.pdf (515.02 KB) More Documents & Publications Process Design and Economics for Biochemical Conversion

  13. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover D. Humbird, R. Davis, L. Tao, C. Kinchin, D. Hsu, and A. Aden National Renewable Energy Laboratory Golden, Colorado P. Schoen, J. Lukas, B. Olthof, M. Worley, D. Sexton, and D. Dudgeon Harris Group Inc. Seattle, Washington and Atlanta, Georgia Technical Report NREL/TP-5100-47764 May 2011 NREL is a national laboratory of the U.S. Department

  14. Robbins Corn & Bulk Services | Open Energy Information

    Open Energy Info (EERE)

    National Wind Technology Center, Renewable Electricity & End Use Systems, Science & Technology, Thermal Systems Group, Transportation Technologies and Systems) for...

  15. MBI Biorefinery: Corn to Biomass, Ethanol to Biochemicals and Biomaterials

    SciTech Connect (OSTI)

    2006-02-17

    The project is a continuation of DOE-funded work (FY02 and FY03) that has focused on the development of the ammonia fiber explosion (AFEX) pretreatment technology, fermentation production of succinic acid and new processes and products to enhance dry mill profitability. The primary objective for work beginning in April 2004 and ending in November 2005 is focus on the key issues related to the: (1) design, costing and construction plan for a pilot AFEX pretreatment system, formation of a stakeholder development team to assist in the planning and design of a biorefinery pilot plant, continued evaluation of corn fractionation technologies, corn oil extraction, AFEX treatment of corn fiber/DDGs; (2) development of a process to fractionate AFEX-treated corn fiber and corn stover--cellulose and hemicellulose fractionation and sugar recovery; and (3) development of a scalable batch succinic acid production process at 500 L at or below $.42/lb, a laboratory scale fed-batch process for succinic acid production at or below $.40/lb, a recovery process for succinic acid that reduces the cost of succinic acid by $.02/lb and the development of an acid tolerant succinic acid production strain at lab scale (last objective not to be completed during this project time period).

  16. Land-use change and greenhouse gas emissions from corn and cellulosic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Land-use change and greenhouse gas emissions from corn and cellulosic ethanol July 16, ... Estimates of LUC GHG emissions focus mainly on corn ethanol and vary widely. Increasing ...

  17. Owens Corning and Silicon Valley Power Partner to Make Energy Savings a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reality | Department of Energy Owens Corning and Silicon Valley Power Partner to Make Energy Savings a Reality Owens Corning and Silicon Valley Power Partner to Make Energy Savings a Reality This case study describes how the Owens Corning plant in Santa Clara, California, used DOE energy assessments and Silicon Valley Power utility incentives to save $252,000 annually through plant-wide improvements. Owens Corning and Silicon Valley Power Partner to Make Energy Savings a Reality (March 2009)

  18. Zero-tillage and corn production in eastern Canada

    SciTech Connect (OSTI)

    Raghavan, G.S.V.; Taylor, F.; Negi, S.; Douglas, E.; McKyes, E.; Tessier, S.; Burrows, J.

    1981-01-01

    During the summer of 1979, a zero-tillage experiment was conducted in which corn (maize) was grown on 68 different plots representing different soil structural status. Sixty-four of the plots had been subjected to 16 different compaction and tillage treatments and corn grown on them. No machinery traffic had been introduced to these plots since the spring of 1978. Four new plots were established which had been subjected to conventional tillage methods, those being plowing in the fall of 1978 and disc harrowing in the spring of 1979. Corn was hand seeded into all the plots and the growth, development and yield of the crop measured. Several times over the growing season, soil dry bulk density, soil moisture content and soil temperature were measured. Observation of days to emerge, tassel and silk showed that the zero-till plots performed much better than the control plots.

  19. Can Delignification Decrease Cellulose Digestibility in Acid Pretreated Corn Stover?

    SciTech Connect (OSTI)

    Ishizawa, C. I.; Jeoh, T.; Adney, W. S.; Himmel, M. E.; Johnson, D. K.; Davis, M. F.

    2009-01-01

    It has previously been shown that the improved digestibility of dilute acid pretreated corn stover is at least partially due to the removal of xylan and the consequent increase in accessibility of the cellulose to cellobiohydrolase enzymes. We now report on the impact that lignin removal has on the accessibility and digestibility of dilute acid pretreated corn stover. Samples of corn stover were subjected to dilute sulfuric acid pretreatment with and without simultaneous (partial) lignin removal. In addition, some samples were completely delignified after the pretreatment step using acidified sodium chlorite. The accessibility and digestibility of the samples were tested using a fluorescence-labeled cellobiohydrolase (Trichoderma reesei Cel7A) purified from a commercial cellulase preparation. Partial delignification of corn stover during dilute acid pretreatment was shown to improve cellulose digestibility by T. reesei Cel7A; however, decreasing the lignin content below 5% (g g{sup -1}) by treatment with acidified sodium chlorite resulted in a dramatic reduction in cellulose digestibility. Importantly, this effect was found to be enhanced in samples with lower xylan contents suggesting that the near complete removal of xylan and lignin may cause aggregation of the cellulose microfibrils resulting in decreased cellulase accessibility.

  20. Policy implications of allocation methods in the life cycle analysis of integrated corn and corn stover ethanol production

    SciTech Connect (OSTI)

    Canter, Christina E.; Dunn, Jennifer B.; Han, Jeongwoo; Wang, Zhichao; Wang, Michael

    2015-08-18

    Here, a biorefinery may produce multiple fuels from more than one feedstock. The ability of these fuels to qualify as one of the four types of biofuels under the US Renewable Fuel Standard and to achieve a low carbon intensity score under California’s Low Carbon Fuel Standard can be strongly influenced by the approach taken to their life cycle analysis (LCA). For example, in facilities that may co-produce corn grain and corn stover ethanol, the ethanol production processes can share the combined heat and power (CHP) that is produced from the lignin and liquid residues from stover ethanol production. We examine different LCA approaches to corn grain and stover ethanol production considering different approaches to CHP treatment. In the baseline scenario, CHP meets the energy demands of stover ethanol production first, with additional heat and electricity generated sent to grain ethanol production. The resulting greenhouse gas (GHG) emissions for grain and stover ethanol are 57 and 25 g-CO2eq/MJ, respectively, corresponding to a 40 and 74% reduction compared to the GHG emissions of gasoline. We illustrate that emissions depend on allocation of burdens of CHP production and corn farming, along with the facility capacities. Co-product handling techniques can strongly influence LCA results and should therefore be transparently documented.

  1. Policy implications of allocation methods in the life cycle analysis of integrated corn and corn stover ethanol production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Canter, Christina E.; Dunn, Jennifer B.; Han, Jeongwoo; Wang, Zhichao; Wang, Michael

    2015-08-18

    Here, a biorefinery may produce multiple fuels from more than one feedstock. The ability of these fuels to qualify as one of the four types of biofuels under the US Renewable Fuel Standard and to achieve a low carbon intensity score under California’s Low Carbon Fuel Standard can be strongly influenced by the approach taken to their life cycle analysis (LCA). For example, in facilities that may co-produce corn grain and corn stover ethanol, the ethanol production processes can share the combined heat and power (CHP) that is produced from the lignin and liquid residues from stover ethanol production. Wemore » examine different LCA approaches to corn grain and stover ethanol production considering different approaches to CHP treatment. In the baseline scenario, CHP meets the energy demands of stover ethanol production first, with additional heat and electricity generated sent to grain ethanol production. The resulting greenhouse gas (GHG) emissions for grain and stover ethanol are 57 and 25 g-CO2eq/MJ, respectively, corresponding to a 40 and 74% reduction compared to the GHG emissions of gasoline. We illustrate that emissions depend on allocation of burdens of CHP production and corn farming, along with the facility capacities. Co-product handling techniques can strongly influence LCA results and should therefore be transparently documented.« less

  2. Jie (Joyce) Wang | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jie (Joyce) Wang Electron Microscopy Center Facility Manager Ms. Jie (Joyce) Wang has extensive experience in the electron microscopy and related characterization techniques. Before joining Argonne as an electron microscopy center facility manager in 2015, she was a senior scientist in Science & Technology Division at Corning Incorporated since 2008. She worked closely with both NSF and DOE sponsored national user facilities including Cornell Center for Material Research (CCMR), Cornell

  3. Gene Controls Flowering Time in Corn - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gene Controls Flowering Time in Corn Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary Plant development is marked by three phases: juvenile, adult vegetative and flowering. The timing between phases is known to impact traits like yield, productivity and tissue digestibility. However, the genetic triggers that drive these phase changes are not fully understood. UW-Madison researchers previously identified a gene in maize that helps control the

  4. Louisiana Blue Ribbon Commission on Bayou Corne Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Blue Ribbon Commission on Bayou Corne Safety - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management

  5. Vertical distribution of structural components in corn stover

    SciTech Connect (OSTI)

    Jane M. F. Johnson; Douglas L. Karlen; Garold L. Gresham; Keri B. Cantrell; David W. Archer; Brian J. Wienhold; Gary E. Varvel; David A. Laird; John Baker; Tyson E. Ochsner; Jeff M. Novak; Ardell D. Halvorson; Francisco Arriaga; David T. Lightle; Amber Hoover; Rachel Emerson; Nancy W. Barbour

    2014-11-01

    In the United States, corn (Zea mays L.) stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk) that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above the ear averaged 16.3 0.40 MJ kg?, but with an alkalinity measure of 0.83 g MJ?, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha?, but it would be only 1000 L ha? if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.

  6. Vertical distribution of structural components in corn stover

    SciTech Connect (OSTI)

    Johnson, Jane M. F.; Karlen, Douglas L.; Gresham, Garold L.; Cantrell, Keri B.; Archer, David W.; Wienhold, Brian J.; Varvel, Gary E.; Laird, David A.; Baker, John; Ochsner, Tyson E.; Novak, Jeff M.; Halvorson, Ardell D.; Arriaga, Francisco; Lightle, David T.; Hoover, Amber; Emerson, Rachel; Barbour, Nancy W.

    2014-11-17

    In the United States, corn (Zea mays L.) stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk) that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above the ear averaged 16.3 ± 0.40 MJ kg⁻¹, but with an alkalinity measure of 0.83 g MJ⁻¹, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha⁻¹, but it would be only 1000 L ha⁻¹ if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.

  7. Vertical distribution of structural components in corn stover

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Jane M. F.; Karlen, Douglas L.; Gresham, Garold L.; Cantrell, Keri B.; Archer, David W.; Wienhold, Brian J.; Varvel, Gary E.; Laird, David A.; Baker, John; Ochsner, Tyson E.; et al

    2014-11-17

    In the United States, corn (Zea mays L.) stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk) that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above the earmore » averaged 16.3 ± 0.40 MJ kg⁻¹, but with an alkalinity measure of 0.83 g MJ⁻¹, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha⁻¹, but it would be only 1000 L ha⁻¹ if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.« less

  8. Impact of Recycling Stillage on Conversion of Dilute Sulfuric Acid Pretreated Corn Stover to Ethanol (Poster)

    SciTech Connect (OSTI)

    Mohagheghi, A.; Schell, D. J.

    2009-11-01

    A description of methods and results from an experiment designed to assess the impact of process water recycle on corn stover-to-ethanol conversion process performance.

  9. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems

    SciTech Connect (OSTI)

    Mani, Sudhagar; Sokhansanj, Shahabaddine; Togore, Sam; Turhollow Jr, Anthony F

    2010-03-01

    This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

  10. Thermochemical Conversion Pilot Plant (Fact Sheet), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pyrolysis products using a dodecane scrubber; includes integrated downstream ... corn stover, corn fiber, distillers dry grains, agricultural waste, and other ...

  11. Corn Ethanol Industry Process Data: September 27, 2007 - January 27, 2008

    SciTech Connect (OSTI)

    BBI International

    2009-02-01

    This subcontract report supplies timely data on the historical make-up of the corn ethanol industry and a current estimate of where the industry stands. The subcontractor has also reported on the expected future trends of the corn ethanol dry grind industry.

  12. DOE - Office of Legacy Management -- Sylvania Corning Nuclear Corp Inc

    Office of Legacy Management (LM)

    Sylvania Laboratories - NY 07 Nuclear Corp Inc Sylvania Laboratories - NY 07 FUSRAP Considered Sites Site: SYLVANIA CORNING NUCLEAR CORP., INC., SYLVANIA LABORATORIES (NY.07) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Sylvania Electric Products, Inc. NY.07-1 Location: 208-220 Willets Point Boulevard , Bayside, Long Island , New York NY.07-1 NY.07-2 NY.07-3 Evaluation Year: 1985 NY.07-4 NY.07-5 Site Operations: Conducted research and development

  13. DOE - Office of Legacy Management -- Sylvania Corning Plant - NY 19

    Office of Legacy Management (LM)

    Plant - NY 19 FUSRAP Considered Sites Sylvania-Corning, NY Alternate Name(s): Sylvania Electric Products, Inc. Sylvania Corp. NY.19-1 NY.19-4 Location: Cantiaque Road, Hicksville, Long Island, New York NY.19-5 Historical Operations: Pilot-scale production of powdered metal uranium slugs for AEC's Hanford reactor. NY.19-4 Eligibility Determination: Eligible Radiological Survey(s): Assessment Survey NY.19-3 Site Status: Cleanup in progress by U.S. Army Corps of Engineers. USACE Website Long-term

  14. Ash Reduction of Corn Stover by Mild Hydrothermal Preprocessing

    SciTech Connect (OSTI)

    M. Toufiq Reza; Rachel Emerson; M. Helal Uddin; Garold Gresham; Charles J. Coronella

    2014-04-22

    Lignocellulosic biomass such as corn stover can contain high ash content, which may act as an inhibitor in downstream conversion processes. Most of the structural ash in biomass is located in the cross-linked structure of lignin, which is mildly reactive in basic solutions. Four organic acids (formic, oxalic, tartaric, and citric) were evaluated for effectiveness in ash reduction, with limited success. Because of sodium citrates chelating and basic characteristics, it is effective in ash removal. More than 75 % of structural and 85 % of whole ash was removed from the biomass by treatment with 0.1 g of sodium citrate per gram of biomass at 130 C and 2.7 bar. FTIR, fiber analysis, and chemical analyses show that cellulose and hemicellulose were unaffected by the treatment. ICPAES showed that all inorganics measured were reduced within the biomass feedstock, except sodium due to the addition of Na through the treatment. Sodium citrate addition to the preconversion process of corn stover is an effective way to reduced physiological ash content of the feedstock without negatively impacting carbohydrate and lignin content.

  15. sandia national labs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    sandia national labs

  16. Brookhaven National Laboratory | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Brookhaven National Laboratory

  17. Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks

    SciTech Connect (OSTI)

    Rachel Emerson; Amber Hoover; Allison Ray; Jeffrey Lacey; Marnie Cortez; Courtney Payne; Doug Karlen; Stuart Birrell; David Laird; Robert Kallenbach; Josh Egenolf; Matthew Sousek; Thomas Voigt

    2014-11-01

    Drought conditions in 2012 were some of the most severe reported in the United States. It is necessary to explore the effects of drought on the quality attributes of current and potential bioenergy feedstocks. Compositional analysis data for corn stover, Miscanthus, and CRP grasses from one or more locations for years 2010 (normal precipitation levels) and 2012 (a known severe drought year nationally) was collected. Results & discussion: The general trend for samples that experienced drought was an increase in extractives and a decrease in structural sugars and lignin. The TEY yields were calculated to determine the drought effects on ethanol production. All three feedstocks had a decrease of 12-14% in TEY when only decreases of carbohydrate content was analyzed. When looking at the compounded effect of both carbohydrate content and the decreases in dry matter loss for each feedstock there was a TEY decrease of 25%-59%. Conclusion: Drought had a significant impact on the quality of all three bioenergy crops. In all cases where drought was experienced both the quality of the feedstock and the yield decreased. These drought induced effects could have significant economic impacts on biorefineries.

  18. Biomechanics of Wheat/Barley Straw and Corn Stover

    SciTech Connect (OSTI)

    Christopher T. Wright; Peter A. Pryfogle; Nathan A. Stevens; Eric D. Steffler; J. Richard Hess; Thomas H. Ulrich

    2005-03-01

    The lack of understanding of the mechanical characteristics of cellulosic feedstocks is a limiting factor in economically collecting and processing crop residues, primarily wheat and barley stems and corn stover. Several testing methods, including compression, tension, and bend have been investigated to increase our understanding of the biomechanical behavior of cellulosic feedstocks. Biomechanical data from these tests can provide required input to numerical models and help advance harvesting, handling, and processing techniques. In addition, integrating the models with the complete data set from this study can identify potential tools for manipulating the biomechanical properties of plant varieties in such a manner as to optimize their physical characteristics to produce higher value biomass and more energy efficient harvesting practices.

  19. National Bioenergy Center - Biochemical Platform Integration Project: Quarterly Update, Winter 2010

    SciTech Connect (OSTI)

    Schell, D.

    2011-02-01

    Winter 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program topic areas; results from reactive membrane extraction of inhibitors from dilute-acid pretreated corn stover; list of 2010 task publications.

  20. Separation of Corn Fiber and Conversion to Fuels and Chemicals: Pilot-Scale Operation

    SciTech Connect (OSTI)

    None

    2006-04-01

    This project focuses on the development and pilot-scale testing of technologies that will enable the development of a biorefinery capable of economically deriving high-value chemicals and oils from lower value corn fiber.

  1. Owens Corning and Silicon Valley Power Partner to Make Energy Savings a Reality (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01

    This case study describes how the Owens Corning plant in Santa Clara, California, participated in Save Energy Now energy assessments and used Silicon Valley Power utility incentives to save $252,000.

  2. Owens Corning and Silicon Valley Power Partner to Make Energy Savings a Reality

    SciTech Connect (OSTI)

    2010-06-25

    This case study describes how the Owens Corning plant in Santa Clara, California, participated in Save Energy Now energy assessments and used Silicon Valley Power utility incentives to save $252,000.

  3. Fuel ethanol and high protein feed from corn and corn-whey mixtures in a farm-scale plant

    SciTech Connect (OSTI)

    Gibbons, W.R.; Westby, C.A.

    1983-09-01

    Distiller's wet grain (DWG) and 95% ethanol were produced from corn in a farm-scale process involving batch cooking-fermentation and continuous distillation-centrifugation. The energy balance was 2.26 and the cost was $1.86/gal (1981 cost). To improve the energy balance and reduce costs, various modifications were made in the plant. The first change, back-end (after liquefaction) serial recycling of stillage supernatant at 20 and 40% strengths, produced beers with 0.2 and 0.4% (v/v) more ethanol, respectively, than without recycling. This increased the energy balance by 0.22-0.43 units and reduced costs by $0.07-$0.10/gal. The DWGs from back-end recycling had increased fat. The second change, increasing the starch content from 17-19% to 27.5%, increased the ethanol in the beer from 10.5-14.9% at a cost savings of $0.41/gal. The energy balance increased by 1.08 units. No significant change was seen in DWG composition. The third change, using continuous cascade rather than batch fermentation, permitted batch-levels of ethanol (10%) in the beer but only at low dilution rates. Both the cost and energy balance were decreased slightly. The DWG composition remained constant. The last change, replacing part of the corn and all of the tap water in the mash with whole whey and using Kluyveromyces fragilis instead of Saccharomyces cerevisiae during fermentation, resulted in an energy balance increase of 0.16 units and a $0.27/gal cost reduction. Here, 10% ethanolic beers were produced and the DWGs showed increased protein and fat. Recommendations for farm-scale plants are provided. (Refs. 46).

  4. Economic Impact of Harvesting Corn Stover under Time Constraint: The Case of North Dakota

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maung, Thein A.; Gustafson, Cole R.

    2013-01-01

    This study examines the impact of stochastic harvest field time on profit maximizing potential of corn cob/stover collection in North Dakota. Three harvest options are analyzed using mathematical programming models. Our findings show that under the first corn grain only harvest option, farmers are able to complete harvesting corn grain and achieve maximum net income in a fairly short amount of time with existing combine technology. However, under the second simultaneous corn grain and cob (one-pass) harvest option, farmers generate lower net income compared to the net income of the first option. This is due to the slowdown in combinemore » harvest capacity as a consequence of harvesting corn cobs. Under the third option of separate corn grain and stover (two-pass) harvest option, time allocation is the main challenge and our evidence shows that with limited harvest field time available, farmers find it optimal to allocate most of their time harvesting grain and then proceed to harvest and bale stover if time permits at the end of harvest season. The overall findings suggest is that it would be more economically efficient to allow a firm that is specialized in collecting biomass feedstock to participate in cob/stover harvest business.« less

  5. The effects of physical and chemical preprocessing on the flowability of corn stover

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Crawford, Nathan C.; Nagle, Nick; Sievers, David A.; Stickel, Jonathan J.

    2015-12-20

    Continuous and reliable feeding of biomass is essential for successful biofuel production. However, the challenges associated with biomass solids handling are commonly overlooked. In this study, we examine the effects of preprocessing (particle size reduction, moisture content, chemical additives, etc.) on the flow properties of corn stover. Compressibility, flow properties (interparticle friction, cohesion, unconfined yield stress, etc.), and wall friction were examined for five corn stover samples: ground, milled (dry and wet), acid impregnated, and deacetylated. The ground corn stover was found to be the least compressible and most flowable material. The water and acid impregnated stovers had similar compressibilities.more » Yet, the wet corn stover was less flowable than the acid impregnated sample, which displayed a flow index equivalent to the dry, milled corn stover. The deacetylated stover, on the other hand, was the most compressible and least flowable examined material. However, all of the tested stover samples had internal friction angles >30°, which could present additional feeding and handling challenges. All of the ''wetted'' materials (water, acid, and deacetylated) displayed reduced flowabilities (excluding the acid impregnated sample), and enhanced compressibilities and wall friction angles, indicating the potential for added handling issues; which was corroborated via theoretical hopper design calculations. All of the ''wetted'' corn stovers require larger theoretical hopper outlet diameters and steeper hopper walls than the examined ''dry'' stovers.« less

  6. The effects of physical and chemical preprocessing on the flowability of corn stover

    SciTech Connect (OSTI)

    Crawford, Nathan C.; Nagle, Nick; Sievers, David A.; Stickel, Jonathan J.

    2015-12-20

    Continuous and reliable feeding of biomass is essential for successful biofuel production. However, the challenges associated with biomass solids handling are commonly overlooked. In this study, we examine the effects of preprocessing (particle size reduction, moisture content, chemical additives, etc.) on the flow properties of corn stover. Compressibility, flow properties (interparticle friction, cohesion, unconfined yield stress, etc.), and wall friction were examined for five corn stover samples: ground, milled (dry and wet), acid impregnated, and deacetylated. The ground corn stover was found to be the least compressible and most flowable material. The water and acid impregnated stovers had similar compressibilities. Yet, the wet corn stover was less flowable than the acid impregnated sample, which displayed a flow index equivalent to the dry, milled corn stover. The deacetylated stover, on the other hand, was the most compressible and least flowable examined material. However, all of the tested stover samples had internal friction angles >30°, which could present additional feeding and handling challenges. All of the ''wetted'' materials (water, acid, and deacetylated) displayed reduced flowabilities (excluding the acid impregnated sample), and enhanced compressibilities and wall friction angles, indicating the potential for added handling issues; which was corroborated via theoretical hopper design calculations. All of the ''wetted'' corn stovers require larger theoretical hopper outlet diameters and steeper hopper walls than the examined ''dry'' stovers.

  7. Thermal Properties of Starch From New Corn Lines as Impacted by Environment and During Line Development

    SciTech Connect (OSTI)

    Elizabeth M. Lenihan

    2003-12-12

    The objectives of this research were to further characterize exotic by adapted corn inbreds by studying the impact of environment on their starch thermal properties, and investigating the development of starch thermal properties during kernel maturation by using differential scanning calorimetry (DSC). A method to expedite identification of unusual starch thermal traits was investigated by examining five corn kernels at a time, instead of one kernel, which the previous screening methods used. Corn lines with known thermal functions were blended with background starch (control) in ratios of unique starch to control starch, and analyzed by using DSC. Control starch was representative of typical corn starch. The values for each ratio within a mutant type were unique ({alpha} < 0.01) for most DSC measurements. These results supported the five-kernel method for rapidly screening large amounts of corn germplasm to identify unusual starch traits. The effects of 5 growing locations on starch thermal properties from exotic by adapted corn and Corn Belt lines were studied using DSC. The warmest location, Missouri, generally produced starch with greater gelatinization onset temperature (T{sub oG}), narrower range of gelatinization (R{sub G}), and greater enthalpy of gelatinization ({Delta}H{sub G}). The coolest location, Illinois, generally resulted in starch with lower T{sub oG}, wider R{sub G}, and lower {Delta}H{sub G}. Starch from the Ames 1 farm had thermal properties similar to those of Illinois, whereas starch from the Ames 2 farm had thermal properties similar to those of Missouri. The temperature at Ames 2 may have been warmer since it was located near a river; however, soil type and quality also were different. Final corn starch structure and function change during development and maturity. Thus, the changes in starch thermal properties during 5 stages of endosperm development from exotic by adapted corn and Corn Belt lines at two locations were studied by using DSC

  8. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 1: Cost of feedstock supply logistics

    SciTech Connect (OSTI)

    Sokhansanj, Shahabaddine; Mani, Sudhagar; Togore, Sam; Turhollow Jr, Anthony F

    2010-01-01

    Supply of corn stover to produce heat and power for a typical 170 dam3 dry mill ethanol plant is proposed. The corn ethanol plant requires 5.6 MW of electricity and 52.3 MW of process heat, which creates the annual stover demand of as much as 140 Gg. The corn stover supply system consists of collection, preprocessing, transportation and on-site fuel storage and preparation to produce heat and power for the ethanol plant. Economics of the entire supply system was conducted using the Integrated Biomass Supply Analysis and Logistics (IBSAL) simulation model. Corn stover was delivered in three formats (square bales, dry chops and pellets) to the combined heat and power plant. Delivered cost of biomass ready to be burned was calculated at 73 $ Mg-1 for bales, 86 $ Mg-1 for pellets and 84 $ Mg-1 for field chopped biomass. Among the three formats of stover supply systems, delivered cost of pelleted biomass was the highest due to high pelleting cost. Bulk transport of biomass in the form of chops and pellets can provide a promising future biomass supply logistic system in the US, if the costs of pelleting and transport are minimized.

  9. Experimental co-digestion of corn stalk and vermicompost to improve biogas production

    SciTech Connect (OSTI)

    Chen Guangyin; Zheng Zheng; Yang Shiguan; Fang Caixia; Zou Xingxing; Luo Yan

    2010-10-15

    Anaerobic co-digestion of corn stalk and vermicompost (VC) as well as mono-digestion of corn stalk were investigated. Batch mono-digestion experiments were performed at 35 {+-} 1 {sup o}C and initial total solid loading (TSL) ranged from 1.2% to 6.0%. Batch co-digestion experiments were performed at 35 {+-} 1 {sup o}C and initial TSL of 6% with VC proportions ranged from 20% to 80% of total solid (TS). For mono-digestion of corn stalk, a maximum methane yield of 217.60 {+-} 13.87 mL/g TS{sub added} was obtained at initial TSL of 4.8%, and acidification was found at initial TSL of 6.0% with the lowest pH value of 5.10 on day 4. Co-digestion improved the methane yields by 4.42-58.61% via enhancing volatile fatty acids (VFAs) concentration and pH value compared with mono-digestion of corn stalk. The maximum biogas yield of 410.30 {+-} 11.01 mL/g TS{sub added} and methane yield of 259.35 {+-} 13.85 mL/g TS{sub added} were obtained for 40% VC addition. Structure analysis by X-ray diffractometry (XRD) showed that the lowest crystallinity of 35.04 of digested corn stalk was obtained from co-digestion with 40% VC, which decreased 29.4% compared to 49.6 obtained from un-treated corn stalk. It is concluded that co-digestion with VC is beneficial for improving biodigestibility and methane yield from corn stalk.

  10. Petroleum Market Model of the National Energy Modeling System...

    Gasoline and Diesel Fuel Update (EIA)

    year. The variability of the market price for the feedstock corn and the conversion by-products and the variable influences of competitive uses for corn (e.g., for producing corn...

  11. Petroleum Market Model of the National Energy Modeling System

    Gasoline and Diesel Fuel Update (EIA)

    year. The variability of the market price for the feedstock corn and the conversion by-products and the variable influences of competitive uses for corn (e.g., for producing corn...

  12. National Competitiveness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Competition National Clean Energy Business Plan Competition The National Clean Energy Business Plan Competition inspired nearly 300 university teams across the country to create new businesses to commercialize promising energy technologies developed at U.S. universities and the National Laboratories. After pitching their business plans to panels of judges at the regional semifinals and finals, six teams advanced to the national competition for a chance to compete in the popular vote and a grand

  13. Analyzing and Comparing Biomass Feedstock Supply Systems in China: Corn Stover and Sweet Sorghum Case Studies

    SciTech Connect (OSTI)

    Ren, Lantian; Cafferty, Kara; Roni, Mohammad; Jacobson, Jacob; Xie, Guanghui; Ovard, Leslie; Wright, Christopher

    2015-06-11

    This paper analyzes the rural Chinese biomass supply system and models supply chain operations according to U.S. concepts of logistical unit operations: harvest and collection, storage, transportation, preprocessing, and handling and queuing. In this paper, we quantify the logistics cost of corn stover and sweet sorghum in China under different scenarios. We analyze three scenarios of corn stover logistics from northeast China and three scenarios of sweet sorghum stalks logistics from Inner Mongolia in China. The case study estimates that the logistics cost of corn stover and sweet sorghum stalk to be $52.95/dry metric ton and $52.64/dry metric ton, respectively, for the current labor-based biomass logistics system. However, if the feedstock logistics operation is mechanized, the cost of corn stover and sweet sorghum stalk decreases to $36.01/dry metric ton and $35.76/dry metric ton, respectively. The study also includes a sensitivity analysis to identify the cost factors that cause logistics cost variation. Results of the sensitivity analysis show that labor price has the most influence on the logistics cost of corn stover and sweet sorghum stalk, with a variation of $6 to $12/dry metric ton.

  14. Analyzing and Comparing Biomass Feedstock Supply Systems in China: Corn Stover and Sweet Sorghum Case Studies

    SciTech Connect (OSTI)

    Mohammad S. Roni; Kara G. Cafferty; Christopher T Wright; Lantian Ren

    2015-06-01

    China has abundant biomass resources, which can be used as a potential source of bioenergy. However, China faces challenges implementing biomass as an energy source, because China has not developed the highly networked, high-volume biomass logistics systems and infrastructure. This paper analyzes the rural Chinese biomass supply system and models supply chain operations according to the U.S. concepts of logistical unit operations: harvest and collection, storage, transportation, preprocessing, and handling and queuing. In this paper, we quantify the logistics cost of corn stover and sweet sorghum under different scenarios in China. We analyze three scenarios of corn stover logistics from northeast China and three scenarios of sweet sorghum stalks logistics from Inner Mongolia in China. The case study shows that the logistics cost of corn stover and sweet sorghum stalk will be $52.95/dry metric ton and $52.64/ dry metric ton, respectively, for the current labor-based biomass logistics system. However, if the feedstock logistics operation is mechanized, the cost of corn stover and sweet sorghum stalk will be down to $36.01/ dry metric ton and $35.76/dry metric ton, respectively. The study also performed a sensitivity analysis to find the cost factors that cause logistics cost variation. A sensitivity analysis shows that labor price has the most influence on the logistics cost of corn stover and sweet sorghum stalk, causing a variation of $6 to $12/metric ton.

  15. Economic and environmental impacts of the corn grain ethanol industry on the United States agricultural sector

    SciTech Connect (OSTI)

    Larson, J.A.; English, B.C.; De La Torre Ugarte, D. G.; Menard, R.J.; Hellwinckel, C.M.; West, Tristram O.

    2010-09-10

    This study evaluated the impacts of increased ethanol production from corn starch on agricultural land use and the environment in the United States. The Policy Analysis System simulation model was used to simulate alternative ethanol production scenarios for 2007 through 2016. Results indicate that increased corn ethanol production had a positive effect on net farm income and economic wellbeing of the US agricultural sector. In addition, government payments to farmers were reduced because of higher commodity prices and enhanced net farm income. Results also indicate that if Conservation Reserve Program land was converted to crop production in response to higher demand for ethanol in the simulation, individual farmers planted more land in crops, including corn. With a larger total US land area in crops due to individual farmer cropping choices, total US crop output rose, which decreased crop prices and aggregate net farm income relative to the scenario where increased ethanol production happened without Conservation Reserve Program land. Substantial shifts in land use occurred with corn area expanding throughout the United States, especially in the traditional corn-growing area of the midcontinent region.

  16. Analyzing and Comparing Biomass Feedstock Supply Systems in China: Corn Stover and Sweet Sorghum Case Studies

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ren, Lantian; Cafferty, Kara; Roni, Mohammad; Jacobson, Jacob; Xie, Guanghui; Ovard, Leslie; Wright, Christopher

    2015-06-11

    This paper analyzes the rural Chinese biomass supply system and models supply chain operations according to U.S. concepts of logistical unit operations: harvest and collection, storage, transportation, preprocessing, and handling and queuing. In this paper, we quantify the logistics cost of corn stover and sweet sorghum in China under different scenarios. We analyze three scenarios of corn stover logistics from northeast China and three scenarios of sweet sorghum stalks logistics from Inner Mongolia in China. The case study estimates that the logistics cost of corn stover and sweet sorghum stalk to be $52.95/dry metric ton and $52.64/dry metric ton, respectively,more » for the current labor-based biomass logistics system. However, if the feedstock logistics operation is mechanized, the cost of corn stover and sweet sorghum stalk decreases to $36.01/dry metric ton and $35.76/dry metric ton, respectively. The study also includes a sensitivity analysis to identify the cost factors that cause logistics cost variation. Results of the sensitivity analysis show that labor price has the most influence on the logistics cost of corn stover and sweet sorghum stalk, with a variation of $6 to $12/dry metric ton.« less

  17. Hydrogen Generation Rate Scoping Study of DOW Corning Antifoam Agent

    SciTech Connect (OSTI)

    Crawford, Charles

    2005-09-27

    The antifoam agent DOW Corning Q2-3183A will be added to waste streams in the Hanford River Protection Program-Waste Treatment and Immobilization Plant (RPP-WTP) to prevent foaming. It consists mostly of polydimethylsiloxane (PDMS) and polypropylene glycol (PPG). These and other minor constituents of the antifoam have organic constituents that may participate in radiolytic and chemical reactions that produce hydrogen in Hanford waste. It has been recommended by The WTP R&T Department recommended personnel to treat the organic compounds of the antifoam like the in a similar manner as other organic compounds that are native to the Hanford waste with respect to hydrogen production. This testing has investigated the radiolytic and thermal production of hydrogen from antifoam added to simulant waste solutions to determine if the organic components of the antifoam produce hydrogen in the same manner as the native organic species in Hanford waste. Antifoam additions for this testing were in the range of 4 to 10 wt% to ensure adequate hydrogen detection. Test conditions were selected to bound exposures to the antifoam agent in the WTP. These levels are higher than previously recommended values of 350 mg/L for actual applications in WTP tanks containing air spargers and pulse jet mixers. Limited degradation analyses for the organic components of the antifoam were investigated in this study. A more detailed study involving analyses of antifoam degradation and product formation is in progress at SRNL and results from that study will be reported at a later time. The total organic carbon (TOC) content of the Q2-3183A antifoam was measured to be 39.7 {+-} 4.9 wt% TOC. This measurement was performed in triplicate with on three different dilutions of the pure antifoam liquid using a TOC combustion analyzer instrument with catalytic oxidation, followed by CO{sub 2} quantification using an infrared detector. Test results from this study indicate that the WTP HGR correlation

  18. Lessons Learned from a Complex FUSRAP Site - Sylvania Corning FUSRAP Site - 12269

    SciTech Connect (OSTI)

    Ewy, Ann; Hays, David

    2012-07-01

    to incorporate an overwhelming volume of historical data; how to manage a complex team of three prime contractors innovatively, and how to implement a project under an Award Fee task order. Execution lessons learned include: characterization of investigation derived wastes, and proper approach to radiological scanning of direct-push borings and soil cores. Reporting lessons learned include: coordinating multiple phase (iterative) reporting, large dataset presentation, and the National Priorities List (NPL) designation. The goal of this paper is to provide a resource for other project delivery teams that encounter similar situations on their projects to optimize cost savings, realization of efficiency, shorten schedules, or simply ensure higher quality deliverables. Each FUSRAP project is unique but there are many lessons we can apply to each site to gain efficiency and work more effectively. The Sylvania Corning FUSRAP site is a complex site with both soils and groundwater contamination, contamination to depths of 182 meters, and a highly politically charged environment of PRP involvement. Many of the lessons the project team has learned during the life of the project to date are being shared with others as well as being applied back to this project for future work. (authors)

  19. Fuelwood procurement for an industrial power plant: a case study of Dow Corning's program

    SciTech Connect (OSTI)

    Folger, A.G.; Sworden, P.G.; Bond, C.T.

    1984-08-01

    Dow Corning Corporation has developed effective procedures for meeting the fuelwood requirements of a 22.4 megawatt steam and electricity cogenerating power plant. The fuelwood procurement program of Dow Corning's Natural Resources Department involves special arrangements with private landowners, logging and hauling producers, and waste wood suppliers. The program's success is attributable to a favorable location, adequate allowance for advance planning, effective public relations, and flexible management. The program is significant because it demonstrates that industrial fuelwood requirements can be met and that improved production from nonindustrial private forests can be relied upon as a major source of fuelwood. 7 references, 7 figures.

  20. Consent Order, Lawrence Livermore National National Security...

    Office of Environmental Management (EM)

    Lawrence Livermore National National Security, LLC - WCO-2010-01 Consent Order, Lawrence Livermore National National Security, LLC - WCO-2010-01 October 29, 2010 Issued to Lawrence ...

  1. The Integrated Biorefinery: Conversion of Corn Fiber to Value-added Chemicals

    SciTech Connect (OSTI)

    Susanne Kleff

    2007-03-24

    This presentation provides a summary of Michigan Biotechnology Institute's efforts to employ the corn fiber fraction of a dry grind ethanol plant as a feedstock to produce succinic acid which has potential as a building block intermediate for a wide range of commodity chemicals.

  2. Development of a performance-based industrial energy efficiency indicator for corn refining plants.

    SciTech Connect (OSTI)

    Boyd, G. A.; Decision and Information Sciences; USEPA

    2006-07-31

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  3. Size reduction of high- and low-moisture corn stalks by linear knife grid system

    SciTech Connect (OSTI)

    Womac, A.R. [University of Tennessee; Igathinathane, C. [Mississippi State University (MSU); Sokhansanj, Shahabaddine [ORNL; Narayan, S. [First American Scientific Co.

    2009-04-01

    High- and low-moisture corn stalks were tested using a linear knife grid size reduction device developed for first-stage size reduction. The device was used in conjunction with a universal test machine that quantified shearing stress and energy characteristics for forcing a bed of corn stalks through a grid of sharp knives. No published engineering performance data for corn stover with similar devices are available to optimize performance; however, commercial knife grid systems exist for forage size reduction. From the force displacement data, mean and maximum ultimate shear stresses, cumulative and peak mass-based cutting energies for corn stalks, and mean new surface area-based cutting energies were determined from 4 5 refill runs at two moisture contents (78.8% and 11.3% wet basis), three knife grid spacings (25.4, 50.8, and 101.6 mm), and three bed depths (50.8, 101.6, and 152.4 mm). In general, the results indicated that peak failure load, ultimate shear stress, and cutting energy values varied directly with bed depth and inversely with knife grid spacing. Mean separation analysis established that high- and low-moisture conditions and bed depths 101.6 mm did not differ significantly (P < 0.05) for ultimate stress and cutting energy values, but knife grid spacing were significantly different. Linear knife grid cutting energy requirements for both moisture conditions of corn stalks were much smaller than reported cutting energy requirements. Ultimate shear stress and cutting energy results of this research should aid the engineering design of commercial scale linear knife gird size reduction equipment for various biomass feedstocks.

  4. National Ignition Facility wet weather construction plan

    SciTech Connect (OSTI)

    Kugler, A N

    1998-01-01

    This report presents a wet weather construction plan for the National Ignition Facility (NIF) construction project. Construction of the NIF commenced in mid- 1997, and excavation of the site was completed in the fall. Preparations for placing concrete foundations began in the fall, and above normal rainfall is expected over the tinter. Heavy rainfall in late November impacted foundation construction, and a wet weather construction plan was determined to be needed. This wet weather constiction plan recommends a strategy, techniques and management practices to prepare and protect the site corn wet weather effects and allow construction work to proceed. It is intended that information in this plan be incorporated in the Stormwater Pollution Prevention Plan (SWPPP) as warranted.

  5. Quantifying Cradle-to-Farm Gate Life Cycle Impacts Associated with Fertilizer used for Corn, Soybean, and Stover Production

    Office of Energy Efficiency and Renewable Energy (EERE)

    Fertilizer use can cause environmental problems, particularly eutrophication of water bodies from excess nitrogen or phosphorus. Increased fertilizer runoff is a concern for harvesting corn stover for ethanol production.

  6. Effect of pelleting process variables on physical properties and sugar yields of ammonia fiber expansion pretreated corn stover

    SciTech Connect (OSTI)

    Amber N. Hoover; Jaya Shankar Tumuluru; Farzaneh Teymouri; Garold L. Gresham; Janette Moore

    2014-07-01

    Pelletization process variables including grind size (4, 6 mm), die speed (40, 50, 60 Hz), and preheating (none, 70 degrees C) were evaluated to understand their effect on pellet quality attributes and sugar yields of ammonia fiber expansion (AFEX) pretreated biomass. The bulk density of the pelletized AFEX corn stover was three to six times greater compared to untreated and AFEX-treated corn stover. Also the durability of the pelletized AFEX corn stover was >97.5% for all pelletization conditions studied except for preheated pellets. Die speed had no effect on enzymatic hydrolysis sugar yields of pellets. Pellets produced with preheating or a larger grind size (6 mm) had similar or lower sugar yields. Pellets generated with 4 mm AFEX-treated corn stover, a 60 Hz die speed, and no preheating resulted in pellets with similar or greater density, durability, and sugar yields compared to other pelletization conditions.

  7. Building Technologies Program: Tax Deduction Qualified Software- Owens Corning Commercial Energy Calculator (OC-CEC) version 1.1

    Broader source: Energy.gov [DOE]

    Provides required documentation that Owens Corning Commercial Energy Calculator (OC-CEC) version 1.1 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  8. Feasibility study for co-locating and integrating ethanol production plants from corn starch and lignocellulosic feedstocks

    SciTech Connect (OSTI)

    Wallace, Robert; Ibsen, Kelly; McAloon, Andrew; Yee, Winnie

    2005-01-01

    Analysis of the feasibility of co-locating corn-grain-to-ethanol and lignocellulosic ethanol plants and potential savings from combining utilities, ethanol purification, product processing, and fermentation.

  9. Hydrogeologic Modeling at the Sylvania Corning FUSRAP Site - 13419

    SciTech Connect (OSTI)

    Ewy, Ann; Heim, Kenneth J.; McGonigal, Sean T.; Talimcioglu, Nazmi M.

    2013-07-01

    A comparative groundwater hydrogeologic modeling analysis is presented herein to simulate potential contaminant migration pathways in a sole source aquifer in Nassau County, Long Island, New York. The source of contamination is related to historical operations at the Sylvania Corning Plant ('Site'), a 9.49- acre facility located at 70, 100 and 140 Cantiague Rock Road, Town of Oyster Bay in the westernmost portion of Hicksville, Long Island. The Site had historically been utilized as a nuclear materials manufacturing facility (e.g., cores, slug, and fuel elements) for reactors used in both research and electric power generation in early 1950's until late 1960's. The Site is contaminated with various volatile organic and inorganic compounds, as well as radionuclides. The major contaminants of concern at the Site are tetrachloroethene (PCE), trichloroethene (TCE), nickel, uranium, and thorium. These compounds are present in soil and groundwater underlying the Site and have migrated off-site. The Site is currently being investigated as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). The main objective of the current study is to simulate the complex hydrogeologic features in the region, such as numerous current and historic production well fields; large, localized recharge basins; and, multiple aquifers, and to assess potential contaminant migration pathways originating from the Site. For this purpose, the focus of attention was given to the underlying Magothy formation, which has been impacted by the contaminants of concern. This aquifer provides more than 90% of potable water supply in the region. Nassau and Suffolk Counties jointly developed a three-dimensional regional groundwater flow model to help understand the factors affecting groundwater flow regime in the region, to determine adequate water supply for public consumption, to investigate salt water intrusion in localized areas, to evaluate the impacts of regional pumping activity, and to

  10. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputing Challenge draws more than 200 students to Los Alamos National Laboratory April 16, 2015 NOTE TO EDITORS: Media are welcome to attend the awards ceremony from 9 a.m. to noon a.m., April 21 at the Church of Christ, 2323 Diamond Drive, Los Alamos. Student teams from around New Mexico showcase year-long research projects April 20-21 LOS ALAMOS, N.M., April 16, 2015-More than 200 New Mexico students and their teachers are at Los Alamos National Laboratory April 20-21 for the 25th

  11. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community invited to learn about emerging technologies July 6, 2016 DisrupTech showcases innovation from Los Alamos National Laboratory LOS ALAMOS, N.M., July 6, 2016-New technologies emerging from Los Alamos National Laboratory that address everything from fusion energy to medical testing will be on display for members of the community, investors and business leaders at the DisrupTech showcase, Thursday, July 14, starting at 1:00 p.m. at the Los Alamos Golf Course Event Center. "We call it

  12. Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes.

    SciTech Connect (OSTI)

    Wang, M.; Han, J.; Haq, Z; Tyner, .W.; Wu, M.; Elgowainy, A.

    2011-05-01

    Use of ethanol as a transportation fuel in the United States has grown from 76 dam{sup 3} in 1980 to over 40.1 hm{sup 3} in 2009 - and virtually all of it has been produced from corn. It has been debated whether using corn ethanol results in any energy and greenhouse gas benefits. This issue has been especially critical in the past several years, when indirect effects, such as indirect land use changes, associated with U.S. corn ethanol production are considered in evaluation. In the past three years, modeling of direct and indirect land use changes related to the production of corn ethanol has advanced significantly. Meanwhile, technology improvements in key stages of the ethanol life cycle (such as corn farming and ethanol production) have been made. With updated simulation results of direct and indirect land use changes and observed technology improvements in the past several years, we conducted a life-cycle analysis of ethanol and show that at present and in the near future, using corn ethanol reduces greenhouse gas emission by more than 20%, relative to those of petroleum gasoline. On the other hand, second-generation ethanol could achieve much higher reductions in greenhouse gas emissions. In a broader sense, sound evaluation of U.S. biofuel policies should account for both unanticipated consequences and technology potentials. We maintain that the usefulness of such evaluations is to provide insight into how to prevent unanticipated consequences and how to promote efficient technologies with policy intervention.

  13. Enzymatic Digestibility of Corn Stover Fractions in Response to Fungal Pretreatment

    SciTech Connect (OSTI)

    Cui, Z. F.; Wan, C. X.; Shi, J.; Sykes, R. W.; Li, Y. B.

    2012-05-30

    Corn stover fractions (leaves, cobs, and stalks) were studied for enzymatic digestibility after pretreatment with a white rot fungus, Ceriporiopsis subvermispora. Among the three fractions, leaves had the least recalcitrance to fungal pretreatment and the lignin degradation reached 45% after 30 days of pretreatment. The lignin degradation of stalks and cobs was similar but was significantly lower than that of leaves (p < 0.05). For all fractions, xylan and glucan degradation followed a pattern similar to lignin degradation, with leaves having a significantly higher percentage of degradation (p < 0.05). Hydrolytic enzyme activity also revealed that the fungus was more active in the degradation of carbohydrates in leaves. As a result of fungal pretreatment, the highest sugar yield, however, was obtained with corn cobs.

  14. Corn response to climate stress detected with satellite-based NDVI time series

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Ruoyu; Cherkauer, Keith; Bowling, Laura

    2016-03-23

    Corn growth conditions and yield are closely dependent on climate variability. Leaf growth, measured as the leaf area index, can be used to identify changes in crop growth in response to climate stress. This research was conducted to capture patterns of spatial and temporal corn leaf growth under climate stress for the St. Joseph River watershed, in northeastern Indiana. Leaf growth is represented by the Normalized Difference Vegetative Index (NDVI) retrieved from multiple years (2000–2010) of Landsat 5 TM images. By comparing NDVI values for individual image dates with the derived normal curve, the response of crop growth to environmentalmore » factors is quantified as NDVI residuals. Regression analysis revealed a significant relationship between yield and NDVI residual during the pre-silking period, indicating that NDVI residuals reflect crop stress in the early growing period that impacts yield. Both the mean NDVI residuals and the percentage of image pixels where corn was under stress (risky pixel rate) are significantly correlated with water stress. Dry weather is prone to hamper potential crop growth, with stress affecting most of the observed corn pixels in the area. Oversupply of rainfall at the end of the growing season was not found to have a measurable effect on crop growth, while above normal precipitation earlier in the growing season reduces the risk of yield loss at the watershed scale. Furthermore, the spatial extent of stress is much lower when precipitation is above normal than under dry conditions, masking the impact of small areas of yield loss at the watershed scale.« less

  15. National Nuclear Security Administration | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  16. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ignition Facility Former Army Ranger wins Sandia-sponsored student of the year award Former Army Ranger Damon Alcorn recently received the Sandia National Laboratories-Livermore Chamber of Commerce Student of the Year Award. Presented at the Chamber's State of the City Luncheon last month, the annual award highlights a Las Positas College student with exemplary academic... NNSA makers and hackers engage innovation and partnerships NNSA's labs change the world everyday through cutting-edge

  17. NATIONAL LABORATORY

    Office of Environmental Management (EM)

    N E W U T I L I T Y B U S I N E S S M O D E L S : Utility and Regulatory Models for the Modern Era Ronald Lehr former Public Utilities Commissioner A M E R I C A ' S POWER PLAN A m e r i c a ' s P o w e r P l a n Ralph Cavanagh, Natural Resources Defense Council Peter Fox-Penner, Brattle Group Tom King, National Grid Richard Sedano, Regulatory Assistance Project Alison Silverstein, former Federal Energy Regulatory Lisa Wood, Edison Foundation's Institute for Electric Efficiency We would like to

  18. National System Templates: Building Sustainable National Inventory...

    Open Energy Info (EERE)

    System Templates: Building Sustainable National Inventory Management Systems Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National System Templates: Building...

  19. National Security Science | Los National Alamos Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this Issue (pdf) In 2012 NSS received an NNSA Defense Programs AWARD OF EXCELLENCE National Security Science Mail Stop A142 Los Alamos National Laboratory Los Alamos, NM...

  20. Sandia National Laboratories | National Nuclear Security Administratio...

    National Nuclear Security Administration (NNSA)

    nuclear weapons Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge Sandia National Laboratories chemist Mark Allendorf, shown here at...

  1. Lawrence Livermore National Laboratory Lawrence Livermore National...

    National Nuclear Security Administration (NNSA)

    "Green" supercomputer reduces energy footprint by 75% "Green" supercomputer reduces energy footprint by 75% Lawrence Livermore National Laboratory Lawrence Livermore National ...

  2. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  3. National Laboratory Impact Initiative

    Broader source: Energy.gov [DOE]

    The National Laboratory Impact Initiative supports the relationship between the Office of Energy Efficiency & Renewable Energy and the national laboratory enterprise.  The national laboratories...

  4. National Security Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science National Security Science Latest Issue:July 2015 past issues All Issues submit National Security Science Showcasing Los Alamos National Laboratory's work on nuclear...

  5. National Security Science Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science NSS Archive National Security Science Latest Issue:July 2015 past issues All Issues submit National Security Science Archive National Security Science magazine...

  6. National Security Complex | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Security Complex Y-12 National Security Complex Completes W69 Dismantlement

  7. Effect of pelleting on the recalcitrance and bioconversion of dilute-acid pretreated corn stover

    SciTech Connect (OSTI)

    Allison E Ray; Amber Hoover; Gary Gresham

    2012-07-01

    Background: Knowledge regarding the performance of densified biomass in biochemical processes is limited. The effects of densification on biochemical conversion are explored here. Methods: Pelleted corn stover samples were generated from bales that were milled to 6.35 mm. Low-solids acid pretreatment and simultaneous saccharification and fermentation were performed to evaluate pretreatment efficacy and ethanol yields achieved for pelleted and ground stover (6.35 mm and 2 mm) samples. Both pelleted and 6.35-mm ground stover were evaluated using a ZipperClave® reactor under high-solids, process-relevant conditions for multiple pretreatment severities (Ro), followed by enzymatic hydrolysis of the washed, pretreated solids. Results: Monomeric xylose yields were significantly higher for pellets (approximately 60%) than for ground formats (approximately 38%). Pellets achieved approximately 84% of theoretical ethanol yield (TEY); ground stover formats had similar profiles, reaching approximately 68% TEY. Pelleting corn stover was not detrimental to pretreatment efficacy for both low- and high-solids conditions, and even enhanced ethanol yields.

  8. Feasibility study of a corn-to-ethanol plant in Sardis, Mississippi

    SciTech Connect (OSTI)

    Not Available

    1982-06-01

    A feasibility study for a corn-to-ethanol plant in Panola County, Mississippi was carried out. This area is well suited for the production of ethanol from corn, as it has a mild climate, a plentiful supply of wood fuel, and a well-developed agricultural infrastructure. The project was designed for 5 million gallons per year, using the ACR Process, a process proven in 6 plants now operating. It was determined to be technically feasible for this size. However, without a state financial incentive such as a gasoline excise tax or sales tax exemption, the plant is not economically feasible in Mississippi. Even though a 4 cents per gallon federal excise tax exemption will likely remain, the economics without any other incentive are not strong enough to obtain financing or equity funds. While the Mississippi legislature decided not to consider a financial incentive in their 1982 session, an attempt will be made to introduce a proposal for a suitable exemption during the 1983 legislative session. Until then, the project is on hold.

  9. Modification of Corn Starch Ethanol Refinery to Efficiently Accept Various High-Impact Cellulosic Feedstocks

    SciTech Connect (OSTI)

    Derr, Dan

    2013-12-30

    The goal of the Corn-to-Cellulosic Migration (CCM) pilot facility was to demonstrate the implementation of advanced technologies and methods for conversion of non-food, cellulosic feedstocks into ethanol, assess the economics of the facility and evaluate potential environmental benefits for biomass to fuels conversion. The CCM project was comprised of design, build, and operate phases for the CCM pilot facility as well as research & development, and modeling components. The CCM pilot facility was designed to process 1 tonne per day of non-food biomass and biologically convert that biomass to ethanol at a rate of 70 gallons per tonne. The plant demonstrated throughputs in excess of 1 tonne per day for an extended run of 1400 hours. Although target yields were not fully achieved, the continuous operation validated the design and operability of the plant. These designs will permit the design of larger scale operations at existing corn milling operations or for greenfield plants. EdeniQ, a partner in the project and the owner of the pilot plant, continues to operate and evaluate other feedstocks.

  10. Modeled Impacts of Cover Crops and Vegetative Barriers on Corn Stover Availability and Soil Quality

    SciTech Connect (OSTI)

    Ian J. Bonner; David J. Muth Jr.; Joshua B. Koch; Douglas L. Karlen

    2014-06-01

    Environmentally benign, economically viable, and socially acceptable agronomic strategies are needed to launch a sustainable lignocellulosic biofuel industry. Our objective was to demonstrate a landscape planning process that can ensure adequate supplies of corn (Zea mays L.) stover feedstock while protecting and improving soil quality. The Landscape Environmental Assessment Framework (LEAF) was used to develop land use strategies that were then scaled up for five U.S. Corn Belt states (Nebraska, Iowa, Illinois, Indiana, and Minnesota) to illustrate the impact that could be achieved. Our results show an annual sustainable stover supply of 194 million Mg without exceeding soil erosion T values or depleting soil organic carbon [i.e., soil conditioning index (SCI)?>?0] when no-till, winter cover crop, and vegetative barriers were incorporated into the landscape. A second, more rigorous conservation target was set to enhance soil quality while sustainably harvesting stover. By requiring erosion to be <1/2 T and the SCI-organic matter (OM) subfactor to be >?0, the annual sustainable quantity of harvestable stover dropped to148 million Mg. Examining removal rates by state and soil resource showed that soil capability class and slope generally determined the effectiveness of the three conservation practices and the resulting sustainable harvest rate. This emphasizes that sustainable biomass harvest must be based on subfield management decisions to ensure soil resources are conserved or enhanced, while providing sufficient biomass feedstock to support the economic growth of bioenergy enterprises.

  11. Detecting Cellulase Penetration Into Corn Stover Cell Walls by Immuno-Electron Microscopy

    SciTech Connect (OSTI)

    Donohoe, B. S.; Selig, M. J.; Viamajala, S.; Vinzant, T. B.; Adney, W. S.; Himmel, M. E.

    2009-06-15

    In general, pretreatments are designed to enhance the accessibility of cellulose to enzymes, allowing for more efficient conversion. In this study, we have detected the penetration of major cellulases present in a commercial enzyme preparation (Spezyme CP) into corn stem cell walls following mild-, moderate- and high-severity dilute sulfuric acid pretreatments. The Trichoderma reesei enzymes, Cel7A (CBH I) and Cel7B (EG I), as well as the cell wall matrix components xylan and lignin were visualized within digested corn stover cell walls by immuno transmission electron microscopy (TEM) using enzyme- and polymer-specific antibodies. Low severity dilute-acid pretreatment (20 min at 100 C) enabled <1% of the thickness of secondary cell walls to be penetrated by enzyme, moderate severity pretreatment at (20 min at 120 C) allowed the enzymes to penetrate {approx}20% of the cell wall, and the high severity (20 min pretreatment at 150 C) allowed 100% penetration of even the thickest cell walls. These data allow direct visualization of the dramatic effect dilute-acid pretreatment has on altering the condensed ultrastructure of biomass cell walls. Loosening of plant cell wall structure due to pretreatment and the subsequently improved access by cellulases has been hypothesized by the biomass conversion community for over two decades, and for the first time, this study provides direct visual evidence to verify this hypothesis. Further, the high-resolution enzyme penetration studies presented here provide insight into the mechanisms of cell wall deconstruction by cellulolytic enzymes.

  12. National Postdoctoral Association | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Postdoctoral Association The National Postdoctoral Association (NPA) is a member-driven organization that provides a unique, national voice for postdoctoral scholars. Since 2003, we have taken on the ambitious agenda to enhance the quality of the postdoctoral experience in the U.S. We have assumed a leadership role in addressing the many issues confronting the postdoctoral community that are national in scope and requiring action beyond the local level. Read more. Argonne National Lab

  13. National Security Facility (NSF) | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security Facility (NSF) National Security Facility (NSF) Argonne National Laboratory's National Security Facility (NSF) is a flexible, state-of-the-art secure user facility that contains multiple national security networks, video teleconference capability, high-resolution graphics support, a fully powered and cooled data center, multi-level training facilities, and conferencing facilities. The NSF provides tools and resources to enable and strengthen connections between government

  14. Owens Corning

    Energy Savers [EERE]

    Cohen: On Thursday, August 29, 2013, Julian Francis, VP & Managing Director Residential Insulation, Frank O'Brien Bernini, VP & Chief Sustainability Officer, Paul Smith, VP ...

  15. NREL 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    SciTech Connect (OSTI)

    Tao, L.; Schell, D.; Davis, R.; Tan, E.; Elander, R.; Bratis, A.

    2014-04-01

    For the DOE Bioenergy Technologies Office, the annual State of Technology (SOT) assessment is an essential activity for quantifying the benefits of biochemical platform research. This assessment has historically allowed the impact of research progress achieved through targeted Bioenergy Technologies Office funding to be quantified in terms of economic improvements within the context of a fully integrated cellulosic ethanol production process. As such, progress toward the ultimate 2012 goal of demonstrating cost-competitive cellulosic ethanol technology can be tracked. With an assumed feedstock cost for corn stover of $58.50/ton this target has historically been set at $1.41/gal ethanol for conversion costs only (exclusive of feedstock) and $2.15/gal total production cost (inclusive of feedstock) or minimum ethanol selling price (MESP). This year, fully integrated cellulosic ethanol production data generated by National Renewable Energy Laboratory (NREL) researchers in their Integrated Biorefinery Research Facility (IBRF) successfully demonstrated performance commensurate with both the FY 2012 SOT MESP target of $2.15/gal (2007$, $58.50/ton feedstock cost) and the conversion target of $1.41/gal through core research and process improvements in pretreatment, enzymatic hydrolysis, and fermentation.

  16. Cost Effective Bioethanol via Acid Pretreatment of Corn Stover, Saccharification, and Conversion via a Novel Fermentation Organism: Cooperative Research and Development Final Report, CRADA Number: CRD-12-485

    SciTech Connect (OSTI)

    Dowe, N.

    2014-05-01

    This research program will convert acid pretreated corn stover to sugars at the National Renewable Energy Laboratory (NREL) and then transfer these sugars to Honda R&D and its partner the Green Earth Institute (GEI) for conversion to ethanol via a novel fermentation organism. In phase one, NREL will adapt its pretreatment and saccharification process to the unique attributes of this organism, and Honda R&D/GEI will increase the sugar conversion rate as well as the yield and titer of the resulting ethanol. In later phases, NREL, Honda R&D, and GEI will work together at NREL to optimize and scale-up to pilot-scale the Honda R&D/GEI bioethanol production process. The final stage will be to undertake a pilot-scale test at NREL of the optimized bioethanol conversion process.

  17. Los Alamos National Lab: National Security Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    more.. Charlie McMillan, Director of Los Alamos National Laboratory 1:08 Charlie McMillan, Director of Los Alamos National Laboratory, describes how the Lab provides...

  18. National Ignition Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    National Ignition Facility Glass amplifiers in Laser Bay 2 at the National Ignition Facility. The construction of the 192-beam 1.8 MJ UV NIF, the world's most energetic laser, was ...

  19. National Security Photo Gallery | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Competition | National Nuclear Security Administration | (NNSA) Solicitation National Security Campus Management and Operating (M&O) Contract Competition Contract Competition Home Page Welcome to the National Nuclear Security Administration's website for the National Security Campus (NSC) Management and Operating Contract Competition. The NSC in Kansas City, MO, is situated on approximately 177 acres. The facility is leased for the NNSA by the General Services Administration. Satellite

  20. National Laboratory]; Chertkov, Michael [Los Alamos National...

    Office of Scientific and Technical Information (OSTI)

    Chertkov, Michael Los Alamos National Laboratory Construction and Facility Engineering; Energy Conservation, Consumption, & Utilization(32); Energy Planning, Policy, &...

  1. Chemist, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Chemist, Sandia National Laboratories Jerilyn Timlin Jerilyn Timlin October 2009 National Institutes of Health (NIH) New Innovator Award Jerilyn Timlin, a chemist at Sandia National Laboratories, has been presented by the National Institutes of Health (NIH) with a New Innovator Award, one of 55 such awards granted by the NIH this year. The award encourages researchers to explore bold ideas that have the potential to catapult fields forward and speed the translation of

  2. Cognitive Informatics, Pacific Northwest National Laboratory | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Cognitive Informatics, Pacific Northwest National Laboratory Frank Greitzer Frank Greitzer Frank Greitzer was invited to be one of six "provocateurs," selected internationally by the National Science Foundation (NSF) and the National Institute of Standards and Technology (NIST), to participate in planning of, and present to a National Academies workshop on Usability, Security, and Privacy of Computer Systems Workshop held July 20-22, 2009 in

  3. Sandia National Laboratories: National Security Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Weapons Defense Systems International, Homeland, & Nuclear Security Energy and Climate Facebook Twitter YouTube Flickr RSS Programs National Security Programs We strive to become the laboratory that the U.S. turns to first for technology solutions to the most challenging problems that threaten peace and freedom for our nation and the globe. At Sandia, national security is our business. We apply advanced science and engineering to help our nation and allies detect, repel, defeat, or

  4. Lawrence Berkeley National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Berkeley National Laboratory NNSA engineer teaches young people STEM, makes mark on Livermore lab communities. Rick Roses Job: Federal fire protection engineer and explosives safety engineer Educational background: Bachelor's degree in mechanical engineering, University of California, Berkeley (1984) and a master's in national resource strategy, National Defense University (2010). Rick Roses,... Lab employees, officials, business leaders dedicate Livermore Solar Center

  5. A low-cost solid–liquid separation process for enzymatically hydrolyzed corn stover slurries

    SciTech Connect (OSTI)

    Sievers, David A.; Lischeske, James J.; Biddy, Mary J.; Stickel, Jonathan J.

    2015-07-01

    Solid-liquid separation of intermediate process slurries is required in some process configurations for the conversion of lignocellulosic biomass to transportation fuels. Thermochemically pretreated and enzymatically hydrolyzed corn stover slurries have proven difficult to filter due to formation of very low permeability cakes that are rich in lignin. Treatment of two different slurries with polyelectrolyte flocculant was demonstrated to increase mean particle size and filterability. Filtration flux was greatly improved, and thus scaled filter unit capacity was increased approximately 40-fold compared with unflocculated slurry. Although additional costs were accrued using polyelectrolyte, techno-economic analysis revealed that the increase in filter capacity significantly reduced overall production costs. Fuel production cost at 95% sugar recovery was reduced by $1.35 US per gallon gasoline equivalent for dilute-acid pretreated and enzymatically hydrolyzed slurries and $3.40 for slurries produced using an additional alkaline de-acetylation preprocessing step that is even more difficult to natively filter.

  6. Comparison of Dow Corning 544 antifoam to IIT747 antifoam in the 1/240 SRAT

    SciTech Connect (OSTI)

    Koopman, D.C.

    2000-05-12

    The Defense Waste Processing Facility requested that the Immobilization Technology Section compare the relative foaming tendencies of sludge simulant during simulated Chemical Processing Cell operations (HLW-DWPF-TTR-99-0012). Dow Corning 544 antifoam, currently used in DWPF, was compared to a new antifoam formulation developed at the Illinois Institute of Technology. A task plan was written and approved. The task plan deliverables included a recommendation on the choice of antifoam, an evaluation of the influence of solids concentration on foaming, an evaluation on the effect of boil-up rate on foaming, an estimate of the mass of steam stripped to remove 90 percent of the mercury, and a determination of the fate of mercury. Additional parameters to be investigated during experimentation included the maximum foam height observed, hydrogen generation rates, and nitrite destruction rates.

  7. Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Emerson, Rachel; Hoover, Amber; Ray, Allison; Lacey, Jeffrey; Cortez, Marnie; Payne, Courtney; Karlen, Douglas; Birrell, Stuart; Laird, David; Kallenbach, Robert; et al

    2014-07-04

    Drought conditions in 2012 were some of the most severe in recent history. The purpose of this study is to examine the impact of drought on quality, quantity, and theoretical ethanol yield (TEY) of three bioenergy feedstocks, corn stover, mixed grasses from Conservation Reserve Program lands, and Miscanthus × giganteus. To assess drought effects on these feedstocks, samples from 2010 (minimal to no drought) and 2012 (severe drought) were compared from multiple locations in the US. In all feedstocks, drought significantly increased extractives and reduced structural sugars and lignin; subsequently, TEYs were reduced 10–15%. Biomass yields were significantly reduced formore » M. × giganteus and mixed grasses. When reduction in quality and quantity were combined, TEYs decreased 26–59%. Drought negatively affected biomass quality and quantity that resulted in significant TEY reductions. As a result, such fluctuations in biomass quality and yield may have significant consequences for developing lignocellulosic biorefineries.« less

  8. Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover

    SciTech Connect (OSTI)

    Aden, A.; Ruth, M.; Ibsen, K.; Jechura, J.; Neeves, K.; Sheehan, J.; Wallace, B.; Montague, L.; Slayton, A.; Lukas, J.

    2002-06-01

    This report is an update of NREL's ongoing process design and economic analyses of processes related to developing ethanol from lignocellulosic feedstocks. The U.S. Department of Energy (DOE) is promoting the development of ethanol from lignocellulosic feedstocks as an alternative to conventional petroleum-based transportation fuels. DOE funds both fundamental and applied research in this area and needs a method for predicting cost benefits of many research proposals. To that end, the National Renewable Energy Laboratory (NREL) has modeled many potential process designs and estimated the economics of each process during the last 20 years. This report is an update of the ongoing process design and economic analyses at NREL. We envision updating this process design report at regular intervals; the purpose being to ensure that the process design incorporates all new data from NREL research, DOE funded research and other sources, and that the equipment costs are reasonable and consistent with good engineering practice for plants of this type. For the non-research areas this means using equipment and process approaches as they are currently used in industrial applications. For the last report, published in 1999, NREL performed a complete review and update of the process design and economic model for the biomass-to-ethanol process utilizing co-current dilute acid prehydrolysis with simultaneous saccharification (enzymatic) and co-fermentation. The process design included the core technologies being researched by the DOE: prehydrolysis, simultaneous saccharification and co-fermentation, and cellulase enzyme production. In addition, all ancillary areas--feed handling, product recovery and purification, wastewater treatment (WWT), lignin combustor and boiler-turbogenerator, and utilities--were included. NREL engaged Delta-T Corporation (Delta-T) to assist in the process design evaluation, the process equipment costing, and overall plant integration. The process design and

  9. Impact of Collection Equipment on Ash Variability of Baled Corn Stover Biomass for Bioenergy

    SciTech Connect (OSTI)

    William Smith; Jeffery Einerson; Kevin Kenney; Ian J. Bonner

    2014-09-01

    Cost-effective conversion of agricultural residues for renewable energy hinges not only on the materials quality but also the biorefinerys ability to reliably measure quality specifications. The ash content of biomass is one such specification, influencing pretreatment and disposal costs for the conversion facility and the overall value of a delivered lot of biomass. The biomass harvest process represents a primary pathway for accumulation of soil-derived ash within baled material. In this work, the influence of five collection techniques on the total ash content and variability of ash content within baled corn stover in southwest Kansas is discussed. The equipment tested included a mower for cutting the corn stover stubble, a basket rake, wheel rake, or shred flail to gather the stover, and a mixed or uniform in-feed baler for final collection. The results showed mean ash content to range from 11.5 to 28.2 % depending on operational choice. Resulting impacts on feedstock costs for a biochemical conversion process range from $5.38 to $22.30 Mg-1 based on the loss of convertible dry matter and ash disposal costs. Collection techniques that minimized soil contact (shred flail or nonmowed stubble) were shown to prevent excessive ash contamination, whereas more aggressive techniques (mowing and use of a wheel rake) caused greater soil disturbance and entrainment within the final baled material. Material sampling and testing were shown to become more difficult as within-bale ash variability increased, creating uncertainty around feedstock quality and the associated costs of ash mitigation.

  10. Ash reduction strategies in corn stover facilitated by anatomical and size fractionation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lacey, Jeffrey A.; Emerson, Rachel M.; Thompson, David N.; Westover, Tyler L.

    2016-04-22

    There is growing interest internationally to produce fuels from renewable biomass resources. Inorganic components of biomass feedstocks, referred to collectively as ash, damage equipment and decrease yields in thermal conversion processes, and decrease feedstock value for biochemical conversion processes. Decreasing the ash content of feedstocks improves conversion efficiency and lowers process costs. Because physiological ash is unevenly distributed in the plant, mechanical processes can be used to separate fractions of the plant based on ash content. This study focuses on the ash separation that can be achieved by separating corn stover by particle size and anatomical fraction. Baled corn stovermore » was hand-separated into anatomical fractions, ground to <19.1 mm, and size separated using six sieves ranging from 9.5 to 0.150 mm. Size fractions were analyzed for total ash content and ash composition. Particle size distributions observed for the anatomical fractions varied considerably. Cob particles were primarily 2.0 mm or greater, while most of the sheath and husk particles were 2.0 mm and smaller. Particles of leaves greater than 0.6 mm contained the greatest amount of total ash, ranging from approximately 8 to 13% dry weight of the total original material, while the fractions with particles smaller than 0.6 mm contained less than 2% of the total ash of the original material. As a result, based on the overall ash content and the elemental ash, specific anatomical and size fractions can be separated to optimize the feedstocks being delivered to biofuels conversion processes and minimize the need for more expensive ash reduction treatments.« less

  11. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration | (NNSA) Los Alamos National Lab Performance Evaluations FY 2016 FY 2016 Performance Evaluation Plan, Los Alamos National Security, LLC FY 2015 FY 2015 Performance Evaluation Report, Los Alamos National Security, LLC FY 2015 Performance Evaluation Report, Fee Determination Letter, Los Alamos National Security, LLC FY 2015 Performance Evaluation Plan, Los Alamos National Security, LLC FY 2014 FY 2014 Performance Evaluation Report, Los Alamos National Security, LLC FY 2014

  12. National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prepared by U.S. Department of Energy National Nuclear Security Administration Nevada Field Office . Environmental Management Operations February 2015 Nevada National Security ...

  13. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    U.S. Department of Energy National Nuclear Security Administration Federal Equal ... A. Name and Address of Agency National Nuclear Security Administration Office of ...

  14. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    U.S. Department of Energy National Nuclear Security Administration Federal Equal ... A. Name and Address of Agency National Nuclear Security Administration 1000 Independence ...

  15. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    15 National Nuclear Security Administration FY 2013 PER Babcock & Wilcox Technical ... The National Nuclear Security Administration (NNSA) Production Office (NPO) took into ...

  16. First National Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    First National Technology First National Technology Center Center Electronic Equipment - manufactured to withstand 8 milliseconds of voltage disruption CBEMA Curve - Chips ...

  17. Level: National Data;

    U.S. Energy Information Administration (EIA) Indexed Site

    (Fuel and Nonfuel), 2006; Level: National Data; Row: Energy Sources and Shipments, ... (Fuel and Nonfuel), 2006; Level: National Data; Row: Energy Sources and Shipments, ...

  18. National Science Bowl Finals

    ScienceCinema (OSTI)

    None

    2010-09-01

    National Science Bowl finals and awards at the National Building Museum in Washington D.C. Monday 5/3/2010

  19. Determination of the structural changes by Raman and {sup 13}C CP/MAS NMR spectroscopy on native corn starch with plasticizers

    SciTech Connect (OSTI)

    Cozar, O.; Filip, C.; Tripon, C.; Cioica, N.; Coţa, C.; Nagy, E. M.

    2013-11-13

    The plasticizing - antiplasticizing effect of water and glycerol contents on native corn starch samples is investigated by FT-Raman and {sup 13}C CP/MAS NMR spectroscopy. The presence of both amorphous and crystalline structural phases was evidenced in pure native corn starch and also in the samples containing plasticizers. Among the crystalline starch structures, the A- and V- types were suggested by CP/MAS NMR spectra.

  20. Lawrence Livermore National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory (LLNL) is a design laboratory that is responsible for the safety and reliability of the nuclear explosives package in nuclear weapons. It supports surveillance, assessment, and refurbishment of the nuclear weapons stockpile. LLNL also possesses unique high-energy-density physics capabilities and scientific computing assets. The lab is managed by Lawrence Livermore National Security, LLC and

  1. National Nuclear Security Administration Los Alamos National

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration Los Alamos National Security, LLC Fiscal Year 2014 Performance Evaluation Report (PER) NNSA Los Alamos Field Office Performance Period: October 2013 - September 2014 November 14, 2014 NA-LA November 14, 2014 Executive Summary This Performance Evaluation Report (PER) provides the assessment of Los Alamos National Security, LLC performance for the period of October 1, 2013 through September 30, 2014, as evaluated against the objectives defined in the Fiscal

  2. National Science Bowl | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Science Bowl Texas students win regional National Science Bowl competition, secure spot in finals in nation's capital More than 200 students from 37 from High schools across the Texas Panhandle gathered together with a few hundred volunteers for a meeting and competition of the minds: The Pantex Science Bowl 2016. Set up like a game show with buzzers, toss up and bonus questions, these groups of four students... Amarillo Students Win Regional National Science Bowl Competition, Secure Spot in

  3. sandia national laboratory | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    sandia national laboratory Sandia California celebrates 60 years On March 8, Sandia/California celebrates its 60th anniversary. The site, which began with a singular nuclear weapons mission, now supports all Sandia mission areas. Nuclear weapons still accounts for nearly half of the site's work, along with strong programs in homeland security, transportation... Managing the data deluge for national security analysts ALBUQUERQUE, N.M. - After a disaster or national tragedy, bits of information

  4. Engineer, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Engineer, Sandia National Laboratories Clifford Ho Clifford Ho February 2010 Asian American Engineer of the Year Clifford Ho, a Sandia engineer, has been selected by the Chinese Institute of Engineers - USA to receive the Asian American Engineer of the Year Award. The honor is presented each year to the nation's most outstanding Asian American engineers and scientists who make significant, lasting and global contributions to the nation. Ho was recognized for his

  5. Lawrence Livermore National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory DE-AC52-07NA27344 Operated by Lawrence Livermore National Security, LLC BASIC Contract (Official) Modifications (Official) Funding Mods Available Upon Request Conformed Contract (Unofficial) LLNL Sec A (SF33) (pdf, 91KB) See Modifications Section under Conformed Contract Link LLNS Conformed Contract (weblink) LLNL Sec B-H (pdf, 306KB) LLNL Sec I pdf 687KB LLNL Sec J Appx A (pdf, 67KB) LLNL

  6. Pacific Northwest National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Pacific Northwest National Laboratory NNSA deputy visits PNNL to see radiochemistry and threat detection capabilities NNSA Principal Deputy Administrator Madelyn Creedon visited the Pacific Northwest National Laboratory (PNNL) in Washington this month to see the work it does for the agency, focusing on radiochemistry and threat detection. NNSA hosts international CTBT on-site inspection experts at Nevada National Security Site This month, NNSA hosted a Comprehensive

  7. national security | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    security Klotz visits Y-12 to see progress on new projects and ongoing work on NNSA's national security missions Last week, NNSA Administrator Lt. Gen. Frank Klotz (Ret.) visited the Y-12 National Security Complex to check on the status of ongoing projects like the Uranium Processing Facility as well as the site's continuing uranium operations. He also met with the Region 2 volunteers of the Radiogical... Managing the data deluge for national security analysts ALBUQUERQUE, N.M. - After a

  8. National Lab Impact Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lab Impact Initiative Energy Efficiency & Renewable Energy EERE National Lab Impact Summit Driving American Energy Innovation and Competitiveness May 4, 2016 | 7:30 am-7:00 pm National Renewable Energy Laboratory Golden, Colorado EERE National Lab Impact Summit // i ` http://www.cyclotronroad.org/home TABLE OF CONTENTS Department of Energy National Lab Abbreviations .........................................................................................................ii Welcome Letter

  9. First National Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE)

    Speaker presentation prepared by Dennis Hughes, a lead property manager with First National Buildings Inc.

  10. national labs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    and hackers engage innovation and partnerships NNSA's labs change the world everyday through cutting-edge developments in support of NNSA's critical national security missions. ...

  11. National Nuclear Security Administration | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) National Nuclear Security Administration FY15 Year End Report Semi Annual Report FY14 Year End Report Semi Annual

  12. National Security Science | Los National Alamos Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANSCE: Mission-Critical for National Security Nuclear Energy for Our Challenging Future The Invisible Neutron Threat Blasting Missiles Out of the Sky LANL and the Air Force: ...

  13. National Renewable Energy Laboratory | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Renewable Energy Laboratory NNSA lab recognized for innovation to power electric ... Annual Merit Review Awards recognized significant achievements in the Department of Energy

  14. National Ignition Facility Reaches Milestone Early | National...

    National Nuclear Security Administration (NNSA)

    Reaches Milestone Early | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the...

  15. Previous Sandia National Laboratories | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home About Us Our Operations Acquisition and Project Management M & O Support Department Sandia National Laboratories ...

  16. Sandia National Laboratory Performance Evaluations | National...

    National Nuclear Security Administration (NNSA)

    Sandia National Laboratory Performance Evaluations FY 2016 FY 2016 Performance Evaluation Plan, Sandia Corporation FY 2015 FY 2015 Performance Evaluation Report, Sandia Corporation ...

  17. Lawrence Livermore National Laboratory | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Life Extension Program Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge SOLAR POWER PURCHASE FOR DOE LABORATORIES More about LLNL...

  18. sandia national lab | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    sandia national lab NNSA Researchers Advance Technology for Remote Reactor Monitoring NNSA's Defense Nuclear Nonproliferation Research and Development Program drives the innovation ...

  19. Manager, Sandia National Laboratories | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    of New Mexico's Anderson School of Management's Hall of Fame Inductee Jim Novak from Sandia National Laboratories will be inducted into the University of New Mexico's ...

  20. Researcher, Sandia National Laboratories | National Nuclear Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Award: Fellow of the Institute of Electrical & Electronics Engineers (IEEE) Profile: Paul Dodd, a Sandia National Laboratories researcher, has been named a Fellow...

  1. Biomass Commercialization Prospects the Next 2 to 5 Years; BIOMASS COLLOQUIES 2000

    SciTech Connect (OSTI)

    Hettenhaus, J. R.; Wooley, R.; Wiselogel, A.

    2000-10-12

    A series of four colloquies held in the first quarter of 2000 examined the expected development of biomass commercialization in the next 2 to 5 years. Each colloquy included seven to ten representatives from key industries that can contribute to biomass commercialization and who are in positions to influence the future direction. They represented: Corn Growers, Biomass Suppliers, Plant Science Companies, Process Engineering Companies, Chemical Processors, Agri-pulp Suppliers, Current Ethanol Producers, Agricultural Machinery Manufacturers, and Enzyme Suppliers. Others attending included representatives from the National Renewable Energy Lab., Oak Ridge National Laboratory, the U.S. Department of Energy's Office of Fuels Development, the U.S. Department of Agriculture, environmental groups, grower organizations, and members of the financial and economic development community. The informal discussions resulted in improved awareness of the current state, future possibilit ies, and actions that can accelerate commercialization. Biomass commercialization on a large scale has four common issues: (1) Feedstock availability from growers; (2) Large-scale collection and storage; (3) An economic process; (4) Market demand for the product.

  2. National Security, Weapons Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security, Weapons Science National Security, Weapons Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. CoMuEx» Explosives Center» Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) The Dual-Axis Radiographic Hydrodynamic Test Facility at Los Alamos National Laboratory is part of the DOE's stockpile stewardship

  3. Foreign-national Investigators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    foreign national investigators Foreign-national Investigators Foreign National Investigators must have access to B174 shown on their badge. Foreign National Investigators must notify Beth Mariotti by e-mail of their first intended presence in B174. By September 2009, it is expected that there will be no restrictions on computer use by Foreign National Investigators at JLF. However, LLNL prohibits the use of personally-owned computers on-site

  4. Optimal operation of a concurrent-flow corn dryer with a drying heat pump using superheated steam

    SciTech Connect (OSTI)

    Moraitis, C.S. [Systelligence Consultants and Research Associates, Volos (Greece); Akritidis, C.B. [Dept. of Hydraulics and Agricultural Engineering, Thessaloniki (Greece)

    1998-07-01

    A numerical model of a concurrent-flow dryer of corn using superheated steam as drying medium is solved applying a shooting technique, so as to satisfy boundary conditions imposed by the optimal design of a drying heat pump. The drying heat pump is based on the theory of minimum energy cycles. The solution of the model proves the applicability of the heat pump to a concurrent-flow dryer, achieving a Specific Energy Consumption as low as 1080 kJ/kg.

  5. Charlie Manning | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... And she said she remembers she was just a kind of a young woman, but she remembers they had corn up to waist high, and it snowed, and the whole ground was covered with snow. And ...

  6. National Supplemental Screening Program | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Supplemental Screening Program The National Supplemental Screening Program (NSSP) offers medical screenings at no charge for former U.S. Department of Energy (DOE) site workers who may have been exposed to hazardous substances at work. For more information, see the documents below. PDF icon Retiree_Benefits_NSSPbrochure.pdf PDF icon Retiree_Benefits_newtest.pdf PDF icon Retiree_Benefits_NSSPemployees

  7. Argonne National Laboratory | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Argonne National Laboratory First-of-its-Kind NNSA Capability to Support Study of Materials at Extreme Conditions for Stockpile Stewardship WASHINGTON - A new first-of-its-kind-worldwide research capability will help unravel the mysteries of material behavior at extreme conditions and short time scales in support of the Department of Energy's National Nuclear Security Administration's (DOE/NNSA's) vital

  8. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Defense Systems & Assessments: Accomplishments Accomplishments About Defense Systems & Assessments Program Areas Accomplishments Archives Cybersecurity Programs Accomplishments Protecting the nation Sandia lasers test and calibrate sensors on U.S. satellites Sandia's scientists and engineers have a significant impact on national security and continually deliver results, including these noteworthy successes from fiscal year 2012: AHW Launch Advanced Hypersonic Weapon test flight

  9. sandia national labotartory | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    sandia national labotartory Sandia National Laboratory Sandia Field Office Contact the Field Office Contract Administration & Business Management Emergency Information Facilities & Projects Nuclear Operations Environment, Safety & Health Public Affairs Safeguards & Security Performance and Quality Assurance Programs NEPA Reading Room

  10. A low-cost solid–liquid separation process for enzymatically hydrolyzed corn stover slurries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sievers, David A.; Lischeske, James J.; Biddy, Mary J.; Stickel, Jonathan J.

    2015-07-01

    Solid-liquid separation of intermediate process slurries is required in some process configurations for the conversion of lignocellulosic biomass to transportation fuels. Thermochemically pretreated and enzymatically hydrolyzed corn stover slurries have proven difficult to filter due to formation of very low permeability cakes that are rich in lignin. Treatment of two different slurries with polyelectrolyte flocculant was demonstrated to increase mean particle size and filterability. Filtration flux was greatly improved, and thus scaled filter unit capacity was increased approximately 40-fold compared with unflocculated slurry. Although additional costs were accrued using polyelectrolyte, techno-economic analysis revealed that the increase in filter capacity significantlymore » reduced overall production costs. Fuel production cost at 95% sugar recovery was reduced by $1.35 US per gallon gasoline equivalent for dilute-acid pretreated and enzymatically hydrolyzed slurries and $3.40 for slurries produced using an additional alkaline de-acetylation preprocessing step that is even more difficult to natively filter.« less

  11. High temperature pre-digestion of corn stover biomass for improved product yields

    SciTech Connect (OSTI)

    Brunecky, Roman; Hobdey, Sarah E.; Taylor, Larry E.; Tao, Ling; Tucker, Melvin P.; Himmel, Michael E.; Decker, Stephen R.

    2014-12-03

    Introduction: The efficient conversion of lignocellulosic feedstocks remains a key step in the commercialization of biofuels. One of the barriers to cost-effective conversion of lignocellulosic biomass to sugars remains the enzymatic saccharification process step. Here, we describe a novel hybrid processing approach comprising enzymatic pre-digestion with newly characterized hyperthermophilic enzyme cocktails followed by conventional saccharification with commercial enzyme preparations. Dilute acid pretreated corn stover was subjected to this new procedure to test its efficacy. Thermal tolerant enzymes from Acidothermus cellulolyticus and Caldicellulosiruptor bescii were used to pre-digest pretreated biomass at elevated temperatures prior to saccharification by the commercial cellulase formulation. Results: We report that pre-digestion of biomass with these enzymes at elevated temperatures prior to addition of the commercial cellulase formulation increased conversion rates and yields when compared to commercial cellulase formulation alone under low solids conditions. In conclusion, Our results demonstrating improvements in rates and yields of conversion point the way forward for hybrid biomass conversion schemes utilizing catalytic amounts of hyperthermophilic enzymes.

  12. High temperature pre-digestion of corn stover biomass for improved product yields

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brunecky, Roman; Hobdey, Sarah E.; Taylor, Larry E.; Tao, Ling; Tucker, Melvin P.; Himmel, Michael E.; Decker, Stephen R.

    2014-12-03

    Introduction: The efficient conversion of lignocellulosic feedstocks remains a key step in the commercialization of biofuels. One of the barriers to cost-effective conversion of lignocellulosic biomass to sugars remains the enzymatic saccharification process step. Here, we describe a novel hybrid processing approach comprising enzymatic pre-digestion with newly characterized hyperthermophilic enzyme cocktails followed by conventional saccharification with commercial enzyme preparations. Dilute acid pretreated corn stover was subjected to this new procedure to test its efficacy. Thermal tolerant enzymes from Acidothermus cellulolyticus and Caldicellulosiruptor bescii were used to pre-digest pretreated biomass at elevated temperatures prior to saccharification by the commercial cellulase formulation.more » Results: We report that pre-digestion of biomass with these enzymes at elevated temperatures prior to addition of the commercial cellulase formulation increased conversion rates and yields when compared to commercial cellulase formulation alone under low solids conditions. In conclusion, Our results demonstrating improvements in rates and yields of conversion point the way forward for hybrid biomass conversion schemes utilizing catalytic amounts of hyperthermophilic enzymes.« less

  13. Blending municipal solid waste with corn stover for sugar production using ionic liquid process

    SciTech Connect (OSTI)

    Sun, Ning; Xu, Feng; Sathitsuksanoh, Noppadon; Thompson, Vicki S.; Cafferty, Kara; Li, Chenlin; Tanjore, Deepti; Narani, Akash; Pray, Todd R.; Simmons, Blake A.; Singh, Seema

    2015-06-01

    Municipal solid waste (MSW) represents an attractive cellulosic resource for sustainable fuel production because of its abundance and its low or perhaps negative cost. However, the significant heterogeneity and toxic contaminants are barriers to efficient conversion to ethanol and other products. In this study, we generated MSW paper mix, blended with corn stover (CS), and have shown that both MSW paper mix alone and MSW/CS blends can be efficiently pretreated in certain ionic liquids (ILs) with high yields of fermentable sugars. After pretreatment in 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]), over 80% glucose has been released with enzymatic saccharification. We have also applied an enzyme free process by adding mineral acid and water directly into the IL/biomass slurry to induce hydrolysis. With the acidolysis process in the IL 1-ethyl-3-methylimidazolium chloride ([C2C1Im]Cl), up to 80% glucose and 90% xylose are released for MSW. The results indicate the feasibility of incorporating MSW as a robust blending agent for biorefineries.

  14. Engineer, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Engineer, Sandia National Laboratories Sandra Begay-Campbell Sandra Begay-Campbell Ely S. Parker Award Sandra Begay-Campbell, a Sandia National Laboratories engineer and a member of the Navajo Nation, was selected for the prestigious Ely S. Parker Award by the American Indian Science and Engineering Society at an honors banquet Oct. 31 in Portland, Ore. Begay-Campbell, who has worked at Sandia for 17 years and is a principal member of the technical staff, received the

  15. National Environmental Research Parks

    SciTech Connect (OSTI)

    Not Available

    1994-07-01

    The National Environmental Research Parks are outdoor laboratories that provide opportunities for environmental studies on protected lands that act as buffers around Department of Energy (DOE) facilities. The research parks are used to evaluate the environmental consequences of energy use and development as well as the strategies to mitigate these effects. They are also used to demonstrate possible environmental and land-use options. The seven parks are: Fermilab National Environmental Research Park; Hanford National Environmental Research Park; Idaho National Environmental Research Park; Los Alamos National Environmental Research Park; Nevada National Environmental Research Park; Oak Ridge National Environmental Research Park; and Savannah River National Environmental Research Park. This document gives an overview of the events that led to the creation of the research parks. Its main purpose is to summarize key points about each park, including ecological research, geological characteristics, facilities, and available databases.

  16. Nevada National Security Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 24, 2014 Cultural Artifacts Cross Eras at the Nevada National Security Site It is well known that the Nevada National Security Site (NNSS) is home to many artifacts from the ...

  17. National Energy Education Summit

    Broader source: Energy.gov [DOE]

    The National Energy Education Summit is organized by the Council of Energy Research and Education Leaders (CEREL) and will serve as a first-of-its-kind national forum for energy educators, subject...

  18. Sandia National Laboratories

    National Nuclear Security Administration (NNSA)

    feet underground.

    Bay Area national labs team to tackle long-standing automotive hydrogen storage challenge http:www.nnsa.energy.govblogbay-area-national-labs-team-tackle-...

  19. nevada national security site

    National Nuclear Security Administration (NNSA)

    7%2A en Nevada National Security Site operator recognized for green fleet http:www.nnsa.energy.govblognevada-national-security-site-operator-recognized-green-fleet

    The...

  20. 2012 National Electricity Forum

    Broader source: Energy.gov [DOE]

    At the 2012 National Electricity Forum, held February 8-9, 2012 and jointly organized by DOE's Office of Electricity Delivery & Energy Reliability (OE) and the National Association of...

  1. Nevada National Security Site

    Office of Energy Efficiency and Renewable Energy (EERE)

    HISTORYIn 1950, President Truman established what is now known as the Nevada National Security Site (NNSS) to perform nuclear weapons testing activities.  In support of national defense initiatives...

  2. National Geothermal Summit

    Broader source: Energy.gov [DOE]

    The Geothermal Energy Association (GEA) will be holding it’s fifth annual National Geothermal Summit on June 3-4 at the Grand Sierra Resort and Casino in Reno, NV. The National Geothermal Summit is...

  3. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    participates in National Lab Day to increase awareness of science across the nation April 29, 2010 Events planned May 4-5 at Bradbury Science Museum LOS ALAMOS, New Mexico, April...

  4. Photos | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -Arms control & nonproliferation --Research reactor conversion -Biometrics -Biotechnology for national security -Cyber security -Facility security -Decision science ...

  5. Videos | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    -Arms control & nonproliferation --Research reactor conversion -Biometrics -Biotechnology for national security -Cyber security -Facility security -Decision science ...

  6. National Hydropower Map

    Broader source: Energy.gov [DOE]

    High-resolution map produced by Oak Ridge National Laboratory showing hydropower resources throughout the United States.

  7. Management | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Sciences & Engineering Focus: Understanding & Control of Interfacial Processes Web Site Michael Thackeray Michael Thackeray (Deputy Director) Argonne National Laboratory...

  8. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated research facilities. As a U.S. Department of Energy national laboratory, Argonne offers access to the facilities listed below through a variety of arrangements. Advanced Powertrain Research Facility Center for Transportation Research Materials Engineering Research Facility Distributed Energy Research Center

  9. Seneca Nation- 2007 Project

    Broader source: Energy.gov [DOE]

    On the three territories of the Seneca Nation, there exist opportunities for energy development from both renewable and nonrenewable resources.

  10. National User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National User Facilities Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Berkeley Lab's User Facilities-Engines of Discovery Berkeley Lab's User Facilities provide state-of-the-art resources for scientists across the nation and around the world. About 10,000 researchers a year use these facilities, representing nearly one third of the total for all Department of Energy

  11. National Renewable Energy Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribal Energy Program Review Roger Taylor Manger State, Local & Tribal Integrated Application Group National Renewable Energy Laboratory November 5-8, 2007 Major DOE National Laboratories Brookhaven Brookhaven Pacific Northwest Pacific Northwest Lawrence Berkeley Lawrence Berkeley Lawrence Livermore Lawrence Livermore h h h h h INEL INEL National Renewable National Renewable Energy Laboratory Energy Laboratory Los Alamos Los Alamos Sandia Sandia Argonne Argonne Oak Ridge Oak Ridge Defense

  12. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientists will codirect $14.5 million National Center for Systems Biology July 28, 2009 Lab contributes computer modeling, antibody engineering capabilities Los Alamos, New Mexico, July 28, 2009- Los Alamos National Laboratory scientists will codirect a new National Center for Systems Biology located at the University of New Mexico in Albuquerque. The new Spatiotemporal Modeling Center (STMC) is funded by a $14.5 million, five- year grant from the National Institute for General Medical Sciences

  13. Alamos National Laboratory's 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    .1 million pledged during Los Alamos National Laboratory's 2013 employee giving campaign December 17, 2012 LOS ALAMOS, NEW MEXICO, December 17, 2012-Los Alamos National Laboratory employees have again demonstrated concern for their communities and those in need by pledging a record $2.13 million to United Way and other eligible nonprofit programs. Los Alamos National Security, LLC, which manages and operates the Laboratory for the National Nuclear Security Administration, plans to prorate its $1

  14. Alamos National Security, LLC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Eleven nonprofit organizations receive community giving grants from Los Alamos National Security, LLC December 15, 2009 Los Alamos, New Mexico, December 15, 2009- Eleven local nonprofit organizations with projects supported by Los Alamos National Laboratory employee volunteers received $75,000 in Community Giving grants from Los Alamos National Security, LLC, the company that manages the Lab for the National Nuclear Security Administration. The organizations are located in Los Alamos, Española,

  15. National SCADA Testbed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Photovoltaic Systems Evaluation Laboratory PV Regional ... Facility Geomechanics and Drilling Labs National ... Health Monitoring Offshore Wind High-Resolution ...

  16. Downloads | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    --Environmental policy & planning --Geochemistry ... -Decision science --Emergency & disaster management ... the nation to solve society's complex scientific problems. ...

  17. National Geothermal Summit

    Broader source: Energy.gov [DOE]

    The Geothermal Energy Association hosts its annual National Geothermal Summit in Reno, Nevada, June 3-4, 2015.

  18. NATIONAL SECURITY TECHNOLOGIES - NEVADA NATIONAL SECURITY SITE

    National Nuclear Security Administration (NNSA)

    - NEVADA NATIONAL SECURITY SITE FISCAL YEARS 2009 THRU 2015 SMALL BUSINESS PROGRAM RESULTS & FORECAST CATEGORY Total Procurement Total SB Small Disad. Bus Woman-Owned SB Hub-Zone ...

  19. lasers. National Ignition Facility | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    target shot of fiscal year 2015 WASHINGTON - Last week, the National Ignition Facility (NIF) fired its 300th laser target shot in fiscal year (FY) 2015, meeting the year's goal...

  20. National SCADA Test Bed

    Broader source: Energy.gov [DOE]

    The National SCADA Test Bed (NSTB) is a one-of-a-kind national resource that draws on the integrated expertise and capabilities of the Argonne, Idaho, Lawrence Berkeley, Los Alamos, Oak Ridge, Pacific Northwest, and Sandia National Laboratories to address the cybersecurity challenges of energy delivery systems.

  1. Sandia National Laboratory | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Sandia National Laboratory NNSA's Sandia National Laboratories are responsible for the development, testing, and production of specialized nonnuclear components and quality assurance and systems engineering for all of the United States' nuclear weapons. Sandia has locations in Albuquerque, New Mexico; Livermore, California; Kauai, Hawaii; and Tonopah, Nevada. Sandia Field Office Contact the Field Office Contract Administration & Business Management Emergency Information Facilities

  2. Sandia National Laboratories | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Sandia National Laboratories Sandia employee dubbed a master at locking down NNSA's enterprise NNSA's primary missions include keeping dangerous materials out of the wrong hands while protecting and maintaining the nation's nuclear deterrent. It's no surprise, then, that NNSA's labs and sites employ the best experts available in security. At NNSA's Sandia... On Womens Equality Day, we celebrate NNSA's talented Women in STEM Sandia California hosts Military Academic Collaboration students Sandia

  3. Sandia National Laboratories | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Sandia National Laboratories NNSA's Sandia National Laboratories are responsible for the development, testing, and production of specialized nonnuclear components and quality assurance and systems engineering for all of the United States' nuclear weapons. Sandia has locations in Albuquerque, NM; Livermore, CA; Kauai, HI; and Tonopah, NV. The labs are operated by Sandia Corporation. Visit our website Z-Machine Z-Machine Related News Sandia employee dubbed a master at locking down

  4. Physicist, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Physicist, Lawrence Livermore National Laboratory Kennedy Reed Kennedy Reed July 2009 Presidential Award for Excellence in Science and Engineering Mentoring President Obama has named Lawrence Livermore National Laboratory physicist Kennedy Reed as a recipient of the prestigious Presidential Award for Excellence in Science and Engineering Mentoring. Reed is a theoretical physicist at the laboratory, conducting research on atomic collisions in high temperature

  5. Researcher, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Researcher, Lawrence Livermore National Laboratory Placeholder for Bruce Macintosh image Bruce Macintosh February 2010 AAAS Newcomb Cleveland Prize A Lawrence Livermore National Laboratory researcher's paper published in November 2008 is co-winner of this year's American Association for the Advancement of Science (AAAS) Newcomb Cleveland Prize. The Paper is one of two outstanding papers published in Science from June 1, 2008 through May 31, 2009. Bruce

  6. Researcher, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Researcher, Lawrence Livermore National Laboratory Placeholder for Mike Fitzgerald image Mike Fitzgerald February 2010 AAAS Newcomb Cleveland Prize A Lawrence Livermore National Laboratory researcher's paper published in November 2008 is co-winner of this year's American Association for the Advancement of Science (AAAS) Newcomb Cleveland Prize. The Paper is one of two outstanding papers published in Science from June 1, 2008 through May 31, 2009. Another

  7. Sandia National Laboratories | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Sandia National Laboratories Allison Davis Allison Davis October 2009 NNSA Defense Programs Award of Excellence Two individuals and nine teams received the NNSA Defense Programs Awards of Excellence at ceremonies this year at Sandia National Laboratories in New Mexico and California. The NNSA Defense Programs Awards of Excellence were created in the early 1980s to give special recognition to those at the laboratories and plants directly associated with the stockpile modernization

  8. Sandia National Laboratories | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Sandia National Laboratories Kevin Eklund Kevin Eklund May 2010 NNSA Defense Programs Awards of Excellence Two individuals and nine teams received the NNSA Defense Programs Awards of Excellence at ceremonies this year at Sandia National Laboratories in New Mexico and California. The NNSA Defense Programs Awards of Excellence were created in the early 1980s to give special recognition to those at the laboratories and plants directly associated with the stockpile modernization program.

  9. Lawrence Livermore National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Livermore National Laboratories NNSA, Air Force Complete Successful B61-12 Life Extension Program Instrumented Flight Tests WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) and United States Air Force completed eight successful B61-12 Life Extension Program (LEP) Vibration Fly Around/ Instrumented Measurement Vehicle (VFA/IMV) tests at Eglin Air Force Base and Edwards Air Force Base during July to

  10. Los Alamos National Security, LLC Los Alamos National Laboratory...

    Office of Environmental Management (EM)

    Security, LLC Los Alamos National Laboratory (LANL) Voluntary Protection Program (VPP) Assessment Los Alamos National Security, LLC Los Alamos National Laboratory (LANL) Voluntary...

  11. Los Alamos National Laboratory participates in National Lab Day...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Day Los Alamos National Laboratory participates in National Lab Day to increase awareness of science across the nation Connecting teachers and students with scientists,...

  12. Farm-scale production of fuel ethanol and wet grain from corn in a batch process

    SciTech Connect (OSTI)

    Westby, C.A.; Gibbons, W.R.

    1982-07-01

    The batch production of fuel grade ethanol and distillers' wet grain (wet solids) in a farm-scale process (1240-15,580 L/batch) is described. The procedure employs yeast fermentation of amylase-treated corn mash and a two-stage distillation. Primary emphasis in this study was on the cooking, fermentation and centrifugation steps. Without recycling, fermentation of the mash yielded beers with 10.0-10.5% ethanol. Recycling of stillage supernatant at full, 75, or 50% strengths produced enriched mashes that after 48-hour fermentation yielded beers with 5-14% more ethanol. Recycling twice with full-strength stillage supernatant at pH 7.0 increased the ethanol yield in the final beer 16.5%; however, the time to complete the final fermentation was extended from 48 to 72 hours and salt buildup occurred. By recycling at pH 5.4, it was possible to avoid salt buildup and obtain beers with 10.3-10.5% ethanol. Recycling resulted in increased levels of glucose, starch, crude protein, and fat in the beer and a reduced moisture content while the wet solids showed an increased starch content. Centrifugation after cooking or fermentation instead of after distillation reduced the mash volume 17-20% and this lowered the ethanol yield in the subsequently produced beer. Fermentation of a volume-restored mash supernatant gave a beer with only 9.25% ethanol. Mash wet solids varied somewhat chemically from beer and stillage solids. An economic and energy balance analysis of various modes of plant operation are provided and plant design considerations are suggested. (Refs. 31).

  13. Influence of Airflow on Laboratory Storage of High Moisture Corn Stover

    SciTech Connect (OSTI)

    Lynn M. Wendt; Ian J. Bonner; Amber N. Hoover; Rachel M. Emerson; William A. Smith

    2014-04-01

    Storing high moisture biomass for bioenergy use is a reality in many areas of the country where wet harvest conditions and environmental factors prevent dry storage from being feasible. Aerobic storage of high moisture biomass leads to microbial degradation and self-heating, but oxygen limitation can aid in material preservation. To understand the influence of oxygen presence on high moisture biomass (50 %, wet basis), three airflow rates were tested on corn stover stored in laboratory reactors. Temperature, carbon dioxide production, dry matter loss, chemical composition, fungal abundance, pH, and organic acids were used to monitor the effects of airflow on storage conditions. The results of this work indicate that oxygen availability impacts both the duration of self-heating and the severity of dry matter loss. High airflow systems experienced the greatest initial rates of loss but a shortened microbially active period that limited total dry matter loss (19 %). Intermediate airflow had improved preservation in short-term storage compared to high airflow systems but accumulated the greatest dry matter loss over time (up to 27 %) as a result of an extended microbially active period. Low airflow systems displayed the best performance with the lowest rates of loss and total loss (10 %) in storage at 50 days. Total structural sugar levels of the stored material were preserved, although glucan enrichment and xylan loss were documented in the high and intermediate flow conditions. By understanding the role of oxygen availability on biomass storage performance, the requirements for high moisture storage solutions may begin to be experimentally defined.

  14. cygnus | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    and operated with National Securities Technologies and Los Alamos National Laboratory (LANL) at the Nevada National Security Site (NNSS), has fired its 3,000th shot. Originally...

  15. Schneider National | Open Energy Information

    Open Energy Info (EERE)

    National Jump to: navigation, search Name: Schneider National Place: Denver, CO Website: www.schneidernational.com References: Schneider National1 Information About Partnership...

  16. Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Wang, Huamin; Rover, Majorie; Whitmer, Lysle; Smith, Ryan; Brown, Robert C.

    2015-04-13

    Phenolic oils were produced from fast pyrolysis of two different biomass feedstocks, red oak and corn stover and evaluated in hydroprocessing tests for production of liquid hydrocarbon products. The phenolic oils were produced with a bio-oil fractionating process in combination with a simple water wash of the heavy ends from the fractionating process. Phenolic oils derived from the pyrolysis of red oak and corn stover were recovered with yields (wet biomass basis) of 28.7 wt% and 14.9 wt%, respectively, and 54.3% and 58.6% on a carbon basis. Both precious metal catalysts and sulfided base metal catalyst were evaluated for hydrotreating the phenolic oils, as an extrapolation from whole bio-oil hydrotreatment. They were effective in removing heteroatoms with carbon yields as high as 81% (unadjusted for the 90% carbon balance). There was nearly complete heteroatom removal with residual O of only 0.4% to 5%, while N and S were reduced to less than 0.05%. Use of the precious metal catalysts resulted in more saturated products less completely hydrotreated compared to the sulfided base metal catalyst, which was operated at higher temperature. The liquid product was 42-52% gasoline range molecules and about 43% diesel range molecules. Particulate matter in the phenolic oils complicated operation of the reactors, causing plugging in the fixed-beds especially for the corn stover phenolic oil. This difficulty contrasts with the catalyst bed fouling and plugging, which is typically seen with hydrotreatment of whole bio-oil. This problem was substantially alleviated by filtering the phenolic oils before hydrotreating. More thorough washing of the phenolic oils during their preparation from the heavy ends of bio-oil or on-line filtration of pyrolysis vapors to remove particulate matter before condensation of the bio-oil fractions is recommended.

  17. Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Elliott, Douglas C.; Wang, Huamin; Rover, Majorie; Whitmer, Lysle; Smith, Ryan; Brown, Robert C.

    2015-04-13

    Phenolic oils were produced from fast pyrolysis of two different biomass feedstocks, red oak and corn stover and evaluated in hydroprocessing tests for production of liquid hydrocarbon products. The phenolic oils were produced with a bio-oil fractionating process in combination with a simple water wash of the heavy ends from the fractionating process. Phenolic oils derived from the pyrolysis of red oak and corn stover were recovered with yields (wet biomass basis) of 28.7 wt% and 14.9 wt%, respectively, and 54.3% and 58.6% on a carbon basis. Both precious metal catalysts and sulfided base metal catalyst were evaluated for hydrotreatingmore » the phenolic oils, as an extrapolation from whole bio-oil hydrotreatment. They were effective in removing heteroatoms with carbon yields as high as 81% (unadjusted for the 90% carbon balance). There was nearly complete heteroatom removal with residual O of only 0.4% to 5%, while N and S were reduced to less than 0.05%. Use of the precious metal catalysts resulted in more saturated products less completely hydrotreated compared to the sulfided base metal catalyst, which was operated at higher temperature. The liquid product was 42-52% gasoline range molecules and about 43% diesel range molecules. Particulate matter in the phenolic oils complicated operation of the reactors, causing plugging in the fixed-beds especially for the corn stover phenolic oil. This difficulty contrasts with the catalyst bed fouling and plugging, which is typically seen with hydrotreatment of whole bio-oil. This problem was substantially alleviated by filtering the phenolic oils before hydrotreating. More thorough washing of the phenolic oils during their preparation from the heavy ends of bio-oil or on-line filtration of pyrolysis vapors to remove particulate matter before condensation of the bio-oil fractions is recommended.« less

  18. SNL Los Alamos National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration SNL Los Alamos National Laboratory

  19. Improving a recombinant Zymomonas mobilis strain 8b through continuous adaptation on dilute acid pretreated corn stover hydrolysate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mohagheghi, Ali; Linger, Jeffrey G.; Yang, Shihui; Smith, Holly; Dowe, Nancy; Zhang, Min; Pienkos, Philip T.

    2015-03-31

    Complete conversion of the major sugars of biomass including both the C5 and C6 sugars is critical for biofuel production processes. Several inhibitory compounds like acetate, hydroxymethylfurfural (HMF), and furfural are produced from the biomass pretreatment process leading to ‘hydrolysate toxicity,’ a major problem for microorganisms to achieve complete sugar utilization. Therefore, development of more robust microorganisms to utilize the sugars released from biomass under toxic environment is critical. In this study, we use continuous culture methodologies to evolve and adapt the ethanologenic bacterium Zymomonas mobilis to improve its ethanol productivity using corn stover hydrolysate. The results are the following:more » A turbidostat was used to adapt the Z. mobilis strain 8b in the pretreated corn stover liquor. The adaptation was initiated using pure sugar (glucose and xylose) followed by feeding neutralized liquor at different dilution rates. Once the turbidostat reached 60% liquor content, the cells began washing out and the adaptation was stopped. Several ‘sub-strains’ were isolated, and one of them, SS3 (sub-strain 3), had 59% higher xylose utilization than the parent strain 8b when evaluated on 55% neutralized PCS (pretreated corn stover) liquor. Using saccharified PCS slurry generated by enzymatic hydrolysis from 25% solids loading, SS3 generated an ethanol yield of 75.5% compared to 64% for parent strain 8b. Furthermore, the total xylose utilization was 57.7% for SS3 versus 27.4% for strain 8b. To determine the underlying genotypes in these new sub-strains, we conducted genomic resequencing and identified numerous single-nucleotide mutations (SNPs) that had arisen in SS3. We further performed quantitative reverse transcription PCR (qRT-PCR) on genes potentially affected by these SNPs and identified significant down-regulation of two genes, ZMO0153 and ZMO0776, in SS3 suggesting potential genetic mechanisms behind SS3’s improved

  20. Gamma Radiation Aging Study of a Dow Corning SE 1700 Porous Structure Made by Direct Ink Writing

    SciTech Connect (OSTI)

    Small, Ward; Alviso, Cindy T.; Metz, Tom R.

    2015-11-13

    Dow Corning SE 1700 (reinforced polydimethylsiloxane) porous structures were made by direct ink writing (DIW). The specimens (~50% porosity) were subjected to a compressive strain of ~25% while exposed to a gamma radiation dose of 1, 5, or 10 Mrad under vacuum. Compression set and load retention of the aged specimens were measured after a ~24 h relaxation period. Compression set (relative to deflection) increased with radiation dose: 11, 35, and 51% after 1, 5, and 10 Mrad, respectively. Load retention was 96-97% for the doses tested. The SE 1700 compared favorably to M9763 cellular silicone tested under the same conditions.

  1. National Ignition Facility | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) National Ignition Facility Glass amplifiers in Laser Bay 2 at the National Ignition Facility. The construction of the 192-beam 1.8 MJ UV NIF, the world's most energetic laser, was completed in March 2009. Current experiments are focusing on using the NIF laser and other ICF high energy density facilities leading to demonstrate fusion ignition and thermonuclear burn in the laboratory. The NIF is also being used to support basic science and SSP experiments. By the end of FY 2012, the

  2. Sandia National Laboratories | National Nuclear Security Administration |

    National Nuclear Security Administration (NNSA)

    (NNSA) Sandia National Laboratories Sandia National Laboratories DE-AC04-94AL85000 Operated by Sandia Corporation a Subsidiary of Lockheed Martin Corporation Contract Conformed 09/30/2015 to Modification 0588. View previous Sandia Contract and Mods (M081-A201). BASIC Contract (Official) Modifications (Official) Funding Mods Available Upon Request Conformed Contract (Updated 09/30/2015 to Mod 0588) (Unofficial) SNL M202 Section A (Supersedes Basic and all Mods) (pdf, 397KB) SNL M216 (9/15/04)

  3. Assessment of potential life-cycle energy and greenhouse gas emission effects from using corn-based butanol as a transportation fuel.

    SciTech Connect (OSTI)

    Wu, M.; Wang, M.; Liu, J.; Huo, H.; Energy Systems

    2008-01-01

    Since advances in the ABE (acetone-butanol-ethanol) fermentation process in recent years have led to significant increases in its productivity and yields, the production of butanol and its use in motor vehicles have become an option worth evaluating. This study estimates the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. It employs a well-to-wheels (WTW) analysis tool: the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The estimates of life-cycle energy use and greenhouse gas (GHG) emissions are based on an Aspen Plus(reg. sign) simulation for a corn-to-butanol production process, which describes grain processing, fermentation, and product separation. Bio-butanol-related WTW activities include corn farming, corn transportation, butanol production, butanol transportation, and vehicle operation. In this study, we also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. We then compared the results for bio-butanol with those of conventional gasoline. Our study shows that driving vehicles fueled with corn-based butanol produced by the current ABE fermentation process could result in substantial fossil energy savings (39%-56%) and avoid large percentage of the GHG emission burden, yielding a 32%-48% reduction relative to using conventional gasoline. On energy basis, a bushel of corn produces less liquid fuel from the ABE process than that from the corn ethanol dry mill process. The coproduction of a significant portion of acetone from the current ABE fermentation presents a challenge. A market analysis of acetone, as well as research and development on robust alternative technologies and processes that minimize acetone while increase the butanol yield, should be conducted.

  4. Evaluation of Thermal Evolution Profiles and Estimation of Kinetic Parameters for Pyrolysis of Coal/Corn Stover Blends Using Thermogravimetric Analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bhagavatula, Abhijit; Huffman, Gerald; Shah, Naresh; Honaker, Rick

    2014-01-01

    The thermal evolution profiles and kinetic parameters for the pyrolysis of two Montana coals (DECS-38 subbituminous coal and DECS-25 lignite coal), one biomass sample (corn stover), and their blends (10%, 20%, and 30% by weight of corn stover) have been investigated at a heating rate of 5°C/min in an inert nitrogen atmosphere, using thermogravimetric analysis. The thermal evolution profiles of subbituminous coal and lignite coal display only one major peak over a wide temperature distribution, ~152–814°C and ~175–818°C, respectively, whereas the thermal decomposition profile for corn stover falls in a much narrower band than that of the coals, ~226–608°C. Themore » nonlinearity in the evolution of volatile matter with increasing percentage of corn stover in the blends verifies the possibility of synergistic behavior in the blends with subbituminous coal where deviations from the predicted yield ranging between 2% and 7% were observed whereas very little deviations (1%–3%) from predicted yield were observed in blends with lignite indicating no significant interactions with corn stover. In addition, a single first-order reaction model using the Coats-Redfern approximation was utilized to predict the kinetic parameters of the pyrolysis reaction. The kinetic analysis indicated that each thermal evolution profile may be represented as a single first-order reaction. Three temperature regimes were identified for each of the coals while corn stover and the blends were analyzed using two and four temperature regimes, respectively.« less

  5. Idaho_National_Laboratory

    Office of Environmental Management (EM)

    Stacey Francis Small Business Program Manager Idaho National Laboratory 2 Idaho National Laboratory Prime Contractors * Idaho National Laboratory - Managed and Operated by Battelle Energy Alliance, LLC - Office of Nuclear Energy * Idaho Cleanup Project - Managed by Fluor Idaho, LLC - Office of Environmental Management * Naval Reactor Facility - Managed by Bechtel Marine Propulsion Corporation - Naval Nuclear Propulsion Program Department of Energy - Idaho 3 We Maintain: * 890 square miles * 111

  6. Sandia National Laboratories: News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News 2016 PPM work featured in book chapter PPM Team Member Highlighted in 2016 Sandia Recruiting Video 2015 PPM Member receives national recognition PPM Member serves on national roadmapping study for modeling across length scales Members of PPM speak at the National Academies Workshop on Additive Manufacturing 2014 Studying materials at the breaking point. May 2014 Computer model used in softening steel. April 2014 2013 Density Functional Theory (DFT) provides ab-initio, electronica structure

  7. National Hydrogen Energy Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen Energy Roadmap Workshop Washington, DC April 2-3, 2002 United States Department of Energy November 2002 PRODUCTION * DELIVERY * STORAGE * CONVERSION * APPLICATIONS * PUBLIC EDUCATION AND OUTREACH PRODUCTION * DELIVERY * STORAGE * CONVERSION * APPLICATIONS * PUBLIC EDUCATION AND OUTREACH vii As we act on President Bush's National

  8. National Hydrogen Learning Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Keith Wipke, Sam Sprik, Jennifer Kurtz, Todd Ramsden, Chris Ainscough, Genevieve Saur February 6, 2012 DOE's Informational Webinar Series National Hydrogen Learning Demonstration Status This presentation does not contain any proprietary, confidential, or otherwise restricted information NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC v8 National Renewable Energy Laboratory 2

  9. National Renewable Energy Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Annual Review Roger Taylor November 17, 2008 National Renewable Energy Laboratory Innovation for Our Energy Future Major DOE National Laboratories Brookhaven Pacific Northwest Lawrence Berkeley Lawrence Livermore          INEL National Renewable Energy Laboratory Los Alamos Sandia Argonne Oak Ridge   Defense Program Labs  Office of Science Labs  Energy Efficiency and Renewable Energy Lab  Environmental Management Lab  Fossil Energy Lab NETL 

  10. Pacific Northwest National Laboratory,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration Pacific Northwest National Laboratory NNSA deputy visits PNNL to see radiochemistry and threat detection capabilities NNSA Principal Deputy Administrator Madelyn Creedon visited the Pacific Northwest National Laboratory (PNNL) in Washington this month to see the work it does for the agency, focusing on radiochemistry and threat detection. NNSA hosts international CTBT on-site inspection experts at Nevada National Security Site This month, NNSA hosted a Comprehensive