Sample records for national corn growers

  1. Nutritional value of Quality Protein Maize, food and feed corn for starter and grower pigs

    E-Print Network [OSTI]

    Sullivan, James Scot

    1988-01-01T23:59:59.000Z

    corn, 7. 6, , 29, . 054, 4. 01. Growth trials with starter (28-d duration, four pens of six pigs/diet, 6 kg initial weight) and grower (35-d duration, eight pens of two pigs/diet, 23 kg initial weight) pigs evaluated five diets, a QPM-soybean meal... diet formulated on a lysine basis (. 96g in starter and . 70g in grower diets) and four diets arranged in a 2 (food corn vs feed corn) X 2 (Iow vs high soybean meal) factorial, Soybean meal was added to provide the level in the QPM diet...

  2. Evaluation of lysine deficient grower diets for heavy breed replacement pullets and a comparison of sorghum grains and corn as a carbohydrate source for broiler-breeder hens

    E-Print Network [OSTI]

    Tolan, Alan

    1967-01-01T23:59:59.000Z

    EVALUATION OF LYSINE DEFICIENT GROWER DIETS FOR HEAVY BREED REPLACEMENT PULLETS AND A COMPARISON OF SORGHUM GRAINS AND CORN AS A CARBOHYDRATE SOURCE FOR BROILER-BREEDER HENS A Thesis ALAN TOLAN Submitted to the Graduate College of the Texas... ARM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE January 1967 Major Subject: Animal Nutrition EVALUATION OF LYSINE DEFICIENT GROWER DIETS FOR HEAVY BREED REPLACEMENT PULLETS AND A COMPARISON OF SORGHUM...

  3. Digestible lysine requirement of starter and grower pigs

    E-Print Network [OSTI]

    Martinez Moreira, Gilberto

    1987-01-01T23:59:59.000Z

    of Advisory Committee: Dr. Darrell A. Knabe Six growth trials and one digestion trial were conducted to determine the digestible lysine requirement of starter (6 to 16 kg) and grower (21 to 60 kg) swine fed corn-peanut meal-based diets. Initial growth... trials used 120 starter and 80 grower pigs and determined that lysine was the first-limiting amino acid in 20% protein corn-peanut meal starter diets and 16% protein corn-peanut meal grower diets. Supplemental tryptophan and threonine, in addition...

  4. Partnership Sugar Beet Growers

    E-Print Network [OSTI]

    production areas this year. Some locations received torrential early season rainfall which induced a varietyPartnership of: Sugar Beet Growers Michigan Sugar Company Monitor Sugar Company Michigan State the negatives, the industry still harvested an average of approximately 18-tons per acre and 18% sugar. Improved

  5. Corn Silage Virginia Corn &

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Virginia Corn Silage Testing 2006 Virginia Corn & Small Grain Management #12;#12; The 2006 Virginia Corn Silage Hybrid Trials The 2006 Virginia Corn Silage Hybrid Trials Coordnated by B. Jones, H. Behl Syngenta Co.) NK Brand Po Box 959, Mnneapols, MN 55440 Poneer H-bred Int'l, Inc. Poneer 7501 Memoral

  6. Corn Hybrid Virginia Corn &

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Virginia Corn Hybrid and Management Trials 2007 Virginia Corn & Small Grain Management #12;VIRGINIA CORN HYBRID AND MANAGEMENT TRIALS IN 2007 Coordinators of Virginia Corn Hybrid Trials in 2007 Wade Thomason, Extension Specialist, Department of Crop and Soil Environmental Sciences, Virginia Tech Harry

  7. Corn Hybrid Virginia Corn &

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Virginia Corn Hybrid Management and Trials 2006 Virginia Corn & Small Grain Management #12;#12;Virginia Corn Hybrid and Management Trials 2006 Coordinators of Virginia Corn Hybrid Trials in 2006 Wade Thomason, Extension Specialist, Department of Crop and Soil Environmental Sciences, Virginia Tech Harry

  8. A Study of the Black and the Yellow Molds of Ear Corn

    E-Print Network [OSTI]

    Taubenhaus, J. J. (Jacob Joseph)

    1920-01-01T23:59:59.000Z

    corn from t Lrne cause, it map be asserted that the Texas growers are sustaini yearly loss of $5,818,349. The thoughtful farmer will at once real the importance of being able to save this unnecessary waste. It sho~ be added that as far as the corn... that in some regions, practically every ear of sweet corn was damaged, and that throughout the entire country 70 to 90 per cer *Monthly Crop Reporter, .U. S. Department of Agriculture, 5:121-11 Dec. 1919. lt. 10, TLTURAL of the ears of field corn were...

  9. New Mexico grape growers unite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilverNephelineNeuralNewIdeasof CommerceNew

  10. Kaffir Corn and Milo Maize for Fattening Cattle.

    E-Print Network [OSTI]

    Marshall, F. R. (Frederick Rupert); Burns, John C.

    1907-01-01T23:59:59.000Z

    is used, when price permits, for mixing with ground feed. Even though this be the case at this time the grower has no complaint to make, because all of the grain offered for sale up to this time has been taken at fair prices. It is altogether desirable... liaffir corn at a price much lover than that of Indian corn, biit refuqe to do so because of a misunderstanding of its ac- tual value. It is with a view to serving thes6 two classas as well as others lilcelp to desire infformation upon tbe same snbjecte...

  11. THE 2001 NET ENERGY BALANCE OF CORN-ETHANOL (PRELIMINARY)

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    .S. Department of Energy, Center for Transportation Research, Energy Systems Division, Argonne National per gallon for the industry. The study results suggest that corn ethanol is energy efficient on the latest data on corn production and corn yield, (2) improving the quality of estimates for energy used

  12. Cont. Rot. Rot. DC Cont. Rot. Rot. DC Cont. Rot. Rot. DC Corn Corn Beans Wheat Beans Corn Corn Beans Wheat Beans Corn Corn Beans Wheat Beans

    E-Print Network [OSTI]

    Jackson, Scott A.

    Cont. Rot. Rot. DC Cont. Rot. Rot. DC Cont. Rot. Rot. DC Corn Corn Beans Wheat Beans Corn Corn Beans Wheat Beans Corn Corn Beans Wheat Beans Expected yield per acre2 118 126 39 62 23 149 158 49 70 29

  13. Cont. Rot. Rot. DC Cont. Rot. Rot. DC Cont. Rot. Rot. DC Corn Corn Beans Wheat Beans Corn Corn Beans Wheat Beans Corn Corn Beans Wheat Beans

    E-Print Network [OSTI]

    Cont. Rot. Rot. DC Cont. Rot. Rot. DC Cont. Rot. Rot. DC Corn Corn Beans Wheat Beans Corn Corn Beans Wheat Beans Corn Corn Beans Wheat Beans Expected yield per acre2 119 127 39 62 23 149 159 49 70 29

  14. The Corn and Climate Report

    E-Print Network [OSTI]

    Debinski, Diane M.

    Administration National Weather Service North Central Bioeconomy Consortium US Climate Change Science Program Editorial Board Brendan Jordan, Great Plains Institute, staff for the North Central Bioeconomy Consortium Institute, staff for the North Central Bioeconomy Consortium Prepared by Megan Hassler and Sarah Wash Corn

  15. Corn Hybrids for Texas. 

    E-Print Network [OSTI]

    Bockholt, A. J.; Collier, J. W.

    1960-01-01T23:59:59.000Z

    . Land resource areas and corn test locations. Discussion of Results e areas affords an opportunity to determine if any Weather conditions were highly differences in adaptation to climatic and general corn production during the 3 soil conditions... usually has a climate for corn production and appr TABLE 6. CORN PERFORMANCE TEST, EAST BERLANDS, 1957-59 Bushels of shelled corn per acre ' Y-1 Kirby- Nacog- Mount Bowie' jr: ville doches Jyk~leasant countv A'! Texas 30 Texas 32 Texas 28 Texas...

  16. Mechanical Harvesting of Corn.

    E-Print Network [OSTI]

    Sorenson, J. W. (Jerome Wallace); Smith, H. P. (Harris Pearson)

    1948-01-01T23:59:59.000Z

    - - TEXAS AGRICULTURAL EXPERIMENT STATION R. D. LEWIS, Director ' College Station, Texas BULLETIN 706 OCTOBER 1948 Mechanical Harvesting of Corn H. P. SMITH and J. W. SORENSON, JR. Department of Agricultural Engineering LlBRARY Atricaltr... of corn, from which they harvest about 77 million bushels valued at about 584 million. Most of the corn produced in Texas is harvested by hand. There were approximately 800 corn-picking machines of all types used in Texas in 1947. Texas farmers grow...

  17. For Immediate Release --Friday, July 11, 2014 Potato Growers of Alberta and industry partners to

    E-Print Network [OSTI]

    Morris, Joy

    For Immediate Release -- Friday, July 11, 2014 Potato Growers Research capacity in Alberta's potato industry will be significantly enhanced due years from the Potato Growers of Alberta (PGA), McCain Foods, ConAgra Lamb

  18. Small Wind Electric Systems: A Guide for the American Corn Growers Association

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are here Home »Small Space Heater

  19. NW Michigan Regional Fruit Grower Newsletter January 2006

    E-Print Network [OSTI]

    Crystal Mtn Resort, Thompsonville 4/1 Water Use Report Deadline #12;2 2006 INTERNATIONAL ORCHARD Cost: Registration Fee: $15 per person (over 12) Fruit Industry Luncheon, January 17: $15 CMI Luncheon, January 18: Free to growers, pre-registration with CMI required Tuesday, January 17 8:00 Registration Desk

  20. Corn Production in Texas.

    E-Print Network [OSTI]

    Collier, Jesse W. (Jesse Wilton); Rogers, John S. (John Sinclair)

    1952-01-01T23:59:59.000Z

    during wet seasons, and they may cause appreciable damage each year in the more humid sections. Hybrids such as Texas 24 and 30, which possess some resistance, shorrld be used where diseases and i~sects are a serious problem. The Texas hybrid corn... in this bulletin and recommendations are given for corn production in the different areas of the ' State. Numerous diseases and insects attack corn in Texas and are responsible for considerable damage to the crop. These organisms are especiallv prevalent...

  1. FOOD PRESERVATION SERIES CornMichigan-grown corn is available

    E-Print Network [OSTI]

    under cool running water before preparing it. Do not use soap or detergent. Use a separate cutting board kernels and cooked lima beans. Add corn kernels to other raw vegetables in a salad. Add canned corn. sodium Boil whole ears of corn. Remove husk and silk from ears. Wash corn under cool running water. Fill

  2. Corn Hybrids for Texas. 

    E-Print Network [OSTI]

    Rogers, J. S.; Bockholt, A. J.; Collier, J. W.

    1957-01-01T23:59:59.000Z

    - Corn Hybrid$ for . ;mE Tgmt 4.College Sta. 9Sulphw Spgr. @.Holland l9.GreenviUe 24Stephmville 5.Kibyvilb IO.(;brkrvilb B.Tanpb 20Mm 25.Chilkothe TEXAS AGRICULTURAL EXPERIMENT STATIC R. D. LEWIS. DIRECTOR, COLLEGE STATION, TEXAS DIGEST... - . Corn hybrids were planted on 81 percent of the Texas corn acreage in 1956. Most of this acreage was devoted to hybrids developed and released by the Texas Agricultural Experiment Station. These hybrids usually outyield open-pollinated varieties by 20...

  3. Farming for supermarkets : its collective good problems and what Brazilian growers have done about them

    E-Print Network [OSTI]

    Gomes, Raquel Silva

    2004-01-01T23:59:59.000Z

    This dissertation analyzes the conditions under which growers have effectively resolved collective good problems associated with the rise of supermarkets. It answers two questions: What institutional arrangements have ...

  4. Corn Hybrids for Texas.

    E-Print Network [OSTI]

    Rogers, J. S.; McAfee, T. E.

    1954-01-01T23:59:59.000Z

    hybrid, was superior to all othey hybrids in freedom from root lodging. Watsrr 124, Keystone 222, Texas 24, Funk G711 an( Texas 30 were superior to other yellow hybrid\\ in resistance to root lodging. Texas 15W agair Angleton Lake Charles clay... degrees of damage. hybrids in resistance to stalk breakage. Ic.\\db L4, Texas 30 and Watson 124 were the I :ellow hybrids most resistant to stalk breakage. 3nk G711 and Keystone 222 were especially ' :u~eeptible to stalk breakage. a Growers who plan...

  5. Corn Hybrids for Texas. 

    E-Print Network [OSTI]

    Rogers, J. S.; McAfee, T. E.

    1954-01-01T23:59:59.000Z

    Corn Hybrids for Terns ST LOCATIONS AREA I AREA II ARE4 Ill AREA IV 2Prdrie View 7.Tylw lZ.Lockhart 17.Waxahachie 22San Antonio 3.Cleveland 8.Mt. Pbctont I3Brsnha B.Garland 23Lamposas 4.Colbqe Sta. 9Sulphw Spp. 14Holland l9.0reenvilb 24...Stephenville ,J* 5.K'rbyvilb I0.Cbrkdb 15.Tanpk 2ODetiion 25.Wllothe TEXAS AGRICULTURAL EXPERIMENT STATION R. D. LEWIS. DIRECTOR, COLLEGE STATION, TEXAS DIGEST The Texas corn acreage planted to hybrids increased from less than 1 percent of the total acrea...

  6. Potato Corn Chowder Ingredients

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    tablespoons margarine 1/4 cup all-purpose flour 2 cups skim milk 1/8 teaspoon pepper Directions 1. Wash. 2. Microwave on high for 8 minutes. 3. Open corn and pour into a colander. Rinse with cool water. Stir until thoroughly mixed and smooth. 5. Slowly add skim milk to saucepan and stir until thickened

  7. A newsletter for commercial vegetable growers prepared by the Purdue University Cooperative Extension Service

    E-Print Network [OSTI]

    Ginzel, Matthew

    is to raise the pH of the soils involved. This can be difficult to accomplish with crops growing under plastic mulch, because of the difficulty of getting the lime into the root zone. Although growers may have soil

  8. Estimating Corn Grain Yields

    E-Print Network [OSTI]

    Blumenthal, Jurg M.; Thompson, Wayne

    2009-06-12T23:59:59.000Z

    can collect samples from a corn field and use this data to calculate the yield estimate. An interactive grain yield calculator is provided in the Appendix of the pdf version of this publication. The calculator is also located in the publication.... Plan and prepare for sample and data collection. 2. Collect field samples and record data. 3. Analyze the data using the interactive grain yield calculator in the Appendix. Plan and prepare for sample and data collection Predetermine sample locations...

  9. Land Use and Water Efficiency in Current and Potential Future U.S. Corn and Brazilian Sugarcane Ethanol Systems (Poster), NREL (National Renewable Energy Laboratory)

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamics in807 DE89 002669 RFandEndLand Use

  10. Greenhouse gases in the corn-to-fuel ethanol pathway.

    SciTech Connect (OSTI)

    Wang, M. Q.

    1998-06-18T23:59:59.000Z

    Argonne National Laboratory (ANL) has applied its Greenhouse gas, Regulated Emissions and Energy in Transportation (GREET) full-fuel-cycle analysis model to examine greenhouse gas (GHG) emissions of corn-feedstock ethanol, given present and near-future production technology and practice. On the basis of updated information appropriate to corn farming and processing operations in the four principal corn- and ethanol-producing states (Illinois, Iowa, Minnesota, and Nebraska), the model was used to estimate energy requirements and GHG emissions of corn farming; the manufacture, transportation to farms, and field application of fertilizer and pesticide; transportation of harvested corn to ethanol plants; nitrous oxide emissions from cultivated cornfields; ethanol production in current average and future technology wet and dry mills; and operation of cars and light trucks using ethanol fuels. For all cases examined on the basis of mass emissions per travel mile, the corn-to-ethanol fuel cycle for Midwest-produced ethanol used in both E85 and E10 blends with gasoline outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG production. Also, GHG reductions (but not energy use) appear surprisingly sensitive to the value chosen for combined soil and leached N-fertilizer conversion to nitrous oxide. Co-product energy-use attribution remains the single key factor in estimating ethanol's relative benefits because this value can range from 0 to 50%, depending on the attribution method chosen.

  11. Ethanol extraction of phytosterols from corn fiber

    DOE Patents [OSTI]

    Abbas, Charles (Champaign, IL); Beery, Kyle E. (Decatur, IL); Binder, Thomas P. (Decatur, IL); Rammelsberg, Anne M. (Decatur, IL)

    2010-11-16T23:59:59.000Z

    The present invention provides a process for extracting sterols from a high solids, thermochemically hydrolyzed corn fiber using ethanol as the extractant. The process includes obtaining a corn fiber slurry having a moisture content from about 20 weight percent to about 50 weight percent solids (high solids content), thermochemically processing the corn fiber slurry having high solids content of 20 to 50% to produce a hydrolyzed corn fiber slurry, dewatering the hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, washing the residual corn fiber, dewatering the washed, hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, and extracting the residual corn fiber with ethanol and separating at least one sterol.

  12. Pacific Northwest Condiment Yellow Mustard (Sinapis alba L.) Grower Guide: 2000-2002

    SciTech Connect (OSTI)

    Brown, J.; Davis, J. B.; Esser, A.

    2005-07-01T23:59:59.000Z

    This report is a grower guide for yellow mustard. Yellow mustard (Sinapis alba L.), synonymous with white mustard, is a spring annual crop and well adapted to hot, dry growing conditions. It has shown potential as an alternative crop in rotations with small grain cereals and has fewer limitations compared to other traditional alternative crops.

  13. January 2008 NW Michigan Regional Fruit Grower Newsletter CALENDAR OF EVENTS

    E-Print Network [OSTI]

    Tustin, Michigan. This is a chance to discuss your project with seasoned CSA growers! The format of this year's program will be two in-depth presentations focusing on "Using Tubing & Vacuum Systems Effectively for Sap Collection" and "Using Your Reverse Osmosis (RO) Equipment Effectively". Both

  14. NW Michigan Regional Fruit Grower Newsletter -March 2010 CALENDAR OF EVENTS

    E-Print Network [OSTI]

    , a Good Agricultural Practices - Food Safety Audit program will run from 1:30- 4:00. This program will assist fruit and vegetable growers to prepare for a Good Agricultural Practices (GAP) Food Safety Audit Marketing for Agriculture NWMHRS 4/1 MDA Water Use Reporting Registration Form Due 4/6 Tractor Safety Begins

  15. Enhancing the competitiveness of soybean growers: a case study of Heilongjiang, China 

    E-Print Network [OSTI]

    Ao, Xin

    2012-08-31T23:59:59.000Z

    the competitiveness of the Heilongjiang soybean growers, not only in relation to the important issue of agricultural development in the province, but also as a vital component of soybean production and China’s agricultural security. Comparison the lack of soybean...

  16. A newsletter for commercial vegetable growers prepared by the Purdue University Cooperative Extension Service

    E-Print Network [OSTI]

    Ginzel, Matthew

    INDUSTRY · AGRICULTURE OUTLOOK MEETING · IVGA NEW AND RENEWAL MEMBERSHIP APPLICATION · INDIANA HORT CONGRESS · ILLIANA VEGETBABLE GROWERS SCHOOL · FARM FOUNDATION - ENERGY CONFERENCE FARMERS LEARN NEW WAYS to sustain from season to season. Depressed commodity prices and rising input costs, the loss of the Tobacco

  17. 2015 Request for Proposals from the Michigan Corn Marketing Program Corn Marketing Program of Michigan

    E-Print Network [OSTI]

    Douches, David S.

    1 2015 Request for Proposals from the Michigan Corn Marketing Program Corn Marketing Program of Michigan 2015 Request for Proposals Released August 24, 2014 The Corn Marketing Program of Michigan (CMPM for increasing economic viability of corn production in Michigan through innovative research and market

  18. Butterbean, Corn and Tomato Salad Ingredients

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Butterbean, Corn and Tomato Salad Ingredients: 15 ounces butter beans, drained and rinsed 15 ounces cans of butterbeans and corn. Pour into a colander, and rinse under running water to remove sodium

  19. NW Michigan Regional Fruit Grower Newsletter -January 2012 (Go to the HTML version for more active Links)

    E-Print Network [OSTI]

    & Conference Center, MSU campus 4/1 2011 Agricultural Large Volume Water Use Reports Due 2012 NORTHWEST, Jan. 24: $15 CMI Luncheon, January 25: Free to cherry growers; pre-register with CMI Sponsors: Grand

  20. Broccoli and Corn Bake Ingredients

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    broccoli, frozen, thawed 20 low sodium whole-wheat crackers 1 egg, beaten 5 ounces evaporated skim milk and pour into a colander. Rinse under cool water to remove salt, set aside to drain. 3. Place crackers milk and add to egg. Beat until well mixed. 5. Add corn, thawed broccoli, half of the crushed crackers

  1. Update of distillers grains displacement ratios for corn ethanol life-cycle analysis.

    SciTech Connect (OSTI)

    Arora, S.; Wu, M.; Wang, M.; Energy Systems

    2011-02-01T23:59:59.000Z

    Production of corn-based ethanol (either by wet milling or by dry milling) yields the following coproducts: distillers grains with solubles (DGS), corn gluten meal (CGM), corn gluten feed (CGF), and corn oil. Of these coproducts, all except corn oil can replace conventional animal feeds, such as corn, soybean meal, and urea. Displacement ratios of corn-ethanol coproducts including DGS, CGM, and CGF were last updated in 1998 at a workshop at Argonne National Laboratory on the basis of input from a group of experts on animal feeds, including Prof. Klopfenstein (University of Nebraska, Lincoln), Prof. Berger (University of Illinois, Urbana-Champaign), Mr. Madson (Rapheal Katzen International Associates, Inc.), and Prof. Trenkle (Iowa State University) (Wang 1999). Table 1 presents current dry milling coproduct displacement ratios being used in the GREET model. The current effort focuses on updating displacement ratios of dry milling corn-ethanol coproducts used in the animal feed industry. Because of the increased availability and use of these coproducts as animal feeds, more information is available on how these coproducts replace conventional animal feeds. To glean this information, it is also important to understand how industry selects feed. Because of the wide variety of available feeds, animal nutritionists use commercial software (such as Brill Formulation{trademark}) for feed formulation. The software recommends feed for the animal on the basis of the nutritional characteristics, availability, and price of various animal feeds, as well as on the nutritional requirements of the animal (Corn Refiners Association 2006). Therefore, feed formulation considers both the economic and the nutritional characteristics of feed products.

  2. INDEX TO VIRGINIA CORN HYBRID AND MANAGEMENT TRIALS 1998 SECTION I. VIRGINIA CORN HYBRID TRIALS IN 1998.

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    INDEX TO VIRGINIA CORN HYBRID AND MANAGEMENT TRIALS 1998 SECTION I. VIRGINIA CORN HYBRID TRIALS IN 1998. Companies participating in the 1998 Corn Hybrid Trials 2 1998 Virginia Corn Hybird Plot, and 1998. 36 SECTION II. EVALUATION OF DOUBLECROP CORN UNDER IRRIGATION IN EASTERN VIRGINIA. Table 27

  3. SECTION I. VIRGINIA CORN HYBRID TRIALS IN 1997. Companies Participating in the 1997 Corn Hybrid Trials

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    1 SECTION I. VIRGINIA CORN HYBRID TRIALS IN 1997. Companies Participating in the 1997 Corn Hybrid COLUMBIA PLAINVIEW TX 79072 NORTHRUP KING CO. NORTHRUP KING PO BOX 959 MINNEAPOLIS MN 55440 PIONEER HI, INC. WILSON PO BOX 391 HARLAN IA 51537 VIRGINIA CORN HYBRID TRIALS IN 1997 Coordinated by H. Behl, E

  4. Managing Insect and Mite Pests of Texas Corn.

    E-Print Network [OSTI]

    Stewart, J.W.; Patrick, Carl; Cronholm, Gregory B.

    1982-01-01T23:59:59.000Z

    damage to the brace roots and fibrous roots may cause plants to lodge. A "goose necking" appearance occurs when lodged plants continue to grow. The southern corn rootworm deposits eggs in he corn field after the corn is in the seedling stage... practice. Producers are encouraged to rotate soil insecticides each year for best results. SEEDLING TO PRE-TASSEL STAGE INSECT CONTROL Corn Leaf Aphid Although heavy populations of corn leaf aphids may cause damage to seedling corn plants, fields...

  5. Biochemical Production of Ethanol from Corn Stover: 2007 State...

    Energy Savers [EERE]

    Biochemical Production of Ethanol from Corn Stover: 2007 State of Technology Model Biochemical Production of Ethanol from Corn Stover: 2007 State of Technology Model An update to...

  6. Owens Corning | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany OilInformationPre-TaxShelf LandsOpenCorning Jump

  7. September 2010 FAPRI-MU US Biofuels, Corn Processing,

    E-Print Network [OSTI]

    Noble, James S.

    September 2010 FAPRI-MU US Biofuels, Corn Processing, Distillers Grains, Fats, Switchgrass-882-4256 or the US Department of Education, Office of Civil Rights. #12;1 Overview of FAPRI-MU Biofuels, Corn listed here represent US biofuel, corn processing, distillers grains, fats, switchgrass, and corn stover

  8. QWhat are viable strategies for Iowa grape growers to successfully manage weeds and/or reduce pesticide usage while maintaining

    E-Print Network [OSTI]

    Debinski, Diane M.

    . Sustainable weed management that includes living or soil mulches minimizes some of the environmental risks for achieving weed management in Iowa vineyards will enable growers to sustainably manage this unique and encourage the use of sustainable land management practices that are environmentally sound, economically

  9. Sociology and Agriculture Interwoven (or Nonwoven?) Vegetable growers depend on plastic mulches to control weeds, conserve moisture, warm soil and

    E-Print Network [OSTI]

    Tennessee, University of

    Sociology and Agriculture Interwoven (or Nonwoven?) Vegetable growers depend on plastic mulches-based mulch, along with the standard black plastic and a biodegradable paper mulch. UT materials scientists mulches (BDMs) in Washington, Texas and Tennessee. The objective of the project is to compare tomato

  10. Using Wild Oat Growth and Development to Develop a Predictive Model for Spring Wheat Growers and Consultants

    E-Print Network [OSTI]

    Minnesota, University of

    Using Wild Oat Growth and Development to Develop a Predictive Model for Spring Wheat Growers Introduction: Wild oat has become an invasive and economically important weedy species in most cereal growing% of the wheat and 72% of barley acres seeded in northwestern Minnesota are infested with wild oat. In the past

  11. Gene Controls Flowering Time in Corn - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFundingGene Controls Flowering Time in Corn Great

  12. UBC Social Ecological Economic Development Studies (SEEDS) Student Report Life Cycle Assessment of Bioethanol Derived from Corn and Corn Stover

    E-Print Network [OSTI]

    of Bioethanol Derived from Corn and Corn Stover Dora Ip Farbod Ahmadi Diba Derek Pope University of British Farbod Ahmadi Diba Derek Pope 4/16/2010 Life Cycle Assessment of Bioethanol Derived from Corn and Corn Stover #12;2 Abstract This paper follows the growing research of bioethanol fuels produced from farmed

  13. Maximizing the enzymic saccharification of corn stover 

    E-Print Network [OSTI]

    Kaar, William Edward

    1996-01-01T23:59:59.000Z

    ; thus, biomass has considerable potential as a fermentation feedstock. Corn stover represents an especially important resource because it is the single largest source of agricultural residue in the United States. The best method to obtain fermentable...

  14. The estimated costs of corn, corn silage, soybeans, alfalfa, and pasture maintenance in this report are

    E-Print Network [OSTI]

    Duffy, Michael D.

    The estimated costs of corn, corn silage, soybeans, alfalfa, and pasture maintenance in this report summaries, production and costs data from the Depart- ments of Economics, Agricultural and Biosystems and other input suppliers around the state. These costs estimates are representative of average costs

  15. Corn Performance Trials Companies Participating in the 1994 Corn Performance Trials

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Virginia Corn Performance Trials in 1994 #12;#12;1 Companies Participating in the 1994 Corn IN 46031 CARGILL HYBRID SEEDS CARGILL PO BOX 5645 MINNEAPOLIS MN 55440 CAVERNDALE FARMS INC. CAVERNDALE SCIENCES MYCOGEN 624 27TH ST LUBBOCK TX 79404 NORTHRUP KING CO. NORTHRUP KING 317 330TH ST STANTON MN 55018

  16. WMU Power Generation Study Task 2.0 Corn Cob Co-Combustion Study

    SciTech Connect (OSTI)

    None

    2009-09-30T23:59:59.000Z

    Much attention has been focused on renewable energy use in large-scale utilities and very small scale distributed energy systems. However, there is little information available regarding renewable energy options for midscale municipal utilities. The Willmar Municipal Utilities Corn Cob-Coal Co-Combustion Project was initiated to investigate opportunities available for small to midscale municipal utilities to "go green". The overall goal of the Project was to understand the current t'enewable energy research and energy efficiency projects that are or have been implemented at both larger and smaller scale and determine the applicability to midscale municipal utilities. More specific objectives for Task 2.0 of this project were to determine the technical feasibility of co-combusting com cobs with coal in the existing WMU boiler, and to identify any regulatory issues that might need to be addressed if WMU were to obtain a significant portion of its heat from such co-combustion. This report addresses the issues as laid out in the study proposal. The study investigated the feasibility of and demonstrated the technical effectiveness of co-combusting corn cobs with coal in the Willmar Municipal Utilities stoker boiler steam generation power plant. The results of the WMU Co-Combustion Project will serve as a model for other midscale utilities who wish to use corn cobs to generate renewable electrical energy. As a result of the Co-Combustion Project, the WMU plans to upgrade their stoker boiler to accept whole corn cobs as well as other types of biomass, while still allowing the fuel delivery system to use 100% coal as needed. Benefits of co-combustion will include: energy security, reduced Hg and CO2 air emissions, improved ash chemistry, potential future carbon credit sales, an immediate positive effect on the local economy, and positive attention focused on the WMU and the City of Willmar. The first step in the study was to complete a feasibility analysis. The feasibility analysis anticipated only positive results from the combustion of corn cobs with coal in the WMU power plant boiler, and therefore recommended that the project proceed. The study proceeded with a review of the existing WMU Power Plant configuration; cob fuel analyses; an application for an Air Quality Permit from the Minnesota Pollution Control Agency to conduct the co-combustion test burns; identification of and a site visit to a similar facility in Iowa; an evaluation of cob grinding machines; and agreements with a corn grower, a cob harvester, and the City of Willmar to procure, harvest, and store cobs. The WMU power plant staff constructed a temporary cob feed system whereby the cobs could be injected into the #3 Boiler firebox, at rates up to 40% of the boiler total heat input. Test burns were conducted, during which air emissions were monitored and fuel and ash samples analyzed. The results of the test burns indicated that the monitored flue gas quality improved slightly during the test burns. The WMU was able to determine that modifications to the #3 Boiler fuel feed system to accept com cobs on a permanent basis would be technically feasible and would enable the WMU to generate electricity from renewable fuels on a dispatchable basis.

  17. Factors influencing the willingness to pay for agricultural information delivery technologies by cooperative-oriented agribusinesses in Rwanda: evidence from the Abahuzamugambi Coffee Growers Cooperative of Maraba.

    E-Print Network [OSTI]

    Haba, Sharon

    2005-08-29T23:59:59.000Z

    This study was designed to identify the factors influencing the willingness to pay for agricultural information delivery technologies among the farmers in the Abahuzamugambi Coffee Growers Cooperative located in Butare, Rwanda. Three hundred and six...

  18. An assessment of Texas wholesale nursery grower and the effect of selected growth retardants on Salvia farinacea x longispicata "Indigo Spires"

    E-Print Network [OSTI]

    Rodriguez, David

    1992-01-01T23:59:59.000Z

    Record of Study An Assessment of a Texas Wholesale Nursery Grower and The Effect of Selected Growth Retardants on Sal via farinacea x longispicata 'Indigo Spires' A PROFESSIONAL PAPER by David Rodriguez Submitted to the College... of Agriculture of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF AGRICULTURE November, 1992 Department of Horticultural Sciences An Assessment of a Texas Wholesale Nursery Grower and The Effect of Selected...

  19. Barley tortillas and barley flours in corn tortillas 

    E-Print Network [OSTI]

    Mitre-Dieste, Carlos Marcelo

    2001-01-01T23:59:59.000Z

    Barley tortillas (100%) were easily processed using corn tortilla technology. Flavor and color of barley tortillas were different from those of corn or wheat tortillas. Barley tortillas were generally darker, maybe due to ...

  20. The estimated costs of corn, corn silage, soybeans, al-falfa, and pasture maintenance in this report are based

    E-Print Network [OSTI]

    Duffy, Michael D.

    The estimated costs of corn, corn silage, soybeans, al- falfa, and pasture maintenance record summaries, production and costs data from the Departments of Economics, Agricultural cooperatives and other input suppliers around the state. These costs estimates are representative of average

  1. ANTHRAQUINONE CORN SEED TREATMENT (AVITECTM ) AS A FEEDING

    E-Print Network [OSTI]

    ANTHRAQUINONE CORN SEED TREATMENT (AVITECTM ) AS A FEEDING REPELLENT FOR RING-NECKED PHEASANTS and Fisheries Sciences South Dakota State University 2009 #12;ANTHRAQUINONE CORN SEED TREATMENT (AVITECTM the South Dakota Department of Game, Fish, and Parks. #12;v ABSTRACT ANTHRAQUINONE CORN SEED TREATMENT

  2. Thermodynamics of the Corn-Ethanol Biofuel Cycle

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    into Corn Production . . . . . . . . . . . . . . . . . . . . . . . . 19 3.11 Solar Energy Input into Corn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.5 Overall Energy Balance of the Corn-Ethanol Process . . . . . . . . . . . . . . . . . . 25 II.1 The Earth is an Open System to Heat Flow . . . . . . . . . . . . . . . . . . . . . . . 38 10.2 Conclusions

  3. Variations in Vitamin A and in Chemical Composition of Corn.

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1931-01-01T23:59:59.000Z

    such as rickets, scurvy, or beri-beri. Vitamin A was one of the first vitamins discovered. It occurs in large quantity in yellow corn, while little or none is founcl in white corn. For the purpose of this study, samples of corn grown at the various substations...

  4. FIELD CROPS 2012 Weeds: Corn 5-53

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    in Delmarva corn production. To be successful in controlling weeds in corn, the weed control program must this record to plan your weed control program. Cultural control. Several aspects of cultural weed control should be considered in planning a corn weed control program. These include weed-free seed, cover crops

  5. Biofuel derived from Microalgae Corn-based Ethanol

    E-Print Network [OSTI]

    Blouin-Demers, Gabriel

    ) Comparing both Energy Sources (1) 0 500 1000 1500 2000 Corn Microalgae Land Area Needed (M ha) 0 20000 40000 60000 80000 100000 Corn Microalgae Oil Yield (L/ha) #12;Comparing both Energy Sources (2) BackgroundBiofuel derived from Microalgae Corn-based Ethanol #12;Outline · Production processes for each

  6. Energy Analysis of the Corn-Ethanol Biofuel Cycle

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Energy Analysis of the Corn-Ethanol Biofuel Cycle First Draft Tad W. Patzek Department of Civil legitimately ask: Why do the various energy balances of the corn-ethanol cycle still differ so much? Why do some authors claim that the corn-ethanol cycle has a positive net energy balance (Wang et al., 1997

  7. Bioaugmentation for Electricity Generation from Corn Stover

    E-Print Network [OSTI]

    that it is possible to directly generate electricity from waste corn stover in MFCs through bioaugmentation using of an MFC, bacteria break down organic matter and release electrons to the electrode. Most MFC tests used by Zuo et al., 501 ( 20 mW/m2 was generated from a paper recycling wastewater containing cellulose

  8. DOW CORNING CORPORATION Material Safety Data Sheet

    E-Print Network [OSTI]

    Garmestani, Hamid

    -88-3 Toluene The above components are hazardous as defined in 29 CFR 1910.1200. 3. HAZARDS or water spray. Water can be used to cool fire exposed containers. Fire Fighting Measures: Self to keep fire exposed containers cool. #12;DOW CORNING CORPORATION Material Safety Data Sheet Page: 3 of 8

  9. Corn Ethanol -April 2006 11 Cover Story

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    Corn Ethanol - April 2006 11 Cover Story orn ethanol is the fuel du jour. It's domestic. It oil into gasoline or diesel fuel. Ethanol refineries also use huge amounts of water. An average dry's not oil. Ethanol's going to help promote "energy independence." Magazines trumpet it as the motor vehicle

  10. A supply forecasting model for Zimbabwe's corn sector: a time series and structural analysis

    E-Print Network [OSTI]

    Makaudze, Ephias

    1993-01-01T23:59:59.000Z

    The Zimbabwean government utilizes the corn supply forecasts to establish producer prices for the following growing season, estimate corn storage and handling costs, project corn import needs and associated costs, and to assess the Grain Marketing...

  11. Microscopic Analysis of Corn Fiber Using Corn Starch- and Cellulose-Specific Molecular Probes

    SciTech Connect (OSTI)

    Porter, S. E.; Donohoe, B. S.; Beery, K. E.; Xu, Q.; Ding, S.-Y.; Vinzant, T. B.; Abbas, C. A.; Himmel, M. E.

    2007-09-01T23:59:59.000Z

    Ethanol is the primary liquid transportation fuel produced from renewable feedstocks in the United States today. The majority of corn grain, the primary feedstock for ethanol production, has been historically processed in wet mills yielding products such as gluten feed, gluten meal, starch, and germ. Starch extracted from the grain is used to produce ethanol in saccharification and fermentation steps; however the extraction of starch is not 100% efficient. To better understand starch extraction during the wet milling process, we have developed fluorescent probes that can be used to visually localize starch and cellulose in samples using confocal microscopy. These probes are based on the binding specificities of two types of carbohydrate binding modules (CBMs), which are small substrate-specific protein domains derived from carbohydrate degrading enzymes. CBMs were fused, using molecular cloning techniques, to a green fluorescent protein (GFP) or to the red fluorescent protein DsRed (RFP). Using these engineered probes, we found that the binding of the starch-specific probe correlates with starch content in corn fiber samples. We also demonstrate that there is starch internally localized in the endosperm that may contribute to the high starch content in corn fiber. We also surprisingly found that the cellulose-specific probe did not bind to most corn fiber samples, but only to corn fiber that had been hydrolyzed using a thermochemical process that removes the residual starch and much of the hemicellulose. Our findings should be of interest to those working to increase the efficiency of the corn grain to ethanol process.

  12. Corn Belt Energy Corporation- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Corn Belt Energy Corporation (CBEC), in association with the Wabash Valley Power Association, provides its customers with the "Power Moves" energy efficiency rebate program. Through this program,...

  13. Sandia Energy - JBEI Researchers Splice Corn Gene into Switchgrass...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The JBEI researchers, working with researchers at the U.S. Department of Agriculture's Agricultural Research Service, have demonstrated that introducing a maize (corn)...

  14. acid pretreated corn: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (LCA) using the Ga 77 Researchers use corn waste to generate electricity Renewable Energy Websites Summary: to create hydrogen." The Penn State researcher and colleagues also...

  15. STATEMENT OF CONSIDERATIONS REQUEST BY OWENS CORNING SCIENCE...

    Broader source: Energy.gov (indexed) [DOE]

    Building-Integrated Photovoltaic Shingles Using Monocrystalline Silicon Thin Film Solar Cells." OWENS CORNING is a sub-awardee under the cooperative agreement. Solexel Inc....

  16. Partnership Logging Accidents Cornelis de Hoop, LA Forest Products Lab

    E-Print Network [OSTI]

    Partnership Logging Accidents · by · Cornelis de Hoop, LA Forest Products Lab · Albert Lefort Agreement · 1998 & 1999 Accident Reports · 25 injuries reported · 185 loggers signed up · 8 deaths 1999

  17. Lead Section Grower Four Star Greenhouse has been producing high quality garden products since

    E-Print Network [OSTI]

    products since 1977 and is the largest partner/supplier of the nationally recognized Greenhouse's Mission Statement in all job related functions. Minimum Qualifications: 1

  18. Improved Multivariate Calibration Models for Corn Stover Feedstock and Dilute-Acid Pretreated Corn Stover

    SciTech Connect (OSTI)

    Wolfrum, E. J.; Sluiter, A. D.

    2009-01-01T23:59:59.000Z

    We have studied rapid calibration models to predict the composition of a variety of biomass feedstocks by correlating near-infrared (NIR) spectroscopic data to compositional data produced using traditional wet chemical analysis techniques. The rapid calibration models are developed using multivariate statistical analysis of the spectroscopic and wet chemical data. This work discusses the latest versions of the NIR calibration models for corn stover feedstock and dilute-acid pretreated corn stover. Measures of the calibration precision and uncertainty are presented. No statistically significant differences (p = 0.05) are seen between NIR calibration models built using different mathematical pretreatments. Finally, two common algorithms for building NIR calibration models are compared; no statistically significant differences (p = 0.05) are seen for the major constituents glucan, xylan, and lignin, but the algorithms did produce different predictions for total extractives. A single calibration model combining the corn stover feedstock and dilute-acid pretreated corn stover samples gave less satisfactory predictions than the separate models.

  19. Corn Storage Protein - A Molecular Genetic Model

    SciTech Connect (OSTI)

    Messing, Joachim [Rutgers, The State University of New Jersey

    2013-05-31T23:59:59.000Z

    Corn is the highest yielding crop on earth and probably the most valuable agricultural product of the United States. Because it converts sun energy through photosynthesis into starch and proteins, we addressed energy savings by focusing on protein quality. People and animals require essential amino acids derived from the digestion of proteins. If proteins are relatively low in certain essential amino acids, the crop becomes nutritionally defective and has to be supplemented. Such deficiency affects meat and fish production and countries where corn is a staple. Because corn seed proteins have relatively low levels of lysine and methionine, a diet has to be supplemented with soybeans for the missing lysine and with chemically synthesized methionine. We therefore have studied genes expressed during maize seed development and their chromosomal organization. A critical technical requirement for the understanding of the molecular structure of genes and their positional information was DNA sequencing. Because of the length of sequences, DNA sequencing methods themselves were insufficient for this type of analysis. We therefore developed the so-called “DNA shotgun sequencing” strategy, where overlapping DNA fragments were sequenced in parallel and used to reconstruct large DNA molecules via overlaps. Our publications became the most frequently cited ones during the decade of 1981-1990 and former Associate Director of Science for the Office of Basic Energy Sciences Patricia M. Dehmer presented our work as one of the great successes of this program. A major component of the sequencing strategy was the development of bacterial strains and vectors, which were also used to develop the first biotechnology crops. These crops possessed new traits thanks to the expression of foreign genes in plants. To enable such expression, chimeric genes had to be constructed using our materials and methods by the industry. Because we made our materials and methods freely available to academia and industry, progress in plant research and new crop development could accelerate and benefit the public.

  20. Prediction of corn tortilla textural quality using stress relaxation methods

    E-Print Network [OSTI]

    Guo, Zhihong

    1998-01-01T23:59:59.000Z

    ). The effects of moisture content and resting time on corn masa textural property were investigated. Texture of properties of corn tortilla (fresh up to stale) was evaluated using the stress relaxation technique in two different modes, pure tension and bending-tension...

  1. Biofuels from Corn Stover: Pyrolytic Production and Catalytic Upgrading Studies

    E-Print Network [OSTI]

    Capunitan, Jewel Alviar

    2013-01-15T23:59:59.000Z

    explored, in an attempt to convert an abundant agricultural residue, corn stover, into potential bio-fuels. Pyrolysis of corn stover was carried out at 400, 500 and 600oC and at moderate pressure. Maximum bio-char yield of 37.3 wt.% and liquid product...

  2. Suggestions for Weed Control in Corn

    E-Print Network [OSTI]

    Baumann, Paul A.

    2002-02-19T23:59:59.000Z

    F r ontier ? for additional w eed contr ol. Consult (R efer to label for specific w eeds BASF U se rate determined b y inches of soil) or sur face applied the pr oduct label. R o tational cr o p r estrictions will contr olled.) C.E.C. (cationex...) or sur face contr olled.) BASF applied within 2 w eeks of U se rate is determined b y C.E.C. (cation ex change planting. Early postemergence capacity) or soil textur e and organic matter befor e corn is12 inches tall, but content. Can make split...

  3. Tall Corn Ethanol LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolar Jump to:Holdings Co08.0 -TEEMP JumpTakigamiTalbotts LtdTall Corn

  4. Glacial Lakes Corn Processors | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/Exploration <Glacial Energy HoldingsGlacial Lakes Corn

  5. Grupo Corn lio Brennand | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating AGeothermal/ExplorationGoods |Grundy Electric Coop, IncGrupo Corn lio

  6. Life-cycle assessment of corn-based butanol as a potential transportation fuel.

    SciTech Connect (OSTI)

    Wu, M.; Wang, M.; Liu, J.; Huo, H.; Energy Systems

    2007-12-31T23:59:59.000Z

    Butanol produced from bio-sources (such as corn) could have attractive properties as a transportation fuel. Production of butanol through a fermentation process called acetone-butanol-ethanol (ABE) has been the focus of increasing research and development efforts. Advances in ABE process development in recent years have led to drastic increases in ABE productivity and yields, making butanol production worthy of evaluation for use in motor vehicles. Consequently, chemical/fuel industries have announced their intention to produce butanol from bio-based materials. The purpose of this study is to estimate the potential life-cycle energy and emission effects associated with using bio-butanol as a transportation fuel. The study employs a well-to-wheels analysis tool--the Greenhouse Gases, Regulated Emissions and Energy Use in Transportation (GREET) model developed at Argonne National Laboratory--and the Aspen Plus{reg_sign} model developed by AspenTech. The study describes the butanol production from corn, including grain processing, fermentation, gas stripping, distillation, and adsorption for products separation. The Aspen{reg_sign} results that we obtained for the corn-to-butanol production process provide the basis for GREET modeling to estimate life-cycle energy use and greenhouse gas emissions. The GREET model was expanded to simulate the bio-butanol life cycle, from agricultural chemical production to butanol use in motor vehicles. We then compared the results for bio-butanol with those of conventional gasoline. We also analyzed the bio-acetone that is coproduced with bio-butanol as an alternative to petroleum-based acetone. Our study shows that, while the use of corn-based butanol achieves energy benefits and reduces greenhouse gas emissions, the results are affected by the methods used to treat the acetone that is co-produced in butanol plants.

  7. Idaho is the nation's largest producer, packer, and processor of potatoes. Idaho has been the number one potato-producing state for the past 50 years. The

    E-Print Network [OSTI]

    O'Laughlin, Jay

    HIGHLIGHTS Idaho is the nation's largest producer, packer, and processor of potatoes. Idaho has been the number one potato-producing state for the past 50 years. The state's growers produce about 30% of the U.S. potato crop, but the Idaho potato industry is more than potato fields. Idaho frozen

  8. Managing Insect and Mite Pests of Texas Corn

    E-Print Network [OSTI]

    Porter, Patrick; Cronholm, Gregory B.; Parker, Roy D.; Troxclair, Noel N.; Patrick, Carl D.; Biles, Stephen; Morrison, William P.

    2006-05-24T23:59:59.000Z

    weedy fields, larvae may be able to feed on weed roots until they are large and then move to corn roots and cause significant damage. In this case, control may not be as good as it should have been. Also, it is common for a very small percentage... be reduced or in some cases eliminated by a crop rotation scheme including soybeans or other crops that are not fed upon by rootworms. In most areas of Texas, corn has been rotated successfully with sorghum without damage from the Mexican corn rootworm...

  9. Sweet Corn Tests in the Lower Rio Grande Valley.

    E-Print Network [OSTI]

    Pickett, B. S. (Barzalli Stewart)

    1947-01-01T23:59:59.000Z

    . Erie has more earworm resistance than either Ioarn or Golden Hybrid 2439. It is less sub- ject to bird damage than 2439. and suckers less. The plant is taller and more vigorous than most of the sweet corn varieties studied. It is slightly later... supply, * an important factor in corn earworm control. Jour. of Anr. Res. 68:73-77. 1944. 3. Dicke, F. F.. and M. T. Jenkins: Susceptibility of certain strains of field cc in hybrid combinations to damage by corn ear worms. U.S.D.A. Tech. Bul. 898...

  10. Watergrass and Volunteer Sorghum Control in Corn.

    E-Print Network [OSTI]

    Wiese, A.F.; Chenault, E.W.; Lavake, D.E.; Hollingsworth, Dale

    1979-01-01T23:59:59.000Z

    Corn Preplant LblA emergence LblA emergence herbicide (ai) herbicide (ail herbicide (ail (LbIA) (BulA) c*" (NolA) AAtrex 442 c-e 820 c-e 1,561 b-d 1506 3 e 2 350 de 12,192 ab 12,288 ab 1 1,328 a-c 11,616a-c Princep AAtrex 1ya iha 125... Aatrex 3 _ Evik + SC 2 202 e 123a-c 11,136a-c Check .- -_ 4,991 a 90 d 9,216 c Weans followed by the sgme letaer --&= fwel of significance. bSun 11Eoilat 1 gaHanper&cmin COupont WK surfactant at 0.5% of mtzi&k%ume. TABLE 8. WATERGRASS COMa AND...

  11. Corn Belt Energy Coop- Commercial Energy Efficiency Rebate Program (Illinois)

    Broader source: Energy.gov [DOE]

    Corn Belt Energy, through the Wabash Valley Power Association, offers business, school, and farm customers a variety of energy efficient rebates and incentives through its "Power Moves" program....

  12. Direct Comparison of Alfalfa Nitrogen Credits to Corn and Wheat

    E-Print Network [OSTI]

    Balser, Teri C.

    Station Ashland Ag Research Station #12;Alfalfa N credits to corn: · Infrequent fertilizer N responses Rate Aug Sep lb/a --------- bu/a --------- 15 48 48 35 55 43 55 52 51 75 62 49 Ashland, 2001

  13. Lime pretreatment and enzymatic hydrolysis of corn stover 

    E-Print Network [OSTI]

    Kim, Se Hoon

    2005-08-29T23:59:59.000Z

    Renewable energy sources, such as lignocellulosic biomass, are environmentally friendly because they emit less pollution without contributing net carbon dioxide to the atmosphere. Among lignocellulosic biomass, corn stover is a very useful feedstock...

  14. Lime pretreatment and enzymatic hydrolysis of corn stover

    E-Print Network [OSTI]

    Kim, Se Hoon

    2005-08-29T23:59:59.000Z

    Renewable energy sources, such as lignocellulosic biomass, are environmentally friendly because they emit less pollution without contributing net carbon dioxide to the atmosphere. Among lignocellulosic biomass, corn stover is a very useful feedstock...

  15. DOE - Office of Legacy Management -- Sylvania Corning Nuclear...

    Office of Legacy Management (LM)

    to SYLVANIA CORNING NUCLEAR CORP., INC., SYLVANIA LABORATORIES NY.07-1 - Letter, Smith to Norris, Contract at (30-1)-1293- U Metal Requirements, March 5, 1953 NY.07-2 -...

  16. The Origin of Indian Corn and its Relatives.

    E-Print Network [OSTI]

    Mangelsdorf, Paul C. (Paul Christoph); Reeves, R. G. (Robert Gatlin)

    1939-01-01T23:59:59.000Z

    if it were not that when it hybridizes with Zea, some of the segregates are indistinguishable from Mexican varieties. Zea L. Maize, Indian Corn The genus Zea usually is distinguished from its near relatives by having separate staminate and pistillate...TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR, College Station, Texas BULLETIN NO. 574 (Monograph) MAY 1939 THE ORIGIN OF INDIAN CORN AND ITS RELATIVES P. C. MANGELSDORF AND R. G. REEVES Division of Agronomy (In cooperation...

  17. The values and practices associated with high moisture corn

    E-Print Network [OSTI]

    Finch, Charles B

    1993-01-01T23:59:59.000Z

    damage and a corresponding reduction in feeding value can occur. Kernel size will vary greatly depending on corn growing conditions, variety and 13 especially kernel location on the cob. Kernels which come from the upper end of the cob will be smaller... of the corn. Owens (1986) states that browning of HMC does not affect performance, but discoloration can be an indication of heating during feedout which in turn decreases feed intake. Possible chemical causes could be a reaction between reducing sugars...

  18. Legumes for Soil Improvement for Cotton and Corn.

    E-Print Network [OSTI]

    Reynolds, E. B.; Rea, H. E.; Whitney, Eli; Rich, P. A.; Roberts, J. E.

    1958-01-01T23:59:59.000Z

    medium yields, averaging about 28 bushels for the several treatments, were caused by severe corn rootworm damage. In an adjoin- ing experiment, which suffered little or no damage by the rootworm, the average yield was nearly 50 bushels per acre... of all the treatments was about 51 bushels per acre. Low to medium yields in the other years were caused bv deficient or poor distribution of rainfall, unavoidable lateness of planting or replanting necessitated by corn rootworm dam- age. In 1950...

  19. Characteristics of corn and sorghum for tortilla processing 

    E-Print Network [OSTI]

    Gonzalez de Palacios, Maria de Jesus

    1980-01-01T23:59:59.000Z

    CHARACTERISTICS OF CORN AND SORGHUM FOR TORTILLA PROCESSING A Thesis by MARIA DE JESUS GONZALEZ DE PALACIOS Submitted to the Graduate College of Texas A8M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE December 1980 Major Subject: Food Science and Technology CHARACTERISTICS OF CORN AND SORGHUM FOR TORTILLA PROCESSING A Thesis by MARIA DE JESUS GONZALEZ DE PALACIOS Approved as to style and content by: an o omm t em er em er ea o...

  20. Characteristics of corn and sorghum for tortilla processing

    E-Print Network [OSTI]

    Gonzalez de Palacios, Maria de Jesus

    1980-01-01T23:59:59.000Z

    CHARACTERISTICS OF CORN AND SORGHUM FOR TORTILLA PROCESSING A Thesis by MARIA DE JESUS GONZALEZ DE PALACIOS Submitted to the Graduate College of Texas A8M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE December 1980 Major Subject: Food Science and Technology CHARACTERISTICS OF CORN AND SORGHUM FOR TORTILLA PROCESSING A Thesis by MARIA DE JESUS GONZALEZ DE PALACIOS Approved as to style and content by: an o omm t em er em er ea o...

  1. Bt vs. non-Bt corn (Zea mays L.) hybrids: effect on degradation of corn stover in soil

    E-Print Network [OSTI]

    Salvatore, Herminia T.

    2010-07-14T23:59:59.000Z

    Page Figure 1 Mean temperatures during 2004 corn growing season in College Station, TX. .......???????????????????...... 48 Figure 2 Monthly rain in millimeters during the first half of 2004 in College Station, TX...., 2000; Mann et al., 2002; Spedding et al., 2004; DeFelice et al., 2006), and therefore, farmers adopt various techniques to deal with the stover. At least 50% of corn stover, roughly 300 billion pounds, will be tilled back into the soil (DeFelice et al...

  2. MBI Biorefinery: Corn to Biomass, Ethanol to Biochemicals and Biomaterials

    SciTech Connect (OSTI)

    None

    2006-02-17T23:59:59.000Z

    The project is a continuation of DOE-funded work (FY02 and FY03) that has focused on the development of the ammonia fiber explosion (AFEX) pretreatment technology, fermentation production of succinic acid and new processes and products to enhance dry mill profitability. The primary objective for work beginning in April 2004 and ending in November 2005 is focus on the key issues related to the: (1) design, costing and construction plan for a pilot AFEX pretreatment system, formation of a stakeholder development team to assist in the planning and design of a biorefinery pilot plant, continued evaluation of corn fractionation technologies, corn oil extraction, AFEX treatment of corn fiber/DDGs; (2) development of a process to fractionate AFEX-treated corn fiber and corn stover--cellulose and hemicellulose fractionation and sugar recovery; and (3) development of a scalable batch succinic acid production process at 500 L at or below $.42/lb, a laboratory scale fed-batch process for succinic acid production at or below $.40/lb, a recovery process for succinic acid that reduces the cost of succinic acid by $.02/lb and the development of an acid tolerant succinic acid production strain at lab scale (last objective not to be completed during this project time period).

  3. Effects of Bt-corn decomposition on the composition of the soil meso-and macrofauna

    E-Print Network [OSTI]

    Richner, Heinz

    to the environment. At this point genetically modified corn, expressing Cry proteins of the soil bacterium Bacillus bags Soil invertebrates a b s t r a c t Genetically modified Bt-corn is able to fight main insect pests than 4%. All corn varieties were likewise used as food resource by decomposers, thus the Bt

  4. INTERSPECIFIC AND INTRASPECIFIC COMPETITION OF COMMON SUNFLOWER (HELIANTHUS ANNUUS L.) IN FIELD CORN (ZEA MAYS L.)

    E-Print Network [OSTI]

    Falkenberg, Nyland R.

    2010-07-14T23:59:59.000Z

    corn. Field studies were conducted in 2006 and 2007 to 1) define the density-dependent effects of common sunflower competition with corn; 2) define the necessary weed-free periods of common sunflower in corn; 3) evaluate common sunflower control...

  5. Alternatives for Using Failed Corn in the Texas High Plains Ted McCollum III and Brent Bean

    E-Print Network [OSTI]

    Mukhtar, Saqib

    for Using Failed Corn in the Texas High Plains Ted McCollum III and Brent Bean Extension Beef Cattle The Texas A&M University System SCS-1998-18 Some corn producers are deciding to quit watering a portion of their corn fields in order to reallocate the water. What can be done to salvage some value from the corn

  6. SECO - Dow Corning's Wood Fueled Industrial Cogeneration Project

    E-Print Network [OSTI]

    Betts, W. D.

    1982-01-01T23:59:59.000Z

    In 1979, Dow Corning Corporation decided to build a wood fueled steam and electric cogeneration (SECO) power plant at Midland, Michigan. This decision was prompted by the high cost of oil and natural gas, an abundant supply of wood in mid Michigan...

  7. SECO - Dow Corning's Wood Fueled Industrial Cogeneration Project 

    E-Print Network [OSTI]

    Betts, W. D.

    1982-01-01T23:59:59.000Z

    In 1979, Dow Corning Corporation decided to build a wood fueled steam and electric cogeneration (SECO) power plant at Midland, Michigan. This decision was prompted by the high cost of oil and natural gas, an abundant supply of wood in mid Michigan...

  8. Partnership Sugar Beet Growers

    E-Print Network [OSTI]

    mid-season drought on record, average yields of over 19 tons per acre were achieved. The resiliency of the growing regions. The new fungicide, Quadris, has been very effective in minimizing this yield robbing. Department of Agriculture and Counties cooperating. ON-FARM RESEARCH AND DEMONSTRATION ACKNOWLEDGEMENTS #12

  9. INDEX TO VIRGINIA CORN HYBRID AND MANAGEMENT TRIALS 1999 SECTION I. VIRGINIA CORN HYBRID TRIALS IN 1999.

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    CORPORTATION AUGUSTA 106 FAIRBURN RD MT SOLON VA 22843 BIO GENE BIO GENE 5491 TRI COUNTY HWY SARDINIA OH 45171 at Middlesex County, Virginia in 1998 and at New Kent County, Virginia in 1999 37 Table 29. Three-year corn hybrid studies at Middlesex County, Virginia in 1997 and 1998 and at New Kent County in 1999. 37 SECTION

  10. Corn Varieties in Texas : Their Regional and Seasonal Adaptation.

    E-Print Network [OSTI]

    Mangelsdorf, Paul C. (Paul Christoph)

    1929-01-01T23:59:59.000Z

    presented in Progress Reports from Angleton, Denton, Beaumont, Troup, Beeville, Temple, Spur, Lubbock, Pecos, and Nacogdoches, and in Bulletin 276, "Corn Variety Experiments, Substation No. 3, Angleton." SCOPE OF THE BULLETIN Two of the most important... to both regional ' and seasonal variations. To determine the adaptation of varieties to these two influences a variety-date-of-planting test was instituted in 1918. This test has been conducted at eleven substations throughout the State, in most cases...

  11. The effect of stress cracked and broken corn kernels on alkaline processing losses

    E-Print Network [OSTI]

    Jackson, David Scott

    1986-01-01T23:59:59.000Z

    (~. 70, P&. 06). There were significant differences in COD and DML (KRATIO= 100) between highly damaged corn and the less damaged counterpart of the same hybrid. Stress cracked corn, however, only slightly increased COD and DML. The ease of pericarp... Sigruficance of Com and Cooking Parameters . . . LIST OF FIGURES Page Stress Crack, Pericarp, and Broken Kernel Damage of Corn . . Flow Chart of Procedutes and Differences Between Cook Methods I and H 21 24 Correlation between Thousand Kernel Weight...

  12. alkaline-pretreated corn stover: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stronach) 1931-01-01 68 Researchers use corn waste to generate electricity Renewable Energy Websites Summary: to create hydrogen." The Penn State researcher and colleagues also...

  13. afex-treated corn stover: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stronach) 1931-01-01 68 Researchers use corn waste to generate electricity Renewable Energy Websites Summary: to create hydrogen." The Penn State researcher and colleagues also...

  14. CORN DEVELOPMENT AND KEY GROWTH STAGES Brent Bean and Carl Patrick, Extension Agronomist and Entomologist

    E-Print Network [OSTI]

    Mukhtar, Saqib

    CORN DEVELOPMENT AND KEY GROWTH STAGES Brent Bean and Carl Patrick, Extension Agronomist to have the soil profile full of water prior to tas

  15. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems

    SciTech Connect (OSTI)

    Mani, Sudhagar [University of Georgia; Sokhansanj, Shahabaddine [ORNL; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

    2010-03-01T23:59:59.000Z

    This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

  16. Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation

    SciTech Connect (OSTI)

    Abbas, Charles; Beery, Kyle; Orth, Rick; Zacher, Alan

    2007-09-28T23:59:59.000Z

    The purpose of the Department of Energy (DOE)-supported corn fiber conversion project, “Separation of Corn Fiber and Conversion to Fuels and Chemicals Phase II: Pilot-scale Operation” is to develop and demonstrate an integrated, economical process for the separation of corn fiber into its principal components to produce higher value-added fuel (ethanol and biodiesel), nutraceuticals (phytosterols), chemicals (polyols), and animal feed (corn fiber molasses). This project has successfully demonstrated the corn fiber conversion process on the pilot scale, and ensured that the process will integrate well into existing ADM corn wet-mills. This process involves hydrolyzing the corn fiber to solubilize 50% of the corn fiber as oligosaccharides and soluble protein. The solubilized fiber is removed and the remaining fiber residue is solvent extracted to remove the corn fiber oil, which contains valuable phytosterols. The extracted oil is refined to separate the phytosterols and the remaining oil is converted to biodiesel. The de-oiled fiber is enzymatically hydrolyzed and remixed with the soluble oligosaccharides in a fermentation vessel where it is fermented by a recombinant yeast, which is capable of fermenting the glucose and xylose to produce ethanol. The fermentation broth is distilled to remove the ethanol. The stillage is centrifuged to separate the yeast cell mass from the soluble components. The yeast cell mass is sold as a high-protein yeast cream and the remaining sugars in the stillage can be purified to produce a feedstock for catalytic conversion of the sugars to polyols (mainly ethylene glycol and propylene glycol) if desirable. The remaining materials from the purification step and any materials remaining after catalytic conversion are concentrated and sold as a corn fiber molasses. Additional high-value products are being investigated for the use of the corn fiber as a dietary fiber sources.

  17. The conversion of corn stover and pig manure to carboxylic acids with the MixAlco process

    E-Print Network [OSTI]

    Black, Amanda Spring

    2013-02-22T23:59:59.000Z

    of these processes to a feedstock of corn stover and pig manure. During fermentation, corn stover was the energy source (carbohydrates) and pig manure was the nutrient source (vitamins, minerals, and growth factors). A countercurrent fermentation procedure...

  18. Increasing corn for biofuel production reduces biocontrol services in agricultural landscapes

    E-Print Network [OSTI]

    Landis, Doug

    November 5, 2008 (received for review May 22, 2008) Increased demand for corn grain as an ethanol feedstock of cellulosic ethanol production processes that use a variety of feedstocks could foster increased diversity has driven a rapid expansion of the corn ethanol industry in the United States. Continuing growth

  19. Global Indirect Effects of U.S. Corn Ethanol Production: A Review of the Evidence

    E-Print Network [OSTI]

    Grissino-Mayer, Henri D.

    Global Indirect Effects of U.S. Corn Ethanol Production: A Review of the Evidence Energy security) requires 36 billion gallons of ethanol by 2022 to replace about 20 percent of U.S. gasoline consumption. Since 2001 ethanol produc- tion, mainly from corn, has increased dramatically at an annual average

  20. Summary of findings from the Biomass Refining Consortium for Applied Fundamentals and Innovation (CAFI): corn

    E-Print Network [OSTI]

    California at Riverside, University of

    employed to develop comparative sugar yield data for each pretreatment and subsequent enzymatic hydrolysis (CAFI): corn stover pretreatment Richard T. Elander Ć Bruce E. Dale Ć Mark Holtzapple Ć Michael R, has devel- oped comparative data on the conversion of corn stover to sugars by several leading

  1. Coproducts From Corn Processing 47 Applied Biochemistry and Biotechnology Vol. 128, 2006

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    Increased demand for ethanol as a fuel additive has resulted in dramatic growth in ethanol production production was 3 billion gal/yr (1). Much of the fuel ethanol production capacity in the United States. Ethanol is produced from corn by either wet milling or dry-grind processing. In wet milling, the corn

  2. M. Lelic 12/7/99 1CORNING Inc. L 5033PRE PID Controllers in Nineties

    E-Print Network [OSTI]

    Gajic, Zoran

    M. Lelic 12/7/99 1CORNING Inc. L 5033PRE PID Controllers in Nineties Muhidin Lelic CorningOverview Purpose: extract the essence of the most recent development of PID control Based on the survey of papers-Nichols based PIDs (10) Frequency domain based PIDs (22) Relay based PIDs (29) Optimization methods based PIDs

  3. 16 CSA News March 2013 thanol from corn has been the primary biofuel for liq-

    E-Print Network [OSTI]

    DeLucia, Evan H.

    16 CSA News March 2013 E thanol from corn has been the primary biofuel for liq- uid fuels in the United States, but perennial cellulosic biofuels are on the horizon. Intensive corn production with large of nitrogen losses on large, tile-drained fields planted with perennial biofuels in the Midwest of the United

  4. Effects of barley flour and beta-glucans in corn tortillas 

    E-Print Network [OSTI]

    Silva, Laura

    2004-09-30T23:59:59.000Z

    The effects of b-glucan on corn tortilla texture were evaluated. Barley flour (9.7% b-glucan) was substituted at 2.5, 5 and 10% for dry masa flour in corn tortillas. Texture was evaluated after 4 hr and up to 7 d storage ...

  5. Ecology and Management of the Western Bean Cutworm (Lepidoptera: Noctuidae) in Corn and Dry Beans

    E-Print Network [OSTI]

    Ginzel, Matthew

    Ecology and Management of the Western Bean Cutworm (Lepidoptera: Noctuidae) in Corn and Dry Beans Lansing MI 48824. J. Integ. Pest Mngmt. 1(1): 2010; DOI: 10.1603/IPM10003 ABSTRACT. The western bean mainly on corn and dry beans. The historical geographic range of the western bean cutworm covered

  6. Influence of Genetic Background on Anthocyanin and Co-Pigment Profile and Stability of Colored Corn

    E-Print Network [OSTI]

    Collison, Amy Elizabeth

    2014-08-05T23:59:59.000Z

    stability of several experimental hybrid varieties of corn from four phenotypes (red, purple, blue, and red/blue). The goal was to determine if genetics/phenotype can be utilized to selectively breed for pigmented corn lines with greater stability during...

  7. The effect of CO regulations on the cost of corn ethanol production

    E-Print Network [OSTI]

    Kammen, Daniel M.

    The effect of CO 2 regulations on the cost of corn ethanol production This article has been) 024003 (9pp) doi:10.1088/1748-9326/3/2/024003 The effect of CO2 regulations on the cost of corn ethanol the effect of CO2 price on the effective cost of ethanol production we have developed a model that integrates

  8. Evaluation of mixing characteristics of corn dry masa flours

    E-Print Network [OSTI]

    Lobeira Massu, Rodrigo

    1996-01-01T23:59:59.000Z

    of MASTER OF SCIENCE Approved as to style and content by loyd . Roon (Chair of Com ' ee) Ronald L. Richter (Member) Ralph D. Waniska (Member) ert Almeida-Dominguez (Member) ry Acu (Chair, Food Science and Technology Faculty) E. C. A. Rung (Head... of the embryonic axis and the scutellum which functions as a nutritive organ for the embryo. The germ makes up 10-12% of the kernel dry weight. About 85'/o of the lipids in corn are in the germ which has a lipid concentration of 30-38'%%d . Mos t lipid sar e fre...

  9. Dow Corning Europe S A | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential MicrohydroDistrict ofDongjin Semichem CoDow Corning Europe S A

  10. Robbins Corn & Bulk Services | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎ |Rippey Jump to: navigation, searchRobbins Corn & Bulk

  11. South Corning, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingaporeSonix Japan IncInformation SouthHeights,Corning,

  12. Corn LP formerly Central Iowa Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|Core Analysis At Geysers| Open EnergyAl.,A,CorixBeltCorn

  13. Little Sioux Corn Processors LP | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |Jilin ZhongdiantouLichuan CityLiqcrytech LLC JumpListLittle Sioux Corn

  14. Ash Reduction of Corn Stover by Mild Hydrothermal Preprocessing

    SciTech Connect (OSTI)

    M. Toufiq Reza; Rachel Emerson; M. Helal Uddin; Garold Gresham; Charles J. Coronella

    2014-04-22T23:59:59.000Z

    Lignocellulosic biomass such as corn stover can contain high ash content, which may act as an inhibitor in downstream conversion processes. Most of the structural ash in biomass is located in the cross-linked structure of lignin, which is mildly reactive in basic solutions. Four organic acids (formic, oxalic, tartaric, and citric) were evaluated for effectiveness in ash reduction, with limited success. Because of sodium citrate’s chelating and basic characteristics, it is effective in ash removal. More than 75 % of structural and 85 % of whole ash was removed from the biomass by treatment with 0.1 g of sodium citrate per gram of biomass at 130 °C and 2.7 bar. FTIR, fiber analysis, and chemical analyses show that cellulose and hemicellulose were unaffected by the treatment. ICP–AES showed that all inorganics measured were reduced within the biomass feedstock, except sodium due to the addition of Na through the treatment. Sodium citrate addition to the preconversion process of corn stover is an effective way to reduced physiological ash content of the feedstock without negatively impacting carbohydrate and lignin content.

  15. STABILITY OF DOW CORNING Q2-3183A ANTIFOAM IN IRRADIATED HYDROXIDE SOLUTION

    SciTech Connect (OSTI)

    White, T; Crawford, C; Burket, P; Calloway, B

    2009-10-19T23:59:59.000Z

    Researchers at the Savannah River National Laboratory (SRNL) examined the stability of Dow Corning Q2-3183A antifoam to radiation and aqueous hydroxide solutions. Initial foam control studies with Hanford tank waste showed the antifoam reduced foaming. The antifoam was further tested using simulated Hanford tank waste spiked with antifoam that was heated and irradiated (2.1 x 10{sup 4} rad/h) at conditions (90 C, 3 M NaOH, 8 h) expected in the processing of radioactive waste through the Waste Treatment and Immobilization Plant (WTP) at Hanford. After irradiation, the concentration of the major polymer components polydimethylsiloxane (PDMS) and polypropylene glycol (PPG) in the antifoam was determined by gel permeation chromatography (GPC). No loss of the major polymer components was observed after 24 h and only 15 wt% loss of PDMS was reported after 48 h. The presence of degradation products were not observed by gas chromatography (GC), gas chromatography mass spectrometry (GCMS) or high performance liquid chromatography mass spectrometry (HPLC-MS). G values were calculated from the GPC analysis and tabulated. The findings indicate the antifoam is stable for 24 h after exposure to gamma radiation, heat, and alkaline simulated waste.

  16. Commercial Fertilizers in 1917-18.

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1918-01-01T23:59:59.000Z

    Roost Guano-Guarantee ....................... Analysis ........................................ Dallas Fertilizer and Reduction Co., Dallas . Texas.- Beaver Brand Cotton and Corn Grower Non-Potassic- ...................................... Guarantee... Analys~s ........................................ .......... Beaver Brand Stearn Bone Meal-Guarantee Analysis ........................................ Beaver Brand Vegetable Grower-Guarantee .......... Analysis...

  17. A Five-Year Assessment of Corn Stover Harvest in Central Iowa, USA

    SciTech Connect (OSTI)

    Douglas L. Karlen; Stuart J. Birell; J. Richard Hess

    2011-11-01T23:59:59.000Z

    Sustainable feedstock harvest strategies are needed to ensure bioenergy production does not irreversibly degrade soil resources. The objective for this study was to document corn (Zea mays L.) grain and stover fraction yields, plant nutrient removal and replacement costs, feedstock quality, soil-test changes, and soil quality indicator response to four stover harvest strategies for continuous corn and a corn-soybean [Glycine max. (L.) Merr.] rotation. The treatments included collecting (1) all standing plant material above a stubble height of 10 cm (whole plant), (2) the upper-half by height (ear shank upward), (3) the lower-half by height (from the 10 cm stubble height to just below the earshank), or (4) no removal. Collectable biomass from Treatment 2 averaged 3.9 ({+-}0.8) Mg ha{sup -1} for continuous corn (2005 through 2009), and 4.8 ({+-}0.4) Mg ha{sup -1} for the rotated corn (2005, 2007, and 2009). Compared to harvesting only the grain, collecting stover increased the average N-P-K removal by 29, 3 and 34 kg ha{sup -1} for continuous corn and 42, 3, and 34 kg ha{sup -1} for rotated corn, respectively. Harvesting the lower-half of the corn plant (Treatment 3) required two passes, resulted in frequent plugging of the combine, and provided a feedstock with low quality for conversion to biofuel. Therefore, Treatment 3 was replaced by a 'cobs-only' harvest starting in 2009. Structural sugars glucan and xylan accounted for up to 60% of the chemical composition, while galactan, arabinan, and mannose constituted less than 5% of the harvest fractions collected from 2005 through 2008. Soil-test data from samples collected after the first harvest (2005) revealed low to very low plant-available P and K levels which reduced soybean yield in 2006 after harvesting the whole-plant in 2005. Average continuous corn yields were 21% lower than rotated yields with no significant differences due to stover harvest. Rotated corn yields in 2009 showed some significant differences, presumably because soil-test P was again in the low range. A soil quality analysis using the Soil Management Assessment Framework (SMAF) with six indicators showed that soils at the continuous corn and rotated sites were functioning at an average of 93 and 83% of their inherent potential, respectively. With good crop management practices, including routine soil-testing, adequate fertilization, maintenance of soil organic matter, sustained soil structure, and prevention of wind, water or tillage erosion, a portion of the corn stover being produced in central Iowa, USA can be harvested in a sustainable manner.

  18. Corn Meal in the Food Supply of Texans.

    E-Print Network [OSTI]

    Winters, Jet C.; Scoular, Florence I.; McLaughlin, Laura; Lamb, Mina W.; Whitacre, Jessie

    1956-01-01T23:59:59.000Z

    of the non-enriched meal makes a variable contribution to the value of the corresponding enriched meal. TABLE 2. THIAMINE CONTENT OF CORN ME : ALS Mcg/g wet basis1 Kind of Non-enriched Enriche meal No. No. repli- Range Av. repli- Range Av. cations...-enriched Enriched Non-enriched Enriched bread No. repli- Range Avm NO. repli- Range cations Av. Range Av. Range Av. cations i Texas Tech. Sour milk Everlite 3 1.40 2 1.35 1.35 1.44 1.51 2.29 2.26 i::: 2.36 1.43 2.24 Aunt Jemima Sweet milk 1.28 1.40 2...

  19. Grand Opening for Project LIBERTY: Nation's First Plant to Use Corn Waste

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 BudgetGoals and Requirements GoalsLoggingas a Feedstock |

  20. Grand Opening for Project LIBERTY: Nation's First Plant to Use Corn Waste

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), Geothermal TechnologiesGeothermalGo forDepartment ofGrandGrandas a

  1. National Bioenergy Center - Biochemical Platform Integration Project: Quarterly Update, Winter 2010

    SciTech Connect (OSTI)

    Schell, D.

    2011-02-01T23:59:59.000Z

    Winter 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program topic areas; results from reactive membrane extraction of inhibitors from dilute-acid pretreated corn stover; list of 2010 task publications.

  2. Characterization and Combustion Performance of Corn Oil-Based Biofuel Blends

    E-Print Network [OSTI]

    Savant, Gautam Sandesh

    2012-07-16T23:59:59.000Z

    into biodiesel. It is well known vegetable oil to biodiesel conversion involves many processes including transesterification, which makes biodiesel costly and time-consuming to produce. In this study, the effects of blending high-viscosity fresh and used corn...

  3. BIOETHANOL PRODUCTION FROM WET OXIDSED CORN STOVER USING PRE-TREATED MANURE AS A NUTRIENT SOURCE

    E-Print Network [OSTI]

    BIOETHANOL PRODUCTION FROM WET OXIDSED CORN STOVER USING PRE-TREATED MANURE AS A NUTRIENT SOURCE E for the production of bioethanol. This pre-treatment method, similar to other hot water pre-treatments, acts

  4. Iowa farmer hopes corn cobs will bring in extra cash | Department...

    Broader source: Energy.gov (indexed) [DOE]

    supply the United States with a biofuel that may have a promising future: cellulosic ethanol. He grows corn and soybeans at his farm in Cylinder, a little community of about 100...

  5. STA'n:MENT OF CONSIDERAT IONS REQUEST BY CORNING J 'CORP ORA...

    Broader source: Energy.gov (indexed) [DOE]

    quality and performance of ceramic electrolyte members and developing th e manufac turing mea ns to dramatically lower their cost. CORNING 's success should enable PolyPus ' s...

  6. The effects of Maize Dwarf Mosaic Virus (MDMV) on different corn hybrids (Zea mays L.) 

    E-Print Network [OSTI]

    Lammoglia Villagomez, Agustin

    1994-01-01T23:59:59.000Z

    A study was conducted to determine the effects of Maize Dwarf Mosaic Virus (MDMV) on different agronomic and grain quality characteristics of 106 corn hybrids. A randomized split-plot design with 3 replications was used. The virus isolate obtained...

  7. Tolerance and weed management systems in imidazolinone tolerant corn (Zea mays L.)

    E-Print Network [OSTI]

    Thompson, Ann Marie

    1999-01-01T23:59:59.000Z

    Research was conducted to evaluate the efficacy of imidazolinone weed management systems and tolerance of imidazolinone tolerant corn to imazapic. Field experiments were conducted in 1997 and 1998 at the Texas Agricultural Experiment Station (TAES...

  8. Energy Efficiency Improvements and Cost Saving Opportunities in the Corn Wet Milling Industry

    E-Print Network [OSTI]

    Galitsky, C.; Worrell, E.

    Corn wet milling is the most energy intensive industry in the food and kindred products group (SIC 20). Plants typically spend approximately $15 to 25 million per year on energy, one of its largest operating costs, making energy efficiency...

  9. Antistaling properties of amylases, wheat gluten and CMC on corn tortilla 

    E-Print Network [OSTI]

    Bueso Ucles, Francisco Javier

    2004-09-30T23:59:59.000Z

    Antistaling properties of enzymes (xylanase, bacterial maltogenic and conventional a-amylases), CMC and vital wheat gluten on corn tortillas were evaluated during storage for up to 21 days. Effect of storage time (0-21 ...

  10. Interrelationships among alternative export variables and their impacts on corn prices

    E-Print Network [OSTI]

    Clarke, Somkid Tammakrut

    1987-01-01T23:59:59.000Z

    export variable. Corn export sales data (collected by USDA since 1973) provide an additional source of information on export movements, thus offering an alternative export demand indicator. Data on commercial stocks at terminals and port elevators...). The primary objective of this study was to assess the impacts of these alternative export variables (sales, stocks, and shipments) on corn prices, and to investigate the dynamic interrelationships among these variables. The observations were carried out...

  11. Determination of total dietary fiber and resistant starch in processed corn and rice products

    E-Print Network [OSTI]

    Corujo Martinez, Juan Ignacio

    1991-01-01T23:59:59.000Z

    DETERMINATION OF TOTAL DIETARY FIBER AND RESISTANT STARCH IN PROCESSED CORN AND RICE PRODUCTS A Thesis by JUAN IGNACIO CORUJO MARTINEZ Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree 'of MASTER OF SCIENCE December 1991 Major Subject: Food Science and Technology DETERMINATION OF TOTAL DIETARY FIBER AND RESISTANT STARCH IN PROCESSED CORN AND RICE PRODUCTS A Thesis by JUAN IGNACIO CORUJO MARTINEZ Approved...

  12. Economic Impact of Harvesting Corn Stover under Time Constraint: The Case of North Dakota

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maung, Thein A.; Gustafson, Cole R.

    2013-01-01T23:59:59.000Z

    This study examines the impact of stochastic harvest field time on profit maximizing potential of corn cob/stover collection in North Dakota. Three harvest options are analyzed using mathematical programming models. Our findings show that under the first corn grain only harvest option, farmers are able to complete harvesting corn grain and achieve maximum net income in a fairly short amount of time with existing combine technology. However, under the second simultaneous corn grain and cob (one-pass) harvest option, farmers generate lower net income compared to the net income of the first option. This is due to the slowdown in combinemore »harvest capacity as a consequence of harvesting corn cobs. Under the third option of separate corn grain and stover (two-pass) harvest option, time allocation is the main challenge and our evidence shows that with limited harvest field time available, farmers find it optimal to allocate most of their time harvesting grain and then proceed to harvest and bale stover if time permits at the end of harvest season. The overall findings suggest is that it would be more economically efficient to allow a firm that is specialized in collecting biomass feedstock to participate in cob/stover harvest business.« less

  13. Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types.

    SciTech Connect (OSTI)

    Wang, M.; Wu, M.; Huo, H.; Energy Systems

    2007-04-01T23:59:59.000Z

    Since the United States began a program to develop ethanol as a transportation fuel, its use has increased from 175 million gallons in 1980 to 4.9 billion gallons in 2006. Virtually all of the ethanol used for transportation has been produced from corn. During the period of fuel ethanol growth, corn farming productivity has increased dramatically, and energy use in ethanol plants has been reduced by almost by half. The majority of corn ethanol plants are powered by natural gas. However, as natural gas prices have skyrocketed over the last several years, efforts have been made to further reduce the energy used in ethanol plants or to switch from natural gas to other fuels, such as coal and wood chips. In this paper, we examine nine corn ethanol plant types--categorized according to the type of process fuels employed, use of combined heat and power, and production of wet distiller grains and solubles. We found that these ethanol plant types can have distinctly different energy and greenhouse gas emission effects on a full fuel-cycle basis. In particular, greenhouse gas emission impacts can vary significantly--from a 3% increase if coal is the process fuel to a 52% reduction if wood chips are used. Our results show that, in order to achieve energy and greenhouse gas emission benefits, researchers need to closely examine and differentiate among the types of plants used to produce corn ethanol so that corn ethanol production would move towards a more sustainable path.

  14. Aflatoxin resistance in selected maize (Zea mays L.) varieties as affected by corn earworm (Helicoverpa zea [Boddie]) infestation

    E-Print Network [OSTI]

    Uphoff, Michael Donald

    1992-01-01T23:59:59.000Z

    ) in preharvest corn is a severe problem in some parts of the U. S. An experiment was designed to determine if the corn earworm (Heli~cov ~ yea a[Boddie]) was an effective vector of g. ~a and if damage caused by the insect predisposed maize varieties.... No differences among overall treatments were found. Apparently, treatment with corn earworm eggs was not effective in causing an increased amount of ear damage. Results showed there were statistically significant differences among varieties for inoculated...

  15. Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 1: Cost of feedstock supply logistics

    SciTech Connect (OSTI)

    Sokhansanj, Shahabaddine [ORNL; Mani, Sudhagar [University of Georgia; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

    2010-01-01T23:59:59.000Z

    Supply of corn stover to produce heat and power for a typical 170 dam3 dry mill ethanol plant is proposed. The corn ethanol plant requires 5.6 MW of electricity and 52.3 MW of process heat, which creates the annual stover demand of as much as 140 Gg. The corn stover supply system consists of collection, preprocessing, transportation and on-site fuel storage and preparation to produce heat and power for the ethanol plant. Economics of the entire supply system was conducted using the Integrated Biomass Supply Analysis and Logistics (IBSAL) simulation model. Corn stover was delivered in three formats (square bales, dry chops and pellets) to the combined heat and power plant. Delivered cost of biomass ready to be burned was calculated at 73 $ Mg-1 for bales, 86 $ Mg-1 for pellets and 84 $ Mg-1 for field chopped biomass. Among the three formats of stover supply systems, delivered cost of pelleted biomass was the highest due to high pelleting cost. Bulk transport of biomass in the form of chops and pellets can provide a promising future biomass supply logistic system in the US, if the costs of pelleting and transport are minimized.

  16. apollo navigational starter: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are practices that many growers utilize to maximize yield potential. Pop-up fertilizer use is currently being discussed in the corn production community, and the purpose...

  17. PRELIMINARY SURVEY OF SYLVANIA-CORNING NUCLEAR CORPORATION METALLURGIC...

    Office of Legacy Management (LM)

    was sponsored by the AEC reactor development group as well as by Oak Ridge and Savannah River Operations Offices, Lockland Area Office, Argonne National Laboratory, and...

  18. Costs of Harvesting, Storing in a Large Pile, and Transporting Corn Stover in a Wet Form

    SciTech Connect (OSTI)

    Turhollow Jr, Anthony F [ORNL; Sokhansanj, Shahabaddine [ORNL

    2007-01-01T23:59:59.000Z

    Corn stover is potentially an attractive biomass resource, but must be stored if used to supply a biorefinery year-round. Based on experience with successfully storing water-saturated large piles of bagasse for the pulping industry, Atchison and Hettenhaus (2003) proposed that such a system can also be applied to corn stover. Regardless of the technical feasibility of this system, in this article we estimate the cost of harvesting corn stover in a single pass with corn grain, delivering the chopped biomass to a storage pile, storing the stover in a wet form in a large pile at 75% moisture in a 211,700-dry Mg facility within a radius of 24 km from the field, and transporting the stover 64 km to a biorefinery. Field-ground corn stover can be delivered to a biorefinery by rail for $55 to $61/dry Mg. Truck transport is more expensive, $71 to $77/dry Mg. To achieve a minimum cost in the system proposed by Atchison and Hettenhaus, it is necessary to field densify stover to 74 dry kg/m3, without losing combine field efficiency, have a large storage pile to spread fixed costs of storage over enough biomass, and use rail transportation. Compared to storage in an on-farm bunker silo at $60/dry Mg, there are limited circumstances in which large pile storage has a cost advantage.

  19. The Energy Balance of Corn Ethanol: An Update. By Hosein Shapouri, James A. Duffield, and Michael Wang. U.S. Department of Agriculture, Office of the

    E-Print Network [OSTI]

    Laughlin, Robert B.

    #12;The Energy Balance of Corn Ethanol: An Update. By Hosein Shapouri, James A. Duffield.34. Keywords: Ethanol, net energy balance, corn production, energy. About the Authors Shapouri and Duffield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Energy Balance Issue

  20. Elements of Dry-Grind Corn-Processing Streams 113 Applied Biochemistry and Biotechnology Vol. 134, 2006

    E-Print Network [OSTI]

    of ethanol as a fuel additive, ethanol production has increased markedly in the past decade. Ethanol-grind corn process is one of two technologies used to convert corn into ethanol. In this process, all kernel with solubles; ethanol; dry-grind processing; stillage; syrup; element concentrations. #12;114 Belyea et al

  1. Field Experiments at College Station with Corn, Cotton and Forage Plants.

    E-Print Network [OSTI]

    Connel, J. H.; Clayton, James

    1896-01-01T23:59:59.000Z

    H O J Z m P O P m r i I [ F Z M?Seed from A. W. Burpee, Phila? delphia, Pa.; cost, $2.25 per half-bushel. Same as Waterloo Early Dent; roasting ear, June 14th; yield per acre, 35.8 bushels of corn. One hun? dred pounds shucked ear corn yield 88... medium size; yield per acre, 31.3 bush? els of com. One hundred pounds shucked ear corn yield 87.4 pounds grain. S H o Z t [ m F T H P C Z KF s O P mM?Seed from D. Landreth & Sons, Phila? delphia, Pa.; cost, $1.75 per half-bushel. A white flint...

  2. Petroleum Oil | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Petroleum Oil Petroleum Oil The production of energy feedstock and fuels requires substantial water input. Not only do biofuel feedstocks like corn, switchgrass and agricultural...

  3. Factors affecting the efficiency of the mechanical corn picker in Mississippi

    E-Print Network [OSTI]

    Kimbrough, Emmett Alexander

    1953-01-01T23:59:59.000Z

    . piciher s C~eett, Ph pt. hee nee ste-pes en hens Pets seethes e nle harvest approximately h75 acre pex. hour, depending on ths field con ditions and field cise General dimensions and s cificaticns, The machine weighs approxi mateIy 1~509 pounds...) picker net yield& {2) picker losses, (3) loose eax' losses x and (4) shelled cox?l losses s The last operation cr factor studied before the corn pickax' was operated in the corn plots wss to search for loose ears that, msy' have been knocked off...

  4. Factors affecting the efficiency of the mechanical corn picker in Mississippi 

    E-Print Network [OSTI]

    Kimbrough, Emmett Alexander

    1953-01-01T23:59:59.000Z

    . piciher s C~eett, Ph pt. hee nee ste-pes en hens Pets seethes e nle harvest approximately h75 acre pex. hour, depending on ths field con ditions and field cise General dimensions and s cificaticns, The machine weighs approxi mateIy 1~509 pounds...) picker net yield& {2) picker losses, (3) loose eax' losses x and (4) shelled cox?l losses s The last operation cr factor studied before the corn pickax' was operated in the corn plots wss to search for loose ears that, msy' have been knocked off...

  5. Sources of Corn for Ethanol Production in the United States: A Review and Decomposition Analysis of the Empirical Data

    SciTech Connect (OSTI)

    Oladosu, Gbadebo A [ORNL; Kline, Keith L [ORNL; Uria Martinez, Rocio [ORNL; Eaton, Laurence M [ORNL

    2011-01-01T23:59:59.000Z

    The use of corn for ethanol production in the United States quintupled between 2001 and 2009, generating concerns that this could lead to the conversion of forests and grasslands around the globe, known as indirect land-use change (iLUC). Estimates of iLUC and related food versus fuel concerns rest on the assumption that the corn used for ethanol production in the United States would come primarily from displacing corn exports and land previously used for other crops. A number of modeling efforts based on these assumptions have projected significant iLUC from the increases in the use of corn for ethanol production. The current study tests the veracity of these assumptions through a systematic decomposition analysis of the empirical data from 2001 to 2009. The logarithmic mean divisia index decomposition method (Type I) was used to estimate contributions of different factors to meeting the corn demand for ethanol production. Results show that about 79% of the change in corn used for ethanol production can be attributed to changes in the distribution of domestic corn consumption among different uses. Increases in the domestic consumption share of corn supply contributed only about 5%. The remaining contributions were 19% from added corn production, and 2% from stock changes. Yield change accounted for about two-thirds of the contributions from production changes. Thus, the results of this study provide little support for large land-use changes or diversion of corn exports because of ethanol production in the United States during the past decade.

  6. Contributions of Cell Phones to Economic Development in

    E-Print Network [OSTI]

    Anderson, Richard

    Contributions of Cell Phones to Economic Development in Africa: An Information Study of Corn · Background · Motivation · research questions/hypotheses · Framework · Methodology · Contributions to impact corn growers cell phone usage · RH 2: Agricultural information carried on cell phone is more

  7. Companies Participating in the 1996 Corn Performance Trials Company Brand Address

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    CARGILL HYBRID SEEDS CARGILL PO BOX 5645 MINNEAPOLIS MN 55440 DEKALB PLANT GENETICS DEKALB 3100 SYCAMORE MYCOGEN PO BOX 68 TULIA TX 79088 NORTHRUP KING CO. NORTHRUP KING PO BOX 959 MINNEAPOLIS MN 55440 PIONEER-6000 WILSON SEEDS, INC. WILSON PO BOX 391 HARLAN IA 51537 VIRGINIA CORN PERFORMANCE TRIALS IN 1996 Coordinated

  8. Companies Participating in the 1995 Corn Performance Trials Company Brand Address

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    MINNEAPOLIS MN 55440 CAVERNDALE FARMS INC. CAVERNDALE 1921 BLUEGRASS RD DANVILLE KY 40422-9293 DEKALB PLANT MINNEAPOLIS MN 55440 PIONEER HI-BRED INT., INC. PIONEER BRAND 1000 W JEFFERSON ST TIPTON IN 46072 SOUTHERN PO BOX 391 HARLAN IA 51537 VIRGINIA CORN PERFORMANCE TRIALS IN 1995 Coordinated by H. Behl, E. R

  9. Developing and Testing a Trafficability Index for Planting Corn and Cotton in the Texas Blackland Prairie

    E-Print Network [OSTI]

    Helms, Adam J.

    2010-07-14T23:59:59.000Z

    to producers because the high water holding capacity is a product of a high clay percentage. This research was aimed to develop and test an expert-based trafficabililty index, based upon soil moisture, for planting cotton (Gossypium hirsutum L.) and corn (Zea...

  10. Fractionation of phenolic compounds from a purple corn extract and evaluation of antioxidant and antimutagenic activities

    E-Print Network [OSTI]

    Pedreschi, Romina Paola

    2005-08-29T23:59:59.000Z

    anthocyanin-glucosides. Cyadinin-3glucoside was the main constituent (44.4 ?? 4.7%) followed by the acylated cyanidin-3-glucoside (26.9 ?? 8.0%). Other phenolic compounds present in the purple corn corresponded to protocatechuic acid, vanillic acid, and p...

  11. The Integrated Biorefinery: Conversion of Corn Fiber to Value-added Chemicals

    SciTech Connect (OSTI)

    Susanne Kleff

    2007-03-24T23:59:59.000Z

    This presentation provides a summary of Michigan Biotechnology Institute's efforts to employ the corn fiber fraction of a dry grind ethanol plant as a feedstock to produce succinic acid which has potential as a building block intermediate for a wide range of commodity chemicals.

  12. Potential impact of Thailand's alcohol program on production, consumption, and trade of cassava, sugarcane, and corn

    SciTech Connect (OSTI)

    Boonserm, P.

    1985-01-01T23:59:59.000Z

    On the first of May 1980, Thailand's fuel-alcohol program was announced by the Thai government. According to the program, a target of 147 million liters of ethanol would be produced in 1981, from cassava, sugarcane, and other biomasses. Projecting increases in output each year, the target level of ethanol produciton was set at 482 million liters of ethanol for 1986. The proposed amount of ethanol production could create a major shift up in the demand schedule of energy crops such as cassava, sugarcane, and corn. The extent of the adjustments in price, production, consumption, and exports for these energy crops need to be evaluated. The purpose of this study is to assess the potential impact of Thailand's fuel-alcohol program on price, production, consumption, and exports of three potential energy crops: cassava, sugarcane, and corn. Econometric commodity models of cassava, sugarcane, and corn are constructed and used as a method of assessment. The overall results of the forecasting simulations of the models indicate that the fuel-alcohol program proposed by the Thai government will cause the price, production, and total consumption of cassava, sugarcane, and corn to increase; on the other hand, it will cause exports to decline. In addition, based on the relative prices and the technical coefficients of ethanol production of these three energy crops, this study concludes that only cassava should be used to produce the proposed target of ethanol production.

  13. Cellulase Adsorption and Relationship to Features of Corn Stover Solids Produced by

    E-Print Network [OSTI]

    California at Riverside, University of

    ARTICLE Cellulase Adsorption and Relationship to Features of Corn Stover Solids Produced by Leading to sugars for fermentation to ethanol or other products, enzyme adsorption and its relationship to substrate acid, lime, and sulfur dioxide (SO2) pretreat- ments were measured at 48C. Langmuir adsorption para

  14. FARM NET INCOME IMPACT OF SWITCHGRASS PRODUCTION AND CORN STOVER COLLECTION FOR HEAT AND POWER GENERATION

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    GENERATION by Mitchell A. Myhre A thesis submitted in partial fulfillment of the requirements for the degree and Corn Stover Collection for Heat and Power Generation Mitchell A. Myhre Advisor: Associate Professor. Last but not least I would like to thank my wife Lisa for her love and support. #12;iv Table

  15. GEOSPATIAL DECISION SUPPORT FOR SEED COMPANIES IN THE CORN BELT Marcus E. Tooze1

    E-Print Network [OSTI]

    Reichenbach, Stephen E.

    GEOSPATIAL DECISION SUPPORT FOR SEED COMPANIES IN THE CORN BELT Marcus E. Tooze1 , S. Hatten2 , W in the seed industry, new applications emerge for mapping, analysis, and interpretation of cultivar. In addition, a geospatial framework was developed to identify the soil landscapes that had the best soil

  16. Wednesday, July 19, 2006 Researchers use corn waste to generate electricity

    E-Print Network [OSTI]

    's process uses a microbial fuel cell to convert organic material into electricity. Previous work has shown compounds in the corn waste and these compounds can be fed to microbial fuel cells. The microbial fuel cells atoms that combine with the electrons and oxygen to form water. The microbial fuel cells were inoculated

  17. Direct application of West Coast geothermal resources in a wet-corn-milling plant. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-03-01T23:59:59.000Z

    The engineering and economic feasibility of using the geothermal resources in East Mesa, California, in a new corn processing plant is evaluated. Institutional barriers were also identified and evaluated. Several alternative plant designs which used geothermal energy were developed. A capital cost estimate and rate of return type of economic analysis were performed to evaluate each alternative. (MHR)

  18. Agricultural Robot Turning in the Headland of Corn Fields Jinlin Xue1,a

    E-Print Network [OSTI]

    of variable FOV of camera. A settled FOV has been always used in autonomous vehicles for field applications so robot in corn fields. 1. Introduction Since agricultural vehicle navigation based on machine vision was first proposed, methods based on machine vision have been studied extensively in agricultural vehicles

  19. Economic Analysis of Atoxigenic Mitigation Methods for Aflatoxin in Corn in Central Texas

    E-Print Network [OSTI]

    Sampson, Jessica Sue

    2014-04-09T23:59:59.000Z

    atoxigenic treatments and each case was simulated across a range of crop insurance options available to corn producers in Bell County. A total of 50 scenarios were simulated and compared based on net revenue. Results show atoxigenics do provide a monetary...

  20. MICHIGAN'S SOIL NITRATE TEST FOR CORN MSU SOIL AND PLANT NUTRIENT LAB

    E-Print Network [OSTI]

    Isaacs, Rufus

    MICHIGAN'S SOIL NITRATE TEST FOR CORN MSU SOIL AND PLANT NUTRIENT LAB Michigan State University Extension Crop and Soil Sciences Department Michigan State University WHY TEST SOIL FOR NITRATES Nitrate testing of soil is an excellent and inexpensive way of evaluating the available nitrogen (N) status

  1. Membrane separation of solids from corn processing streams Tricia L. Templin a,1

    E-Print Network [OSTI]

    ) 1536­1545 #12;requiring use of scrubbers and thermal oxidizers; exposure of coproducts to heat can are characterized by high water content. Removal of water and recovery of solids are major economic and logistical. Ultrafiltration of STW and SKW had little effect on water removal or solids recovery. Corn was processed

  2. Impact of surfactants on pretreatment of corn stover Qing Qing, Bin Yang 1

    E-Print Network [OSTI]

    California at Riverside, University of

    glycol 4000 during water-only or dilute acid pretreatment of corn stover at 140­220 °C were evaluated energy security, trade deficit, environmental, and economic issues that are becoming more urgent in light of declining petroleum reserves and increasing international demand for transportation fuels. However

  3. Forest Fuel Reduction Survey Analysis: Forest Administrators Cornelis F. de Hoop

    E-Print Network [OSTI]

    Wu, Qinglin

    Forest Fuel Reduction Survey Analysis: Forest Administrators by Cornelis F. de Hoop Amith Hanumappa to seriously investigate and execute the methods required to carry out a successful fuel reduction project operations wherein fuel reduction is a primary management objective. Literature on this wave of activity

  4. A Review of "John Milton: Life, Work, and Thought" by Gordon Campbell and Thomas N. Corns

    E-Print Network [OSTI]

    Nardo, Anna K.

    2009-01-01T23:59:59.000Z

    that no liberal scholar would waste his time on the kind of dross the antiquaries worked on? (356). By contrast, these two modern antiquaries turn dross into true coin. Campbell and Corns do for Milton?s prose what Barbara Lewalski did for Milton?s poetry...

  5. USDA Projections of Bioenergy-Related Corn and Soyoil Use for 2010-2019

    E-Print Network [OSTI]

    biofuel policy and trends, and e) bioenergy impacts on U.S. grain prices are explained below. EconomicUSDA Projections of Bioenergy-Related Corn and Soyoil Use for 2010-2019 Daniel M. O through 2019 period included estimates of world and U.S. energy prices, ethanol and biodiesel production

  6. Imaging corn plants with PhytoPET, a modular PET system for plant biology

    SciTech Connect (OSTI)

    Lee, S.; Kross, B.; McKisson, J.; McKisson, J. E.; Weisenberger, A. G.; Xi, W.; Zorn, C.; Bonito, G.; Howell, C. R.; Reid, C. D.; Crowell, A.; Cumberbatch, L. C.; Topp, C.; Smith, M. F.

    2013-11-01T23:59:59.000Z

    PhytoPET is a modular positron emission tomography (PET) system designed specifically for plant imaging. The PhytoPET design allows flexible arrangements of PET detectors based on individual standalone detector modules built from single Hamamatsu H8500 position sensitive photomultiplier tubes and pixelated LYSO arrays. We have used the PhytoPET system to perform preliminary corn plant imaging studies at the Duke University Biology Department Phytotron. Initial evaluation of the PhytoPET system to image the biodistribution of the positron emitting tracer {sup 11}C in corn plants is presented. {sup 11}CO{sub 2} is loaded into corn seedlings by a leaf-labeling cuvette and translocation of {sup 11}C-sugars is imaged by a flexible arrangement of PhytoPET modules on each side. The PhytoPET system successfully images {sup 11}C within corn plants and allows for the dynamic measurement of {sup 11}C-sugar translocation from the leaf to the roots.

  7. Development of a performance-based industrial energy efficiency indicator for corn refining plants.

    SciTech Connect (OSTI)

    Boyd, G. A.; Decision and Information Sciences; USEPA

    2006-07-31T23:59:59.000Z

    Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

  8. Size reduction of high- and low-moisture corn stalks by linear knife grid system

    SciTech Connect (OSTI)

    Womac, A.R. [University of Tennessee; Igathinathane, C. [Mississippi State University (MSU); Sokhansanj, Shahabaddine [ORNL; Narayan, S. [First American Scientific Co.

    2009-04-01T23:59:59.000Z

    High- and low-moisture corn stalks were tested using a linear knife grid size reduction device developed for first-stage size reduction. The device was used in conjunction with a universal test machine that quantified shearing stress and energy characteristics for forcing a bed of corn stalks through a grid of sharp knives. No published engineering performance data for corn stover with similar devices are available to optimize performance; however, commercial knife grid systems exist for forage size reduction. From the force displacement data, mean and maximum ultimate shear stresses, cumulative and peak mass-based cutting energies for corn stalks, and mean new surface area-based cutting energies were determined from 4 5 refill runs at two moisture contents (78.8% and 11.3% wet basis), three knife grid spacings (25.4, 50.8, and 101.6 mm), and three bed depths (50.8, 101.6, and 152.4 mm). In general, the results indicated that peak failure load, ultimate shear stress, and cutting energy values varied directly with bed depth and inversely with knife grid spacing. Mean separation analysis established that high- and low-moisture conditions and bed depths 101.6 mm did not differ significantly (P < 0.05) for ultimate stress and cutting energy values, but knife grid spacing were significantly different. Linear knife grid cutting energy requirements for both moisture conditions of corn stalks were much smaller than reported cutting energy requirements. Ultimate shear stress and cutting energy results of this research should aid the engineering design of commercial scale linear knife gird size reduction equipment for various biomass feedstocks.

  9. The Future of Corn-Ethanol in Fuel Sector of United States from Environmental and Economic Standpoint

    E-Print Network [OSTI]

    Tulva, Arya Nath

    2007-12-14T23:59:59.000Z

    per gallon to the cost. ? Corn production in the U.S. erodes soil about 12 times faster than the soil can be reformed and irrigating corn mines groundwater 25 percent faster than the natural recharge rate of ground water. The environmental system...-products. Shapouri and Graboski estimates NEV of 16,193 Btu/gal. They indicate that ethanol production utilizes abundant domestic energy supplies of coal and natural gas to convert corn into a premium liquid fuel that can replace petroleum imports by a factor of 7...

  10. Corn versus three sorghums grown under the same dryland conditions as feeds for growing-finishing swine

    E-Print Network [OSTI]

    Meadows, Doyle Gene

    1974-01-01T23:59:59.000Z

    ), received the same fertilisation rate and. were cleaned prior to feeding. The four gra, ins and the diets in which they werc used were designated. : corn, non-yellow sorghum (N-Y), hetero-yellow sorghum (H-Y) and yellow sorghum (Y). The grains...-Y sorghum to S. 02fo for the N-Y sorghum. Lysinc content was higher in corn than the average of the sorghums (0. 25 us. 0. 22fo). Corn had a. slightly higher gross energy value (8. 97 kcal/g) than the average of the sorghums (g. 94 kcal/g) which resulted...

  11. Corn versus three sorghums grown under the same dryland conditions as feeds for growing-finishing swine 

    E-Print Network [OSTI]

    Meadows, Doyle Gene

    1974-01-01T23:59:59.000Z

    , (range of 8$. 5 to 102. 4 percent) the value of corn. A wide variation existed in effic'ency due to quality of' grain and protein supplements, creating a need for m &re identification of' ration constituents, More recent trials in which high quality... The data, indicates a 5. Pjo advantage in feed efficI. ency for corn over the average of the sorghum diets ($. 15 vs. 3. 27) . The advan- tage for corn in feed ef'ficiency is less than has been reported by Peo and. Hudman (1958), 11. II@; Danielson and...

  12. Building Technologies Program: Tax Deduction Qualified Software- Owens Corning Commercial Energy Calculator (OC-CEC) version 1.1

    Broader source: Energy.gov [DOE]

    Provides required documentation that Owens Corning Commercial Energy Calculator (OC-CEC) version 1.1 meets Internal Revenue Code §179D, Notice 2006-52, dated June 2, 2006, for calculating commercial building energy and power cost savings.

  13. The effect of enzymes and hydrocolloids on the texture of tortillas from fresh nixtamalized masa and nixtamalized corn flour 

    E-Print Network [OSTI]

    Gutierrez de Velasco, Arturo Carlos

    2004-09-30T23:59:59.000Z

    The texture of tortillas was improved by the addition of maltogenic amylase and carboxymethylcellulose (CMC) and guar gum to fresh masa from ground nixtamal (FNM) and nixtamalized corn flour (NCF) masa. Differences in the ...

  14. Globalization Nationalized

    E-Print Network [OSTI]

    Mazlish, Bruce

    Globalism and globalization have been seen as competitors to other allegiances, namely regionalism and nationalism. A look at recent efforts at reconceptualizing global history in China, Korea and the U.S., however, suggests ...

  15. Comparison of lines of corn selected on Lufkin fine sandy loam and Norwood silt loam with and without commercial fertilizer

    E-Print Network [OSTI]

    McAfee, Thomas Edison

    1953-01-01T23:59:59.000Z

    COMPARISON OF LINES OF CORN SELE CTED ON LUFKIN FINE SANDY LOAM AND NORWOOD SILT LOAM WITH AND WITHOUT COMMERCIAL FERTILIZER A Dissertation By Thomas Edison MoAfee Approved as to style and content by: Chairman of Committee Heac...Kor Department May, 1953 COMPARISON OF LINES OF CORN SELECTED ON LUFKIN FINE SANDY LOAM AND NORWOOD SILT LOAM WITH AND WITHOUT COMMERCIAL FERTILIZER By Thomas Edison McAfee 111 A Dissertation Submitted to the Graduate School of the Agricultural...

  16. Quantifying Cradle-to-Farm Gate Life-Cycle Impacts Associated with Fertilizer used for Corn, Soybean, and Stover Production

    SciTech Connect (OSTI)

    Powers, S. E.

    2005-05-01T23:59:59.000Z

    Fertilizer use can cause environmental problems, particular eutrophication of water bodies from excess nitrogen or phosphorus. Increased fertilizer runoff is a concern for harvesting corn stover for ethanol production. This modeling study found that eutrophication potential for the base case already exceeds proposed water quality standards, that switching to no-till cultivation and collecting stover increased that eutrophication potential by 21%, and that switching to continuous-corn production on top of that would triple eutrophication potential.

  17. Fuel ethanol produced from U.S. Midwest corn : help or hindrance to the vision of Kyoto?

    SciTech Connect (OSTI)

    Wang, M.; Saricks, C.; Wu, M.; Energy Systems

    1999-07-01T23:59:59.000Z

    In this study, we examined the role of corn-feedstock ethanol in reducing greenhouse gas (GHG) emissions, given present and near-future technology and practice for corn farming and ethanol production. We analyzed the full-fuel-cycle GHG effects of corn-based ethanol using updated information on corn operations in the upper Midwest and existing ethanol production technologies. Information was obtained from representatives of the U.S. Department of Agriculture, faculty of midwestern universities with expertise in corn production and animal feed, and acknowledged authorities in the field of ethanol plant engineering, design, and operations. Cases examined included use of E85 (85% ethanol and 15% gasoline by volume) and E10 (10% ethanol and 90% gasoline). Among key findings is that Midwest-produced ethanol outperforms conventional (current) and reformulated (future) gasoline with respect to energy use and GHG emissions (on a mass emission per travel mile basis). The superiority of the energy and GHG results is well outside the range of model noise. An important facet of this work has been conducting sensitivity analyses. These analyses let us rank the factors in the corn-to-ethanol cycle that are most important for limiting GHG generation. These rankings could help ensure that efforts to reduce that generation are targeted more effectively.

  18. Energy and greenhouse gas emission effects of corn and cellulosic ethanol with technology improvements and land use changes.

    SciTech Connect (OSTI)

    Wang, M.; Han, J.; Haq, Z; Tyner, .W.; Wu, M.; Elgowainy, A. (Energy Systems)

    2011-05-01T23:59:59.000Z

    Use of ethanol as a transportation fuel in the United States has grown from 76 dam{sup 3} in 1980 to over 40.1 hm{sup 3} in 2009 - and virtually all of it has been produced from corn. It has been debated whether using corn ethanol results in any energy and greenhouse gas benefits. This issue has been especially critical in the past several years, when indirect effects, such as indirect land use changes, associated with U.S. corn ethanol production are considered in evaluation. In the past three years, modeling of direct and indirect land use changes related to the production of corn ethanol has advanced significantly. Meanwhile, technology improvements in key stages of the ethanol life cycle (such as corn farming and ethanol production) have been made. With updated simulation results of direct and indirect land use changes and observed technology improvements in the past several years, we conducted a life-cycle analysis of ethanol and show that at present and in the near future, using corn ethanol reduces greenhouse gas emission by more than 20%, relative to those of petroleum gasoline. On the other hand, second-generation ethanol could achieve much higher reductions in greenhouse gas emissions. In a broader sense, sound evaluation of U.S. biofuel policies should account for both unanticipated consequences and technology potentials. We maintain that the usefulness of such evaluations is to provide insight into how to prevent unanticipated consequences and how to promote efficient technologies with policy intervention.

  19. PRELIMINARY SURVEY OF SYLVANIA-CORNING NUCLEAR CORPORATION METALLURGICAL LABORATORY

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN .METALS~

  20. DOE - Office of Legacy Management -- Sylvania Corning Nuclear Corp Inc

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -K LeDowntown Site - MOSutton

  1. DOE - Office of Legacy Management -- Sylvania Corning Plant - NY 19

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling Corp -K LeDowntown Site - MOSuttonPlant - NY 19

  2. Enzymatic Digestibility of Corn Stover Fractions in Response to Fungal Pretreatment

    SciTech Connect (OSTI)

    Cui, Z. F.; Wan, C. X.; Shi, J.; Sykes, R. W.; Li, Y. B.

    2012-05-30T23:59:59.000Z

    Corn stover fractions (leaves, cobs, and stalks) were studied for enzymatic digestibility after pretreatment with a white rot fungus, Ceriporiopsis subvermispora. Among the three fractions, leaves had the least recalcitrance to fungal pretreatment and the lignin degradation reached 45% after 30 days of pretreatment. The lignin degradation of stalks and cobs was similar but was significantly lower than that of leaves (p < 0.05). For all fractions, xylan and glucan degradation followed a pattern similar to lignin degradation, with leaves having a significantly higher percentage of degradation (p < 0.05). Hydrolytic enzyme activity also revealed that the fungus was more active in the degradation of carbohydrates in leaves. As a result of fungal pretreatment, the highest sugar yield, however, was obtained with corn cobs.

  3. Development and evaluation of corn cooking procedures for the production of tortillas

    E-Print Network [OSTI]

    Des Rosiers, Mary Candace

    1979-01-01T23:59:59.000Z

    each cooking treatment. The texture of the tortillas was then measured by the Instron. Extent of gelatinization via enzyme susceptibility was negatively correlated with the Instron grain shear values. Amylograph peaks and particle size determination... Samples of Corn. Chemical Analysis. Preparation of Nixtamal Preparation of Masa. Preparation of Tortillas Evaluation of Particle Size Measurement of Gelatinization. Evaluation of Optimum Cook Time. Color Measurement and Subjective Tests Evaluation...

  4. Creating Reliable Data and Reporting to Support Strategic Energy Management at Corning Incorporated

    E-Print Network [OSTI]

    Garforth, P.

    2014-01-01T23:59:59.000Z

    Creating Reliable Data & Reporting to Support Strategic Energy Management at Corning Incorporated Industrial Energy Technology Conference May 20th, 2014 New Orleans, Louisiana Peter Garforth Garforth International llc Energy Managers’ Workshop ESL... relevant energy data to support Corporate performance targets ESL-IE-14-05-29 Proceedings of the Thrity-Sixth Industrial Energy Technology Conference New Orleans, LA. May 20-23, 2014 Performance Reporting Totals – Usage, Cost, GHG-Emissions Corp Division...

  5. Prececal, postileal and total tract starch digestion in ponies fed corn, oats, barley or sorghum grain

    E-Print Network [OSTI]

    Arnold, Fairfax Ferguson

    1982-01-01T23:59:59.000Z

    of the foot during the acute disease . J. Equine Mad . and Surg. 2: 439. Householder, D. D. 1978. Prececal, postileal and total tract digestion and growth performance in horses fed concentrate rations containing oats or sorghum grain processed by crimping...PRECECAL, POSTILEAL AND TOTAL TRACT STARCH DIGESTION IN PONIES FED CORN, OATS, BARLEY OR SORGHUM GRAIN A Thesis by FAIRFAX FERGUSON ARNOLD Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements...

  6. Recovery of Recombinant and Native Proteins from Rice and Corn Seed 

    E-Print Network [OSTI]

    Wilken, Lisa Rachelle

    2012-02-14T23:59:59.000Z

    .5 precipitation and pH 6 adsorption and 2) pH 4.5 extraction and pH 6 adsorption in the presence of TRIS counter-ions. Both methods improved the binding capacity from 8.6 mg/mL to >25 mg/mL and maintained HuLZ purity. Processing of dry-milled corn germ to increase...

  7. Succinic Acid as a Byproduct in a Corn-based Ethanol Biorefinery

    SciTech Connect (OSTI)

    MBI International

    2007-12-31T23:59:59.000Z

    MBI endeavored to develop a process for succinic acid production suitable for integration into a corn-based ethanol biorefinery. The project investigated the fermentative production of succinic acid using byproducts of corn mill operations. The fermentation process was attuned to include raw starch, endosperm, as the sugar source. A clean-not-sterile process was established to treat the endosperm and release the monomeric sugars. We developed the fermentation process to utilize a byproduct of corn ethanol fermentations, thin stillage, as the source of complex nitrogen and vitamin components needed to support succinic acid production in A. succinogenes. Further supplementations were eliminated without lowering titers and yields and a productivity above 0.6 g l-1 hr-1was achieved. Strain development was accomplished through generation of a recombinant strain that increased yields of succinic acid production. Isolation of additional strains with improved features was also pursued and frozen stocks were prepared from enriched, characterized cultures. Two recovery processes were evaluated at pilot scale and data obtained was incorporated into our economic analyses.

  8. National Nuclear Security Administration | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  9. Office of National Infrastructure & Sustainability | National...

    National Nuclear Security Administration (NNSA)

    National Infrastructure & Sustainability | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  10. Pantex receives National Weather Service recognition | National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    receives National Weather Service recognition | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  11. National Competitiveness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSee theOilNRELTechnologies

  12. National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSeeNUCLEAR SCIENCE WEEKSecurity LLNL's

  13. NATIONAL LABORATORY

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found TheHot electron dynamicsAspen Aerogels,AluminumApproved for

  14. NATIONAL LABORATORY

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartment of Energy 3Services and LowersSafety andNASAand North

  15. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01T23:59:59.000Z

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  16. Fattening Steers on Cottonseed Meal and Cottonseed Hulls With and Without Corn; The Influence of Age on Fattening Steers.

    E-Print Network [OSTI]

    Jones, J. M. (John McKinley); Lush, Jay L. (Jay Laurence); Jones, James Hazlitt

    1923-01-01T23:59:59.000Z

    111 llsteers Lot IV 10 steers Third thirty days. ..... 115.6C.S.M 274.6corn ......... 612.8 hulls. ....... 210.2C.S.M ..... 871.1 hulls. ....... I 3.54C.S.M ...... 8.41corn .......... 18.77 hulls. ........ 5.39C.S.M ...... 22.34 hulls.... ........ Lot I11 11 steers Lot IV 10 steers Fourth thirty days. $10.11 8.17 ...... 3.23C.S.M 10.41 corn.. ........ 23.21 hulls. ........ ...... 6.18C.S.M 26.54 hulls. ........ Lot 111 llsteers Lot IV 10 steers (If the steer with the abscess were...

  17. A comparison of silage and grain yields of four corn hybrids at three locations in Texas 

    E-Print Network [OSTI]

    Martelino, Rafael Agcaoili

    1954-01-01T23:59:59.000Z

    A (X)HPARISOM Of SILAGM AND GRAIN YI~ QF FODR ~ HYBRIDS AT THRE1'' LOGATIONS IM TzXAS A Thesis RAPAol, A. I JKThI, INO Approve as to stgrle aml content Qs (~chairmen of GcnsmLtt ( Haad Department June, 1&54 , ;. RY OF TE A v..., grain yield and lodging peroentage of four corn hybrids and three spacings& Tyler . . ~ 17 ') ~ bined analysis of varianoe of silage yields for the tmo locations ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o ~ ~ ~ ~ ~ ~ 20 10. Combined analysis of varianoe of grain...

  18. Dust suppression characteristics of mineral oil when applied to corn, wheat, or soybeans

    E-Print Network [OSTI]

    Jones, David Don

    1986-01-01T23:59:59.000Z

    and must be added repeatedly. Several water applications could raise the mo i stu re content of grain to the point of encouraging mold growth. Peterson (1977) reported that an average worker wi 1 1 breathe from 4 to 10 m of air during an eight hour work... Jones, B. S. , Texas Al!M University Chairman of Advisory Committee: Dr. Calvin B. Parnell, Jr. Corn, wheat, and soybean samples weighing 454 g each were treated with mineral oil at rates of 50, 100, 200, 400, and 600 ppm and grain dust...

  19. Effect of genotype on cooking and texture of corn for tortilla production

    E-Print Network [OSTI]

    Bedolla, Santiago

    1980-01-01T23:59:59.000Z

    Cell to measure n1xtamal texture . . . Plunger (A) and Ottawa cell (C) to measure tortilla texture Page 13 17 Effect of cook1ng time on n1xtamal texture of corneous, 1ntermediate and floury hybrids (Linear model) Effect of cooking time... composition of corn on the average is: water, 13. 5K; protein, 10K; oil, 4%; carbohydrates 70. 7X; and ash, 1. 4X. The germ contains about 35% oil, 20K protein and 10% ash (Hopkins et al. , 1903; Katz et al. , 1974). Nixtamal Preparation Nethods...

  20. Effect of Enrichment on the Thiamine, Riboflavin and Niacin of Corn Meal and Grits as Prepared for Eating.

    E-Print Network [OSTI]

    Whitacre, Jessie; Pace, June K.; Thomas, Kathreen

    1952-01-01T23:59:59.000Z

    Effects of Enrichment on the Thiamine, Riboflavin and Niacin of Corn Meal and Grits as Prepared for Eating [Blank Page in Original Bulletin] DIGEST This bulletin deals with the increase in the vitamin value of corn meal and grits dishes due... was as nearly as possible like Texas home procedure. Each prepar- ation was analyzed to find out how much of each vitamin was left in the cooked product. Approximately the same amount of riboflavin and niacin was in each preparation after cooking as before...

  1. Hairy Vetch, Bur Clover and Oats as Soil-Building Crops for Cotton and Corn in Texas.

    E-Print Network [OSTI]

    Morris, H. F. (Harry Forest); Johnson, P. R. (Paul Rufus); Reynolds, E. B. (Elbert Brunner)

    1950-01-01T23:59:59.000Z

    for soil improvement increased the average yields of cot- ton ancl corn about 40 percent at College Station for the 11 years, 1937-47. Vetch increased the average yield of cotton 75 to 84 percent and practically doubled the yield of corn at Tyler... yields of cotton than the use of 400 pounds of a 4-8-4 fertilizer per acre at Tyler and Nacog- doches. Hairy vetch was a better green-manure crop than oats at Tyler and oats or bur clover at Nacogdoches. The effects of plowing under hairy vetch lasted...

  2. The feasibility and profitability of short season corn and sorghum cropping systems on the Texas High Plains

    E-Print Network [OSTI]

    Vagts, Todd Anthony

    1995-01-01T23:59:59.000Z

    in the U. S. , therefore, irrigation management, particularly with limited irrigation, is very critical (Howell et al. , 1989). Seasonal ET rates for corn range from 30. 8 to 39. 5 inches with corn yields varying from 132 bu/acre to 204 bu/acre (Eck... 80 bu/acre for grain only wheat and 70 bu/acre for graze-grain wheat. All phosphorous was applied in the fall. Fertilizer was applied in fifteen inch bands in the fall with a knife injector and was applied in granular form in the spring...

  3. National System Templates: Building Sustainable National Inventory...

    Open Energy Info (EERE)

    Templates: Building Sustainable National Inventory Management Systems Jump to: navigation, search Tool Summary LAUNCH TOOL Name: National System Templates: Building Sustainable...

  4. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated...

  5. EFFECT OF ANATOMICAL FRACTIONATION ON THE ENZYMATIC HYDROLYSIS OF ACID AND ALKALINE PRETREATED CORN STOVER

    SciTech Connect (OSTI)

    K. B. Duguid; M. D. Montross; C. W. Radtke; C. L. Crofcheck; L. M. Wendt; S. A. Shearer

    2009-11-01T23:59:59.000Z

    Due to concerns with biomass collection systems and soil sustainability there are opportunities to investigate the optimal plant fractions to collect for conversion. An ideal feedstock would require low severity pretreatment to release a maximum amount of sugar during enzymatic hydrolysis. Corn stover fractions were separated by hand and analyzed for glucan, xylan, acid soluble lignin, acid insoluble lignin, and ash composition. The stover fractions were also pretreated with either 0, 0.4, or 0.8% NaOH for 2 hours at room temperature, washed, autoclaved and saccharified. In addition, acid pretreated samples underwent simultaneous saccharification and fermentation (SSF) to ethanol. In general, the two pretreatments produced similar trends with cobs, husks, and leaves responding best to the pretreatments, the tops of stalks responding slightly less, and the bottom of the stalks responding the least. For example, corn husks pretreated with 0.8% NaOH released over 90% (standard error of 3.8%) of the available glucan, while only 45% (standard error of 1.1%) of the glucan was produced from identically treated stalk bottoms. Estimates of the theoretical ethanol yield using acid pretreatment followed by SSF were 65% (standard error of 15.9%) for husks and 29% (standard error of 1.8%) for stalk bottoms. This suggests that integration of biomass collection systems to remove sustainable feedstocks could be integrated with the processes within a biorefinery to minimize overall ethanol production costs.

  6. Modification of Corn Starch Ethanol Refinery to Efficiently Accept Various High-Impact Cellulosic Feedstocks

    SciTech Connect (OSTI)

    Derr, Dan

    2013-12-30T23:59:59.000Z

    The goal of the Corn-to-Cellulosic Migration (CCM) pilot facility was to demonstrate the implementation of advanced technologies and methods for conversion of non-food, cellulosic feedstocks into ethanol, assess the economics of the facility and evaluate potential environmental benefits for biomass to fuels conversion. The CCM project was comprised of design, build, and operate phases for the CCM pilot facility as well as research & development, and modeling components. The CCM pilot facility was designed to process 1 tonne per day of non-food biomass and biologically convert that biomass to ethanol at a rate of 70 gallons per tonne. The plant demonstrated throughputs in excess of 1 tonne per day for an extended run of 1400 hours. Although target yields were not fully achieved, the continuous operation validated the design and operability of the plant. These designs will permit the design of larger scale operations at existing corn milling operations or for greenfield plants. EdeniQ, a partner in the project and the owner of the pilot plant, continues to operate and evaluate other feedstocks.

  7. Modeled Impacts of Cover Crops and Vegetative Barriers on Corn Stover Availability and Soil Quality

    SciTech Connect (OSTI)

    Ian J. Bonner; David J. Muth Jr.; Joshua B. Koch; Douglas L. Karlen

    2014-06-01T23:59:59.000Z

    Environmentally benign, economically viable, and socially acceptable agronomic strategies are needed to launch a sustainable lignocellulosic biofuel industry. Our objective was to demonstrate a landscape planning process that can ensure adequate supplies of corn (Zea mays L.) stover feedstock while protecting and improving soil quality. The Landscape Environmental Assessment Framework (LEAF) was used to develop land use strategies that were then scaled up for five U.S. Corn Belt states (Nebraska, Iowa, Illinois, Indiana, and Minnesota) to illustrate the impact that could be achieved. Our results show an annual sustainable stover supply of 194 million Mg without exceeding soil erosion T values or depleting soil organic carbon [i.e., soil conditioning index (SCI)?>?0] when no-till, winter cover crop, and vegetative barriers were incorporated into the landscape. A second, more rigorous conservation target was set to enhance soil quality while sustainably harvesting stover. By requiring erosion to be <1/2 T and the SCI-organic matter (OM) subfactor to be >?0, the annual sustainable quantity of harvestable stover dropped to148 million Mg. Examining removal rates by state and soil resource showed that soil capability class and slope generally determined the effectiveness of the three conservation practices and the resulting sustainable harvest rate. This emphasizes that sustainable biomass harvest must be based on subfield management decisions to ensure soil resources are conserved or enhanced, while providing sufficient biomass feedstock to support the economic growth of bioenergy enterprises.

  8. Effect of pelleting on the recalcitrance and bioconversion of dilute-acid pretreated corn stover

    SciTech Connect (OSTI)

    Allison E Ray; Amber Hoover; Gary Gresham

    2012-07-01T23:59:59.000Z

    Background: Knowledge regarding the performance of densified biomass in biochemical processes is limited. The effects of densification on biochemical conversion are explored here. Methods: Pelleted corn stover samples were generated from bales that were milled to 6.35 mm. Low-solids acid pretreatment and simultaneous saccharification and fermentation were performed to evaluate pretreatment efficacy and ethanol yields achieved for pelleted and ground stover (6.35 mm and 2 mm) samples. Both pelleted and 6.35-mm ground stover were evaluated using a ZipperClave® reactor under high-solids, process-relevant conditions for multiple pretreatment severities (Ro), followed by enzymatic hydrolysis of the washed, pretreated solids. Results: Monomeric xylose yields were significantly higher for pellets (approximately 60%) than for ground formats (approximately 38%). Pellets achieved approximately 84% of theoretical ethanol yield (TEY); ground stover formats had similar profiles, reaching approximately 68% TEY. Pelleting corn stover was not detrimental to pretreatment efficacy for both low- and high-solids conditions, and even enhanced ethanol yields.

  9. OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

    E-Print Network [OSTI]

    million dry tonnes of cellulosic material potentially available for ethanol production at a price . Using cellulosic ethanol technologies under development, this much corn stover could produce more ethanol than what is currently produced using corn grain (~4 billion gallons in 2005 ). If no-till corn

  10. Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U.S. Midwest Corn

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    #12;Fuel-Cycle Fossil Energy Use and Greenhouse Gas Emissions of Fuel Ethanol Produced from U on a mass emission per travel mile basis, the corn-to-ethanol fuel cycle for Midwest-produced ethanol% of total domestic ethanol production. That is, while the model still covers all alternative fuels and five

  11. Soil compaction is a manageable factor that can lim-it grain or silage yield on many Virginia soils. Corn

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Soil compaction is a manageable factor that can lim- it grain or silage yield on many Virginia soils. Corn plants growing on compacted areas are often stunted and have slower root penetration rates grown in these areas. Compaction is created when soil particles are pressed together, reducing the pore

  12. A Review of "The Complete Works of Gerrard Winstanley" edited by Thomas N. Corns, Ann Hughes, and David Loewenstein

    E-Print Network [OSTI]

    Hayes, Tom

    2011-01-01T23:59:59.000Z

    -modern English politics for some time to come. Thomas N. Corns, Ann Hughes, and David Loewenstein, eds. The Complete Works of Gerrard Winstanley. Oxford: Oxford University Press, 2009. Vol. I. xi+600pp. Vol. II. 465pp. $335. Review by tom hayes, baruch...

  13. As corn-based biofuels reach their practical limits, advanced algae-based biofuels are poised to supply

    E-Print Network [OSTI]

    Reisslein, Martin

    SEMTE abstract As corn-based biofuels reach their practical limits, advanced algae-based biofuels of Energy, General Electric, Algenol Biofuels, and Southern Company. Currently a post-doctoral fellow working for Algenol Biofuels, Dr. Lively is expanding his expertise in gas and liquid separations

  14. Current biofuel feedstock crops such as corn lead to large environmental losses of N through nitrate leaching and N2

    E-Print Network [OSTI]

    DeLucia, Evan H.

    219 Current biofuel feedstock crops such as corn lead to large environmental losses of N through biofuel crops established on a rich Mollisol soil. Reduced Nitrogen Losses after Conversion of Row Crop Agriculture to Perennial Biofuel Crops Candice M. Smith, Mark B. david,* Corey A. Mitchell, Michael d. Masters

  15. Keeping Corn Farmers Seeing Green As recently as 100 years ago, farmers plowed their fields with horses and

    E-Print Network [OSTI]

    , and agencies such as U.S. Department of Agriculture have long relied on NOAA's weather and climate begins. The economic ties between climate information and agriculture are considerable. For example: Global Climate Change Impacts in the U.S., 2009) #12;impacts. Corn is particularly susceptible to heat

  16. Land Use and Water Efficiency in Current and Potential Future U.S. Corn and Brazilian Sugarcane Ethanol Systems

    E-Print Network [OSTI]

    Ethanol Systems Ethan Warner1, Yimin Zhang1, Helena Chum2 , Robin Newmark1 Biofuels represent technological learning, sugarcane and corn ethanol industries have achieved steady improvements in resource Scope Abstract Conclusions The GHG savings and land energy productivity of both ethanol systems have

  17. Owens Corning

    Energy Savers [EERE]

    Residential Insulation, Frank O'Brien Bernini, VP & Chief Sustainability Officer, Paul Smith, VP Building Materials Group Marketing, John Libonati, VP Government and Public...

  18. Corn fodder

    E-Print Network [OSTI]

    Curtis, Geo. W. (George Washington)

    1891-01-01T23:59:59.000Z

    from stalks below; 4th best-or poorest plan of all-to strip leaves from entire stalk. PLAT 1. Tope cut, only, above eara 14.375 4.258 2.145 65.558 1.587 9.750 -- Protein ....................... Fat .......................... Crude Fibre...

  19. Owens Corning

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2:Introduction toManagementOPAM PolicyOfEnergyOutreach toOverviewOverview

  20. NREL 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    SciTech Connect (OSTI)

    Tao, L.; Schell, D.; Davis, R.; Tan, E.; Elander, R.; Bratis, A.

    2014-04-01T23:59:59.000Z

    For the DOE Bioenergy Technologies Office, the annual State of Technology (SOT) assessment is an essential activity for quantifying the benefits of biochemical platform research. This assessment has historically allowed the impact of research progress achieved through targeted Bioenergy Technologies Office funding to be quantified in terms of economic improvements within the context of a fully integrated cellulosic ethanol production process. As such, progress toward the ultimate 2012 goal of demonstrating cost-competitive cellulosic ethanol technology can be tracked. With an assumed feedstock cost for corn stover of $58.50/ton this target has historically been set at $1.41/gal ethanol for conversion costs only (exclusive of feedstock) and $2.15/gal total production cost (inclusive of feedstock) or minimum ethanol selling price (MESP). This year, fully integrated cellulosic ethanol production data generated by National Renewable Energy Laboratory (NREL) researchers in their Integrated Biorefinery Research Facility (IBRF) successfully demonstrated performance commensurate with both the FY 2012 SOT MESP target of $2.15/gal (2007$, $58.50/ton feedstock cost) and the conversion target of $1.41/gal through core research and process improvements in pretreatment, enzymatic hydrolysis, and fermentation.

  1. Cost Effective Bioethanol via Acid Pretreatment of Corn Stover, Saccharification, and Conversion via a Novel Fermentation Organism: Cooperative Research and Development Final Report, CRADA Number: CRD-12-485

    SciTech Connect (OSTI)

    Dowe, N.

    2014-05-01T23:59:59.000Z

    This research program will convert acid pretreated corn stover to sugars at the National Renewable Energy Laboratory (NREL) and then transfer these sugars to Honda R&D and its partner the Green Earth Institute (GEI) for conversion to ethanol via a novel fermentation organism. In phase one, NREL will adapt its pretreatment and saccharification process to the unique attributes of this organism, and Honda R&D/GEI will increase the sugar conversion rate as well as the yield and titer of the resulting ethanol. In later phases, NREL, Honda R&D, and GEI will work together at NREL to optimize and scale-up to pilot-scale the Honda R&D/GEI bioethanol production process. The final stage will be to undertake a pilot-scale test at NREL of the optimized bioethanol conversion process.

  2. Comparison of Dow Corning 544 antifoam to IIT747 antifoam in the 1/240 SRAT

    SciTech Connect (OSTI)

    Koopman, D.C.

    2000-05-12T23:59:59.000Z

    The Defense Waste Processing Facility requested that the Immobilization Technology Section compare the relative foaming tendencies of sludge simulant during simulated Chemical Processing Cell operations (HLW-DWPF-TTR-99-0012). Dow Corning 544 antifoam, currently used in DWPF, was compared to a new antifoam formulation developed at the Illinois Institute of Technology. A task plan was written and approved. The task plan deliverables included a recommendation on the choice of antifoam, an evaluation of the influence of solids concentration on foaming, an evaluation on the effect of boil-up rate on foaming, an estimate of the mass of steam stripped to remove 90 percent of the mercury, and a determination of the fate of mercury. Additional parameters to be investigated during experimentation included the maximum foam height observed, hydrogen generation rates, and nitrite destruction rates.

  3. Brookhaven National Laboratory National Synchrotron Light Source

    E-Print Network [OSTI]

    Ohta, Shigemi

    Brookhaven National Laboratory National Synchrotron Light Source Number: Revision: LS-ESH-0027 06 copy of this file is the one on-line in the NSLS ESH website. Before using a printed copy, verify that it is the most current version by checking the document issue date on the NSLS ESH website. BROOKHAVEN NATIONAL

  4. Brookhaven National Laboratory National Synchrotron Light Source

    E-Print Network [OSTI]

    Ohta, Shigemi

    Brookhaven National Laboratory National Synchrotron Light Source Number: Revision: PS-ESH-0025 01 of this file is the one on-line in the NSLS ESH website. Before using a printed copy, verify that it is the most current version by checking the document issue date on the NSLS ESH website. BROOKHAVEN NATIONAL

  5. Brookhaven National Laboratory National Synchrotron Light Source

    E-Print Network [OSTI]

    Ohta, Shigemi

    Brookhaven National Laboratory National Synchrotron Light Source Number: Revision: LS-ESH-0026 4 of this file is the one on-line in the PS ESH website. Before using a printed copy, verify that it is the most current version by checking the document issue date on the PS ESH website. BROOKHAVEN NATIONAL LABORATORY

  6. Effects of feeding stimulant and insecticide mixtures on feeding response and morality of adult male corn earworm, Helicoverpa zea (Boddie)(Lepidoptera:Noctuidae)

    E-Print Network [OSTI]

    Clemens, Christopher Glen

    1996-01-01T23:59:59.000Z

    stimulants on feeding behavior and mortality of pheromone trap captured adult male corn earworms, Helicoverpa zea (Boddie), to screen and evaluate toxicants for use in an attracticide formulation. Commercially-available formulations of acephate, boric acid...

  7. Effects of feeding stimulant and insecticide mixtures on feeding response and morality of adult male corn earworm, Helicoverpa zea (Boddie)(Lepidoptera:Noctuidae) 

    E-Print Network [OSTI]

    Clemens, Christopher Glen

    1996-01-01T23:59:59.000Z

    stimulants on feeding behavior and mortality of pheromone trap captured adult male corn earworms, Helicoverpa zea (Boddie), to screen and evaluate toxicants for use in an attracticide formulation. Commercially-available formulations of acephate, boric acid...

  8. Effect of reducing amino acid excess in a corn-soybean meal diet on performance, nitrogen balance and nutrient digestibilities of growing pigs

    E-Print Network [OSTI]

    Kelly, Katherine Ann

    1988-01-01T23:59:59.000Z

    EFFECT OF REDUCING AMINO ACID EXCESS IN A CORN-SOYBEAN MEAL DIET ON PERFORMANCE, NITROGEN BALANCE AND NUTRIENT DIGESTIBILITIES OF GROWING PIGS A Thesis by KATHERINE ANN KELLY Submitted to the Graduate College of Texas A&M University... in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 1988 Major Subject: Nutrition EFFECT OF REDUCING AMINO ACID EXCESS IN A CORN-SOYBEAN MEAL DIET ON PERFORMANCE, NITROGEN BALANCE AND NUTRIFNT DIGESTIBILITIES OF GROWING...

  9. Avocado thrips: New challenge for growers

    E-Print Network [OSTI]

    Hoddle, Mark S.; Morse, Joseph G.; Phillips, Phil A.; Faber, Ben A.; Jetter, Karen M.

    2002-01-01T23:59:59.000Z

    MAY- JUNE 2002 Potential avocado pests and biologicalof foreign exploration for avocado thrips (ScirtothripsJack Kelly Clark Avocado thrips, above (adult female), were

  10. California cotton growers utilize integrated pest management

    E-Print Network [OSTI]

    Brodt, Sonja; Goodell, Peter B.; Krebill-Prather, Rose L.; Vargas, Ron N.

    2007-01-01T23:59:59.000Z

    a comprehensive survey of pest management decision-makingfor overall health. Surveys of pest management prac- ticespest management advice was almost universal among the survey

  11. Bill Cutts, cranberry grower, delivering his presentation.

    E-Print Network [OSTI]

    Goodman, Robert M.

    to concerns about water quality degradation, led Ray Samulis (agricultural resource management agent at the future with regards to conserving and recycling agricultural water. Mangiafico discussed the latest recommendations on recycling of irrigation water, a topic of great interest to South Jersey nurserymen who today

  12. Northern Growers LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpenNorth America DrillingCalifornia Solar EnergyNorthern

  13. National Science Bowl Finals

    ScienceCinema (OSTI)

    None

    2010-09-01T23:59:59.000Z

    National Science Bowl finals and awards at the National Building Museum in Washington D.C. Monday 5/3/2010

  14. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

  15. Sandia National Laboratories: PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Sandia Corporation | Questions & Comments | Privacy & Security U.S. Department of Energy National Nuclear Security Administration Sandia National Laboratories is a...

  16. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility, News, News & Events, Partnership, Renewable Energy, Solar, Solar Newsletter On November 24, 2012 the National Solar Thermal Test...

  17. Sandia National Laboratories: ACEC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ACEC Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar...

  18. National Science Bowl Finals

    SciTech Connect (OSTI)

    2010-05-03T23:59:59.000Z

    National Science Bowl finals and awards at the National Building Museum in Washington D.C. Monday 5/3/2010

  19. National Nuclear Security Administration

    Broader source: Energy.gov (indexed) [DOE]

    and Related Structures within TA-3 at Los Alamos National Laboratory, Los Alamos, New Mexico U. S. Department of Energy National Nuclear Security Administration Los Alamos Area...

  20. Effect of plant populations and row spacings on plant and ear characters and grain yield of corn hybrids 

    E-Print Network [OSTI]

    Silapapun, Anek

    1976-01-01T23:59:59.000Z

    break- age and barren stalks increased with increase in population densities. Allessi and Power (2) also found that number of barren stalks increased and ear weight decreased with increased plant population. Bleasdale (7) proposed that if a crop...EFFECT OF PLANT POPULATIONS AND ROW SPACINGS ON PLANT AND EAR CHARACTERS AND GRAIN YIELD OF CORN HYBRIDS A Thesis by ANEK SILAPAPUN Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement...

  1. Forecasting Mexican imports of U.S. corn, sorghum and soybeans under free trade and debt reduction scenarios

    E-Print Network [OSTI]

    Lyford, Conrad Power

    1991-01-01T23:59:59.000Z

    INFORMATION Mexican External Debt and Structural Adjustment U. S. - Mexico Agricultural Trade Commodity Specific Factors LITERATURE REVIEW Economic Integration and the Welfare Impacts of a FTA Modeling Methods METHOD OF ANALYSIS AND DATA Description... BACKGROUND INFORMATION To analyze corn, sorghum and soybean trade it is useful to outline several background factors. First, Mexican external debt and its impact on U. S. -Mexican agricultural trade will be discussed. Second, U. S. -Mexican agricultural...

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Ethanol Infrastructure Grants The Kentucky Corn Growers' Association (KyCGA) offers grants of 5,000 per pump to retailers installing new E85 dispensers in Kentucky. For more...

  3. Transgenic rice evaluated for risks to marketability

    E-Print Network [OSTI]

    Mulvaney, Dustin R; Krupnik, Timothy J; Koffler, Kaden B

    2011-01-01T23:59:59.000Z

    USDA Field Tests of GM Crops Database. www.isb.vt.edu (industrial traits in GM crops: Coexistence with conventionalrifice export markets due to GM crops. American Corn Growers

  4. National Renewable Energy Laboratory

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

  5. Sandia National Laboratories: Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  6. Sandia National Laboratories: National Rotor Testbed Functional...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the National Rotor Testbed: An Aeroelastically Relevant Research-Scale Wind Turbine Rotor." Approximately 60 researchers from various institutions and countries attended...

  7. Consent Order, Lawrence Livermore National National Security...

    Energy Savers [EERE]

    for deficiencies associated with the Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program On October 29, 2010, the U.S. Department of Energy (DOE)...

  8. Sandia National Laboratories: Jawaharlal Nehru Solar National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jawaharlal Nehru Solar National Solar Energy Mission Solar Energy Research Institute for India and the United States Kick-Off On November 27, 2012, in Concentrating Solar Power,...

  9. National Security Photo Gallery | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security Photo Gallery Richard Cirillo 1 of 10 Richard Cirillo RICHARD R. CIRILLO Dr. Richard R. Cirillo serves as Director of the Decision and Information Sciences...

  10. Sandia National Laboratories: national reliability database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    national reliability database Third Annual Continuous Reliability Enhancement for Wind (CREW) Database Report Now Available On October 17, 2013, in Energy, News, News & Events,...

  11. Argonne National Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Slip sliding away Graphene and diamonds prove a slippery combination Read More ACT-SO winners Argonne mentors students for the next generation of...

  12. Response Surface Analysis of Elemental Composition and Energy Properties of Corn Stover During Torrefaction

    SciTech Connect (OSTI)

    Jaya Shankar Tumuluru; Richard D. Boardman; Christopher T. Wright

    2012-02-01T23:59:59.000Z

    This research studied the effects of torrefaction temperature (250-250 C) and time (30-120 minutes) on elemental composition and energy properties changes in corn stover. Torrefied material was analyzed for moisture content, moisture-free carbon (%), hydrogen (%), nitrogen (%), sulfur (%), and higher heating value (MJ/kg). Results at 350 C and 120 minutes indicated a steep decrease in moisture content to a final value of about 1.48% - a reduction of about 69%. With respect to carbon content, the increase was about 23%, while hydrogen and sulfur content decreased by about 46.82% and 66.6%, respectively. The hydrogen-to-carbon ratio decreased as torrefaction temperature and time increased, with the lowest value of 0.6 observed at 350 C and 120 minutes. Higher heating value measured at 350 C and 60 minutes increased by about 22% and the maximum degree of carbonization observed was about 1.21. Further, the regression models developed for chemical composition in terms of torrefaction temperature and time adequately described the process with coefficient of determination values (R2) in the range of 0.92-0.99 for the elemental composition and energy properties studied. Response surface plots indicated that increasing both torrefaction temperature and time resulted in decreased moisture content, hydrogen content, and the hydrogen to-carbon ratio, and increased carbon content and higher heating value. This effect was more significant at torrefaction temperatures and times >280 C and >30 minutes.

  13. Pacific Northwest National Laboratory

    E-Print Network [OSTI]

    Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy Northwest National Laboratory (PNNL) operated by Battelle Memorial Institute. Battelle has a unique contract

  14. Argonne National Laboratory's Nondestructive

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne National Laboratory's Nondestructive Evaluation Technologies NDE #12;Over45yearsexperienceinNondestructiveEvaluation... Argonne National Laboratory's world-renowned researchers have a proven the safe operationof advanced nuclear reactors. Argonne's World-Class Nondestructive Evaluation

  15. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As one of the largest laboratories in the nation for science and engineering research, Argonne National Laboratory is home to some of the most prolific and well-renowned scientists...

  16. National Energy Education Summit

    Broader source: Energy.gov [DOE]

    The National Energy Education Summit is organized by the Council of Energy Research and Education Leaders (CEREL) and will serve as a first-of-its-kind national forum for energy educators, subject...

  17. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (PSEL) National Supervisory Control and Data Acquisition (SCADA) Test Bed Center for Integrated Nanotechnologies (CINT) Distributed Energy Technologies Laboratory...

  18. National Hydropower Map

    Broader source: Energy.gov [DOE]

    High-resolution map produced by Oak Ridge National Laboratory showing hydropower resources throughout the United States.

  19. National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FROM: SUBJECT: USIUK Memorandum of Understanding between National Nuclear Security Administration's (NNSA) Associate Administrator for Defense Nuclear Security (AADNS)...

  20. Sandia National Laboratories: AREVA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility, News, News & Events, Partnership, Renewable Energy, Research &...

  1. Sandia National Laboratories: National Rotor Testbed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, SWIFT, Systems Analysis, Wind Energy The National Rotor Testbed (NRT) team is examining the effect of airfoil choice on the final design of the new rotor for the Scaled...

  2. NATIONAL HYDROGEN ENERGY ROADMAP

    E-Print Network [OSTI]

    NATIONAL HYDROGEN ENERGY ROADMAP NATIONAL HYDROGEN ENERGY ROADMAP . . Toward a More Secure and Cleaner Energy Future for America Based on the results of the National Hydrogen Energy Roadmap Workshop to make it a reality. This Roadmap provides a framework that can make a hydrogen economy a reality

  3. Engineering, Nutrient Removal, and Feedstock Conversion Evaluations of Four Corn Stover Harvest Scenarios

    SciTech Connect (OSTI)

    Reed L. Hoskinson; Douglas L. Karlen; Stuart J. Birrell; Corey W. Radtke; W.W. Wilhelm

    2007-02-01T23:59:59.000Z

    Crop residue has been identified as a near-term source of biomass for renewable fuel, heat, power, chemicals and other bio-materials. Replicated plots were established in a corn (Zea mays L.) field near Ames, IA to evaluate four harvest scenarios (low cut, high-cut top, high-cut bottom, and normal cut). A prototype one-pass harvest system was used to collect the residue samples. High-cut top and high-cut bottom samples were obtained from the same plots in two separate operations. Chemical composition, dilute acid pretreatment response, ethanol conversion efficiency and gasification parameters for each scenario were determined. Mean grain yield (10.1 Mg ha-1 dry weight) was representative of the area. The four harvest scenarios removed 6.7, 4.9, 1.7, and 5.1 Mg ha-1 of dry matter. Expressed as harvest indices (HI) the values were 0.60 for low cut, 0.66 for normal cut, and 0.61 for the total high-cut (top + bottom) scenarios, which are probably realistic for machine harvest and current hybrids. The macro-nutrient replacement value for the normal harvest scenario under our conditions was $57.36 ha-1 or $11.27 Mg-1. Harvesting stalk bottoms increased the water content, the risk of combine damage, the transportation costs, and left insufficient soil cover, while also producing a problematic feedstock. Harvesting stover at current combine height (~40 cm) would be best for farmers and ethanol producers because of better harvest speed and efficiency as well as the quality of the ethanol feedstock.

  4. Influence of Airflow on Laboratory Storage of High Moisture Corn Stover

    SciTech Connect (OSTI)

    Lynn M. Wendt; Ian J. Bonner; Amber N. Hoover; Rachel M. Emerson; William A. Smith

    2014-04-01T23:59:59.000Z

    Storing high moisture biomass for bioenergy use is a reality in many areas of the country where wet harvest conditions and environmental factors prevent dry storage from being feasible. Aerobic storage of high moisture biomass leads to microbial degradation and self-heating, but oxygen limitation can aid in material preservation. To understand the influence of oxygen presence on high moisture biomass (50 %, wet basis), three airflow rates were tested on corn stover stored in laboratory reactors. Temperature, carbon dioxide production, dry matter loss, chemical composition, fungal abundance, pH, and organic acids were used to monitor the effects of airflow on storage conditions. The results of this work indicate that oxygen availability impacts both the duration of self-heating and the severity of dry matter loss. High airflow systems experienced the greatest initial rates of loss but a shortened microbially active period that limited total dry matter loss (19 %). Intermediate airflow had improved preservation in short-term storage compared to high airflow systems but accumulated the greatest dry matter loss over time (up to 27 %) as a result of an extended microbially active period. Low airflow systems displayed the best performance with the lowest rates of loss and total loss (10 %) in storage at 50 days. Total structural sugar levels of the stored material were preserved, although glucan enrichment and xylan loss were documented in the high and intermediate flow conditions. By understanding the role of oxygen availability on biomass storage performance, the requirements for high moisture storage solutions may begin to be experimentally defined.

  5. Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Elliott, Douglas C.; Wang, Huamin; Rover, Majorie; Whitmer, Lysle; Smith, Ryan; Brown, Robert C.

    2015-05-04T23:59:59.000Z

    Phenolic oils were produced from fast pyrolysis of two different biomass feedstocks, red oak and corn stover and evaluated in hydroprocessing tests for production of liquid hydrocarbon products. The phenolic oils were produced with a bio-oil fractionating process in combination with a simple water wash of the heavy ends from the fractionating process. Phenolic oils derived from the pyrolysis of red oak and corn stover were recovered with yields (wet biomass basis) of 28.7 wt% and 14.9 wt%, respectively, and 54.3% and 58.6% on a carbon basis. Both precious metal catalysts and sulfided base metal catalyst were evaluated for hydrotreatingmore »the phenolic oils, as an extrapolation from whole bio-oil hydrotreatment. They were effective in removing heteroatoms with carbon yields as high as 81% (unadjusted for the 90% carbon balance). There was nearly complete heteroatom removal with residual O of only 0.4% to 5%, while N and S were reduced to less than 0.05%. Use of the precious metal catalysts resulted in more saturated products less completely hydrotreated compared to the sulfided base metal catalyst, which was operated at higher temperature. The liquid product was 42-52% gasoline range molecules and about 43% diesel range molecules. Particulate matter in the phenolic oils complicated operation of the reactors, causing plugging in the fixed-beds especially for the corn stover phenolic oil. This difficulty contrasts with the catalyst bed fouling and plugging, which is typically seen with hydrotreatment of whole bio-oil. This problem was substantially alleviated by filtering the phenolic oils before hydrotreating. More thorough washing of the phenolic oils during their preparation from the heavy ends of bio-oil or on-line filtration of pyrolysis vapors to remove particulate matter before condensation of the bio-oil fractions is recommended.« less

  6. Hydrocarbon Liquid Production via Catalytic Hydroprocessing of Phenolic Oils Fractionated from Fast Pyrolysis of Red Oak and Corn Stover

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Elliott, Douglas C. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Wang, Huamin [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Rover, Majorie [Iowa State University, Ames, IA (United States); Whitmer, Lysle [Iowa State University, Ames, IA (United States); Smith, Ryan [Iowa State University, Ames, IA (United States); Brown, Robert C. [Iowa State University, Ames, IA (United States)

    2015-05-04T23:59:59.000Z

    Phenolic oils were produced from fast pyrolysis of two different biomass feedstocks, red oak and corn stover and evaluated in hydroprocessing tests for production of liquid hydrocarbon products. The phenolic oils were produced with a bio-oil fractionating process in combination with a simple water wash of the heavy ends from the fractionating process. Phenolic oils derived from the pyrolysis of red oak and corn stover were recovered with yields (wet biomass basis) of 28.7 wt% and 14.9 wt%, respectively, and 54.3% and 58.6% on a carbon basis. Both precious metal catalysts and sulfided base metal catalyst were evaluated for hydrotreating the phenolic oils, as an extrapolation from whole bio-oil hydrotreatment. They were effective in removing heteroatoms with carbon yields as high as 81% (unadjusted for the 90% carbon balance). There was nearly complete heteroatom removal with residual O of only 0.4% to 5%, while N and S were reduced to less than 0.05%. Use of the precious metal catalysts resulted in more saturated products less completely hydrotreated compared to the sulfided base metal catalyst, which was operated at higher temperature. The liquid product was 42-52% gasoline range molecules and about 43% diesel range molecules. Particulate matter in the phenolic oils complicated operation of the reactors, causing plugging in the fixed-beds especially for the corn stover phenolic oil. This difficulty contrasts with the catalyst bed fouling and plugging, which is typically seen with hydrotreatment of whole bio-oil. This problem was substantially alleviated by filtering the phenolic oils before hydrotreating. More thorough washing of the phenolic oils during their preparation from the heavy ends of bio-oil or on-line filtration of pyrolysis vapors to remove particulate matter before condensation of the bio-oil fractions is recommended.

  7. A physiological basis for determining a possible mechanism for migration in Helicoverpa zea (Boddie), the corn earworm

    E-Print Network [OSTI]

    Weise, Carolyn Joan

    1993-01-01T23:59:59.000Z

    to the stimulation and capacity of a migratory insect. 13 2. Restraining of the insect in the dissecting dish using modeling clay (a), so that the neck membrane is exposed (b) for the allatectomy procedure... 18 3. Tethered corn earworm moth on a flight mill 19 4... dissecting dish. To restrain the insect, a clay "seat" was molded in the bottom of the dish. The insect was then laid in the seat with its ventral side up and held by placing one strip of clay across the thorax, as illustrated in Figure 2a. The head...

  8. Abbreviated life tables of natural populations of the corn earworm, Heliothis zea (Boddie) (Lepidoptera: Noctuidae), on peanuts in Comanche and Erath Counties, Texas

    E-Print Network [OSTI]

    Sears, Darrell Eugene

    1975-01-01T23:59:59.000Z

    for the corn earworm on irrigated peanuts in Comanche and Erath Counti es, Texas, 1973 21 4 Abbreviated natural mortality table for the corn earworm on dryland peanuts in Comanche and Erath Counties, Texas, 1973 23 5 Partial mortality budget for the July...); the cereal leaf beetle, Oulema ~1 ~ (L)(Shed t 1. 1970); th p p1 9 11 , d ~Sa erda inornata Say (Gimbl e and Knight 1970) . In addition, Harcourt (1963) initiated a th) ee-part study on the popu- 1 ti dy i 6 th 6 1 d p t t 6 tl, 6~it decemlineata (Say...

  9. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2012, in Concentrating Solar Power, EC, National Solar Thermal Test Facility, Renewable Energy Dr. David Danielson visited Sandia National Laboratories and toured the National...

  10. Cognitive Informatics, Pacific Northwest National Laboratory | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of theNuclearNanotechnologies | NationalNuclear

  11. Sandia National Laboratories | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTART Signed | National|Operations /

  12. Sandia National Laboratories | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTART Signed | National|Operations /Allison

  13. Sandia National Laboratories | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTART Signed | National|Operations

  14. Sandia National Laboratories | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTART Signed | National|OperationsSandia

  15. Sandia National Laboratory | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTubeCenters:FacebookContractor/Bidder| National Nuclear

  16. Metabolism of carbaryl, chloropyrifos, DDT, and parathion in the European corn borer: effects of microsporidiosis on toxicity and detoxication

    SciTech Connect (OSTI)

    Tetreault, G.E.

    1985-01-01T23:59:59.000Z

    An investigation was conducted to examine the effects of microsporidiosis on an insect's response to insecticide intoxication. Healthy European corn borer, Ostrinia nubilalis, larvae and those heavily infected with the microsporidian pathogen, Nosema pyrausta, were bioassayed with ten insecticides. The compounds used were carbaryl, carbofuran, chlorophrifos, DDT, diazinon, fonofos, methomyl, parathion, permethrin, and terbufos. Third instar larvae were used for topical bioassays. The compounds carbaryl, carbofuran, chlorophrifos, methomyl and terbufos were found to be significantly more toxic to diseased insects than healthy insects at the 0.05 probability level. To examine the effect of Nosema pyrausta infection on the European corn borer's ability to detoxify insecticides, /sup 14/C ring-labeled carbaryl, chlorophrifos, DDT, and parathion were topically applied to fourth instar larvae. Qualitative differences between healthy and diseased insects were found in the metabolic pathways of carbaryl, DDT, and parathion. The degradative fate of chlorophrifos was the same in both groups. Quantitatively, each insecticide penetrated diseased larvae faster. This resulted in larger amounts of the applied dose of parent compound and metabolites being found in the feces from diseased insects. Conversely, healthy insects had more of these materials present in the body and associated with the cuticle.

  17. Employment at National Laboratories

    SciTech Connect (OSTI)

    E. S. Peterson; C. A. Allen

    2007-04-01T23:59:59.000Z

    Scientists enter the National Laboratory System for many different reasons. For some, faculty positions are scarce, so they take staff-scientist position at national laboratories (i.e. Pacific Northwest, Idaho, Los Alamos, and Brookhaven). Many plan to work at the National Laboratory for 5 to 7 years and then seek an academic post. For many (these authors included), before they know it it’s 15 or 20 years later and they never seriously considered leaving the laboratory system.

  18. Sandia National Laboratories: AMI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Initiative (AMI) is a multiple-year, 3-way collaboration among TPI Composites, Iowa State University, and Sandia National Laboratories. The goal of this...

  19. Sandia National Laboratories: Microgrid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to solve many of the nation's most complex challenges in satisfying its electric energy needs. Initial focus has been on enabling resilient and reliable performance when...

  20. National Day of Remembrance

    ScienceCinema (OSTI)

    None

    2013-03-01T23:59:59.000Z

    Ames Laboratory observed the National Day of Remembrance for weapons workers from the Cold War era with a ceremony held Oct. 27, 2009 at the Ames Public Library.

  1. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security National Solar Thermal Test Facility NSTTF Nuclear Energy photovoltaic Photovoltaics PV Renewable Energy solar Solar Energy solar power Solar Research Solid-State...

  2. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 Inverter Reliability Workshop On May 31, 2013, in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project...

  3. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photovoltaic Microsystems Enabled Photovoltaics (MEPV) On April 14, 2011, in About MEPV Flexible MEPV MEPV Publications MEPV Awards Researchers at Sandia National Laboratories are...

  4. News | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers from Argonne National Laboratory modeled several scenarios to add more solar power to the electric grid, using real-world data from the southwestern power...

  5. Sandia National Laboratories: SPI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference, the Department of Energy (DOE), the Electric Power Research Instisute (EPRI), Sandia National Laboratories, ... Last Updated: September 10, 2012 Go To Top ...

  6. Sandia National Laboratories: IRED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid, Solar Sandia National Laboratories, the Electric Power Research Institute (EPRI) and European Distributed Energies Research Laboratories (DERlab) have organized a...

  7. Sandia National Laboratories: PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Photovoltaic Technology and Tour of PV Test Facilities On February 12, 2013, in The Photovoltaics and Distributed Systems Integration Department at Sandia National...

  8. Sandia National Laboratories: Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate, Customers & Partners, Energy, Energy Surety,...

  9. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summit and Technology Forum will convene the ... A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate,...

  10. Sandia National Laboratories: Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quallion Eaton Corp. Air Products ExxonTonen ... A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate,...

  11. Sandia National Laboratories: CETI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CETI A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate, Customers & Partners, Energy, Energy Surety,...

  12. Sandia National Laboratories: Vermont

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vermont A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate, Customers & Partners, Energy, Energy Surety,...

  13. Sandia National Laboratories: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This public benchmark represents analysis ... A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate,...

  14. Sandia National Laboratories: Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geoscience, Climate and Consequence Effect at Sandia National Laboratories presented on "Hydraulic Fracturing: Role of Government-Sponsored R&D." Marianne's presentation was part...

  15. The National Mission | JCESR

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    place huge demand on the nation's electrical grid, while the increased use of wind and solar energy will challenge the grid's ability to provide a stable electrical supply...

  16. Sandia National Laboratories: publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories, August 2010. 2009 Adrian R. Chavez, Position Paper: Protecting Process Control Systems against Lifecycle Attacks Using Trust Anchors Sandia National ... Page 1...

  17. National Day of Remembrance

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Ames Laboratory observed the National Day of Remembrance for weapons workers from the Cold War era with a ceremony held Oct. 27, 2009 at the Ames Public Library.

  18. Transportation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patented technologies created by Argonne - which includes solutions for the smart grid, electric vehicles, emissions control and more - will help our nation conserve energy and...

  19. Sandia National Laboratories: performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance Photovoltaic (PV) Regional Test Center (RTC) Website Goes Live On February 26, 2013, in Energy, National Solar Thermal Test Facility, News, News & Events, Partnership,...

  20. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the first results of joint work by scientists from Lawrence Berkeley, Pacific Northwest, Savannah River, and Los Alamos national laboratories at the Savannah River Site to model...

  1. Sandia National Laboratories: Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    security and economic prosperity. Energy security research at Sandia seeks to address key challenges facing our nation and the world. We work ... Page 2 of 212 Last...

  2. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  3. Discoveries | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nation's pressing scientific and technological challenges. Robert Fischetti and Janet Smith developed the first micro X-ray beam for structural biology at Argonne's Advanced...

  4. Sandia National Laboratories: Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic (PV) Regional Test Center (RTC) Website Goes Live On February 26, 2013, in Energy, National Solar Thermal Test Facility, News, News & Events, Partnership,...

  5. Sandia National Laboratories: photostability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated: May 23, 2013 Go To Top Exceptional service in the national interest EC About Energy and Climate (EC) Energy Security Climate Security Infrastructure Security Energy...

  6. Sandia National Laboratories: CCT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated: May 23, 2013 Go To Top Exceptional service in the national interest EC About Energy and Climate (EC) Energy Security Climate Security Infrastructure Security Energy...

  7. Sandia National Laboratories: QY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Updated: May 23, 2013 Go To Top Exceptional service in the national interest EC About Energy and Climate (EC) Energy Security Climate Security Infrastructure Security Energy...

  8. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23, 2013-Nearly 400 Los Alamos National Laboratory employees on 47 teams received Pollution Prevention awards for protecting the environment and saving taxpayers more than 8...

  9. Sandia National Laboratories: HRSAM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the National Renewable Energy Laboratory (NREL) announce the publication of two new Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) reports on...

  10. National Women's History Month

    Broader source: Energy.gov [DOE]

    NATIONAL WOMEN’S HISTORY MONTH is an annual declared month that highlights the contributions of women to events in history and contemporary society.

  11. Sandia National Laboratories: NASA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratories (partnering with Northrup Grumman Aerospace Systems and the University of Michigan) has developed a solar electric propulsion concept capable of a wide...

  12. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at a critical juncture where pressing issues in energy security, climate change, and economic competitiveness are converging. Aggressive national goals for reducing petroleum use...

  13. ARGONNE NATIONAL LABORATORY May

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARGONNE NATIONAL LABORATORY May 9, 1994 Light Source Note: LS234 Comparison of the APS and UGIMAG Helmholtz Coil Systems David W. Carnegie Accelerator Systems Division Advanced...

  14. Licensing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (TDC) Division negotiates and manages license agreements on behalf of UChicago Argonne, LLC, which operates Argonne National Laboratory for the U.S. Department of Energy....

  15. Procurement | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Procurement More than 150 attend second joint Argonne-Fermilab small business fairSeptember 2, 2014 On Thursday, Aug. 28, Illinois' two national laboratories - Argonne and Fermi...

  16. Procurement | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Video "Doing business with Argonne and Fermi national labs" - Aug. 21, 2013 Procurement Argonne spends approximately 300,000,000 annually through procurements to a diverse group...

  17. Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    our dependence on imported energy and to enhance our national security. In addition, Argonne provides many ways for researchers from academia, industry and other government...

  18. Sandia National Laboratories: NSTTF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events, Partnership, Renewable Energy, Solar, Solar Newsletter SolarReserve is testing engineering units at the National Solar Thermal Test Facility (NSTTF) operated by Sandia....

  19. Los Alamos National Laboratory

    National Nuclear Security Administration (NNSA)

    for national defense and homeland security programs; and U.S. Department of Energy (DOE) waste management activities. The Plutonium Facility at Technical Area 55 (TA-55) is...

  20. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Sectors in the United States View all EC Publications Related Topics Concentrating Solar Power CRF CSP EFRC Energy Energy Efficiency Energy Security National Solar Thermal...

  1. Sandia National Laboratories: Partnership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Armstrong using deep level optical spectroscopy to investigate defects in the m-plane GaN. Jim is a professor ... Vermont and Sandia National Laboratories Announce Energy...

  2. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this tenth member of our National Centers for Systems Biology program," said James Anderson, who oversees systems biology awards at NIGMS. "The new center will apply...

  3. National Park Service- Yellowstone National Park, Wyoming

    Broader source: Energy.gov [DOE]

    Yellowstone National Park, Wyoming, has many historical sites within its boundaries. One of these is the Lamar Buffalo Ranch, a ranch that was set up in the early 1900s to breed buffalo for replacement stock within the park during a time when their numbers were very low. The ranch buildings are currently being used by the Yellowstone Association Institute for ecology classes.

  4. Sandia Energy - National SCADA Testbed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National SCADA Testbed Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Cyber Security for Electric Infrastructure National...

  5. National Bio-fuel Energy Laboratory

    SciTech Connect (OSTI)

    Jezierski, Kelly

    2010-12-27T23:59:59.000Z

    The National Biofuel Energy Laboratory or NBEL was a consortia consisting of non-profits, universities, industry, and OEM’s. NextEnergy Center (NEC) in Detroit, Michigan was the prime with Wayne State University as the primary subcontractor. Other partners included: Art Van Furniture; Biodiesel Industries Inc. (BDI); Bosch; Clean Emission Fluids (CEF); Delphi; Oakland University; U.S. TARDEC (The Army); and later Cummins Bridgeway. The program was awarded to NextEnergy by U.S. DOE-NREL on July 1, 2005. The period of performance was about five (5) years, ending June 30, 2010. This program was executed in two phases: 1.Phase I focused on bench-scale R&D and performance-property-relationships. 2.Phase II expanded those efforts into further engine testing, emissions testing, and on-road fleet testing of biodiesel using additional types of feedstock (i.e., corn, and choice white grease based). NextEnergy – a non-profit 501(c)(3) organization based in Detroit was originally awarded a $1.9 million grant from the U.S. Dept. of Energy for Phase I of the NBEL program. A few years later, NextEnergy and its partners received an additional $1.9MM in DOE funding to complete Phase II. The NBEL funding was completely exhausted by the program end date of June 30, 2010 and the cost share commitment of 20% minimum has been exceeded nearly two times over. As a result of the work performed by the NBEL consortia, the following successes were realized: 1.Over one hundred publications and presentations have been delivered by the NBEL consortia, including but not limited to: R&D efforts on algae-based biodiesel, novel heterogeneous catalysis, biodiesel properties from a vast array of feedstock blends, cold flow properties, engine testing results (several Society of Automotive Engineers [SAE] papers have been published on this research), emissions testing results, and market quality survey results. 2.One new spinoff company (NextCAT) was formed by two WSU Chemical Engineering professors and another co-founder, based on a novel heterogeneous catalyst that may be retrofitted into idled biodiesel manufacturing facilities to restart production at a greatly reduced cost. 3.Three patents have been filed by WSU and granted based on the NextCAT focus. 4.The next-generation advanced biodiesel dispensing unit (CEF F.A.S.T. unit version 2) was developed by Clean Emission Fluids (CEF). 5.NBEL aided in the preparing a sound technical basis for setting an ASTM B20 standard: ASTM Standard D7467-08 was passed in June of 2008 and officially published on October of 2008. 6.NBEL has helped to understand composition-property-performance relationships, from not only a laboratory and field testing scale, for biodiesel blends from a spectrum of feedstocks. 7.NBEL helped propel the development of biodiesel with improved performance, cetane numbers, cold flow properties, and oxidative stability. 8.Data for over 30,000 miles has been logged for the fleet testing that select members of the consortia participated in. There were five vehicles that participated in the fleet testing. Art Van provided two vehicles, one that remained idle for most of the time and one that was used often for commercial furniture deliveries, Oakland University provided one vehicle, NEC provided one vehicle, and The Night Move provided one vehicle. These vehicles were light to medium duty (2.0 to 6.6 L displacement), used B5 or B20 blends from multiple sources of feedstock (corn-, choice white grease-, and soybean-based blends) and sources (NextDiesel, BDI, or Wacker Oil), experienced a broad range in ambient temperatures (from -9 °F in Michigan winters to 93 °F in the summertime), and both city and highway driving conditions.

  6. A novel mechanism and kinetic model to explain enhanced xylose yields from dilute sulfuric acid compared to hydrothermal pretreatment of corn stover

    E-Print Network [OSTI]

    California at Riverside, University of

    A novel mechanism and kinetic model to explain enhanced xylose yields from dilute sulfuric acid stover Dilute sulfuric acid Hydrothermal pretreatment Kinetic model Xylose a b s t r a c t Pretreatment of corn stover in 0.5% sulfuric acid at 160 °C for 40 min realized a maximum monomeric plus oligomeric

  7. Investment in Corn-Ethanol Plants in the Midwestern United States: An Analysis Using Reduced-Form and Structural Models1

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    1 Investment in Corn-Ethanol Plants in the Midwestern United States: An Analysis Using Reduced-Form and Structural Models1 C.-Y. Cynthia Lin and Karen E. Thome Abstract Ethanol has attracted considerable policy policy and strategic interactions affect decisions about when and where to invest in building new ethanol

  8. Consequences of reproductive barriers for genealogical discordance in the European corn Erik B. Dopman, Luisa Prez, Steven M. Bogdanowicz, and Richard G. Harrison

    E-Print Network [OSTI]

    Dopman, Erik B.

    borer Consequences of reproductive barriers for genealogical discordance in the European corn Erik, see: Notes: #12;Consequences of reproductive barriers for genealogical discordance in the European is often incomplete, gene genealogies will be discordant, and most regions of the genome will display

  9. Determining Fiber and Protein Degradation Rates of Corn Milling (Co)Products and Their Effects on Rumen Bacterial Populations and Lactating Dairy Cow Performance

    E-Print Network [OSTI]

    Williams, Whitney

    2012-07-16T23:59:59.000Z

    as within a single ethanol plant (Belyea et al., 2004). As more information about the quality of corn (co)products becomes available, new strategies of (co)product feeding will be developed. Feedstuff processing methods have been shown to affect feed...

  10. Is New Zealand's food supply under threat? What have we learned from the escape of genetically modified (GM) corn throughout New

    E-Print Network [OSTI]

    Hickman, Mark

    Is New Zealand's food supply under threat? What have we learned from the escape of genetically. This realization undermines claims that uses of genetically modified organisms (GMOs) outside of the laboratory can modified (GM) corn throughout New Zealand? The most alarming outcome of the recently concluded

  11. Atmospheric deposition, resuspension, and root uptake of Pu in corn and other grain-producing agroecosystems near a nuclear fuel facility

    SciTech Connect (OSTI)

    Pinder, J.E. III; McLeod, K.W.; Adriano, D.C.; Corey, J.C.; Boni, A.L. (Savannah River Ecology Laboratory, Aiken, SC (USA))

    1990-12-01T23:59:59.000Z

    Plutonium released to the environment may contribute to dose to humans through inhalation or ingestion of contaminated foodstuffs. Plutonium contamination of agricultural plants may result from interception and retention of atmospheric deposition, resuspension of Pu-bearing soil particles to plant surfaces, and root uptake. Plutonium on vegetation surfaces may be transferred to grain surfaces during mechanical harvesting. Data obtained from corn grown near the U.S. Department of Energy's H-Area nuclear fuel chemical separations facility on the Savannah River Site were used to estimate parameters of a simple model of Pu transport in agroecosystems. The parameter estimates for corn were compared to those previously obtained for wheat and soybeans. Despite some differences in parameter estimates among crops, the relative importances of atmospheric deposition, resuspension, and root uptake were similar among crops. For even small deposition rates, the relative importances of processes for Pu contamination of corn grain should be: transfer of atmospheric deposition from vegetation surfaces to grain surfaces during combining greater than resuspension of soil to grain surfaces greater than root uptake. Approximately 3.9 X 10(-5) of a year's atmospheric deposition is transferred to grain. Approximately 6.2 X 10(-9) of the Pu inventory in the soil is resuspended to corn grain, and a further 7.3 X 10(-10) of the soil Pu inventory is absorbed and translocated to grains.

  12. Atmospheric deposition, resuspension and root uptake of plutonium in corn and other grain-producing agroecosystems near a nuclear fuel facility

    SciTech Connect (OSTI)

    Pinder, J.E. III; McLeod, K.W.; Adriano, D.C. (Savannah River Ecology Lab., Aiken, SC (United States)); Corey, J.C.; Boni, A.L. (Savannah River Lab., Aiken, SC (United States))

    1989-01-01T23:59:59.000Z

    Plutonium released to the environment may contribute to dose to humans through inhalation or ingestion of contaminated foodstuffs. Plutonium contamination of agricultural plants may result from interception and retention of atmospheric deposition, resuspension of Pu-bearing soil particles to plant surfaces, and root uptake and translocation to grain. Plutonium on vegetation surfaces may be transferred to grain surfaces during mechanical harvesting. Data obtained from corn grown near the US Department of Energy's H-Area nuclear fuel chemical separations facility on the Savannah River Site was used to estimated parameters of a simple model of Pu transport in agroecosystems. The parameter estimates for corn were compared to those previously obtained for wheat and soybeans. Despite some differences in parameter estimates among crops, the relative importances of atmospheric deposition, resuspension and root uptake were similar among crops. For even small deposition rates, the relative importances of processes for Pu contamination of corn grain should be: transfer of atmospheric deposition from vegetation surfaces to grain surfaces during combining > resuspension of soil to grain surfaces > root uptake. Approximately 3.9 {times} 10{sup {minus}5} of a year's atmospheric deposition is transferred to grain. Approximately 6.2 {times} 10{sup {minus}9} of the Pu inventory in the soil is resuspended to corn grain, and a further 7.3 {times} 10{sup {minus}10} of the soil inventory is absorbed by roots and translocated to grains.

  13. Atmospheric deposition, resuspension and root uptake of plutonium in corn and other grain-producing agroecosystems near a nuclear fuel facility

    SciTech Connect (OSTI)

    Pinder, J.E. III; McLeod, K.W.; Adriano, D.C. [Savannah River Ecology Lab., Aiken, SC (United States); Corey, J.C.; Boni, A.L. [Savannah River Lab., Aiken, SC (United States)

    1989-12-31T23:59:59.000Z

    Plutonium released to the environment may contribute to dose to humans through inhalation or ingestion of contaminated foodstuffs. Plutonium contamination of agricultural plants may result from interception and retention of atmospheric deposition, resuspension of Pu-bearing soil particles to plant surfaces, and root uptake and translocation to grain. Plutonium on vegetation surfaces may be transferred to grain surfaces during mechanical harvesting. Data obtained from corn grown near the US Department of Energy`s H-Area nuclear fuel chemical separations facility on the Savannah River Site was used to estimated parameters of a simple model of Pu transport in agroecosystems. The parameter estimates for corn were compared to those previously obtained for wheat and soybeans. Despite some differences in parameter estimates among crops, the relative importances of atmospheric deposition, resuspension and root uptake were similar among crops. For even small deposition rates, the relative importances of processes for Pu contamination of corn grain should be: transfer of atmospheric deposition from vegetation surfaces to grain surfaces during combining > resuspension of soil to grain surfaces > root uptake. Approximately 3.9 {times} 10{sup {minus}5} of a year`s atmospheric deposition is transferred to grain. Approximately 6.2 {times} 10{sup {minus}9} of the Pu inventory in the soil is resuspended to corn grain, and a further 7.3 {times} 10{sup {minus}10} of the soil inventory is absorbed by roots and translocated to grains.

  14. Regional-Scale Assessment of Nitrous Oxide Emissions within the US Corn Belt: The Impact of Precipitation and Agricultural Drainage on Indirect Emissions

    E-Print Network [OSTI]

    Minnesota, University of

    Regional-Scale Assessment of Nitrous Oxide Emissions within the US Corn Belt: The Impact of Precipitation and Agricultural Drainage on Indirect Emissions Tim Griffis1, Xuhui Lee2, John Baker3, Peter, but mitigation strategies have been limited by the large uncertainties in both direct and indirect emission

  15. Instructions for Corning Model 220 pH Meter The electrode tip is a fragile glass bulb. Be careful or you will break it with a

    E-Print Network [OSTI]

    Cross, George

    Instructions for Corning Model 220 pH Meter The electrode tip is a fragile glass bulb. Be careful a polymer body electrode can create sufficient internal pressure to "explode" the glass bulb. When of cotton in the plastic electrode cover sleeve, add pH 7 buffer, and insert the electrode bulb

  16. National Research Council Canada

    E-Print Network [OSTI]

    Fleming, Michael W.

    National Research Council Canada Institute for Information Technology Conseil national de recherches Canada Institut de technologie de l'information Determining Internet Users' Values for Private in The Second Annual Conference on Privacy, Security and Trust (PST'04). Fredericton, New Brunswick, Canada

  17. The National Cancer Institute,

    E-Print Network [OSTI]

    The National Cancer Institute, International Cancer Information Center Bldg. 82, Rm 123 Bethesda, MD 20892 The National Cancer Institute (NCI) is part of the Federal Government. NCI coordinates the government's cancer research program. It is the largest of the 17 biomedical research institutes and centers

  18. National Osteoporosis Prevention Month

    E-Print Network [OSTI]

    MAY National Osteoporosis Prevention Month JUNE National Dairy Month Texas AgriLife Extension - Bone Health Power Point # P4-1 Eat Smart for Bone Health # P4-2 Osteoporosis Disease Statistics # P4-3 Osteoporosis = Porous Bones # P4-4 Risk Factors # P4-5 Risk Factors (continued) # P4-6 Steps to Prevention # P4

  19. INDIAN NATIONAL SCIENCE ACADEMY

    E-Print Network [OSTI]

    Srinivasan, N.

    INDIAN NATIONAL SCIENCE ACADEMY Science academies play a crucial role in promoting, recognizing and bring out proceedings and monographs. The academies promote public awareness and understanding the country. In this section the growth of the Indian National Science Academy and its functions

  20. National Geo-Database for Biofuel Simulations and Regional Analysis

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.; Zhang, Xuesong; Sahajpal, Ritvik; Manowitz, David H.

    2012-04-01T23:59:59.000Z

    The goal of this project undertaken by GLBRC (Great Lakes Bioenergy Research Center) Area 4 (Sustainability) modelers is to develop a national capability to model feedstock supply, ethanol production, and biogeochemical impacts of cellulosic biofuels. The results of this project contribute to sustainability goals of the GLBRC; i.e. to contribute to developing a sustainable bioenergy economy: one that is profitable to farmers and refiners, acceptable to society, and environmentally sound. A sustainable bioenergy economy will also contribute, in a fundamental way, to meeting national objectives on energy security and climate mitigation. The specific objectives of this study are to: (1) develop a spatially explicit national geodatabase for conducting biofuel simulation studies; (2) model biomass productivity and associated environmental impacts of annual cellulosic feedstocks; (3) simulate production of perennial biomass feedstocks grown on marginal lands; and (4) locate possible sites for the establishment of cellulosic ethanol biorefineries. To address the first objective, we developed SENGBEM (Spatially Explicit National Geodatabase for Biofuel and Environmental Modeling), a 60-m resolution geodatabase of the conterminous USA containing data on: (1) climate, (2) soils, (3) topography, (4) hydrography, (5) land cover/ land use (LCLU), and (6) ancillary data (e.g., road networks, federal and state lands, national and state parks, etc.). A unique feature of SENGBEM is its 2008-2010 crop rotation data, a crucially important component for simulating productivity and biogeochemical cycles as well as land-use changes associated with biofuel cropping. We used the EPIC (Environmental Policy Integrated Climate) model to simulate biomass productivity and environmental impacts of annual and perennial cellulosic feedstocks across much of the USA on both croplands and marginal lands. We used data from LTER and eddy-covariance experiments within the study region to test the performance of EPIC and, when necessary, improve its parameterization. We investigated three scenarios. In the first, we simulated a historical (current) baseline scenario composed mainly of corn-, soybean-, and wheat-based rotations as grown existing croplands east of the Rocky Mountains in 30 states. In the second scenario, we simulated a modified baseline in which we harvested corn and wheat residues to supply feedstocks to potential cellulosic ethanol biorefineries distributed within the study area. In the third scenario, we simulated the productivity of perennial cropping systems such as switchgrass or perennial mixtures grown on either marginal or Conservation Reserve Program (CRP) lands. In all cases we evaluated the environmental impacts (e.g., soil carbon changes, soil erosion, nitrate leaching, etc.) associated with the practices. In summary, we have reported on the development of a spatially explicit national geodatabase to conduct biofuel simulation studies and provided initial simulation results on the potential of annual and perennial cropping systems to serve as feedstocks for the production of cellulosic ethanol. To accomplish this, we have employed sophisticated spatial analysis methods in combination with the process-based biogeochemical model EPIC. This work provided the opportunity to test the hypothesis that marginal lands can serve as sources of cellulosic feedstocks and thus contribute to avoid potential conflicts between bioenergy and food production systems. This work, we believe, opens the door for further analysis on the characteristics of cellulosic feedstocks as major contributors to the development of a sustainable bioenergy economy.

  1. National Institutes of Health National Institute of Mental Health

    E-Print Network [OSTI]

    Baker, Chris I.

    National Institutes of Health National Institute of Mental Health Department of Health and HumanNational Institute of Mental Health Division of Intramural Research Programs http://intramural.nimh.nih.gov/ [NIMH of Fellowship Training] National Institutes of Health National Institute of Mental Health Department of Health

  2. Sandia National Laboratories: EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    region where sunlight is most concentrated and to which ... Overview On November 11, 2010, in Sandia National Laboratories is home to one of the 46 multi-million dollar Energy...

  3. Los Alamos National Laboratory's

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    takes part in Blue Star Museums program May 16, 2012 Free admission for active duty military, their family members LOS ALAMOS, New Mexico, May 16, 2012-Los Alamos National...

  4. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, SWIFT, Systems Analysis, Wind Energy The National Rotor Testbed (NRT) team is examining the effect of airfoil choice on the final design of the new rotor for the Scaled...

  5. Sandia National Laboratories: News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, SWIFT, Systems Analysis, Wind Energy The National Rotor Testbed (NRT) team is examining the effect of airfoil choice on the final design of the new rotor for the Scaled...

  6. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, SWIFT, Systems Analysis, Wind Energy The National Rotor Testbed (NRT) team is examining the effect of airfoil choice on the final design of the new rotor for the Scaled...

  7. Sandia National Laboratories: EC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, SWIFT, Systems Analysis, Wind Energy The National Rotor Testbed (NRT) team is examining the effect of airfoil choice on the final design of the new rotor for the Scaled...

  8. Sandia National Laboratories: NRT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, SWIFT, Systems Analysis, Wind Energy The National Rotor Testbed (NRT) team is examining the effect of airfoil choice on the final design of the new rotor for the Scaled...

  9. National Bioenergy Day 2014

    Broader source: Energy.gov [DOE]

    Bioenergy, the use of agricultural waste and forestry byproducts to generate heat and energy, will be celebrated during the second annual National Bioenergy Day on October 22, 2014. This is an...

  10. AISES National Conference

    Office of Energy Efficiency and Renewable Energy (EERE)

    The AISES National Conference is a one-of-a-kind, three day event convening graduate, undergraduate, and high school junior and senior students, teachers, workforce professionals, corporate and...

  11. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    security research at Sandia seeks to address key challenges facing our nation and the world. We work with the energy industry to improve current hardware and develop the next...

  12. Sandia National Laboratories: Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    security research at Sandia seeks to address key challenges facing our nation and the world. We work with the energy industry to improve current hardware and develop the next...

  13. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    security research at Sandia seeks to address key challenges facing our nation and the world. We work ... About Energy and Climate (EC) On November 1, 2010, in Access to...

  14. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Wind Energy ALBUQUERQUE, N.M. - Sandia National Laboratories and Kirtland Air Force Base may soon share a wind farm that will provide as much as one-third of the...

  15. National Synchrotron Light Source

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    A tour of Brookhaven's National Synchrotron Light Source (NSLS). The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviole

  16. Brookhaven National Laboratory

    Broader source: Energy.gov [DOE]

    Site OverviewThe Brookhaven National Laboratory (BNL) was established in 1947 by the Atomic Energy Commission (AEC) (predecessor to U.S. Department of Energy [DOE]). Formerly Camp Upton, a U.S....

  17. Energy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne is poised to help our nation build an economy fueled by safe, clean, renewable energy and free from dependence on foreign oil. When achieved, this will have a tremendous...

  18. National Energy Policy (Complete)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Earth can also be used directly for heat. These direct-use applications include heat 6-5 NATIONAL ENERGY POLICY ing buildings, growing plants in green houses, drying...

  19. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On October 10, 2011, in This Web Demo model is a simplified "player" version of the Photovoltaic Reliability Performance Model (PV-RPM) currently in development at Sandia National...

  20. Perspectives on the National

    E-Print Network [OSTI]

    Johnson, Eric E.

    Perspectives on the National Electrical Code ® John Wiles Sponsored by the Photovoltaic Systems systems. Representatives from the photovoltaic (PV) industry, academic institutions, the inspector requirements does not guarantee high levels of performance, higher performance and reliability frequently

  1. Biosafety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Biosafety Biosafety Links Biosafety Contacts Biosafety Office Argonne National Laboratory 9700 S. Cass Ave. Bldg. 202, Room B333 Argonne, IL 60439 USA 630-252-5191 Committee...

  2. Contract | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prime Contract is the contract between the U.S. Department of Energy and UChicago Argonne, LLC that sets out the terms and conditions for the operation of Argonne National...

  3. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Argonne National Laboratory and the U.S. Department of Energy (DOE) are very concerned about the well-being of all employees. Students at the undergraduate and graduate...

  4. Submitting Organization Sandia National ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Center Sandia National Laboratories PO Box 969 MS 9405 Livermore, CA 94551-0969 USA Phone (925) 294-3375 Fax (925) 294-3403 kubiak@sandia.gov Joint Entry with U. S....

  5. Submitting Organization Sandia National ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bauer Sandia National Laboratories. P.O. Box 5800, MS 1077 Albuquerque, NM 87185-1077 USA Phone:: (505)-845-0086 Fax:: (505) 844-7833 tmbaue@sandia.gov Contact Person Glenn D....

  6. National Center Standardsfor

    E-Print Network [OSTI]

    American Free Trade Agreement (NAFTA) International Organization for Standardization Information Network and exports Standards organizations, experts, and publications NCSCI helps you with these tools . . . Full texts of standards Indexes to millions of industry, national, regional, and international standards U

  7. Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    HISTORYThe Argonne National Laboratory (ANL) site is approximately 27 miles southwest of downtown Chicago in DuPage County, Illinois.  The 1,500 acre ANL site is completely surrounded by the 2,240...

  8. Lawrence Livermore National Laboratory | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The Energy MaterialsFeatured VideosTechnologiesLatest

  9. Los Alamos National Lab: National Security Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC) - CenterLinks BerkeleyLivingNewsroom

  10. National Ignition Facility | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1 JulyScience (SC)In99Security |

  11. Chemist, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of theNuclear SecurityNuclearAdministration

  12. Engineer, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office ofDepartment ofr EEO ComplaintSystemsEmergencyEnd

  13. Engineer, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office ofDepartment ofr EEO

  14. Lawrence Livermore National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov OfficeAdministrationSecurityimpactsW56Administration

  15. Manager, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.govSecurityMaintaining the Stockpile Maintaining

  16. Researcher, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica High Energy Density Laboratory PlasmasSecurity

  17. Researcher, Lawrence Livermore National Laboratory | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica High Energy Density Laboratory

  18. Researcher, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica High Energy DensityAdministration David

  19. Researcher, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica High Energy DensityAdministration

  20. Researcher, Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica High Energy

  1. Sandia National Laboratory Performance Evaluations | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTART Signed |

  2. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTubeCenters:Facebook Twitter YouTube FlickrDefense

  3. National Security Campus | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxide CaptureSeeNUCLEAR SCIENCE WEEKSecurity|

  4. Sandia National Laboratories | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware

  5. Sandia National Laboratories: National Security Missions: International

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and Nuclear Security Programs International,

  6. Sandia National Laboratories: National Security Missions: International

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and Nuclear Security Programs

  7. Sandia National Laboratories: National Security Missions: International

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and Nuclear Security ProgramsHomeland and

  8. Sandia National Laboratories: National Security Missions: International

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and Nuclear Security ProgramsHomeland

  9. Sandia National Laboratories: National Security Missions: International

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and Nuclear Security ProgramsHomelandHomeland

  10. Sandia National Laboratories: National Security Missions: International

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and Nuclear Security

  11. Sandia National Laboratories: National Security Missions: International

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and Nuclear SecurityHomeland and Nuclear

  12. Sandia National Laboratories: National Security Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and Nuclear SecurityHomeland andSafety

  13. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland andEffects and High Energy Density

  14. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland andEffects and High Energy DensityDefense Systems

  15. Sandia National Laboratories: Sandia National Laboratories: Missions:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland andEffects and High Energy DensityDefense

  16. National System Templates: Building Sustainable National Inventory

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLuOpen Energy Information NationalNationalsourceOpen

  17. Previous Sandia National Laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andBHoneywell FM&T,

  18. Los Alamos National Lab: National Security Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are hereNews item$alt Trinity to

  19. National Nuclear Security Administration Los Alamos National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB -Reports| NationalryLawrence

  20. National Nuclear Security Administration | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB -Reports|

  1. Sandia National Laboratories: A Model for the Nation: Promoting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateECClimateA Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector A Model for the Nation: Promoting Education and Innovation in Vermont's...

  2. Sandia National Laboratories: National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Solar, Solar Newsletter A team from Sandia National Laboratories' (SNL) National Solar Thermal Test Facility (NSTTF) recently won a first place Excellence Award in the...

  3. FY 2010 Los Alamos National Security, LLC, PER Summary | National...

    National Nuclear Security Administration (NNSA)

    Los Alamos National Security, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  4. FY 2008 Los Alamos National Security, LLC, PER Summary | National...

    National Nuclear Security Administration (NNSA)

    Los Alamos National Security, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  5. Sandia National Laboratories: National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility SolarReserve Is Testing Prototype Heliostats at NSTTF On March 3, 2015, in Concentrating Solar Power, Energy, Facilities, National Solar...

  6. FY 2007 National Security Technologies, LLC, PER Summary | National...

    National Nuclear Security Administration (NNSA)

    National Security Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  7. FY 2008 National Security Technologies, LLC, PER Summary | National...

    National Nuclear Security Administration (NNSA)

    National Security Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  8. FY 2009 National Security Technologies, LLC, PER Summary | National...

    National Nuclear Security Administration (NNSA)

    National Security Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  9. FY 2010 National Security Technologies, LLC, PER Summary | National...

    National Nuclear Security Administration (NNSA)

    National Security Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  10. FY 2006 National Security Technologies, LLC, PER Summary | National...

    National Nuclear Security Administration (NNSA)

    National Security Technologies, LLC, PER Summary | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  11. Drell receives National Medal of Science | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Drell receives National Medal of Science | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  12. National Wind Technology Center (Fact Sheet), National Wind Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NATIONAL WIND TECHNOLOGY CENTER www.nrel.govwind Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center...

  13. Biomass Feedstock National User Facility

    Broader source: Energy.gov [DOE]

    Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

  14. The effects of Biozyme on the germination and emergence of bean (Phaseolus vulgaris L.) and sweet corn (Zea mays L.) seeds under suboptimal temperatures, pesticide overdose, and salinity stress 

    E-Print Network [OSTI]

    Campos Cruz, Armando

    1994-01-01T23:59:59.000Z

    THE EFFECTS OF BIOZYME? ON THE GERMINATION AND EMERGENCE OF BEAN (Phaseolus vulgaris L) AND SWEET CORN (Zea mays L. ) SEEDS UNDER SUBOPTIMAL TEMPERATURES, PESTICIDE OVERDOSE, AND SALINITY STRESS A Thesis by ARMANDO CAMPOS CRUZ Submitted... vulgaris L) AND SWEET CORN (Zea mays I ) SEEDS UNDER SUBOPTIMAL TEMPERATURES, PESTICIDE OVERDOSE, AND SALINITY STRESS A Thesis by ARMANDO CAMPOS CRUZ Submitted to Texas A&M University in partial fulfillment of the requirements for the degree...

  15. Sandia National Laboratories: Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nation's first solar storage facility that is ... A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate,...

  16. Intelligence team given national honor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intelligence team given national honor Intelligence team given national honor A team known as the LANL Field Intelligence Element is being honored with the Department of Energy...

  17. Sandia National Laboratories: Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Solar, Solar Newsletter A team from Sandia National Laboratories' (SNL) National Solar Thermal Test Facility (NSTTF) recently won a first place Excellence Award in the...

  18. UNIVERSITY OF CANADA FIRST NATIONS

    E-Print Network [OSTI]

    Argerami, Martin

    UNIVERSITY DRIVE NORTH UNIVERSITYDRIVEEAST LIFT STATION BASEBALL DIAMOND FIRST NATIONS WAY FIRST NATIONS WAY G UNIVERSITYDRIVEWEST ENGINEERING GARAGE ARTIFICIAL TURF FIELD EASTLOOPROAD PLAYING FIELD 1

  19. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

  20. Sandia National Laboratories: Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

  1. Sandia National Laboratories: Solar Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Sandia Corporation | Questions & Comments | Privacy & Security U.S. Department of Energy National Nuclear Security Administration Sandia National Laboratories is a...

  2. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Partnership Projects On April 14, 2011, in National Solar Thermal Test Facility (NSTTF) The Tower at the National Solar Thermal Test Facility (NSTTF) offers a complete...

  3. Climate Change and National Security

    E-Print Network [OSTI]

    Alyson, Fleming; Summer, Kelly; Summer, Martin; Lauren, Franck; Jonathan, Mark

    2015-01-01T23:59:59.000Z

    CLIMATE CHANGE Multiplying Threats to National Securityfor the impacts of climate change on national security. Pagea warming world. Page 11 “Climate change acts as a threat

  4. Ex Parte Letter - Owens Corning Meeting August 29, 2013 DOE EERE |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Departmentof1-SCORECARD-09-21-11April 19, 2013,of1904-AD22 |Department of

  5. Land Use and Water Efficiency in Current and Potential Future U.S. Corn and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN

  6. Gary Calabrese > Corning Inc. > Scientific Advisory Board > The Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbell isOklahomaStatus o f t he

  7. National Security Initiatives | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1Resource forNational Cyber Security

  8. National Security Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1Resource forNational Cyber

  9. National Security Science Archive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1Resource forNational

  10. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERAL EMPLOYEEAdministrationSignedNational Nuclear|or

  11. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERAL EMPLOYEEAdministrationSignedNational

  12. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERAL EMPLOYEEAdministrationSignedNational19, 2001 Energy

  13. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERAL EMPLOYEEAdministrationSignedNational19, 2001

  14. National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERAL EMPLOYEEAdministrationSignedNational19, 2001FOR

  15. Sandia National Laboratories

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andBHoneywell9/%2ARequest National

  16. Sandia National Laboratories

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andBHoneywell9/%2ARequest| National

  17. AMERICA'S NATIONAL LABS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76) (See theDoctoral20ALSNews Vol.AMERICA'S NATIONAL LABS by

  18. Documents for Foreign Nationals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers69 Federal Register /NATIONAL LABORATORY

  19. Documents for Foreign Nationals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers69 Federal Register /NATIONAL LABORATORYDocuments

  20. Post-Soviet Kyrgyzstan: Between Nationalism and Nation-State

    E-Print Network [OSTI]

    Artman, Vincent

    2014-08-25T23:59:59.000Z

    Vincent M. Artman 1 Post-Soviet Kyrgyzstan: Between Nationalism and Nation-State In December of 2011, shortly after becoming the President of the Kyrgyz Republic, Almazbek Atambayev told a crowd of Kyrgyz and Uzbeks “only together are we... Kyrgyzstan,” adding “those who try to divide us according to nationality and region are enemies of the nation.”1 At other times, Atambayev has claimed that nationalism is the “main problem” in Kyrgyzstan.2 It is not difficult to see why this should...

  1. Analyzing the Effect of Variations in Soil and Management Practices on the Sustainability of Corn Stover-Based Bioethanol Production in Mississippi

    SciTech Connect (OSTI)

    Woli, Prem; Paz, Joel

    2011-08-07T23:59:59.000Z

    The inherent variability in corn stover productivity due to variations in soils and crop management practices might contribute to a variation in corn stover-based bioethanol sustainability. This study was carried out to examine how changes in soil types and crop management options would affect corn stover yield (CSY) and the sustainability of the stover-based ethanol production in the Delta region of Mississippi. Based on potential acreage and geographical representation, three locations were selected. Using CERES-Maize model, stover yields were simulated for several scenarios of soils and crop management options. Based on 'net energy value (NEV)' computed from CSYs, a sustainability indicator for stover-based bioethanol production was established. The effects of soils and crop management options on CSY and NEV were determined using ANOVA tests and regression analyses. Both CSY and NEV were significantly different across sandy loam, silt loam, and silty clay loam soils and also across high-, mid-, and low-yielding cultivars. With an increase in irrigation level, both CSY and NEV increased initially and decreased after reaching a peak. A third-degree polynomial relationship was found between planting date and CSY and NEV each. By moving from the lowest to the highest production scenario, values of CSY and NEV could be increased by 86 to 553%, depending on location and weather condition. The effects of variations in soils and crop management options on NEV were the same as on CSY. The NEV was positive for all scenarios, indicating that corn stover-based ethanol production system in the Delta region is sustainable.

  2. Direct application of west coast geothermal resources in a wet corn milling plant supplementary analyses and information dissemination. Final report, addendum

    SciTech Connect (OSTI)

    Not Available

    1982-03-19T23:59:59.000Z

    In an extension to the scope of the previous studies, supplementary analyses were to be performed for both plants which would assess the economics of geothermal energy if coal had been the primary fuel rather than oil and gas. The studies include: supplementary analysis for a coal fired wet corn milling plant, supplementary analysis for an East Coast frozen food plant with coal fired boilers, and information dissemination activities.

  3. National Securities Technologies _NSTec_ Livermore Operations...

    Broader source: Energy.gov (indexed) [DOE]

    NAICS North American Industry Classification System NIF National Ignition Facility NNSA National Nuclear Security Administration NRTL Nationally Recognized Testing Laboratory...

  4. National Sea Grant Library

    E-Print Network [OSTI]

    National Sea Grant Library The New Library System and Publication Submittals Communications Staff;Publication Submittals · Publication types consolidated here for searching purposes · Editor field added Link Type · Document Is default Add link title · "View PDF" = PDFs · "View Document" = other docs

  5. Scholarship Fund (National Forestry

    E-Print Network [OSTI]

    Botea, Adi

    Forestry Scholarship Fund (National Forestry Master's Program (NFMP) The Forestry Scholarship Fund! 2014 Scholarship Offers A degree in forestry is a way of life. Trees, people, habitats, management that you will experience when you chose forestry as a career. #12;TRUSTEE FOR FORESTRY SCHOLARSHIP FUND ABN

  6. BROOKHAVEN NATIONAL Sealed Source

    E-Print Network [OSTI]

    Homes, Christopher C.

    BROOKHAVEN NATIONAL LABORATORY Sealed Source Contamination Incident October 13, 2011 #12;2 Cesium (Cs-137) Source Failure On September 28th @ ~1600 contamination event discovered · Two Radiological Contamination was from a Cs-137 (265 micro-curie) "sealed source" used to test area radiation monitors. · Source

  7. Pacific Northwest National Laboratory

    E-Print Network [OSTI]

    Science. Technology. Innovation. PNNL-SA-34741 Pacific Northwest National Laboratory (PNNL) is addressing cognition and learning to the development of student- centered, scenario-based training. PNNL's Pachelbel (PNNL) has developed a cognitive-based, student-centered approach to training that is being applied

  8. Comprehensive national energy strategy

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This Comprehensive National Energy Strategy sets forth a set of five common sense goals for national energy policy: (1) improve the efficiency of the energy system, (2) ensure against energy disruptions, (3) promote energy production and use in ways that respect health and environmental values, (4) expand future energy choices, and (5) cooperate internationally on global issues. These goals are further elaborated by a series of objectives and strategies to illustrate how the goals will be achieved. Taken together, the goals, objectives, and strategies form a blueprint for the specific programs, projects, initiatives, investments, and other actions that will be developed and undertaken by the Federal Government, with significant emphasis on the importance of the scientific and technological advancements that will allow implementation of this Comprehensive National Energy Strategy. Moreover, the statutory requirement of regular submissions of national energy policy plans ensures that this framework can be modified to reflect evolving conditions, such as better knowledge of our surroundings, changes in energy markets, and advances in technology. This Strategy, then, should be thought of as a living document. Finally, this plan benefited from the comments and suggestions of numerous individuals and organizations, both inside and outside of government. The Summary of Public Comments, located at the end of this document, describes the public participation process and summarizes the comments that were received. 8 figs.

  9. National Laboratory Dorene Price

    E-Print Network [OSTI]

    : price@bnl.gov ELECTROCHEMICAL ENHANCEMENT OF BIO-ETHANOL AND METABOLITE PRODUCTION Brookhaven National as a manufacturing step in their process to produce bio-ethanol or other commercially used metabolites can implement ApplicationFiled 61/042,867 TECHNOLOGY This method accelerates the production of ethanol and other metabolites

  10. National Renewable Energy Laboratory

    E-Print Network [OSTI]

    research and collaboration to improve the durability of photovoltaic cells for PEC hydrogen production Hydrogen-Production Technology Hydrogen offers great promise as a clean fuel in our nation's energy in hydrogen- production technology. Abundant on Earth, hydrogen is almost always found in combination

  11. National Laboratory Contacts

    Broader source: Energy.gov [DOE]

    Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge transportation research occurs at these facilities, funded by both DOE and cooperative research and development agreements (CRADAs) with industry

  12. National Security System Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-03-08T23:59:59.000Z

    The manual provides baseline requirements and controls for the graded protection of the confidentiality, integrity, and availability of classified information and information systems used or operated by the Department of Energy (DOE), contractors, and any other organization on behalf of DOE, including the National Nuclear Security Administration. Cancels DOE M 471.2-2. Canceled by DOE O 205.1B.

  13. The national energy strategy

    SciTech Connect (OSTI)

    Stuntz, L.G. [Department of Energy, Washington, DC (United States)

    1991-12-31T23:59:59.000Z

    This article gives an over view of the National Energy Strategy as initiated by President Buss in 1989 and presented in February 1991 to Congress and the American people after US DOE worked on it intensively. Subsections include NES analytical Methodology; Increasing energy and economic efficiency; enhancing environmental quality; fortifying foundations; NES legislative report.

  14. Grand Opening for Project LIBERTY: Nation's First Plant to Use...

    Energy Savers [EERE]

    of the plant-creating enough energy to power the facility, as well as a co-located bioethanol plant. Project LIBERTY is co-located with POET's existing corn ethanol plant to...

  15. National Synchrotron Light Source

    ScienceCinema (OSTI)

    BNL

    2009-09-01T23:59:59.000Z

    A tour of Brookhaven's National Synchrotron Light Source (NSLS), hosted by Associate Laboratory Director for Light Sources, Stephen Dierker. The NSLS is one of the world's most widely used scientific research facilities, hosting more than 2,500 guest researchers each year. The NSLS provides intense beams of infrared, ultraviolet, and x-ray light for basic and applied research in physics, chemistry, medicine, geophysics, environmental, and materials sciences.

  16. National Energy Technology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar Energy Harvesting LosNationalAnnual

  17. National Nanotechnology Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar EnergyKambara /performancesequestrationNational

  18. Second United Nations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearchPhysicsDepartment of Energy MonizBiofuelsNations .

  19. Final Technical Report: Improvement of Zymomonas mobilis for Commercial Use in Corn-based Biorefineries

    SciTech Connect (OSTI)

    Hitz, William D.

    2010-12-07T23:59:59.000Z

    Between 2007 and 2010 DuPont conducted a program under DOE award DE-FC36-07GO17056 to develop and improve Zymomonas mobilis as an ethanologen for commercial use in biorefineries to produce cellulosic ethanol. This program followed upon an earlier DOE funded program in which DuPont, in collaboration with the National Renewable Energy Laboratory (NREL) had developed a Zymomonas strain in conjunction with the development of an integrated cellulosic ethanol process. In the current project, we sought to maximize the utility of Zymomonas by adding the pathway to allow fermentation of the minor sugar arabinose, improve the utilization of xylose, improve tolerance to process hydrolysate and reduce the cost of producing the ethanologen. We undertook four major work streams to address these tasks, employing a range of approaches including genetic engineering, adaptation, metabolite and pathway analysis and fermentation process development. Through this project, we have developed a series of strains with improved characteristics versus the starting strain, and demonstrated robust scalability to at least the 200L scale. By a combination of improved ethanol fermentation yield and titer as well as reduced seed train costs, we have been able to reduce the capital investment and minimum ethanol selling price (MESP) by approximately 8.5% and 11% respectively vs. our starting point. Furthermore, the new strains we have developed, coupled with the learnings of this program, provide a platform for further strain improvements and advancement of cellulosic ethanol technology.

  20. New Solicitations | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    National Laser User Facilities Program New Solicitations New Solicitations National Laser Users' Facility Grant Program...

  1. Sandia National Laboratories: National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Power, Energy, Facilities, Materials Science, National Solar Thermal Test Facility, News, News & Events, Renewable Energy, Solar, Solar Newsletter, Systems...

  2. Nuclear Energy Research Brookhaven National

    E-Print Network [OSTI]

    Ohta, Shigemi

    Nuclear Energy Research Brookhaven National Laboratory William C. Horak, Chair Nuclear Science and Technology Department #12;BNL Nuclear Energy Research Brookhaven Graphite Research Reactor - 1948 National Nuclear Data Center - 1952* High Flux Beam Reactor - 1964 Technical Support for NRC - 1974

  3. Brookhaven National Laboratory Number: Revision

    E-Print Network [OSTI]

    Ohta, Shigemi

    NATIONAL LABORATORY LASER CONTROLLED AREA STANDARD OPERATING PROCEDURE (SOP) This document defines LASER OPERATIONS Operation Maintenance Service Specific Operation Fiber Optics LASER SYSTEM HAZARD the safety management program for the laser system listed below. All American National Standard Institute

  4. Sandia National Laboratories: TSPEAR toolkit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nation-al Air Space (NAS) radar system, which has led to a blanket rejection of several wind-farm developments. To improve the siting and ... Tool for Siting, Planning, and...

  5. Foreign-national Investigators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours, ProgramsFIRST CenterFor

  6. ARGONNE NATIONAL LABORATORY

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111 ~IIIIIIIIIIIIIIIIIHIIIIIJ~~ 0001 04 i2' 7/

  7. Level: National Data;

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet)Wellhead0 Capability to.5 First

  8. IDAHO NATIONAL LABORATORY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)Hydrogen Storage inChang CurriculumScientificBrief History

  9. Diesel prices flat nationally

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDiesel prices continueU.S.Diesel prices flat

  10. Diesel prices increase nationally

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management FermiDavidDiesel prices continueU.S.DieselDiesel prices

  11. Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportation Safety HomeWaterNanoscale EffectsXyce(tm) 4.0.2

  12. Sandia National Laboratories conducts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportation Safety HomeWaterNanoscaleProject

  13. Sandia National Laboratories: News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTube Flickr RSS TopLivermore Livermore2014News

  14. Sandia National Laboratories: Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTube Flickr RSSStrategic Plan Annual Report Economic

  15. Sandia National Laboratories: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTube Flickr RSSStrategicSynthetic

  16. 2012 National Electricity Forum

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) | Department1TheDepartmentFY12Separations and

  17. 2012 National Electricity Forum

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) | Department1TheDepartmentFY12Separations and1

  18. 2012 National Electricity Forum

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) | Department1TheDepartmentFY12Separations and1

  19. 2012 National Electricity Forum

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) | Department1TheDepartmentFY12Separations

  20. 2012 National Electricity Forum

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE) | Department1TheDepartmentFY12SeparationsEastern