Powered by Deep Web Technologies
Note: This page contains sample records for the topic "national competitiveness technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

National Competitiveness  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries &NST Division AddressingCompetitiveness

2

Semi-Annual Report--July 2002--December 2002National Institute for Advanced Transportation Technology UI Competition Snowmobile  

E-Print Network [OSTI]

Technology UI Competition Snowmobile Cleanest Around! UI Snowmobile Both Clean and Quiet Following the 2002 Clean Snowmobile Challenge (CSC), the top five finishers in the emissions portion of the competi- tion-running, properly tuned engine with a catalytic converter can go a long way toward cleaning up snowmobile emissions

Kyte, Michael

3

2012 National Geothermal Student Competition Finalists  

Office of Energy Efficiency and Renewable Energy (EERE)

Eight university teams have been selected to compete in the Energy Department's 2012 National Geothermal Student Competition. This student competition challenges teams at universities across the...

4

Benchmarking of Competitive Technologies  

Broader source: Energy.gov (indexed) [DOE]

evaluations and assessments * Compare results with other HEV technologies * Identify new areas of interest * Evaluate advantages and disadvantages of design changes - Example:...

5

ORISE: DOE EERE National Geothermal Student Competition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Science Education U.S. Department of Energy Office of Energy Efficiency and Renewable Energy National Geothermal Student Competition 2013 National Geothermal Student...

6

National Clean Energy Business Plan Competition - EERE Commercializati...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Clean Energy Business Plan Competition Learn more about the Department of Energy's National Clean Energy Business Plan Competition structure, past finalists, and past...

7

2013 National Geothermal Student Competition Background  

E-Print Network [OSTI]

1 2013 National Geothermal Student Competition Background: The 2013 National Geothermal Student, is designed to advance the understanding of geothermal energy as a valued resource by promoting innovation to engage students in a collaborative exercise to develop a business plan for developing a geothermal

Carrington, Emily

8

National Competition - EERE Commercialization Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

relies on, to expanding the capabilities of electric vehicles. SiNode's lithium battery anode technology addresses the two aspects of battery improvement, energy capacity...

9

Five Harvesting Technologies are Making Biofuels More Competitive...  

Office of Environmental Management (EM)

Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace Five Harvesting Technologies are Making Biofuels More Competitive in the Marketplace March 17,...

10

Business Plan Competitions and Technology Transfer  

SciTech Connect (OSTI)

An evaluation of business plan competitions, with a focus on the NREL-hosted Industry Growth Forum, and how it helps cleantech startups secure funding and transfer their technology to market.

Worley, C.M.; Perry, T.D., IV

2012-09-01T23:59:59.000Z

11

The following national Sea Grant aquaculture extension and technology transfer projects were awarded in 2012 (final year of three-year projects from a 2010 competition)  

E-Print Network [OSTI]

The following national Sea Grant aquaculture extension and technology transfer projects were Oregon Sea Grant Aquaculture Extension and Technology Transfer $99,906 Puerto Rico Sea Grant Chaparro extension and technology transfer in Washington and the Pacific Northwest $100,000 Wisconsin Sea Grant

12

Advanced Vehicle Technology Competition: Challenge-X 2008 DOE...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Competition: Challenge-X 2008 DOE Merit Review Advanced Vehicle Technology Competition: Challenge-X 2008 DOE Merit Review Presentation from the U.S. DOE Office of...

13

National Competition Names University of Rochester for Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

men and one young woman looking at the camera. The winning team in this year's National Geothermal Student Competition - the Energy Department's intercollegiate contest that...

14

Energy Department Opens National Competition to Advance Awareness...  

Broader source: Energy.gov (indexed) [DOE]

today a new geothermal student competition: GeoEnergy Is Beautiful 2014 to promote geothermal energy as a player in the nation's renewable energy mix. Student teams from...

15

National Engineers Week: Future City Competition  

ScienceCinema (OSTI)

2011 Future Cities Competition inspires students all across South Carolina to pursue careers in environmental protection and engineering.

None

2012-06-14T23:59:59.000Z

16

National Clean Energy Business Plan Competition: Unified Solar...  

Energy Savers [EERE]

Unified Solar Wins at MIT Clean Energy Prize National Clean Energy Business Plan Competition: Unified Solar Wins at MIT Clean Energy Prize May 2, 2014 - 11:01am Addthis Unified...

17

National Algal Biofuels Technology Roadmap  

E-Print Network [OSTI]

National Algal Biofuels Technology Roadmap MAY 2010 BIOMASS PROGRAM #12;#12;U.S. DOE 2010. National Algal Biofuels Technology Roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. Visit http://biomass.energy.gov for more information National Algal Biofuels

18

Incentive competitions as a policy tool for technological innovation  

E-Print Network [OSTI]

Large incentive competitions are becoming increasingly popular amongst policymakers and philanthropists as a mission-orientated tool for inducing innovation, particularly in areas of national priority where market incentives ...

Campbell, Georgina A. (Georgina Amy)

2011-01-01T23:59:59.000Z

19

Competitive Analysis of Modeling Technology Handle noise/  

E-Print Network [OSTI]

&k - - - - - - - DRM Technologies - - - - - - - EMA INC - - - - - - - FLIR Systems, INC P - - - - - - Asset

Huang, Samuel H.

20

Sandia National Laboratories: economically competitive next generation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NRELdeep-waterbiofuels economically competitive next

Note: This page contains sample records for the topic "national competitiveness technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DEP Car Competition | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY Middle School Electric Car Competition High

22

Information Technology: American National Standard for Information  

E-Print Network [OSTI]

Information Technology: American National Standard for Information Systems-- Data Format-271 Information Technology: American National Standard for Information Systems-- Data Format for the Interchange Sponsored by Information Access Division Information Technology Laboratory National Institute of Standards

23

Preliminary Notice of Violation, National Security Technologies...  

Office of Environmental Management (EM)

Preliminary Notice of Violation, National Security Technologies, LLC - NEA-2011-03 Preliminary Notice of Violation, National Security Technologies, LLC - NEA-2011-03 August 11,...

24

Independent Oversight Review, National Energy Technology Laboratory...  

Office of Environmental Management (EM)

Independent Oversight Review, National Energy Technology Laboratory - May 2014 Independent Oversight Review, National Energy Technology Laboratory - May 2014 May 2014 Review of the...

25

Los Alamos National Laboratory and technology transfer  

SciTech Connect (OSTI)

From its beginning in 1943, Los Alamos National Laboratory (Los Alamos) has traditionally used science and technology to fine creative, but practical solutions to complex problems. Los Alamos National Laboratory is operated by the University of California, under contact to the Department of Energy. We are a Government Owned-contractor Operated (GOCO) facility, and a Federally-funded research and Development Center (FFRDC). At Los Alamos, our mission is to apply science and engineering capabilities to problems of national security. Recently our mission has been broadened to include technology transfer to ensure the scientific and technical solutions are available to the marketplace. We are, in staff and technical capabilities, one of the worlds largest multidisciplinary, multiprogram laboratories. We conduct extensive research in energy, nuclear safeguards and security, biomedical science, conventional defense technologies, space science, computational science, environmental protection and cleanup, materials science, and other basic sciences. Since 1980, by a series of laws and executive orders, the resources of the federal laboratories have been made increasingly available to private industry via technology transfer efforts. Los Alamos National Laboratory uses a variety of technology transfer methods including laboratory visits, cooperative research, licensing, contract research, user facility access, personnel exchanges, consulting, publications, and workshops, seminars and briefings. We also use unique approaches, such as our negotiating teams, to ensure that transfer of our developed technology takes place in an open and competitive manner. During my presentation, I will discuss the overall process and some of the mechanism that we use at Los Alamos to transfer laboratory developed technology.

Bearce, T.D.

1992-01-01T23:59:59.000Z

26

Los Alamos National Laboratory and technology transfer  

SciTech Connect (OSTI)

From its beginning in 1943, Los Alamos National Laboratory (Los Alamos) has traditionally used science and technology to fine creative, but practical solutions to complex problems. Los Alamos National Laboratory is operated by the University of California, under contact to the Department of Energy. We are a Government Owned-contractor Operated (GOCO) facility, and a Federally-funded research and Development Center (FFRDC). At Los Alamos, our mission is to apply science and engineering capabilities to problems of national security. Recently our mission has been broadened to include technology transfer to ensure the scientific and technical solutions are available to the marketplace. We are, in staff and technical capabilities, one of the worlds largest multidisciplinary, multiprogram laboratories. We conduct extensive research in energy, nuclear safeguards and security, biomedical science, conventional defense technologies, space science, computational science, environmental protection and cleanup, materials science, and other basic sciences. Since 1980, by a series of laws and executive orders, the resources of the federal laboratories have been made increasingly available to private industry via technology transfer efforts. Los Alamos National Laboratory uses a variety of technology transfer methods including laboratory visits, cooperative research, licensing, contract research, user facility access, personnel exchanges, consulting, publications, and workshops, seminars and briefings. We also use unique approaches, such as our negotiating teams, to ensure that transfer of our developed technology takes place in an open and competitive manner. During my presentation, I will discuss the overall process and some of the mechanism that we use at Los Alamos to transfer laboratory developed technology.

Bearce, T.D.

1992-05-01T23:59:59.000Z

27

National Concrete Pavement Technology Center  

E-Print Network [OSTI]

.5 " concrete overlay with 1" asphalt interlayer (non porous surface mix) 路Pours- one 22' pass and one 16' ftNational Concrete Pavement Technology Center Concrete Overlay Technology TTCC/NC2 Meeting Savannah patches in 2008 Shortcut (2) to CD Drive.lnk #12;Need to Move Concrete Overlays Forward Concrete Overlay

28

National Securities Technologies _NSTec_ Livermore Operations...  

Broader source: Energy.gov (indexed) [DOE]

National Nuclear Security Administration NRTL Nationally Recognized Testing Laboratory NSTec National Security Technologies, LLC NTS Nevada Test Site OSHA Occupational Safety and...

29

National Energy Technology Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleetEngineeringAnnual Report This work wasTechnology

30

National Disaster Resilience Competition Webinar Series: Long-Term Commitment Factor  

Broader source: Energy.gov [DOE]

The U.S. Department of Housing and Urban Development (HUD) is hosting the National Disaster Resilience Competition Webinar Series to foster awareness about the National Disaster Resilience...

31

Information Technology: American National Standard for  

E-Print Network [OSTI]

Information Technology: American National Standard for Information Systems-- Data Format Publication 500-245 Information Technology: American National Standard for Information Systems-- Data Format for the Interchange of Fingerprint, Facial, & Scar Mark & Tattoo (SMT) Information Sponsored by Information Technology

32

Information Technology: American National Standard for Information  

E-Print Network [OSTI]

Information Technology: American National Standard for Information Systems-- Data Format 500-275 Information Technology: American National Standard for Information Systems-- Data Format Coleman, and Patrice Yuh, Editors Sponsored by Information Access Division Information Technology

33

Vehicle Technologies Office: AVTA - Evaluating National Parks...  

Energy Savers [EERE]

National Parks and Forest Service Fleets for Plug-in Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating National Parks and Forest Service Fleets for Plug-in Electric...

34

TECHNOLOGY INNOVATION PROGRAM National Institute of Standards and Technology  

E-Print Network [OSTI]

TECHNOLOGY INNOVATION PROGRAM National Institute of Standards and Technology Gaithersburg, MD 20899 ADVANCED TECHNOLOGIES FOR CIVIL INFRASTRUCTURE The Technology Innovation Program (TIP) at the National Institute of Standards and Technology was established to assist U.S. businesses and institutions of higher

Magee, Joseph W.

35

Webinar: National Fuel Cell Technology Evaluation Center  

Broader source: Energy.gov [DOE]

Video recording and text version of the Fuel Cell Technologies Office webinar titled "National Fuel Cell Technology Evaluation Center (NFCTEC)," originally presented on March 11, 2014.

36

Final report: U.S. competitive position in automotive technologies  

SciTech Connect (OSTI)

Patent data are presented and analyzed to assess the U.S. competitive position in eleven advanced automotive technology categories, including automotive fuel cells, hydrogen storage, advanced batteries, hybrid electric vehicles and others. Inventive activity in most of the technologies is found to be growing at a rapid pace, particularly in advanced batteries, automotive fuel cells and ultracapacitors. The U.S. is the clear leader in automotive fuel cells, on-board hydrogen storage and light weight materials. Japan leads in advanced batteries, hybrid electric vehicles, ultracapacitors, and appears to be close to overtaking the U.S. in other areas of power electronics.

Albert, Michael B.; Cheney, Margaret; Thomas, Patrick; Kroll, Peter

2002-09-30T23:59:59.000Z

37

Photovoltaic technology development at Sandia National Laboratories  

SciTech Connect (OSTI)

This report describes the following investigations being pursued under photovoltaic technology development at Sandia National Laboratories: photovoltaic systems technology; concentrator technology; concentrator arrays and tracking structures; concentrator solar cell development; system engineering; subsystem development; and test and applications.

NONE

1981-12-31T23:59:59.000Z

38

National Junior Solar Sprint & Other Car Competition Regional...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Junior Solar Sprint & Other Car Competition Regional Host Sites Below is a list of current Junior Solar Sprint (Junior Solar Sprint) and Other Car Competition host sites for...

39

National Spill Test Technology Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Western Research Institute established, and ACRC continues to maintain, the National Spill Technology database to provide support to the Liquified Gaseous Fuels Spill Test Facility (now called the National HAZMAT Spill Center) as directed by Congress in Section 118(n) of the Superfund Amendments and Reauthorization Act of 1986 (SARA). The Albany County Research Corporation (ACRC) was established to make publicly funded data developed from research projects available to benefit public safety. The founders since 1987 have been investigating the behavior of toxic chemicals that are deliberately or accidentally spilled, educating emergency response organizations, and maintaining funding to conduct the research at the DOE苨 HAZMAT Spill Center (HSC) located on the Nevada Test Site. ACRC also supports DOE in collaborative research and development efforts mandated by Congress in the Clean Air Act Amendments. The data files are results of spill tests conducted at various times by the Silicones Environmental Health and Safety Council (SEHSC) and DOE, ANSUL, Dow Chemical, the Center for Chemical Process Safety (CCPS) and DOE, Lawrence Livermore National Laboratory (LLNL), OSHA, and DOT; DuPont, and the Western Research Institute (WRI), Desert Research Institute (DRI), and EPA. Each test data page contains one executable file for each test in the test series as well as a file named DOC.EXE that contains information documenting the test series. These executable files are actually self-extracting zip files that, when executed, create one or more comma separated value (CSV) text files containing the actual test data or other test information.

Sheesley, David (Western Research Institute)

40

FY 2009 National Security Technologies, LLC, PER Summary | National...  

National Nuclear Security Administration (NNSA)

Fee Total Fee Earned % 23,150,112 21,529,431 93% National Security Technologies, LLC (NSTec), the management and operating contractor for the Nevada National Security Site,...

Note: This page contains sample records for the topic "national competitiveness technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

FY 2008 National Security Technologies, LLC, PER Summary | National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fee Total Fee Earned % 21,915,495 20,818,340 95% National Security Technologies, LLC (NSTec), the management and operating contractor for the Nevada National Security Site,...

42

FY 2006 National Security Technologies, LLC, PER Summary | National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fee Total Fee Earned % 5,717,227 5,431,366 85% National Security Technologies, LLC (NSTec), the management and operating contractor for the Nevada National Security Site,...

43

FY 2011 National Security Technologies, LLC, PER Summary | National...  

National Nuclear Security Administration (NNSA)

Total Fee Earned % 23,778,080 22,711,395 95.51% National Security Technologies, LLC (NSTec), the management and operating contractor for the Nevada National Security Site,...

44

FY 2010 National Security Technologies, LLC, PER Summary | National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Fee Earned % 21,963,057 19,293,505 87.8% National Security Technologies, LLC (NSTec), the management and operating contractor for the Nevada National Security Site,...

45

FY 2007 National Security Technologies, LLC, PER Summary | National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Total Fee Earned % 23,060,224 19,264,822 83.5% National Security Technologies, LLC (NSTec), the management and operating contractor for the Nevada National Security Site,...

46

Geologic Sequestration The National Energy Technology Laboratory and Los Alamos National Laboratory  

E-Print Network [OSTI]

Geologic Sequestration The National Energy Technology Laboratory and Los Alamos National Laboratory) and the National Energy Technology Laboratory (NETL) are collaborating to develop a national plan to determine

47

The National Wind Technology Center  

SciTech Connect (OSTI)

Wind energy research began at the Rocky Flats test site in 1976 when Rockwell International subcontracted with the Energy Research and Development Administration (ERDA). The Rocky Flats Plant was competitively selected from a number of ERDA facilities primarily because it experienced high instantaneous winds and provided a large, clear land area. By 1977, several small wind turbines were in place. During the facility`s peak of operation, in 1979-1980, researchers were testing as many as 23 small wind turbines of various configurations, including commercially available machines and prototype turbines developed under subcontract to Rocky Flats. Facilities also included 8-kW, 40-kW, and 225-kW dynamometers; a variable-speed test bed; a wind/hybrid test facility; a controlled velocity test facility (in Pueblo, Colorado); a modal test facility, and a multimegawatt switchgear facility. The main laboratory building was dedicated in July 1981 and was operated by the Rocky Flats Plant until 1984, when the Solar Energy Research Institute (SERI) and Rocky Flats wind energy programs were merged and transferred to SERI. SERI and now the National Renewable Energy Laboratory (NREL) continued to conduct wind turbine system component tests after 1987, when most program personnel were moved to the Denver WEst Office Park in Golden and site ownership was transferred back to Rocky Flats. The Combined Experiment test bed was installed and began operation in 1988, and the NREL structural test facility began operation in 1990. In 1993, the site`s operation was officially transferred to the DOE Golden Field Office that oversees NREL. This move was in anticipation of NREL`s renovation and reoccupation of the facility in 1994.

Thresher, R.W.; Hock, S.M. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Loose, R.R.; Cadogon, J.B.

1994-07-01T23:59:59.000Z

48

Preliminary Notice of Violation, National Security Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a Preliminary Notice of Violation (SEA-2014-02) to National Security Technologies, LLC (NSTec), for violations of Department of Energy's classified information security program...

49

United States National Energy Technology Laboratory's (NETL)...  

Open Energy Info (EERE)

Laboratory's (NETL) Smart Grid Implementation Strategy Reference Library Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: United States National Energy Technology...

50

NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Alloy for the Manufacture of Improved Coronary Stents Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Partners A coronary stent is a small,...

51

NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Basic...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Basic Immobilized Amine Sorbent (BIAS) Process Success Story NETL Technology Transfer Group techtransfer@netl.doe.gov Contact Capturing carbon dioxide (CO 2 ) from the flue or...

52

Middle School Regional Science Bowl Competition | Argonne National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coach's Resources Registration Middle School Electric Car Competition High School Rube Goldberg Teacher Programs Classroom Resources Additional Information For more information...

53

Information technology and sustained competitive advantage : a research model for the effect of information technology on sustained competitive advantage and an empirical analysis  

E-Print Network [OSTI]

Companies consider Information Technology (IT) to be a major factor for achieving sustained competitive advantage (SCA). The effect of IT on firm performance has been studied from two main perspectives: the market based ...

Saodekar, Sarvesh P. (Sarvesh Pramod)

2012-01-01T23:59:59.000Z

54

National Security Technology Incubator Business Plan  

SciTech Connect (OSTI)

This document contains a business plan for the National Security Technology Incubator (NSTI), developed as part of the National Security Preparedness Project (NSPP) and performed under a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This business plan describes key features of the NSTI, including the vision and mission, organizational structure and staffing, services, evaluation criteria, marketing strategies, client processes, a budget, incubator evaluation criteria, and a development schedule. The purpose of the NSPP is to promote national security technologies through business incubation, technology demonstration and validation, and workforce development. The NSTI will focus on serving businesses with national security technology applications by nurturing them through critical stages of early development. The vision of the NSTI is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety, security, and protection of the homeland. The NSTI is operated and managed by the Arrowhead Center, responsible for leading the economic development mission of New Mexico State University (NMSU). The Arrowhead Center will recruit business with applications for national security technologies recruited for the NSTI program. The Arrowhead Center and its strategic partners will provide business incubation services, including hands-on mentoring in general business matters, marketing, proposal writing, management, accounting, and finance. Additionally, networking opportunities and technology development assistance will be provided.

None

2007-12-31T23:59:59.000Z

55

National Energy Technology Laboratory Technology Marketing Summaries -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.Demonstrate PromisingElectedEnergy Innovation

56

National Disaster Resilience Competition Webinar Series: Long-Term Commitment Factor  

Broader source: Energy.gov [DOE]

In light of the recent announcement of the National Disaster Resilience Competition (NDRC), HUD is offering a series of webinars to discuss NDRC NOFA requirements, answer NDRC NOFA questions and...

57

Thomas Jefferson High School for Science & Technology National...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thomas Jefferson High School for Science & Technology National Science Bowl Champion Thomas Jefferson High School for Science & Technology National Science Bowl Champion May 2,...

58

Diversity in Science and Technology Advances National Clean Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Diversity in Science and Technology Advances National Clean Energy in Solar Diversity in Science and Technology Advances National Clean Energy in Solar The SunShot Diversity in...

59

Upcoming Webinar March 11: National Fuel Cell Technology Evaluation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Upcoming Webinar March 11: National Fuel Cell Technology Evaluation Center (NFCTEC) Upcoming Webinar March 11: National Fuel Cell Technology Evaluation Center (NFCTEC) March 7,...

60

Fuel Cell Technologies Office Launches National Laboratory Tech...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies Office Launches National Laboratory Tech-to-Market Activities Fuel Cell Technologies Office Launches National Laboratory Tech-to-Market Activities November 3, 2014 -...

Note: This page contains sample records for the topic "national competitiveness technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

ENEA Italian National Agency for New Technologies Energy and...  

Open Energy Info (EERE)

ENEA Italian National Agency for New Technologies Energy and the Environment Jump to: navigation, search Name: ENEA (Italian National Agency for New Technologies, Energy and the...

62

2011 Annual Planning Summary for National Energy Technology Laboratory...  

Office of Environmental Management (EM)

National Energy Technology Laboratory (NETL) 2011 Annual Planning Summary for National Energy Technology Laboratory (NETL) The ongoing and projected Environmental Assessments and...

63

National Institute of Standards and Technology  

E-Print Network [OSTI]

National Institute of Standards and Technology NIST Campus Gaithersburg, MD NET ZERO ENERGY Campus Gaithersburg, MD NET ZERO ENERGY RESIDENTIAL TEST FACILITY PROJECT: CONSULTANT: SHEET TITLE: SCALE Institute of Standards and Technology NIST Campus Gaithersburg, MD NET ZERO ENERGY RESIDENTIAL TEST FACILITY

64

Technology transfer | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeignTechnology-Selection-Process SignL. PaulTechnology

65

National Security Technology Incubator Operations Plan  

SciTech Connect (OSTI)

This report documents the operations plan for developing the National Security Technology Incubator (NSTI) program for southern New Mexico. The NSTI program will focus on serving businesses with national security technology applications by nurturing them through critical stages of early development. The NSTI program is being developed as part of the National Security Preparedness Project (NSPP), funded by Department of Energy (DOE)/National Nuclear Security Administration (NNSA). The operation plan includes detailed descriptions of the structure and organization, policies and procedures, scope, tactics, and logistics involved in sustainable functioning of the NSTI program. Additionally, the operations plan will provide detailed descriptions of continuous quality assurance measures based on recommended best practices in incubator development by the National Business Incubation Association (NBIA). Forms that assist in operations of NSTI have been drafted and can be found as an attachment to the document.

None

2008-04-30T23:59:59.000Z

66

Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories  

SciTech Connect (OSTI)

Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies] [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)] [Tech Reps, Inc., Albuquerque, NM (United States)

1996-08-01T23:59:59.000Z

67

National Wind Technology Center | NREL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn Cyber Security NuclearNew test facility will

68

Sandia National Laboratories: technology transfer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational SolartSSL George Wang's Invitedtechnology

69

Sandia National Laboratories: biomarine technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wavearc-faultbest paperbiomarine technology

70

National Clean Energy Business Plan Competition Kicks Off With...  

Broader source: Energy.gov (indexed) [DOE]

to Inspire Collegiate Clean Energy Entrepreneurs Superior Ecotech's technology uses algae to convert carbon dioxide resulting from brewing beer into omega-3 oils, which lowers...

71

National Clean Energy Business Plan Competition: REEcycle Wins...  

Office of Environmental Management (EM)

earth elements are critical to manufacturing clean energy technologies, including wind turbines, energy-efficient lights, thin-film solar cells, and motors and batteries for...

72

National Clean Energy Business Plan Competition: Six Regional...  

Office of Environmental Management (EM)

Institute of Technology University of Houston, REEcycle REEcycle reclaims rare earth elements from magnets in electronics, creating a sustainable supply of critical...

73

National Clean Energy Business Plan Competition: Energy Internet...  

Office of Environmental Management (EM)

The company's technology was developed at Georgia Tech through an ARPA-e grant, under the Green Energy Network Integration program. After winning the ACC Clean Energy Challenge,...

74

Blanket technology experiments at Argonne National Laboratory  

SciTech Connect (OSTI)

Argonne National Laboratory has the largest US program for the development of blanket technology. The goals of the program are to resolve critical issues for different blanket concepts, to develop the understanding and predictive capability of blanket behavior, and to develop the technology needed to build and operate advanced fusion blankets. The projects within the program are liquid metal MHD, breeder neutronics, tritium oxidation, transient electromagnetics, FLIBE chemistry, and insulator coatings. The present status and recent results of the projects are described.

Mattas, R.F.; Reed, C.B.; Picologlou, B.; Finn, P.; Clemmer, R.; Porges, K.; Bennett, E.; Turner, L.R.

1988-02-01T23:59:59.000Z

75

THE IDAHO NATIONAL LABORATORY BERYLLIUM TECHNOLOGY UPDATE  

SciTech Connect (OSTI)

A Beryllium Technology Update meeting was held at the Idaho National Laboratory on July 18, 2007. Participants came from the U.S., Japan, and Russia. There were two main objectives of this meeting. One was a discussion of current technologies for beryllium in fission reactors, particularly the Advanced Test Reactor and the Japan Materials Test Reactor, and prospects for material availability in the coming years. The second objective of the meeting was a discussion of a project of the International Science and Technology Center regarding treatment of irradiated beryllium for disposal. This paper highlights discussions held during that meeting and major conclusions reached

Glen R. Longhurst

2007-12-01T23:59:59.000Z

76

National Clean Energy Business Plan Competition: FGC Plasma Solutions...  

Energy Savers [EERE]

their technologies. Previous competitors have gone on to launch more than 70 start-ups, create 120 jobs, file 55 patents and disclosures, and raise 60 million in follow-on...

77

SCIENCE AND TECHNOLOGY FOR THE NATION  

E-Print Network [OSTI]

SCIENCE AND TECHNOLOGY FOR THE NATION #12;路Yearestablished:1965 路Managementandoperationscontractor include: 路EMSL,aDepartmentofEnergynationalscientific user facility 路Bioproducts,Sciences,andEngineeringLaboratory-- sharedwithWashingtonStateUniversity 路ElectricityInfrastructureOperationsCenter 路SequimMarineSciences

78

National Advanced Drilling and Excavation Technologies Program  

SciTech Connect (OSTI)

The second meeting of Federal agency representatives interested in the National Advanced Drilling and Excavation Technologies (NADET) Program took place on June 15, 1993. The Geothermal Division of the U.S. Department of Energy (DOE) hosted the meeting at the Washington, D.C., offices of DOE. Representatives from the National Science Foundation, U.S. Geological Survey, U.S. Bureau of Mines, National Institute of Standards and Technology, National Aeronautics and Space Administration, Environmental Protection Agency, and various offices within the Department of Energy attended. For a complete list of attendees see Attachment A. The purpose of the meeting was: (1) to cover the status of efforts to gain formal approval for NADET, (2) to brief participants on events since the last meeting, especially two recent workshops that explored research needs in drilling and excavation, (3) to review some recent technological advances, and (4) to solicit statements of the importance of improving drilling and excavation technologies to the missions of the various agencies. The meeting agenda is included as Attachment B.

None

1993-06-15T23:59:59.000Z

79

Director Leaving the National Energy Technology Laboratory  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy today announced that Carl O. Bauer is retiring from federal service and leaving the National Energy Technology Laboratory effective February 28, 2010, following a distinguished four-year tenure as the laboratory's director, completing an impressive federal civilian and military career.

80

VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology  

E-Print Network [OSTI]

VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology FY 2006 Annual Report U.S. Department of Commerce Technology Administration National Institute of Standards and Technology #12;VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology

Note: This page contains sample records for the topic "national competitiveness technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Vehicle Technologies Office Merit Review 2014: Cost-Competitive...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Vehicle Technologies Office Merit Review 2014:...

82

National Wind Technology Center (Fact Sheet)  

SciTech Connect (OSTI)

This overview fact sheet is one in a series of information fact sheets for the National Wind Technology Center (NWTC). Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center (NWTC), the nation's premier wind energy technology research facility, fosters innovative wind energy technologies in land-based and offshore wind through its research and testing facilities and extends these capabilities to marine hydrokinetic water power. Research and testing conducted at the NWTC offers specialized facilities and personnel and provides technical support critical to the development of advanced wind energy systems. From the base of a system's tower to the tips of its blades, NREL researchers work side-by-side with wind industry partners to increase system reliability and reduce wind energy costs. The NWTC's centrally located research and test facilities at the foot of the Colorado Rockies experience diverse and robust wind patterns ideal for testing. The NWTC tests wind turbine components, complete wind energy systems and prototypes from 400 watts to multiple megawatts in power rating.

Not Available

2011-12-01T23:59:59.000Z

83

Infographics from the 2014 National Geothermal Student Competition |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPosting Thomas F. Edgar,

84

National Clean Energy Business Plan Competition - EERE Commercialization  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.Demonstrate PromisingElected to

85

2013 National Clean Energy Business Plan Competition | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( SampleEnergyofDepartment ofLabor2013 National Clean Energy

86

ArgonneNEXT Competition: At a Glance | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICEAmesApplication2Argonne National Laboratory

87

United Nations Human Space Technology Initiative (HSTI)  

E-Print Network [OSTI]

The Human Space Technology Initiative was launched in 2010 within the framework of the United Nations Programme on Space Applications implemented by the Office for Outer Space Affairs of the United Nations. It aims to involve more countries in activities related to human spaceflight and space exploration and to increase the benefits from the outcome of such activities through international cooperation, to make space exploration a truly international effort. The role of the Initiative in these efforts is to provide a platform to exchange information, foster collaboration between partners from spacefaring and non-spacefaring countries, and encourage emerging and developing countries to take part in space research and benefit from space applications. The Initiative organizes expert meetings and workshops annually to raise awareness of the current status of space exploration activities as well as of the benefits of utilizing human space technology and its applications. The Initiative is also carrying out primary ...

Ochiai, M; Steffens, H; Balogh, W; Haubold, H J; Othman, M; Doi, T

2015-01-01T23:59:59.000Z

88

VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology  

E-Print Network [OSTI]

VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology 2007 Annual Report Visiting Committee on Advanced Technology of the National Institute of Standards and Technology U.S. Department of Commerce March 3, 2008 #12;VISITING COMMITTEE ON ADVANCED TECHNOLOGY National

89

Advanced Vehicle Technology Competition: Challenge-X 2008 DOE...  

Broader source: Energy.gov (indexed) [DOE]

Base Supplies the Students with Cutting Edge Technologies Plug-in hybrid B20 powered diesel through-the-road hybrid E85 powered split parallel hybrid RFG + light weighting...

90

NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY  

E-Print Network [OSTI]

NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY Upton, NY #12;2 NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT;3 NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY Properties

McDonald, Kirk

91

National Clean Energy Business Plan Competition: Living Ink Technologies  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,FermiJoshuaAugust1 | Energy EfficiencyNancy Anne Baugher2015

92

Cellulosic Ethanol Technology on Track to Being Competitive With Other Transportation Fuels (Fact Sheet)  

SciTech Connect (OSTI)

Researchers at the National Renewable Energy Laboratory (NREL) have been driving down the cost of cellulosic ethanol and overcoming the technical challenges that surround it-major milestones toward the Department of Energy (DOE) goal of making cellulosic ethanol cost-competitive by 2012.

Not Available

2011-02-01T23:59:59.000Z

93

The impact of competitive bidding on the market prospects for renewable electric technologies  

SciTech Connect (OSTI)

This report examines issues regarding the ability of renewable-energy-based generation projects to compete fossil-fuel-based projects in competitive bidding solicitations. State and utility bidding results revealed that on a relative basis, utilities contract for less renewable-energy-based capacity under competitive bidding than under past methods of qualifying facility contracting. It was concluded that renewables are not being chosen more often under competitive bidding because it emphasizes price and operating considerations over other attributes of renewables, such as environmental considerations, fuel diversity, and fuel price stability. Examples are given of bidding approaches used by some states and utilities that have resulted in renewables-based projects winning generation bids. In addition, the appendix summarizes, by state, competitive bidding activities and results for supply-side solicitations that were open to all fuels and technologies.

Swezey, B.G.

1993-09-01T23:59:59.000Z

94

Competitive Performance Assessment of Dynamic Vehicle Routing Technologies  

E-Print Network [OSTI]

the load. On the demand side, the motivation for this work is two-fold. The growing demand for customer-responsive@wam.umd.edu and Patrick Jaillet Massachusetts Institute of Technology Department of Civil & Environmental Engineering. In this environment, demands arrive randomly over time and are described by pick up, delivery locations and hard time

95

NIST Organic Act National Institute of Standards and Technology Act  

E-Print Network [OSTI]

NIST Organic Act National Institute of Standards and Technology Act SECTION 1. FINDINGS in manufacturing technology, quality control, and techniques for ensuring product reliability and cost concerns compete strongly in world markets. (3) Improvements in manufacturing and product technology depend

Magee, Joseph W.

96

The Clean Coal Technology Demonstration Program is a $5-billion national  

E-Print Network [OSTI]

commitment, cost-shared by the Government and the private sector, to demonstrate economic and environmentally sound methods for using our Nation's most abundant energy resource. The Program will foster the energy efficient use of the Nation's vast coal resource base. By doing so, the Program will contribute significantly to the long-term energy security of the United States, will further the Nation's objectives for a cleaner environment, and will improve its competitive standing in the international energy market. The first three Clean Coal Technology solicitations were issued in 1986, 1988,

unknown authors

97

Competitive edge powerview: A DSM-focused technology  

SciTech Connect (OSTI)

First Pacific Networks and Entergy have developed a single-platform, cost-effective system that provides a breakthrough in DSM and customer service as well as significant operational benefits. The system is sophisticated and flexible enough to enable voice, video, and data transmission, opening the opportunity for utilities to collaborate with telephone and cable television companies in deploying the system. This system, called PowerView, is an interactive, intelligent, real-time communication system that overlays and interfaces with the utility's existing infrastructure. It provides the means by which functions that typically are seen as separate and distinct can be integrated to achieve significant savings and enhance competitive advantage. At the same time it will accelerate the development of the highly touted information superhighway. PowerView's real-time, addressable communications capabilities allow utilities to offer a new form of DSM, known as customer-controlled load management, while it provides for real-time dispatch and verification capabilities. Customer-controlled load management (CCLM) is a way for customers to make choices about their electricity consumption based on tangible economic drivers. Price signals reflecting the utility's marginal cost of production can be transmitted in real time over the PowerView network. An inhouse system encompassing major appliances, controllers, and a users interface receives the signals and adjusts consumption on the basis of preprogrammed settings chosen by the customer. Consumers obtain current and up-to-date bill and usage information in real time to help guide their selections. Confirmation of resulting load adjustments are transmitted over the system back to the utility in real time.

Coleman, A.; Castleberry, D.; Blomberg, J.; Reynolds, R.

1993-11-01T23:59:59.000Z

98

Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy (2010 JGI User Meeting)  

ScienceCinema (OSTI)

Madhu Khanna from the University of Illinois at Urbana-Champaign and the Energy Biosciences Institute on "Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

Khanna, Madhu

2011-04-26T23:59:59.000Z

99

SAVANNAH RIVER NATIONAL LABORATORY HYDROGEN TECHNOLOGY RESEARCH  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E

2008-02-08T23:59:59.000Z

100

National Aeronautics and Space Administration NASA Technology Transfer Program  

E-Print Network [OSTI]

National Aeronautics and Space Administration NASA Technology Transfer Program Bringing NASA of technology transfer that NASA maximizes the benefit of the Nation's investment in cutting-edge research technology transfer has made us confident that these solutions, while originally conceived to solve NASA

Waliser, Duane E.

Note: This page contains sample records for the topic "national competitiveness technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY  

E-Print Network [OSTI]

NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY-27, 2004 CERN Geneva, Switzerland #12;NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY Experience Installing New Equipment 路 Conclusions #12;NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE

McDonald, Kirk

102

Input from Key Stakeholders in the National Security Technology Incubator  

SciTech Connect (OSTI)

This report documents the input from key stakeholders of the National Security Technology Incubator (NSTI) in developing a new technology incubator and related programs for southern New Mexico. The technology incubator is being developed as part of the National Security Preparedness Project (NSPP), funded by a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This report includes identification of key stakeholders as well as a description and analysis of their input for the development of an incubator.

None

2008-01-31T23:59:59.000Z

103

VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology  

E-Print Network [OSTI]

VISITING COMMITTEE ON ADVANCED TECHNOLOGY National Institute of Standards and Technology 1 2009 Annual Report Visiting Committee on Advanced Technology (VCAT) of the National Institute of Standards and Technology U.S. Department of Commerce March 3, 2010 #12;VISITING COMMITTEE

104

National Interest Security Company NISC Formerly Technology Management...  

Open Energy Info (EERE)

search Name: National Interest Security Company (NISC) (Formerly Technology & Management Services (TMS) Inc.) Place: Gaithersburg, Maryland Zip: 20879 Product: TMS provides...

105

of Fossil Energy | National Energy Technology Laboratory | Purdue...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy | National Energy Technology Laboratory | Purdue University 2014 University tUrbine systems research Workshop october 21-23 , 2014 West Lafayette, in 2 TABLE OF CONTENTS...

106

Oak Ridge National Laboratory Carbon Fiber Technology Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oak Ridge National Laboratory Carbon Fiber Technology Facility Low-Cost Carbon Fiber | Proposal Guidelines Proposal Guidelines Proposals should be no more than 5 single spaced...

107

Anthony Cugini Named Director of DOE's National Energy Technology Laboratory  

Broader source: Energy.gov [DOE]

Anthony V. Cugini, a senior scientist with a range of research experience and interests over a wide cross section of energy and environmental technologies, has been named director of the U.S. Department of Energy's National Energy Technology Laboratory.

108

Investigating successful implementation of technologies in Developing nations  

E-Print Network [OSTI]

A study was performed to determine possible factors that contribute to successful implementation of new technologies in developing nations. Engineers and other inventors have devoted great effort to Appropriate Technology ...

Hsieh, Edward F. (Edward Fang)

2005-01-01T23:59:59.000Z

109

Building Science and Technology Solutions for National Problems  

SciTech Connect (OSTI)

The nation's investment in Los Alamos has fostered scientific capabilities for national security missions. As the premier national security science laboratory, Los Alamos tackles: (1) Multidisciplinary science, technology, and engineering challenges; (2) Problems demanding unique experimental and computational facilities; and (3) Highly complex national security issues requiring fundamental breakthroughs. Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) ensure the safety, security, and reliability of the US nuclear deterrent; (2) protect against the nuclear threat; and (3) solve national security challenges.

Bishop, Alan R. [Los Alamos National Laboratory

2012-06-05T23:59:59.000Z

110

NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY  

E-Print Network [OSTI]

NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE NATIONAL LABORATORY U.S. DEPARTMENT OF ENERGY Rennich, Phil Spampinato (spampinatop@ornl.gov, 865-576-5267) Equipment Decommissioning and Disposition September 1, 2004 Oak Ridge National Laboratory #12;2 NUCLEAR SCIENCE AND TECHNOLOGY DIVISION OAK RIDGE

McDonald, Kirk

111

Sandia National Laboratories: Geothermal Energy & Drilling Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyGeothermalGeothermal Energy & Drilling Technology Geothermal Energy & Drilling Technology Geothermal energy is an abundant energy resource that comes from tapping the natural...

112

Knowledge-Based Parallel Performance Technology for Scientific Application Competitiveness Final Report  

SciTech Connect (OSTI)

The primary goal of the University of Oregon's DOE "??competitiveness" project was to create performance technology that embodies and supports knowledge of performance data, analysis, and diagnosis in parallel performance problem solving. The target of our development activities was the TAU Performance System and the technology accomplishments reported in this and prior reports have all been incorporated in the TAU open software distribution. In addition, the project has been committed to maintaining strong interactions with the DOE SciDAC Performance Engineering Research Institute (PERI) and Center for Technology for Advanced Scientific Component Software (TASCS). This collaboration has proved valuable for translation of our knowledge-based performance techniques to parallel application development and performance engineering practice. Our outreach has also extended to the DOE Advanced CompuTational Software (ACTS) collection and project. Throughout the project we have participated in the PERI and TASCS meetings, as well as the ACTS annual workshops.

Allen D. Malony; Sameer Shende

2011-08-15T23:59:59.000Z

113

Biofuel technology at Argonne | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

-Site environmental protection --Site waste management -Site sustainability --Site pollution prevention Operations -Business diversity -Technology transfer -Procurement -Human...

114

NREL Releases RFP for Distributed Wind Turbine Competitiveness Improvement Projects  

Broader source: Energy.gov [DOE]

In support of DOE's efforts to further develop distributed wind technology, NREL's National Wind Technology Center has released a Request for Proposal for the following Distributed Wind Turbine Competitiveness Improvement Projects on the Federal Business

115

Technology available for licensing: CURLS | Argonne National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology available for licensing: CURLS November 21, 2013 Tweet EmailPrint CURLS - the Containment Unidirectional Resource Loading System developed at Argonne - expands the...

116

Advanced Technology Development and Mitigation | National Nuclear...  

National Nuclear Security Administration (NNSA)

Technology Development and Mitigation This sub-program includes laboratory code and computer engineering and science projects that pursue long-term simulation and computing goals...

117

National Security Technology Center | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of Energy LoginofNationalLos AlamosGlobal

118

Sandia National Laboratories: National Energy Systems Technology incubator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt Storage System ArevaNRG SandiaGasesNationalNational

119

National Energy Technology Laboratory Technologies Available for Licensing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries &NST Division AddressingCompetitiveness-

120

Vehicle Technologies Office: National Idling Reduction Network...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

News. To receive NIRNN by e-mail monthly, please e-mail Patricia Weikersheimer. Search Past Newsletters The National Idling Reduction Network News is currently sent as an HTML...

Note: This page contains sample records for the topic "national competitiveness technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

New design concepts for energy-conserving buildings. Results of a national competition among students in schools of architecture  

SciTech Connect (OSTI)

The National Student Competition in Energy Conscious Design held among professional schools of architecture in 1976 is documented. Fifty-five schools participated, submitting 115 entries; twelve were chosen as finalists. Details are presented on the twelve winning designs and excerpts from the remaining 103 entries are published. (MCW)

None

1982-01-01T23:59:59.000Z

122

Wind Energy at NREL's National Wind Technology Center  

ScienceCinema (OSTI)

It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

None

2013-05-29T23:59:59.000Z

123

Wind Energy at NREL's National Wind Technology Center  

SciTech Connect (OSTI)

It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

None

2010-01-01T23:59:59.000Z

124

National Wind Technology Center - Local Information | NREL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn Cyber Security Nuclear

125

Oak Ridge National Laboratory Technology Logic Diagram. Indexes  

SciTech Connect (OSTI)

The Decontamination and Decommissioning (D&D) Index provides a comprehensive list of site problems, problem area/constituents, remedial technologies, and regulatory terms discussed in the D&D sections of the Oak Ridge National Laboratory Technology Logic Diagram. All entries provide specific page numbers, or cross-reference entries that provide specific page numbers, in the D&D volumes (Vol. 1, Pt. A; Vol. 2, Pt. A; and appropriate parts of Vol. 3). The Oak Ridge National Laboratory Technology (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA) and WM activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk.

Not Available

1993-09-01T23:59:59.000Z

126

Sandia National Laboratories: new PV technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime ismobile testnational electricitynew PV technology

127

NREL: National Wind Technology Center Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National NuclearoverAcquisitionEnergy15 April 2015 TheHarinNREL:

128

National Renewable Energy Laboratory Technology Marketing Summaries -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.DemonstrateScientistsResourceTopicsScientists

129

Sandia National Laboratories: thin-film technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational SolartSSLPV materials (Si CIGS

130

National Wind Technology Center Controllable Grid Interface  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of Energy2015 | Jefferson LabVahan

131

Sandia National Laboratories: MHK Technology Development  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos Alamos NationalMHK Floating Oscillating

132

Sandia National Laboratories Technology Marketing Summaries - Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStoriesSANDIA1 0-SA-02andTECHNOLOGY

133

Technology and Commercialization Organization Chart | Argonne National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeignTechnology-Selection-Process Sign InLaboratory

134

Sandia National Laboratories: Science and Technology Directorate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking Work on CriegeeElectronicsAssociationScaledand Technology

135

Sandia National Laboratories: accelerating PV technology integration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wave EnergyLinksZ Newsaccelerating PV technology

136

Sandia National Laboratories: Front Edge Technology Inc.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit at Explora MuseumFloatingFront Edge Technology Inc.

137

Sandia National Laboratories: Fuel Cell Technologies Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit at Explora MuseumFloatingFront Edge TechnologyFuel

138

Sandia National Laboratories: Hydrogen and Combustion Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit atVehicle Technologies On NovemberSafety, Codes

139

u.s. department of commerce national institute of standards and technology manufacturing extension partnership The National Institute of Standards and Technology's (NIST) Hollings Manufacturing Extension  

E-Print Network [OSTI]

, from innovation strategies to process improvements to green manufacturing. MEP also works with partnersu.s. department of commerce 路 national institute of standards and technology 路 manufacturing extension partnership The National Institute of Standards and Technology's (NIST) Hollings Manufacturing

Magee, Joseph W.

140

Marketing Plan for the National Security Technology Incubator  

SciTech Connect (OSTI)

This marketing plan was developed as part of the National Security Preparedness Project by the Arrowhead Center of New Mexico State University. The vision of the National Security Technology Incubator program is to be a successful incubator of technologies and private enterprise that assist the NNSA in meeting new challenges in national safety and security. The plan defines important aspects of developing the incubator, such as defining the target market, marketing goals, and creating strategies to reach the target market while meeting those goals. The three main marketing goals of the incubator are: 1) developing marketing materials for the incubator program; 2) attracting businesses to become incubator participants; and 3) increasing name recognition of the incubator program on a national level.

None

2008-03-31T23:59:59.000Z

Note: This page contains sample records for the topic "national competitiveness technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Vehicle Technologies Office Merit Review 2014: Idaho National Laboratory Testing of Advanced Technology Vehicles  

Broader source: Energy.gov [DOE]

Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing of advanced...

142

A prototype catalogue: DOE National Laboratory technologies for infrastructure modernization  

SciTech Connect (OSTI)

The purpose of this report is to provide the Office of Technology Assessment (OTA) with information about selected technologies under development in the Department of Energy (DOE) through its National Laboratory System and its Program Office operations. The technologies selected are those that have the potential to improve the performance of the nation's public works infrastructure. The product is a relational database that we refer to as a prototype catalogue of technologies.'' The catalogue contains over 100 entries of DOE-supported technologies having potential application to infrastructure-related problems. The work involved conceptualizing an approach, developing a framework for organizing technology information, and collecting samples of readily available data to be put into a prototype catalogue. In developing the catalogue, our objectives were to demonstrate the concept and provide readily available information to OTA. As such, the catalogue represents a preliminary product. The existing database is not exhaustive and likely represents only a fraction of relevant technologies developed by DOE. In addition, the taxonomy we used to classify technologies is based on the judgment of project staff and has received minimal review by individuals who have been involved in the development and testing of the technologies. Finally, end users will likely identify framework changes and additions that will strengthen the catalogue approach. The framework for the catalogue includes four components: a description of the technology, along with potential uses and other pertinent information; identification of the source of the descriptive information; identification of a person or group knowledgeable about the technology; and a classification of the described technology in terms of its type, application, life-cycle use, function, and readiness.

Currie, J.W.; Wilfert, G.L.; March, F.

1990-01-01T23:59:59.000Z

143

National Wind Technology Center sitewide, Golden, CO: Environmental assessment  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory (NREL), the nation`s primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate.

NONE

1996-11-01T23:59:59.000Z

144

Plasma and Technology Programme National Laboratory for Sustainable Energy  

E-Print Network [OSTI]

1 Plasma and Technology Programme National Laboratory for Sustainable Energy Technical University METHODS OF OZONE GENERATION BY MICRO-PLASMA CONCEPT Authors A. Fateev, A. Chiper, W. Chen and E. Stamate-1-6365 project devoted to plasma-assisted DeNOx. Ozone is as a key agent in plasma NOx reduction because

145

Clean Energy Business Plan Competition  

ScienceCinema (OSTI)

Top Students Pitch Clean Energy Business Plans The six regional finalists of the National Clean Energy Business Plan Competition pitched their business plans to a panel of judges June 13 in Washington, D.C. The expert judges announced NuMat Technologies from Northwestern University as the grand prize winner.

Maxted, Sara Jane; Lojewski, Brandon; Scherson, Yaniv;

2013-05-29T23:59:59.000Z

146

Oak Ridge National Laboratory Technology Logic Diagram. Volume 2, Technology Logic Diagram: Part B, Remedial Action  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1. and 2 focuses on D&D. Part B of Vols. 1 and 2 focuses on the RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the rankings of remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. Remedial action is the focus of Vol. 2, Pt. B, which has been divided into the three necessary subelements of the RA: characterization, RA, and robotics and automation. Each of these sections address general ORNL problems, which are then broken down by problem area/constituents and linked to potential remedial technologies. The diagrams also contain summary information about a technology`s status, its science and technology needs, and its implementation needs.

Not Available

1993-09-01T23:59:59.000Z

147

u.s. department of commerce national institute of standards and technology manufacturing extension partnership W W W . n i s t . g o v / m e p 1 -8 0 0 -m e p -4 m F g  

E-Print Network [OSTI]

u.s. department of commerce 路 national institute of standards and technology 路 manufacturing the Commonwealth. These Centers were established to help small- and medium-sized manufacturing enterprises (SMEs) respond to changing markets, new technology and the competitive pressures of today's global economy

Perkins, Richard A.

148

Independent Oversight Review, Nevada Site Office and National Security Technologies, LLC- November 2011  

Broader source: Energy.gov [DOE]

Review of Nevada Site Office and National Security Technologies, LLC, Line Oversight and Contractor Assurance Systems Self-Assessment

149

Brian R. Strazisar $ National Energy Technology Laboratory, U.S. Department of  

E-Print Network [OSTI]

AUTHORS Brian R. Strazisar $ National Energy Technology Laboratory, U.S. Department of Energy, P.S. Department of Energy's National Energy Technology Labo- ratory. Hedges' current research focus is gas- water University. ACKNOWLEDGEMENTS Chen Zhu acknowledges support from the National Energy Technology Laboratory

Zhu, Chen

150

Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part B, Remedial Action  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1 and 2 focuses on D&D. Part B of Vols. 1 and 2 focuses on RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the ranking os remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. The focus of Vol. 1, Pt. B, is RA, and it has been divided into six chapters. The first chapter is an introduction, which defines problems specific to the ER Program for ORNL. Chapter 2 provides a general overview of the TLD. Chapters 3 through 5 are organized into necessary subelement categories: RA, characterization, and robotics and automation. The final chapter contains regulatory compliance information concerning RA.

Not Available

1993-09-01T23:59:59.000Z

151

Vehicle Technologies Office Merit Review 2014: Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power  

Broader source: Energy.gov [DOE]

Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about cost-competitive advanced...

152

PROCEEDINGS OF THE 2002 NATIONAL OILHEAT RESEARCH ALLIANCE TECHNOLOGY SYMPOSIUM.  

SciTech Connect (OSTI)

This is the PROCEEDINGS OF THE 2002 NATIONAL OILHEAT RESEARCH ALLIANCE TECHNOLOGY SYMPOSIUM, which was Held at Oilheat Visions Conference, Rhode Island Convention Center, Providence, Rhode Island, August 20-21, 2002. The specific objectives of this conference are to: (1) identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; and (2) foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation.

MCDONALD,R.J.

2002-08-20T23:59:59.000Z

153

Energy technologies at Sandia National Laboratories: Past, Present, Future  

SciTech Connect (OSTI)

We at Sandia first became involved with developing energy technology when the nation initiated its push toward energy independence in the early 1970s. That involvement continues to be strong. In shaping Sandia's energy programs for the 1990s, we will build on our track record from the 70s and 80s, a record outlined in this publication. It contains reprints of three issues of Sandia's Lab News that were devoted to our non-nuclear energy programs. Together, they summarize the history, current activities, and future of Sandia's diverse energy concerns; hence my desire to see them in one volume. Written in the fall of 1988, the articles cover Sandia's extremely broad range of energy technologies -- coal, oil and gas, geothermal, solar thermal, photovoltaics, wind, rechargeable batteries, and combustion.

Not Available

1989-08-01T23:59:59.000Z

154

The seeds of solar innovation : how a nation can grow a competitive advantage  

E-Print Network [OSTI]

Over the past several years, the world has been inundated with stories which, when connected, describe an informal and disorganized race by many nations to establish a leadership position in capturing the economic rewards ...

Holaschutz, Donny, 1981-

2012-01-01T23:59:59.000Z

155

Presentation at Innoventure Annual Competition  

SciTech Connect (OSTI)

This report documents the components of the workshop presented at the recent annual competition for the Innoventure program. The goal of the workshop was to focus on the delivery of science, technology, engineering, and math (STEM) concepts in a hands-on experiential learning format to increase interest in national security careers at NNSA, most of which are in the STEM fields. This work is a part of the National Security Preparedness Project (NSPP), being performed under a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant.

None

2010-03-31T23:59:59.000Z

156

HYDROGEN TECHNOLOGY RESEARCH AT THE SAVANNAH RIVER NATIONAL LABORATORY  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E

2009-03-02T23:59:59.000Z

157

South Korean technology policies for the industrial competitiveness between Japan and China  

E-Print Network [OSTI]

(cont.) In addition, this paper will propose new technology policies for Korea in order to secure its position as a leader in the information technology (IT) industry, particularly in the context of its relationships with ...

Lee, Sanghoon, S.M. Massachusetts Institute of Technology, Dept. of Urban Studies and Planning

2006-01-01T23:59:59.000Z

158

Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry  

SciTech Connect (OSTI)

An overview of the Department of Energy`s Office of Industrial Technologies and its private sector partnerships is presented. Commercial success stories and real-world benefits of the technology partnerships are discussed.

NONE

1995-04-01T23:59:59.000Z

159

The Sandia National Laboratories technology transfer program for physical protection technologies  

SciTech Connect (OSTI)

As the Lead Laboratory for the Department of Energy in the field of physical security, Sandia National Laboratories has had the opportunity to collect extensive amounts of information on the technologies of physical security. Over the past 15 years, the volume of this knowledge has become so extensive that Sandia is now taking steps to make this information as available as possible to the DOE community and, where possible, other government agencies and NRC licensees. Through these technology transfer efforts, there are also programs available that allow cooperative research agreements between Sandia and the private sector as well. Six different technology transfer resources are being developed and used by the Safeguards Engineering Department: (1) tech transfer manuals; (2) SAND documents; (3) safeguards libraries; (4) training courses conferences; (5) technical assistance tours; and (6) cooperative research developments agreements (CRADAs).

Green, M.; Miyoshi, D.; Dry, B.

1990-01-01T23:59:59.000Z

160

National Wind Technology Center Dynamic 5-Megawatt Dynamometer  

SciTech Connect (OSTI)

The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

Felker, Fort

2013-11-13T23:59:59.000Z

Note: This page contains sample records for the topic "national competitiveness technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

National Wind Technology Center Dynamic 5-Megawatt Dynamometer  

ScienceCinema (OSTI)

The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

Felker, Fort

2014-06-10T23:59:59.000Z

162

TESTING OF THE RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY  

SciTech Connect (OSTI)

The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, nonelectrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. Positive results from initial deployment trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and the anticipated future potential use of RadBall throughout the U.S. Department of Energy Complex have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further test, underpin, and strengthen the technical performance of the technology. The study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of this testing was to characterize a hot cell with unknown radiation sources. The RadBall calibration experiments and hot cell deployment were successful in that for each trial radiation tracks were visible. The deployment of RadBall can be accomplished in different ways depending on the size and characteristics of the contaminated area (e.g., a hot cell that already has a crane/manipulator available or highly contaminated room that requires the use of a remote control device with sensor and video equipment to position RadBall). This report also presents SRNL-designed RadBall accessories for future RadBall deployment (a harness, PODS, and robot).

Farfan, E.; Foley, T.

2010-02-10T23:59:59.000Z

163

Turbine Inflow Characterization at the National Wind Technology Center: Preprint  

SciTech Connect (OSTI)

Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results shown that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J.

2012-01-01T23:59:59.000Z

164

Turbine Inflow Characterization at the National Wind Technology Center  

SciTech Connect (OSTI)

Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results show that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J. K.

2012-01-01T23:59:59.000Z

165

Oak Ridge National Laboratory Technology Logic Diagram. Volume 1, Technology Evaluation: Part A, Decontamination and Decommissioning  

SciTech Connect (OSTI)

The Strategic Roadmap for the Oak Ridge Reservation is a generalized planning document that identifies broad categories of issues that keep ORNL outside full compliance with the law and other legally binding agreements. Possible generic paths to compliance, issues, and the schedule for resolution of the issues one identified. The role of the Oak Ridge National Laboratory Technology Logic Diagram (TLD) is then to identify specific site issues (problems), identify specific technologies that can be brought to bear on the issues, and assess the current status and readiness of these remediation technologies within the constraints of the schedule commitment. Regulatory requirements and commitments contained in the Strategic Roadmap for the Oak Ridge Reservation are also included in the TLD as constraints to the application of immature technological solutions. Some otherwise attractive technological solutions may not be employed because they may not be deployable on the schedule enumerated in the regulatory agreements. The roadmap for ORNL includes a list of 46 comprehensive logic diagrams for WM of low-level, radioactive-mixed, hazardous, sanitary and industrial. and TRU waste. The roadmapping process gives comparisons of the installation as it exists to the way the installation should exist under full compliance. The identification of the issues is the goal of roadmapping. This allows accurate and timely formulation of activities.

Not Available

1993-09-01T23:59:59.000Z

166

National Security Science and Technology Initiative: Air Cargo Screening  

SciTech Connect (OSTI)

The non-intrusive inspection (NII) of consolidated air cargo carried on commercial passenger aircraft continues to be a technically challenging, high-priority requirement of the Department of Homeland Security's Science and Technology Directorate (DHS S&T), the Transportation Security Agency and the Federal Aviation Administration. The goal of deploying a screening system that can reliably and cost-effectively detect explosive threats in consolidated cargo without adversely affecting the flow of commerce will require significant technical advances that will take years to develop. To address this critical National Security need, the Battelle Memorial Institute (Battelle), under a Cooperative Research and Development Agreement (CRADA) with four of its associated US Department of Energy (DOE) National Laboratories (Oak Ridge, Pacific Northwest, Idaho, and Brookhaven), conducted a research and development initiative focused on identifying, evaluating, and integrating technologies for screening consolidated air cargo for the presence of explosive threats. Battelle invested $8.5M of internal research and development funds during fiscal years 2007 through 2009. The primary results of this effort are described in this document and can be summarized as follows: (1) Completed a gap analysis that identified threat signatures and observables, candidate technologies for detection, their current state of development, and provided recommendations for improvements to meet air cargo screening requirements. (2) Defined a Commodity/Threat/Detection matrix that focuses modeling and experimental efforts, identifies technology gaps and game-changing opportunities, and provides a means of summarizing current and emerging capabilities. (3) Defined key properties (e.g., elemental composition, average density, effective atomic weight) for basic commodity and explosive benchmarks, developed virtual models of the physical distributions (pallets) of three commodity types and three explosive benchmarks combinations, and conducted modeling and simulation studies to begin populating the matrix of commodities, threats, and detection technologies. (4) Designed and fabricated basic (homogeneous) commodity test pallets and fabricated inert stimulants to support experiments and to validate modeling/simulation results. (5) Developed/expanded the team's capabilities to conduct full-scale imaging (neutron and x-ray) experiments of air cargo commodities and explosive benchmarks. (6) Conducted experiments to improve the collection of trace particles of explosives from a variety of surfaces representative of air cargo materials by means of mechanical (air/vibration/pressure), thermal, and electrostatic methods. Air cargo screening is a difficult challenge that will require significant investment in both research and development to find a suitable solution to ensure the safety of passengers without significantly hindering the flow of commodities. The initiative funded by Battelle has positioned this group to make major contributions in meeting the air cargo challenge by developing collaborations, developing laboratory test systems, improving knowledge of the challenges (both technical and business) for air cargo screening, and increasing the understanding of the capabilities for current inspection methods (x-ray radiography, x-ray backscatter, etc.) and potential future inspection methods (neutron radiography, fusion of detector modalities, advanced trace detection, etc.). Lastly, air cargo screening is still an issue that will benefit from collaboration between Department of Energy Laboratories and Battelle. On January 7, 2010, DHS Secretary Napolitano joined White House Press Secretary Robert Gibbs and Assistant to the President for Counterterrorism and Homeland Security John Brennan to announce several recommendations DHS has made to the President for improving the technology and procedures used to protect air travel from acts of terrorism. (This announcement followed the 25 Dec'09 Delta/Northwest Airlines Flight 253 terror attack.) Secretary Napolitano out

Bingham, Philip R [ORNL; White, Tim [Pacific Northwest National Laboratory (PNNL); Cespedes, Ernesto [Idaho National Laboratory (INL); Bowerman, Biays [Brookhaven National Laboratory (BNL); Bush, John [Battelle

2010-11-01T23:59:59.000Z

167

SunShot Initiative Researcher Wins National Medal of Technology and Innovation  

Broader source: Energy.gov [DOE]

Last week, President Obama recognized Dr. Rakesh Agrawal, who is currently a researcher with the Department's SunShot Initiative, with the National Medal of Technology and Innovation.

168

E-Print Network 3.0 - applied technology national Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Emphasis-Dr. Roland Glowinski Honors, Prizes and Distinctions Summary: , 1988 Member, French National Academy of Technology, 2000 Member of the Morningside Group: 2003... of...

169

CONTROL TESTING OF THE UK NATIONAL NUCLEAR LABORATORY'S RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY  

SciTech Connect (OSTI)

The UK National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. To date, the RadBall has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the UK. The trials have demonstrated the successful ability of the RadBall technology to be deployed and retrieved from active areas. The positive results from these initial deployment trials and the anticipated future potential of RadBall have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further underpin and strengthen the technical performance of the technology. RadBall consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. It has no power requirements and can be positioned in tight or hard-to reach places. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly less transparent, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation maps provides information on the spatial distribution and strength of the sources in a given area forming a 3D characterization of the area of interest. This study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of this part of the testing was to characterize a hot cell with unknown radiation sources. The RadBall calibration experiments and hot cell deployment completed at SRNL were successful in that for each trial, the technology was able to locate the radiation sources. The NNL believe that the ability of RadBall to be remotely deployed with no electrical supplies into difficult to access areas of plant and locate and quantify radiation hazards is a unique radiation mapping service. The NNL consider there to be significant business potential associated with this innovative technology.

Farfan, E.

2009-11-23T23:59:59.000Z

170

Building a national technology and innovation infrastructure for an aging society  

E-Print Network [OSTI]

This thesis focuses on the potential of strategic technology innovation and implementation in sustaining an aging society, and examines the need for a comprehensive national technology and innovation infrastructure in the ...

Lau, Jasmin

2006-01-01T23:59:59.000Z

171

AGENDA The Intersection of Cloud and Mobility National Institute of Standards and Technology l Gaithersburg, MD  

E-Print Network [OSTI]

AGENDA The Intersection of Cloud and Mobility National Institute of Standards and Technology l in Mobility 10:00 11:30 Plenary Session Progress on USG Cloud Computing Technology Roadmap Priority Action Session 1 Challenges for Cloud and Mobility Use Cases, Technologies, Consumer Issues Technology

172

Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry. Executive summary  

SciTech Connect (OSTI)

This document briefly describes the Department of Energy`s (DOE`s) Office of Industrial Technologies (OIT) program. It profiles the energy, economic, and environmental characteristics of OIT`s principal customers--the materials and process industries--that consume nearly 80% of all energy used by industry in the US. OIT-supported research, development, and demonstration (RD and D) activities relating to these industries are described as well as OIT`s crosscutting technology programs that target the needs of multiple US industries. Quantitative estimates of the potential benefits (or metrics) to US industry of many current OIT-supported technologies are also discussed.

NONE

1995-04-01T23:59:59.000Z

173

Managing technological innovation and sustaining competitive advantage in the digital imaging industry  

E-Print Network [OSTI]

The emergence and adoption of a disruptive technology that replaces an existing industry platform not only has enormous implications to incumbent firms, but also creates business opportunities that is enabled by the newly ...

Ishii, Katsuki

2005-01-01T23:59:59.000Z

174

United Technologies Corporation: Achieving Competitive Excellence (ACE): Operating System Case Study  

E-Print Network [OSTI]

United Technologies Corporation (abbreviated UTC, NYSE ticker symbol UTX) is a large, industrial conglomerate that designs, manufactures, and services a broad range of products, ranging from air conditioners and elevators ...

Roth, George

2010-11-30T23:59:59.000Z

175

Role of Polycrystalline Thin-Film PV Technologies in Competitive PV Module Markets: Preprint  

SciTech Connect (OSTI)

This paper discusses the developments in thin-film PV technologies and provides an outlook on future commercial module efficiencies achievable based on today's knowledge about champion cell performance.

von Roedern, B.; Ullal, H. S.

2008-05-01T23:59:59.000Z

176

The Office of Industrial Technologies - enhancing the competitiveness, efficiency, and environmental quality of American industry through technology partnerships  

SciTech Connect (OSTI)

A critical component of the Federal Government`s effort to stimulate improved industrial energy efficiency is the DOE`s Office of Industrial Technologies (OIT). OIT funds research, development, and demonstration (RD&D) efforts and transfers the resulting technology and knowledge to industry. This document describes OIT`s program, including the new Industries of the Future (IOF) initiative and the strategic activities that are part of the IOF process. It also describes the energy, economic, and environmental characteristics of the materials and process industries that consume nearly 80% of all energy used by manufacturing in the United States. OIT-supported RD&D activities relating to these industries are described, and quantitative estimates of the potential benefits of many OIT-supported technologies for industry are also provided.

NONE

1997-09-01T23:59:59.000Z

177

Sandia National Laboratories: SCO2 Brayton Cycle Technology Videos  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Systems Laboratory (NESL) Brayton LabSCO2 Brayton Cycle Technology Videos SCO2 Brayton Cycle Technology Videos Tagged with: Advanced Nuclear Energy * Brayton...

178

Idaho National Laboratory Testing of Advanced Technology Vehicles  

Broader source: Energy.gov (indexed) [DOE]

technologies and their required fueling infrastructures Barriers Barriers addressed 1. Cost 2. Infrastructure 3. Constant Advances in Technology Budget *FY 2011 project funding...

179

Deployment of Internet Technologies at Oak Ridge National Laboratory Forrest Hoffman  

E-Print Network [OSTI]

Deployment of Internet Technologies at Oak Ridge National Laboratory Forrest Hoffman Environmental Sciences Division Oak Ridge National Laboratory* P.O. Box 2008 Oak Ridge, Tennessee 37831--6036 ABSTRACT applications for this forum. Oak Ridge National Laboratory颅s entire General Employee Training guide, including

Hoffman, Forrest M.

180

External Service Providers to the National Security Technology Incubator: Formalization of Relationships  

SciTech Connect (OSTI)

This report documents the formalization of relationships with external service providers in the development of the National Security Technology Incubator (NSTI). The technology incubator is being developed as part of the National Security Preparedness Project (NSPP), funded by a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This report summarizes the process in developing and formalizing relationships with those service providers and includes a sample letter of cooperation executed with each provider.

None

2008-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "national competitiveness technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Grid-Competitive Residential and Commercial Fully Automated PV Systems Technology: Final technical Report, August 2011  

SciTech Connect (OSTI)

Under DOE's Technology Pathway Partnership program, SunPower Corporation developed turn-key, high-efficiency residential and commercial systems that are cost effective. Key program objectives include a reduction in LCOE values to 9-12 cents/kWh and 13-18 cents/kWh respectively for the commercial and residential markets. Target LCOE values for the commercial ground, commercial roof, and residential markets are 10, 11, and 13 cents/kWh. For this effort, SunPower collaborated with a variety of suppliers and partners to complete the tasks below. Subcontractors included: Solaicx, SiGen, Ribbon Technology, Dow Corning, Xantrex, Tigo Energy, and Solar Bridge. SunPower's TPP addressed nearly the complete PV value chain: from ingot growth through system deployment. Throughout the award period of performance, SunPower has made progress toward achieving these reduced costs through the development of 20%+ efficient modules, increased cell efficiency through the understanding of loss mechanisms and improved manufacturing technologies, novel module development, automated design tools and techniques, and reduced system development and installation time. Based on an LCOE assessment using NREL's Solar Advisor Model, SunPower achieved the 2010 target range, as well as progress toward 2015 targets.

Brown, Katie E.; Cousins, Peter; Culligan, Matt; Jonathan Botkin; DeGraaff, David; Bunea, Gabriella; Rose, Douglas; Bourne, Ben; Koehler, Oliver

2011-08-26T23:59:59.000Z

182

Oil atlas: National Petroleum Technology Office activities across the United States  

SciTech Connect (OSTI)

Petroleum imports account for the largest share of the US trade deficit. Over one-third of the 1996 merchandise trade deficit is attributed to imported oil. The good news is that substantial domestic oil resources, both existing and yet-to-be-discovered, can be recovered using advanced petroleum technologies. The Energy Information Agency estimates that advanced technologies can yield 10 billion additional barrels, equal to $240 billion in import offsets. The US Department of Energy`s National Petroleum Technology Office works with industry to develop advanced petroleum technologies and to transfer successful technologies to domestic oil producers. This publication shows the locations of these important technology development efforts and lists DOE`s partners in this critical venture. The National Petroleum Technology Office has 369 active technology development projects grouped into six product lines: Advanced Diagnostics and Imaging Systems; Advanced Drilling, Completion, and Stimulation; Reservoir Life Extension and Management; Emerging Processing Technology Applications; Effective Environmental Protection; and Crosscutting Program Areas.

Tiedemann, H.A.

1998-03-01T23:59:59.000Z

183

Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report  

SciTech Connect (OSTI)

Appendices are presented from a study performed on a concept model system for the commercialization of Los Alamos National Laboratory technologies via small businesses. Topics include a summary of information from the joint MCC/Los Alamos technology conference; a comparison of New Mexico infrastructure to other areas; a typical licensing agreement; technology screening guides; summaries of specific DOE/UC/Los Alamos documents; a bibliography; the Oak Ridge National Laboratory TCRD; The Ames Center for Advanced Technology Development; Los Alamos licensing procedures; presentation of slides from monthly MCC/Los Alamos review meetings; generalized entrepreneurship model; and a discussion on receiving equity for technology.

Brice, R.; Carton, D.; Rhyne, T. [and others] [and others

1997-06-01T23:59:59.000Z

184

Proposed technologies for use in the National TRU waste system optimization.  

SciTech Connect (OSTI)

Technology deployments planned for the National TRU Waste System Optimization Project are aimed at using appropriate cost-effective technologies to drive the national TRU waste system to a performance-driven certification system that is based on administrative and operational requirements with a sound safety and/or technical basis. Appropriate technology deployments are determined by first identifying technology needs; selecting promising technologies; and overseeing the development of operating procedures, personnel training, testing, and startup and operations to ensure that the resulting operations function correctly and meet the TRU waste certification requirements.

Moody, D. C. (David C.); Lott, S. A. (Sheila A.); Behrens, R. G. (Robert G.); Basabilvazo, George T. (George Taylor),; Countiss, S. (Sue)

2002-01-01T23:59:59.000Z

185

Los Alamos National Laboratory (LANL) and Chevron Energy Technology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

technology collects real-time information from oil and gas wells April 3, 2012 U.S. energy security and domestic oil production are increased through technology that delivers...

186

Idaho National Laboratory Testing of Advanced Technology Vehicles  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

187

NETL Coal to Hydrogen Program National Energy Technology Laboratory  

E-Print Network [OSTI]

/Hydrogen Production CCPI Technology Demonstrations (50/50) 路 Clear Skies 路 Reduced Carbon Intensity Clean Coal

188

DOE weapons laboratories' contributions to the nation's defense technology base  

SciTech Connect (OSTI)

The question of how the Department of Energy (DOE) weapons laboratories can contribute to a stronger defense technology base is addressed in testimony before the Subcommittee on Defense Industry and Technology of the Senate Armed Services Committee. The importance of the defense technology base is described, the DOE technology base is also described, and some technology base management and institutional issues are discussed. Suggestions are given for promoting a more stable, long-term relationship between the DOE weapons laboratories and the Department of Defense. 12 refs., 2 figs.

Hecker, S.S.

1988-04-01T23:59:59.000Z

189

NREL Supports Development of New National Code for Hydrogen Technologies (Fact Sheet)  

SciTech Connect (OSTI)

On December 14, 2010, the National Fire Protection Association (NFPA) issued a new national code for hydrogen technologies - NFPA 2 Hydrogen Technologies Code - which covers critical applications and operations such as hydrogen dispensing, production, and storage. The new code consolidates existing hydrogen-related NFPA codes and standards requirements into a single document and also introduces new requirements. This consolidation makes it easier for users to prepare code-compliant permit applications and to review/approve these applications. The National Renewable Energy Laboratory helped support the development of NFPA 2 on behalf of the U.S. Department of Energy Fuel Cell Technologies Program.

Not Available

2010-12-01T23:59:59.000Z

190

Savannah River Technology Center (SRTC) Designated as a National Laboratory  

Broader source: Energy.gov [DOE]

In 2004, the Secretary of Energy designated SRTC as a national laboratory based on its contributions and important role it has played in both energy and defense programs of the United States. The lab was also renamed the Savannah River National Laboratory (SRNL).

191

Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concepts. Final report FY-96  

SciTech Connect (OSTI)

The Idaho National Engineering and Environmental Laboratory Environmental Technologies Proof-of-Concept Project was initiated for the expedited development of new or conceptual technologies in support of groundwater fate, transport, and remediation; buried waste characterization, retrieval, and treatment; waste minimization/pollution prevention; and spent fuel handling and storage. In Fiscal Year 1996, The Idaho National Engineering and Environmental Laboratory proposed 40 development projects and the Department of Energy funded 15. The projects proved the concepts of the various technologies, and all the technologies contribute to successful environmental management.

Barrie, S.L.; Carpenter, G.S.; Crockett, A.B. [and others

1997-04-01T23:59:59.000Z

192

National Wind Technology Center to Debut New Dynamometer (Fact Sheet)  

SciTech Connect (OSTI)

New test facility will be used to accelerate the development and deployment of next-generation offshore and land-based wind energy technologies.

Not Available

2013-05-01T23:59:59.000Z

193

Water Quality, Resources and Technology | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Quality, Resources and Technology Water is an increasingly valuable natural resource. By identifying typical sources and distribution of microbial communities in waterways,...

194

Idaho National Laboratory Testing of Advanced Technology Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss021francfort2011o.pdf More Documents & Publications Vehicle...

195

Energy Department Launches National Fuel Cell Technology Evaluation Center  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusiness CompetitionDepartment of EnergyDrop-InInnovativeofto

196

Geospatial Science and Technology for Bioenergy Modeling the Sustainability of the National Bioenergy Infrastructure  

E-Print Network [OSTI]

Geospatial Science and Technology for Bioenergy Modeling the Sustainability of the National. The bioenergy supply chain, from crop to customer, is a spatiotemporal process, and geospatial science provides. This includes geospatially integrated modeling to assess feedstock production, feedstock transportation

197

Developing Knowledge States: Technology and the Enhancement of National Statistical Capacity  

E-Print Network [OSTI]

National statistical systems are the enterprises tasked with collecting, validating and reporting societal attributes. These data serve many purposes - they allow governments to improve services, economic actors to traverse markets, and academics to assess social theories. National statistical systems vary in quality, especially in developing countries. This study examines determinants of national statistical capacity in developing countries, focusing on the impact of general purpose technologies (GPTs). Just as technological progress helps to explain differences in economic growth, states with markets with greater technological attainment (specifically, general purpose technologies) arguably have greater capacity for gathering and processing quality data. Analysis using panel methods shows a strong, statistically significant positive linear relationship between GPTs and national statistical capacity. There is no evidence to support a non-linear function in this relationship. Which is to say, there does not a...

Anderson, Derrick M

2015-01-01T23:59:59.000Z

198

Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part C, Robotics/automation, Waste management  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

Not Available

1993-09-01T23:59:59.000Z

199

Oak Ridge National Laboratory Technology Logic Diagram. Volume 3, Technology evaluation data sheets: Part B, Dismantlement, Remedial action  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D&D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D&D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2.

Not Available

1993-09-01T23:59:59.000Z

200

2014 Race to Zero Student Design Competition: Georgia Institute...  

Broader source: Energy.gov (indexed) [DOE]

Georgia Institute of Technology Profile 2014 Race to Zero Student Design Competition: Georgia Institute of Technology Profile 2014 Race to Zero Student Design Competition: Georgia...

Note: This page contains sample records for the topic "national competitiveness technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Department of Reactor Technology Ris#-M-213S Ris# National Laboratory (August 1975)  

E-Print Network [OSTI]

Department of Reactor Technology Ris#-M-213S Ris# National Laboratory (August 1975) 拢-4.0, ,,.,,in of Reactor Technology Group's ewm rofistratwn :路) Abstract CORECOOL, Convection and Radiation Emergen- cy 芦*. Example on a CORECOOu-calculation 57 5. Discussion and Conclusion 67 6. Acknowledgements $路 7. References

202

Oak Ridge National Laboratory 1 Science & Technology Highlights  

E-Print Network [OSTI]

into the building envelope and enabling solar-pow- ered buildings to transmit surplus power to the utility grid. BTC operating in the Southeast 路 Microturbines supplying power (with waste heat recovery) to several labs 路 200-kW fuel cell supplying power to National Transportation Research Center 路 Photovoltaics

Pennycook, Steve

203

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of the Centre for Education in Mathematics.M.C. Supporter: Avec la participation de : Canadian Institute of Actuaries c 2005 Waterloo Mathematics Foundation #12;Competition Organization Organisation du Concours Canadian Mathematics Competition Faculty

Le Roy, Robert J.

204

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of the Centre for Education in Mathematics Sybase iAnywhere Solutions c 2005 Waterloo Mathematics Foundation #12;Competition Organization Organisation du Concours Canadian Mathematics Competition Faculty and Staff / Personnel du Concours canadien de

Le Roy, Robert J.

205

Benchmarking of Competitive Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment ofEnergy VictorofPolicy Language Tim

206

Benchmarking of Competitive Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment ofEnergy VictorofPolicy Language Tim Tim

207

1Oak Ridge National Laboratory Science & Technology Highlights  

E-Print Network [OSTI]

energy technologies can more than double today's average electric system efficiency through the use of inte- grated cooling, heating, and power systems that capture and use waste heat produc- tively instead systems. The country is experiencing a rise in respiratory ill- nesses, and visibility continues

Pennycook, Steve

208

1Oak Ridge National Laboratory Science & Technology Highlights  

E-Print Network [OSTI]

agreements (CRADAs) allow partners to collaborate on mutually ben- eficial research projects. This mecha of a mutually desir- able technology objective. The ultimate goal of a CRADA is a product the com- mercial partner can take to the market- place. In the case of EERE CRADAs, this can also be considered deployment

Pennycook, Steve

209

1Oak Ridge National Laboratory Science & Technology Highlights  

E-Print Network [OSTI]

efforts between industrial partners and ORNL EERE and EEA. Private-sector adoption of technological innovation is the ultimate success of R&D. The Energy Efficiency and Renewable Energy (EERE) and Electricity to the private sector and continuing the growth of private business involvement in all program areas. Clearly

Pennycook, Steve

210

National conference on environmental remediation science and technology: Abstracts  

SciTech Connect (OSTI)

This conference was held September 8--10, 1998 in Greensboro, North Carolina. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on methods and site characterization technologies for environmental monitoring and remedial action planning of hazardous materials. This report contains the abstracts of sixty-one papers presented at the conference.

NONE

1998-12-31T23:59:59.000Z

211

1Oak Ridge National Laboratory Science & Technology Highlights  

E-Print Network [OSTI]

materials and technologies to reduce industry's consumption of oil, natural gas, and electricity won the Ohio Governor's Award for Energy Efficiency in 2006. With assistance from ORNL and its for turbochargers used in truck diesel engines. Three years ago, U.S. diesel engine companies were install- ing

Pennycook, Steve

212

NREL: Wind Research - National Wind Technology Center Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,Aerial photo

213

Sandia National Laboratories: solid-state lighting technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-activeNational Solar Thermal Testthermalstate

214

Idaho National Laboratory Testing of Advanced Technology Vehicles |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023 Idaho National Laboratory

215

Interested in Hydrogen and Fuel Cell Technologies? Help Shape the H2 Refuel H-Prize Competition  

Office of Energy Efficiency and Renewable Energy (EERE)

Find out how you can help improve the H-Prize H2 Refuel competition, which involves designing a small-scale hydrogen refueler system for homes, community centers, or businesses.

216

Technology Transfer Sustaining Our Legacy of Addressing National Challenges  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeignTechnology-Selection-Process Sign In About |Transfer

217

Independent Oversight Review, National Energy Technology Laboratory - May  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPosting of|of Health,Department

218

National Energy Technology Laboratory Captures Three Sustainability Awards  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergy AuditorWesternNational Grid Energy|

219

Savannah River National Laboratory Technologies Available for Licensing -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeScienceProgramsSANDCurrentNational NuclearEnergy

220

SANDIA NATIONAL LABORATORIES From the Chief Technology Officer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 ResourceAwards SAGE Awards A National8250Impacts on Sandia and

Note: This page contains sample records for the topic "national competitiveness technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

National Lab Technology Transfer Making a Difference | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugust 2012NEVADAEnergyEnergy 1DepartmentNational Lab

222

Partnering with National Labs Brings Cutting Edge Technology to Market |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven AshbyDepartment of Energy Partnering with National

223

FY 2012 Honeywell Federal Manufacturing & Technologies, LLC, PEP | National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011 OIG Recovery ActNational

224

National Renewable Energy Laboratory Technologies Available for Licensing -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries &NST DivisionNationalEnergy Innovation

225

Idaho National Laboratory Testing of Advanced Technology Vehicles |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department-2023 Idaho National LaboratoryDepartment of

226

NREL: Learning - National Wind Technology Center Video (Text Version)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLizResults InterpretingBiofuelsNational Wind

227

Sandia National Laboratories: Sandia Labs, Front Edge Technology, Inc.,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSPRecoveryTopPolanyiPacific Northwest National Lab,

228

National Energy Technology Laboratory Publishes Solid Oxide Fuel Cell  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.eps MoreWSRC-STI-2007-00250ThisMarshto Accompany H.R.National Grid

229

SLAC National Accelerator Laboratory Technologies Available for Licensing -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome toResearchInnovation protectingTechnologiesEnergy

230

National Fuel Cell Technology Evaluation Center (NFCTEC) | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugust 2012NEVADA SPARKSNVEnergy Technology Evaluation

231

Sandia National Laboratories: Increasing the Scaled Wind Farm Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStation Technology InfrastructureIEEE

232

Sandia National Laboratories: Small Business Technology Transfer Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking WorkTransformationSiting Siting At theprogram Technology

233

Fermi National Accelerator Laboratory Technologies Available for Licensing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpun OffTechnologies| Blandine-

234

Sandia National Laboratories: Microsystems Science & Technology Center  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStation TechnologyWindInternational Smart GridFacebook

235

Adapting technology to keep the national infrastructure safe and secure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout the Building TechnologiesS1!4T op Document: NAActivities

236

Evaluation of Side Stream Filtration Technology at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

This technology evaluation was performed by Pacific Northwest National Laboratory and Oak Ridge National Laboratory on behalf of the Federal Energy Management Program. The objective was to quantify the benefits side stream filtration provides to a cooling tower system. The evaluation assessed the performance of an existing side stream filtration system at a cooling tower system at Oak Ridge National Laboratory抯 Spallation Neutron Source research facility. This location was selected because it offered the opportunity for a side-by-side comparison of a system featuring side stream filtration and an unfiltered system.

Boyd, Brian K.

2014-08-01T23:59:59.000Z

237

EPA P3 Awards: A National Student Design Competition for Sustainability Focusing on People, Prosperity and the Planet  

Broader source: Energy.gov [DOE]

The U.S. Environmental Protection Agency (EPA), as part of the P3-People, Prosperity and the Planet Award Program, is seeking applications proposing to research, develop, and design solutions to real-world challenges involving the overall sustainability of human society. The P3 competition highlights the use of scientific principles in creating innovative projects focused on sustainability. The P3 Award Program was developed to foster progress toward sustainability by achieving the mutual goals of improved quality of life, economic prosperity, and protection of the planet梡eople, prosperity, and the planet梩he three pillars of sustainability.

238

Development of a National Center for Hydrogen Technology: A Summary Report of Activities Completed at the National Center for Hydrogen Technology - Year 6  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) located in Grand Forks, North Dakota, has operated the National Center for Hydrogen Technology? (NCHT?) since 2005 under a Cooperative Agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). The EERC has a long history of hydrogen generation and utilization from fossil fuels, and under the NCHT Program, the EERC has accelerated its research on hydrogen generation and utilization topics. Since the NCHT?s inception, the EERC has received more than $65 million in funding for hydrogen-related projects ($24 million for projects in the NCHT, which includes federal and corporate partner development funds) involving more than 85 partners (27 with the NCHT). The NCHT Program?s nine activities span a broad range of technologies that align well with the Advanced Fuels Program goals and, specifically, those described in the Hydrogen from Coal Program research, development, and demonstration (RD&D) plan that refers to realistic testing of technologies at adequate scale, process intensification, and contaminant control. A number of projects have been completed that range from technical feasibility of several hydrogen generation and utilization technologies to public and technical education and outreach tools. Projects under the NCHT have produced hydrogen from natural gas, coal, liquid hydrocarbons, and biomass. The hydrogen or syngas generated by these processes has also been purified in many of these instances or burned directly for power generation. Also, several activities are still undergoing research, development, demonstration, and commercialization at the NCHT. This report provides a summary overview of the projects completed in Year 6 of the NCHT. Individual activity reports are referenced as a source of detailed information on each activity.

Holmes, Michael

2012-05-31T23:59:59.000Z

239

The Technology of Cyber Operations Symposium on Cyber Operations and National  

E-Print Network [OSTI]

operations can be conducted with plausible deniability But adversaries make mistakes too, and allThe Technology of Cyber Operations Herb Lin Symposium on Cyber Operations and National Security not acknowledge role of offensive operations. 路 Offensive cyber operations can also have non-defensive purposes

240

Award Recipient National Institute of Standards and Technology U.S. Department of Commerce  

E-Print Network [OSTI]

registered with the International Organization for Standardization (ISO), the Center serves as a leader2009 Award Recipient National Institute of Standards and Technology 路 U.S. Department of Commerce (VACSP) Clinical Research Pharmacy Coordinating Center (the Center) is a federal government organization

Magee, Joseph W.

Note: This page contains sample records for the topic "national competitiveness technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Building Technologies Research and Integration Center Reducing the energy consumption of the nation's buildings is  

E-Print Network [OSTI]

2/21/2011 Building Technologies Research and Integration Center Reducing the energy consumption: systems (supermarket refrigeration, ground-source, CHP, multi-zone HVAC, wireless and other communications of the nation's buildings is essential for achieving a sustainable clean energy future and will be an enormous

Oak Ridge National Laboratory

242

National Petroleum Technology Office`s publication list for January--June 1998  

SciTech Connect (OSTI)

This report lists 20 publications and 19 computer software and supporting documentation that are available from the National Petroleum Technology Office. Publications relate to environmental management, field demonstrations, general research, reservoir characterization, and supporting research for the petroleum industry. Many of the computer codes are for the simulation of enhanced recovery techniques.

NONE

1998-07-01T23:59:59.000Z

243

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of the Centre for Education in Mathematics participation de: c 2007 Waterloo Mathematics Foundation #12;Competition Organization Organisation du Concours Centre for Education in Mathematics and Computing Faculty and Staff / Personnel du Concours canadien de

Le Roy, Robert J.

244

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of the Centre for Education in Mathematics 2010 Centre for Education in Mathematics and Computing #12;Competition Organization Organisation du Concours Centre for Education in Mathematics and Computing Faculty and Staff / Personnel du Centre d

Le Roy, Robert J.

245

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of the Centre for Education in Mathematics 2009 Centre for Education in Mathematics and Computing #12;Competition Organization Organisation du Concours Centre for Education in Mathematics and Computing Faculty and Staff / Personnel du Centre d

Le Roy, Robert J.

246

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of the Centre for Education in Mathematics: c 2009 Centre for Education in Mathematics and Computing #12;Competition Organization Organisation du Concours Centre for Education in Mathematics and Computing Faculty and Staff / Personnel du Centre

Le Roy, Robert J.

247

Technology study of Gunite tank sludge mobilization at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) Gunite Tank Sludge Mobilization Technology Study was initiated to support the Gunite Tank Treatability Study effort. The technology study surveyed the methods and technologies available for tank cleaning and sludge mobilization in a radioactive environment. Technologies were identified and considered for applicability to the Gunite and Associated Tanks (GAAT) problems. These were then either accepted for further study or rejected as not applicable. Technologies deemed applicable to the GAAT sludge removal project were grouped for evaluation according to (1) deployment method, (2) types of remotely operated end effector equipment applicable to removal of sludge, (3) methods for removing wastes from the tanks, and (4) methods for concrete removal. There were three major groups of deployment technologies: ``past practice`` technologies, mechanical arm-based technologies, and vehicle-based technologies. The different technologies were then combined into logical sequences of deployment platform, problem, end effector, conveyance, post-removal treatment required (if any), and disposition of the waste. Many waste removal options are available, but the best technology in one set of circumstances at one site might not be the best type to use at a different site. No single technology is capable of treating the entire spectrum of wastes that will be encountered in GAAT. None of the systems used in other industries appears to be suitable, primarily because of the nature of the sludges in the GAAT Operable Unit (OU), their radiation levels, and tank geometries. Other commercial technologies were investigated but rejected because the authors did not believe them to be applicable.

DeVore, J.R.; Herrick, T.J.; Lott, K.E.

1994-12-01T23:59:59.000Z

248

DEVELOPMENT OF A NATIONAL CENTER FOR HYDROGEN TECHNOLOGY: A SUMMARY REPORT OF ACTIVITIES COMPLETED AT THE NATIONAL CENTER FOR HYDROGEN TECHNOLOGY FROM 2005 TO 2010  

SciTech Connect (OSTI)

The Energy & Environmental Research Center (EERC) located in Grand Forks, North Dakota, has operated the National Center for Hydrogen Technology庐 (NCHT庐) since 2005 under a Cooperative Agreement with the U.S. Department of Energy??s (DOE) National Energy Technology Laboratory (NETL). The EERC has a long history of hydrogen generation and utilization from fossil fuels, and under the NCHT Program, the EERC has accelerated its research of hydrogen generation and utilization topics. Since the NCHT??s inception, the EERC has received more than $65 million in funding of hydrogen-related projects ($20 million for the NCHT project which includes federal and corporate development partner funds) involving more than 85 partners (27 with the NCHT). The NCHT project??s 19 activities span a broad range of technologies that align well with the Advanced Fuels Program goals and, specifically, those described in the Hydrogen from Coal Program research, development, and demonstration (RD&D) plan. A number of projects have been completed which range from technical feasibility of several hydrogen generation and utilization technologies to public and technical education and outreach tools. Projects under the NCHT have produced hydrogen from natural gas, coal, liquid hydrocarbons, and biomass. The hydrogen or syngas generated by these processes has also been purified to transportation-grade quality in many of these instances or burned directly for power generation. Also, several activities are still undergoing research, development, demonstration, and commercialization at the NCHT. This report provides a summary overview of the projects completed in the first 5 years of the NCHT. Individual activity reports are referenced as a source of detailed information on each activity.

Michael Holmes

2011-05-31T23:59:59.000Z

249

Using existing technologies, designers and operators of large buildings could slash national energy use across a broad  

E-Print Network [OSTI]

Using existing technologies, designers and operators of large buildings could slash national energy use across a broad range of climates. Researchers at the National Renewable Energy Laboratory (NREL of large office buildings and hospitals achieve at least a 50% energy savings using existing technology

250

Volume 104, Number 1, JanuaryFebruary 1999 Journal of Research of the National Institute of Standards and Technology  

E-Print Network [OSTI]

of Standards and Technology [J. Res. Natl. Inst. Stand. Technol. 104, 59 (1999)] The NIST Quantitative Infrared. Lafferty National Institute of Standards and Technology, Gaithersburg, MD 20899-0001 With the recent in the 1990 U.S.EPA Clean Air Act amendment (CAAA) can be measured. The National Institute of Standards

Magee, Joseph W.

251

Commercialization of Los Alamos National Laboratory technologies via small businesses. Final report  

SciTech Connect (OSTI)

Over the past decade, numerous companies have been formed to commercialize research results from leading U.S. academic and research institutions. Emerging small businesses in areas such as Silicon Valley, Boston`s Route 128 corridor, and North Carolina`s Research Triangle have been especially effective in moving promising technologies from the laboratory bench to the commercial marketplace--creating new jobs and economic expansion in the process. Unfortunately, many of the U.S. national laboratories have not been major participants in this technology/commercialization activity, a result of a wide variety of factors which, until recently, acted against successful commercialization. This {open_quotes}commercialization gap{close_quotes} exists partly due to a lack, within Los Alamos in particular and the DOE in general, of in-depth expertise and experience in such business areas as new business development, securities regulation, market research and the determination of commercial potential, the identification of entrepreneurial management, marketing and distribution, and venture capital sources. The immediate consequence of these factors is the disappointingly small number of start-up companies based on technologies from Los Alamos National Laboratory that have been attempted, the modest financial return Los Alamos has received from these start-ups, and the lack of significant national recognition that Los Alamos has received for creating and commercializing these technologies.

Brice, R.; Cartron, D.; Rhyne, T.; Schulze, M.; Welty, L.

1997-06-01T23:59:59.000Z

252

Max Tech and Beyond Design Competition  

Broader source: Energy.gov [DOE]

The Max Tech and Beyond Design Competition is an annual competition run by the Department of Energy (DOE) and the Lawrence Berkeley National Laboratory (LBNL) that challenges students to design...

253

Survey of subsurface treatment technologies for environmental restoration sites at Sandia National Laboratories, New Mexico.  

SciTech Connect (OSTI)

This report provides a survey of remediation and treatment technologies for contaminants of concern at environmental restoration (ER) sites at Sandia National Laboratories, New Mexico. The sites that were evaluated include the Tijeras Arroyo Groundwater, Technical Area V, and Canyons sites. The primary contaminants of concern at these sites include trichloroethylene (TCE), tetrachloroethylene (PCE), and nitrate in groundwater. Due to the low contaminant concentrations (close to regulatory limits) and significant depths to groundwater ({approx}500 feet) at these sites, few in-situ remediation technologies are applicable. The most applicable treatment technologies include monitored natural attenuation and enhanced bioremediation/denitrification to reduce the concentrations of TCE, PCE, and nitrate in the groundwater. Stripping technologies to remove chlorinated solvents and other volatile organic compounds from the vadose zone can also be implemented, if needed.

McGrath, Lucas K.; Ho, Clifford Kuofei; Wright, Jerome L.

2003-08-01T23:59:59.000Z

254

Secretary Chu Announces $30 Million for Research Competition...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Million for Research Competition to Develop Next Generation Energy Storage Technologies Secretary Chu Announces 30 Million for Research Competition to Develop Next Generation...

255

Argonne National Laboratory contributions to the International Symposium on Fusion Nuclear Technology (ISFNT)  

SciTech Connect (OSTI)

A total of sixteen papers with authors from Argonne National Laboratory were presented at the First International Symposium on Fusion Nuclear Technology (ISFNT), held in Tokyo, Japan, in April 1988. The papers cover the results of recent investigations in blanket design and analysis, fusion neutronics, materials experiments in liquid metal corrosion and solid breeders, tritium recovery analysis, experiments and analysis for liquid metal MHD, reactor safety and economic analysis, and transient electromagnetic analysis.

Not Available

1988-10-01T23:59:59.000Z

256

HYDROGEN TECHNOLOGY RESEARCH AT THE SAVANNAH RIVER NATIONAL LABORATORY, CENTER FOR HYDROGEN RESEARCH, AND THE HYDROGEN TECHNOLOGY RESEARCH LABORATORY  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. Many of SRNL's programs support dual-use applications. SRNL has participated in projects to convert public transit and utility vehicles for operation on hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes, storage vessel design and optimization, chemical hydrides, hydrogen compressors and hydrogen production using nuclear energy. Several of these are discussed further in Section 2, SRNL Hydrogen Research and Development.

Danko, E

2007-02-26T23:59:59.000Z

257

Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988: Annual report of the metals initiative for fiscal year 1996  

SciTech Connect (OSTI)

This annual report has been prepared for the President and Congress describing the activities carried out under the Steel and Aluminum Energy Conservation and Technology Competitiveness Act of 1988, commonly referred to as the Metals Initiative. The Act has the following purposes: (1) increase energy efficiency and enhance the competitiveness of the American steel, aluminum, and copper industries; and (2) continue research and development efforts begun under the U.S. Department of Energy (DOE) program known as the Steel Initiative. These activities are detailed in a subsequent section. Other sections describe the appropriation history, the distribution of funds through fiscal year 1996, and the estimated funds necessary to continue projects through fiscal year 1997. The Metals Initiative supported four research and development projects with the U.S. Steel industry: (1) steel plant waste oxide recycling and resource recovery by smelting, (2) electrochemical dezincing of steel scrap, (3) rapid analysis of molten metals using laser-produced plasmas, and (4) advanced process control. There are three Metals Initiative projects with the aluminum industry: (1) evaluation of TiB2-G cathode components, (2) energy efficient pressure calciner, and (3) spray forming of aluminum. 1 tab.

NONE

1998-01-01T23:59:59.000Z

258

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of the Centre for Education in Mathematics Maplesoft c 2006Waterloo Mathematics Foundation #12;Competition Organization Organisation du Concours Centre for Education in Mathematics and Computing Faculty and Staff / Personnel du Centre d'麓education en math

Le Roy, Robert J.

259

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of the Centre for Education in Mathematics Results Euclid Contest 2010 R麓esultats Concours Euclide c 2010 Centre for Education in Mathematics and Computing #12;Competition Organization Organisation du Concours Centre for Education in Mathematics

Le Roy, Robert J.

260

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of the Centre for Education in Mathematics.M.C. Supporter c 2008 Centre for Education in Mathematics and Computing #12;Competition Organization Organisation du Concours Centre for Education in Mathematics and Computing Faculty and Staff / Personnel du Centre

Le Roy, Robert J.

Note: This page contains sample records for the topic "national competitiveness technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of the Centre for Education in MathematicsAnywhere Solutions C.M.C. Supporters: Canadian Institute of Actuaries Maplesoft c 2006 Waterloo Mathematics Foundation #12;Competition Organization Organisation du Concours Centre for Education in Mathematics

Le Roy, Robert J.

262

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of the Centre for Education in Mathematics Chartered Accountants Maplesoft C.M.C. Supporter c 2007 Waterloo Mathematics Foundation #12;Competition Organization Organisation du Concours Centre for Education in Mathematics and Computing Faculty and Staff

Le Roy, Robert J.

263

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of the Centre for Education in Mathematics麓ee 颅 Sec. V) Avec la contribution de: Avec la participation de: c 2009 Centre for Education in Mathematics and Computing #12;Competition Organization Organisation du Concours Centre for Education in Mathematics

Le Roy, Robert J.

264

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of the Centre for Education in Mathematics麓ee 颅 Sec. V) c 2010 Centre for Education in Mathematics and Computing #12;Competition Organization Organisation du Concours Centre for Education in Mathematics and Computing Faculty and Staff / Personnel du

Le Roy, Robert J.

265

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of the Centre for Education in MathematicsAnywhere Solutions C.M.C. Supporters: Canadian Institute of Actuaries Maplesoft c 2006Waterloo Mathematics Foundation #12;Competition Organization Organisation du Concours Centre for Education in Mathematics

Le Roy, Robert J.

266

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of the Centre for Education in Mathematics.M.C. Supporters: Avec la participation de : Canadian Institute of Actuaries Maplesoft c 2006 Waterloo Mathematics Foundation #12;Competition Organization Organisation du Concours Centre for Education in Mathematics

Le Roy, Robert J.

267

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of the Centre for Education in Mathematics.M.C. Sponsors Chartered Accountants C.M.C. Supporter c 2007 Waterloo Mathematics Foundation #12;Competition Organization Organisation du Concours Centre for Education in Mathematics and Computing Faculty and Staff

Le Roy, Robert J.

268

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of the Centre for Education in Mathematics 2007 Waterloo Mathematics Foundation #12;Competition Organization Organisation du Concours Centre for Education in Mathematics and Computing Faculty and Staff / Personnel du Centre d'麓education en math

Le Roy, Robert J.

269

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of the Centre for Education in Mathematics.M.C. Sponsors Chartered Accountants C.M.C. Supporter c 2008 Centre for Education in Mathematics and Computing #12;Competition Organization Organisation du Concours Centre for Education in Mathematics

Le Roy, Robert J.

270

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of the Centre for Education in Mathematics in Mathematics and Computing #12;Competition Organization Organisation du Concours Centre for Education in Mathematics and Computing Faculty and Staff / Personnel du Concours canadien de math麓ematiques Ed Anderson

Le Roy, Robert J.

271

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of the Centre for Education in Mathematics in Mathematics and Computing #12;Competition Organization Organisation du Concours Centre for Education in Mathematics and Computing Faculty and Staff / Personnel du Centre d'麓education en math麓ematiques et

Le Roy, Robert J.

272

American Energy and Manufacturing Competitiveness Summit  

Broader source: Energy.gov [DOE]

The American Energy and Manufacturing Competitiveness Summit will bring together leaders and perspectives from industry, government, academia, national laboratories, labor, and policy organizations...

273

Vehicle Technologies Office Merit Review 2014: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about post-test...

274

Berry phase effects on electronic properties Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge,  

E-Print Network [OSTI]

Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA Ming-Che Chang Department of PhysicsBerry phase effects on electronic properties Di Xiao Materials Science and Technology Division, Oak

Wu, Zhigang

275

PROCEEDINGS OF THE 2004 NATIONAL OILHEAT RESEARCH RESEARCH ALLIANCE TECHNOLOGY SYMPOSIUM.  

SciTech Connect (OSTI)

This meeting is the seventeenth oilheat industry technology meeting held since 1984 and the forth since the National Oilheat Research Alliance was formed. This year's symposium is a very important part of the effort in technology transfer, which is supported by the Oilheat Research Program under the United States Department of Energy, Building Technologies Program within the Office of Energy Efficiency and Renewable Energy. The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. The conference provides a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector. The specific objectives of the conference are to: (1) Identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; (2) Foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation.

MCDONALD,R.J.

2004-08-31T23:59:59.000Z

276

On the integration of technology readiness levels at Sandia National Laboratories.  

SciTech Connect (OSTI)

Integrating technology readiness levels (TRL) into the management of engineering projects is critical to the mitigation of risk and improved customer/supplier communications. TRLs provide a common framework and language with which consistent comparisons of different technologies and approaches can be made. At Sandia National Laboratories, where technologies are developed, integrated and deployed into high consequence systems, the use of TRLs may be transformational. They are technology independent and span the full range of technology development including scientific and applied research, identification of customer requirements, modeling and simulation, identification of environments, testing and integration. With this report, we provide a reference set of definitions for TRLs and a brief history of TRLs at Sandia National Laboratories. We then propose and describe two approaches that may be used to integrate TRLs into the NW SMU business practices. In the first approach, we analyze how TRLs can be integrated within concurrent qualification as documented in TBP-100 [1]. In the second approach we take a look at the product realization process (PRP) as documented in TBP-PRP [2]. Both concurrent qualification and product realization are fundamental to the way weapons engineering work is conducted at this laboratory and the NWC (nuclear weapons complex) as a whole. Given the current structure and definitions laid out in the TBP-100 and TBP-PRP, we believe that integrating TRLs into concurrent qualification (TBP-100) rather than TBP-PRP is optimal. Finally, we note that our charter was to explore and develop ways of integrating TRLs into the NW SMU and therefore we do not significantly cover the development and history of TRLs. This work was executed under the auspices and direction of Sandia's Weapon Engineering Program. Please contact Gerry Sleefe, Deputy Program Director, for further information.

Bailey, Beatriz R.; Mitchell, John Anthony

2006-09-01T23:59:59.000Z

277

Integrating Safety with Science,Technology and Innovation at Los Alamos National Laboratory  

SciTech Connect (OSTI)

The mission of Los Alamos National Laboratory (LANL) is to develop and apply science, technology and engineering solutions to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve emerging national security challenges. The most important responsibility is to direct and conduct efforts to meet the mission with an emphasis on safety, security, and quality. In this article, LANL Environmental, Safety, and Health (ESH) trainers discuss how their application and use of a kinetic learning module (learn by doing) with a unique fall arrest system is helping to address one the most common industrial safety challenges: slips and falls. A unique integration of Human Performance Improvement (HPI), Behavior Based Safety (BBS) and elements of the Voluntary Protection Program (VPP) combined with an interactive simulator experience is being used to address slip and fall events at Los Alamos.

Rich, Bethany M [Los Alamos National Laboratory

2012-04-02T23:59:59.000Z

278

Technology '90  

SciTech Connect (OSTI)

The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

Not Available

1991-01-01T23:59:59.000Z

279

The Role of the National Institute of Standards and Technology in Mobile Security This paper will present an overview of the work of the National Institute of Standards and  

E-Print Network [OSTI]

The Role of the National Institute of Standards and Technology in Mobile Security This paper and privacy for mobile technology as well as an overview on how NIST standards and guidelines can be applied will present an overview of the work of the National Institute of Standards and Technology (NIST) in security

280

LOS ALAMOS SCIENCE AND TECHNOLOGY MAGAZINE JUNE 2012 1663Making Sense of Sight  

E-Print Network [OSTI]

has developed satellite technologies for space exploration and national security purposes, symbolizes our historic role in the nation's service. About the Logo: Laboratory Directed Research and De- velopment (LDRD) is a competitive, internal program by which Los Alamos National Laboratory is authorized

Note: This page contains sample records for the topic "national competitiveness technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

HUD National Disaster Resilience Competition  

Broader source: Energy.gov [DOE]

The U.S. Department of Housing and Urban Development (HUD) is making $1 billion in HUD Disaster Recovery funds available to eligible communities.

282

National Disaster Resilience Competition Webinar  

Broader source: Energy.gov [DOE]

Communities recovering from natural disasters have an important choice: rebuild damaged areas as they were, or put investments and policy changes in place that help them to be more resilient to...

283

DEP Competitions | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublic SafetyTrainingBlockDEBRIEF OF CENTRALDEMO

284

National Competition - EERE Commercialization Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleetEngineering OfSilicaAdvancedNathaniel

285

Recommendations of treatment technologies for radioactively contaminated lead at the Idaho National Engineering Laboratory  

SciTech Connect (OSTI)

Approximately one million pounds of radioactively contaminated lead are currently stored at the Idaho National Engineering Laboratory (INEL) and must be treated according to the Resource Conservation and Recovery Act. This excess lead exists in various forms, including brick, sheet, shot, wool, blankets, steel-jacketed casks, scrap, and miscellaneous solids. Several lead treatment technologies were evaluated based on effectiveness, applicability, feasibility, availability of equipment and materials, health and safety, generation of secondary waste streams, cost, and flexibility. Emphasis is given in this report to those treatment technologies that yield recyclable lead products. Methods that treat lead for storage and disposal were also investigated. Specific treatment technologies for decontaminating the excess lead at the INEL are recommended. The proposed treatment for lead brick, sheet, shot, blankets, and scrap is a series of surface decontamination techniques followed by melt-refining, if necessary. The recommended series of treatments for lead casks begins with removing and macroencapsulating the steel jackets, followed by size reducing and melt-refining the lead. Macroencapsulation is the proposed treatment for miscellaneous lead solids. Recycling lead that has been successfully decontaminated and macroencapsulating or stabilizing the treatment residuals is also recommended.

Neupauer, R.M.; Zukauskas, J.F.

1992-03-01T23:59:59.000Z

286

A prototype catalogue: DOE National Laboratory technologies for infrastructure modernization. Letter report made publicly available December 1992  

SciTech Connect (OSTI)

The purpose of this report is to provide the Office of Technology Assessment (OTA) with information about selected technologies under development in the Department of Energy (DOE) through its National Laboratory System and its Program Office operations. The technologies selected are those that have the potential to improve the performance of the nation`s public works infrastructure. The product is a relational database that we refer to as a ``prototype catalogue of technologies.`` The catalogue contains over 100 entries of DOE-supported technologies having potential application to infrastructure-related problems. The work involved conceptualizing an approach, developing a framework for organizing technology information, and collecting samples of readily available data to be put into a prototype catalogue. In developing the catalogue, our objectives were to demonstrate the concept and provide readily available information to OTA. As such, the catalogue represents a preliminary product. The existing database is not exhaustive and likely represents only a fraction of relevant technologies developed by DOE. In addition, the taxonomy we used to classify technologies is based on the judgment of project staff and has received minimal review by individuals who have been involved in the development and testing of the technologies. Finally, end users will likely identify framework changes and additions that will strengthen the catalogue approach. The framework for the catalogue includes four components: a description of the technology, along with potential uses and other pertinent information; identification of the source of the descriptive information; identification of a person or group knowledgeable about the technology; and a classification of the described technology in terms of its type, application, life-cycle use, function, and readiness.

Currie, J.W.; Wilfert, G.L.; March, F.

1990-01-01T23:59:59.000Z

287

National Institute for Advanced Transportation Technology A N N U A L R E P O R T A U G U S T 2 0 0 2  

E-Print Network [OSTI]

for Clean Vehicle Technology relates to the area's environmental concerns of preserving national parks1 National Institute for Advanced Transportation Technology A N N U A L R E P O R T 路 A U G U S T 2;2 Theme: Advanced Transportation Technology M I S S I O N Our mission is to work with industry, government

Kyte, Michael

288

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of The Centre for Education in Mathematics MATH?MATIQUES et en INFORMATIQUE The CENTRE for EDUCATION in MATHEMATICS and COMPUTING Manulife Financial des actuaires C.M.C. Supporters: Avec la participation de : 漏 2003 Waterloo Mathematics Foundation

Le Roy, Robert J.

289

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of The Centre for Education in Mathematics Institut canadien des actuaires C.M.C. Supporters: Avec la participation de : 漏 2002 Waterloo Mathematics'?DUCATION en MATH?MATIQUES et en INFORMATIQUE The CENTRE for EDUCATION in MATHEMATICS and COMPUTING Sybase Inc

Le Roy, Robert J.

290

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of The Centre for Education in Mathematics participation de : 漏 2004 Waterloo Mathematics Foundation Chartered Accountants Sybase Inc. (Waterloo) i Director The Gauss Contests are the first in a series of mathematics contests administered by the CMC

Le Roy, Robert J.

291

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of The Centre for Education in Mathematics the Awards Le CENTRE d'?DUCATION en MATH?MATIQUES et en INFORMATIQUE The CENTRE for EDUCATION in MATHEMATICS participation de : Sybase, Inc. (Waterloo) Sybase, inc (Waterloo) 漏 2001 Waterloo Mathematics Foundation

Le Roy, Robert J.

292

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of The Centre for Education in Mathematics Mathematics Foundation Chartered Accountants Sybase Inc. (Waterloo) iAnywhere Solutions Comptables agr茅茅s C Commentaires Barry A. Ferguson Director The Gauss Contests are the first in a series of mathematics contests

Le Roy, Robert J.

293

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of The Centre for Education in Mathematics.M.C. Supporters: Avec la participation de : 漏 2004 Waterloo Mathematics Foundation Concours Cayley (10 ann茅e 颅 Sec for EDUCATION in MATHEMATICS and COMPUTING Sybase Inc. (Waterloo) iAnywhere Solutions Great West Life and London

Le Roy, Robert J.

294

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of The Centre for Education in Mathematics the Awards Le CENTRE d'?DUCATION en MATH?MATIQUES et en INFORMATIQUE The CENTRE for EDUCATION in MATHEMATICS des actuaires C.M.C. Supporters: Avec la participation de : 漏 2002 Waterloo Mathematics Foundation

Le Roy, Robert J.

295

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of The Centre for Education in Mathematics : 漏 2003 Waterloo Mathematics Foundation Concours Cayley (10 ann茅e 颅 Sec. IV) Cayley Contest (Grade 10 in MATHEMATICS and COMPUTING Sybase Inc. (Waterloo) iAnywhere Solutions Great West Life and London Life London

Le Roy, Robert J.

296

Mathematics Competition  

E-Print Network [OSTI]

Canadian Mathematics Competition An activity of The Centre for Education in Mathematics the Awards Le CENTRE d'?DUCATION en MATH?MATIQUES et en INFORMATIQUE The CENTRE for EDUCATION in MATHEMATICS participation de : 漏 2004 Waterloo Mathematics Foundation Chartered Accountants Sybase Inc. (Waterloo) i

Le Roy, Robert J.

297

Photonics at Sandia National Laboratories: Applying device technology to communication systems  

SciTech Connect (OSTI)

Photonic device activities at Sandia National Laboratories are founded on an extensive materials research program that has expanded to include device development, and an applications focus that heavily emphasizes communications and interconnects. The resulting program spans a full range of photonics research, development, and applications projects, from materials synthesis and device fabrication to packaging, test, and subsystem development. The heart of this effort is the Compound Semiconductor Research Laboratory which was established in 1988 to bring together device and materials research and development to support Sandia`s role in weapons technologies. This paper presents an overview of Sandia`s photonics program and its directions, using three communications-based applications as examples.

Carson, R.F.

1995-07-01T23:59:59.000Z

298

The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2002  

SciTech Connect (OSTI)

This Site Environmental Report was prepared by the Environmental, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at NETL sites in Morgantown (MGN), West Virginia, Pittsburgh (PGH), Pennsylvania, Tulsa, Oklahoma, and Fairbanks, Alaska. This report contains the most accurate information that could be collected during the period between January 1, 2002, and December 31, 2002. As stated in DOE Orders 450.1 and 231.1, the purpose of the report is to: (1) Characterize site environmental management performance. (2) Confirm compliance with environmental standards and requirements. (3) Highlight significant facility programs and efforts.

National Energy Technology Laboratory

2003-10-30T23:59:59.000Z

299

The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2000  

SciTech Connect (OSTI)

This Site Environmental Report was prepared by the Environment, Safety, and Health Division at the National Energy Technology Laboratory (NETL) for the U.S. Department of Energy. The purpose of this report is to inform the public and Department of Energy stakeholders of the environmental conditions at the NETL sites in Morgantown, West Virginia, and Pittsburgh, Pennsylvania. This report contains the most accurate information that could be collected during the period between January 1, 2000, through December 31, 2000. As stated in DOE Orders 5400.1 and 231.1, the purpose of the report is to: Characterize site environmental management performance; Confirm compliance with environmental standards and requirements and Highlight significant facility programs and efforts.

National Energy Technology Laboratory

2001-11-27T23:59:59.000Z

300

A technology strategy analysis for the deployment of broadband connectivity for economic development in emerging economies : studying the case of Kenya using the CLIOS process  

E-Print Network [OSTI]

The role of Information Communication Technology (ICT) in economic development is increasingly moving to the core of national competitiveness strategies around the world thanks to its revolutionary power as a critical ...

Omwenga, Brian Gichana

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "national competitiveness technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Critical technologies research: Opportunities for DOE  

SciTech Connect (OSTI)

Recent studies have identified a number of critical technologies that are essential to the nation`s defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy`s Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE`s capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

Not Available

1992-12-01T23:59:59.000Z

302

Energy Department Announces National Champions of Student Energy...  

Energy Savers [EERE]

Department Announces National Champions of Student Energy Conservation Competition Energy Department Announces National Champions of Student Energy Conservation Competition May 15,...

303

Energy Secretary Chu Announces Montana Schools Win National Student...  

Energy Savers [EERE]

Secretary Chu Announces Montana Schools Win National Student Efficiency Competition Energy Secretary Chu Announces Montana Schools Win National Student Efficiency Competition May...

304

Short-Term and Long-Term Technology Needs/Matching Status at Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

This report identifies potential technology deployment opportunities for the Environmental Management (EM) programs at the Idaho National Engineering and Environmental Laboratory (INEEL). The focus is on identifying candidates for Accelerated Site Technology Deployment (ASTD) proposals within the Environmental Restoration and Waste Management areas. The 86 technology needs on the Site Technology Coordination Group list were verified in the field. Six additional needs were found, and one listed need was no longer required. Potential technology matches were identified and then investigated for applicability, maturity, cost, and performance. Where promising, information on the technologies was provided to INEEL managers for evaluation. Eleven potential ASTD projected were identified, seven for near-term application and four for application within the next five years.

S. L. Claggett

1999-12-01T23:59:59.000Z

305

NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The National Wind Technology Center (NWTC), located at the foot of the Rocky Mountains near Boulder, Colorado, is a world-class research facility managed by NREL for the U.S. Department of Energy. NWTC researchers work with members of the wind energy industry to advance wind power technologies that lower the cost of wind energy through research and development of state-of-the-art wind turbine designs. NREL's Measurement and Instrument Data Center provides data from NWTC's M2 tower which are derived from instruments mounted on or near an 82 meter (270 foot) meteorological tower located at the western edge of the NWTC site and about 11 km (7 miles) west of Broomfield, and approximately 8 km (5 miles) south of Boulder, Colorado. The data represent the mean value of readings taken every two seconds and averaged over one minute. The wind speed and direction are measured at six heights on the tower and air temperature is measured at three heights. The dew point temperature, relative humidity, barometric pressure, totalized liquid precipitation, and global solar radiation are also available.

Jager, D.; Andreas, A.

306

Technology transfer 1995  

SciTech Connect (OSTI)

Technology Transfer 1995 is intended to inform the US industrial and academic sectors about the many opportunities they have to form partnerships with the US Department of Energy (DOE) for the mutual advantage of the individual institutions, DOE, and the nation as a whole. It also describes some of the growing number of remarkable achievements resulting from such partnerships. These partnership success stories offer ample evidence that Americans are learning how to work together to secure major benefits for the nation--by combining the technological, scientific, and human resources resident in national laboratories with those in industry and academia. The benefits include more and better jobs for Americans, improved productivity and global competitiveness for technology-based industries, and a more efficient government laboratory system.

Not Available

1995-01-01T23:59:59.000Z

307

PUBLICATION FOR BUSINESS AND TECHNOLOGY V.16.02 National Aeronautics and Space Administration  

E-Print Network [OSTI]

, or "3D printing." Through prize competitions, we're promoting the expansion of autonomous robotic's Made in Space organization to demonstrate 3D printing aboard the International Space Station next year

Waliser, Duane E.

308

Bioenergy and emerging biomass conversion technologies Hanne stergrd, Ris National Laboratory, Technical University of Denmark DTU, Denmark  

E-Print Network [OSTI]

Bioenergy and emerging biomass conversion technologies Hanne ?sterg氓rd, Ris酶 National Laboratory in Denmark 8th May 2007 Background Bioenergy is an important topic to include in a foresight analysis of the world agricultural markets and Europe. In the recent Agricultural Outlook report from OECD-FAO1

309

National Industrial Energy Technology Conference, New Orleans, LA, May 11-12, 2005 1 Quantifying Savings From Improved Boiler Operation  

E-Print Network [OSTI]

energy savings from switching to modulation control mode and reducing excess air in natural gas firedNational Industrial Energy Technology Conference, New Orleans, LA, May 11-12, 2005 1 Quantifying/off operation and excess combustion air reduce boiler energy efficiency. This paper presents methods to quantify

Kissock, Kelly

310

The Los Alamos, Sandia, and Livermore Laboratories: Integration and collaboration solving science and technology problems for the nation  

SciTech Connect (OSTI)

More than 40 years ago, three laboratories were established to take on scientific responsibility for the nation`s nuclear weapons - Los Alamos, Sandia, and Livermore. This triad of laboratories has provided the state-of-the-art science and technology to create America`s nuclear deterrent and to ensure that the weapons are safe, secure, and to ensure that the weapons are safe, secure, and reliable. These national security laboratories carried out their responsibilities through intense efforts involving almost every field of science, engineering, and technology. Today, they are recognized as three of the world`s premier research and development laboratories. This report sketches the history of the laboratories and their evolution to an integrated three-laboratory system. The characteristics that make them unique are described and some of the major contributions they have made over the years are highlighted.

NONE

1994-12-01T23:59:59.000Z

311

Critical technologies research: Opportunities for DOE  

SciTech Connect (OSTI)

Recent studies have identified a number of critical technologies that are essential to the nation's defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy's Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE's capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

Not Available

1992-12-01T23:59:59.000Z

312

Energy and technology review, January--February 1995. State of the laboratory  

SciTech Connect (OSTI)

This issue of Energy and Technology Review highlights the Laboratory`s 1994 accomplishments in their mission areas and core programs--economic competitiveness, national security, lasers, energy, the environment, biology and biotechnology, engineering, physics and space science, chemistry and materials science, computations, and science and math education. LLNL is a major national resource of science and technology expertise, and they are committed to applying this expertise to meet vital national needs.

Bookless, W.A.; Stull, S.; Cassady, C.; Kaiper, G.; Ledbetter, G.; McElroy, L.; Parker, A. [eds.

1995-02-01T23:59:59.000Z

313

A College of Eduation'sTechnology Journey -- From Neophyte to National Leader  

E-Print Network [OSTI]

training sessions, and the expertise of technology specialists. The integration of technology throughout this College has positioned it to become an innovative leader infusing technology into its educational programs....

Lumpkin, Angela; Clay, M.N.

2001-01-01T23:59:59.000Z

314

1994 U.S. Department of Energy Strategic Plan: Fueling a Competitive Economy  

SciTech Connect (OSTI)

The Department of Energy has a rich heritage of meeting important national goals in the areas of energy, national security, science, and technology. The end of the Cold War, and the election of President Clinton, have given us a new national agenda. Through a comprehensive strategic planning process, we have determined that the Department must now unleash its extraordinary scientific and technical talent and resources on new and more sharply focused goals: fueling a competitive economy, improving the environment through waste management and pollution prevention, and reducing the nuclear danger.

None,

1994-04-01T23:59:59.000Z

315

Water Resources Competitive Grants Program  

E-Print Network [OSTI]

Water Resources Competitive Grants Program Fiscal Year 2012 Request for Proposals Pursuant to Section 104 of the Water Resources Research Act of 1984, as Amended Closing Date 4:00 PM, Eastern Time, August 15, 2012 (Institutes) Institute for Water Resources National Institutes for U.S. Army Corps

Virginia Tech

316

Water Resources Competitive Grants Program  

E-Print Network [OSTI]

Water Resources Competitive Grants Program Fiscal Year 2014 Request for Proposals Pursuant to Section 104 of the Water Resources Research Act of 1984, as Amended Closing Date 4:00 PM, Eastern Time, August 15, 2014 (Institutes) Institute for Water Resources National Institutes for U.S. Army Corps

317

The National Energy Strategy - The role of geothermal technology development: Proceedings  

SciTech Connect (OSTI)

Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. Topics in this year's conference included Hydrothermal Energy Conversion Technology, Hydrothermal Reservoir Technology, Hydrothermal Hard Rock Penetration Technology, Hot Dry Rock Technology, Geopressured-Geothermal Technology and Magma Energy Technology. Each individual paper has been cataloged separately.

Not Available

1990-01-01T23:59:59.000Z

318

Open Source Software: Management, Diffusion and Competition  

E-Print Network [OSTI]

and competitive environment such as the ICT market. 1 Introduction OSS is an alternative model of software has introduced an innovative model of software development, based on self-organized communitiesOpen Source Software: Management, Diffusion and Competition Spyridoula Lakka茅 National

Kouroupetroglou, Georgios

319

Fuel Cell Technologies Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E D  

E-Print Network [OSTI]

Fuel Cell Technologies Operated by Los Alamos National Security, LLC for NNSA U N C L A S S I F I E Security, LLC for NNSA U N C L A S S I F I E D Fuel Cell Technologies Objectives Develop a ceramic National Security, LLC for NNSA U N C L A S S I F I E D Fuel Cell Technologies Technical Targets

320

NREL: Jobs and Economic Competitiveness - Clean Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Energy Innovation Analysis With increased global competition for market share in alternative energy, innovation in energy will be a major contributor to national economic...

Note: This page contains sample records for the topic "national competitiveness technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

ORNL staff help students prepare for FIRST LEGO League competition...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

staff help students prepare for FIRST LEGO League competition Brian Peters, right, a design engineer for nuclear systems with US ITER at Oak Ridge National Laboratory, works with...

322

National Renewable Energy Laboratory's Hydrogen Technologies and Systems Center is Helping to Facilitate the Transition to a New Energy Future  

SciTech Connect (OSTI)

The Hydrogen Technologies and Systems Center (HTSC) at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) uses a systems engineering and integration approach to hydrogen research and development to help the United States make the transition to a new energy future - a future built on diverse and abundant domestic renewable resources and integrated hydrogen systems. Research focuses on renewable hydrogen production, delivery, and storage; fuel cells and fuel cell manufacturing; technology validation; safety, codes, and standards; analysis; education; and market transformation. Hydrogen can be used in fuel cells to power vehicles and to provide electricity and heat for homes and offices. This flexibility, combined with our increasing demand for energy, opens the door for hydrogen power systems. HTSC collaborates with DOE, other government agencies, industry, communities, universities, national laboratories, and other stakeholders to promote a clean and secure energy future.

Not Available

2011-01-01T23:59:59.000Z

323

National Wind Technology Center to Debut New Dynamometer (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn Cyber Security NuclearNew test facility will be

324

National Fuel Cell Technology Evaluation Center (NFCTEC) (Revised) (Fact Sheet), Energy Systems Integration Facility (ESIF), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleetEngineeringAnnual Report ThisNational Environmental

325

Cost-competitive, inherently safe LMFBR pool plant  

SciTech Connect (OSTI)

The Cost-Competitive, Inherently Safe LMFBR Pool Plant design was prepared in GFY 1983 as a joint effort by Rockwell International and the Argonne National Laboratory with major contributions from the Bechtel Group, Inc.; Combustion Engineering, Inc.; the Chicago Bridge and Iron Company; and the General Electric Company. Using current LMFBR technology, many innovative features were developed and incorporated into the design to meet the ultimate objectives of the Breeder Program, i.e., energy costs competitive with LWRs and inherent safety features to maintain the plant in a safe condition following assumed accidents without requiring operator action. This paper provides a description of the principal features that were incorporated into the design to achieve low cost and inherent safety.

McDonald, J.S.; Brunings, J.E.; Chang, Y.I.; Seidensticker, R.W.; Hren, R.R.

1984-01-01T23:59:59.000Z

326

November 1998 U.S. DEPARTMENT OF COMMERCE Technology AdministrationNational Institute of Standards and Technology  

E-Print Network [OSTI]

cooperation with the International Organization for Standardization (ISO). In the United States, the new inter and Technology COMMON CRITERIA: LAUNCHING THE INTERNATIONAL STANDARD The Common Criteria (CC) for Infor- mation International Standard (IS) 15408 in early 1999. Developing the CC has been a five- year international project

327

Emerging energy-efficient technologies for industry  

SciTech Connect (OSTI)

U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, society is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology is essential in achieving these challenges. We report on a recent analysis of emerging energy-efficient technologies for industry, focusing on over 50 selected technologies. The technologies are characterized with respect to energy efficiency, economics and environmental performance. This paper provides an overview of the results, demonstrating that we are not running out of technologies to improve energy efficiency, economic and environmental performance, and neither will we in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity, and reduced capital costs compared to current technologies.

Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorne, Jennifer

2004-01-01T23:59:59.000Z

328

Idaho National Engineering Laboratory Waste Area Groups 1-7 and 10 Technology Logic Diagram. Volume 3  

SciTech Connect (OSTI)

The Idaho National Engineering Laboratory (INEL) Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates Environmental Restoration (ER) and Waste Management (WM) problems at the INEL to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to an environmental restoration need. It is essential that follow-on engineering and system studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in this TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk to meet the site windows of opportunity. The TLD consists of three separate volumes: Volume I includes the purpose and scope of the TLD, a brief history of the INEL Waste Area Groups, and environmental problems they represent. A description of the TLD, definitions of terms, a description of the technology evaluation process, and a summary of each subelement, is presented. Volume II describes the overall layout and development of the TLD in logic diagram format. This section addresses the environmental restoration of contaminated INEL sites. Volume III (this volume) provides the Technology Evaluation Data Sheets (TEDS) for Environmental Restoration and Waste Management (EM) activities that are reference by a TEDS code number in Volume II. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than provided for technologies in Volume II. Data sheets are arranged alphanumerically by the TEDS code number in the upper right corner of each sheet.

O`Brien, M.C.; Meservey, R.H.; Little, M.; Ferguson, J.S.; Gilmore, M.C.

1993-09-01T23:59:59.000Z

329

NREL: Jobs and Economic Competitiveness - Competitive Advantage...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capabilities & Expertise Key Activities Resource Assessment Electric Sector Integration Jobs and Economic Competitiveness Clean Energy Innovation Analysis Comparative Advantage...

330

Low-rank coal study: national needs for resource development. Volume 3. Technology evaluation  

SciTech Connect (OSTI)

Technologies applicable to the development and use of low-rank coals are analyzed in order to identify specific needs for research, development, and demonstration (RD and D). Major sections of the report address the following technologies: extraction; transportation; preparation, handling and storage; conventional combustion and environmental control technology; gasification; liquefaction; and pyrolysis. Each of these sections contains an introduction and summary of the key issues with regard to subbituminous coal and lignite; description of all relevant technology, both existing and under development; a description of related environmental control technology; an evaluation of the effects of low-rank coal properties on the technology; and summaries of current commercial status of the technology and/or current RD and D projects relevant to low-rank coals.

Not Available

1980-11-01T23:59:59.000Z

331

CLEAN, CLEVER AND COMPETITIVE NORDIC ENERGY  

E-Print Network [OSTI]

WAVE ENERGY 颅 INNOVATIVE TECHNOLOGIES FOR FUTURE 34 BIOENERGY 颅 FROM WOOD COMBUSTION TO BIO competitive in global markets of the field. In this report a good collection of Nordic innovative SME

332

Providing scientific knowledge and technology to sustain our nation's forests, rangelands, and grasslands  

E-Print Network [OSTI]

online at: http://www.fs.fed.us/rm/boise/AWAE_home.shtml BACKGROUND Forest biomass is an energy source that is underutilized. Expanding forest biomass utilization can improve our nation's energy security while reducing to our nation's forests as sources of energy, there is a risk of increased runoff and erosion

Fried, Jeremy S.

333

Sandia National Laboratories  

E-Print Network [OSTI]

Sandia National Laboratories 7011 East Ave. Livermore, CA 94550 Las Positas College 3000 Campus competitions scheduled for the California Bay Area. The Science Bowl is a Jeopardy-like highly competitive Area competitions: Date (all on Saturdays): Location: Host: Regional HIGH SCHOOL Science Bowls January

334

Technology transfer and U.S. national security policy| The Joint Strike Fighter.  

E-Print Network [OSTI]

?? This is a dissertation about United States international technology transfer policy relating to the Department of Defense (DOD) F-35 Joint Strike Fighter (JSF) weapons (more)

Krueger, Richard D.

2010-01-01T23:59:59.000Z

335

Illinois: EERE-Sponsored Clean Energy Competition Launches 2012...  

Broader source: Energy.gov (indexed) [DOE]

Clean Energy Business Plan Competition participant Superior Ecotech is installing its algae production technology at Upslope Brewing Company in Boulder, Colorado. | Photo...

336

Science and technology for a sustainable energy future: Accomplishments of the Energy Efficiency and Renewable Energy Program at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

Accomplishments of the Energy Efficiency and Renewable Energy Program at the Oak Ridge National Laboratory are presented. Included are activities performed in the utilities, transportation, industrial, and buildings technology areas.

Brown, M.A.; Vaughan, K.H.

1995-03-01T23:59:59.000Z

337

Los Alamos National Laboratory Tritium Technology Deployments Large Scale Demonstration and Deployment Project  

SciTech Connect (OSTI)

This paper describes the organization, planning and initial implementation of a DOE OST program to deploy proven, cost effective technologies into D&D programs throughout the complex. The primary intent is to accelerate closure of the projects thereby saving considerable funds and at the same time being protective of worker health and the environment. Most of the technologies in the ''toolkit'' for this program have been demonstrated at a DOE site as part of a Large Scale Demonstration and Deployment Project (LSDDP). The Mound Tritium D&D LSDDP served as the base program for the technologies being deployed in this project but other LSDDP demonstrated technologies or ready-for-use commercial technologies will also be considered. The project team will evaluate needs provided by site D&D project managers, match technologies against those needs and rank deployments using a criteria listing. After selecting deployments the project will purchase the equipment and provide a deployment engineer to facilitate the technology implementation. Other cost associated with the use of the technology will be borne by the site including operating staff, safety and health reviews etc. A cost and performance report will be prepared following the deployment to document the results.

McFee, J.; Blauvelt, D.; Stallings, E.; Willms, S.

2002-02-26T23:59:59.000Z

338

Science, environment and technology summit: A long term national science strategy  

SciTech Connect (OSTI)

This document contains the text of the testimony given by Alvin W. Trivelpiece, Director, Oak Ridge National Laboratory, before the Subcommittee on Basic Research, Committee on Science, US House of Representatives in Oak Ridge, TN on June 1, 1995.

Trivelpiece, A.W.

1995-06-01T23:59:59.000Z

339

The National Energy Technology Laboratory Annual Site Environmental Report for Calendar Year 2001  

SciTech Connect (OSTI)

No significant environmental problems were identified at the National Energy Technology Laboratory (NETL) sites in Morgantown (MGN), Pittsburgh (PGH), Tulsa (NPTO) and Fairbanks (AEO) during 2001. No radionuclides were released from the sites during 2001. The sites maintain two major environmental programs: waste management, and environmental media and release management. These two programs encompass waste handling, storage, and disposal, waste minimization and pollution prevention, air quality emissions, surface-water discharges, groundwater impacts, industrial wastewater discharges, and spill control procedures. The Morgantown and Pittsburgh sites currently maintain complete monitoring programs for groundwater, stormwater discharge, laboratory wastewater discharge, and meteorological data. In addition, an annual air emissions inventory is prepared. A comprehensive Directives Program aimed at managing environmental, safety, health requirements, and risks was initiated in 1997, continued through subsequent years, and will be completed in 2003. The primary objective of the program is to identify and implement standards that will protect the health and safety of workers, public, and the environment. This program started with a careful and thorough analysis of risks confronting workers and the communities surrounding NETL sites. Following this analysis, requirements and best management practices were evaluated to determine how requirements could best be used to advance the mission of NETL. Teams of subject-matter experts analyzed the work assigned to determine potential hazards and identify ways to remove or control those hazards. In 2001, NETL developed or revised a series of directives in two major areas: safety analysis and review (SAR) processes, and integrated safety management (ISM) directives. SAR directives were issued for research and development (R&D) operations, support operations, and facilities. ISM directives were released on management processes, such as standards maintenance, performance measures, assessments, corrective actions, lessons-learned, and training. In conjunction with the Directives Program, the use of the voluntary environmental management system, ISO 14001, was evaluated. This includes the only international environmental management standard to which an entity can be certified. NETL is using the specifications and guidance from this standard to identify an effective environmental management system for the NETL sites. An outside consultant performed an environmental management system assessment (also referred to as an initial environmental review), as referenced in ISO 14004. The objective of the assessment was to determine the degree to which NETL's existing integrated safety management system (ISMS), safety analysis review system (SARS), and environmental management programs conformed with the ISO14001 Environmental Management System (EMS) standard and the United States Environmental Protection Agency's (EPA) Code of Environmental Management Principles. A performance measurement system continued to be maintained during 2001 to assist in evaluating how effectively activities at NETL meet mission-critical goals and how well missions and strategies are connected in the DOE strategic plan. This system also provides data to assist in gauging performance against the DOE critical success factors, that is, performance against technical objectives. Various environmental milestones can be tracked to completion, thus giving NETL measures by which to gauge the sites' goals of remaining in regulatory compliance and achieving best-in-class environmental performance.

National Energy Technology Laboratory

2002-10-01T23:59:59.000Z

340

Staff Member, Staff Member, and Staff Supervisor, respectively, Oak Ridge National Laboratory, Engineering Technology Division, Oak Ridge, TN 37831-8066.  

E-Print Network [OSTI]

1 Staff Member, Staff Member, and Staff Supervisor, respectively, Oak Ridge National Laboratory, Engineering Technology Division, Oak Ridge, TN 37831-8066. D. E. Welch1 , L. M. Hively1 , R. F. Holdaway1 STP Conshohocken, PA, 2002. Abstract Oak Ridge National Laboratory has developed a new technique to monitor

Hively, Lee M.

Note: This page contains sample records for the topic "national competitiveness technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

PROCEEDINGS OF THE 2001 NATIONAL OILHEAT RESEARCH ALLIANCE TECHNOLOGY CONFERENCE HELD AT BROOKHAVEN NATIONAL LABORATORY, UPTON, N.Y., APRIL 30 - MAY 1, 2001.  

SciTech Connect (OSTI)

BNL is proud to acknowledge all of our 2001 sponsors, with their help and support this has correctly become an oilheat industry conference. It is quite gratifying to see an industry come together to help support an activity like the technology conference, for the benefit of the industry as a whole and to celebrate the beginning of the National Oilheat Research Alliance. This meeting is the fourteenth oil heat industry technology conference to be held since 1984 and the first under a new name, NORA, the National Oilheat research Alliance, and the very first in the new century. The conference is a very important part of the effort in technology transfer, which is supported by the Oilheat Research Program. The Oilheat Research Program at BNL is under the newly assigned program management at the Office of Power Technology within the US DOE. The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. The conference provides a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector. The specific objectives of the conference are to: (1) Identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; (2) Foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation. Seventeen technical presentations will be made during the two-day program, all related to oil-heat technology and equipment, these will cover a range of research, developmental, and demonstration activities being conducted within the United States and Europe, including: (1) High-flow Fan Atomization Burner (HFAB) Development and Field Trials; (2) Field Test of the Flame Quality Monitor; (3) NORA/DOE/ BNL Oilheat Five-Year Research Plan; (4) US Department of Energy's Building Cooling Heating and Power for Buildings Program; (5) NORA Education Committee Report; (6) Marketing Oil Heat in Europe: A study in contrasts; (7) Diagnosing Burner Problems with Recorded Data ''The solution to any problem is obvious.. . once it is found''; (8) Variable Firing Rate Oil Burner Using Pulse Fuel Flow Control; (9) Oil-Fired Hydronic Heating Appliances with Reduced Electric Power Consumption and Battery Backup; (10) Peep Into The Nozzle Using Computational Fluid Dynamics; (11) Results of a Parametric Investigation of Spray Characteristics Using a HFAB Type Atomizer; (12) Progression and Improvements in the Design of Blue-flame Oil Burners; (13) Biodiesel as a Heating Oil Blend Stock; (14) Lab Tests of Biodiesel Blends in Residential Heating Equipment; (15) Alternative Fuel Oils and the Effect of Selected Properties in Combustion; (16) New York State Premium Low-Sulfur Heating Fuel Marketplace Demonstration; and (17)The Need for a New Fuel Oil Stability Specification.

MCDONALD, R.J.

2001-04-30T23:59:59.000Z

342

Shared Investment by NIS and National Labs Develops Cutting-Edge Safeguards Technologies  

SciTech Connect (OSTI)

This article, regarding a new technology for detecting undeclared enrichment at gas centrifuge enrichment plants, was written for the DOE/NNSA NA-24 Highlights, a newsletter intended for public release.

Anheier, Norman C.; Williams, Laura S.

2012-04-01T23:59:59.000Z

343

Sandia technology engineering and science accomplishments  

SciTech Connect (OSTI)

Sandia is a DOE multiprogram engineering and science laboratory with major facilities at Albuquerque, New Mexico, and Livermore, California, and a test range near Tonapah, Nevada. We have major research and development responsibilities for nuclear weapons, arms control, energy, the environment, economic competitiveness, and other areas of importance to the needs of the nation. Our principal mission is to support national defense policies by ensuring that the nuclear weapon stockpile meets the highest standards of safety, reliability, security, use control, and military performance. Selected unclassified technical activities and accomplishments are reported here. Topics include advanced manufacturing technologies, intelligent machines, computational simulation, sensors and instrumentation, information management, energy and environment, and weapons technology.

Not Available

1993-03-01T23:59:59.000Z

344

New National Wind Potential Estimates for Modern and Near-Future Turbine Technologies (Poster)  

SciTech Connect (OSTI)

Recent advancements in utility-scale wind turbine technology and pricing have vastly increased the potential land area where turbines can be deployed in the United States. This presentation quantifies the new developable land potential (e.g., capacity curves), visually identifies new areas for possible development (e.g., new wind resource maps), and begins to address deployment barriers to wind in new areas for modern and future turbine technology.

Roberts, J. O.

2014-01-01T23:59:59.000Z

345

Volume 118 (2013) http://dx.doi.org/10.6028/jres.118.003 Journal of Research of the National Institute of Standards and Technology  

E-Print Network [OSTI]

Institute of Standards and Technology 29 Weathering Patterns of Ignitable Liquids with the Advanced Distillation Curve Method Thomas J. Bruno and Samuel Allen National Institute of Standards and Technology such as biodiesel fuel as potential ignitable liquids [6]. Forensic scientists and criminalists must routinely

346

National Medal of Technology and Innovation for IGBT | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of Energy Login The National Library of

347

CARIBBEAN DIGITAL ELEVATION MODELS Coastal Models Supporting our Nation's Needs through Science and Technology  

E-Print Network [OSTI]

CARIBBEAN DIGITAL ELEVATION MODELS Coastal Models Supporting our Nation's Needs through Science the Technical Reports developed for each DEM, available online. #12;CARIBBEAN ISLANDS The Caribbean is much more. People who live in communities in the Caribbean, especially in low-lying develop- ments along the coast

348

THE NATIONAL FUSION COLLABORATORY PROJECT: APPLYING GRID TECHNOLOGY FOR MAGNETIC FUSION RESEARCH  

E-Print Network [OSTI]

of advanced software tools that reduce technical barriers to collaboration and sharing on a national scale. Our vision is to make resources -- data, computers along with analysis, simulation and visualization-institutional collaboration on fusion experiments, and improving comparisons between experiments and theory. The project

Thompson, Mary R.

349

Award Recipient National Institute of Standards and Technology U.S. Department of Commerce  

E-Print Network [OSTI]

, such as adult and child counseling services; substance abuse treatment; addiction recovery services national top-10 percent performance in 2008 for patient care measures related to congestive heart failure, acute myocardial infarction, and pneumonia. 路 AtlantiCare was recognized in 2008 by the American Nurses

Magee, Joseph W.

350

message from the director Sustainability. Science and technology. At Pacific Northwest National  

E-Print Network [OSTI]

emissions and other environmental impacts through energy efficiency, waste management, water and air the results of our efforts to manage against the "triple bottom line" of social, environmental, and economic National Laboratory (PNNL), we have long recognized that excellence in environmental stewardship, social

351

Advanced Workshop in Regulation and Competition COMPETITIVE CHANGE IN NETWORK INDUSTRIES  

E-Print Network [OSTI]

in Pricing and Technology %Restructuring &Strategies under Competition and Deregulation %Incentive Regulation & James Cater: Restructuring in a Low-Cost State: The Virginia Experience INCENTIVE REGULATION Chair Incentive Regulation "Cause" Degradation of Retail Telephone Service Quality? Ingo Vogelsang: Incentive

Lin, Xiaodong

352

Technology in Pedagogy, No. 13 Copyright 2012 National University of Singapore. All Rights Reserved. 1  

E-Print Network [OSTI]

Reserved. 1 Gamification: How to do it Right and Why it is No Good: By Ben Leong Technology in Pedagogy, No. 13, November 2012 Written by Kiruthika Ragupathi (kiruthika@nus.edu.sg) Gamification has recently been proposed as a means to improve student engagement in the classroom. Gamification

Chaudhuri, Sanjay

353

National Petroleum Technology Office`s publication list, July--December 1997  

SciTech Connect (OSTI)

This publication is a list of Department of Energy funded research and development efforts from the general area of Petroleum Technology. It consists of titles, authors, short abstracts, and ordering information. Also listed are software available from the same sources. This publication lists items which have been made available between July and December, 1997.

NONE

1998-01-01T23:59:59.000Z

354

Carbon Capture and Storage Database (CCS) from DOE's National Energy Technology Laboratory (NETL)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

NETL's Carbon Capture and Storage (CCS) Database includes active, proposed, canceled, and terminated CCS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCS technology. The database contains more than 260 CCS projects worldwide in more than 30 countries across 6 continents. Access to the database requires use of Google Earth, as the NETL CCS database is a layer in Google Earth. Or, users can download a copy of the database in MS-Excel directly from the NETL website.

355

NREL's Wind R&D Success Stories, National Wind Technology Center (NWTC) (Fact Sheet)  

SciTech Connect (OSTI)

Wind energy research, development, and deployment have reduced the cost of large and small wind turbine technologies, increased wind energy system reliability and operability, lowered risk by validating performance and design, increased the understanding of the true impacts of wind energy on the U.S. electrical infrastructure, and expanded wind energy markets. A synopsis of research conducted on utility-scale wind turbines, small wind turbines, software, components, market development and grid integration are detailed.

Not Available

2010-01-01T23:59:59.000Z

356

National Technology Transfer and Advancement Act of 1995 [Public Law (PL)  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergyHydrogen Storage1,ServiceNationalH E

357

The U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL),  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe MolecularPlaceThe AnTheforThe, National Energy

358

Y-12, UT, and Stanley Healthcare work to advance technology | Y-12 National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout SRNL Home SRNLSecurityNational SecuritySecurity

359

NWTC Controllable Grid Interface (Fact Sheet), National Wind Technology Center (NWTC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet TestAccounts and AllocationsEMSL NWChem:NATIONAL

360

SOME RECENT TECHNOLOGY DEVELOPMENTS FROM THE UK'S NATIONAL NUCLEAR LABORATORY TO ENABLE HAZARD CHARACTERISATION FOR NUCLEAR DECOMMISSIONING APPLICATIONS  

SciTech Connect (OSTI)

Under its programme of self investment Internal Research and Development (IR&D), the UK's National Nuclear Laboratory (NNL) is addressing the requirement for development in technology to enable hazard characterisation for nuclear decommissioning applications. Three such examples are described here: (1) RadBall developed by the NNL (patent pending) is a deployable baseball-sized radiation mapping device which can, from a single location, locate and quantify radiation hazards. RadBall offers a means to collect information regarding the magnitude and distribution of radiation in a given cell, glovebox or room to support the development of a safe, cost effective decontamination strategy. RadBall requires no electrical supplies and is relatively small, making it easy to be deployed and used to map radiation hazards in hard to reach areas. Recent work conducted in partnership with the Savannah River National Laboratory (SRNL) is presented. (2) HiRAD (patent pending) has been developed by the NNL in partnership with Tracerco Ltd (UK). HiRAD is a real-time, remotely deployed, radiation detection device designed to operate in elevated levels of radiation (i.e. thousands and tens of thousands of Gray) as seen in parts of the nuclear industry. Like the RadBall technology, the HiRAD system does not require any electrical components, the small dimensions and flexibility of the device allow it to be positioned in difficult to access areas (such as pipe work). HiRAD can be deployed as a single detector, a chain, or as an array giving the ability to monitor large process areas. Results during the development and deployment of the technology are presented. (3) Wireless Sensor Network is a NNL supported development project led by the University of Manchester (UK) in partnership with Oxford University (UK). The project is concerned with the development of wireless sensor network technology to enable the underwater deployment and communication of miniaturised probes allowing pond monitoring and mapping. The potential uses, within the nuclear sector alone, are both numerous and significant in terms of the proceeding effort to clean up the UK's nuclear waste legacy.

Farfan, E.; Foley, T.

2010-02-11T23:59:59.000Z

Note: This page contains sample records for the topic "national competitiveness technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NOAA NATIONAL SEA GRANT COLLEGE PROGRAM STRATEGIC PLAN 20092013: MEETING THE CHALLENGE  

E-Print Network [OSTI]

in an increasingly competitive global economy and many policy decisions are taking place at an international level Policy report, the U. S. coastal zone contributed $4.5 trillion to the U. S. economy in 2005. Globalization of technology, people, finance, products, and decision-making means factors beyond our national

362

Sandia National Laboratories: Planting the "SEEDS" of Solar Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional Test Center inInsights for Component Technologies

363

Sandia National Laboratories: The First Fifty Years  

SciTech Connect (OSTI)

On Nov. 1, 1999, Sandia National Laboratories celebrates its 50th birthday. Although Sandia has its roots in the World War II-era Manhattan Project, Sandia began operating as a separate nuclear weapons engineering laboratory under the management of AT&T on Nov. 1, 1949. Today the lab employs more than 7,000 people at its two sites in Albuquerque and Livermore, California, and has research and development missions in national security, energy and environmental technologies, and U.S. economic competitiveness. Lockheed Martin Corporation operates Sandia for the US. Department of Energy.

MORA,CARL J.

1999-11-03T23:59:59.000Z

364

Hanford High-Level Waste Vitrification Program at the Pacific Northwest National Laboratory: technology development - annotated bibliography  

SciTech Connect (OSTI)

This report provides a collection of annotated bibliographies for documents prepared under the Hanford High-Level Waste Vitrification (Plant) Program. The bibliographies are for documents from Fiscal Year 1983 through Fiscal Year 1995, and include work conducted at or under the direction of the Pacific Northwest National Laboratory. The bibliographies included focus on the technology developed over the specified time period for vitrifying Hanford pretreated high-level waste. The following subject areas are included: General Documentation; Program Documentation; High-Level Waste Characterization; Glass Formulation and Characterization; Feed Preparation; Radioactive Feed Preparation and Glass Properties Testing; Full-Scale Feed Preparation Testing; Equipment Materials Testing; Melter Performance Assessment and Evaluations; Liquid-Fed Ceramic Melter; Cold Crucible Melter; Stirred Melter; High-Temperature Melter; Melter Off-Gas Treatment; Vitrification Waste Treatment; Process, Product Control and Modeling; Analytical; and Canister Closure, Decontamination, and Handling

Larson, D.E.

1996-09-01T23:59:59.000Z

365

EA-1965: Florida Atlantic University Southeast National Marine Renewable Energy Center抯 Offshore Marine Hydrokinetic Technology Testing Project, Florida  

Broader source: Energy.gov [DOE]

The Department of Energy (DOE), through its Wind and Water Power Technologies Office (WWPTO), is proposing to provide federal funding to Florida Atlantic University抯 South-East National Marine Renewable Energy Center (FAU SNMREC) to support the at sea testing of FAU SNMREC抯 experimental current generation turbine and the deployment and operation of their Small-Scale Ocean Current Turbine Test Berth, sited on the outer continental shelf (OCS) in waters off the coast of Ft Lauderdale, Florida. SNMREC would demonstrate the test berth site readiness by testing their pilot-scale experimental ocean current turbine unit at that location. The Bureau of Ocean Energy Management (BOEM) conducted an Environmental Assessment to analyze the impacts associated with leasing OCS lands to FAU SNMREC, per their jurisdictional responsibilities under the Outer Continental Shelf Lands Act. DOE was a cooperating agency in this process and based on the EA, DOE issued a Finding of No Significant Impact.

367

Testing of a 50-kW Wind-Diesel Hybrid System at the National Wind Technology Center  

SciTech Connect (OSTI)

In remote off-grid villages and communities, a reliable power source is important in improving the local quality of life. Villages often use a diesel generator for their power, but fuel can be expensive and maintenance burdensome. Including a wind turbine in a diesel system can reduce fuel consumption and lower maintenance, thereby reducing energy costs. However, integrating the various components of a wind-diesel system, including wind turbine, power conversion system, and battery storage (if applicable), is a challenging task. To further the development of commercial hybrid power systems, the National Renewable Energy Laboratory (NREL), in collaboration with the New World Village Power Corporation (NWVP), tested a NWVP 50-kW wind-diesel hybrid system connected to a 15/50 Atlantic Orient Corporation (AOC) wind turbine. Testing was conducted from October 1995 through March 1996 at the National Wind Technology Center (NWTC). A main objective of the testing was to better understand the application of wind turbines to weak grids typical of small villages. Performance results contained in this report include component characterization, such as power conversion losses for the rotary converter system and battery round trip efficiencies. In addition, system operation over the test period is discussed with special attention given to dynamic issues. Finally, future plans for continued testing and research are discussed.

Corbus, D. A.; Green, H. J.; Allderdice, A.; Rand, K.; Bianchi, J.; Linton, E.

1996-07-01T23:59:59.000Z

368

Deployment of CCS Technologies across the Load Curve for a Competitive Electricity Market as a Function of CO2 Emissions Permit Prices  

SciTech Connect (OSTI)

Consistent with other published studies, the modelling presented here reveals that baseload power plants are the first aspects of the electricity sector to decarbonize and are essentially decarbonized once CO2 permit prices exceed a certain threshold ($90/ton CO2 in this study). The decarbonization of baseload electricity is met by significant expansions of nuclear power and renewable energy generation technologies as well as the application of carbon dioxide capture and storage (CCS) technologies applied to both coal and natural gas fired power plants. Relatively little attention has been paid thus far to whether intermediate and peaking units would respond the same way to a climate policy given the very different operational and economic context that these kinds of electricity generation units operate under. In this paper, the authors discuss key aspects of the load segmentation methodology used to imbed a varying electricity demand within the GCAM (a state-of-the-art Integrated Assessment Model) energy and economic modelling framework and present key results on the role CCS technologies could play in decarbonizng subpeak and peak generation (encompassing only the top 10% of the load) and under what conditions. To do this, the authors have modelled two hypothetical climate policies that require 50% and 80% reductions in US emissions from business as usual by the middle of this century. Intermediate electricity generation is virtually decarbonized once carbon prices exceed approximately $150/tonCO2. When CO2 permit prices exceed $160/tonCO2, natural gas power plants with CCS have roughly the same marketshare as conventional gas plants in serving subpeak loads. The penetration of CCS into peak load (upper 6% here) is minimal under the scenarios modeled here suggesting that CO2 emissions from this aspect of the U.S. electricity sector would persist well into the future even with stringent CO2 emission control policies in place.

Luckow, Patrick; Wise, Marshall A.; Dooley, James J.

2011-04-18T23:59:59.000Z

369

Hydrogen Technologies Group  

SciTech Connect (OSTI)

The Hydrogen Technologies Group at the National Renewable Energy Laboratory advances the Hydrogen Technologies and Systems Center's mission by researching a variety of hydrogen technologies.

Not Available

2008-03-01T23:59:59.000Z

370

Vitrification as a low-level radioactive mixed waste treatment technology at Argonne National Laboratory  

SciTech Connect (OSTI)

Argonne National Laboratory-East (ANL-E) is developing plans to use vitrification to treat low-level radioactive mixed wastes (LLMW) generated onsite. The ultimate objective of this project is to install a full-scale vitrification system at ANL-E capable of processing the annual generation and historic stockpiles of selected LLMW streams. This project is currently in the process of identifying a range of processible glass compositions that can be produced from actual mixed wastes and additives, such as boric acid or borax. During the formulation of these glasses, there has been an emphasis on maximizing the waste content in the glass (70 to 90 wt %), reducing the overall final waste volume, and producing a stabilized low-level radioactive waste glass. Crucible glass studies with actual mixed waste streams have produced alkali borosilicate glasses that pass the Toxic Characteristic Leaching Procedure (TCLP) test. These same glass compositions, spiked with toxic metals well above the expected levels in actual wastes, also pass the TCLP test. These results provide compelling evidence that the vitrification system and the glass waste form will be robust enough to accommodate expected variations in the LLMW streams from ANL-E. Approximately 40 crucible melts will be studied to establish a compositional envelope for vitrifying ANL-E mixed wastes. Also being determined is the identity of volatilized metals or off-gases that will be generated.

Mazer, J.J.; No, Hyo J.

1995-08-01T23:59:59.000Z

371

Oak Ridge National Laboratory National Security Programs  

E-Print Network [OSTI]

Oak Ridge National Laboratory National Security Programs Dr. Michael A. Kuliasha, Chief Scientist National Security Technologies Oak Ridge National Laboratory #12;2 OAK RIDGE NATIONAL LABORATORY U. S Security Challenges #12;3 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY How Will Our Enemies

372

Differentiation and Dynamics of Competitiveness Impacts from the EU ETS  

E-Print Network [OSTI]

efficiency measures or adopting more advanced technologies, without switching technology. For example, replacing a coal- fired steam turbine with pulverised-coal technology can achieve 27% emissions reductions and replacing a single cycle gas turbine... competitiveness on a country level because a household or transportation in one country does not 慶ompete with their counterpart in another country, hence the concept of nationwide competitiveness is ill- 3...

Sato, Misato; Grubb, Michael; Cust, J; Chan, Katie; Korppoo, Anna; Ceppi, Pablo

373

National Center of Excellence for Energy Storage Technology 168.10  

SciTech Connect (OSTI)

This report documents the performance of the Ohio State University (OSU) and Edison Welding Institute (EWI) in the period from 10/1/2010 to 12/31/2012. The objective of the project is to establish a Center of Excellence that leverages the strengths of the partners to establish a unique capability to develop and transfer energy storage industries to establish a unique capability in the development and transfer of energy storage system technology through a fundamental understanding of battery electrical and thermal performance, damage and aging mechanisms, and through the development of reliable, high-speed processes for joining substrates in battery cell, module and pack assemblies with low manufacturing variability. During this period, the OSU activity focused on procuring the equipment, materials and supplies necessary to conduct the experiments planned in the statement of project objectives. In detail, multiple laboratory setups were developed to enable for characterizing the open-circuit potential of cathode and anode materials for Li-ion batteries, perform experiments on calorimetry, and finally built multiple cell and module battery cyclers to be able to perform aging campaign on a wide variety of automotive grade battery cells and small modules. This suite of equipment feeds directly into the development, calibration of battery models ranging from first principle electrochemical models to electro-thermal equivalent circuit models suitable for use in control and xEV vehicle simulations. In addition, it allows to develop and calibrate 慳ging models for Li-ion batteries that enable the development of diagnostics and prognostics tools to characterize and predict battery degradation from automotive usage under a wide array of environmental and usage scenarios. The objective of the EWI work scope is to develop improved processes for making metal-tometal joints in advanced battery cells and packs. It will focus on developing generic techniques for making functional (electrically conductive and mechanically robust) metal-to-metal joints between thin substrates. Joints with multiple layers and bimetallic constituents will be investigated. During the current period of performance, EWI has defined the test matrix to evaluate the application of different welding technologies (laser welding, ultrasonic welding, resistance welding) to specific components of battery cells and modules, such as foils-to-tabs, tabs-to-tabs, and tabs-to-bus bars. The test matrix also includes a range of substrates (aluminum 1145 and 1100, copper 110 and nickel 200 as substrates). Furthermore, a set of procedures was defined to perform mechanical and electrical testing of the samples, including metallography, and non-destructive evaluations. Both on the OSU and EWI, this project enabled to leverage very significant industrial collaborations with a wide array of companies ranging from battery manufacturers and pack integrator all the ways to Tier 1 automotive suppliers and OEMs during the period of exercise of the project, and in the future for years to come.

Guezennec, Yann

2011-12-31T23:59:59.000Z

374

Future City Competition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Competition is an unique opportunity for middle school children to combine skills in engineering, environmental science, and art to create a vision for the future. Exercising your...

375

Identification of remediation needs and technology development focus areas for the Environmental Restoration (ER) Project at Sandia National Laboratories/New Mexico (SNL/NM)  

SciTech Connect (OSTI)

The Environmental Restoration (ER) Project has been tasked with the characterization, assessment, remediation and long-term monitoring of contaminated waste sites at Sandia National Laboratories/New Mexico (SNL/NM). Many of these sites will require remediation which will involve the use of baseline technologies, innovative technologies that are currently under development, and new methods which will be developed in the near future. The Technology Applications Program (TAP) supports the ER Project and is responsible for development of new technologies for use at the contaminated waste sites, including technologies that will be used for remediation and restoration of these sites. The purpose of this report is to define the remediation needs of the ER Project and to identify those remediation needs for which the baseline technologies and the current development efforts are inadequate. The area between the remediation needs and the existing baseline/innovative technology base represents a technology gap which must be filled in order to remediate contaminated waste sites at SNL/NM economically and efficiently. In the first part of this report, the remediation needs of the ER Project are defined by both the ER Project task leaders and by TAP personnel. The next section outlines the baseline technologies, including EPA defined Best Demonstrated Available Technologies (BDATs), that are applicable at SNL/NM ER sites. This is followed by recommendations of innovative technologies that are currently being developed that may also be applicable at SNL/NM ER sites. Finally, the gap between the existing baseline/innovative technology base and the remediation needs is identified. This technology gap will help define the future direction of technology development for the ER Project.

Tucker, M.D. [Sandia National Labs., Albuquerque, NM (United States). Site Restoration Technology Program Office; Valdez, J.M.; Khan, M.A. [IT Corp., Albuquerque, NM (United States)

1995-06-01T23:59:59.000Z

376

Fireaxe: The DHS Secure Design Competition Pilot [Extended Abstract  

E-Print Network [OSTI]

discusses the methods at- tempted and lessons learned, as well as future directions and competition for discovering, learning, and testing secure design principles. Fireaxe is the pilot competition that attempts.S. Department of Energy's National Nuclear Secu- rity Administration under contract DE-AC04-94AL85000

Vorobeychik, Eugene

377

Committees per September 1, 2014 Member of the national advisory council for science, technology and innovation (AWTI) (August 2014  

E-Print Network [OSTI]

committee CAREM nuclear reactor design, National Atomic Energy Commission Argentina (2011) 路 Member

378

2005 Solar Decathlon (Competition Program)  

SciTech Connect (OSTI)

The 2005 Solar Decathlon Competition Program is distributed to Solar Decathlon visitors, media, sponsors, and the student competitors. It contains basic facts about the Solar Decathlon: what, where, when, who, and how. It is a guide for visitors to the events and workshops. It describes the 10 contests and the technologies used in the houses. It celebrates the accomplishments of the competitors and provides an opportunity for the major sponsors to describe their roles and relay their commitment to the ideals of the Solar Decathlon.

Not Available

2005-10-01T23:59:59.000Z

379

State Technologies Advancement Collaborative  

SciTech Connect (OSTI)

The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.

David S. Terry

2012-01-30T23:59:59.000Z

380

Collegiate Wind Competition 2016 Notice of Intent | Department...  

Broader source: Energy.gov (indexed) [DOE]

2016 Notice of Intent Collegiate Wind Competition 2016 Notice of Intent September 18, 2014 - 12:33pm Addthis DOE's National Renewable Energy Laboratory (NREL) has announced that it...

Note: This page contains sample records for the topic "national competitiveness technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

DERA Tribal Competition PRE-Open RFP Webinar  

Broader source: Energy.gov [DOE]

In fiscal year (FY) 2014, the National Clean Diesel Campaign will issue a standalone Diesel Emissions Reduction Act (DERA) Tribal Competition Request for Proposals (RFP) for a total of up to $1...

382

National Clean Energy Business Plan Competition | Department...  

Office of Environmental Management (EM)

a low-cost, easily installed radiator retrofit that converts radiator heating systems into a controlled-zoned system, which significantly increases the efficiency of...

383

University of Toronto National Biology Competition  

E-Print Network [OSTI]

. Which of the following species would most likely show the greatest increase in mortality rate because of the introduction of a new road? a. Migratory birds b. Humans c. Trees whose pollen and seeds are dispersed by wind

Toronto, University of

384

National Clean Energy Business Plan Competition | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nitrogen Group Stanford University The Stanford Nitrogen Group developed a new wastewater treatment process, termed "CANDO", for the removal and recovery of energy from waste...

385

National Geothermal Student Competition | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment ofJaredOak Ridge芒聙聶s EMGeothermal energy in the

386

ORISE: DOE EERE National Geothermal Student Competition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the ContributionsArms Control R&DNuclear fuelOPTICS FORJoethe U.S.Safety Integrated

387

Rube Goldberg Competition | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 Resource ProgramEnergyMaterials:Bill Wilcox and others Middle

388

Sandia National Laboratories: maintain America's competitive advantage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbine bladelifetime is the cumulative time under load main

389

technology  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF8/%2A ennike |1/%2A2/%2A en/%2A1/%2A en

390

CCPPolicyBriefing Competition  

E-Print Network [OSTI]

given their low capital base, and they were caught out when the asset price bubble began to burst characteristic is that bank finance provides the essential oil in the economic system, allowing other firms be the best way to save efficient competition in the non-financial market economy. Competition policy History

Feigon, Brooke

391

Formula Hybrid International Competition  

E-Print Network [OSTI]

, and computerized control systems. But the greatest obstacle of all was that hybrid cars could not meet newlyFormula Hybrid International Competition May 4, 5, 6, 2009 #12;09 annual third We are thrilled to have 30 cars competing this year. The competition is the result of the hard work of many people

Carver, Jeffrey C.

392

Hydrogen Production - Current Technology | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Current Technology Hydrogen Production - Current Technology The development of clean, sustainable, and cost-competitive hydrogen production processes is key to a viable future...

393

Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and InnovationexperimentsTechnology

394

Imagine Tomorrow: Student Competition Leads to Innovative Biofuel Ideas  

Office of Energy Efficiency and Renewable Energy (EERE)

For this year抯 Imagine Tomorrow competition, the Bioenergy Technologies Office will select a student team to present their idea and project at the Biomass 2014 conference in July. Learn more about the competition, which will take place this weekend at Washington State University.

395

Application Periods Open for 2014 National Clean Energy Business...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Application Periods Open for 2014 National Clean Energy Business Plan Competition's Regional Contests Application Periods Open for 2014 National Clean Energy Business Plan...

396

National Renewable Energy Laboratory Innovation for Our Energy Future  

E-Print Network [OSTI]

...............................................................................................19 Competitive Green Power and Renewable Energy Certificate Marketing..............................45.......................................................................................53 Selected Wholesale MarketersNational Renewable Energy Laboratory Innovation for Our Energy Future A national laboratory

397

Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix  

SciTech Connect (OSTI)

For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

NONE

1994-12-01T23:59:59.000Z

398

Analysis of Petroleum Technology Advances Through Applied Research by Independent Oil Producers  

SciTech Connect (OSTI)

Petroleum Technology Advances Through Applied Research by Independent Oil Producers is a program of the National Oil Research Program, U.S. Department of Energy. Between 1995 and 1998, the program competitively selected and cost-shared twenty-two projects with small producers. The purpose was to involve small independent producers in testing technologies of interest to them that would advance (directly or indirectly) one or more of four national program objectives: (1) Extend the productive life of reservoirs; (2) Increase production and/or reserves; (3) Improve environmental performance; and (4) Broaden the exchange of technology information.

Brashear, Jerry P.; North, Walter B.; Thomas Charles P.; Becker, Alan B.; Faulder, David D.

2000-01-12T23:59:59.000Z

399

u.s. department of commerce national institute of standards and technology manufacturing extension partnership W W W . n i s t . g o v / m e p 1 -8 0 0 -m e p -4 m F g  

E-Print Network [OSTI]

affordable assistance to improve a company's productivity, efficiency and competitiveness through technology specialists in every area of manufacturing for all sizes of businesses, so companies are sure to get the right in process improvement specialists to train company employees and lead the Kaizen events. Several Hydra Pro

Perkins, Richard A.

400

First National Technology Center  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal Registry CommentsOverview 禄FINDING OFthe TexasFirstFirst

Note: This page contains sample records for the topic "national competitiveness technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Technologies | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Burst BufferFluorite EnergyA

402

Regional Competitions - EERE Commercialization Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regional Competitions Six Regional Clean Energy Business Plan Competitions are taking place across the country- representing all of the United States' distinct regions. The...

403

DOE Collegiate Wind Competition  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) Collegiate Wind Competition will take place concurrently with the 2014 AWEA WINDPOWER Conference and Exhibition in Las Vegas. Spectators are encouraged to attend...

404

Retail electricity competition  

E-Print Network [OSTI]

We analyze a number of unstudied aspects of retail electricity competition. We first explore the implications of load profiling of consumers whose traditional meters do not allow for measurement of their real time consumption, ...

Joskow, Paul L.

2004-01-01T23:59:59.000Z

405

Structural competition in grammar  

E-Print Network [OSTI]

This thesis makes the following three claims: (1) Competition exists in natural language: the grammaticality (and meaning) of using a linguistic object 0 can be affected by the grammaticality (and meaning) of a different ...

Katzir, Roni (Roni A.)

2008-01-01T23:59:59.000Z

406

Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway  

SciTech Connect (OSTI)

This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks have been identified.

Biddy, M.; Jones, S.

2013-03-01T23:59:59.000Z

407

Geothermal Technologies Office Hosts Collegiate Competition  

Broader source: Energy.gov [DOE]

To further accelerate the adoption of geothermal energy, the United States Department of Energy is sponsoring a Geothermal Case Study Challenge (CSC) to aggregate geothermal data that can help us...

408

Benchmarking of Competitive Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment ofEnergy StevenHouseField Experiment | DepartmentEV2

409

Benchmarking of Competitive Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment ofEnergy StevenHouseField Experiment | DepartmentEV21

410

Cost Analysis: Technology, Competitiveness, Market Uncertainty | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009 activitiesof Energy As a basis for

411

Energizing American Competitiveness in Solar Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE:2009 DOE Hydrogen ProgramEnergize Phoenix

412

Revitalizing American Competitiveness in Solar Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN RENEWABLEOperated

413

Benchmarking of Competitive Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment ofEnergy VictorofPolicy Language Tim Tim10

414

Benchmarking of Competitive Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment ofEnergy VictorofPolicy Language Tim

415

Northwest Regional Technology Center  

E-Print Network [OSTI]

Northwest Regional Technology Center for Homeland Security The Northwest Regional Technology Center and deployment of technologies that are effective homeland security solutions for the region, and accelerate technology transfer to the national user community. Foster a collaborative spirit across agencies

416

The Resilient Economy: Integrating Competitiveness and Security  

SciTech Connect (OSTI)

Globalization, technological complexity, interdependence, terrorism, climate and energy volatility, and pandemic potential are increasing the level of risk that societies and organizations now face. Risks also are increasingly interrelated; disruptions in one area can cascade in multiple directions. The ability to manage emerging risks, anticipate the interactions between different types of risk, and bounce back from disruption will be a competitive differentiator for companies and countries alike in the 21st century. What Policymakers Should Know The national objective is not just homeland protection, but economic resilience: the ability to mitigate and recover quickly from disruption. Businesses must root the case for investment in resilience strategies to manage a spectrum of risks, not just catastrophic ones. Making a business case for investment in defenses against low-probability events (even those with high impact) is difficult. However, making a business case for investments that assure business continuity and shareholder value is not a heavy lift. There are an infinite number of disruption scenarios, but only a finite number of outcomes. Leading organizations do not manage specific scenarios, rather they create the agility and flexibility to cope with turbulent situations. The investments and contingency plans these leading companies make to manage a spectrum of risk create a capability to respond to high-impact disasters as well. Government regulations tend to stovepipe different types of risk, which impedes companies abilities to manage risk in an integrated way. Policies to strengthen risk management capabilities would serve both security and competitiveness goals. What CEOs and Boards Should Know Operational risks are growing rapidly and outpacing many companies abilities to manage them. Corporate leadership has historically viewed operational risk management as a back office control function. But managing operational risks increasingly affects real-time financial performance. The 835 companies that announced a supply chain disruption between 1989 and 2000 experienced 33 percent to 40 percent lower stock returns than their industry peers. Twenty-five percent of companies that experienced an IT outage of two to six days went bankrupt immediately. Ninety-three percent of companies that lost their data center for 10 days or more filed for bankruptcy within a year.

Debbie van Opstal

2009-01-07T23:59:59.000Z

417

Catalytic Upgrading of Sugars to Hydrocarbons Technology Pathway  

SciTech Connect (OSTI)

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the catalytic conversion of solubilized carbohydrate streams to hydrocarbon biofuels, utilizing data from recent efforts within the National Advanced Biofuels Consortium (NABC) in collaboration with Virent, Inc.. Technical barriers and key research needs that should be pursued for the catalytic conversion of sugars pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks have been identified.

Biddy, Mary J.; Jones, Susanne B.

2013-03-31T23:59:59.000Z

418

Engineering Research, Development and Technology, FY95: Thrust area report  

SciTech Connect (OSTI)

The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

NONE

1996-02-01T23:59:59.000Z

419

Corporate competition: A self-organized network  

E-Print Network [OSTI]

A substantial number of studies have extended the work on universal properties in physical systems to complex networks in social, biological, and technological systems. In this paper, we present a complex networks perspective on interfirm organizational networks by mapping, analyzing and modeling the spatial structure of a large interfirm competition network across a variety of sectors and industries within the United States. We propose two micro-dynamic models that are able to reproduce empirically observed characteristics of competition networks as a natural outcome of a minimal set of general mechanisms governing the formation of competition networks. Both models, which utilize different approaches yet apply common principles to network formation give comparable results. There is an asymmetry between companies that are considered competitors, and companies that consider others as their competitors. All companies only consider a small number of other companies as competitors; however, there are a few compan...

Braha, Dan; Bar-Yam, Yaneer

2011-01-01T23:59:59.000Z

420

Office of Industrial Technologies research in progress  

SciTech Connect (OSTI)

The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

Not Available

1993-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "national competitiveness technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

National Residential Efficiency Measures Database Webinar Slides...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Residential Efficiency Measures Database Webinar Slides National Residential Efficiency Measures Database Webinar Slides Presentation slides for the Building Technologies...

422

Coordination of the U.S. DOE-Argentine National Atomic Energy Commission (CNEA) science and technology implementing arrangement. Final report  

SciTech Connect (OSTI)

In 1989, the US Department of Energy (DOE) established the Office of Environmental Management (EM) and delegated to the office the responsibility of cleaning up the US nuclear weapons complex. EM`s mission has three primary activities: (1) to assess, remediate, and monitor contaminated sites and facilities; (2) to store, treat, and dispose of wastes from past and current operations; and (3) to develop and implement innovative technologies for environmental remediation. To this end, EM has established domestic and international cooperative technology development programs, including one with the Republic of Argentina. Cooperating with Argentine scientific institutes and industry meets US cleanup objectives by: (1) identifying and accessing Argentine EM-related technologies, thereby leveraging investments and providing cost-savings; (2) improving access to technical information, scientific expertise, and technologies applicable to EM needs; and (3) fostering the development of innovative environmental technologies by increasing US private sector opportunities in Argentina in EM-related areas. Florida International University`s Hemispheric Center for Environmental Technology (FIU-HCET) serves as DOE-OST`s primary technology transfer agent. FIU-HCET acts as the coordinating and managing body for the Department of Energy (DOE)-Argentina National Atomic Energy Commission (CNEA) Arrangement. Activities include implementing standard operating procedures, tracking various technical projects, hosting visiting scientists, advising DOE of potential joint projects based on previous studies, and demonstrating/transferring desired technology. HCET hosts and directs the annual Joint Coordinating Committee for Radioactive and Mixed Waste Management meeting between the DOE and CNEA representatives. Additionally, HCET is evaluating the possibility of establishing similar arrangements with other Latin American countries.

Ebadian, M.A.

1998-01-01T23:59:59.000Z

423

Technology To Realize  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Technology To Realize Fusion Energy in the International Context Kathryn A. McCarthy Deputy Associate Laboratory Director Nuclear Science & Technology Idaho National Laboratory...

424

Engineering research, development and technology. Thrust area report, FY93  

SciTech Connect (OSTI)

The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

Not Available

1994-05-01T23:59:59.000Z

425

Collaborative National Program for the Development and Performance Testing of Distributed Power Technologies with Emphasis on Combined Heat and Power Applications  

SciTech Connect (OSTI)

A current barrier to public acceptance of distributed generation (DG) and combined heat and power (CHP) technologies is the lack of credible and uniform information regarding system performance. Under a cooperative agreement, the Association of State Energy Research and Technology Transfer Institutions (ASERTTI) and the U.S. Department of Energy have developed four performance testing protocols to provide a uniform basis for comparison of systems. The protocols are for laboratory testing, field testing, long-term monitoring and case studies. They have been reviewed by a Stakeholder Advisory Committee made up of industry, public interest, end-user, and research community representatives. The types of systems covered include small turbines, reciprocating engines (including Stirling Cycle), and microturbines. The protocols are available for public use and the resulting data is publicly available in an online national database and two linked databases with further data from New York State. The protocols are interim pending comments and other feedback from users. Final protocols will be available in 2007. The interim protocols and the national database of operating systems can be accessed at www.dgdata.org. The project has entered Phase 2 in which protocols for fuel cell applications will be developed and the national and New York databases will continue to be maintained and populated.

Soinski, Arthur; Hanson, Mark

2006-06-28T23:59:59.000Z

426

Species Interactions Competition  

E-Print Network [OSTI]

medium daily P. caudatum wins, P. aurelia extinct Competition and parameters depend on environment and is used up or reduced in abundance in the environment (D. Tilman) Renewable - replenished within organism between the organism and its living and non-living environment. Function of organism in its ecosystem

Cochran-Stafira, D. Liane

427

Industrial Gases as a Vehicle for Competitiveness  

E-Print Network [OSTI]

the diversity and options available to enable cost savings and environmentally driven process improvements. Industrial gases have come of age during the last fifteen years. Engineers and scientists have looked beyond the paradigms of their operations...INDUSTRIAL GASES AS A VEHICLE FOR COMPETITIVENESS James R. Dale, Director, Technology Programs, Airco Industrial Gases Division, The BOC Group, Inc., Murray Hill, New Jersey ABSTRACT Industrial gases are produced using compressed air...

Dale, J. R.

428

Whole Algae Hydrothermal Liquefaction Technology Pathway  

SciTech Connect (OSTI)

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline, diesel and jet range blendstocks.

Biddy, Mary J.; Davis, Ryan; Jones, Susanne B.; Zhu, Yunhua

2013-03-31T23:59:59.000Z

429

Final report on testing of ACONF technology for the US Coast Guard National Distress Systems : a study for the DOE Energy Storage Systems Program.  

SciTech Connect (OSTI)

This report documents the results of a six month test program of an Alternative Configuration (ACONF) power management system design for a typical United States Coast Guard (USCG) National Distress System (NDS) site. The USCG/USDOE funded work was performed at Sandia National Laboratories to evaluate the effect of a Sandia developed battery management technology known as ACONF on the performance of energy storage systems at NDS sites. This report demonstrates the savings of propane gas, and the improvement of battery performance when utilizing the new ACONF designs. The fuel savings and battery performance improvements resulting from ACONF use would be applicable to all current NDS sites in the field. The inherent savings realized when using the ACONF battery management design was found to be significant when compared to battery replacement and propane refueling at the remote NDS sites.

Storey, Leanne M.; Byrd, Thomas M., Jr.; Murray, Aaron T.; Ginn, Jerry W.; Symons, Philip C. (Electrochemical Engineering Consultants, Inc., Morgan Hill, CA); Corey, Garth P.

2005-08-01T23:59:59.000Z

430

ENERGY EFFICIENCY TECHNOLOGY ROADMAP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

l d i n g D e s i g n E n v e l o p e R&D Program Summaries Effective, cost competitive solar shingles. Building-integrated photovoltaic (PV) technologies helps make solar power...

431

Clean coal technology demonstration program: Program update 1996-97  

SciTech Connect (OSTI)

The Clean Coal Technology Demonstration Program (known as the CCT Program) reached a significant milestone in 1996 with the completion of 20 of the 39 active projects. The CCT Program is responding to a need to demonstrate and deploy a portfolio of technologies that will assure the U.S. recoverable coal reserves of 297 billion tons could continue to supply the nation`s energy needs economically and in a manner that meets the nation`s environmental objectives. This portfolio of technologies includes environmental control devices that contributed to meeting the accords on transboundary air pollution recommended by the Special Envoys on Acid Rain in 1986. Operational, technical, environmental, and economic performance information and data are now flowing from highly efficient, low-emission, advanced power generation technologies that will enable coal to retain its prominent role into the next millennium. Further, advanced technologies are emerging that will enhance the competitive use of coal in the industrial sector, such as in steelmaking. Coal processing technologies will enable the entire coal resource base to be used while complying with environmental requirements. These technologies are producing products used by utilities and industrial processes. The capability to coproduce products, such as liquid and solid fuels, electricity, and chemicals, is being demonstrated at a commercial scale by projects in the CCT Program. In summary, this portfolio of technologies is satisfying the national need to maintain a multifuel energy mix in which coal is a key component because of its low-cost, availability, and abundant supply within the nation`s borders.

NONE

1997-10-01T23:59:59.000Z

432

Chemical Technology Division progress report for the period April 1, 1981-March 31, 1983. [Oak Ridge National Laboratory  

SciTech Connect (OSTI)

Separate abstracts were prepared for eight sections of the report: nuclear waste management; fossil energy; basic science and technology; biotechnology and environmental programs; transuranium-element processing; Nuclear Regulatory Commission programs; Three Mile Island support studies; and miscellaneous programs.

Not Available

1983-09-01T23:59:59.000Z

433

Sunk Costs and Competitive Bidding  

E-Print Network [OSTI]

SUNK COSTS AND COMPETITIVE BIDDING Kenneth R. FrenchRevised: November 1982 SUNK COSTS AND COMPETITIVE BIDDINGl the winning bid be? I f sunk costs do not matter, I f the

French, Kenneth R.; McCormick, Robert E.

1982-01-01T23:59:59.000Z

434

Institutional owners and competitive rivalry  

E-Print Network [OSTI]

factors that make firms increasingly aware of competitive behavior (e.g., TMT heterogeneity and This dissertation follows the style of the Academy of Management Journal. 2 multimarket competition) and increasingly capable of initiating...

Connelly, Brian Lawrence

2008-10-10T23:59:59.000Z

435

The future steelmaking industry and its technologies  

SciTech Connect (OSTI)

The objective of this report is to develop a vision of the future steelmaking industry including its general characteristics and technologies. In addition, the technical obstacles and research and development opportunities for commercialization of these technologies are identified. The report is being prepared by the Sloan Steel Industry Competitiveness Study with extensive input from the industry. Industry input has been through AISI (American Iron and Steel Institute), SMA (Steel Manufacturers Association) and contacts with individual company executives and technical leaders. The report identifies the major industry drivers which will influence technological developments in the industry for the next 5--25 years. Initially, the role of past drivers in shaping the current industry was examined to help understand the future developments. Whereas this report concentrates on future technologies other major factors such as national and international competition, human resource management and capital concerns are examined to determine their influence on the future industry. The future industry vision does not specify specific technologies but rather their general characteristics. Finally, the technical obstacles and the corresponding research and development required for commercialization are detailed.

Fruehan, R.J.; Paxton, H.W.; Giarratani, F.; Lave, L. [Carnegie-Mellon Univ., Pittsburgh, PA (United States)]|[Pittsburgh Univ., PA (United States)

1995-01-01T23:59:59.000Z

436

Geothermal energy technology: issues, R and D needs, and cooperative arrangements  

SciTech Connect (OSTI)

In 1986, the National Research Council, through its Energy Engineering Board, formed the Committee on Geothermal Energy Technology. The committee's study addressed major issues in geothermal energy technology, made recommendations for research and development, and considered cooperative arrangements among government, industry, and universities to facilitate RandD under current severe budget constraints. The report addresses four types of geothermal energy: hydrothermal, geopressured, hot dry rock, and magma systems. Hydrothermal systems are the only type that are now economically competitive commercially. Further technology development by the Department of Energy could make the uneconomical hydrothermal resources commercially attractive to the industry. The economics are more uncertain for the longer-term technologies for extracting energy from geopressured, hot dry rock, and magma systems. For some sites, the cost of energy derived from geopressured and hot dry rock systems is projected within a commercially competitive range. The use of magma energy is too far in the future to make reasonable economic calculations.

Not Available

1987-01-01T23:59:59.000Z

437

Defense programs industrial partnerships at Los Alamos National Laboratory  

SciTech Connect (OSTI)

The US Department of Energy`s Defense Programs face unprecedented challenges of stewardship for an aging nuclear stockpile, cessation of nuclear testing, reduced federal budgets, and a smaller manufacturing complex. Partnerships with industry are essential in developing technology, modernizing the manufacturing complex, and maintaining the safety and reliability of the nation`s nuclear capability. The past decade of federal support for industrial partnerships has promoted benefits to US industrial competitiveness. Recent shifts in government policy have re-emphasized the importance of industrial partnerships in accomplishing agency missions. Nevertheless, abundant opportunities exist for dual-benefit, mission-driven partnerships between the national laboratories and industry. Experience at Los Alamos National Laboratory with this transition is presented.

Freese, K.B. [Los Alamos National Lab., NM (United States). Industrial Partnership Office

1996-10-01T23:59:59.000Z

438

2008 Industrial Technologies Market Report, May 2009  

SciTech Connect (OSTI)

The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

Energetics; DOE

2009-07-01T23:59:59.000Z

439

Technology Evaluations Related to Mercury, Technetium, and Chloride in Treatment of Wastes at the Idaho Nuclear Technology and Engineering Center of the Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

The Idaho High-Level Waste and Facility Disposition Environmental Impact Statement defines alternative for treating and disposing of wastes stored at the Idaho Nuclear Technology and Engineering Center. Development is required for several technologies under consideration for treatment of these wastes. This report contains evaluations of whether specific treatment is needed and if so, by what methods, to remove mercury, technetium, and chlorides in proposed Environmental Impact Statement treatment processes. The evaluations of mercury include a review of regulatory requirements that would apply to mercury wastes in separations processes, an evaluation of the sensitivity of mercury flowrates and concentrations to changes in separations processing schemes and conditions, test results from laboratory-scale experiments of precipitation of mercury by sulfide precipitation agents from the TRUEX carbonate wash effluent, and evaluations of methods to remove mercury from New Waste Calcining Facility liquid and gaseous streams. The evaluation of technetium relates to the need for technetium removal and alternative methods to remove technetium from streams in separations processes. The need for removal of chlorides from New Waste Calcining Facility scrub solution is also evaluated.

C. M. Barnes; D. D. Taylor; S. C. Ashworth; J. B. Bosley; D. R. Haefner

1999-10-01T23:59:59.000Z

440

The Center for Technology for Advanced Scientific Component Software (TASCS) Lawrence Livermore National Laboratory - Site Status Update  

SciTech Connect (OSTI)

This report summarizes LLNL's progress for the period April through September of 2008 for the Center for Technology for Advanced Scientific Component Software (TASCS) SciDAC. The TASCS project is organized into four major thrust areas: CCA Environment (72%), Component Technology Initiatives (16%), CCA Toolkit (8%), and User and Application Outreach & Support (4%). The percentage of LLNL's effort allocation is shown in parenthesis for each thrust area. Major thrust areas are further broken down into activity areas, LLNL's effort directed to each activity is shown in Figure 1. Enhancements, Core Tools, and Usability are all part of CCA Environment, and Software Quality is part of Component Technology Initiatives. The balance of this report will cover our accomplishments in each of these activity areas.

Epperly, T W

2008-12-03T23:59:59.000Z

Note: This page contains sample records for the topic "national competitiveness technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Geothermal Technologies Office Director Doug Hollett Keynotes...  

Broader source: Energy.gov (indexed) [DOE]

Technologies Office Director Doug Hollett Keynotes at National Geothermal Summit, August 6 Geothermal Technologies Office Director Doug Hollett Keynotes at National Geothermal...

442

Computational models of intergroup competition and warfare.  

SciTech Connect (OSTI)

This document reports on the research of Kenneth Letendre, the recipient of a Sandia Graduate Research Fellowship at the University of New Mexico. Warfare is an extreme form of intergroup competition in which individuals make extreme sacrifices for the benefit of their nation or other group to which they belong. Among animals, limited, non-lethal competition is the norm. It is not fully understood what factors lead to warfare. We studied the global variation in the frequency of civil conflict among countries of the world, and its positive association with variation in the intensity of infectious disease. We demonstrated that the burden of human infectious disease importantly predicts the frequency of civil conflict and tested a causal model for this association based on the parasite-stress theory of sociality. We also investigated the organization of social foraging by colonies of harvester ants in the genus Pogonomyrmex, using both field studies and computer models.

Letendre, Kenneth (University of New Mexico); Abbott, Robert G.

2011-11-01T23:59:59.000Z

443

2003 U.S. Department of Energy Strategic Plan: Protecting National, Energy, and Economic Security with Advanced Science and Technology and Ensuring Environmental Cleanup  

SciTech Connect (OSTI)

The Department of Energy contributes to the future of the Nation by ensuring energy security, maintaining the safety, security and reliability of the nuclear weapons stockpile, cleaning up the environment from the legacy of the Cold War, and developing innovations in science and technology. After 25 years in existence, the Department now operates 24 preeminent research laboratories and facilities and four power marketing administrations, and manages the environmental cleanup from 50 years of nuclear defense activities that impacted two million acres in communities across the country. The Department has an annual budget of about $23 billion and employs about 14,500 Federal and 100,000 contractor employees. The Department of Energy is principally a national security agency and all of its missions flow from this core mission to support national security. That is true not just today, but throughout the history of the agency. The origins of the Department can be traced to the Manhattan Project and the race to develop the atomic bomb during World War II. Following the war, Congress engaged in a vigorous and contentious debate over civilian versus military control of the atom. The Atomic Energy Act of 1946 settled the debate by creating the Atomic Energy Commission, which took over the Manhattan Project抯 sprawling scientific and industrial complex.

None,

2003-09-30T23:59:59.000Z

444

Research turbine supports sustained technology development. For more than three decades, engineers at the National Renewable Energy Labora-  

E-Print Network [OSTI]

Research turbine supports sustained technology development. For more than three decades, engineers, improve wind turbine performance, and reduce the cost of energy. Although there have been dramatic turbine test platform. Working with DOE, NREL purchased and installed a GE 1.5-MW wind turbine at the NWTC

445

Biological Conversion of Sugars to Hydrocarbons Technology Pathway  

SciTech Connect (OSTI)

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the biological conversion of biomass derived sugars to hydrocarbon biofuels, utilizing data from recent literature references and information consistent with recent pilot scale demonstrations at NREL. Technical barriers and key research needs have been identified that should be pursued for the pathway to become competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

Davis, Ryan; Biddy, Mary J.; Tan, Eric; Tao, Ling; Jones, Susanne B.

2013-03-31T23:59:59.000Z

446

Algal Lipid Extraction and Upgrading to Hydrocarbons Technology Pathway  

SciTech Connect (OSTI)

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This technology pathway case investigates the cultivation of algal biomass followed by further lipid extraction and upgrading to hydrocarbon biofuels. Technical barriers and key research needs have been assessed in order for the algal lipid extraction and upgrading pathway to be competitive with petroleum-derived gasoline, diesel and jet range hydrocarbon blendstocks.

Davis, Ryan; Biddy, Mary J.; Jones, Susanne B.

2013-03-31T23:59:59.000Z

447

Learning Competitive Intelligence from a Bunch of Screwballs  

SciTech Connect (OSTI)

Idaho National Laboratory is the Department of Energy抯 (DOE) lead lab for nuclear energy research and is dedicated to supporting the advancement of missions in nuclear energy research, energy and environment, and national security. The laboratory is operated by Battelle Energy Alliance (BEA) and participates both independently and jointly with other labs in the support of work for the DOE and other government organizations. The Information Management department is a key support organization whose purpose is to enable the three key areas supporting the Laboratory mission, Nuclear Energy, National and Homeland Security, and Energy and Environment, are successful. The challenge that we face is having relevant information about what these key areas of the Laboratory are working on and how we can best support them in achieving overall mission success. In addition, one of the major challenges that they face comes with knowing their customers and their customer抯 needs so that they can successfully execute on their mission. Technology Application Organizations today are dependent on understanding their customers and competitors so that they can respond accordingly, but this can be a difficult and vexing challenge. Customers do not always reveal all of their needs and competitors rarely come out and reveal what they are doing, but this does not mean that hints about their plans are not abundant in information that is readily available. The challenge has always been how to keep track of all that is happening and converting that into useful information. Taking the lead from the 揝crewball Division from World War II, we have the tools available to automate this process and start to mine the Internet to get clues of what our customers and competitors are actively working on. By looking at what is being said and relating that to what else is being said, we can build competitive intelligence and act upon this to further our organizational objectives.

Troy Hiltbrand

2010-12-01T23:59:59.000Z

448

Energy and technology review  

SciTech Connect (OSTI)

This issue highlights the Lawrence Livermore National Laboratory`s 1993 accomplishments in our mission areas and core programs: economic competitiveness, national security, energy, the environment, lasers, biology and biotechnology, engineering, physics, chemistry, materials science, computers and computing, and science and math education. Secondary topics include: nonproliferation, arms control, international security, environmental remediation, and waste management.

Quirk, W.J.; Canada, J.; de Vore, L.; Gleason, K.; Kirvel, R.D.; Kroopnick, H.; McElroy, L.

1994-04-01T23:59:59.000Z

449

Argonne National Laboratory's Nondestructive  

E-Print Network [OSTI]

Argonne National Laboratory's Nondestructive Evaluation Technologies NDE #12;Over45yearsexperienceinNondestructiveEvaluation... Argonne National Laboratory's world-renowned researchers have a proven the safe operationof advanced nuclear reactors. Argonne's World-Class Nondestructive Evaluation

Kemner, Ken

450

The emerging roles of energy storage in a competitive power market: Summary of a DOE Workshop  

SciTech Connect (OSTI)

This report contains a summary of the workshop, {open_quotes}The Emerging Roles of Energy Storage in a Competitive Power Market,{close_quotes} which was sponsored by the U.S. Department of Energy and Sandia National Laboratories and was held in Pleasanton, California on December 6-7, 1994. More than 70 people attended, representing government agencies, national laboratories, equipment vendors, electric utilities and other energy providers, venture capital interests, and consultants. Many types of energy storage were discussed, including electrical (batteries and superconducting magnets), mechanical (flywheels and pumped hydro), hydrogen, compressed air, and thermal energy storage. The objectives of the workshop were to communicate within the energy storage community regarding the costs, benefits, and technical status of various technology options; to explore and elucidate the evolving roles of energy storage in a more dynamic and competitive power and energy marketplace; and to discuss the optimum federal role in this area. The goals of the workshop were fully realized through knowledgeable and insightful presentations and vigorous discussion, which are summarized.

Gordon, S.P.; Falcone, P.K. [eds.

1995-06-01T23:59:59.000Z

451

Emerging energy-efficient industrial technologies  

SciTech Connect (OSTI)

U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing the decision on whether to adopt an emerging technology. The technologies were characterized with respect to energy efficiency, economics, and environmental performance. The results demonstrate that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. We show that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity and worker safety, and reduced capital costs.

Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

2000-10-01T23:59:59.000Z

452

Environmental standards provide competitive advantage  

SciTech Connect (OSTI)

Quality organizations are breaking new ground with the development of international standards for environmental management. These promise to provide the platform for chemical companies wanting to establish their environmental credibility with a global audience. [open quotes]It will be similar to auditing our customers to ISO 9000[close quote], says the environmental manager for a European chemical firm. [open quote]We will only want to deal with people who have got their environmental act together. And we'll be in a better competitive positions[close quote]. The International Organization for Standardization (ISO;Geneva) has set up a taskforce to develop an environmental management standard, which is expected to be completed by the mid-1990s. Observers think the ISO standard will draw heavily on the British Standard Institute's (BSI;London) environmental management standard, BS7750, which will likely be the first system adopted in the world. Published last year, BS7750 has been extensively piloted in the UK (CW, Sept. 30, 1992, p. 62) and is now set to be revised before being offically adopted by BSI. The UK's Chemical Industries Association (CIA;London) is anxious to prevent a proliferation of standards, and its report on BS7750 pilot projects calls for an approach integrating quality, environment, and health and safety. But standard setters, including ISO, appear to be moving in the opposite direction. In the US, the American national Standards Institute (ANSI;Washington) has started work on an environmental management standard.

Chynoweth, E.; Kirshner, E.

1993-04-28T23:59:59.000Z

453

National Laboratory Photovoltaics Research  

Broader source: Energy.gov [DOE]

DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

454

NREL Demonstrates Game-Changing Air Conditioner Technology (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover two yearsNP UserReportTesting of DEVAP

455

NREL Identifies Investments for Wind Turbine Drivetrain Technologies (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover two yearsNP UserReportTestingNRELexamines

456

NREL: MIDC/National Wind Technology Center M2 Tower (39.91 N, 105.235 W,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National NuclearoverAcquisitionEnergy SponsorsEnergyWind1855 m,

457

Strategic Technology JET PROPULSION LABORATORY  

E-Print Network [OSTI]

Strategic Technology Directions JET PROPULSION LABORATORY National Aeronautics and Space Administration 2 0 0 9 #12;漏 2009 California Institute of Technology. Government sponsorship acknowledged. #12;Strategic Technology Directions 2009 offers a distillation of technologies, their links to space missions

Waliser, Duane E.

458

Sandia`s photonic program and its changing national role  

SciTech Connect (OSTI)

Photonics activities at Sandia National Laboratories are founded on an extensive materials research program. In 1988, the Compound Semiconductor Research Laboratory (CSRL) was established at Sandia to bring together device and materials research and development, in support of Sandia`s role in weapons technologies. Recently, industrial competitiveness has been added as a major mission for the national laboratories. As a result, present photonics programs are not only directed towards internal applications-driven projects, but are increasingly tied to the Department Of Energy`s (DOE`s) Technology Transfer Initiatives (TTIs), Cooperative Research and Development Agreements (CRADAs), and participation in partnerships and consortia. This evolution yields a full range of photonics programs, ranging from materials synthesis and device fabrication to packaging, test, and subsystem development. This paper presents an overview of Sandia`s photonics-program directions, using three applications as examples.

Carson, R.F.; Meyer, W.J.

1994-03-01T23:59:59.000Z

459

THE BROOKHAVEN NATIONAL LABORATORY PERFLUOROCARBON TRACER TECHNOLOGY: A PROVEN AND COST EFFECTIVE METHOD TO VERIFY INTEGRITY AND MONITOR LONG TERM PERFORMANCE OF WALLS, FLOORS, CAPS, AND COVER SYSTEMS.  

SciTech Connect (OSTI)

Currently, containment system failures are detected by monitoring wells downstream of the waste site. Clearly this approach is inefficient, as the contaminants will have migrated from the disposal area before they are detected. Methods that indicate early cover failure (prior to contaminant release) or predict impending cover failure are needed. The Brookhaven National Laboratory (BNL) Perfluorocarbon Tracer (PFT) technology can measure performance changes and integrity losses as the cover ages. This allows early detection of cover failure or pending failure so that repair or replacement can be made before contaminants leave the disposal cell. The PFT technology has been successfully applied to four subsurface barrier problems, one leak detection problem from underground ducts, and one surface cover problem. Testing has demonstrated that the PFTs are capable of accurately detecting and locating leaks down to fractions of an inch. The PFT technology has several advantages over competing approaches. The ability to simultaneously use multiple PFTs separates it from other gas tracer technologies. Using multiple tracers provides independent confirmation of flaw location, helps to clearly define transport pathways, and can be used for confirmatory testing (e.g., repeat the test using a new tracer). The PFT tests provide a direct measure of flaws in a barrier, whereas other measurements (pressure, moisture content, temperature, subsidence) provide indirect measures that need interpretation. The focus of the six PFT demonstrations has been on engineering aspects of the technology with the intent of finding if a flaw existed in the barrier. Work remains to be done on the scientific basis for this technology. This includes determining PFT diffusion rates through various materials (soils and barrier) as a function of moisture content, determining the effects of barometric pumping on PFT flow for cover systems, and determining wind effects on side slopes of cover systems and their impact on PFT performance. It also includes application of models to assist in the design of the monitoring system and the interpretation of the data. The set of demonstrations was performed on small sites (< 1/4 acre). Future work also needs to consider scaling issues to develop and design optimal techniques for delivery and monitoring of the PFTs.

HEISER, J.; SULLIVAN, T.

2002-03-11T23:59:59.000Z

460

Determination of the Planck constant using a watt balance with a superconducting magnet system at the National Institute of Standards and Technology  

E-Print Network [OSTI]

For the past two years, measurements have been performed with a watt balance at the National Institute of Standards and Technology (NIST) to determine the Planck constant. A detailed analysis of these measurements and their uncertainties has led to the value $h=6.626\\,069\\,79(30)\\times 10^{-34}\\,$J$\\,$s. The relative standard uncertainty is $ 45\\times 10^{-9}$. This result is $141\\times 10^{-9}$ fractionally higher than $h_{90}$. Here $h_{90}$ is the conventional value of the Planck constant given by $h_{90}\\equiv 4 /( K_{\\mathrm{J-90}}^2R_{\\mathrm{K-90}})$, where $K_{\\mathrm{J-90}}$ and $R_{\\mathrm{K-90}}$ denote the conventional values of the Josephson and von Klitzing constants, respectively.

Schlamminger, Stephan; Seifert, Frank; Chao, Leon S; Newell, David B; Liu, Ruimin; Steiner, Richard L; Pratt, Jon R

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "national competitiveness technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Competitive Natural Gas Providers (Iowa)  

Broader source: Energy.gov [DOE]

Competitive providers and aggregators of natural gas must be certified by the Utilities Board. Applicants must demonstrate the managerial, technical, and financial capability to perform the...

462

E-Print Network 3.0 - adequate measuring technology Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

evolving measurement... SUBCOMMITTEE ON ENVIRONMENTAL TECHNOLOGY National Advisory Council for Environmental Policy... and Technology (NACEPT) 12;The National Advisory...

463

Advanced Combustion Technologies | Department of Energy  

Energy Savers [EERE]

Science & Innovation Clean Coal Advanced Combustion Technologies Advanced Combustion Technologies Joe Yip, a researcher at FE's National Energy Technology Laboratory, uses...

464

Hispanic Poverty and Inequality Grant Competition Stanford Center on Poverty and Inequality  

E-Print Network [OSTI]

Hispanic Poverty and Inequality Grant Competition Stanford Center on Poverty and Inequality Request for Proposals The Stanford Center on Poverty and Inequality (CPI), a National Poverty Research Center funded by the Office

Li, Fei-Fei

465

CCPPolicyBriefing Competition Law  

E-Print Network [OSTI]

actions (paragraphs 26 to 27). The Green Paper lays out a range of "options" for how private enforcement A plaintiff initiates a private action based on an alleged breach of competition law. It must provide all for the Revelation of Private Information The ESRC Centre for Competition Policy (CCP), at the University of East

Feigon, Brooke

466

DOE Collegiate Wind Competition (Presentation)  

SciTech Connect (OSTI)

This presentation for the January Stakeholder Engagement and Outreach webinar outlines the expanded need for workers in the wind industry and provides an overview of the DOE Wind Competition (to be held in May 2014) and the guiding principles of the competition.

Jones, J.

2014-02-01T23:59:59.000Z

467

BUSINESS PLAN SCHOLARSHIP COMPETITION ANNOUNCEMENT  

E-Print Network [OSTI]

BUSINESS PLAN SCHOLARSHIP COMPETITION ANNOUNCEMENT Established in late 2001, My Sister's House Sister's House is offering a business plan competition to local college and graduate students to identify. The business plan which should be conducted under the approval of a business or business related professor

California at Davis, University of

468

TECHNOLOGY REQUIREMENTS FOR IN SITU DECOMMISSIONING WORKSHOP REPORT  

SciTech Connect (OSTI)

In recognition of the increasing attention being focused on In Situ Decommissioning (ISD or entombment) as an acceptable and beneficial decommissioning end state, the Department of Energy's (DOE) Office of Environmental Management (EM) is developing guidance for the implementation of ISD of excess facilities within the DOE complex. Consistent with the overarching DOE goals for increased personnel and environmental safety, reduced technical uncertainties and risks, and overall gains in efficiencies and effectiveness, EM's Office of Deactivation and Decommissioning and Facility Engineering (EM-23) initiated efforts to identify the technical barriers and technology development needs for the optimal implementation of ISD. Savannah River National Laboratory (SRNL), as the EM Corporate Laboratory, conducted an ISD Technology Needs Workshop to identify the technology needs at DOE sites. The overall goal of the workshop was to gain a full understanding of the specific ISD technical challenges, the technologies available, and those needing development. The ISD Workshop was held December 9-10, 2008 in Aiken, SC. Experienced decommissioning operations personnel from Richland Operations Office (RL), Idaho National Laboratory (INL) and Savannah River Site (SRS) along with scientists and engineers specific expertise were assembled to identify incremental and 'game changing' solutions to ISD technology challenges. The workshop and follow-up activities yielded 14 technology needs statements and the recommendation that EM-23 prioritize and pursue the following specific technology development and deployment actions. For each action, the recommended technology acquisition mechanisms (competitive solicitation (CS) or direct funding (TCR)) are provided. Activities that are time critical for ISD projects, or require unique capabilities that reside in the DOE Laboratory system will be funded directly to those institutions. Activities that have longer lead times and where the private sector, universities or other agencies are expected to have greater expertise will be accomplished through an open, competitive solicitation process. Several areas will require joint efforts from the two classes of resources.

Jannik, T.; Lee, P.; Gladden, J.; Langton, C.; Serrato, M.; Urland, C.; Reynolds, E.

2009-06-30T23:59:59.000Z

469

5. annual clean coal technology conference: powering the next millennium. Volume 2  

SciTech Connect (OSTI)

The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increase demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal Technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains technical papers on: advanced coal process systems; advanced industrial systems; advanced cleanup systems; and advanced power generation systems. In addition, there are poster session abstracts. Selected papers from this proceedings have been processed for inclusion in the Energy Science and Technology database.

NONE

1997-06-01T23:59:59.000Z

470

Superconductivity program for electric systems, Superconductivity Technology Center, Los Alamos National Laboratory, annual progress report for fiscal year 1997  

SciTech Connect (OSTI)

Development of high-temperature superconductors (HTS) has undergone tremendous progress during the past year. Kilometer tape lengths and associated magnets based on BSCCO materials are now commercially available from several industrial partners. Superconducting properties in the exciting YBCO coated conductors continue to be improved over longer lengths. The Superconducting Partnership Initiative (SPI) projects to develop HTS fault current limiters and transmission cables have demonstrated that HTS prototype applications can be produced successfully with properties appropriate for commercial applications. Research and development activities at LANL related to the HTS program for Fiscal Year 1997 are collected in this report. LANL continues to support further development of Bi2223 and Bi2212 tapes in collaboration with American Superconductor Corporation (ASC) and Oxford Superconductivity Technology, Inc. (OSTI), respectively. The tape processing studies involving novel thermal treatments and microstructural characterization have assisted these companies in commercializing these materials. The research on second-generation YBCO-coated conductors produced by pulsed-laser deposition (PLD) over buffer template layers produced by ion beam-assisted deposition (IBAD) continues to lead the world. The applied physics studies of magnetic flux pinning by proton and heavy ion bombardment of BSCCO and YBCO tapes have provided many insights into improving the behavior of these materials in magnetic fields. Sections 4 to 7 of this report contain a list of 29 referred publications and 15 conference abstracts, a list of patent and license activities, and a comprehensive list of collaborative agreements in progress and completed.

Willis, J.O.; Newnam, B.E. [eds.; Peterson, D.E.

1999-03-01T23:59:59.000Z

471

Implementation of a manufacturing technology roadmapping initiative  

E-Print Network [OSTI]

Strategic technology planning is a core competency of companies using technological capabilities for competitive advantage. It is also a competency with which many large companies struggle due to the cross-functional ...

Johnson, Marcus Cullen

2012-01-01T23:59:59.000Z

472

Modeling airline frequency competition for airport congestion Vikrant Vaze  

E-Print Network [OSTI]

responsible for the growing demand for airport resources. We propose a game-theoretic model for airline Barnhart Department of Civil and Environmental Engineering, Massachusetts Institute of Technology Abstract: Demand often exceeds capacity at the congested airports. Airline frequency competition is partially

Entekhabi, Dara

473

The Collegiate Wind Competition Is Approaching Fast: Meet the Teams  

Office of Energy Efficiency and Renewable Energy (EERE)

In just two weeks, student teams representing colleges and universities across the country will compete in the Energy Department抯 first ever Collegiate Wind Competition. Meet five of the 10 teams and learn about their innovative designs and ideas for advancing wind energy technologies.

474

Competitive Non-migratory Scheduling for Flow Time and Energy  

E-Print Network [OSTI]

@liv.ac.uk ABSTRACT Energy usage has been an important concern in recent re- search on online scheduling technology to reduce energy usage is dynamic speed scaling (see, e.g., [9, 15, 24, 28]) where the processorCompetitive Non-migratory Scheduling for Flow Time and Energy Tak-Wah Lam Department of Computer

Wong, Prudence W.H.

475

Competitive Nonmigratory Scheduling for Flow Time and Energy  

E-Print Network [OSTI]

@liv.ac.uk ABSTRACT Energy usage has been an important concern in recent re search on online scheduling technology to reduce energy usage is dynamic speed scaling (see, e.g., [9, 15, 24, 28]) where the processorCompetitive Non璵igratory Scheduling for Flow Time and Energy Tak璚ah Lam Department of Computer

Lam, Tak-Wah

476

Engineering and Engineering Skills: What's really needed for global competitiveness  

E-Print Network [OSTI]

Engineering and Engineering Skills: What's really needed for global competitiveness Hal Salzman; Social Dimensions of Engineering, Science and Technology #0431755), the Alfred P. Sloan Foundation (with, and editorial assistance by Robb C. Sewell. #12;- 2 - In the midst of a protracted economic crisis, coupled

Lin, Xiaodong

477

Ex-Situ Catalytic Fast Pyrolysis Technology Pathway  

SciTech Connect (OSTI)

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using ex-situ catalytic fast pyrolysis followed by upgrading to gasoline , diesel and jet range blendstocks . Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

2013-03-31T23:59:59.000Z

478

In-Situ Catalytic Fast Pyrolysis Technology Pathway  

SciTech Connect (OSTI)

In support of the Bioenergy Technologies Office, the National Renewable Energy Laboratory (NREL) and the Pacific Northwest National Laboratory (PNNL) are undertaking studies of biomass conversion technologies to hydrocarbon fuels to identify barriers and target research toward reducing conversion costs. Process designs and preliminary economic estimates for each of these pathway cases were developed using rigorous modeling tools (Aspen Plus and Chemcad). These analyses incorporated the best information available at the time of development, including data from recent pilot and bench-scale demonstrations, collaborative industrial and academic partners, and published literature and patents. This pathway case investigates converting woody biomass using in-situ catalytic fast pyrolysis followed by upgrading to gasoline, diesel, and jet range blendstocks. Technical barriers and key research needs that should be pursued for this pathway to be competitive with petroleum-derived blendstocks have been identified.

Biddy, Mary J.; Dutta, Abhijit; Jones, Susanne B.; Meyer, Pimphan A.

2013-03-31T23:59:59.000Z

479

u.s. department of commerce national institute of standards and technology manufacturing extension partnership W W W . n i s t . g o v / m e p 1 -8 0 0 -m e p -4 m F g  

E-Print Network [OSTI]

u.s. department of commerce 路 national institute of standards and technology 路 manufacturing Nashville Road WKU Center for Research and Development Bowling Green, KY (814) 505-3786 scott.broughton@wku.edu advantageky-mep.org Making an Impact on U.S. Manufacturing manuFacturing extension partnership

Perkins, Richard A.

480

As part of its continuing cloud computing series, the National Institute of Standards and Technology is hosting a new forum on Cloud and Mobility. Join experts in the fields of cloud, mobility, and measurement for thought-provoking  

E-Print Network [OSTI]

As part of its continuing cloud computing series, the National Institute of Standards and Technology is hosting a new forum on Cloud and Mobility. Join experts in the fields of cloud, mobility sessions, and networking. New Frontiers in IT and Measurement Science Rapid advances in mobile cloud

Note: This page contains sample records for the topic "national competitiveness technology" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Sandia National Laboratories: Marine Hydrokinetics Technology: Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowaLos AlamosExperiment

482

Sandia Technology: Engineering and science accomplishments, February 1995  

SciTech Connect (OSTI)

Sandia National Laboratories is one of the Department of Energy`s primary research and development laboratories. Our essential mission is to support the national interests of the US in defense, energy, and the environment. Managed by Martin Marietta Corporation for DOE, Sandia focuses its resources on problems of national interest that require the integration of science and technology for their solution. We all hope that this period of sweeping alterations in international affairs will result in a successful transition from the Cold War to a period of sustainable global security and prosperity. In the meantime, our nation`s interests are best served by continued commitment to Sandia`s traditional responsibilities. Nonetheless, as momentous developments are reshaping the world, Sandia is also changing from its beginning as a closed operation concentrating on classified defense programs, Sandia has become a more accessible resource that focuses on research and development partnerships with industry and universities as a way to ensure continued success in DOE`s evolving core mission area of nuclear weapons, energy, environment, and the basis sciences. Through these collaborative efforts, Sandia and its partners are also benefiting the economic competitiveness of our nation. Sandia places a special emphasis on working with small businesses as both technology transfer partners and suppliers of goods and services. We are also reaching out the the larger community surrounding Sandia, striving to provide technological solution and accurate information to meet community needs. We believe that the dialogue we are creating will benefit Sandia, the community, and the nation. Our goal is to render `` exceptional service in the national interest`` by returning maximum value on the investment in the labs. As you review this document, look for new ways in which Sandia can contribute to the solution of problems facing our nation.

NONE

1995-02-01T23:59:59.000Z

483

Toward a national plan for the accelerated commercialization of solar energy. Workbook summaries  

SciTech Connect (OSTI)

These workbooks contain preliminary data and assumptions used during the preparation of inputs to a National Plan for the Accelerated Commercialization of Solar Energy (NPAC). The workbooks indicate the market potential, competitive position, market penetration, and technological characteristics of solar technologies over the next twenty years for five market sectors: residential buildings; commercial and institutional buildings; agricultural and industrial process heat; utility applications; and synthetic fuels and chemicals. The workbooks also present projections of the mix of solar technologies by US Census Region. In some cases, data have been aggregated to the national level. Emphasis of the workbooks is on a mid-price fuel scenario, Option II, that meets about a 20 percent solar goal by the year 2000. The energy demand for the mid-price scenario is projected at 115 quads in the year 2000.

Gerstein, R.E.; Kannan, N.P.; Miller, C.G.; Shulman, M.J.; Taul, J.W. Jr.; de Jong, D.L.

1980-01-01T23:59:59.000Z

484

Thrust Area Report, Engineering Research, Development and Technology  

SciTech Connect (OSTI)

The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

Langland, R. T.

1997-02-01T23:59:59.000Z

485

IEEE TRANSACTIONS ON EDUCATION, VOL. 46, NO. 1, FEBRUARY 2003 197 The Competitive Assessment Laboratory: Introducing  

E-Print Network [OSTI]

IEEE TRANSACTIONS ON EDUCATION, VOL. 46, NO. 1, FEBRUARY 2003 197 The Competitive Assessment and increasingly com- petitive market place, it is imperative that manufacturers keep abreast of the technological

Hesketh, Robert

486

Nationwide: Max Tech and Beyond Design Competition Gives Students the Opportunity to Solve Energy Challenges  

Office of Energy Efficiency and Renewable Energy (EERE)

By encouraging students to design and develop appliances that are more efficient than any other technology on the market, the competition gives students a hands-on experience not replicable in the classroom.

487

Industrial Energy Efficiency Projects Improve Competitiveness...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs Industrial Energy Efficiency Projects Improve Competitiveness and Protect Jobs U.S. Department of...

488

Energy Department Announces 2016 Collegiate Wind Competition...  

Energy Savers [EERE]

Energy Department Announces 2016 Collegiate Wind Competition Participants Energy Department Announces 2016 Collegiate Wind Competition Participants February 18, 2015 - 1:30pm...

489

Next Generation Luminaires Design Competition Announces 2013...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Next Generation Luminaires Design Competition Announces 2013 Outdoor Winners Next Generation Luminaires Design Competition Announces 2013 Outdoor Winners February 27, 2014 -...

490

Communicating the Future: Best Practices for Communication of Science and Technology to the Public  

SciTech Connect (OSTI)

To advance the state of the art in science and technology communication to the public a conference was held March 6-8, 2002 at the National Institute of Standards and Technology in Gaithersburg, MD. This report of the conference proceedings includes a summary statement by the conference steering committee, transcripts or other text summarizing the remarks of conference speakers, and abstracts for 48 "best practice" communications programs selected by the steering committee through an open competition and a formal peer review process. Additional information about the 48 best practice programs is available on the archival conference Web site at www.nist.gov/bestpractices.

Porter, Gail

2002-09-30T23:59:59.000Z

491

Closing the Competitive Gap: A Retrospective Analysis of  

E-Print Network [OSTI]

of an economic evaluation of the Advanced Technology Program's (ATP's) "two-millimeter project" (2mm project of the ATP 2mm Project Prepared for Economic Assessment Office Advanced Technology Program National Institute and Planning, Massachusetts Institute of Technology, krp@mit.edu Nicolas O. Rockler, Regional Economic

492

Demonstrating and Deploying Private Sector Technologies at DOE Sites - Issues to be Overcome  

SciTech Connect (OSTI)

The Department of Energy (DOE), Office of Environmental Management (EM) continues to pursue cost-effective, environmental cleanup of the weapons complex sites with a concomitant emphasis on deployment of innovative technologies as a means to this end. The EM Office of Science and Technology (OST) pursues a strategy that entails identification of technologies that have potential applications throughout the DOE complex: at multiple DOE sites and at multiple facilities on those sites. It further encourages a competitive procurement process for the various applications entailed in the remediation of a given facility. These strategies require a competitive private-sector supplier base to help meet EM needs. OST supports technology development and deployment through investments in partnerships with private industry to enhance the acceptance of their technology products within the DOE market. Since 1992, OST and the National Energy Technology Laboratory (NETL) have supported the re search and development of technology products and services offered by the private sector. During this time, NETL has managed over 140 research and development projects involving industrial and university partners. These projects involve research in a broad range of EM related topics, including deactivation and decommissioning, characterization, monitoring, sensors, waste separation, groundwater remediation, robotics, and mixed waste treatment. Successful partnerships between DOE and Industry have resulted in viable options for EM's cleanup needs, and require continued marketing efforts to ensure that these technology solutions are used at multiple DOE sites and facilities.

Bedick, R. C.

2002-02-27T23:59:59.000Z

493

Independent Oversight Review, Nevada National Security Site,...  

Broader source: Energy.gov (indexed) [DOE]

and Special Door Interlock systems at the Nevada National Security Site (NNSS) Device Assembly Facility (DAF). The NNSS DAF is operated by National Security Technologies, LLC...

494

Reliability and competitive electricity markets  

E-Print Network [OSTI]

Despite all of the talk about ?deregulation? of the electricity sector, a large number of non-market mechanisms have been imposed on emerging competitive wholesale and retail markets. These mechanisms include spot market ...

Joskow, Paul L.

2004-01-01T23:59:59.000Z

495

National Wind Technology Center (Fact Sheet), National Wind Technology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hydrokinetic (MHK) energy devices are high-force, low-speed machines, similar to wind turbines that convert the kinetic energy of a moving fluid into electrical energy....

496

Wind Technologies & Evolving Opportunities (Presentation)  

SciTech Connect (OSTI)

This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

Robichaud, R.

2014-07-01T23:59:59.000Z

497

The Vehicle Technologies Market Report  

E-Print Network [OSTI]

The Vehicle Technologies Market Report Center for Transportation Analysis 2360 Cherahala Boulevard Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies T he Oak Ridge National Laboratory's Center for Transportation Analysis developed and published the first Vehicle Technologies Market

498

Year of Innovation Student Competition Name of Competition: Wisconsin Idea Undergraduate Fellowships, Special Competition in  

E-Print Network [OSTI]

Fellowships, Special Competition in Social Innovation Student Criteria: Undergraduate students with a standing that promote the understanding of civic engagement and are in the spirit of social innovation Documented

Scharer, John E.

499

Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership  

SciTech Connect (OSTI)

The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

None

2000-12-01T23:59:59.000Z

500

Argonne Electrochemical Technology ProgramArgonne Electrochemical Technology Program Effects of Fuel Composition on  

E-Print Network [OSTI]

Argonne Electrochemical Technology ProgramArgonne Electrochemical Technology Program Effects. Applegate, L. Miller, Cecille Rossignol Argonne National Laboratory Annual Review The Hydrogen, Fuel Cells Argonne National Laboratory Annual Review The Hydrogen, Fuel Cells & Infrastructure Technologies Program