Powered by Deep Web Technologies
Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Thomas Jefferson National Accelerator Facility  

SciTech Connect (OSTI)

The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

Joseph Grames, Douglas Higinbotham, Hugh Montgomery

2010-09-01T23:59:59.000Z

2

Independent Oversight Inspection, Thomas Jefferson National Accelerator Facility- August 2008  

Broader source: Energy.gov [DOE]

Inspection of Environment, Safety and Health Programs at the Thomas Jefferson National Accelerator Facility

3

Powerline Conductor Accelerated Testing Facility (PCAT) The Powerline Conductor Accelerated Testing facility (PCAT) at Oak Ridge National  

E-Print Network [OSTI]

-current situations as well as conductor characterization (e.g., sag, tension, conductor temperature) at rated of the conductor under test up to 600 Vdc and 5000 Adc. The low voltage nature of the facility permits extensive instrumentation of the test conductor's surface and core temperatures by means of thermocouples as well

4

EIS-0003: Proton-Proton Storage Accelerator Facility (Isabelle), Brookhaven National Laboratory, Upton, NY  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this EIS to analyze the significant environmental effects associated with construction and operation of the ISABELLE research facility to be built at Brookhaven National Laboratory.

5

Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

2004-07-23T23:59:59.000Z

6

Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

2001-01-08T23:59:59.000Z

7

Safety of Accelerator Facilities - DOE Directives, Delegations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Health, Environmental Protection, Facility Authorization, Safety The order defines accelerators and establishes accelerator specific safety requirements and approval authorities...

8

Test Facility Daniil Stolyarov, Accelerator Test Facility User...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of the Solid-State Laser System for the Accelerator Test Facility Daniil Stolyarov, Accelerator Test Facility User's Meeting April 3, 2009 Outline Motivation for...

9

Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Cancels DOE O 420.2B.

2011-07-21T23:59:59.000Z

10

The BNL Accelerator Test Facility control system  

SciTech Connect (OSTI)

Described is the VAX/CAMAC-based control system for Brookhaven National Laboratory's Accelerator Test Facility, a laser/linac research complex. Details of hardware and software configurations are presented along with experiences of using Vsystem, a commercial control system package.

Malone, R.; Bottke, I.; Fernow, R.; Ben-Zvi, I.

1993-01-01T23:59:59.000Z

11

Idaho National Laboratory Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor Sustainability Idaho Regional Optical Network LDRD Next Generation Nuclear Plant Docs...

12

Accelerator Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects ofAboutTest Facility Vitaly Yakimenko October 6-7,

13

BNL | Accelerator Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home| Visitors| Education|About National Synchrotron

14

Accelerator Center: National symbol or white elephant?  

SciTech Connect (OSTI)

This article discusses the possible future of the National Accelerator Center facility in South Africa. This state of the art facility with a 200-megaelectrol-volt proton cyclotron, carries out important nuclear physics research but takes a huge part of South Africa`s total science research budget.

NONE

1995-06-02T23:59:59.000Z

15

Biomass Feedstock National User Facility  

Broader source: Energy.gov [DOE]

Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

16

Facilities | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5Facilities Some of the nation's most

17

Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Research and Development manages and oversees the operation of an exceptional suite of science, technology and engineering facilities that support and further the national...

18

Sandia National Laboratories: National Solar Thermal Test Facility...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FacilityNational Solar Thermal Test Facility Interest Survey National Solar Thermal Test Facility Interest Survey Company Name * Contact Name * Email * Phone Number * Nature of...

19

National Biomedical Tracer Facility. Project definition study  

SciTech Connect (OSTI)

We request a $25 million government-guaranteed, interest-free loan to be repaid over a 30-year period for construction and initial operations of a cyclotron-based National Biomedical Tracer Facility (NBTF) in North Central Texas. The NBTF will be co-located with a linear accelerator-based commercial radioisotope production facility, funded by the private sector at approximately $28 million. In addition, research radioisotope production by the NBTF will be coordinated through an association with an existing U.S. nuclear reactor center that will produce research and commercial radioisotopes through neutron reactions. The combined facilities will provide the full range of technology for radioisotope production and research: fast neutrons, thermal neutrons, and particle beams (H{sup -}, H{sup +}, and D{sup +}). The proposed NBTF facility includes an 80 MeV, 1 mA H{sup -} cyclotron that will produce proton-induced (neutron deficient) research isotopes.

Schafer, R.

1995-02-14T23:59:59.000Z

20

Sandia National Laboratories: Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS Exhibit at Explora Museum On AprilExploraSandiaFacilities

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

E-Print Network 3.0 - accelerator facilities coefficients Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Mathematics 32 Accelerator Test Facility www.bnl.govatf Summary: Accelerator Test Facility www.bnl.govatf Accelerator Test Facility Contact Information Phone:(631......

22

SLAC low emittance accelerator test facility  

SciTech Connect (OSTI)

SLAC is proposing to build a new Accelerator Test Facility (ATF) capable of producing a 50 MeV electron beam with an extremely low geometric tranverse emittance (1.5 x 10/sup -10/ rad.m) for the purpose of testing new methods of acceleration. The low emittance will be achieved by assembling a linear accelerator using one standard SLAC three-meter section and a 400 kV electron gun with a very small photocathode (40 microns in diameter). The photocathode will be illuminated from the back by short bursts (on the order of 6 ps) of visible laser light which will produce bunches of about 10/sup 5/ electrons. Higher currents could be obtained by illuminating the cathode from the front. The gun will be mounted directly against the accelerator section. Calculations show that in the absence of an rf buncher, injection of these 400 keV small radius electron bunches roughly 30/sup 0/ ahead of crest produces negligible transverse emittance growth due to radial rf forces. Acceleration of the electrons up to 50 MeV followed by collimation, energy slits and focusing will provide a 3.2 mm long waist of under 1.5 ..mu..m in diameter where laser acceleration and other techniques can be tested.

Loew, G.A.; Miller, R.H.; Sinclair, C.K.

1986-05-01T23:59:59.000Z

23

Accelerator Design Concept for Future Neutrino Facilities  

SciTech Connect (OSTI)

This document summarizes the findings of the Accelerator Working Group (AWG) of the International Scoping Study (ISS) of a Future Neutrino Factory and Superbeam Facility. The work of the group took place at three plenary meetings along with three workshops, and an oral summary report was presented at the NuFact06 workshop held at UC-Irvine in August, 2006. The goal was to reach consensus on a baseline design for a Neutrino Factory complex. One aspect of this endeavor was to examine critically the advantages and disadvantages of the various Neutrino Factory schemes that have been proposed in recent years.

ISS Accelerator Working Group; Zisman, Michael S; Berg, J. S.; Blondel, A.; Brooks, S.; Campagne, J.-E.; Caspar, D.; Cevata, C.; Chimenti, P.; Cobb, J.; Dracos, M.; Edgecock, R.; Efthymiopoulos, I.; Fabich, A.; Fernow, R.; Filthaut, F.; Gallardo, J.; Garoby, R.; Geer, S.; Gerigk, F.; Hanson, G.; Johnson, R.; Johnstone, C.; Kaplan, D.; Keil, E.; Kirk, H.; Klier, A.; Kurup, A.; Lettry, J.; Long, K.; Machida, S.; McDonald, K.; Meot, F.; Mori, Y.; Neuffer, D.; Palladino, V.; Palmer, R.; Paul, K.; Poklonskiy, A.; Popovic, M.; Prior, C.; Rees, G.; Rossi, C.; Rovelli, T.; Sandstrom, R.; Sevior, R.; Sievers, P.; Simos, N.; Torun, Y.; Vretenar, M.; Yoshimura, K.; Zisman, Michael S

2008-02-03T23:59:59.000Z

24

Heating National Ignition Facility, Realistic Financial Planning...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOEEIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic...

25

Flame acceleration studies in the MINIFLAME facility  

SciTech Connect (OSTI)

Flame acceleration and deflagration-to-detonation transition (DDT) studies have been conducted in a 19.4-cm high, 14.5-cm wide, and 2. 242-m long channel (MINIFLAME) that is a 1:12.6 scale model of the 136-m{sup 3} FLAME facility. Tests were conducted with two levels of hydrogen concentration -- 20% and 30%, with and without obstacles in the channel, and with three levels of transverse top venting -- 0%, 13%, and 50%. The flame acceleration results in MINIFLAME are qualitatively similar to those in FLAME; however, the small-scale results are more benign quantitatively. The results show that insufficient venting, 13% venting in this case, can promote flame acceleration due to turbulence produced by the flow through the vents in smooth channels. However, with obstacle-generated turbulence in the channel, 13% top venting was found to be beneficial. Flame acceleration resulting in DDT was shown to occur in as little as 35 liters of mixture. Comparison of the DDT data with obstacles in MINIFLAME and FLAME supports d/{lambda} scaling of DDT, where {lambda} is the detonation cell width of the mixture and d is the characteristic open diameter of the channel. In the MINIFLAME and FLAME tests, DDT occurred for d/{lambda} greater than approximately three. Comparison with other experiments shows that the value of d/{lambda} for DDT is not constant but depends on the obstacle type, spacing, and channel geometry. The comparison of MINIFLAME and FLAME experiments extends the use of d/{lambda} scaling to different geometries and larger scales than previous studies. Small-scale-model testing of flame acceleration and DDT with the same combustible mixture as the full-scale prototype underpredicts flame speeds, overpressures, and the possibility of DDT. 18 refs., 16 figs.

Tieszen, S.R.; Sherman, M.P.; Benedick, W.B.

1989-07-01T23:59:59.000Z

26

Accelerator Facility Safety Implementation Guide for DOE O 420.2B, Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This document is an aid to understanding and meeting the requirements of DOE O 420.2B, Safety of Accelerator Facilities, dated 7/23/04. It does not impose requirements beyond those stated in that Order or any other DOE Order. No cancellation.

2005-07-01T23:59:59.000Z

27

Ground Broken for New Job-Creating Accelerator Research Facility...  

Office of Environmental Management (EM)

our nation in the areas of sustainable energy, a cleaner environment, economic security, health care and national defense. The accelerators of tomorrow have the potential to make...

28

Acceleration of polarized protons in AHF (Advanced Hadron Facility)  

SciTech Connect (OSTI)

In this paper an analysis of the depolarization expected during acceleration from 0.8 to 45.0 GeV kinetic energy in the Advanced Hadron Facility (AHF) accelerators is performed.

Colton, E.P.

1987-03-20T23:59:59.000Z

29

Facilities | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5Facilities Some of the nation's|

30

Dual Axis Radiographic Hydrodynamic Test Facility | National...  

National Nuclear Security Administration (NNSA)

Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

31

Oak Ridge National Laboratory Manufacturing Demonstration Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oak Ridge National Laboratory Manufacturing Demonstration Facility Technology Collaborations | Proposal Guidelines Proposal Guidelines Proposals should be no more than 5 single...

32

National Ignition Facility | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

other ICF high energy density facilities leading to demonstrate fusion ignition and thermonuclear burn in the laboratory. The NIF is also being used to support basic science and...

33

E-Print Network 3.0 - accelerator facility jefferson Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Continuous Electron Beam Accelerator Facility, Newport News, Virginia (the Big... & Phenomenology Particle Astrophysics & Cosmology Accelerator Physics Health Physics...

34

National Ignition Facility system design requirements conventional facilities SDR001  

SciTech Connect (OSTI)

This System Design Requirements (SDR) document specifies the functions to be performed and the minimum design requirements for the National Ignition Facility (NIF) site infrastructure and conventional facilities. These consist of the physical site and buildings necessary to house the laser, target chamber, target preparation areas, optics support and ancillary functions.

Hands, J.

1996-04-09T23:59:59.000Z

35

The National Ignition Facility: Status of Construction  

E-Print Network [OSTI]

Bruce Warner Deputy Associate Director, NIF Programs Lawrence Livermore National Laboratory October 11, 2005 #12;NIF-0605-10997 27EIM/cld NIF-0605-10997-L2 27EIM/cld P LLNLLLNL P9266 #12;NIF-0605-10997 27EIM/cld NIF-0605-10997-L28 27EIM/cld P LLNLLLNL National Ignition FacilityNational Ignition Facility P9292 San

36

Accelerator shield design of KIPT neutron source facility  

SciTech Connect (OSTI)

Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generated by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary at less than 0.5-mrem/hr. The shield configuration and parameters of the accelerator building have been determined and are presented in this paper. (authors)

Zhong, Z.; Gohar, Y. [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)

2013-07-01T23:59:59.000Z

37

BARC TIFR Heavy Ion Accelerator Facility  

E-Print Network [OSTI]

enterprise using accelerated heavy ion beams is to unravel the complexities of the nuclear world in all by the accelerator. The projectile impinges on a target nucleus with enough energy to overcome the electrostatic repulsion so that the collision process is governed by the nuclear interactions. Using a variety

Shyamasundar, R.K.

38

E-Print Network 3.0 - acceleration proof-of-principle experiment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cyclotron Autoresonance Accelerator... Experiment Intelligent Control System for Accelerators ... Source: Brookhaven National Laboratory - Accelerator Test Facility Collection:...

39

Linear Accelerator Facility, Kildee Hall aluminum, brick, concrete, rock, and  

E-Print Network [OSTI]

and demonstration facility for the irradiation of food and non-food materials. It is primarily used for the reduction or elimination of bacteria from foods and feed. Interior Garden is an environmental installation) are examples of the types of foodstuff that is irradiated in the Linear Accelerator Facility. The table has

Mayfield, John

40

An introduction to the National Tritium Labeling Facility  

SciTech Connect (OSTI)

The facilities and projects of the National Tritium Labeling Facility are described. 5 refs., 1 fig., 1 tab.

Dorsky, A.M.; Morimoto, H.; Saljoughian, M.; Williams, P.G.; Rapoport, H.

1988-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

PIA - Advanced Test Reactor National Scientific User Facility...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor...

42

Advanced Test Reactor National Scientific User Facility Partnerships  

SciTech Connect (OSTI)

In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin-Madison; (8) Illinois Institute of Technology (IIT) Materials Research Collaborative Access Team (MRCAT) beamline at Argonne National Laboratory's Advanced Photon Source; and (9) Nanoindenter in the University of California at Berkeley (UCB) Nuclear Engineering laboratory Materials have been analyzed for ATR NSUF users at the Advanced Photon Source at the MRCAT beam, the NIST Center for Neutron Research in Gaithersburg, MD, the Los Alamos Neutron Science Center, and the SHaRE user facility at Oak Ridge National Laboratory (ORNL). Additionally, ORNL has been accepted as a partner facility to enable ATR NSUF users to access the facilities at the High Flux Isotope Reactor and related facilities.

Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

2012-03-01T23:59:59.000Z

43

National Ignition Facility | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.Demonstrate PromisingElectedEnergy33997000 |

44

User Facility | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlongUpdates by DianeDemographicsFacility AccessUser

45

User Facilities | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProductionCCEIResearch UpperFacilities at a

46

New User Facilities Web Page Highlights Work at National Laboratories...  

Broader source: Energy.gov (indexed) [DOE]

User Facilities Web page gives an overview of BETO-supported national labortories including, Idaho National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest...

47

"DIANA" - A New, Deep-Underground Accelerator Facility for Astrophysics Experiments  

SciTech Connect (OSTI)

The DIANA project (Dakota Ion Accelerators for Nuclear Astrophysics) is a collaboration between the University of Notre Dame, University of North Carolina, Western Michigan University, and Lawrence Berkeley National Laboratory to build a nuclear astrophysics accelerator facility 1.4 km below ground. DIANA is part of the US proposal DUSEL (Deep Underground Science and Engineering Laboratory) to establish a cross-disciplinary underground laboratory in the former gold mine of Homestake in South Dakota, USA. DIANA would consist of two high-current accelerators, a 30 to 400 kV variable, high-voltage platform, and a second, dynamitron accelerator with a voltage range of 350 kV to 3 MV. As a unique feature, both accelerators are planned to be equipped with either high-current microwave ion sources or multi-charged ECR ion sources producing ions from protons to oxygen. Electrostatic quadrupole transport elements will be incorporated in the dynamitron high voltage column. Compared to current astrophysics facilities, DIANA could increase the available beam densities on target by magnitudes: up to 100 mA on the low energy accelerator and several mA on the high energy accelerator. An integral part of the DIANA project is the development of a high-density super-sonic gas-jet target which can handle these anticipated beam powers. The paper will explain the main components of the DIANA accelerators and their beam transport lines and will discuss related technical challenges.

Leitner, M.; Leitner, D.; Lemut, A.; Vetter, P.; Wiescher, M.

2009-05-28T23:59:59.000Z

48

Fermilab | Illinois Accelerator Research Center | Fermilab Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphoto FermilabFacilities

49

Fermilab | Illinois Accelerator Research Center | IARC Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphotoIARC Facilities

50

Thomas Jefferson National Accelerator Facility Technology Marketing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScienceThe43068G. Thundat (2005) February

51

Brookhaven National Laboratory | Accelerator Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBESEnergyArchaeology onEnergy InnovationBook 1

52

A Staged Muon Accelerator Facility For Neutrino and Collider Physics  

E-Print Network [OSTI]

Muon-based facilities offer unique potential to provide capabilities at both the Intensity Frontier with Neutrino Factories and the Energy Frontier with Muon Colliders. They rely on a novel technology with challenging parameters, for which the feasibility is currently being evaluated by the Muon Accelerator Program (MAP). A realistic scenario for a complementary series of staged facilities with increasing complexity and significant physics potential at each stage has been developed. It takes advantage of and leverages the capabilities already planned for Fermilab, especially the strategy for long-term improvement of the accelerator complex being initiated with the Proton Improvement Plan (PIP-II) and the Long Baseline Neutrino Facility (LBNF). Each stage is designed to provide an R&D platform to validate the technologies required for subsequent stages. The rationale and sequence of the staging process and the critical issues to be addressed at each stage, are presented.

Delahaye, Jean-Pierre; Brice, Stephen; Bross, Alan David; Denisov, Dmitri; Eichten, Estia; Holmes, Stephen; Lipton, Ronald; Neuffer, David; Palmer, Mark Alan; Bogacz, S Alex; Huber, Patrick; Kaplan, Daniel M; Snopok, Pavel; Kirk, Harold G; Palmer, Robert B; Ryne, Robert D

2015-01-01T23:59:59.000Z

53

E-Print Network 3.0 - accelerator facility complex Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

large... of an advanced exotic beam facility evolved from the Rare Isotope Accelerator (RIA) concept. The OMB and the DOE... Focus Research Areas 1. Fundamental Accelerator...

54

National Ignition Facility Title II Design Plan  

SciTech Connect (OSTI)

This National Ignition Facility (NIF) Title II Design Plan defines the work to be performed by the NIF Project Team between November 1996, when the U.S. Department of Energy (DOE) reviewed Title I design and authorized the initiation of Title H design and specific long-lead procurements, and September 1998, when Title 11 design will be completed.

Kumpan, S

1997-03-01T23:59:59.000Z

55

UCRL-PRES-225531 National ignition facility  

E-Print Network [OSTI]

Title Page UCRL-PRES-225531 #12;National ignition facility #12;NIF is 705,000 #12;NIF laser system #12;NIF us 885 #12;NIF-0506-11956 Laser bay 2 #12;Switchyard 2 #12;Target chamber in the air #12 experiments on NIF have demonstrated #12;21 1 MJ shaping results: Comparison of requested vs measured 3 pulse

56

Impacts assessment for the National Ignition Facility  

SciTech Connect (OSTI)

This report documents the economic and other impacts that will be created by the National Ignition Facility (NIF) construction and ongoing operation, as well as the impacts that may be created by new technologies that may be developed as a result of NIF development and operation.

Bay Area Economics

1996-12-01T23:59:59.000Z

57

National Ignition Facility project acquisition plan  

SciTech Connect (OSTI)

The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.

Callaghan, R.W.

1996-04-01T23:59:59.000Z

58

E-Print Network 3.0 - accelerator test facility Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test Facility (ITF) and the Facility for Accelerator Science and Experimental Test Beams ... Source: Cavalli-Sforza, Luigi - Department of Genetics, Stanford University...

59

National Scientific User Facility Purpose and Capabilities  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007. This designation allows the ATR to become a cornerstone of nuclear energy research and development (R&D) within the U.S. by making it easier for universities, the commercial power industry, other national laboratories, and international organizations to conduct nuclear energy R&D. The mission of the ATR NSUF is to provide nuclear energy researchers access to world-class facilities, thereby facilitating the advancement of nuclear science and technology within the U.S. In support of this mission, hot cell laboratories are being upgraded. These upgrades include a set of lead shielded cells that will house Irradiated Assisted Stress Corrosion Cracking (IASCC) test rigs and construction of a shielded laboratory facility. A primary function of this shielded laboratory is to provide a state of the art type laboratory facility that is functional, efficient and flexible that is dedicated to the analysis and characterization of nuclear and non-nuclear materials. The facility shall be relatively easy to reconfigure to provide laboratory scale hot cave space for housing current and future nuclear material scientific research instruments.

K. E. Rosenberg; T. R. Allen; J. C. Haley; M. K. Meyer

2010-09-01T23:59:59.000Z

60

Preliminary Notice of Violation, SLAC National Accelerator Laboratory...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Accelerator Laboratory - WEA-2009-01 Notice of Violation, Western Allied Mechanical, Inc. - WEA-2009-03 Preliminary Notice of Violation,Western Allied Mechanical, Inc....

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

"New Results from the National Ignition Facility", Dr. John Lindl...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

"New Results from the National Ignition Facility", Dr. John Lindl, Lawrence Livermore National Laboratory Since completion of the NIF construction project in March 2009,...

62

CRAD, Training - Los Alamos National Laboratory TA 55 SST Facility...  

Broader source: Energy.gov (indexed) [DOE]

Training - Los Alamos National Laboratory TA 55 SST Facility CRAD, Training - Los Alamos National Laboratory TA 55 SST Facility A section of Appendix C to DOE G 226.1-2 "Federal...

63

National Ignition Facility project acquisition plan revision 1  

SciTech Connect (OSTI)

The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility M Project. It was prepared for the NIP Prood Office by the NIF Procurement Manager.

Clobes, A.R.

1996-10-01T23:59:59.000Z

64

New User Facilities Web Page Highlights Work at National Laboratories...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New User Facilities Web Page Highlights Work at National Laboratories New User Facilities Web Page Highlights Work at National Laboratories January 15, 2014 - 12:00am Addthis The...

65

DOE/EIS-0236, Oakland Operations Office, National Ignition Facility...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOEEIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic...

66

Description of Facilities and Resources Oak Ridge National Laboratory  

E-Print Network [OSTI]

1 Description of Facilities and Resources Oak Ridge National Laboratory and the UT-ORNL Joint Institute for Computational Sciences 1. Oak Ridge National Laboratory Computer Facilities. The Oak Ridge National Laboratory (ORNL) hosts three petascale computing facilities: the Oak Ridge Leadership Computing

67

National Ignition Facility | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Regionat Cornell Batteries &NST DivisionNational Ignition Facility

68

Advanced Test Reactor National Scientific User Facility  

SciTech Connect (OSTI)

The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

2011-08-01T23:59:59.000Z

69

Stockpile Stewardship and the National Ignition Facility  

SciTech Connect (OSTI)

The National Ignition Facility (NIF), the world's most energetic laser system, is operational at Lawrence Livermore National Laboratory (LLNL). Since the completion of the construction project in March 2009, NIF has completed nearly 150 target experiments for the National Ignition Campaign (NIC), High Energy Density Stewardship Science (HEDSS) in the areas of radiation transport, material dynamics at high pressure in the solid state, as well as fundamental science and other national security missions. NIF capabilities and infrastructure are in place to support all of its missions with over 50 X-ray, optical and nuclear diagnostic systems and the ability to shoot cryogenic targets and DT layered capsules. NIF is now qualified for use of tritium and other special materials as well as to perform high yield experiments and classified experiments. DT implosions with record indirect-drive neutron yield of 4.5 x 10{sup 14} neutrons have been achieved. A series of 43 experiments were successfully executed over a 27-day period, demonstrating the ability to perform precise experiments in new regimes of interest to HEDSS. This talk will provide an update of the progress on the NIF capabilities, NIC accomplishments, as well as HEDSS and fundamental science experimental results and an update of the experimental plans for the coming year.

Moses, E

2012-01-04T23:59:59.000Z

70

Fermi National Accelerator Laboratory February 2014 Particle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

accelerators to the World Wide Web, and from medical imaging techniques to high-performance computing, the bold and innovative ideas and technologies of particle physics have...

71

Performance Evaluation Of An Irradiation Facility Using An Electron Accelerator  

SciTech Connect (OSTI)

Irradiation parameters over a period of seven years have been evaluated for a radiation processing electron accelerator facility. The parameters monitored during this time were the electron beam energy, linearity of beam current, linearity of dose with the reciprocal value of the samples speed, and dose uniformity along the scanning area after a maintenance audit performed by the electron accelerator manufacturer. The electron energy was determined from the depth-dose curve by using a two piece aluminum wedge and measuring the practical range from the obtained curves. The linearity of dose with beam current, and reciprocal value of the speed and dose uniformity along the scanning area of the electron beam were determined by measuring the dose under different beam current and cart conveyor speed conditions using film dosimetry. The results of the experiments have shown that the energy in the range from 1 to 5 MeV has not changed by more than 15% from the High Voltage setting of the machine over the evaluation period, and dose linearity with beam current and cart conveyor speed has not changed. The dose uniformity along the scanning direction of the beam showed a dose uniformity of 90% or better for energies between 2 and 5 MeV, however for 1 MeV electrons this value was reduced to 80%. This parameter can be improved by changing the beam optics settings in the control console of the accelerator though.

Uribe, R. M.; Hullihen, K. [Kent State University, Kent, Ohio (United States); Filppi, E. [Case Western Reserve University, Cleveland OH (United States)

2011-06-01T23:59:59.000Z

72

Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources  

E-Print Network [OSTI]

essential understanding of accelerator physics to advanceof high- gradient, laser plasma particle accelerators.to conventional particle accelerators, plasmas can sustain

Geddes, Cameron G.R.

2010-01-01T23:59:59.000Z

73

E-Print Network 3.0 - accelerator-based facility design Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Planning: Assumed to hold flat for next few years. * Proton Accelerator-Based Physics - ATLAS... Facility Department - Linear Collider Department is focused on the design of ......

74

E-Print Network 3.0 - accelerator facilities Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: radiation facilities for biology and material sciences. Beam physics--study of beams in accelerators... southwest of The University of Chicago, there are several...

75

E-Print Network 3.0 - accelerator facility project Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: radiation facilities for biology and material sciences. Beam physics--study of beams in accelerators... southwest of The University of Chicago, there are several...

76

Oak Ridge National Laboratory Carbon Fiber Technology Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oak Ridge National Laboratory Carbon Fiber Technology Facility Low-Cost Carbon Fiber | Proposal Guidelines Proposal Guidelines Proposals should be no more than 5 single spaced...

77

YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).  

SciTech Connect (OSTI)

The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

2010-04-28T23:59:59.000Z

78

Part of the National Nuclear User Facility Culham Materials  

E-Print Network [OSTI]

Part of the National Nuclear User Facility Culham Materials Research Facility #12;Introduction from Professor Steve Cowley Culham's Materials Research Facility (MRF) is a valuable addition to the UK's suite and fusion ­ with equipment for the processing and micro-characterisation of radioactive materials, for on

79

National Ignition Facility faces an uncertain future David Kramer  

E-Print Network [OSTI]

-member user group, with 22% of its members coming from host Lawrence Livermore National Laboratory (LLNL at the National Ignition Facility to achieve a self-sustaining fusion reaction fell short. Now NIF stands to lose that were specified for NIF when the massive laser facility was ap- proved for construction in 1996

80

Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources  

E-Print Network [OSTI]

of high- gradient, laser plasma particle accelerators.accelerators that use laser-driven plasma waves. Theseleft) showing the laser (red), plasma wake density (purple-

Geddes, Cameron G.R.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Argonne National Laboratory's Accelerator Experimental Infrastructure  

E-Print Network [OSTI]

development projects over the past ten years and are available for ion source and low-energy beam transport and therefore present it along these lines. Internal to Argonne we do attempt to work across these boundaries at ANL The present SRF facility at ANL includes the joint ANL/FNAL superconducting cavity surface

Kemner, Ken

82

National Ignition Facility Project Site Safety Program  

SciTech Connect (OSTI)

This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during activities performed on the NIF Project site. The NIF Project Site Safety Program (NPSSP) requires that activities at the NIF Project site be performed in accordance with the ''LLNL ES&H Manual'' and the augmented set of controls and processes described in this NIF Project Site Safety Program. Specifically, this document: (1) Defines the fundamental NIF site safety philosophy. (2) Defines the areas covered by this safety program (see Appendix B). (3) Identifies management roles and responsibilities. (4) Defines core safety management processes. (5) Identifies NIF site-specific safety requirements. This NPSSP sets forth the responsibilities, requirements, rules, policies, and regulations for workers involved in work activities performed on the NIF Project site. Workers are required to implement measures to create a universal awareness that promotes safe practice at the work site and will achieve NIF management objectives in preventing accidents and illnesses. ES&H requirements are consistent with the ''LLNL ES&H Manual''. This NPSSP and implementing procedures (e.g., Management Walkabout, special work procedures, etc.,) are a comprehensive safety program that applies to NIF workers on the NIF Project site. The NIF Project site includes the B581/B681 site and support areas shown in Appendix B.

Dun, C

2003-09-30T23:59:59.000Z

83

Design of a free-electron laser driven by the LBNL laser-plasma-accelerator  

E-Print Network [OSTI]

plasma accelerator at the LBNL LOASIS facility”, in: Proc.electron laser driven by the LBNL laser-plasma-accelerator ?National Laboratory (LBNL) laser-plasma accelerator, whose

2008-01-01T23:59:59.000Z

84

Transforming our Nation's Energy System, Energy Systems Integration Facility (ESIF)  

SciTech Connect (OSTI)

The Energy Systems Integration Facility (ESIF) on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will soon be the nation's first facility that can conduct integrated megawatt-scale testing of the components and strategies needed in order to safely move clean energy technologies onto the electrical grid 'in-flight' at the speed and scale required to meet national goals.

Not Available

2011-08-01T23:59:59.000Z

85

Dalton Cumbrian Facility A state-of-the-art national user facility  

E-Print Network [OSTI]

and nuclear engineering decommissioning. The DCF is operated by the University's Dalton Nuclear InstituteDalton Cumbrian Facility A state-of-the-art national user facility for nuclear research has established the world-leading Dalton Cumbrian Facility (DCF) in partnership with the Nuclear

86

National Security, LLC Venture Acceleration Fund  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of Energy LoginofNationalLos

87

Development of nuclear diagnostics for the National Ignition Facility ,,invited...  

E-Print Network [OSTI]

construction at Lawrence Livermore National Laboratory. The NIF project is now more than 80% complete. Song, R. Tommasini, and B. K. Young Lawrence Livermore National Laboratory, Livermore, California 94550 July 2006; published online 5 October 2006 The National Ignition Facility NIF will provide up to 1.8 MJ

88

Sandia National Laboratories: Research: Facilities: Technology...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and homogeneity The facility also offers a professional and technical staff skilled in electronics, characterization of deep-level traps and carrier recombination centers,...

89

High Explosives Application Facility | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

at the micron scale in its microdetonics laboratory, and utilizing multiple firing tanks for larger scale explosives experiments. No other facility in the world supports such...

90

Status and Plans for an SRF Accelerator Test Facility at Fermilab  

E-Print Network [OSTI]

A superconducting RF accelerator test facility is currently under construction at Fermilab. The accelerator will consist of an electron gun, 40 MeV injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, and multiple downstream beam lines for testing diagnostics and performing beam experiments. With 3 cryomodules installed this facility will initially be capable of generating an 810 MeV electron beam with ILC beam intensity. The facility can accommodate up to 6 cryomodules for a total beam energy of 1.5 GeV. This facility will be used to test SRF cryomodules under high intensity beam conditions, RF power equipment, instrumentation, and LLRF and controls systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

Church, M; Nagaitsev, S

2012-01-01T23:59:59.000Z

91

1 National Roadmap Committee for Large-Scale Research Facilities the netherlands' roadmap for large-scale research facilities  

E-Print Network [OSTI]

#12;1 National Roadmap Committee for Large-Scale Research Facilities the netherlands' roadmap for large-scale research facilities #12;2 National Roadmap Committee for Large-Scale Research Facilities1 by Roselinde Supheert) #12;3 National Roadmap Committee for Large-Scale Research Facilities The Netherlands

Horn, David

92

Fermi National Accelerator Laboratory FY 2008  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO) ď‚·diffractive imaging08 A national

93

Fermi National Accelerator Laboratory FY 2010  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO) ď‚·diffractive imaging08 A national10 A

94

Fermi National Accelerator Laboratory February 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO) ď‚·diffractive imaging08 A national10 A3

95

Fermi National Accelerator Laboratory June 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO) ď‚·diffractive imaging08 A national10

96

Kwok Ko SLAC National Accelerator Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfraredJeffersonJonathanMultimaterial MultiphysicsKwok Ko SLAC National

97

Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC  

ScienceCinema (OSTI)

Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

Andrei Seryi

2010-01-08T23:59:59.000Z

98

Adaptive Comfort in Mixed-Mode Buildings: Research Support Facility, National Renewable Energy Lab  

E-Print Network [OSTI]

Support Facility, National Renewable Energy Lab Gail Brager,Facility of the National Renewable Energy Lab in Golden, CO.for energy efficiency and renewable energy technologies. The

Brager, Gail; Pigman, Margaret

2013-01-01T23:59:59.000Z

99

Biological shield design and analysis of KIPT accelerator-driven subcritical facility.  

SciTech Connect (OSTI)

Argonne National Laboratory of the United States and Kharkov Institute of Physics and Technology of Ukraine have been collaborating on the conceptual design development of an electron accelerator-driven subcritical facility. The facility will be utilized for performing basic and applied nuclear research, producing medical isotopes, and training young nuclear specialists. This paper presents the design and analyses of the biological shield performed for the top section of the facility. The neutron source driving the subcritical assembly is generated from the interaction of a 100-kW electron beam with a natural uranium target. The electron energy is in the range of 100 to 200 MeV, and it has a uniform spatial distribution. The shield design and the associated analyses are presented including different parametric studies. In the analyses, a significant effort was dedicated to the accurate prediction of the radiation dose outside the shield boundary as a function of the shield thickness without geometrical approximations or material homogenization. The MCNPX Monte Carlo code was utilized for the transport calculation of electrons, photons, and neutrons. Weight window variance-reduction techniques were introduced, and the dose equivalent outside the shield can be calculated with reasonably good statistics.

Zhong, Z.; Gohar, Y.; Nuclear Engineering Division

2009-12-01T23:59:59.000Z

100

Advanced Test Reactor National Scientific User Facility 2010 Annual Report  

SciTech Connect (OSTI)

This is the 2010 ATR National Scientific User Facility Annual Report. This report provides an overview of the program for 2010, along with individual project reports from each of the university principal investigators. The report also describes the capabilities offered to university researchers here at INL and at the ATR NSUF partner facilities.

Mary Catherine Thelen; Todd R. Allen

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

CRAD, Maintenance- Los Alamos National Laboratory TA 55 SST Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Maintenance program at the Los Alamos National Laboratory TA 55 SST Facility.

102

CRAD, Configuration Management- Los Alamos National Laboratory Weapons Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Configuration Management program at the Los Alamos National Laboratory, Weapons Facility.

103

Neutron source in the MCNPX shielding calculating for electron accelerator driven facility  

SciTech Connect (OSTI)

Argonne National Laboratory (ANL) of USA and Kharkov Inst. of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of an experimental neutron source facility. It is an accelerator driven system (ADS) utilizing a subcritical assembly driven by electron accelerator. The facility will be utilized for performing basic and applied nuclear researches, producing medical isotopes, and training young nuclear specialists. Monte Carlo code MCNPX has been utilized as a design tool due to its capability to transport electrons, photons, and neutrons at high energies. However the facility shielding calculations with MCNPX need enormous computational resources and the small neutron yield per electron makes sampling difficulty for the Monte Carlo calculations. A method, based on generating and utilizing neutron source file, was proposed and tested. This method reduces significantly the required computer resources and improves the statistics of the calculated neutron dose outside the shield boundary. However the statistical errors introduced by generating the neutron source were not directly represented in the results, questioning the validity of this methodology, because an insufficiently sampled neutron source can cause error on the calculated neutron dose. This paper presents a procedure for the validation of the generated neutron source file. The impact of neutron source statistic on the neutron dose is examined by calculating the neutron dose as a function of the number of electron particles used for generating the neutron source files. When the value of the calculated neutron dose converges, it means the neutron source has scored sufficient records and statistic does not have apparent impact on the calculated neutron dose. In this way, the validity of neutron source and the shield analyses could be verified. (authors)

Zhong, Z.; Gohar, Y. [Nuclear Engineering Div., Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

2012-07-01T23:59:59.000Z

104

accelerator-based radiobiology facilities: Topics by E-print...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of suitable neutron sources that are compactible with installation in a hospital enviroment. A low-energy accelerator-based neutron source has the potential for meeting...

105

SuperHILAC: Heavy-ion linear accelerator: Summary of capabilities, facilities, operations, and research  

SciTech Connect (OSTI)

This report consists of a description of the accelerator facilities and a review of research programs being conducted there. Lists of SuperHILAC researchers and publications are also given.

McDonald, R.J. (ed.)

1987-09-01T23:59:59.000Z

106

Secretary of Energy Advisory Board SLAC National Accelerator...  

Broader source: Energy.gov (indexed) [DOE]

Goodwin 11:45 AM - 12:30 PM Energy of the Future - National Ignition Facility (NIF) and Laser Inertial Fusion Energy (LIFE) Ed Moses 12:30 PM - 1:45 PM Lunch Break 2:00 PM - 2:30...

107

Facilities and Centers | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5 BudgetNateFacilitiesFacilities

108

Sandia National Laboratories: Research: Facilities: Technology Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSPRecovery Act SolarReactor FacilityFacility

109

Sandia National Laboratories: Research: Facilities: Technology Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSPRecovery Act SolarReactor FacilityFacilityCenters:

110

UT OAK RIDGE FACILITY To Y-12 National  

E-Print Network [OSTI]

5 UT ­ OAK RIDGE FACILITY To Y-12 National Security Complex To East Tennessee Technology Park (ETTP To Knoxville and McGhee Tyson Airport Via 162 / I-140 (Pellissippi Parkway) OAK RIDGE TURNPIKE 10 2 MILES 95 To Oak Ridge National Laboratory 9 3 2 4 1 9 7 6 8 TU LANE TU LANE NEWYORK UT OUTREACH CENTER UT-OAK

111

Lawrence Berkeley National Laboratory Facilities Division- Optimizing Activity-level Work Planning and Control Lessons Learned  

Broader source: Energy.gov [DOE]

Presenter: Ken Fletcher, Deputy Division Director for Facilities, Lawrence Berkeley National Laboratory

112

National Ignition Facility & Photon Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.Demonstrate PromisingElectedEnergy33 National

113

National Ignition Facility & Photon Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.Demonstrate PromisingElectedEnergy33 National5

114

National Ignition Facility & Photon Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.Demonstrate PromisingElectedEnergy33 National51

115

National Ignition Facility & Photon Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.Demonstrate PromisingElectedEnergy339 National

116

National Ignition Facility & Photon Science What  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.Demonstrate PromisingElectedEnergy33997 National

117

LANL Plutonium-Processing Facilities National Security  

E-Print Network [OSTI]

of technical capabilities. These capabilities form a center of excellence for actinide science and technology, dismantlement, and materi- als management. Among other things, these efforts support requests for power sources acceptability. Plutonium experiments at TA-55 support the nation's stockpile assessment, without the need

118

Sandia National Laboratories: Combustion Research Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducation Programs:CRF ResearchersPhysicsFacilitySecuritySolarResearch

119

ICF Facilities | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSL Bubblesstructure theby J. StöhrFacilities

120

Engine Research Facility | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4: Networking for37Energy StorageEngine Research Facility Argonne's

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Facilities & Projects | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5 BudgetNateFacilities and&

122

Sandia National Laboratories: Research: Facilities: Gamma Irradiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSPRecovery Act SolarReactor Facility

123

Sandia National Laboratories: Central Receiver Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy AdvancedEnergyEnergy EfficientFacility Central Receiver

124

Sandia National Laboratories: Central Receiver test facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy AdvancedEnergyEnergy EfficientFacility Central

125

Sandia National Laboratories: Leadership Computing Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLS ExhibitIowa State UniversityFacilityLIMITSLawrenceLeadership

126

Accelerator Facility Safety Implementation Guide for DOE Order (0) 420.2C, Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The revision will address implementation of roles and responsibilities, improve operational efficiency using operating experience, and clarify the use of program requirements such as the Unreviewed Safety Issue and Accelerator Readiness Review.

2013-07-17T23:59:59.000Z

127

National Ignition Facility & Photon Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.Demonstrate PromisingElectedEnergy33

128

National Ignition Facility & Photon Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.Demonstrate PromisingElectedEnergy339

129

Contained Firing Facility | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartmentStewardshipAdministration| National Nuclear SecurityContained Firing

130

National Ignition Facility Quality Assurance Program Plan. Revision 1  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is a key constituent of the Department of Energy`s Stockpile Stewardship Program. The NIF will use inertial confinement fusion (ICF) to produce ignition and energy gain in ICF targets, and will perform weapons physics and high-energy- density experiments in support of national security and civilian objectives. The NIF Project is a national facility involving the collaboration of several DOE laboratories and subcontractors, including Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Laser Energetics (UR/LLE). The primary mission of the NIF Project is the construction and start-up operation of laser-based facilities that will demonstrate fusion ignition in the laboratory to provide nuclear-weapons-related physics data, and secondarily, to propagate fusion burn aimed at developing a potential source of civilian energy. To support the accomplishment of this very important mission, the LLNL Laser Directorate created the NIF Project Office to organize and bring about the Project. The NIF Project Office has established this Quality Assurance Program to ensure its success. This issue of the Quality Assurance Program Plan (QAPP) adds the requirements for the conduct of Title 11 design, construction, procurement, and Title III engineering. This QAPP defines and describes the program-the management system-for specifying, achieving, and assuring the quality of all NIF Project work consistent with the policies of the Laboratory and the Laser Directorate.

Wolfe, C.R.; Yatabe, J.

1996-09-01T23:59:59.000Z

131

ACCELERATION OF LOS ALAMOS NATIONAL LABORATORY TRANSURANIC WASTE DISPOSITION  

SciTech Connect (OSTI)

One of Los Alamos National Laboratory's (LANL's) most significant risks is the site's inventory of transuranic waste retrievably stored above and below-ground in Technical Area (TA) 54 Area G, particularly the dispersible high-activity waste stored above-ground in deteriorating facilities. The high activity waste represents approximately 50% (by activity) of the total 292,000 PE-Ci inventory remaining to be disposed. The transuramic waste inventory includes contact-handled and remote-handled waste packaged in drums, boxes, and oversized containers which are retrievably stored both above and below-ground. Although currently managed as transuranic waste, some of the inventory is low-level waste that can be disposed onsite or at approved offsite facilities. Dispositioning the transuranic waste inventory requires retrieval of the containers from above and below-ground storage, examination and repackaging or remediation as necessary, characterization, certification and loading for shipment to the Waste Isolation Pilot Plant in Carlsbad New Mexico, all in accordance with well-defined requirements and controls. Although operations are established to process and characterize the lower-activity contact-handled transuranic waste containers, LAN L does not currently have the capability to repack high activity contact-handled transuranic waste containers (> 56 PE-Ci) or to process oversized containers with activity levels over 0.52 PE-Ci. Operational issues and compliance requirements have resulted in less than optimal processing capabilities for lower activity contact-handled transuranic waste containers, limiting preparation and reducing dependability of shipments to the Waste Isolation Pilot Plant. Since becoming the Los Alamos National Laboratory contract in June 2006, Los Alamos National Security (LANS) L.L.C. has developed a comprehensive, integrated plan to effectively and efficiently disposition the transuranic waste inventory, working in concert with the Department of Energy Los Alamos Site Office, Carlsbad Field Office and the Department of Energy Headquaeters. Rather than simply processing containers as retrieved, the plan places priority on efficient curie disposition, a direct correlation to reducing risk. Key elements of the approch include balancing inventory and operational risks, tailoring methods to meet requirements, optimizing existing facilities, equipment and staff, and incorporating best practices from other Department of Energy sites. With sufficient funding this will enable LANL to ship the above-ground high activity contact-handled transuranic waste offsite by the end of Fiscal Year (FY) 2007 and to disposition the remaining above- and below-ground contact-handled and remote-handled transuranic waste inventory by December 2010. Nearly 70% of the contact-handled transuranic waste containers, including the high activity waste, require processing and repackaging before characterization and certification for shipment to the Waste Isolation Pilot Plant. LANL is employing a balanced risk approach that accomplishes significant long-term risk reduction by accepting short-term increased facility operations risk under well-developed and justified interim controls. Reviews of facility conditions and additional analyses show that the Waste Characterization, Reduction and Repackaging Facility and the Radioassay and Nondestructive Testing Facility are the most appropriate facilities to safetly remediate, repackage, and ship lower activity and the remaining high activity drums. Updated safety documentation supporting limited Hazard Category 2 operations in these facilities has been developed. Once approved, limited-term operations to process the high activity drums can begin in early 2007, building upon the experience base established performing Hazard Category 3 operations processing lower activity waste in these facilities. LANL is also implementing a series of actions to improve and sustain operations for processing contact-handled transuranic waste inventory. Building 412 Decontamination and Volume Facility and Dom

O'LEARY, GERALD A. [Los Alamos National Laboratory

2007-01-04T23:59:59.000Z

132

Ultra-Accelerated Natural Sunlight Exposure Testing Facilities  

DOE Patents [OSTI]

A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

Lewandowski, Allan A. (Evergreen, CO); Jorgensen, Gary J. (Pine, CO)

2004-11-23T23:59:59.000Z

133

Ultra-accelerated natural sunlight exposure testing facilities  

DOE Patents [OSTI]

A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS to deliver a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in chamber means that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

Lewandowski, Allan A.; Jorgensen, Gary J.

2003-08-12T23:59:59.000Z

134

Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities  

SciTech Connect (OSTI)

The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R and D) facilities for the Department of Energy on the Hanford Site. According to DOE Order 5400.1, a Facility Effluent Monitoring Plan is required for each site, facility, or process that uses, generates, releases, or manages significant pollutants or hazardous materials. Three of the R and D facilities: the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling and thus individual Facility Effluent Monitoring Plans (FEMPs) have been developed for them. Because no definition of ''significant'' is provided in DOE Order 5400.1 or the accompanying regulatory guide DOE/EH-0173T, this FEMP was developed to describe monitoring requirements in the DOE-owned, PNNL-operated facilities that do not have individual FEMPs. The remainder of the DOE-owned, PNNL-operated facilities are referred to as Balance-of-Plant (BOP) facilities. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R and D. R and D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in the FEMP.

Ballinger, M.Y.; Shields, K.D.

1999-04-02T23:59:59.000Z

135

Systems reliability analysis for the national ignition facility  

SciTech Connect (OSTI)

A Reliability, Availability and Maintainability (RAM) analysis was initiated for the National Ignition Facility (NIF). The NIF is an inertial confinement fusion research facility designed to achieve controlled thermonuclear reaction; the preferred site for the NIF is the Lawrence Livermore National Laboratory (LLNL). The NIF RAM analysis has three purposes: (1) to allocate top level reliability and availability goals for the systems, (2) to develop an operability model for optimum maintainability, and (3) to determine the achievability of the allocated goals of the RAM parameters for the NIF systems and the facility operation as a whole. An allocation model assigns the reliability and availability goals for front line and support systems by a top-down approach; reliability analysis uses a bottom-up approach to determine the system reliability and availability from component level to system level.

Majumdar, K.C.; Annese, C.E.; MacIntyre, A.T.; Sicherman, A.

1996-06-12T23:59:59.000Z

136

National Laser User Facilities Program | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.DemonstrateScientists Win

137

National RF Test Facility as a multipurpose development tool  

SciTech Connect (OSTI)

Additions and modifications to the National RF Test Facility design have been made that (1) focus its use for technology development for future large systems in the ion cyclotron range of frequencies (ICRF), (2) expand its applicability to technology development in the electron cyclotron range of frequencies (ECRF) at 60 GHz, (3) provide a facility for ELMO Bumpy Torus (EBT) 60-GHz ring physics studies, and (4) permit engineering studies of steady-state plasma systems, including superconducting magnet performance, vacuum vessel heat flux removal, and microwave protection. The facility will continue to function as a test bed for generic technology developments for ICRF and the lower hybrid range of frequencies (LHRF). The upgraded facility is also suitable for mirror halo physics experiments.

McManamy, T.J.; Becraft, W.R.; Berry, L.A.; Blue, C.W.; Gardner, W.L.; Haselton, H.H.; Hoffman, D.J.; Loring, C.M. Jr.; Moeller, F.A.; Ponte, N.S.

1983-01-01T23:59:59.000Z

138

Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities  

SciTech Connect (OSTI)

To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

Donovan, G.L.; Goldstein, S.A.

1986-12-01T23:59:59.000Z

139

Underground Facility at Nevada National Security Site | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014National Nuclear SecuritySalaryand Astrophysics

140

National Ignition Facility Reaches Milestone Early | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.Demonstrate PromisingElectedEnergy33997000

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

National Laser Users' Facility Grant Program | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.DemonstrateScientists WinAdministration

142

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch WelcomeSciencePrograms Nuclear Weapons StockpileSafetyNational

143

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStation TechnologyWindInternationalbyNRELPresentedNational

144

Accelerator Modeling for Discovery | Argonne Leadership Computing Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects ofAbout ScienceAboutAcceleration and

145

ASTA at Fermilab: Accelerator Physics and Accelerator Education Programs at the Modern Accelerator R&D Users Facility for HEP and Accelerator Applications  

E-Print Network [OSTI]

We present the current and planned beam physics research program and accelerator education program at Advanced Superconducting Test Accelerator (ASTA) at Fermilab.

Shiltsev, V

2014-01-01T23:59:59.000Z

146

ASTA at Fermilab: Accelerator Physics and Accelerator Education Programs at the Modern Accelerator R&D Users Facility for HEP and Accelerator Applications.  

SciTech Connect (OSTI)

We present the current and planned beam physics research program and accelerator education program at Advanced Superconducting Test Accelerator (ASTA) at Fermilab.

Shiltsev, V.; Piot, P.

2013-09-01T23:59:59.000Z

147

Status and specifications of a Project X front-end accelerator test facility at Fermilab  

SciTech Connect (OSTI)

This paper describes the construction and operational status of an accelerator test facility for Project X. The purpose of this facility is for Project X component development activities that benefit from beam tests and any development activities that require 325 MHz or 650 MHz RF power. It presently includes an H- beam line, a 325 MHz superconducting cavity test facility, a 325 MHz (pulsed) RF power source, and a 650 MHz (CW) RF power source. The paper also discusses some specific Project X components that will be tested in the facility. Fermilab's future involves new facilities to advance the intensity frontier. In the early 2000's, the vision was a pulsed, superconducting, 8 GeV linac capable of injecting directly into the Fermilab Main Injector. Prototyping the front-end of such a machine started in 2005 under a program named the High Intensity Neutrino Source (HINS). While the HINS test facility was being constructed, the concept of a new, more versatile accelerator for the intensity frontier, now called Project X, was forming. This accelerator comprises a 3 GeV CW superconducting linac with an associated experimental program, followed by a pulsed 8 GeV superconducting linac to feed the Main Injector synchrotron. The CW Project X design is now the model for Fermilab's future intensity frontier program. Although CW operation is incompatible with the original HINS front-end design, the installation remains useful for development and testing many Project X components.

Steimel, J.; Webber, R.; Madrak, R.; Wildman, D.; Pasquinelli, R.; Evans-Peoples, E.; /Fermilab

2011-03-01T23:59:59.000Z

148

Preliminary hazards analysis for the National Ignition Facility  

SciTech Connect (OSTI)

This report documents the Preliminary Hazards Analysis (PHA) for the National Ignition Facility (NIF). In summary, it provides: a general description of the facility and its operation; identification of hazards at the facility; and details of the hazards analysis, including inventories, bounding releases, consequences, and conclusions. As part of the safety analysis procedure set forth by DOE, a PHA must be performed for the NIF. The PHA characterizes the level of intrinsic potential hazard associated with a facility, and provides the basis for hazard classification. The hazard classification determines the level of safety documentation required, and the DOE Order governing the safety analysis. The hazard classification also determines the level of review and approval required for the safety analysis report. The hazards of primary concern associated with NIF are radiological and toxicological in nature. The hazard classification is determined by comparing facility inventories of radionuclides and chemicals with threshold values for the various hazard classification levels and by examining postulated bounding accidents associated with the hazards of greatest significance. Such postulated bounding accidents cannot take into account active mitigative features; they must assume the unmitigated consequences of a release, taking into account only passive safety features. In this way, the intrinsic hazard level of the facility can be ascertained.

Brereton, S.J.

1993-10-01T23:59:59.000Z

149

Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities  

E-Print Network [OSTI]

This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernŕndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

2006-01-01T23:59:59.000Z

150

Thomas Jefferson National Accelerator Facility Technologies Available for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System BurstLong TermScience& Other

151

New Facility Saves $20 Million, Accelerates Waste Processing | Department  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andDataNational Library of1,Department ofNewof NO2: Key Role ofof

152

High Performance Imaging Streak Camera for the National Ignition Facility  

SciTech Connect (OSTI)

An x-ray streak camera platform has been characterized and implemented for use at the National Ignition Facility. The camera has been modified to meet the experiment requirements of the National Ignition Campaign and to perform reliably in conditions that produce high EMI. A train of temporal UV timing markers has been added to the diagnostic in order to calibrate the temporal axis of the instrument and the detector efficiency of the streak camera was improved by using a CsI photocathode. The performance of the streak camera has been characterized and is summarized in this paper. The detector efficiency and cathode measurements are also presented.

Opachich, Y. P. [LLNL; Kalantar, D. [LLNL; MacPhee, A. [LLNL; Holder, J. [LLNL; Kimbrough, J. [LLNL; Bell, P. M. [LLNL; Bradley, D. [LLNL; Hatch, B. [LLNL; Brown, C. [LLNL; Landen, O. [LLNL; Perfect, B. H. [LLNL, HMC; Guidry, B. [LLNL; Mead, A. [NSTec; Charest, M. [NSTec; Palmer, N. [LLNL; Homoelle, D. [LLNL; Browning, D. [LLNL; Silbernagel, C. [NSTec; Brienza-Larsen, G. [NSTec; Griffin, M. [NSTec; Lee, J. J. [NSTec; Haugh, M. J. [NSTec

2012-12-01T23:59:59.000Z

153

High brightness photocathode injector for BNL Accelerator Test Facility  

SciTech Connect (OSTI)

An analysis of the BNL photocathode (1-1/2 cell) Gun'' operating at 2856 MHZ, is presented. The beam parameters including beam energy, and emittance are calculated. A review of the Gun parameters and full input and output of our analysis with program PARMELA, is given in Section 2, some of our results, are tabulated. The phase plots and the beam parameters, at downstream ends of the elements, from cathode through the cavity, first cell is labeled as element 2; and second cell is labeled as element to the exit of the GUN. The analysis was made for 3 cases, using three different initial values (EO) for the average accelerating gradient (MV/m), for comparison with previous works. For illustration, the field obtained with program SUPERFISH is given, and conclusion including shunt impedances obtained for the cells and the cavity are given in Section 6. PARMELA is used as a standard design program at ATF. At the request of some of the users of program PARMELA, this request of some of the users of program PARMELA, this report include and illustrates some of our data, in the input and output format of the program PARMELA. 5 refs., 7 figs., 3 tabs.

Parsa, Z.; Young, L.

1990-01-01T23:59:59.000Z

154

Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities  

SciTech Connect (OSTI)

The Pacific Northwest National Laboratory (PNNL) operates a number of Research & Development (R&D) facilities for the U.S. Department of Energy (DOE) on the Hanford Site. Facility effluent monitoring plans (FEMPs) have been developed to document the facility effluent monitoring portion of the Environmental Monitoring Plan (DOE 2000) for the Hanford Site. Three of PNNL’s R&D facilities, the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling, and individual FEMPs were developed for these facilities in the past. In addition, a balance-of-plant (BOP) FEMP was developed for all other DOE-owned, PNNL-operated facilities at the Hanford Site. Recent changes, including shutdown of buildings and transition of PNNL facilities to the Office of Science, have resulted in retiring the 3720 FEMP and combining the 331 FEMP into the BOP FEMP. This version of the BOP FEMP addresses all DOE-owned, PNNL-operated facilities at the Hanford Site, excepting the Radiochemical Processing Laboratory, which has its own FEMP because of the unique nature of the building and operations. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R&D. R&D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in Appendix A. Potential radioactive airborne emissions in the BOP facilities are estimated annually using a building inventory-based approach provided in federal regulations. Sampling at individual BOP facilities is based on a potential-to-emit assessment. Some of these facilities are considered minor emission points and thus are sampled routinely, but not continuously, to confirm the low emission potential. One facility, the 331 Life Sciences Laboratory, has a major emission point and is sampled continuously. Sampling systems are located downstream of control technologies and just before discharge to the atmosphere. The need for monitoring airborne emissions of hazardous chemicals is established in the Hanford Site Air Operating Permit and in notices of construction. Based on the current potential-to-emit, the Hanford Site Air Operating Permit does not contain general monitoring requirements for BOP facilities. However, the permit identifies monitoring requirements for specific projects and buildings. Needs for future monitoring will be established by future permits issued pursuant to the applicable state and federal regulations. A number of liquid-effluent discharge systems serve the BOP facilities: sanitary sewer, process sewer, retention process sewer, and aquaculture system. Only the latter system discharges to the environment; the rest either discharge to treatment plants or to long-term storage. Routine compliance sampling of liquid effluents is only required at the Environmental Molecular Sciences Laboratory. Liquid effluents from other BOP facilities may be sampled or monitored to characterize facility effluents or to investigate discharges of concern. Effluent sampling and monitoring for the BOP facilities depends on the inventories, activities, and environmental permits in place for each facility. A description of routine compliance monitoring for BOP facilities is described in the BOP FEMP.

Ballinger, Marcel Y.; Gervais, Todd L.

2004-11-15T23:59:59.000Z

155

Environmental restoration plan for the transfer of surplus facilities to the Facility Transition Program at Oak Ridge National Laboratory  

SciTech Connect (OSTI)

This report will provide guidance on management, coordination, and integration of plans to transition facilities to the Facility Transition Program and activities as related to the Oak Ridge National Laboratory (ORNL) Environmental Restoration Program facilities. This report gives (1) guidance on the steps necessary for identifying ORNL surplus facilities, (2) interfaces of Surveillance and Maintenance (S and M) and Isotope Facility Deactivation program managers, (3) roles and responsibilities of the facility managers, and (4) initial S and M requirements upon acceptance into the Facility Transition Program.

NONE

1995-08-01T23:59:59.000Z

156

National Laboratory Photovoltaics Research  

Broader source: Energy.gov [DOE]

DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

157

The National Ignition Facility and the Path to Fusion Energy  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

Moses, E

2011-07-26T23:59:59.000Z

158

The Advanced Test Reactor National Scientific User Facility  

SciTech Connect (OSTI)

In 2007, the Advanced Test Reactor (ATR), located at Idaho National Laboratory (INL), was designated by the Department of Energy (DOE) as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by approved researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide those researchers with the best ideas access to the most advanced test capability, regardless of the proposer’s physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, obtained access to additional PIE equipment, taken steps to enable the most advanced post-irradiation analysis possible, and initiated an educational program and digital learning library to help potential users better understand the critical issues in reactor technology and how a test reactor facility could be used to address this critical research. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program invited universities to nominate their capability to become part of a broader user facility. Any university is eligible to self-nominate. Any nomination is then peer reviewed to ensure that the addition of the university facilities adds useful capability to the NSUF. Once added to the NSUF team, the university capability is then integral to the NSUF operations and is available to all users via the proposal process. So far, six universities have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these university capabilities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user’s technical needs. The current NSUF partners are shown in Figure 1. This article describes the ATR as well as the expanded capabilities, partnerships, and services that allow researchers to take full advantage of this national resource.

Todd R. Allen; Collin J. Knight; Jeff B. Benson; Frances M. Marshall; Mitchell K. Meyer; Mary Catherine Thelen

2011-08-01T23:59:59.000Z

159

Ignition and Inertial Confinement Fusion at The National Ignition Facility  

SciTech Connect (OSTI)

The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and for studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF is now conducting experiments to commission the laser drive, the hohlraum and the capsule and to develop the infrastructure needed to begin the first ignition experiments in FY 2010. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. NIF will achieve this by concentrating the energy from the 192 beams into a mm{sup 3}-sized target and igniting a deuterium-tritium mix, liberating more energy than is required to initiate the fusion reaction. NIF's ignition program is a national effort managed via the National Ignition Campaign (NIC). The NIC has two major goals: execution of DT ignition experiments starting in FY2010 with the goal of demonstrating ignition and a reliable, repeatable ignition platform by the conclusion of the NIC at the end of FY2012. The NIC will also develop the infrastructure and the processes required to operate NIF as a national user facility. The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on laser fusion as a viable energy option. A laser fusion-based energy concept that builds on NIF, known as LIFE (Laser Inertial Fusion Energy), is currently under development. LIFE is inherently safe and can provide a global carbon-free energy generation solution in the 21st century. This paper describes recent progress on NIF, NIC, and the LIFE concept.

Moses, E

2009-10-01T23:59:59.000Z

160

ATR NATIONAL SCIENTIFIC USER FACILITY INSTRUMENTATION ENHANCEMENT EFFORTS  

SciTech Connect (OSTI)

A key component of the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) effort is to enhance instrumentation techniques available to users conducting irradiation tests in this unique facility. In particular, development of sensors capable of providing ‘real-time’ measurements of key irradiation parameters is emphasized because of their potential to offer increased fidelity data and reduced post-test examination costs. This paper describes the strategy for identifying new instrumentation needed for ATR irradiations and the program underway to develop and evaluate new sensors to address these needs. Accomplishments from this program are illustrated by describing several new sensors now available to users of the ATR NSUF. In addition, progress is reported on current research efforts to provide users improved in-pile instrumentation.

Joy L. Rempe; Mitchell K. Meyer

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Proceedings of the Advanced Hadron Facility accelerator design workshop, February 20--25, 1989  

SciTech Connect (OSTI)

The International Workshop on Hadron Facility Technology was held February 20--25, 1989, at the Study Center at Los Alamos National Laboratory. This volume (second of two) included papers on computer controls, polarized beam, rf, magnet and power supplies, experimental areas, and instabilities. Participants included groups from AHF, Brookhaven National Laboratory, European Hadron Facility, Fermilab, and the Moscow Meson Factory. The workshop was well attended by members of the Los Alamos staff. The interchange of information and the opportunity by criticism by peers was important to all who attended.

Thiessen, H.A. (comp.)

1990-04-01T23:59:59.000Z

162

National Ignition Facility Cryogenic Target Systems Interim Management Plan  

SciTech Connect (OSTI)

Restricted availability of funding has had an adverse impact, unforeseen at the time of the original decision to projectize the National Ignition Facility (NIF) Cryogenic Target Handling Systems (NCTS) Program, on the planning and initiation of these efforts. The purpose of this document is to provide an interim project management plan describing the organizational structure and management processes currently in place for NCTS. Preparation of a Program Execution Plan (PEP) for NCTS has been initiated, and a current draft is provided as Attachment 1 to this document. The National Ignition Facility is a multi-megajoule laser facility being constructed at Lawrence Livermore National Laboratory (LLNL) by the National Nuclear Security Administration (NNSA) in the Department of Energy (DOE). Its primary mission is to support the Stockpile Stewardship Program (SSP) by performing experiments studying weapons physics, including fusion ignition. NIF also supports the missions of weapons effects, inertial fusion energy, and basic science in high-energy-density physics. NIF will be operated by LLNL under contract to the University of California (UC) as a national user facility. NIF is a low-hazard, radiological facility, and its operation will meet all applicable federal, state, and local Environmental Safety & Health (ES&H) requirements. The NCTS Interim Management Plan provides a summary of primary design criteria and functional requirements, current organizational structure, tracking and reporting procedures, and current planning estimates of project scope, cost, and schedule. The NIF Director controls the NIF Cryogenic Target Systems Interim Management Plan. Overall scope content and execution schedules for the High Energy Density Physics Campaign (SSP Campaign 10) are currently undergoing rebaselining and will be brought into alignment with resources expected to be available throughout the NNSA Future Years National Security Plan (FYNSP). The revised schedule for delivering this system will be decided at the national level, based on experiment campaign requirement dates that will be derived through this process. The current milestone date for achieving indirect-drive ignition on the NIF is December 2010. Maintaining this milestone requires that the cryogenic systems be complete and available for fielding experiments early enough that the planned experimental campaigns leading up to ignition can be carried out. The capability of performing non-ignition cryogenic experiments is currently required by March 2006, when the NIF's first cluster of beams is operational. Plans for cryogenic and non-cryogenic experiments on the NIF are contained in NNSA's Campaign 10 Program Plans for Ignition (MTE 10.1) and High Energy Density Sciences (MTE 10.2). As described in this document, the NCTS Program Manager is responsible for managing NIF Cryogenic Target Systems development, engineering, and deployment. Through the NIF Director, the NCTS Program Manager will put in place an appropriate Program Execution Plan (draft attached) at a later time consistent with the maturing and funding these efforts. The PEP will describe management methods for carrying out these activities.

Warner, B

2002-04-25T23:59:59.000Z

163

Gated x-ray detector for the National Ignition Facility  

SciTech Connect (OSTI)

Two new gated x-ray imaging cameras have recently been designed, constructed, and delivered to the National Ignition Facility in Livermore, CA. These gated x-Ray detectors are each designed to fit within an aluminum airbox with a large capacity cooling plane and are fitted with an array of environmental housekeeping sensors. These instruments are significantly different from earlier generations of gated x-ray images due, in part, to an innovative impedance matching scheme, advanced phosphor screens, pulsed phosphor circuits, precision assembly fixturing, unique system monitoring, and complete remote computer control. Preliminary characterization has shown repeatable uniformity between imaging strips, improved spatial resolution, and no detectable impedance reflections.

Oertel, John A.; Aragonez, Robert; Archuleta, Tom; Barnes, Cris; Casper, Larry; Fatherley, Valerie; Heinrichs, Todd; King, Robert; Landers, Doug; Lopez, Frank; Sanchez, Phillip; Sandoval, George; Schrank, Lou; Walsh, Peter; Bell, Perry; Brown, Matt; Costa, Robert; Holder, Joe; Montelongo, Sam; Pederson, Neal [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Lawrence Livermore National Laboratory, Livermore, California 94551-0808 (United States); VI Control Systems Ltd., Los Alamos, New Mexico 87544 (United States)

2006-10-15T23:59:59.000Z

164

A Kirkpatrick-Baez microscope for the National Ignition Facility  

SciTech Connect (OSTI)

Current pinhole x ray imaging at the National Ignition Facility (NIF) is limited in resolution and signal throughput to the detector for Inertial Confinement Fusion applications, due to the viable range of pinhole sizes (10–25 ?m) that can be deployed. A higher resolution and throughput diagnostic is in development using a Kirkpatrick-Baez microscope system (KBM). The system will achieve <9 ?m resolution over a 300 ?m field of view with a multilayer coating operating at 10.2 keV. Presented here are the first images from the uncoated NIF KBM configuration demonstrating high resolution has been achieved across the full 300 ?m field of view.

Pickworth, L. A., E-mail: pickworth1@llnl.gov; McCarville, T.; Decker, T.; Pardini, T.; Ayers, J.; Bell, P.; Bradley, D.; Brejnholt, N. F.; Izumi, N.; Mirkarimi, P.; Pivovaroff, M.; Smalyuk, V.; Vogel, J.; Walton, C. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Kilkenny, J. [General Atomics, San Diego, California 92121 (United States)

2014-11-15T23:59:59.000Z

165

Sandia National Laboratories: Earth Science: Facilities and Equipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ManagementEarth ScienceEarth Science: Facilities and Equipment Earth Science: Facilities and Equipment Geoscience Facilities and Equipment High-pressure thermalmechanical...

166

Inertial Confinement Fusion and the National Ignition Facility (NIF)  

SciTech Connect (OSTI)

Inertial confinement fusion (ICF) seeks to provide sustainable fusion energy by compressing frozen deuterium and tritium fuel to extremely high densities. The advantages of fusion vs. fission are discussed, including total energy per reaction and energy per nucleon. The Lawson Criterion, defining the requirements for ignition, is derived and explained. Different confinement methods and their implications are discussed. The feasibility of creating a power plant using ICF is analyzed using realistic and feasible numbers. The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is shown as a significant step forward toward making a fusion power plant based on ICF. NIF is the world’s largest laser, delivering 1.8 MJ of energy, with a peak power greater than 500 TW. NIF is actively striving toward the goal of fusion energy. Other uses for NIF are discussed.

Ross, P.

2012-08-29T23:59:59.000Z

167

IGNITION AND FRONTIER SCIENCE ON THE NATIONAL IGNITION FACILITY  

SciTech Connect (OSTI)

The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF construction Project was certified by the Department of Energy as complete on March 30, 2009. NIF, a 192-beam Nd-glass laser facility, will produce 1.8 MJ, 500 TW of light at the third-harmonic, ultraviolet light of 351 nm. On March 10, 2009, a total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader frontier scientific exploration. NIF experiments in support of indirect drive ignition will begin in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a 1.7 billion dollar national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments include diagnostics, cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility and be ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed and has high probability of success. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and Fast Ignition concepts. Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science. The NIC will develop the full set of capabilities required to operate NIF as a major national and international user facility. A solicitation for NIF frontier science experiments to be conducted by the academic community is planned for summer 2009. This paper summarizes the design, performance, and status of NIF, experimental plans for NIC, and will present a brief discussion of the unparalleled opportunities to explore frontier basic science that will be available on the NIF.

Moses, E

2009-06-22T23:59:59.000Z

168

National ignition facility environment, safety, and health management plan  

SciTech Connect (OSTI)

The ES&H Management Plan describes all of the environmental, safety, and health evaluations and reviews that must be carried out in support of the implementation of the National Ignition Facility (NIF) Project. It describes the policy, organizational responsibilities and interfaces, activities, and ES&H documents that will be prepared by the Laboratory Project Office for the DOE. The only activity not described is the preparation of the NIF Project Specific Assessment (PSA), which is to be incorporated into the Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (PEIS). This PSA is being prepared by Argonne National Laboratory (ANL) with input from the Laboratory participants. As the independent NEPA document preparers ANL is directly contracted by the DOE, and its deliverables and schedule are agreed to separately with DOE/OAK.

NONE

1995-11-01T23:59:59.000Z

169

Sandia National Laboratories, California proposed CREATE facility environmental baseline survey.  

SciTech Connect (OSTI)

Sandia National Laboratories, Environmental Programs completed an environmental baseline survey (EBS) of 12.6 acres located at Sandia National Laboratories/California (SNL/CA) in support of the proposed Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) Facility. The survey area is comprised of several parcels of land within SNL/CA, County of Alameda, California. The survey area is located within T 3S, R 2E, Section 13. The purpose of this EBS is to document the nature, magnitude, and extent of any environmental contamination of the property; identify potential environmental contamination liabilities associated with the property; develop sufficient information to assess the health and safety risks; and ensure adequate protection for human health and the environment related to a specific property.

Catechis, Christopher Spyros

2013-10-01T23:59:59.000Z

170

RCRA Facilities Assessment (RFA)---Oak Ridge National Laboratory  

SciTech Connect (OSTI)

US Department of Energy (DOE) facilities are required to be in full compliance with all federal and state regulations. In response to this requirement, the Oak Ridge National Laboratory (ORNL) has established a Remedial Action Program (RAP) to provide comprehensive management of areas where past and current research, development, and waste management activities have resulted in residual contamination of facilities or the environment. This report presents the RCRA Facility Assessment (RFA) required to meet the requirements of RCRA Section 3004(u). Included in the RFA are (1) a listing of all sites identified at ORNL that could be considered sources of releases or potential releases; (2) background information on each of these sites, including location, type, size, period of operation, current operational status, and information on observed or potential releases (as required in Section II.A.1 of the RCRA permit); (3) analytical results obtained from preliminary surveys conducted to verify the presence or absence of releases from some of the sites; and (4) ORNL`s assessment of the need for further remedial attention.

Not Available

1987-03-01T23:59:59.000Z

171

RCRA Facilities Assessment (RFA)---Oak Ridge National Laboratory  

SciTech Connect (OSTI)

US Department of Energy (DOE) facilities are required to be in full compliance with all federal and state regulations. In response to this requirement, the Oak Ridge National Laboratory (ORNL) has established a Remedial Action Program (RAP) to provide comprehensive management of areas where past and current research, development, and waste management activities have resulted in residual contamination of facilities or the environment. This report presents the RCRA Facility Assessment (RFA) required to meet the requirements of RCRA Section 3004(u). Included in the RFA are (1) a listing of all sites identified at ORNL that could be considered sources of releases or potential releases; (2) background information on each of these sites, including location, type, size, period of operation, current operational status, and information on observed or potential releases (as required in Section II.A.1 of the RCRA permit); (3) analytical results obtained from preliminary surveys conducted to verify the presence or absence of releases from some of the sites; and (4) ORNL's assessment of the need for further remedial attention.

Not Available

1987-03-01T23:59:59.000Z

172

National Ignition Facility and Managing Location, Component, and State  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system coupled with a 10-meter diameter target chamber. There are over 6,200 Line Replaceable Units (LRUs) comprised of more than 104,000 serialized parts that make up the NIF. Each LRU is a modular unit typically composed of a mechanical housing, laser optics (glass, lenses, or mirrors), and utilities. To date, there are more than 120,000 data sets created to characterize the attributes of these parts. Greater than 51,000 Work Permits have been issued to install, maintain, and troubleshoot the components. One integrated system is used to manage these data, and more. The Location Component and State (LoCoS) system is a web application built using Java Enterprise Edition technologies and is accessed by over 1,200 users. It is either directly or indirectly involved with each aspect of NIF work activity, and interfaces with ten external systems including the Integrated Computer Control System (ICCS) and the Laser Performance Operations Model (LPOM). Besides providing business functionality, LoCoS also acts as the NIF enterprise service bus. In this role, numerous integration approaches had to be adopted including: file exchange, database sharing, queuing, and web services in order to accommodate various business, technical, and security requirements. Architecture and implementation decisions are discussed.

Foxworthy, C; Fung, T; Beeler, R; Li, J; Dugorepec, J; Chang, C

2011-07-25T23:59:59.000Z

173

Design of an XUV FEL Driven by the Laser-Plasma Accelerator at the LBNL LOASIS Facility  

E-Print Network [OSTI]

A445 (2000) 59. [13] W. M. Fawley, LBNL Technical Report No.LBNL-49625 (2002); see also paper MOPPH073, theseLASER-PLASMA ACCELERATOR AT THE LBNL LOASIS FACILITY ? C. B.

Schroeder, Carl B.; Fawley, W.M.; Esarey, Eric; Leemans, W.P.

2006-01-01T23:59:59.000Z

174

Diagnosing implosion performance at the National Ignition Facility (NIF) by means of neutron spectrometry  

E-Print Network [OSTI]

, Cambridge, MA 02139, USA 2 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 3 LaboratoryDiagnosing implosion performance at the National Ignition Facility (NIF) by means of neutron.1088/0029-5515/53/4/043014 Diagnosing implosion performance at the National Ignition Facility (NIF) by means of neutron spectrometry J

175

A Proposal for a TESLA Accelerator Module Test Facility W.D.Moeller, B.Petersen, B.Sparr  

E-Print Network [OSTI]

1 A Proposal for a TESLA Accelerator Module Test Facility W.D.Moeller, B.Petersen, B.Sparr Deutsches Elektronen Synchrotron TESLA Report No. 2001-08 Abstract The Tera-eV Energy Superconducting Linear Accelerator (TESLA), a 32 km long superconducting linear electron/positron collider of 500 GeV (upgradeable

176

Progress towards ignition on the National Ignition Facility  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory includes a precision laser system now capable of delivering 1.8 MJ at 500 TW of 0.35-?m light to a target. NIF has been operational since March 2009. A variety of experiments have been completed in support of NIF's mission areas: national security, fundamental science, and inertial fusion energy. NIF capabilities and infrastructure are in place to support its missions with nearly 60 X-ray, optical, and nuclear diagnostic systems. A primary goal of the National Ignition Campaign (NIC) on the NIF was to implode a low-Z capsule filled with ?0.2 mg of deuterium-tritium (DT) fuel via laser indirect-drive inertial confinement fusion and demonstrate fusion ignition and propagating thermonuclear burn with a net energy gain of ?5–10 (fusion yield/input laser energy). This requires assembling the DT fuel into a dense shell of ?1000 g/cm{sup 3} with an areal density (?R) of ?1.5 g/cm{sup 2}, surrounding a lower density hot spot with a temperature of ?10 keV and a ?R ?0.3 g/cm{sup 2}, or approximately an ?-particle range. Achieving these conditions demand precise control of laser and target parameters to allow a low adiabat, high convergence implosion with low ablator fuel mix. We have demonstrated implosion and compressed fuel conditions at ?80–90% for most point design values independently, but not at the same time. The nuclear yield is a factor of ?3–10× below the simulated values and a similar factor below the alpha dominated regime. This paper will discuss the experimental trends, the possible causes of the degraded performance (the off-set from the simulations), and the plan to understand and resolve the underlying physics issues.

Edwards, M. J.; Patel, P. K.; Lindl, J. D.; Atherton, L. J.; Glenzer, S. H.; Haan, S. W.; Landen, O. L.; Moses, E. I.; Springer, P. T.; Benedetti, R.; Bernstein, L.; Bleuel, D. L.; Bradley, D. K.; Caggiano, J. A.; Callahan, D. A.; Celliers, P. M.; Cerjan, C. J.; Clark, D. S.; Collins, G. W.; Dewald, E. L. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); and others

2013-07-15T23:59:59.000Z

177

Diagnosing and controlling mix in National Ignition Facility implosion experiments  

SciTech Connect (OSTI)

High mode number instability growth of ''isolated defects'' on the surfaces of National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] capsules can be large enough for the perturbation to penetrate the imploding shell, and produce a jet of ablator material that enters the hot-spot. Since internal regions of the CH ablator are doped with Ge, mixing of this material into the hot-spot results in a clear signature of Ge K-shell emission. Evidence of jets entering the hot-spot has been recorded in x-ray images and spectra, consistent with simulation predictions [Hammel et al., High Energy Density Phys. 6, 171 (2010)]. Ignition targets have been designed to minimize instability growth, and capsule fabrication improvements are underway to reduce ''isolated defects.'' An experimental strategy has been developed where the final requirements for ignition targets can be adjusted through direct measurements of mix and experimental tuning.

Hammel, B. A.; Scott, H. A.; Cerjan, C.; Clark, D. S.; Edwards, M. J.; Glenzer, S. H.; Haan, S. W.; Izumi, N.; Koch, J. A.; Landen, O. L.; Langer, S. H.; Smalyuk, V. A.; Suter, L. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Regan, S. P.; Epstein, R. [University of Rochester, Laboratory for Laser Energetics, Rochester, New York 14623 (United States); Kyrala, G. A.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Peterson, K. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

2011-05-15T23:59:59.000Z

178

Hydrodynamic instabilities in beryllium targets for the National Ignition Facility  

SciTech Connect (OSTI)

Beryllium ablators offer higher ablation velocity, rate, and pressure than their carbon-based counterparts, with the potential to increase the probability of achieving ignition at the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We present here a detailed hydrodynamic stability analysis of low (NIF Revision 6.1) and high adiabat NIF beryllium target designs. Our targets are optimized to fully utilize the advantages of beryllium in order to suppress the growth of hydrodynamic instabilities. This results in an implosion that resists breakup of the capsule, and simultaneously minimizes the amount of ablator material mixed into the fuel. We quantify the improvement in stability of beryllium targets relative to plastic ones, and show that a low adiabat beryllium capsule can be at least as stable at the ablation front as a high adiabat plastic target.

Yi, S. A., E-mail: austinyi@lanl.gov; Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Kline, J. L.; Batha, S. H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, D. S.; Hammel, B. A.; Milovich, J. L.; Salmonson, J. D.; Kozioziemski, B. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

2014-09-15T23:59:59.000Z

179

Target diagnostic system for the National Ignition Facility (NIF)  

SciTech Connect (OSTI)

A review of recent progress on the design of a diagnostic system proposed for ignition target experiments on the National Ignition Facility (NIF) will be presented. This diagnostic package contains an extensive suite of optical, x-ray, gamma-ray, and neutron diagnostics that enable measurements of the performance of both direct and indirect driven NIF targets. The philosophy used in designing all of the diagnostics in the set has emphasized redundant and independent measurement of fundamental physical quantities relevant to the operation of the NIF target. A unique feature of these diagnostics is that they are being designed to be capable of operating, in the high radiation, EMP, and debris backgrounds expected on the NIF facility. The diagnostic system proposed can be categorized into three broad areas: laser characterization, hohlraum characterization, and capsule performance diagnostics. The operating principles of a representative instrument from each class of diagnostic employed in this package will be summarized and illustrated with data obtained in recent prototype diagnostic tests.

Leeper, R.J.; Chandler, G.A.; Cooper, G.W.; Derzon, M.S. [and others

1996-07-01T23:59:59.000Z

180

National Ignition Facility Project Completion and Control System Status  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is the world's largest and most energetic laser experimental system providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. Completed in 2009, NIF is a stadium-sized facility containing a 1.8-MJ, 500-TW 192-beam ultraviolet laser and target chamber. A cryogenic tritium target system and suite of optical, X-ray and nuclear diagnostics will support experiments in a strategy to achieve fusion ignition starting in 2010. Automatic control of NIF is performed by the large-scale Integrated Computer Control System (ICCS), which is implemented by 2 MSLOC of Java and Ada running on 1300 front-end processors and servers. The ICCS framework uses CORBA distribution for interoperation between heterogeneous languages and computers. Laser setup is guided by a physics model and shots are coordinated by data-driven distributed workflow engines. The NIF information system includes operational tools and a peta-scale repository for provisioning experimental results. This paper discusses results achieved and the effort now underway to conduct full-scale operations and prepare for ignition.

Van Arsdall, P J; Azevedo, S G; Beeler, R G; Bryant, R M; Carey, R W; Demaret, R D; Fisher, J M; Frazier, T M; Lagin, L J; Ludwigsen, A P; Marshall, C D; Mathisen, D G; Reed, R K

2009-10-02T23:59:59.000Z

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The Sodium Process Facility at Argonne National Laboratory-West  

SciTech Connect (OSTI)

Argonne National Laboratory-West (ANL-W) has approximately 680,000 liters of raw sodium stored in facilities on site. As mandated by the State of Idaho and the US Department of Energy (DOE), this sodium must be transformed into a stable condition for land disposal. To comply with this mandate, ANL-W designed and built the Sodium Process Facility (SPF) for the processing of this sodium into a dry, sodium carbonate powder. The major portion of the sodium stored at ANL-W is radioactively contaminated. The sodium will be processed in three separate and distinct campaigns: the 290,000 liters of Fermi-1 primary sodium, the 50,000 liters of the Experimental Breeder Reactor-II (EBR-II) secondary sodium, and the 330,000 liters of the EBR-II primary sodium. The Fermi-1 and the EBR-II secondary sodium contain only low-level of radiation, while the EBR-II primary sodium has radiation levels up to 0.5 mSv (50 mrem) per hour at 1 meter. The EBR-II primary sodium will be processed last, allowing the operating experience to be gained with the less radioactive sodium prior to reacting the most radioactive sodium. The sodium carbonate will be disposed of in 270 liter barrels, four to a pallet. These barrels are square in cross-section, allowing for maximum utilization of the space on a pallet, minimizing the required landfill space required for disposal.

Michelbacher, J.A.; Henslee, S.P. McDermott, M.D.; Price, J.R.; Rosenberg, K.E.; Wells, P.B.

1998-07-01T23:59:59.000Z

182

Development of an accelerator-based BNCT facility at the Berkeley Lab  

SciTech Connect (OSTI)

An accelerator-based BNCT facility is under construction at the Berkeley Lab. An electrostatic-quadrupole (ESQ) accelerator is under development for the production of neutrons via the {sup 7}Li(p,n){sup 7}Be reaction at proton energies between 2.3 and 2.5 MeV. A novel type of power supply, an air-core coupled transformer power supply, is being built for the acceleration of beam currents exceeding 50 mA. A metallic lithium target has been developed for handling such high beam currents. Moderator, reflector and neutron beam delimiter have extensively been modeled and designs have been identified which produce epithermal neutron spectra sharply peaked between 10 and 20 keV. These. neutron beams are predicted to deliver significantly higher doses to deep seated brain tumors, up to 50% more near the midline of the brain than is possible with currently available reactor beams. The accelerator neutron source will be suitable for future installation at hospitals.

Ludewigt, B.A.; Bleuel, D.; Chu, W.T.; Donahue, R.J.; Kwan, J.; Reginato, L.L.; Wells, R.P.

1998-03-01T23:59:59.000Z

183

President Reagan Calls for a National Spent Fuel Storage Facility...  

National Nuclear Security Administration (NNSA)

Spent Fuel Storage Facility Washington, DC The Reagan Administration announces a nuclear energy policy that anticipates the establishment of a facility for the storage of...

184

Advanced Test Reactor National Scientific User Facility Progress  

SciTech Connect (OSTI)

The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) is one of the world’s premier test reactors for studying the effects of intense neutron radiation on reactor materials and fuels. The ATR began operation in 1967, and has operated continuously since then, averaging approximately 250 operating days per year. The combination of high flux, large test volumes, and multiple experiment configuration options provide unique testing opportunities for nuclear fuels and material researchers. The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected highly-enriched uranium fueled, reactor with a maximum operating power of 250 MWth. The ATR peak thermal flux can reach 1.0 x1015 n/cm2-sec, and the core configuration creates five main reactor power lobes (regions) that can be operated at different powers during the same operating cycle. In addition to these nine flux traps there are 68 irradiation positions in the reactor core reflector tank. The test positions range from 0.5” to 5.0” in diameter and are all 48” in length, the active length of the fuel. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. Goals of the ATR NSUF are to define the cutting edge of nuclear technology research in high temperature and radiation environments, contribute to improved industry performance of current and future light water reactors, and stimulate cooperative research between user groups conducting basic and applied research. The ATR NSUF has developed partnerships with other universities and national laboratories to enable ATR NSUF researchers to perform research at these other facilities, when the research objectives cannot be met using the INL facilities. The ATR NSUF program includes a robust education program enabling students to participate in their research at INL and the partner facilities, attend the ATR NSUF annual User Week, and compete for prizes at sponsored conferences. Development of additional research capabilities is also a key component of the ATR NSUF Program; researchers are encouraged to propose research projects leading to these enhanced capabilities. Some ATR irradiation experiment projects irradiate more specimens than are tested, resulting in irradiated materials available for post irradiation examination by other researchers. These “extra” specimens comprise the ATR NSUF Sample Library. This presentation will highlight the ATR NSUF Sample Library and the process open to researchers who want to access these materials and how to propose research projects using them. This presentation will provide the current status of all the ATR NSUF Program elements. Many of these were not envisioned in 2007, when DOE established the ATR NSUF.

Frances M. Marshall; Todd R. Allen; James I. Cole; Jeff B. Benson; Mary Catherine Thelen

2012-10-01T23:59:59.000Z

185

Hydrodynamic instability growth and mix experiments at the National Ignition Facility  

SciTech Connect (OSTI)

Hydrodynamic instability growth and its effects on implosion performance were studied at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)]. Implosion performance and mix have been measured at peak compression using plastic shells filled with tritium gas and containing embedded localized carbon-deuterium diagnostic layers in various locations in the ablator. Neutron yield and ion temperature of the deuterium-tritium fusion reactions were used as a measure of shell-gas mix, while neutron yield of the tritium-tritium fusion reaction was used as a measure of implosion performance. The results have indicated that the low-mode hydrodynamic instabilities due to surface roughness were the primary culprits for yield degradation, with atomic ablator-gas mix playing a secondary role. In addition, spherical shells with pre-imposed 2D modulations were used to measure instability growth in the acceleration phase of the implosions. The capsules were imploded using ignition-relevant laser pulses, and ablation-front modulation growth was measured using x-ray radiography for a shell convergence ratio of ?2. The measured growth was in good agreement with that predicted, thus validating simulations for the fastest growing modulations with mode numbers up to 90 in the acceleration phase. Future experiments will be focused on measurements at higher convergence, higher-mode number modulations, and growth occurring during the deceleration phase.

Smalyuk, V. A.; Barrios, M.; Caggiano, J. A.; Casey, D. T.; Cerjan, C. J.; Clark, D. S.; Edwards, M. J.; Haan, S. W.; Hammel, B. A.; Hamza, A.; Hsing, W. W.; Hurricane, O.; Kroll, J.; Landen, O. L.; Lindl, J. D.; Ma, T.; McNaney, J. M.; Mintz, M.; Parham, T.; Peterson, J. L. [Lawrence Livermore National Laboratory, NIF Directorate, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, NIF Directorate, Livermore, California 94550 (United States); and others

2014-05-15T23:59:59.000Z

186

National Ignition Facility core x-ray streak camera  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) core x-ray streak camera will be used for laser performance verification experiments as well as a wide range of physics experiments in the areas of high-energy-density science, inertial confinement fusion, and basic science. The x-ray streak camera system is being designed to record time-dependent x-ray emission from NIF targets using an interchangeable family of snouts for measurements such as one-dimensional (1D) spatial imaging or spectroscopy. the NIF core x-ray streak camera will consist of an x-ray-sensitive photocathode that detects x rays with 1D spatial resolution coupled to an electron streak tube to detect a continuous time history of the x rays incident on the photocathode over selected time periods. A charge-coupled-device (CCD) readout will record the signal from the streak tube. The streak tube, CCD, and associated electronics will reside in an electromagnetic interference, and electromagnetic pulse protected, hermetically sealed, temperature-controlled box whose internal pressure is approximately 1 atm. The streak tube itself will penetrate through the wall of the box into the target chamber vacuum. We are working with a goal of a spatial resolution of 15 lp/mm with 50% contrast transfer function at the photocathode and adjustment sweep intervals of 1--50 ns. The camera spectral sensitivity extends from soft x rays to 20 keV x rays, with varying quantum efficiency based on photocathode selection. The system will have remote control, monitoring, and Ethernet communications through an embedded controller. The core streak camera will be compatible with the instrument manipulators at the OMEGA (University of Rochester) and NIF facilities.

Kimbrough, J. R.; Bell, P. M.; Christianson, G. B.; Lee, F. D.; Kalantar, D. H.; Perry, T. S.; Sewall, N. R.; Wootton, A. J.

2001-01-01T23:59:59.000Z

187

Supported by the National Science Foundation and the State of Florida New Testing Facilities Available  

E-Print Network [OSTI]

outside the laboratory, both from the government and commercial sectors. Presently, the facilities include: Facilities Electrical A variety of large, high current electrical equipment is available1 Supported by the National Science Foundation and the State of Florida New Testing Facilities

Weston, Ken

188

Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry and  

E-Print Network [OSTI]

CMR Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry analytical chemistry and metallurgy. In 1952, the first LANL CMR facility was completed. At that time chemistry and metallurgy. Upgrades to the original CMR were completed in 2002. In 2012, the CMR facility

189

Nuclear diagnostics for the National Ignition Facility ,,invited... Thomas J. Murphy,a)  

E-Print Network [OSTI]

Facility NIF , currently under construction at the Lawrence Livermore National Laboratory, will provide Ignition Facility1 NIF is a 192 beam laser system Fig. 1 currently under construction at Lawrence Livermore. Sangster Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 R. J. Leeper

190

The National Ignition Facility (NIF) A Path to Fusion Energy  

SciTech Connect (OSTI)

Fusion energy has long been considered a promising clean, nearly inexhaustible source of energy. Power production by fusion micro-explosions of inertial confinement fusion (ICF) targets has been a long term research goal since the invention of the first laser in 1960. The NIF is poised to take the next important step in the journey by beginning experiments researching ICF ignition. Ignition on NIF will be the culmination of over thirty years of ICF research on high-powered laser systems such as the Nova laser at LLNL and the OMEGA laser at the University of Rochester as well as smaller systems around the world. NIF is a 192 beam Nd-glass laser facility at LLNL that is more than 90% complete. The first cluster of 48 beams is operational in the laser bay, the second cluster is now being commissioned, and the beam path to the target chamber is being installed. The Project will be completed in 2009 and ignition experiments will start in 2010. When completed NIF will produce up to 1.8 MJ of 0.35 {micro}m light in highly shaped pulses required for ignition. It will have beam stability and control to higher precision than any other laser fusion facility. Experiments using one of the beams of NIF have demonstrated that NIF can meet its beam performance goals. The National Ignition Campaign (NIC) has been established to manage the ignition effort on NIF. NIC has all of the research and development required to execute the ignition plan and to develop NIF into a fully operational facility. NIF will explore the ignition space, including direct drive, 2{omega} ignition, and fast ignition, to optimize target efficiency for developing fusion as an energy source. In addition to efficient target performance, fusion energy requires significant advances in high repetition rate lasers and fusion reactor technology. The Mercury laser at LLNL is a high repetition rate Nd-glass laser for fusion energy driver development. Mercury uses state-o-the art technology such as ceramic laser slabs and light diode pumping for improved efficiency and thermal management. Progress in NIF, NIC, Mercury, and the path forward for fusion energy will be presented.

Moses, E

2006-11-27T23:59:59.000Z

191

Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report  

SciTech Connect (OSTI)

This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

Amann, J.; Bane, K.; /SLAC

2009-10-30T23:59:59.000Z

192

Programmable Beam Spatial Shaping System for the National Ignition Facility  

SciTech Connect (OSTI)

A system of customized spatial light modulators has been installed onto the front end of the laser system at the National Ignition Facility (NIF). The devices are capable of shaping the beam profile at a low-fluence relay plane upstream of the amplifier chain. Their primary function is to introduce 'blocker' obscurations at programmed locations within the beam profile. These obscurations are positioned to shadow small, isolated flaws on downstream optical components that might otherwise limit the system operating energy. The modulators were designed to enable a drop-in retrofit of each of the 48 existing Pre Amplifier Modules (PAMs) without compromising their original performance specifications. This was accomplished by use of transmissive Optically Addressable Light Valves (OALV) based on a Bismuth Silicon Oxide photoconductive layer in series with a twisted nematic liquid crystal (LC) layer. These Programmable Spatial Shaper packages in combination with a flaw inspection system and optic registration strategy have provided a robust approach for extending the operational lifetime of high fluence laser optics on NIF.

Heebner, J; Borden, M; Miller, P; Hunter, S; Christensen, K; Scanlan, M; Haynam, C; Wegner, P; Hermann, M; Brunton, G; Tse, E; Awwal, A; Wong, N; Seppala, L; Franks, M; Marley, E; Wong, N; Seppala, L; Franks, M; Marley, E; Williams, K; Budge, T; Henesian, M; Stolz, C; Suratwala, T; Monticelli, M; Walmer, D; Dixit, S; Widmayer, C; Wolfe, J; Bude, J; McCarty, K; DiNicola, J M

2011-01-21T23:59:59.000Z

193

The Neutron Imaging System Fielded at the National Ignition Facility  

SciTech Connect (OSTI)

A neutron imaging diagnostic has recently been commissioned at the National Ignition Facility (NIF). This new system is an important diagnostic tool for inertial fusion studies at the NIF for measuring the size and shape of the burning DT plasma during the ignition stage of Inertial Confinement Fusion (ICF) implosions. The imaging technique utilizes a pinhole neutron aperture, placed between the neutron source and a neutron detector. The detection system measures the two dimensional distribution of neutrons passing through the pinhole. This diagnostic has been designed to collect two images at two times. The long flight path for this diagnostic, 28 m, results in a chromatic separation of the neutrons, allowing the independently timed images to measure the source distribution for two neutron energies. Typically the first image measures the distribution of the 14 MeV neutrons and the second image of the 6-12 MeV neutrons. The combination of these two images has provided data on the size and shape of the burning plasma within the compressed capsule, as well as a measure of the quantity and spatial distribution of the cold fuel surrounding this core.

Merrill, F E; Buckles, R; Clark, D D; Danly, C R; Drury, O B; Dzenitis, J M; Fatherley, V E; Fittinghoff, D N; Gallegos, R; Grim, G P; Guler, N; Loomis, E N; Lutz, S; Malone, R M; Martinson, D D; Mares, D; Morley, D J; Morgan, G L; Oertel, J A; Tregillis, I L; Volegov, P L; Weiss, P B; Wilde, C H

2012-08-01T23:59:59.000Z

194

Neutron source reconstruction from pinhole imaging at National Ignition Facility  

SciTech Connect (OSTI)

The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the ignition stage of inertial confinement fusion (ICF) implosions at NIF. Since the neutron source is small (?100 ?m) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-?m resolution are 20-cm long, single-sided tapers in gold. These apertures, which have triangular cross sections, produce distortions in the image, and the extended nature of the pinhole results in a non-stationary or spatially varying point spread function across the pinhole field of view. In this work, we have used iterative Maximum Likelihood techniques to remove the non-stationary distortions introduced by the aperture to reconstruct the underlying neutron source distributions. We present the detailed algorithms used for these reconstructions, the stopping criteria used and reconstructed sources from data collected at NIF with a discussion of the neutron imaging performance in light of other diagnostics.

Volegov, P.; Danly, C. R.; Grim, G. P.; Guler, N.; Merrill, F. E.; Wilde, C. H.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Fittinghoff, D. N.; Izumi, N.; Ma, T.; Warrick, A. L. [Livermore National Laboratory, Livermore, California 94550 (United States)] [Livermore National Laboratory, Livermore, California 94550 (United States)

2014-02-15T23:59:59.000Z

195

Visualization of Target Inspection data at the National Ignition Facility  

SciTech Connect (OSTI)

As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the target capsules used to achieve this goal. Techniques have been developed to measure capsule surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. These instruments produce multi-gigabyte datasets which consist of tens to hundreds of files. Existing software can handle viewing a small subset of an entire dataset, but none can view a dataset in its entirety. Additionally, without an established mode of transport that keeps the target capsules properly aligned throughout the assembly process, a means of aligning the two dataset coordinate systems is needed. The goal of this project is to develop web based software utilizing WebGL which will provide high level overview visualization of an entire dataset, with the capability to retrieve finer details on demand, in addition to facilitating alignment of multiple datasets with one another based on common features that have been visually identified by users of the system.

Potter, D; Antipa, N

2012-02-16T23:59:59.000Z

196

The National Ignition Facility (NIF) and the National Ignition Campaign (NIC)  

SciTech Connect (OSTI)

The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). NIF construction was certified by the Department of Energy as complete on March 27, 2009. NIF, a 192-beam Nd:glass laser facility, will ultimately produce 1.8-MJ, 500-TW of 351-nm third-harmonic, ultraviolet light. On March 10, 2009, total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and broader frontier scientific exploration. NIF experiments in support of indirect-drive ignition began in August 2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments includes diagnostics, a cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational, integrated into the facility, and ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and Fast Ignition concepts. Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science. The NIC will develop the full set of capabilities required to operate NIF as a major national and international user facility. A solicitation for NIF frontier science experiments is planned for summer 2009. This paper summarizes the design, performance, and status of NIF and plans for the NIF ignition experimental program. A brief summary of the overall NIF experimental program is also presented.

Moses, E

2009-09-17T23:59:59.000Z

197

AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).  

SciTech Connect (OSTI)

This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also included.

DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

2003-04-21T23:59:59.000Z

198

A nuclear physics program at the Rare Isotope Beams Accelerator Facility in Korea  

SciTech Connect (OSTI)

This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL) and fragmentation capability to produce rare isotopes beams (RIBs) and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to cross section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.

Moon, Chang-Bum, E-mail: cbmoon@hoseo.edu [Hoseo University, Asan, Chung-Nam 336-795 (Korea, Republic of)] [Hoseo University, Asan, Chung-Nam 336-795 (Korea, Republic of)

2014-04-15T23:59:59.000Z

199

Analysis of the National Ignition Facility Ignition Hohlraum Energetics Experiments  

SciTech Connect (OSTI)

A series of forty experiments on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] to study energy balance and implosion symmetry in reduced- and full-scale ignition hohlraums was shot at energies up to 1.3 MJ. This paper reports the findings of the analysis of the ensemble of experimental data obtained that has produced an improved model for simulating ignition hohlraums. Last year the first observation in a NIF hohlraum of energy transfer between cones of beams as a function of wavelength shift between those cones was reported [P. Michel, et al, Phys of Plasmas, 17, 056305, (2010)]. Detailed analysis of hohlraum wall emission as measured through the laser entrance hole (LEH) has allowed the amount of energy transferred versus wavelength shift to be quantified. The change in outer beam brightness is found to be quantitatively consistent with LASNEX [G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Control. Fusion 2, 51 (1975)] simulations using the predicted energy transfer when possible saturation of the plasma wave mediating the transfer is included. The effect of the predicted energy transfer on implosion symmetry is also found to be in good agreement with gated x-ray framing camera images. Hohlraum energy balance, as measured by x-ray power escaping the LEH, is quantitatively consistent with revised estimates of backscatter and incident laser energy combined with a more rigorous non-local-thermodynamic-equilibrium atomic physics model with greater emissivity than the simpler average-atom model used in the original design of NIF targets.

Town, R J; Rosen, M D; Michel, P A; Divol, L; Moody, J D; Kyrala, G A; Schneider, M B; Kline, J L; Thomas, C A; Milovich, J L; Callahan, D A; Meezan, N B; Hinkel, D E; Williams, E A; Berger, R L; Edwards, M J; Suter, L J; Haan, S W; Lindl, J D; Dixit, S; Glenzer, S H; Landen, O L; Moses, E I; Scott, H A; Harte, J A; Zimmerman, G B

2010-11-22T23:59:59.000Z

200

Precision Shock Tuning on the National Ignition Facility H. F. Robey,1  

E-Print Network [OSTI]

. Atherton,1 J. D. Lindl,1 D. D. Meyerhofer,3 and E. Moses1 1 Lawrence Livermore National Laboratory, Livermore, California 94551, USA 2 Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA 3 implosions on the National Ignition Facility (NIF) [1] are underway using the indirect-drive concept, where

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Copper activation deuterium-tritium neutron yield measurements at the National Ignition Facility  

E-Print Network [OSTI]

, New Mexico 87131, USA 2 Sandia National Laboratories, Albuquerque, New Mexico 87185, USA 3 Lawrence Livermore National Laboratories, Livermore, California 94550, USA 4 Plasma Science and Fusion Center, MIT(+ ) and 65 Cu(n,2n) 64 Cu(+ ), has been fielded at the National Ignition Facility (NIF). The induced copper

202

So Far Unfruitful, Fusion Project Faces a Frugal Congress National Ignition Facility  

E-Print Network [OSTI]

laser at the Lawrence Livermore National Laboratory in California. By WILLIAM J. BROAD September 29 have broad repercussions not only for the big laser, which is based at the Lawrence Livermore National the government have long assailed the laser project, known as the National Ignition Facility, or NIF

203

The proton injector for the accelerator facility of antiproton and ion research (FAIR)  

SciTech Connect (OSTI)

The new international accelerator facility for antiproton and ion research (FAIR) at GSI in Darmstadt, Germany, is one of the largest research projects worldwide and will provide an antiproton production rate of 7 × 10{sup 10} cooled pbars per hour. This is equivalent to a primary proton beam current of 2 × 10{sup 16} protons per hour. For this request a high intensity proton linac (p-linac) will be built with an operating rf-frequency of 325 MHz to accelerate a 35 mA proton beam at 70 MeV, using conducting crossed-bar H-cavities. The repetition rate is 4 Hz with beam pulse length of 36 ?s. The microwave ion source and low energy beam transport developed within a joint French-German collaboration GSI/CEA-SACLAY will serve as an injector of the compact proton linac. The 2.45 GHz ion source allows high brightness ion beams at an energy of 95 keV and will deliver a proton beam current of 100 mA at the entrance of the radio frequency quadrupole (RFQ) within an acceptance of 0.3? mm?mrad (norm., rms)

Ullmann, C., E-mail: c.ullmann@gsi.de; Kester, O. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany) [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Institut für Angewandte Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main (Germany); Berezov, R.; Fils, J.; Hollinger, R.; Vinzenz, W. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany)] [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Chauvin, N.; Delferriere, O. [Commissariat ŕ l’Energie Atomique et aux Energies Alternatives, IRFU, F-91191-Gif-sur-Yvette (France)] [Commissariat ŕ l’Energie Atomique et aux Energies Alternatives, IRFU, F-91191-Gif-sur-Yvette (France)

2014-02-15T23:59:59.000Z

204

Handling Radioactive Waste from the Proton Accelerator Facility at the Paul Scherrer Institut (PSI) - Always Surprising? - 13320  

SciTech Connect (OSTI)

The Paul Scherrer Institut (PSI) is the largest national research centre in Switzerland. Its multidisciplinary research is dedicated to a wide field in natural science and technology as well as particle physics. In this context, PSI is operating, amongst others, a large proton accelerator facility since more than 30 years. In two cyclotrons, protons are accelerated to high speeds and then guided along roughly 100 m of beam line to three different target stations to produce secondary particles like mesons and neutrons for experiments and a separately beam line for UCN. The protons induce spallation processes in the target materials, and also at other beam loss points along the way, with emission of protons, neutrons, hydrogen, tritium, helium, heavier fragments and fission processes. In particular the produced neutrons, due to their large penetration depth, will then interact also with the surrounding materials. These interactions of radiation with matter lead to activation and partly to contamination of machine components and the surrounding infrastructures. Maintenance, operation and decommissioning of installations generate inevitably substantial amounts of radioactive operational and dismantling waste like targets, magnets, collimators, shielding (concrete, steel) and of course secondary waste. To achieve an optimal waste management strategy for interim storage or final disposal, radioactive waste has to be characterized, sorted and treated. This strategy is based on radiation protection demands, raw waste properties (size, material, etc.), and requirements to reduce the volume of waste, mainly for legal and economical reasons. In addition, the radiological limitations for transportation of the waste packages to a future disposal site have to be taken into account, as well as special regulatory demands. The characterization is a task of the waste producer. The conditioning processes and quality checks for radioactive waste packages are part of an accredited waste management process of PSI, especially of the Section Dismantling and Waste Management. Strictly proven and accepted methods needed to be developed and enhanced for safe treatment, transport, conditioning and storage. But in the field of waste from research activities, individual and new solutions have to be found in an increasingly growing administrative environment. Furthermore, a wide variety of components, with a really large inventory of radioactive nuclides, has to be handled. And there are always surprising challenges concerning the unusual materials or the nuclide inventory. In case of the operational and dismantling radioactive accelerator waste, the existing conditioning methods are in the process of a continuous enhancement - technically and administratively. The existing authorized specifications of conditioning processes have to be extended to optimize and fully describe the treatment of the inevitably occurring radioactive waste from the accelerator facility. Additional challenges are the changes with time concerning the legal and regulatory requirements - or do we have to consider it as business as usual? This paper gives an overview of the current practices in radioactive waste management and decommissioning of the existing operational accelerator waste. (authors)

Mueth, Joachim [Paul Scherrer Institute, CH-5232 Villigen (Switzerland)] [Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

2013-07-01T23:59:59.000Z

205

Sandia National Laboratories: Solar Test Facility Upgrades Complete...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Upgrades Complete, Leading to Better Sandia Capabilities to Support Power Industry Solar Test Facility Upgrades Complete, Leading to Better Sandia Capabilities to Support...

206

Sandia National Laboratories: Excellence Award in the 2012 Facilities...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Testing Excellence Award in the 2012 Facilities Environmental, Safety and Health Go Green Initiative On December 19, 2012, in Concentrating Solar Power, Energy, Events,...

207

Burnup calculations for KIPT accelerator driven subcritical facility using Monte Carlo computer codes-MCB and MCNPX.  

SciTech Connect (OSTI)

Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical (ADS) facility, using the KIPT electron accelerator. The neutron source of the subcritical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and electron energy in the range of 100 to 200 MeV. The main functions of the subcritical assembly are the production of medical isotopes and the support of the Ukraine nuclear power industry. Neutron physics experiments and material structure analyses are planned using this facility. With the 100 KW electron beam power, the total thermal power of the facility is {approx}375 kW including the fission power of {approx}260 kW. The burnup of the fissile materials and the buildup of fission products reduce continuously the reactivity during the operation, which reduces the neutron flux level and consequently the facility performance. To preserve the neutron flux level during the operation, fuel assemblies should be added after long operating periods to compensate for the lost reactivity. This process requires accurate prediction of the fuel burnup, the decay behavior of the fission produces, and the introduced reactivity from adding fresh fuel assemblies. The recent developments of the Monte Carlo computer codes, the high speed capability of the computer processors, and the parallel computation techniques made it possible to perform three-dimensional detailed burnup simulations. A full detailed three-dimensional geometrical model is used for the burnup simulations with continuous energy nuclear data libraries for the transport calculations and 63-multigroup or one group cross sections libraries for the depletion calculations. Monte Carlo Computer code MCNPX and MCB are utilized for this study. MCNPX transports the electrons and the produced neutrons and photons but the current version of MCNPX doesn't support depletion/burnup calculation of the subcritical system with the generated neutron source from the target. MCB can perform neutron transport and burnup calculation for subcritical system using external neutron source, however it cannot perform electron transport calculations. To solve this problem, a hybrid procedure is developed by coupling these two computer codes. The user tally subroutine of MCNPX is developed and utilized to record the information of the each generated neutron from the photonuclear reactions resulted from the electron beam interactions. MCB reads the recorded information of each generated neutron thorough the user source subroutine. In this way, the neutron source generated by electron reactions could be utilized in MCB calculations, without the need for MCB to transport the electrons. Using the source subroutines, MCB could get the external neutron source, which is prepared by MCNPX, and perform depletion calculation for the driven subcritical facility.

Gohar, Y.; Zhong, Z.; Talamo, A.; Nuclear Engineering Division

2009-06-09T23:59:59.000Z

208

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under a cooperative agreement by Associated Universities, Inc. Astronomy: The Visible and Invisible Universe  

E-Print Network [OSTI]

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under a cooperative agreement by Associated Universities, Inc. Astronomy: The Visible and Invisible Universe #12;The National Radio Astronomy Observatory is a facility of the National Science Foundation

Groppi, Christopher

209

E-Print Network 3.0 - accelerator-based bnct facility Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Beam Physics Research at The University of Chicago Summary: Accelerator (RIA) project for a state-of -the-art ion accelerator based of super- conducting rf...

210

Fermi National Accelerator Laboratory October 2013 STEM Educational Contributions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO) ď‚·diffractive imaging08 A national10STEM

211

Collaboration Topics - Acceleration Hardware and APIs | National Nuclear  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration77 SandiaGuidance to the RevisedLinks(.

212

#k Fermi National Accelerator Laboratory FRRMILAEFPub-90/198-A  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy41 (Dollars and Sense Committee)Energyk Fermi National

213

Los Alamos National Laboratory opens new waste repackaging facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to increase its capability to process nuclear waste for permanent disposal. March 7, 2013 A view of the new box line facility where transuranic waste will be repackaged at Los...

214

CRAD, Conduct of Operations- Los Alamos National Laboratory TA 55 SST Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Conduct of Operations program at the Los Alamos National Laboratory, TA 55 SST Facility.

215

CRAD, Conduct of Operations- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Conduct of Operations Program portion of an Operational Readiness Review at the Los Alamos National Laboratory, Waste Characterization, Reduction, and Repackaging Facility.

216

CRAD, Occupational Safety & Health- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Occupational and Industrial Safety and Hygiene Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

217

CRAD, Radiological Controls- Los Alamos National Laboratory TA 55 SST Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Radiation Protection Program at the Los Alamos National Laboratory TA 55 SST Facility.

218

CRAD, Engineering- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Engineering Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

219

CRAD, Environmental Protection- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Environmental Compliance Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

220

CRAD, Occupational Safety & Health- Los Alamos National Laboratory TA 55 SST Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Industrial Hygiene program at the Los Alamos National Laboratory TA 55 SST Facility.

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

CRAD, Emergency Management- Los Alamos National Laboratory TA 55 SST Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Emergency Management program at the Los Alamos National Laboratory TA 55 SST Facility.

222

CRAD, Radiological Controls- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Radiation Protection Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

223

CRAD, Criticality Safety- Los Alamos National Laboratory TA 55 SST Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Criticality Safety program at the Los Alamos National Laboratory, TA 55 SST Facility.

224

CRAD, Fire Protection- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Fire Protection Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

225

CRAD, Management- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Management portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

226

CRAD, DOE Oversight- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Conduct of Operations Program portion of an Operational Readiness Review at the Los Alamos National Laboratory, Waste Characterization, Reduction, and Repackaging Facility.

227

CRAD, Emergency Management- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Emergency Management Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

228

CRAD, Configuration Management- Los Alamos National Laboratory TA 55 SST Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Configuration Management program at the Los Alamos National Laboratory, TA 55 SST Facility.

229

CRAD, Quality Assurance- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Quality Assurance Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

230

CRAD, Quality Assurance- Los Alamos National Laboratory TA 55 SST Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Quality Assurance Program at the Los Alamos National Laboratory TA 55 SST Facility.

231

ATR National Scientific User Facility 2009 Annual Report  

SciTech Connect (OSTI)

This report describes activities of the ATR NSUF from FY-2008 through FY-2009 and includes information on partner facilities, calls for proposals, users week and education programs. The report also contains project information on university research projects that were awarded by ATR NSUF in the fiscal years 2008 & 2009. This research is university-proposed researcher under a user facility agreement. All intellectual property from these experiments belongs to the university per the user agreement.

Todd R. Allen; Mitchell K. Meyer; Frances Marshall; Mary Catherine Thelen; Jeff Benson

2010-11-01T23:59:59.000Z

232

Air quality investigations of the Sandia National Laboratories Sol se Mete Aerial Cable Facility  

SciTech Connect (OSTI)

The air quality implications of the test and evaluation activities at the Sandia National Laboratories Sol se Mete Aerial Cable Facility are examined. All facets of the activity that affect air quality are considered. Air contaminants produced directly include exhaust products of rocket motors used to accelerate test articles, dust and gas from chemical explosives, and exhaust gases from electricity generators in the test arenas. Air contaminants produced indirectly include fugitive dust and exhaust contaminants from vehicles used to transport personnel and material to the test area, and effluents produced by equipment used to heat the project buildings. Both the ongoing program and the proposed changes in the program are considered. Using a reliable estimate of th maximum annual testing level, the quantities of contaminants released by project activities ar computed either from known characteristics of test items or from EPA-approved emission factors Atmospheric concentrations of air contaminants are predicted using EPA dispersion models. The predicted quantities and concentrations are evaluated in relation to Federal, New Mexico, an Bernalillo County air quality regulations and the human health and safety standards of the American Conference of Governmental Industrial Hygienists.

Gutman, W.M.; Silver, R.J. [New Mexico State Univ., Las Cruces, NM (United States). Physical Science Lab.

1994-12-01T23:59:59.000Z

233

Photo Credit: Peter GinterSLAC National Accelerator Laboratory Dark Energy  

E-Print Network [OSTI]

Photo Credit: Peter GinterSLAC National Accelerator Laboratory #12;Dark Energy 70% Dark Matter 26 and Advanced Camera for Surveys #12;Dark Energy 70% Dark Matter 26% Ordinary Matter 4% #12;Dark Energy 70% Dark Matter 26% Ordinary Matter 4% #12;Dark Energy 70% Dark Matter 26% Ordinary Matter 4% #12;Dark Energy 70

Osheroff, Douglas D.

234

Fermi National Accelerator Laboratory FERMILAB-Pub-99/354-E  

E-Print Network [OSTI]

Fermi National Accelerator Laboratory FERMILAB-Pub-99/354-E D0 The Isolated Photon Cross Section Purposes. #12;Fermilab-Pub-99 354-E The Isolated Photon Cross Section in pp Collisions at ps = 1.8 TeV B

235

The National Criticality Experiments Research Center at the Device Assembly Facility, Nevada National Security Site: Status and Capabilities, Summary Report  

SciTech Connect (OSTI)

The National Criticality Experiments Research Center (NCERC) was officially opened on August 29, 2011. Located within the Device Assembly Facility (DAF) at the Nevada National Security Site (NNSS), the NCERC has become a consolidation facility within the United States for critical configuration testing, particularly those involving highly enriched uranium (HEU). The DAF is a Department of Energy (DOE) owned facility that is operated by the National Nuclear Security Agency/Nevada Site Office (NNSA/NSO). User laboratories include the Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL). Personnel bring their home lab qualifications and procedures with them to the DAF, such that non-site specific training need not be repeated to conduct work at DAF. The NNSS Management and Operating contractor is National Security Technologies, LLC (NSTec) and the NNSS Safeguards and Security contractor is Wackenhut Services. The complete report provides an overview and status of the available laboratories and test bays at NCERC, available test materials and test support configurations, and test requirements and limitations for performing sub-critical and critical tests. The current summary provides a brief summary of the facility status and the method by which experiments may be introduced to NCERC.

S. Bragg-Sitton; J. Bess; J. Werner

2011-09-01T23:59:59.000Z

236

E-Print Network 3.0 - argonne tandem-linac accelerator Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Page: << < 1 2 3 4 5 > >> 1 Key facts about Argonne National Laboratory Summary: Facility Argonne Tandem Linac Accelerator System Atmospheric Radiation Measurement Climate...

237

Target design optimization for an electron accelerator driven subcritical facility with circular and square beam profiles.  

SciTech Connect (OSTI)

A subcritical facility driven by an electron accelerator is planned at the Kharkov Institute of Physics and Technology (KIPT) in Ukraine for medical isotope production, materials research, training, and education. The conceptual design of the facility is being pursued through collaborations between ANL and KIPT. As part of the design effort, the high-fidelity analyses of various target options are performed with formulations to reflect the realistic configuration and the three dimensional geometry of each design. This report summarizes the results of target design optimization studies for electron beams with two different beam profiles. The target design optimization is performed via the sequential neutronic, thermal-hydraulic, and structural analyses for a comprehensive assessment of each configuration. First, a target CAD model is developed with proper emphasis on manufacturability to provide a basis for separate but consistent models for subsequent neutronic, thermal-hydraulic, and structural analyses. The optimizations are pursued for maximizing the neutron yield, streamlining the flow field to avoid hotspots, and minimizing the thermal stresses to increase the durability. In addition to general geometric modifications, the inlet/outlet channel configurations, target plate partitioning schemes, flow manipulations and rates, electron beam diameter/width options, and cladding material choices are included in the design optimizations. The electron beam interactions with the target assembly and the neutronic response of the subcritical facility are evaluated using the MCNPX code. the results for the electron beam energy deposition, neutron generation, and utilization in the subcritical pile are then used to characterize the axisymmetric heat generation profiles in the target assembly with explicit simulations of the beam tube, the coolant, the clad, and the target materials. Both tungsten and uranium are considered as target materials. Neutron spectra from tungsten and uranium are very similar allowing the use of either material in the subcritical assembly without changing its characteristics. However, the uranium target has a higher neutron yield, which increases the neutron flux of the subcritical assembly. Based on the considered dimensions and heat generation profiles, the commercial CFD software Star-CD is used for the thermal-hydraulic analysis of each target design to satisfy a set of thermal criteria, the most limiting of which being to maintain the water temperature 50 below the boiling point. It is found that the turbulence in the inlet channels dissipates quickly in narrow gaps between the target plates and, as a result, the heat transfer is limited by the laminar flow conditions. On average, 3-D CFD analyses of target assemblies agree well with 1-D calculations using RELAP (performed by KIPT). However, the recirculation and stagnation zones predicted with the CFD models prove the importance of a 3-D analysis to avoid the resulting hotspots. The calculated temperatures are subsequently used for the structural analysis of each target configuration to satisfy the other engineering design requirements. The thermo-structural calculations are performed mostly with NASTRAN and the results occasionally compared with the results from MARC. Both, NASTRAN and MARC are commercially available structural-mechanics analysis software. Although, a significant thermal gradient forms in target elements along the beam direction, the high thermal stresses are generally observed peripherally around the edge of thin target disks/plates. Due to its high thermal conductivity, temperatures and thermal stresses in tungsten target are estimated to be significantly lower than in uranium target. The deformations of the target disks/plates are found to be insignificant, which eliminate concerns for flow blockages in narrow coolant channels. Consistent with the specifications of the KIPT accelerator to be used in this facility, the electron beam power is 100-kW with electron energy in the range of 100 to 200 MeV. As expected, the 100 MeV el

Gohar, M. Y. A; Sofu, T.; Zhong, Z.; Belch, H.; Naberezhnev, D.; Nuclear Engineering Division

2008-10-30T23:59:59.000Z

238

Facility Operations and User Support | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5Facilities SomeFacilities

239

Sandia National Laboratories: Research: Facilities: Sandia Pulsed Reactor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSPRecovery Act SolarReactor FacilityFacility -

240

Feasibility study of channeling acceleration experiment at the Fermilab ASTA facility  

E-Print Network [OSTI]

Crystal channeling technology has offered various opportunities in accelerator community with a viability of ultrahigh gradient (TV/m) acceleration for future HEP collider in Energy Frontier. The major challenge of the channeling acceleration is that ultimate acceleration gradients might require high power driver at hard x-ray regime (~ 40 keV), exceeding those conceivable for x-rays as of today, though x-ray lasers can efficiently excite solid plasma and accelerate particles inside a crystal channel. Moreover, only disposable crystal accelerators are possible at such high externally excited fields which would exceed the ionization thresholds destroying the atomic structure, so acceleration will take place only in a short time before full dissociation of the lattice. Carbon- based nanostructures have great potential with a wide range of flexibility and superior physical strength, which can be applied to channeling acceleration. This paper present beam-driven channeling acceleration concept with CNTs and discu...

Shin, Young-Min; Still, Dean A; Shiltsev, Vladimir

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

National Aeronautics and Space Administration Michoud Assembly Facility  

E-Print Network [OSTI]

of liq- uid oxygen and liquid hydrogen propellant, which is fed to the shuttle's three main engines generation of Human Spaceflight vehicles. (NASA MSFC) Engineers at NASA's Michoud Assembly Facility install an F-1 engine on the Saturn V S-IC first stage. The S-1C first stage included five F-1 engines

Waliser, Duane E.

242

National facility for advanced computational science: A sustainable path to scientific discovery  

SciTech Connect (OSTI)

Lawrence Berkeley National Laboratory (Berkeley Lab) proposes to create a National Facility for Advanced Computational Science (NFACS) and to establish a new partnership between the American computer industry and a national consortium of laboratories, universities, and computing facilities. NFACS will provide leadership-class scientific computing capability to scientists and engineers nationwide, independent of their institutional affiliation or source of funding. This partnership will bring into existence a new class of computational capability in the United States that is optimal for science and will create a sustainable path towards petaflops performance.

Simon, Horst; Kramer, William; Saphir, William; Shalf, John; Bailey, David; Oliker, Leonid; Banda, Michael; McCurdy, C. William; Hules, John; Canning, Andrew; Day, Marc; Colella, Philip; Serafini, David; Wehner, Michael; Nugent, Peter

2004-04-02T23:59:59.000Z

243

Operational Philosophy for the Advanced Test Reactor National Scientific User Facility  

SciTech Connect (OSTI)

In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groups conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.

J. Benson; J. Cole; J. Jackson; F. Marshall; D. Ogden; J. Rempe; M. C. Thelen

2013-02-01T23:59:59.000Z

244

National Ignition Facility & Photon Science HOW NIF WORKS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.Demonstrate PromisingElectedEnergy3399 National

245

National Ignition Facility & Photon Science NIF AT A GLANCe  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.Demonstrate PromisingElectedEnergy3399 National5

246

National Ignition Facility & Photon Science NIF Fun Facts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.Demonstrate PromisingElectedEnergy3399 National57

247

NNSA Holds Groundbreaking at MOX Facility | National Nuclear Security  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApplyMaintaining ForNProgram |

248

KCP celebrates production milestone at new facility | National Nuclear  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApply for Our Jobs / How toNuclearSecurity

249

Sandia National Laboratories: Research: Facilities: Annular Core Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive SolarEducationStationCSPRecovery Act SolarReactor Facility Facebook

250

EA-1975: LINAC Coherent Light Source-Il, SLAC National Accelerator Laboratory, Menlo Park, California  

Broader source: Energy.gov [DOE]

DOE prepared an EA on the potential environmental impacts of a proposal to upgrade the existing LINAC Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. The proposed LCLS-II would extend the photon energy range, increase control over photon pulses, and enable two-color pump-probe experiments. The X-ray laser beams generated by LCLS-II would enable a new class of experiments: the simultaneous investigation of a material’s electronic and structural properties.

251

Activation of Air and Utilities in the National Ignition Facility  

SciTech Connect (OSTI)

Detailed 3-D modeling of the NIF facility is developed to accurately simulate the radiation environment within the NIF. Neutrons streaming outside the NIF Target Chamber will activate the air present inside the Target Bay and the Ar gas inside the laser tubes. Smaller levels of activity are also generated in the Switchyard air and in the Ar portion of the SY laser beam path. The impact of neutron activation of utilities located inside the Target Bay is analyzed for variety of shot types. The impact of activating TB utilities on dose received by maintenance personnel post-shot is analyzed. The current NIF facility model includes all important features of the Target Chamber, shielding system, and building configuration. Flow of activated air from the Target Bay is controlled by the HVAC system. The amount of activated Target Bay air released through the stack is very small and does not pose significant hazard to personnel or the environment. Activation of Switchyard air is negligible. Activation of Target Bay utilities result in a manageable dose rate environment post high yield (20 MJ) shots. The levels of activation generated in air and utilities during D-D and THD shots are small and do not impact work planning post shots.

Khater, H; Pohl, B; Brererton, S

2010-04-08T23:59:59.000Z

252

Preliminary assessment report for National Guard Facility, Installation 25255, Rehoboth, Massachusetts. Installation Restoration Program  

SciTech Connect (OSTI)

This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Massachusetts Army National Guard (MAARNG) property known as the Rehoboth National Guard Facility (RNGF) in Rehoboth, Massachusetts. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for ftirther action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. This PA satisfies, for the RNGF property, phase I of the Department of Defense Installation Restoration Program (IRP). The scope of this assessment is limited to the facilities under the control of the MAARNG and the past activities contained within that area.

Haffenden, R.; Flaim, S.; Krokosz, M.

1993-08-01T23:59:59.000Z

253

The National Ignition Facility and the Ignition Campaign  

E-Print Network [OSTI]

February 14-18, 2013 Debra A. Callahan Group Leader for ICF/IFE Target design Lawrence Livermore National(atm-s) Indirect drive on the NIF is within a factor of 2-3 of the conditions required for ignition Callahan -- AAAS, February 14-18, 2013 82013-047661s2.ppt NIF Ignition #12;2013-047661s2.ppt Callahan -- AAAS

254

E-Print Network 3.0 - accelerator target facilities Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The experiments were performed using... (University of Michigan) Multi-MeV ion beams accelerated using ... Source: Levine, Alex J. - Department of Chemistry and...

255

E-Print Network 3.0 - accelerator facility target Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The experiments were performed using... (University of Michigan) Multi-MeV ion beams accelerated using ... Source: Levine, Alex J. - Department of Chemistry and...

256

National Ignition Facility & Photon Science Seven WonderS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.Demonstrate PromisingElectedEnergy3399

257

National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F.Demonstrate PromisingElectedEnergy33997

258

Research Facilities | ANSER Center | Argonne-Northwestern National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome toResearch Areas Our Vision NationalLaboratory

259

New User Facilities Web Page Highlights Work at National Laboratories |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNationalMarketsMillion DOE Award |Department of

260

Brookhaven National Laboratory Federal Facility Agreement, February 28, 1992  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartment of4 Federal6Clean Energy |-Former HWMF Brookhaven National

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Y-12 demos former utilities and maintenance facility | National Nuclear  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational NuclearhasAdministration go on moon

262

National Ignition Facility computational fluid dynamics modeling and light fixture case studies  

SciTech Connect (OSTI)

This report serves as a guide to the use of computational fluid dynamics (CFD) as a design tool for the National Ignition Facility (NIF) program Title I and Title II design phases at Lawrence Livermore National Laboratory. In particular, this report provides general guidelines on the technical approach to performing and interpreting any and all CFD calculations. In addition, a complete CFD analysis is presented to illustrate these guidelines on a NIF-related thermal problem.

Martin, R.; Bernardin, J.; Parietti, L.; Dennison, B.

1998-02-01T23:59:59.000Z

263

Recent National Solar Thermal Test Facility activities, in partnership with industry  

SciTech Connect (OSTI)

The National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories in Albuquerque, New Mexico, USA conducts testing of solar thermal components and systems, funded primarily by the US Department of Energy. Activities are conducted in support of Central Receiver Technology, Distributed Receiver Technology and Design Assistance projects. All activities are performed in support of various cost-shared government/industry joint ventures and, on a design assistance basis, in support of a number of other industry partners.

Ghanbari, C.; Cameron, C.P.; Ralph, M.E.; Pacheco, J.E.; Rawlinson, K.S. [Sandia National Labs., Albuquerque, NM (United States); Evans, L.R. [Ewing Technical Design, Albuquerque, NM (United States)

1994-10-01T23:59:59.000Z

264

Acceleration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on the Cray XE6 platform Kirsten M. Fagnan, Michael Lijewski, George Pau, Nicholas J. Wright Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 94720 May 18, 2011...

265

EIS-0133: Decontamination and Waste Treatment Facility for the Lawrence Livermore National Laboratory Livermore, California  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy’s San Francisco Operations Office developed this statement to analyze the potential environmental and socioeconomic impacts of alternatives for constructing and operating a Decontamination and Waste Treatment Facility for nonradioactive (hazardous and nonhazardous) mixed and radioactive wastes at Lawrence Livermore National Laboratory.

266

"Basic Research Directions Workshop on User Science at the National Ignition Facility"  

E-Print Network [OSTI]

) · that will make a difference for science (The Impact) In Laboratory Astrophysics, Nuclear Physics, Materials" Workshop May 9-12, 2011 Panel Chairs: Laboratory Astrophysics: Paul Drake (Michigan) Nuclear Physics: Bill at the National Ignition Facility Unprecedented environment for science · Matter temperatures exceeding 108 K

267

Use of the LEDA Facility as an ADS High-Power Accelerator Test Bed  

SciTech Connect (OSTI)

The Low-Energy Demonstration Accelerator (LEDA) was built to generate high-current proton beams. Its successful full-power operation and testing in 1999-2001 confirmed the feasibility of a high-power linear accelerator (linac) front end, the most technically challenging portion of such a machine. The 6.7-MeV accelerator operates reliably at 95-mA CW beam current with few interruptions orjaults, and qualiJes as one of the most powerful accelerators in the world. LEDA is now available to address the needs of other programs. LEDA can be upgraded in a staged fashion to allow for full-power accelerator demonstrations. The proposed post-h!FQ accelerator structures are 350-MHz superconducting spoke cavities developed for the AAA /APT program. The superconducting portion of the accelerator is designed for a IOO-mA proton beam current. Superconducting cavities were chosen because of the signijkant thermal issues with room-temperature structures, the larger superconducting cavity apertures, and the lower operating costs ('because of improved electrical efficiency) of a superconducting accelerator. Since high reliability is a major issue for an ADS system, the superconducting design architecture alIows operation through faults due to the failure of single magnets or superconducting cavities. The presently installed power capacity of 13 MVA of input ACpower is capable of supporting a 40-MeVproton beam at 100 mA. (The input power is easily expandable to 25 MVA, allowing up to 100-MeV operation). Operation at 40-MeV would provide a complete demonstration of all of the critical accelerator sub-systems ofa full-power ADS system.

Garnett, R. W. (Robert W.); Sheffield, R. L. (Richard L.)

2003-01-01T23:59:59.000Z

268

Activation Analysis of the Final Optics Assemblies at the National Ignition Facility  

SciTech Connect (OSTI)

Commissioning shots have commenced at the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory. Within a year, the 192 laser beam facility will be operational and the experimental phase will begin. At each shot, the emitted neutrons will interact in the facility's surroundings, activating them, especially inside the target bay where the neutron flux is the highest. We are calculating the dose from those activated structures and objects in order to plan and minimize worker exposures during maintenance and normal NIF operation. This study presents the results of the activation analysis of the optics of the Final Optics Assemblies (FOA), which are a key contributor to worker exposure. Indeed, there are 48 FOAs weighting three tons each, and routine change-out and maintenance of optics and optics modules is expected. The neutron field has been characterized using the three-dimensional Monte Carlo particle transport code MCNP with subsequent activation analysis performed using the activation code, ALARA.

Dauffy, L S; Khater, H Y; Sitaraman, S; Brereton, S J

2008-10-14T23:59:59.000Z

269

The National Ignition Facility: The Path to a Carbon-Free Energy Future  

SciTech Connect (OSTI)

The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centers on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.

Stolz, C J

2011-03-16T23:59:59.000Z

270

Future Accelerators (?)  

E-Print Network [OSTI]

I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

John Womersley

2003-08-09T23:59:59.000Z

271

Advances in Inertial Confinement Fusion at the National Ignition Facility (NIF)  

SciTech Connect (OSTI)

The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratory - temperatures over 100 million K, densities of 1,000 g/cm3, and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1 MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

Moses, E

2009-10-15T23:59:59.000Z

272

Iltt: Fermi National Accelerator Laboratory FERMILAB-Pub-75/44-THY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. |Endecaheme c-Type|Iltt: Fermi National Accelerator

273

SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticutPhotos of AEC SiteEnvironmentalSLAC National Accelerator

274

E-Print Network 3.0 - accelerator facilities doe Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

JUSTIFICATION MEMO ON REVISION OF DOE O Summary: ON REVISION OF DOE O 5480.19, CONDUCT OF OPERATIONS REQUIREMENTS FOR DOE FACILITIES Executive Summary... will be applicable to DOE...

275

Toward a national plan for the accelerated commercialization of solar energy. Workbook summaries  

SciTech Connect (OSTI)

These workbooks contain preliminary data and assumptions used during the preparation of inputs to a National Plan for the Accelerated Commercialization of Solar Energy (NPAC). The workbooks indicate the market potential, competitive position, market penetration, and technological characteristics of solar technologies over the next twenty years for five market sectors: residential buildings; commercial and institutional buildings; agricultural and industrial process heat; utility applications; and synthetic fuels and chemicals. The workbooks also present projections of the mix of solar technologies by US Census Region. In some cases, data have been aggregated to the national level. Emphasis of the workbooks is on a mid-price fuel scenario, Option II, that meets about a 20 percent solar goal by the year 2000. The energy demand for the mid-price scenario is projected at 115 quads in the year 2000.

Gerstein, R.E.; Kannan, N.P.; Miller, C.G.; Shulman, M.J.; Taul, J.W. Jr.; de Jong, D.L.

1980-01-01T23:59:59.000Z

276

E-Print Network 3.0 - accelerator facility atlas Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

experimentalists (ATLAS, T2K, SNOLAB, smaller experiments) - 70 theorists (phenomenology, string theory, formal... theory) 12;TRIUMF National lab for subatomic physics...

277

New X-ray Scattering Facility at Ris National Laboratory Jens Wenzel Andreasen, Dag Werner Breiby, Martin Drews, Martin Meedom Nielsen  

E-Print Network [OSTI]

New X-ray Scattering Facility at Risø National Laboratory Jens Wenzel Andreasen, Dag Werner Breiby, DK-4000 Roskilde, Denmark The new X-ray facility at the Danish Polymer Centre, Risø National

278

Progress in the title I design of the National Ignition Facility  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) Project officially began in December of 1995. In October of 1996, advanced conceptual design studies, complete environmental impact study, facilitization of the manufacturing capabilities of optics vendors began. The Title I preliminary engineering design had not yet began until the end of December, but it is expected to be on schedule. It is expected that the conventional facilities design will be completed first. The Independent Cost Estimate (ICF) process will begin after the facilities design is complete. Other elements of the design will be submitted in one- or two-week intervals. This phase method of completing Title I was also used at the end of Complete Design Report and proved to be efficient. 9 refs., 11 figs.

Paisner, J.A.; Hogan, W.J. [Lawrence Livermore National Lab., CA (United States)

1996-12-31T23:59:59.000Z

279

Assessment and Mitigation of Diagnostic-Generated Electromagnetic Interference at the National Ignition Facility  

SciTech Connect (OSTI)

Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effects of diagnostic-generated EMI on NIF diagnostics.

Brown, C G; Ayers, M J; Felker, B; Ferguson, W; Holder, J P; Nagel, S R; Piston, K W; Simanovskaia, N; Throop, A L; Chung, M; Hilsabeck, T

2012-04-20T23:59:59.000Z

280

Test Results From The Idaho National Laboratory 15kW High Temperature Electrolysis Test Facility  

SciTech Connect (OSTI)

A 15kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feed-stock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date.

Carl M. Stoots; Keith G. Condie; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Utility of the US National Ignition Facility for development of inertial fusion energy  

SciTech Connect (OSTI)

The demonstration of inertial fusion ignition and gain in the proposed US National Ignition Facility (NIF), along with the parallel demonstration of the feasibility of an efficient, high-repetition-rate driver, would provide the basis for a follow-on Engineering Test Facility (ETF), a facility for integrated testing of the technologies needed for inertial fusion-energy (IFE) power plants. A workshop was convened at the University of California, Berkeley on February 22--24, 1994, attended by 61 participants from 17 US organizations, to identify possible NIF experiments relevant to IFE. We considered experiments in four IFE areas: Target physics, target chamber dynamics, fusion power ethnology, and target systems, as defined in the following sections.

Logan, B.G.; Anderson, A.T.; Tobin, M.T. [Lawrence Livermore National Lab., CA (United States); Schrock, V.E. [California Univ., Berkeley, CA (United States); Meier, W.R. [Schafer (W.J.) Associates, Inc., Livermore, CA (United States); Bangerter, R.O. [Lawrence Berkeley Lab., CA (United States); Tokheim, R.E. [SRI International, Menlo Park, CA (United States). Poulter Lab.; Abdou, M.A. [California Univ., Los Angeles, CA (United States); Schultz, K.R. [General Atomics, San Diego, CA (United States)

1994-08-01T23:59:59.000Z

282

Construction safety program for the National Ignition Facility Appendix A: Safety Requirements  

SciTech Connect (OSTI)

These rules apply to all LLNL employees, non-LLNL employees (including contract labor, supplemental labor, vendors, personnel matrixed/assigned from other National Laboratories, participating guests, visitors and students) and construction contractors/subcontractors. The General Safety and Health rules shall be used by management to promote accident prevention through indoctrination, safety and health training and on-the-job application. As a condition for contracts award, all contractors and subcontractors and their employees must certify on Form S & H A-1 that they have read and understand, or have been briefed and understand, the National Ignition Facility OCIP Project General Safety Rules.

Cerruti, S.J.

1997-01-14T23:59:59.000Z

283

A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility  

SciTech Connect (OSTI)

A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors it records 16 time-gated spectra between 250 and 1000 eV with 100 ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300 eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and vacuum ultraviolet beamline at the National Synchrotron Light Source, evidence a <100 {mu}m spatial resolution in combination with a source-size limited spectral resolution that is <10 eV at photon energies of 300 eV.

Moore, A. S.; Guymer, T. M.; Morton, J.; Bentley, C.; Stevenson, M. [Directorate Science and Technology, AWE Aldermaston, Reading, RG7 4PR (United Kingdom); Kline, J. L.; Taccetti, M.; Lanier, N. E.; Workman, J.; Peterson, B.; Mussack, K.; Cowan, J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Prasad, R.; Richardson, M.; Burns, S.; Kalantar, D. H.; Benedetti, L. R.; Bell, P.; Bradley, D.; Hsing, W. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)

2012-10-15T23:59:59.000Z

284

A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility  

SciTech Connect (OSTI)

A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors (GXD) it records sixteen time-gated spectra between 250 and 1000eV with 100ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and VUV beamline at the National Synchrotron Light Source (NSLS), evidence a <100{micro}m spatial resolution in combination with a source-size limited spectral resolution that is <10eV at photon energies of 300eV.

Moore, A S; Guymer, T M; Kline, J L; Morton, J; Taccetti, M; Lanier, N E; Bentley, C; Workman, J; Peterson, B; Mussack, K; Cowan, J; Prasad, R; Richardson, M; Burns, S; Kalantar, D H; Benedetti, L R; Bell, P; Bradley, D; Hsing, W; Stevenson, M

2012-05-01T23:59:59.000Z

285

Analysis of Capillary Guided Laser Plasma Accelerator Experiments at LBNL  

E-Print Network [OSTI]

Accelerator Experiments at LBNL K. Nakamura ?,† , A. J.National Labo- ratory (LBNL) [5, 6]. In this scheme, intenseof the LOASIS facility at LBNL. The laser beam was focused

Nakamura, Kei; Advanced Light Source

2009-01-01T23:59:59.000Z

286

BETA BEAMS: AN ACCELERATOR BASED FACILITY TO EXPLORE NEUTRINO OSCILLATION PHYSICS  

E-Print Network [OSTI]

them decay in a race-track shaped stor- age ring. EURO Beta Beams are based on CERNs infras- tructure to get high neutrino flux at a gamma boost of 100. INTRODUCTION Production of (anti-)neutrinos from beta facility, using the isotope pair 6 He/18 Ne and detector in the Fr´ejus tunnel (France) has been studied

Paris-Sud XI, Université de

287

Removal site evaluation report for the Isotope Facilities at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This removal site evaluation (RmSE) report of the Isotope Facilities at Oak Ridge National Laboratory (ORNL) was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the Isotopes Facility pose a substantial risk to human health or the environment and if remedial site evaluations (RSEs) or removal actions are required. The scope of the project included: (1) a review of historical evidence regarding operations and use of the facility; (2) interviews with facility personnel concerning current and past operating practices; (3) a site inspection; and (4) identification of hazard areas requiring maintenance, removal, or remedial actions. The results of RmSE indicate that no substantial risks exist from contaminants present in the Isotope Facilities because adequate controls and practices exist to protect human health and the environment. The recommended correction from the RmSE are being conducted as maintenance actions; accordingly, this RmSE is considered complete and terminated.

NONE

1996-07-01T23:59:59.000Z

288

2010 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant  

SciTech Connect (OSTI)

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2009, through October 31, 2010. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of special compliance conditions • Discussion of the facility’s environmental impacts. During the 2010 permit year, approximately 2.2 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

Mike lewis

2011-02-01T23:59:59.000Z

289

2012 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central facilities Area Sewage Treatment Plant  

SciTech Connect (OSTI)

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2011, through October 31, 2012. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2012 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant.

Mike Lewis

2013-02-01T23:59:59.000Z

290

The Advanced Photon Source: A national synchrotron radiation research facility at Argonne National Laboratory  

SciTech Connect (OSTI)

The vision of the APS sprang from prospective users, whose unflagging support the project has enjoyed throughout the decade it has taken to make this facility a reality. Perhaps the most extraordinary aspect of synchrotron radiation research, is the extensive and diverse scientific makeup of the user community. From this primordial soup of scientists exchanging ideas and information, come the collaborative and interdisciplinary accomplishments that no individual alone could produce. So, unlike the solitary Roentgen, scientists are engaged in a collective and dynamic enterprise with the potential to see and understand the structures of the most complex materials that nature or man can produce--and which underlie virtually all modern technologies. This booklet provides scientists and laymen alike with a sense of both the extraordinary history of x-rays and the knowledge they have produced, as well as the potential for future discovery contained in the APS--a source a million million times brighter than the Roentgen tube.

NONE

1995-10-01T23:59:59.000Z

291

EA-1148: Electrometallurgical Treatment Research and Demonstration Project in the Fuel Conditioning Facility at Argonne National Laboratory- West  

Broader source: Energy.gov [DOE]

DOE prepared an EA that evaluated the potential environmental impacts associated with the research and demonstration of electrometallurgical technology for treating Experimental Breeder Reactor-II Spent Nuclear Fuel in the Fuel Conditioning Facility at Argonne National Laboratory-West.

292

Performance of High-Convergence, Layered DT Implosions with Extended-Duration Pulses at the National Ignition Facility  

E-Print Network [OSTI]

Radiation-driven, low-adiabat, cryogenic DT layered plastic capsule implosions were carried out on the National Ignition Facility (NIF) to study the sensitivity of performance to peak power and drive duration. An implosion ...

Gatu Johnson, Maria

293

Measurements of an Ablator-Gas Atomic Mix in Indirectly Driven Implosions at the National Ignition Facility  

E-Print Network [OSTI]

. Town,1 K. Widmann,1 D. C. Wilson,2 and C. B. Yeamans1 1 Lawrence Livermore National Laboratory, Livermore, California 94550, USA 2 Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA 3 (NIF) [3,4] uses a 1.6 MJ laser pulse at a peak power of 410 TW to accelerate the DT fuel to a peak

294

Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research  

SciTech Connect (OSTI)

The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called User’s Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. User’s week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

John Jackson; Todd Allen; Frances Marshall; Jim Cole

2013-03-01T23:59:59.000Z

295

National Ignition Facility subsystem design requirements NIF site improvements SSDR 1.2.1  

SciTech Connect (OSTI)

This Subsystem Design Requirements (SSDR) document establishes the performance, design, and verification requirements associated with the NIF Project Site at Lawrence Livermore National Laboratory (LLNL) at Livermore, California. It identifies generic design conditions for all NIF Project facilities, including siting requirements associated with natural phenomena, and contains specific requirements for furnishing site-related infrastructure utilities and services to the NIF Project conventional facilities and experimental hardware systems. Three candidate sites were identified as potential locations for the NIF Project. However, LLNL has been identified by DOE as the preferred site because of closely related laser experimentation underway at LLNL, the ability to use existing interrelated infrastructure, and other reasons. Selection of a site other than LLNL will entail the acquisition of site improvements and infrastructure additional to those described in this document. This SSDR addresses only the improvements associated with the NIF Project site located at LLNL, including new work and relocation or demolition of existing facilities that interfere with the construction of new facilities. If the Record of Decision for the PEIS on Stockpile Stewardship and Management were to select another site, this SSDR would be revised to reflect the characteristics of the selected site. Other facilities and infrastructure needed to support operation of the NIF, such as those listed below, are existing and available at the LLNL site, and are not included in this SSDR. Office Building. Target Receiving and Inspection. General Assembly Building. Electro- Mechanical Shop. Warehousing and General Storage. Shipping and Receiving. General Stores. Medical Facilities. Cafeteria services. Service Station and Garage. Fire Station. Security and Badging Services.

Kempel, P.; Hands, J.

1996-08-19T23:59:59.000Z

296

Software solutions manage the definition, operation, maintenance and configuration control of the National Ignition Facility  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is the world's largest laser composed of millions of individual parts brought together to form one massive assembly. Maintaining control of the physical definition, status and configuration of this structure is a monumental undertaking yet critical to the validity of the shot experiment data and the safe operation of the facility. The NIF business application suite of software provides the means to effectively manage the definition, build, operation, maintenance and configuration control of all components of the National Ignition Facility. State of the art Computer Aided Design software applications are used to generate a virtual model and assemblies. Engineering bills of material are controlled through the Enterprise Configuration Management System. This data structure is passed to the Enterprise Resource Planning system to create a manufacturing bill of material. Specific parts are serialized then tracked along their entire lifecycle providing visibility to the location and status of optical, target and diagnostic components that are key to assessing pre-shot machine readiness. Nearly forty thousand items requiring preventive, reactive and calibration maintenance are tracked through the System Maintenance & Reliability Tracking application to ensure proper operation. Radiological tracking applications ensure proper stewardship of radiological and hazardous materials and help provide a safe working environment for NIF personnel.

Dobson, D; Churby, A; Krieger, E; Maloy, D; White, K

2011-07-25T23:59:59.000Z

297

Environmental assessment for the Radioactive and Mixed Waste Management Facility: Sandia National Laboratories/New Mexico  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0466) under the National Environmental Policy Act (NEPA) of 1969 for the proposed completion of construction and subsequent operation of a central Radioactive and Mixed Waste Management Facility (RMWMF), in the southeastern portion of Technical Area III at Sandia National Laboratory, Albuquerque (SNLA). The RMWMF is designed to receive, store, characterize, conduct limited bench-scale treatment of, repackage, and certify low-level waste (LLW) and mixed waste (MW) (as necessary) for shipment to an offsite disposal or treatment facility. The RMWMF was partially constructed in 1989. Due to changing regulatory requirements, planned facility upgrades would be undertaken as part of the proposed action. These upgrades would include paving of road surfaces and work areas, installation of pumping equipment and lines for surface impoundment, and design and construction of air locks and truck decontamination and water treatment systems. The proposed action also includes an adjacent corrosive and reactive metals storage area, and associated roads and paving. LLW and MW generated at SNLA would be transported from the technical areas to the RMWMF in containers approved by the Department of Transportation. The RMWMF would not handle nonradioactive hazardous waste. Based on the analysis in the EA, the proposed completion of construction and operation of the RMWMF does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, preparation of an environmental impact statement for the proposed action is not required.

Not Available

1993-06-01T23:59:59.000Z

298

Documentation of acceptable knowledge for Los Alamos National Laboratory Plutonium Facility TRU waste stream  

SciTech Connect (OSTI)

Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the TRU waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility`s mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC.

Montoya, A.J.; Gruetzmacher, K.M.; Foxx, C.L.; Rogers, P.Z.

1998-03-01T23:59:59.000Z

299

Distributed Feedback Fiber Laser The Heart of the National Ignition Facility  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is a world-class laser fusion machine that is currently under construction at Lawrence Livermore National Laboratory (LLNL). The 192 laser beams that converge on the target at the output of the NIF laser system originate from a low power fiber laser in the Master Oscillator Room (MOR). The MOR is responsible for generating the single pulse that seeds the entire NIF laser system. This single pulse is phase-modulated to add bandwidth, and then amplified and split into 48 separate beam lines all in single-mode polarizing fiber. Before leaving the MOR, each of the 48 output beams are temporally sculpted into high contrast shapes using Arbitrary Waveform Generators. The 48 output beams of the MOR are amplified in the Preamplifier Modules (PAMs), split and amplified again to generate 192 laser beams. The 192 laser beams are frequency converted to the third harmonic and then focused at the center of a 10-meter diameter target chamber. The MOR is an all fiber-based system utilizing highly reliable Telecom-Industry type hardware. The nearly 2,000,000 joules of energy at the output of the NIF laser system starts from a single fiber oscillator that fits in the palm of your hand. This paper describes the design and performance of the laser source that provides the precision light to the National Ignition Facility. Shown below is a simplified diagram illustrating the MOR's basic functions.

Browning, D F; Erbert, G V

2003-12-01T23:59:59.000Z

300

Standard design for National Ignition Facility x-ray streak and framing cameras  

SciTech Connect (OSTI)

The x-ray streak camera and x-ray framing camera for the National Ignition Facility were redesigned to improve electromagnetic pulse hardening, protect high voltage circuits from pressure transients, and maximize the use of common parts and operational software. Both instruments use the same PC104 based controller, interface, power supply, charge coupled device camera, protective hermetically sealed housing, and mechanical interfaces. Communication is over fiber optics with identical facility hardware for both instruments. Each has three triggers that can be either fiber optic or coax. High voltage protection consists of a vacuum sensor to enable the high voltage and pulsed microchannel plate phosphor voltage. In the streak camera, the high voltage is removed after the sweep. Both rely on the hardened aluminum box and a custom power supply to reduce electromagnetic pulse/electromagnetic interference (EMP/EMI) getting into the electronics. In addition, the streak camera has an EMP/EMI shield enclosing the front of the streak tube.

Kimbrough, J. R.; Bell, P. M.; Bradley, D. K.; Holder, J. P.; Kalantar, D. K.; MacPhee, A. G.; Telford, S. [Lawrence Livermore National Laboratory, Livermore, California 94551-0808 (United States)

2010-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

PLANNING TOOLS FOR ESTIMATING RADIATION EXPOSURE AT THE NATIONAL IGNITION FACILITY  

SciTech Connect (OSTI)

A set of computational tools was developed to help estimate and minimize potential radiation exposure to workers from material activation in the National Ignition Facility (NIF). AAMI (Automated ALARA-MCNP Interface) provides an efficient, automated mechanism to perform the series of calculations required to create dose rate maps for the entire facility with minimal manual user input. NEET (NIF Exposure Estimation Tool) is a web application that combines the information computed by AAMI with a given shot schedule to compute and display the dose rate maps as a function of time. AAMI and NEET are currently used as work planning tools to determine stay-out times for workers following a given shot or set of shots, and to help in estimating integrated doses associated with performing various maintenance activities inside the target bay. Dose rate maps of the target bay were generated following a low-yield 10{sup 16} D-T shot and will be presented in this paper.

Verbeke, J; Young, M; Brereton, S; Dauffy, L; Hall, J; Hansen, L; Khater, H; Kim, S; Pohl, B; Sitaraman, S

2010-10-22T23:59:59.000Z

302

Data Sharing Report Characterization of Isotope Row Facilities Oak Ridge National Laboratory Oak Ridge TN  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort was designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D&D). The process for D&D and final dismantlement of facilities requires that the known contaminants of concern (COCs) be evaluated and quantified and to identify and quantify any additional contaminants in order to satisfy the waste acceptance criteria requirements for the desired disposal pathway. Known facility contaminants include, but are not limited to, asbestos-containing material (ACM), radiological contaminants, and chemical contaminants including polychlorinated biphenyls (PCBs) and metals.

Weaver, Phyllis C

2013-12-12T23:59:59.000Z

303

Dual-Axis Radiographic Hydrodynamic Test Facility At the Los Alamos National Laboratory (LANL), the Dual-Axis  

E-Print Network [OSTI]

's primary mission: to ensure the safety, security, and effectiveness of nuclear weapons in our na- tion of nuclear weapons. The DARHT Facility DARHT consists of two linear induction accelerators that are oriented for computer codes. These radio- graphic images are used to evaluate nuclear weapons though nonnuclear

304

Development and Implementation of a Scaled Saltstone Facility at Savannah River National Laboratory - 13346  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) has supported the Saltstone Production Facility (SPF) since its conception. However, bench scaled tests have not always provided process or performance data related to the mixing, transfer, and other operations utilized in the SPF. A need was identified to better understand the SPF processes and to have the capabilities at SRNL to simulate the SPF unit operations to support an active low-level radioactive waste (LLW) processing facility. At the SPF, the dry premix is weighed, mixed and transferred to the Readco '10-inch' continuous mixer where it is mixed with the LLW salt solution from the Salt Feed Tank (SFT) to produce fresh Saltstone slurry. The slurry is discharged from the mixer into a hopper. The hopper feeds the grout pump that transfers the slurry through at least 457.2 meters of piping and discharges it into the Saltstone Disposal Units (SDU) for permanent disposal. In conjunction with testing individual SPF processes over several years, SRNL has designed and fabricated a scaled Saltstone Facility. Scaling of the system is primarily based on the volume capacity of the mixer and maintaining the same shear rate and total shear at the wall of the transfer line. At present, SRNL is utilizing the modular capabilities of the scaled Saltstone Facility to investigate the erosion issues related to the augers and paddles inside the SPF mixer. Full implementation of the scaled Saltstone Facility is still ongoing, but it is proving to be a valuable resource for testing alternate Saltstone formulations, cleaning sequences, the effect of pumping Saltstone to farther SDU's, optimization of the SPF mixer, and other operational variables before they are implemented in the SPF. (authors)

Reigel, Marissa M.; Fowley, Mark D.; Hansen, Erich K.; Hera, Kevin R.; Marzolf, Athneal D.; Cozzi, Alex D. [Savannah River National Laboratory, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

305

Diagnosing ablator R and R asymmetries in capsule implosions using charged-particle spectrometry at the National Ignition Facility  

E-Print Network [OSTI]

for Laser Energetics, University of Rochester, Rochester, New York 14623, USA 3 Lawrence Livermore National Laboratory, Livermore, California 94550, USA Received 26 February 2008; accepted 9 July 2008; published-driven capsule implosion at the National Ignition Facility NIF Ref. 1 requires care- ful tuning of the drive

306

Effects On Beam Alignment Due To Neutron-Irradiated CCD Images At The National Ignition Facility  

SciTech Connect (OSTI)

The 192 laser beams in the National Ignition Facility (NIF) are automatically aligned to the target-chamber center using images obtained through charged coupled device (CCD) cameras. Several of these cameras are in and around the target chamber during an experiment. Current experiments for the National Ignition Campaign are attempting to achieve nuclear fusion. Neutron yields from these high energy fusion shots expose the alignment cameras to neutron radiation. The present work explores modeling and predicting laser alignment performance degradation due to neutron radiation effects, and demonstrates techniques to mitigate performance degradation. Camera performance models have been created based on the measured camera noise from the cumulative single-shot fluence at the camera location. We have found that the effect of the neutron-generated noise for all shots to date have been well within the alignment tolerance of half a pixel, and image processing techniques can be utilized to reduce the effect even further on the beam alignment.

Awwal, A; Manuel, A; Datte, P; Burkhart, S

2011-02-28T23:59:59.000Z

307

Novel transport-vehicle design for moving optic modules in the National Ignition Facility  

SciTech Connect (OSTI)

The National Ignition Facility, currently under design and construction at Lawrence Livermore National Laboratory, will be the world`s largest laser when complete. The NIF will use about 8,000 large optics of 26 different types to focus up to 192 laser beams on a dime-size target. Given the constraints of the NIF operating environment, the tasks associated with optics transport and handling require a novel, versatile transport system. The system will consist of a computer system containing guidance, traffic management and order entry functions, and four or more automated laser-guided vehicles. This transport system will transport optics enclosures that are essentially portable clean rooms and will lift, align, and position them as needed to contact and engage mating points on the laser support structure.

Grasz, E.; Tiszauer, D.

1998-05-07T23:59:59.000Z

308

High-energy x-ray microscopy of laser-fusion plasmas at the National Ignition Facility  

SciTech Connect (OSTI)

Multi-keV x-ray microscopy will be an important laser-produced plasma diagnostic at future megajoule facilities such as the National Ignition Facility (NIF).In preparation for the construction of this facility, we have investigated several instrumentation options in detail, and we conclude that near normal incidence single spherical or toroidal crystals may offer the best general solution for high-energy x-raymicroscopy at NIF and at similar large facilities. Kirkpatrick-Baez microscopes using multi-layer mirrors may also be good secondary options, particularly if apertures are used to increase the band-width limited field of view.

Koch, J.A.; Landen, O.L.; Hammel, B.A. [and others

1997-08-26T23:59:59.000Z

309

2011 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant  

SciTech Connect (OSTI)

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant from November 1, 2010, through October 31, 2011. The report contains the following information: (1) Site description; (2) Facility and system description; (3) Permit required monitoring data and loading rates; (4) Status of special compliance conditions and activities; and (5) Discussion of the facility's environmental impacts. During the 2011 permit year, approximately 1.22 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

Michael G. Lewis

2012-02-01T23:59:59.000Z

310

High-intensity positron microprobe at the Thomas Jefferson National Accelerator Facility  

SciTech Connect (OSTI)

We present a conceptual design for a novel continuous wave electron-linac based high-intensity high-brightness slow-positron production source with a projected intensity on the order of 10{sup 10?}e{sup +}/s. Reaching this intensity in our design relies on the transport of positrons (T{sub +} below 600?keV) from the electron-positron pair production converter target to a low-radiation and low-temperature area for moderation in a high-efficiency cryogenic rare gas moderator, solid Ne. This design progressed through Monte Carlo optimizations of: electron/positron beam energies and converter target thickness, transport of the e{sup +} beam from the converter to the moderator, extraction of the e{sup +} beam from the magnetic channel, a synchronized raster system, and moderator efficiency calculations. For the extraction of e{sup +} from the magnetic channel, a magnetic field terminator plug prototype has been built and experimental results on the effectiveness of the prototype are presented. The dissipation of the heat away from the converter target and radiation protection measures are also discussed.

Golge, S., E-mail: serkan.golge@nasa.gov; Vlahovic, B. [North Carolina Central University, Durham, North Carolina 27707 (United States); Wojtsekhowski, B. [Jefferson Laboratory, 12000 Jefferson Ave., Newport News, Virginia 23606 (United States)

2014-06-21T23:59:59.000Z

311

Labs at-a-Glance: Thomas Jefferson National Accelerator Facility | U.S. DOE  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticles News News Home Featured ArticlesScience (SC)Office of

312

Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticutPhotos of AECSign Up for

313

Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticutPhotos of AECSign Up for(SC) Thomas Jefferson

314

Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticutPhotos of AECSign Up for(SC) Thomas

315

Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticutPhotos of AECSign Up for(SC) Thomas(SC) Thomas

316

Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticutPhotos of AECSign Up for(SC) Thomas(SC)

317

Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticutPhotos of AECSign Up for(SC) Thomas(SC)(SC)

318

Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,BiosScience (SC)Supply and DemandThiyaga P.(SC)

319

Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,BiosScience (SC)Supply and DemandThiyaga

320

Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,BiosScience (SC)Supply and DemandThiyaga(SC)

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Measurements of emittance growth through the achromatic bend at the BNL Accelerator Test Facility  

SciTech Connect (OSTI)

Measurements of emittance growth in a high peak current beam as it passes through an achromatic double bend are summarized. Experiments were performed using the ATF at Brookhaven National Laboratory by X.J. Wang and D. Kehne as a collaboration resulting from the proposal attached at the end of the document. The ATF consists off an RF gun (1 MeV), two sections of linac (40-75 MeV), a diagnostic section immediately following the linac, a 20{degree} bend magnet, a variable aperture slit at a high dispersion point, 5 quadrupoles, then another 20{degree} bend followed by another diagnostic section. The TRANSPORT deck describing the region from the end of the linac to the end of the diagnostic line following the achromatic bends is attached to the end of this document. Printouts of the control screens are also attached.

Wang, X.J.; Kehne, D.

1997-07-01T23:59:59.000Z

322

The Advanced Test Reactor Irradiation Capabilities Available as a National Scientific User Facility  

SciTech Connect (OSTI)

The Advanced Test Reactor (ATR) is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These capabilities include simple capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. Monitoring systems have also been utilized to monitor different parameters such as fission gases for fuel experiments, to measure specimen performance during irradiation. ATR’s control system provides a stable axial flux profile throughout each reactor operating cycle, and allows the thermal and fast neutron fluxes to be controlled separately in different sections of the core. The ATR irradiation positions vary in diameter from 16 mm to 127 mm over an active core height of 1.2 m. This paper discusses the different irradiation capabilities with examples of different experiments and the cost/benefit issues related to each capability. The recent designation of ATR as a national scientific user facility will make the ATR much more accessible at very low to no cost for research by universities and possibly commercial entities.

S. Blaine Grover

2008-09-01T23:59:59.000Z

323

Seismic margins assessment of the plutonium processing facility Los Alamos National Laboratory  

SciTech Connect (OSTI)

Results of the recently completed seismic evaluation at the Los Alamos National Laboratory site indicate a need to consider seismic loads greater than design basis for many structures systems and components (SSCs). DOE Order 5480.28 requires that existing SSCs be evaluated to determine their ability to withstand the effects of earthquakes when changes in the understanding of this hazard results in greater loads. In preparation for the implementation of DOE Order 5480.28 and to support the update of the facility Safety Analysis Report, a seismic margin assessment of SSCs necessary for a monitored passive safe shutdown of the Plutonium Processing Facility (PF-4) was performed. The seismic margin methodology is given in EPRI NP-6041-SL, ``A Methodology for Assessment of Nuclear Power Plant Seismic Margin (Revision 1)``. In this methodology, high confidence of low probability of failure (HCLPF) capacities for SSCs are estimated in a deterministic manner. For comparison to the performance goals given in DOE Order 5480.28, the results of the seismic margins assessment were used to estimate the annual probability of failure for the evaluated SSCs. In general, the results show that the capacity for the SSCs comprising PF-4 is high. This is to be expected for a newer facility as PF-4 was designed in the early 1970`s. The methodology and results of this study are presented in this paper.

Goen, L.K. [Los Alamos National Lab., NM (United States); Salmon, M.W. [EQE International, Irwine, CA (United States)

1995-12-01T23:59:59.000Z

324

Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

2012-05-01T23:59:59.000Z

325

Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico  

SciTech Connect (OSTI)

The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2.

OSCAR,DEBBY S.; WALKER,SHARON ANN; HUNTER,REGINA LEE; WALKER,CHERYL A.

1999-12-01T23:59:59.000Z

326

Target area and diagnostic interface issues on the National Ignition Facility (invited)  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is under construction at Lawrence Livermore National Laboratory for the DOE Stockpile Stewardship Program. It will be used for experiments for inertial confinement fusion ignition, high energy density science, and basic science. Many interface issues confront the experimentalist who wishes to design, fabricate, and install diagnostics, and to help this process, a set of standards and guideline documents is being prepared. Compliance with these will be part of a formal diagnostic design review process. In this article we provide a short description of each, with reference to more complete documentation. The complete documentation will also be available through the NIF Diagnostics web page. Target area interface issues are grouped into three categories. First are the layout and utility interface issues which include the safety analysis report, target area facility layout; target chamber port locations; diagnostic interferences and envelopes; utilities and cable tray distribution; and timing and fiducial systems. Second are the environment interface issues which include radiation electromagnetic interference/electromagnetic pulse effects and mitigation; electrical grounding, shielding, and isolation; and cleanliness and vacuum guidelines. Third are the operational interface issues which include manipulator based target diagnostics, diagnostic alignment, shot life cycle and setup, diagnostic controllers; integrated computer control system; shot data archival; classified operations; and remote operations.

Bell, Perry; Lee, Dean; Wootton, Alan; Mascio, Bill; Kimbrough, Joe; Sewall, Noel; Hibbard, Wilthea; Dohoney, Pat; Landon, Mark; Christianson, George (and others) [and others

2001-01-01T23:59:59.000Z

327

Use of the National Ignition Facility for defense, energy, and basic research science  

SciTech Connect (OSTI)

On January 15, 1993, the Department of Energy (DOE) approved the Justification for Mission Need (JMN) for the National Ignition Facility (NIF). This action (Key Decision Zero, or KD0) commenced the conceptual design for the facility, which has resulted in a recently completed Conceptual Design Report (CDR). The JMN document defined the NIF mission elements to include laboratory fusion ignition and energy gain, weapons physics, and nuclear weapons effects testing research (NWET). NIF has a dual benefit by contributing to inertial fusion energy (IFE), industrial technology development, new basic science areas applying high power lasers, and training young scientists for future stewardship activities. For consideration of the next DOE action, Key Decision One (KD1), all mission elements of the NIF as stated in the JMN are consistent with and important to the US stockpile stewardship program, and are expected to continue to be in the vital interest of the United States for the long term. This document provides further information on the utility of NIF for stockpile stewardship, including support for a Comprehensive Test Ban Treaty (CTBT), and specific findings of four national workshops on the NIF utility for weapons physics, NWET, IFE and basic science research. The role of NIF for stockpile stewardship has been refined since a DOE meeting in Albuquerque, NM Feb. 1--2, 1994. The possible compliance of NIF research with anticipated CTBT and NPT limitations was discussed at the DOE Office of Arms Control and Nonproliferation in Washington, DC on March 8, 1994.

Logan, B.G.

1994-07-15T23:59:59.000Z

328

Pacific Northwest National Laboratory Facility Radionuclide Emissions Units and Sampling Systems  

SciTech Connect (OSTI)

Battelle-Pacific Northwest Division operates numerous research and development (R and D) laboratories in Richland, WA, including those associated with Pacific Northwest National Laboratory (PNNL) on the U.S. Department of Energy (DOE)'s Hanford Site and PNNL Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all emission units that have the potential for radionuclide air emissions. Potential emissions are assessed annually by PNNL staff members. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission unit system performance, operation, and design information. For sampled systems, a description of the buildings, exhaust units, control technologies, and sample extraction details is provided for each registered emission unit. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided. Deregistered emission unit details are provided as necessary for up to 5 years post closure.

Barnett, J. M.; Brown, Jason H.; Walker, Brian A.

2012-04-01T23:59:59.000Z

329

Design and Construction of a Gamma Reaction History Diagnostic for the National Ignition Facility  

SciTech Connect (OSTI)

Gas Cherenkov detectors have been used to convert fusion gammas into photons to achieve gamma reaction history (GRH) measurements. These gas detectors include a converter, pressurized gas volume, relay optics, and a photon detector. A novel design for the National Ignition Facility (NIF) using 90ş Off-Axis Parabolic mirrors efficiently collects signal from fusion gammas with 8-ps time dispersion.1 Fusion gammas are converted to Compton electrons, which generate broadband Cherenkov light (our response is from 250 to 700 nm) in a pressurized gas cell. This light is relayed into a high-speed detector using three parabolic mirrors. The detector optics collect light from a 125-mm-diameter by 600-mm-long interchangeable gas (CO2 or SF6) volume. Because light is collected from source locations throughout the gas volume, the detector is positioned at the stop position rather than at an image position. The stop diameter and its position are independent of the light-generation locations along the gas cell. This design incorporates a fixed time delay that allows the detector to recover from prompt radiation. Optical ray tracings demonstrate how light can be collected from different angled trajectories of the Compton electrons as they traverse the gas volume. A Monte Carlo model of the conversion process from gammas to Cherenkov photons is used to generate photon trajectories. The collection efficiencies for different gamma energies are evaluated. At NIF, a cluster of four channels will allow for increased dynamic range, as well as different gamma energy thresholds. This GRH design is compared to a gas Cherenkov detector that utilizes a Cassegrain reflector now used at the OMEGA laser facility. 1. R. M. Malone, H. W. Herrmann, W. Stoeffl, J. M. Mack, C. S. Young, “Gamma bang time/reaction history diagnostics for the National Ignition Facility using 90ş off-axis parabolic mirrors,” Rev. Sci. Instrum. 79, 10E532 (2008).

R.M. Malone, B.C. Cox, B.C. Frogget, M.I. Kaufman, T.W. Tunnell; H.W. Herrmann, S.C. Evans, J.M. Mack, C.S. Young; W. Stoeffl

2009-06-05T23:59:59.000Z

330

Development of a national spill test facility data base. Topical report, February 1994--February 1995  

SciTech Connect (OSTI)

In the United States, the production of gas, liquid and solid fuels and the associated chemical use accounts for significant volumes of material with the potential of becoming hazardous. Accidental spills or releases of these hazardous materials do occur, and action must be taken to minimize damage to life, property, and the environment. Because of the hazards of testing with chemical spills, a national spill test facility (STF) and an associated testing program have been established to systematically develop new data on the effects and mitigation of hazardous chemical spills Western Research Institute (WRI), in conjunction with the DOE, is developing a comprehensive national spill test data base. I The data base will be easily accessible by industry and the public on the Spill Research Bulletin Board System and will allow users to download spill test data and test descriptions, as well as an extensive bibliography. The 1990 Clean Air Act and Amendments (CAAA) requires that at least two chemicals be field tested at the STF and at least 10 chemicals be studied each year. The chemicals to be studied are chosen with priority given to those that present the greatest risk to human health. The National Spill Test Facility Data Base will include a common chemical data base covering the overlap of federal chemical lists and significant information from other sources. Also, the (CAAA) directs the DOE and EPA to work together with the STF and industry to provide a scientific and engineering basis for writing regulations for implementation of the (CAAA). The data base will be a primary resource in this effort.

NONE

1995-02-01T23:59:59.000Z

331

Environmental Assessment for US Department of Energy support of an Iowa State University Linear Accelerator Facility at Ames, Iowa  

SciTech Connect (OSTI)

The proposed Department of Energy (DOE) action is financial and technical support of construction and initial operation of an agricultural commodity irradiator (principally for meat), employing a dual mode electron beam generator capable of producing x-rays, at the Iowa State University Linear Accelerator located at Ames, Iowa. The planned pilot commercial-scale facility would be used for the following activities: conducting irradiation research on agricultural commodities, principally meats; in the future, after the pilot phase, as schedules permit, possibly conducting research on other, non-edible materials; evaluating effects of irradiation on nutritional and sensory quality of agricultural products; demonstrating the efficiency of the process to control or eliminate pathogens, and/or to prolong the commodities' post-harvest shelf-life via control or elimination of bacteria, fungi, and/or insects; providing information to the public on the benefits, safety and risks of irradiated agricultural commodities; determining consumer acceptability of the irradiated products; providing data for use by regulatory agencies in developing protocols for various treatments of Iowa agricultural commodities; and training operators, maintenance and quality control technicians, scientists, engineers, and staff of regulatory agencies in agricultural commodity irradiation technology. 14 refs., 5 figs.

Not Available

1990-05-01T23:59:59.000Z

332

Technical documentation in support of the project-specific analysis for construction and operation of the National Ignition Facility  

SciTech Connect (OSTI)

This document provides information that supports or supplements the data and impact analyses presented in the National Ignition Facility (NIF) Project-Specific Analysis (PSA). The purposes of NIF are to achieve fusion ignition in the laboratory for the first time with inertial confinement fusion (ICF) technology and to conduct high- energy-density experiments ins support of national security and civilian application. NIF is an important element in the DOE`s science-based SSM Program, a key mission of which is to ensure the reliability of the nation`s enduring stockpile of nuclear weapons. NIF would also advance the knowledge of basic and applied high-energy- density science and bring the nation a large step closer to developing fusion energy for civilian use. The NIF PSA includes evaluations of the potential environmental impacts of constructing and operating the facility at one of five candidate site and for two design options.

Lazaro, M.A.; Vinikour, W. [Argonne National Lab., IL (United States). Environmental Assessment Div.; Allison, T. [Argonne National Lab., IL (United States). Decision and Information Sciences Div.] [and others

1996-09-01T23:59:59.000Z

333

Conceptual Design of a 50--100 MW Electron Beam Accelerator System for the National Hypersonic Wind Tunnel Program  

SciTech Connect (OSTI)

The National Hypersonic Wind Tunnel program requires an unprecedented electron beam source capable of 1--2 MeV at a beam power level of 50--100 MW. Direct-current electron accelerator technology can readily generate high average power beams to approximately 5 MeV at output efficiencies greater than 90%. However, due to the nature of research and industrial applications, there has never been a requirement for a single module with an output power exceeding approximately 500 kW. Although a 50--100 MW module is a two-order extrapolation from demonstrated power levels, the scaling of accelerator components appears reasonable. This paper presents an evaluation of component and system issues involved in the design of a 50--100 MW electron beam accelerator system with precision beam transport into a high pressure flowing air environment.

SCHNEIDER,LARRY X.

2000-06-01T23:59:59.000Z

334

Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.  

SciTech Connect (OSTI)

Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21-25, 2008. As noted in the report, there was significant teaming between the various participants to best help the GOI. On-the-ground progress is the focus of the Iraq NDs Program and much of the work is a transfer of technical and practical skills and knowledge that Sandia uses day-to-day. On-the-ground progress was achieved in July of 2008 when the GOI began the physical cleanup and dismantlement of the Active Metallurgical Testing Laboratory (LAMA) facility at Al Tuwaitha, near Baghdad.

Cochran, John Russell; Danneels, Jeffrey John

2009-03-01T23:59:59.000Z

335

Accident Investigation at the Idaho National Laboratory Engineering Demonstration Facility, February 2013  

Broader source: Energy.gov [DOE]

On Monday, February 12, 2013, a principal investigator at the Idaho National Laboratory (INL) Engineering Demonstration Facility (IEDF) was testing the system configuration of experimental process involving liquid sodium carbonate. An unanticipated event occurred that resulted in the ejection of the 900° C liquid sodium carbonate from the system. The ejected liquid came into contact with the principal investigator and caused multiple second and third degree burn injuries to approximately 10 percent of his body. The Office of Health, Safety and Security (HSS) Site Lead for the Idaho Site shadowed the accident investigation team assembled by the contractor in an effort to independently verify that a rigorous, thorough, and unbiased investigation was taking place, and to maintain awareness of the events surrounding the accident

336

Overview of the gamma reaction history diagnostic for the national ignition facility (NIF)  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) has a need for measuring gamma radiation as part of a nuclear diagnostic program. A new gamma-detection diagnostic uses 900 off-axis parabolic mirrors to rel ay Cherenkov light from a volume of pressurized gas. This non imaging optical system has the high-speed detector placed at a stop position with the Cherenkov light delayed until after the prompt gammas have passed through the detector. Because of the wavelength range (250 to 700 nm), the optical element surface finish was a key design constraint. A cluster of four channels (each set to a different gas pressure) will collect the time histories for different energy ranges of gammas.

Kim, Yong Ho [Los Alamos National Laboratory; Evans, Scott C [Los Alamos National Laboratory; Herrmann, Hans W [Los Alamos National Laboratory; Mack, Joseph M [Los Alamos National Laboratory; Young, Carl S [Los Alamos National Laboratory; Malone, Robert M [Los Alamos National Laboratory; Cox, Brian C [Los Alamos National Laboratory; Frogget, Brent C [Los Alamos National Laboratory; Kaufman, Morris I [Los Alamos National Laboratory; Tunnell, Thomas W [Los Alamos National Laboratory; Tibbitts, Aric [Los Alamos National Laboratory; Palagi, Martin J [NST/LAS VEGAS; Stoeffl, Wolfgang [LLNL

2010-01-01T23:59:59.000Z

337

X-ray area backlighter development at the National Ignition Facility (invited)  

SciTech Connect (OSTI)

1D spectral imaging was used to characterize the K-shell emission of Z ? 30–35 and Z ? 40–42 laser-irradiated foils at the National Ignition Facility. Foils were driven with up to 60 kJ of 3? light, reaching laser irradiances on target between 0.5 and 20 × 10{sup 15} W/cm{sup 2}. Laser-to-X-ray conversion efficiency (CE) into the He{sub ?} line (plus satellite emission) of 1.0%–1.5% and 0.15%–0.2% was measured for Z ? 30–32 and Z ? 40–42, respectively. Measured CE into He{sub ?} (plus satellite emission) of Br (Z = 35) compound foils (either KBr or RbBr) ranged between 0.16% and 0.29%. Measured spectra are compared with 1D non-local thermodynamic equilibrium atomic kinetic and radiation transport simulations, providing a fast and accurate predictive capability.

Barrios, M. A., E-mail: barriosgarci1@llnl.gov; Fournier, K. B.; Smith, R.; Lazicki, A.; Rygg, R.; Fratanduono, D. E.; Eggert, J.; Park, H.-S.; Huntington, C.; Bradley, D. K.; Landen, O. L.; Collins, G. W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Regan, S. P.; Epstein, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

2014-11-15T23:59:59.000Z

338

Design of a deuterium and tritium-ablator shock ignition target for the National Ignition Facility  

SciTech Connect (OSTI)

Shock ignition presents a viable path to ignition and high gain on the National Ignition Facility (NIF). In this paper, we describe the development of the 1D design of 0.5 MJ class, all-deuterium and tritium (fuel and ablator) shock ignition target that should be reasonably robust to Rayleigh-Taylor fluid instabilities, mistiming, and hot electron preheat. The target assumes 'day one' NIF hardware and produces a yield of 31 MJ with reasonable allowances for laser backscatter, absorption efficiency, and polar drive power variation. The energetics of polar drive laser absorption require a beam configuration with half of the NIF quads dedicated to launching the ignitor shock, while the remaining quads drive the target compression. Hydrodynamic scaling of the target suggests that gains of 75 and yields 70 MJ may be possible.

Terry, Matthew R.; Perkins, L. John; Sepke, Scott M. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 (United States)

2012-11-15T23:59:59.000Z

339

Asymmetric directly driven capsule implosions: Modeling and experiments-A requirement for the National Ignition Facility  

SciTech Connect (OSTI)

Direct-drive experiments at the University of Rochester's OMEGA laser [T. R. Boehly, R. L. McCrory, C. P. Verdon et al., Fusion Eng. Des. 44, 35 (1999)] have been performed to prototype eventual campaigns on the National Ignition Facility (NIF) [E. I. Moses and C. R. Wuest, Fusion Sci. Technol. 43, 420 (2003)] to investigate the mixing of target materials. Spherical-implosion targets with equatorial defects have been irradiated with polar direct drive, a requirement for direct-drive experiments at NIF. The physics question addressed by these results is whether simulations can match data on 0th-order hydrodynamics and implosion symmetry, the most basic implosion features, with and without the defect. The successful testing of hydrodynamic simulations leads to better designs for experiments and guides accurate planning for polar-direct-drive-ignition studies on the NIF platform.

Cobble, J. A.; Murphy, T. J.; Schmitt, M. J.; Bradley, P. A.; Krashenninikova, N. S.; Obrey, K. A.; Hsu, S. C.; Tregillis, I. L.; Magelssen, G. R.; Wysocki, F. J.; Batha, S. H. [Los Alamos National Laboratory, Mail Stop E527, Los Alamos, New Mexico 87545 (United States)

2012-12-15T23:59:59.000Z

340

Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility  

SciTech Connect (OSTI)

Experiments that characterize and develop a high energy-density half-hohlraum platform for use in benchmarking radiation hydrodynamics models have been conducted at the National Ignition Facility (NIF). Results from the experiments are used to quantitatively compare with simulations of the radiation transported through an evolving plasma density structure, colloquially known as an N-wave. A half-hohlraum is heated by 80 NIF beams to a temperature of 240?eV. This creates a subsonic diffusive Marshak wave, which propagates into a high atomic number Ta{sub 2}O{sub 5} aerogel. The subsequent radiation transport through the aerogel and through slots cut into the aerogel layer is investigated. We describe a set of experiments that test the hohlraum performance and report on a range of x-ray measurements that absolutely quantify the energetics and radiation partition inside the target.

Moore, A. S., E-mail: alastair.moore@physics.org; Graham, P.; Comley, A. J.; Foster, J. [Directorate Science and Technology, AWE Aldermaston, Reading RG7 4PR (United Kingdom); Cooper, A. B. R.; Schneider, M. B.; MacLaren, S.; Lu, K.; Seugling, R.; Satcher, J.; Klingmann, J.; Marrs, R.; May, M.; Widmann, K.; Glendinning, G.; Castor, J.; Sain, J.; Baker, K.; Hsing, W. W.; Young, B. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

2014-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A polar-drive shock-ignition design for the National Ignition Facility  

SciTech Connect (OSTI)

Shock ignition [R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007)] is being pursued as a viable option to achieve ignition on the National Ignition Facility (NIF). Shock-ignition target designs use a high-intensity laser spike at the end of a low-adiabat assembly pulse to launch a spherically convergent strong shock to ignite the hot spot of an imploding capsule. A shock-ignition target design for the NIF is presented. One-dimensional simulations indicate an ignition threshold factor of 4.1 with a gain of 58. A polar-drive beam-pointing configuration for shock-ignition experiments on the NIF at 750 kJ is proposed. The capsule design is shown to be robust to the various one- and two-dimensional effects and nonuniformities anticipated on the NIF. The target is predicted to ignite with a gain of 38 when including all anticipated levels of nonuniformity and system uncertainty.

Anderson, K. S.; McKenty, P. W.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Marozas, J. A.; Skupsky, S.; Shvydky, A. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States) [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Departments of Mechanical Engineering and Physics, University of Rochester, Rochester, New York 14627 (United States); Hohenberger, M.; Theobald, W.; Lafon, M.; Nora, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States) [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States)

2013-05-15T23:59:59.000Z

342

Federal Facility Compliance Act: Conceptual Site Treatment Plan for Lawrence Livermore National Laboratory, Livermore, California  

SciTech Connect (OSTI)

The Department of Energy (DOE) is required by section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (the Act), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The Act requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the State or EPA for approval, approval with modification, or disapproval. The Lawrence Livermore National Laboratory (LLNL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the Act and is being provided to California, the US Environmental Protection Agency (EPA), and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix 1.1 of this document. Please note that Appendix 1.1 appears as Appendix A, pages A-1 and A-2 in this document.

Not Available

1993-10-01T23:59:59.000Z

343

ENERGY PARTITIONING, ENERGY COUPLING (EPEC) EXPERIMENTS AT THE NATIONAL IGNITION FACILITY  

SciTech Connect (OSTI)

The energy-partitioning, energy-coupling (EPEC) experiments at the National Ignition Facility (NIF) will simultaneously measure the coupling of energy into both ground shock and air-blast overpressure from a laser-driven target. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of seismic and air-blast phenomena caused by a nuclear weapon. In what follows, we discuss the motivation for our investigation and briefly describe NIF. Then, we introduce the EPEC experiments, including diagnostics, in more detail.

Fournier, K B; Brown, C G; May, M J; Dunlop, W H; Compton, S M; Kane, J O; Mirkarimi, P B; Guyton, R L; Huffman, E

2012-01-05T23:59:59.000Z

344

Simulation of Radiation Backgrounds associated with the HEXRI Diagnostics at the National Ignition Facility  

SciTech Connect (OSTI)

Experiments resulting in a significant neutron yield are scheduled to start in 2010 at the National Ignition Facility (NIF). A wide range of diagnostics will be used to measure several parameters of implosion such as the core and fuel shape, temperatures and densities, and neutron yield. Accurate evaluations of the neutron and gamma backgrounds are important for several diagnostics, such as the High Energy X-ray Imager (HEXRI). Several Monte-Carlo simulations were performed to identify the expected signal to background ratios at several potential locations for the HEXRI diagnostics. Gamma backgrounds were significantly reduced by using tungsten collimators. The collimators resulted in the reduction of the gamma background at the HEXRI scintillators by more than an order of magnitude during the first 40 ns following a THD shot.

Khater, H; Dauffy, L; Tommasini, R; Eckart, M; Eder, D

2009-10-05T23:59:59.000Z

345

2013 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant  

SciTech Connect (OSTI)

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2012, through October 31, 2013. The report contains, as applicable, the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2013 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. However, soil samples were collected in October from soil monitoring unit SU-014101.

Mike Lewis

2014-02-01T23:59:59.000Z

346

Progress on Establishing Guidelines for National Ignition Facility (NIF) Experiments to Extend Debris Shield Lifetime  

SciTech Connect (OSTI)

The survivability and performance of the debris shields on the National Ignition Facility (NIF) are a key factor for the successful conduct and affordable operation of the facility. The improvements required over Nova debris shields are described. Estimates of debris shield lifetimes in the presence of target emissions with 4 - 5 J/cm{sup 2} laser fluences (and higher) indicate lifetimes that may contribute unacceptably to operations costs for NIF. We are developing detailed guidance for target and experiment designers for NIF to assist in minimizing the damage to, and therefore the cost of, maintaining NIF debris shields. The guidance limits the target mass that is allowed to become particulate on the debris shields (300 mg). It also limits the amount of material that can become shrapnel for any given shot (10 mg). Finally, it restricts the introduction of non-volatile residue (NVR) that is a threat to the sol-gel coatings on the debris shields to ensure that the chamber loading at any time is less than 1 pg/cm{sup 2}. We review the experimentation on the Nova chamber that included measuring quantities of particulate on debris shields by element and capturing shrapnel pieces in aerogel samples mounted in the chamber. We also describe computations of x-ray emissions from a likely NIF target and the associated ablation expected from this x-ray exposure on supporting target hardware. We describe progress in assessing the benefits of a pre-shield and the possible impact on the guidance for target experiments on NIF. Plans for possible experimentation on Omega and other facilities to improve our understanding of target emissions and their impacts are discussed. Our discussion of planned future work provides a forum to invite possible collaboration with the IFE community.

Tobin, M; Eder, D; Braun, D; MacGowan, B

2000-07-26T23:59:59.000Z

347

SIMULATION OF RADIATION BACKGROUNDS ASSOCIATED WITH NUCLEAR DIAGNOSTICS IN THE NATIONAL IGNITION FACILITY  

SciTech Connect (OSTI)

Experiments resulting in a significant neutron yield are scheduled to start in 2010 at the National Ignition Facility (NIF). Several experiments utilizing Tritium-Hydrogen-Deuterium (THD) and Deuterium-Tritium (DT) targets are scheduled as part of the National Ignition Campaign (NIC). A wide range of diagnostics will be used to measure several parameters of implosion such as the core and fuel shape, temperatures and densities, and neutron yield. Accurate evaluations of the neutron and gamma backgrounds are important for several diagnostics, such as the High Energy X-ray Imager (HEXRI) and Neutron-Time-Of-Flight (nTOF). Several sources of neutron and gamma backgrounds will impact the accuracy of the diagnostics measurements. Fusion neutrons generated by fuel burn and secondary neutrons resulting from the fusion neutrons interaction with structures present inside and outside the Target Chamber (TC) contribute to the neutron background. In the meantime, X-rays emitted from the implosion, X-rays resulting from Laser Plasma Interaction (LPI) of NIF beams with the hohlraum, and gamma-rays induced by neutron interactions with different structures inside and outside the TC contribute to the gamma background. A detailed model has been developed of the NIF facility and all structures inside the TC. Several Monte-Carlo simulations were performed to identify the expected signal-to- background ratios at several potential locations for the HEXRI and nTOF diagnostics. Gamma backgrounds associated with HEXRI were significantly reduced by using a tungsten collimator. The collimator resulted in the reduction of the gamma background at the HEXRI scintillator by more than an order of magnitude during the first 40 ns following a THD shot. The nTOF20 detectors inside the Neutron Spectrometry room are exposed to low levels of neutron and gamma background during yield shots.

Khater, H; Dauffy, L; Tommasini, R; Eckart, M; Eder, D

2009-08-19T23:59:59.000Z

348

2011 Status of the Automatic Alignment System for the National Ignition Facility  

SciTech Connect (OSTI)

Automated alignment for the National Ignition Facility (NIF) is accomplished using a large-scale parallel control system that directs 192 laser beams along the 300-m optical path. The beams are then focused down to a 50-micron spot in the middle of the target chamber. The entire process is completed in less than 50 minutes. The alignment system commands 9,000 stepping motors for highly accurate adjustment of mirrors and other optics. 41 control loops per beamline perform parallel processing services running on a LINUX cluster to analyze high-resolution images of the beams and their references. This paper describes the status the NIF automatic alignment system and the challenges encountered as NIF development has transitioned from building the laser, to becoming a research project supporting a 24 hour, 7 day laser facility. NIF is now a continuously operated system where performance monitoring is increasingly more critical for operation, maintenance, and commissioning tasks. Equipment wear and the effects of high energy neutrons from fusion experiments are issues which alter alignment efficiency and accuracy. New sensors needing automatic alignment assistance are common. System modifications to improve efficiency and accuracy are prevalent. Handling these evolving alignment and maintenance needs while minimizing the impact on NIF experiment schedule is expected to be an on-going challenge for the planned 30 year operational life of NIF.

Wilhelmsen, K; Awwal, A; Burkhart, S; McGuigan, D; Kamm, V M; Leach, R; Lowe-Webb, R; Wilson, R

2011-07-19T23:59:59.000Z

349

THE NATIONAL CARBON CAPTURE CENTER AT THE POWER SYSTEMS DEVELOPMENT FACILITY  

SciTech Connect (OSTI)

The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The newly established NCCC will include multiple, adaptable test skids that will allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period One reporting period, efforts at the PSDF/NCCC focused on developing a screening process for testing consideration of new technologies; designing and constructing pre- and post-combustion CO2 capture facilities; developing sampling and analytical methods; expanding fuel flexibility of the Transport Gasification process; and operating the gasification process for technology research and for syngas generation to test syngas conditioning technologies.

None, None

2011-03-01T23:59:59.000Z

350

THE NATIONAL CARBON CAPTURE CENTER AT THE POWER SYSTEMS DEVELOPMENT FACILITY  

SciTech Connect (OSTI)

The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period Two reporting period, efforts at the PSDF/NCCC focused on new technology assessment and test planning; designing and constructing post-combustion CO2 capture facilities; testing of pre-combustion CO2 capture and related processes; and operating the gasification process to develop gasification related technologies and for syngas generation to test syngas conditioning technologies.

None, None

2011-05-11T23:59:59.000Z

351

THE NATIONAL CARBON CAPTURE CENTER AT THE POWER SYSTEMS DEVELOPMENT FACILITY  

SciTech Connect (OSTI)

The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period Three reporting period, efforts at the NCCC/PSDF focused on testing of pre-combustion CO2 capture and related processes; commissioning and initial testing at the post-combustion CO2 capture facilities; and operating the gasification process to develop gasification related technologies and for syngas generation to test syngas conditioning technologies.

None, None

2012-09-01T23:59:59.000Z

352

EA-0822: Idaho National Engineering Laboratory Consolidated Transportation Facility, Idaho Falls, Idaho  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to construct and operate a new transportation facility at the Central Facilities Area that would consolidate six existing facilities at the...

353

The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

Moses, E

2011-03-25T23:59:59.000Z

354

SLAC Accelerator Test Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|Physics Research

355

The CAMS Accelerator Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Burst BufferFluoriteSediments andThe TheThe

356

ACCELERATOR TEST FACILITY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A FirstEMSLAEMSL341AACEii ABSTRACT This41

357

Tank Closure Progress at the Department of Energy's Idaho National Engineering Laboratory Tank Farm Facility  

SciTech Connect (OSTI)

Significant progress has been made at the U.S. Department of Energy (DOE) Idaho National Laboratory (INL) to empty, clean and close radioactive liquid waste storage tanks at the Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility (TFF). The TFF includes eleven 1,135.6-kL (300,000-gal) underground stainless steel storage tanks and four smaller, 113.5-kL (30,000-gal) stainless steel tanks, along with tank vaults, interconnecting piping, and ancillary equipment. The TFF tanks have historically been used to store a variety of radioactive liquid waste, including wastes associated with past spent nuclear fuel reprocessing. Although four of the large storage tanks remain in use for waste storage, the other seven 1,135.6-kL (300,000-gal) tanks and the four 113.5-kL (30,000-gal) tanks have been emptied of waste, cleaned and filled with grout. A water spray cleaning system was developed and deployed to clean internal tank surfaces and remove remaining tank wastes. The cleaning system was effective in removing all but a very small volume of solid residual waste particles. Recent issuance of an Amended Record of Decision (ROD) in accordance with the National Environmental Policy Act, and a Waste Determination complying with Section 3116 of the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005, has allowed commencement of grouting activities on the cleaned tanks. The first three 113.5-kL (30,000-gal) tanks were grouted in the Fall of 2006 and the fourth tank and the seven 1,135.6-kL (300,000-gal) tanks were filled with grout in 2007 to provide long-term stability. It is currently planned that associated tank valve boxes and interconnecting piping, will be stabilized with grout as early as 2008. (authors)

Quigley, K.D. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Butterworth, St.W. [CH2M..WG Idaho, LLC, Idaho Falls, ID (United States); Lockie, K.A. [U.S. Department of Energy, Idaho Operations Office, Idaho Falls, ID (United States)

2008-07-01T23:59:59.000Z

358

National Environmental Policy Act Compliance Strategy for the Remote-Handled Low-level Waste Disposal Facility  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) needs to have disposal capability for remote-handled low level waste (LLW) generated at the Idaho National Laboratory (INL) at the time the existing disposal facility is full or must be closed in preparation for final remediation of the INL Subsurface Disposal Area in approximately the year 2017.

Peggy Hinman

2010-10-01T23:59:59.000Z

359

Experimental Investigation of the Thermal Upset and Recovery of the National Ignition Facility's Optics Module  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory is being constructed as the latest in a series of high-power laser facilities to study inertial confinement fusion. In particular, the NIF will generate and amplify 192 laser beams and focus them onto a fusion fuel capsule the size of a BB. The energy deposited by the laser beams will raise the core temperature of the target to 100,OOO,OOO C, which will ignite the fusion fuel and produce a fusion energy output that is several times greater than the energy input. The ability to generate, condition, and focus 192 laser beams onto a target the size of a BB, requires precision optical hardware and instrumentation. One of the most critical pieces of optical hardware within the NIF is the Optics Module (OM), a mechanical apparatus which is responsible for optical focusing and frequency conversion of the laser beam to optimize the energy deposition at the fusion target. The OM contains two potassium dihydrogen phosphate (KDP), frequency conversion crystals and a focusing lens. The functionality of the KDP crystals is extremely temperature sensitive. Small temperature changes on the order of 0.1 C can significantly alter the performance of these components. Consequently, to maximize NIF system availability and minimize beam conditioning problems, accurate temperature control of the OM optical components was deemed a necessity. In this study, an experimental OM prototype, containing mock frequency conversion crystals and a focusing lens, was used determine the thermal stability provided by a prototype water temperature control system. More importantly, the OM prototype was used to identify and characterize potential thermal upsets and corresponding recovery times of the KDP crystals. The results of this study indicate that the water temperature control system is adequate in maintaining uniform steady-state temperatures within the OM. Vacuum pump-down and venting of the OM generated significant temperature changes in the optical components. However, the corresponding recovery times of the optical components were found to be less than three hours, well within the seven hour limit posed by NW operations. Simulated laser shots also were found to create thermal upsets within the OM's optical components over a range of heat deposition rates. However, the recovery times of these thermal upsets were found to be less than one hour. Finally, the use of non-contact infrared thermocouples was demonstrated as an effective means to track the temperature of the OM's optics.

J. D. Bernardin

1999-05-01T23:59:59.000Z

360

New Sensors for In-Pile Temperature Detection at the Advanced Test Reactor National Scientific User Facility  

SciTech Connect (OSTI)

The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support U.S. leadership in nuclear science and technology. As a user facility, the ATR is supporting new users from universities, laboratories, and industry, as they conduct basic and applied nuclear research and development to advance the nation’s energy security needs. A key component of the ATR NSUF effort is to develop and evaluate new in-pile instrumentation techniques that are capable of providing measurements of key parameters during irradiation. This paper describes the strategy for determining what instrumentation is needed and the program for developing new or enhanced sensors that can address these needs. Accomplishments from this program are illustrated by describing new sensors now available and under development for in-pile detection of temperature at various irradiation locations in the ATR.

J. L. Rempe; D. L. Knudson; J. E. Daw; K. G. Condie; S. Curtis Wilkins

2009-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The National Ignition Facility and the Promise of Inertial Fusion Energy  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational. The NIF is the world's most energetic laser system capable of producing 1.8 MJ and 500 TW of ultraviolet light. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in planetary interiors and stellar environments. On September 29, 2010, the first integrated ignition experiment was conducted, demonstrating the successful coordination of the laser, cryogenic target system, array of diagnostics and infrastructure required for ignition demonstration. In light of this strong progress, the U.S. and international communities are examining the implication of NIF ignition for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a laser with 10% electrical-optical efficiency, as well as further development and advances in large-scale target fabrication, target injection, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in the 10- to 15-year time frame. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Engine (LIFE) concept and examining in detail various technology choices, as well as the advantages of both pure fusion and fusion-fission schemes. This paper will describe the unprecedented experimental capabilities of the NIF and the results achieved so far on the path toward ignition. The paper will conclude with a discussion about the need to build on the progress on NIF to develop an implementable and effective plan to achieve the promise of LIFE as a source of carbon-free energy.

Moses, E I

2010-12-13T23:59:59.000Z

362

The high-foot implosion campaign on the National Ignition Facility  

SciTech Connect (OSTI)

The “High-Foot” platform manipulates the laser pulse-shape coming from the National Ignition Facility laser to create an indirect drive 3-shock implosion that is significantly more robust against instability growth involving the ablator and also modestly reduces implosion convergence ratio. This strategy gives up on theoretical high-gain in an inertial confinement fusion implosion in order to obtain better control of the implosion and bring experimental performance in-line with calculated performance, yet keeps the absolute capsule performance relatively high. In this paper, we will cover the various experimental and theoretical motivations for the high-foot drive as well as cover the experimental results that have come out of the high-foot experimental campaign. At the time of this writing, the high-foot implosion has demonstrated record total deuterium-tritium yields (9.3×10{sup 15}) with low levels of inferred mix, excellent agreement with implosion simulations, fuel energy gains exceeding unity, and evidence for the “bootstrapping” associated with alpha-particle self-heating.

Hurricane, O. A., E-mail: hurricane1@llnl.gov; Callahan, D. A.; Casey, D. T.; Dewald, E. L.; Dittrich, T. R.; Döppner, T.; Barrios Garcia, M. A.; Hinkel, D. E.; Berzak Hopkins, L. F.; Kervin, P.; Pape, S. Le; Ma, T.; MacPhee, A. G.; Milovich, J. L.; Moody, J.; Pak, A. E.; Patel, P. K.; Park, H.-S.; Remington, B. A.; Robey, H. F. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); and others

2014-05-15T23:59:59.000Z

363

Control System For Cryogenic THD Layering At The National Ignition Facility  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is the world largest and most energetic laser system for Inertial Confinement Fusion (ICF). In 2010, NIF began ignition experiments using cryogenically cooled targets containing layers of the tritium-hydrogen-deuterium (THD) fuel. The 75 {micro}m thick layer is formed inside of the 2 mm target capsule at temperatures of approximately 18 K. The ICF target designs require sub-micron smoothness of the THD ice layers. Formation of such layers is still an active research area, requiring a flexible control system capable of executing the evolving layering protocols. This task is performed by the Cryogenic Target Subsystem (CTS) of the NIF Integrated Computer Control System (ICCS). The CTS provides cryogenic temperature control with the 1 mK resolution required for beta-layering and for the thermal gradient fill of the capsule. The CTS also includes a 3-axis x-ray radiography engine for phase contrast imaging of the ice layers inside of the plastic and beryllium capsules. In addition to automatic control engines, CTS is integrated with the Matlab interactive programming environment to allow flexibility in experimental layering protocols. The CTS Layering Matlab Toolbox provides the tools for layer image analysis, system characterization and cryogenic control. The CTS Layering Report tool generates qualification metrics of the layers, such as concentricity of the layer and roughness of the growth boundary grooves. The CTS activities are automatically coordinated with other NIF controls in the carefully orchestrated NIF Shot Sequence.

Fedorov, M; Blubaugh, J; Edwards, O; Mauvais, M; Sanchez, R; Wilson, B

2011-03-18T23:59:59.000Z

364

Neutron spectrometry - An essential tool for diagnosing implosions at the National Ignition Facility  

SciTech Connect (OSTI)

DT neutron yield (Y{sub n}), ion temperature (T{sub i}) and down-scatter ratio (dsr) determined from measured neutron spectra are essential metrics for diagnosing the performance of Inertial Confinement Fusion (ICF) implosions at the National Ignition Facility (NIF). A suite of neutron-Time-Of-Flight (nTOF) spectrometers and a Magnetic Recoil Spectrometer (MRS) have been implemented in different locations around the NIF target chamber, providing good implosion coverage and the redundancy required for reliable measurements of Yn, Ti and dsr. From the measured dsr value, an areal density ({rho}R) is determined from the relationship {rho}R{sub tot} (g/cm{sup 2}) = (20.4 {+-} 0.6) x dsr{sub 10-12 MeV}. The proportionality constant is determined considering implosion geometry, neutron attenuation and energy range used for the dsr measurement. To ensure high accuracy in the measurements, a series of commissioning experiments using exploding pushers have been used for in situ calibration. The spectrometers are now performing to the required accuracy, as indicated by the good agreement between the different measurements over several commissioning shots. In addition, recent data obtained with the MRS and nTOFs indicate that the implosion performance of cryogenically layered DT implosions, characterized by the experimental Ignition Threshold Factor (ITFx) which is a function of dsr (or fuel {rho}R) and Y{sub n}, has improved almost two orders of magnitude since the first shot in September, 2010.

Mackinnon, A J; Johnson, M G; Frenje, J A; Casey, D T; Li, C K; Seguin, F H; Petrasso, R; Ashabranner, R; Cerjan, C; Clancy, T J; Bionta, R; Bleuel, D; Bond, E J; Caggiano, J A; Capenter, A; Eckart, M J; Edwards, M J; Friedrich, S; Glenzer, S H; Haan, S W; Hartouni, E P; Hatarik, R; Hachett, S P; McKernan, M; Jones, O; Lepape, S; Lerche, R A; Landen, O L; Moran, M; Moses, E; Munro, D; McNaney, J; Rygg, J R; Sepke, S; Spears, B; Springer, P; Yeamans, C; Farrell, M; Kilkenny, J D; Nikroo, A; Paguio, R; Knauer, J; Glebov, V; Sangster, T; Betti, R; Stoeckl, C; Magoon, J; Shoup, M J; Grim, G P; Moran, G L; Murphy, T J; Leeper, R J; Ruiz, C

2012-05-02T23:59:59.000Z

365

A geophysical shock and air blast simulator at the National Ignition Facility  

SciTech Connect (OSTI)

The energy partitioning energy coupling experiments at the National Ignition Facility (NIF) have been designed to measure simultaneously the coupling of energy from a laser-driven target into both ground shock and air blast overpressure to nearby media. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from the NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of full-scale seismic and air blast phenomena. This report summarizes the development of the platform, the simulations, and calculations that underpin the physics measurements that are being made, and finally the data that were measured. Agreement between the data and simulation of the order of a factor of two to three is seen for air blast quantities such as peak overpressure. Historical underground test data for seismic phenomena measured sensor displacements; we measure the stresses generated in our ground-surrogate medium. We find factors-of-a-few agreement between our measured peak stresses and predictions with modern geophysical computer codes.

Fournier, K. B.; Brown, C. G.; May, M. J.; Compton, S.; Walton, O. R.; Shingleton, N.; Kane, J. O.; Holtmeier, G.; Loey, H.; Mirkarimi, P. B.; Dunlop, W. H. [Lawrence Livermore National Laboratory, P.O. Box 808, L-481, Livermore, California 94550 (United States); Guyton, R. L.; Huffman, E. [National Securities Technologies, Vasco Rd., Livermore, California 94551 (United States)

2014-09-15T23:59:59.000Z

366

Conceptual design of the gamma-to-electron magnetic spectrometer for the National Ignition Facility  

SciTech Connect (OSTI)

The Gamma-to-Electron Magnetic Spectrometer (GEMS) diagnostic is designed to measure the prompt ?-ray energy spectrum during high yield deuterium-tritium (DT) implosions at the National Ignition Facility (NIF). The prompt ?-ray spectrum will provide “burn-averaged” observables, including total DT fusion yield, total areal density (?R), ablator ?R, and fuel ?R. These burn-averaged observables are unique because they are essentially averaged over 4?, providing a global reference for the line-of-sight-specific measurements typical of x-ray and neutron diagnostics. The GEMS conceptual design meets the physics-based requirements: ?E/E = 3%–5% can be achieved in the range of 2–25 MeV ?-ray energy. Minimum DT neutron yields required for 15% measurement uncertainty at low-resolution mode are: 5 × 10{sup 14} DT-n for ablator ?R (at 0.2 g/cm{sup 2}); 2 × 10{sup 15} DT-n for total DT yield (at 4.2 × 10{sup ?5} ?/n); and 1 × 10{sup 16} DT-n for fuel ?R (at 1 g/cm{sup 2})

Kim, Y., E-mail: yhkim@lanl.gov; Herrmann, H. W.; Jorgenson, H. J.; Barlow, D. B.; Young, C. S.; Lopez, F. E.; Oertel, J. A.; Batha, S. H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Stoeffl, W.; Casey, D.; Clancy, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Hilsabeck, T. [General Atomics, San Diego, California 92186 (United States); Moy, K. [National Security Technologies, Special Technologies Laboratory, Santa Barbara, California 93111 (United States)

2014-11-15T23:59:59.000Z

367

Optimized beryllium target design for indirectly driven inertial confinement fusion experiments on the National Ignition Facility  

SciTech Connect (OSTI)

For indirect drive inertial confinement fusion, Beryllium (Be) ablators offer a number of important advantages as compared with other ablator materials, e.g., plastic and high density carbon. In particular, the low opacity and relatively high density of Be lead to higher rocket efficiencies giving a higher fuel implosion velocity for a given X-ray drive; and to higher ablation velocities providing more ablative stabilization and reducing the effect of hydrodynamic instabilities on the implosion performance. Be ablator advantages provide a larger target design optimization space and can significantly improve the National Ignition Facility (NIF) [J. D. Lindl et al., Phys. Plasmas 11, 339 (2004)] ignition margin. Herein, we summarize the Be advantages, briefly review NIF Be target history, and present a modern, optimized, low adiabat, Revision 6 NIF Be target design. This design takes advantage of knowledge gained from recent NIF experiments, including more realistic levels of laser-plasma energy backscatter, degraded hohlraum-capsule coupling, and the presence of cross-beam energy transfer.

Simakov, Andrei N., E-mail: simakov@lanl.gov; Wilson, Douglas C.; Yi, Sunghwan A.; Kline, John L.; Batha, Steven H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, Daniel S.; Milovich, Jose L.; Salmonson, Jay D. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)] [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

2014-02-15T23:59:59.000Z

368

Mode 1 drive asymmetry in inertial confinement fusion implosions on the National Ignition Facility  

SciTech Connect (OSTI)

Mode 1 radiation drive asymmetry (pole-to-pole imbalance) at significant levels can have a large impact on inertial confinement fusion implosions at the National Ignition Facility (NIF). This asymmetry distorts the cold confining shell and drives a high-speed jet through the hot spot. The perturbed hot spot shows increased residual kinetic energy and reduced internal energy, and it achieves reduced pressure and neutron yield. The altered implosion physics manifests itself in observable diagnostic signatures, especially the neutron spectrum which can be used to measure the neutron-weighted flow velocity, apparent ion temperature, and neutron downscattering. Numerical simulations of implosions with mode 1 asymmetry show that the resultant simulated diagnostic signatures are moved toward the values observed in many NIF experiments. The diagnostic output can also be used to build a set of integrated implosion performance metrics. The metrics indicate that P{sub 1} has a significant impact on implosion performance and must be carefully controlled in NIF implosions.

Spears, Brian K., E-mail: spears9@llnl.gov; Edwards, M. J.; Hatchett, S.; Kritcher, A.; Lindl, J.; Munro, D.; Patel, P.; Robey, H. F.; Town, R. P. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)] [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Kilkenny, J. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)] [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Knauer, J. [Laboratory for Laser Energetics, 250 E. River Road Rochester, New York 14623-1212 (United States)] [Laboratory for Laser Energetics, 250 E. River Road Rochester, New York 14623-1212 (United States)

2014-04-15T23:59:59.000Z

369

The effects of early time laser drive on hydrodynamic instability growth in National Ignition Facility implosions  

SciTech Connect (OSTI)

Defects on inertial confinement fusion capsule surfaces can seed hydrodynamic instability growth and adversely affect capsule performance. The dynamics of shocks launched during the early period of x-ray driven National Ignition Facility (NIF) implosions determine whether perturbations will grow inward or outward at peak implosion velocity and final compression. In particular, the strength of the first shock, launched at the beginning of the laser pulse, plays an important role in determining Richtmyer-Meshkov (RM) oscillations on the ablation front. These surface oscillations can couple to the capsule interior through subsequent shocks before experiencing Rayleigh-Taylor (RT) growth. We compare radiation hydrodynamic simulations of NIF implosions to analytic theories of the ablative RM and RT instabilities to illustrate how early time laser strength can alter peak velocity growth. We develop a model that couples the RM and RT implosion phases and captures key features of full simulations. We also show how three key parameters can control the modal demarcation between outward and inward growth.

Peterson, J. L.; Clark, D. S.; Suter, L. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Masse, L. P. [CEA, DAM, DIF, 91297 Arpajon (France)

2014-09-15T23:59:59.000Z

370

The Radiochemical Analysis of Gaseous Samples (RAGS) Apparatus for Nuclear Diagnostics at the National Ignition Facility  

SciTech Connect (OSTI)

The RAGS (Radiochemical Analysis of Gaseous Samples) diagnostic apparatus was recently installed at the National Ignition Facility. Following a NIF shot, RAGS is used to pump the gas load from the NIF chamber for purification and isolation of the noble gases. After collection, the activated gaseous species are counted via gamma spectroscopy for measurement of the capsule areal density and fuel-ablator mix. Collection efficiency was determined by injecting a known amount of {sup 135}Xe into the NIF chamber, which was then collected with RAGS. Commissioning was performed with an exploding pusher capsule filled with isotopically enriched {sup 124}Xe and {sup 126}Xe added to the DT gas fill. Activated xenon species were recovered post-shot and counted via gamma spectroscopy. Results from the collection and commissioning tests are presented. The performance of RAGS allows us to establish a noble gas collection method for measurement of noble gas species produced via neutron and charged particle reactions in a NIF capsule.

Shaughnessy, D A; Velsko, C A; Jedlovec, D R; Yeamans, C B; Moody, K J; Tereshatov, E; Stoeffl, W; Riddle, A

2012-05-11T23:59:59.000Z

371

Recent advances in automatic alignment system for the National Iginition Facility  

SciTech Connect (OSTI)

The automatic alignment system for the National Ignition Facility (NIF) is a large-scale parallel system that directs all 192 laser beams along the 300-m optical path to a 50-micron focus at target chamber in less than 50 minutes. The system automatically commands 9,000 stepping motors to adjust mirrors and other optics based upon images acquired from high-resolution digital cameras viewing beams at various locations. Forty-five control loops per beamline request image processing services running on a LINUX cluster to analyze these images of the beams and references, and automaticallys teer the beams toward the target. This paper discusses the upgrades to the NIF automatic alignment system to handle new alignment needs and evolving requirements as related to various types of experiments performed. As NIF becomes a continuously-operated system and more experiments are performed, performance monitoring is increasingly important for maintenance and commissioning work. Data, collected during operations, is analyzed for tuning of the laser and targeting maintenance work. handling evolving alignment and maintenance needs is expected for the planned 30-year operational life of NIF.

Wilhelmsen, K; Awwal, A; Kalantar, D; Leach, R; Lowe-Webb, R; McGuigan, D; Kamm, V

2010-12-08T23:59:59.000Z

372

Cold test plan for the Old Hydrofracture Facility tank contents removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This Old Hydrofracture Facility (OHF) Tanks Contents Removal Project Cold Test Plan describes the activities to be conducted during the cold test of the OHF sluicing and pumping system at the Tank Technology Cold Test Facility (TTCTF). The TTCTF is located at the Robotics and Process Systems Complex at the Oak Ridge National Laboratory (ORNL). The cold test will demonstrate performance of the pumping and sluicing system, fine-tune operating instructions, and train the personnel in the actual work to be performed. After completion of the cold test a Technical Memorandum will be prepared documenting completion of the cold test, and the equipment will be relocated to the OHF site.

NONE

1997-11-01T23:59:59.000Z

373

Toward a national plan for the accelerated commercialization of solar energy: guidelines for regional planning  

SciTech Connect (OSTI)

This document provides data and guidelines for the development of regional programs for the accelerated commercialization of solar energy. It estimates the solar potential for individual regions based on the solar resources, competing costs of energy, and specific regional characteristics. It also points out the primary decision makers, technology distributors, and potential barriers that should be addressed by a commercialization program.

Miller, G.; Bennington, G.; Bohannon, M.; Gerstein, R.; Kannan, N.; Page, A.; Rebibo, K.; Shulman, M.; Swepak, P.; Taul, J.

1980-01-01T23:59:59.000Z

374

"Defense-in-Depth" Laser Safety and the National Ignition Facility  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is the largest and most energetic laser in the world contained in a complex the size of a football stadium. From the initial laser pulse, provided by telecommunication style infrared nanoJoule pulsed lasers, to the final 192 laser beams (1.8 Mega Joules total energy in the ultraviolet) converging on a target the size of a pencil eraser, laser safety is of paramount concern. In addition to this, there are numerous high-powered (Class 3B and 4) diagnostic lasers in use that can potentially send their laser radiation travelling throughout the facility. With individual beam paths of up to 1500 meters and a workforce of more than one thousand, the potential for exposure is significant. Simple laser safety practices utilized in typical laser labs just don't apply. To mitigate these hazards, NIF incorporates a multi layered approach to laser safety or 'Defense in Depth.' Most typical high-powered laser operations are contained and controlled within a single room using relatively simplistic controls to protect both the worker and the public. Laser workers are trained, use a standard operating procedure, and are required to wear Personal Protective Equipment (PPE) such as Laser Protective Eyewear (LPE) if the system is not fully enclosed. Non-workers are protected by means of posting the room with a warning sign and a flashing light. In the best of cases, a Safety Interlock System (SIS) will be employed which will 'safe' the laser in the case of unauthorized access. This type of laser operation is relatively easy to employ and manage. As the operation becomes more complex, higher levels of control are required to ensure personnel safety. Examples requiring enhanced controls are outdoor and multi-room laser operations. At the NIF there are 192 beam lines and numerous other Class 4 diagnostic lasers that can potentially deliver their hazardous energy to locations far from the laser source. This presents a serious and complex potential hazard to personnel. Because of this, a multilayered approach to safety is taken. This paper presents the philosophy and approach taken at the NIF in the multi-layered 'defense-in-depth' approach to laser safety.

King, J J

2010-12-02T23:59:59.000Z

375

New Solicitations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

National Laser User Facilities Program New Solicitations New Solicitations National Laser Users' Facility Grant Program...

376

Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility  

SciTech Connect (OSTI)

The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique.

Dionne, B.J.; Morris, S. III; Baum, J.W. [and others

1998-03-01T23:59:59.000Z

377

Pollution prevention opportunity assessment for MicroFab and SiFab facilities at Sandia National Laboratories.  

SciTech Connect (OSTI)

This Pollution Prevention Opportunity Assessment (PPOA) was conducted for the MicroFab and SiFab facilities at Sandia National Laboratories/New Mexico in Fiscal Year 2011. The primary purpose of this PPOA is to provide recommendations to assist organizations in reducing the generation of waste and improving the efficiency of their processes and procedures. This report contains a summary of the information collected, the analyses performed, and recommended options for implementation. The Sandia National Laboratories Environmental Management System (EMS) and Pollution Prevention (P2) staff will continue to work with the organizations to implement the recommendations.

Gerard, Morgan Evan

2011-12-01T23:59:59.000Z

378

Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2003  

SciTech Connect (OSTI)

Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP - U.S. Code of Federal Regulations, Title 40, Part 61, Subpart H) and Washington Administrative Code (WAC) 246-247: Radiation Protection - Air Emissions. In these assessments, potential unabated offsite doses were evaluated for emission locations at facilities owned by the U.S. Department of Energy and operated by Pacific Northwest National Laboratory (PNNL) on the Hanford Site. This report describes the inventory-based methods and provides the results for the assessment performed in 2003.

Ballinger, Marcel Y.; Sula, Monte J.; Gervais, Todd L.; Edwards, Daniel L.

2003-12-05T23:59:59.000Z

379

Assessment of Unabated Facility Emission Potentials for Evaluating Airborne Radionuclide Monitoring Requirements at Pacific Northwest National Laboratory - 2001  

SciTech Connect (OSTI)

Assessments were performed to evaluate compliance with the airborne radionuclide emission monitoring requirements in the National Emission Standards for Hazardous Air Pollutants (NESHAP - U.S. Code of Federal Regulations, Title 40 Part 61, Subpart H) and Washington Administrative Code (WAC) 246-247: Radiation Protection - Air Emissions. In these assessments, potential unabated offsite doses were evaluated for emission locations at facilities owned by the U.S. Department of Energy and operated by Pacific Northwest National Laboratory (PNNL) on the Hanford Site. This report describes the inventory-based methods, and provides the results, for the assessment performed in 2001.

Ballinger, Marcel Y.; Sula, Monte J.; Gervais, Todd L.; Shields, Keith D.; Edwards, Daniel R.

2001-09-28T23:59:59.000Z

380

An Investigation Into Bayesian Networks for Modeling National Ignition Facility Capsule Implosions  

SciTech Connect (OSTI)

Bayesian networks (BN) are an excellent tool for modeling uncertainties in systems with several interdependent variables. A BN is a directed acyclic graph, and consists of a structure, or the set of directional links between variables that depend on other variables, and conditional probabilities (CP) for each variable. In this project, we apply BN's to understand uncertainties in NIF ignition experiments. One can represent various physical properties of National Ignition Facility (NIF) capsule implosions as variables in a BN. A dataset containing simulations of NIF capsule implosions was provided. The dataset was generated from a radiation hydrodynamics code, and it contained 120 simulations of 16 variables. Relevant knowledge about the physics of NIF capsule implosions and greedy search algorithms were used to search for hypothetical structures for a BN. Our preliminary results found 6 links between variables in the dataset. However, we thought there should have been more links between the dataset variables based on the physics of NIF capsule implosions. Important reasons for the paucity of links are the relatively small size of the dataset, and the sampling of the values for dataset variables. Another factor that might have caused the paucity of links is the fact that in the dataset, 20% of the simulations represented successful fusion, and 80% didn't, (simulations of unsuccessful fusion are useful for measuring certain diagnostics) which skewed the distributions of several variables, and possibly reduced the number of links. Nevertheless, by illustrating the interdependencies and conditional probabilities of several parameters and diagnostics, an accurate and complete BN built from an appropriate simulation set would provide uncertainty quantification for NIF capsule implosions.

Mitrani, J

2008-08-18T23:59:59.000Z

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility  

SciTech Connect (OSTI)

In order to achieve ignition using inertial confinement fusion it is important to control the growth of low-mode asymmetries as the capsule is compressed. Understanding the time-dependent evolution of the shape of the hot spot and surrounding fuel layer is crucial to optimizing implosion performance. A design and experimental campaign to examine sources of asymmetry and to quantify symmetry throughout the implosion has been developed and executed on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We have constructed a large simulation database of asymmetries applied during different time intervals. Analysis of the database has shown the need to measure and control the hot-spot shape, areal density distribution, and symmetry swings during the implosion. The shape of the hot spot during final stagnation is measured using time-resolved imaging of the self-emission, and information on the shape of the fuel at stagnation can be obtained from Compton radiography [R. Tommasini et al., Phys. Plasmas 18, 056309 (2011)]. For the first time on NIF, two-dimensional inflight radiographs of gas-filled and cryogenic fuel layered capsules have been measured to infer the symmetry of the radiation drive on the capsule. These results have been used to modify the hohlraum geometry and the wavelength tuning to improve the inflight implosion symmetry. We have also expanded our shock timing capabilities by the addition of extra mirrors inside the re-entrant cone to allow the simultaneous measurement of shock symmetry in three locations on a single shot, providing asymmetry information up to Legendre mode 4. By diagnosing the shape at nearly every step of the implosion, we estimate that shape has typically reduced fusion yield by about 50% in ignition experiments.

Town, R. P. J., E-mail: town2@llnl.gov; Bradley, D. K.; Kritcher, A.; Jones, O. S.; Rygg, J. R.; Tommasini, R.; Barrios, M.; Benedetti, L. R.; Berzak Hopkins, L. F.; Celliers, P. M.; Döppner, T.; Dewald, E. L.; Eder, D. C.; Field, J. E.; Glenn, S. M.; Izumi, N.; Haan, S. W.; Khan, S. F.; Ma, T.; Milovich, J. L. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

2014-05-15T23:59:59.000Z

382

Performance Improvements to the Neutron Imaging System at the National Ignition Facility  

SciTech Connect (OSTI)

A team headed by LANL and including many members from LLNL and NSTec LO and NSTec LAO fielded a neutron imaging system (NIS) at the National Ignition Facility at the start of 2011. The NIS consists of a pinhole array that is located 32.5 cm from the source and that creates an image of the source in a segmented scintillator 28 m from the source. The scintillator is viewed by two gated, optical imaging systems: one that is fiber coupled, and one that is lens coupled. While there are a number of other pieces to the system related to pinhole alignment, collimation, shielding and data acquisition, those pieces are discussed elsewhere and are not relevant here. The system is operational and has successfully obtained data on more that ten imaging shots. This remainder of this whitepaper is divided in five main sections. In Section II, we identify three critical areas of improvement that we believe should be pursued to improve the performance of the system for future experiments: spatial resolution, temporal response and signal-to-noise ratio. In Section III, we discuss technologies that could be used to improve these critical performance areas. In Section IV, we describe a path to evolve the current system to achieve improved performance with minimal impact on the ability of the system to operate on shots. In Section V, we discuss the abilities, scope and timescales of the current teams and the Commissariat energie atomique (CEA). In Section VI, we summarize and make specific recommendations for collaboration on improvements to the NIS.

Fittinghoff, D N; Bower, D E; Drury, O B; Dzenitis, J M; Hatarik, R; Merrill, F E; Grim, G P; Wilde, C H; Wilson, D C; Landoas, O; Caillaud, T; Bourgade, J; Buckles, R A; Lee, J; Weiss, P B

2011-09-26T23:59:59.000Z

383

High resolution simulations of ignition capsule designs for the National Ignition Facility  

SciTech Connect (OSTI)

Ignition capsule designs for the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)] have continued to evolve in light of improved physical data inputs, improving simulation techniques, and - most recently - experimental data from a growing number of NIF sub-ignition experiments. This paper summarizes a number of recent changes to the cryogenic capsule design and some of our latest techniques in simulating its performance. Specifically, recent experimental results indicated harder x-ray drive spectra in NIF hohlraums than were predicted and used in previous capsule optimization studies. To accommodate this harder drive spectrum, a series of high-resolution 2-D simulations, resolving Legendre mode numbers as high as two thousand, were run and the germanium dopant concentration and ablator shell thicknesses re-optimized accordingly. Simultaneously, the possibility of cooperative or nonlinear interaction between neighboring ablator surface defects has motivated a series of fully 3-D simulations run with the massively parallel HYDRA code. These last simulations include perturbations seeded on all capsule interfaces and can use actual measured shell surfaces as initial conditions. 3-D simulations resolving Legendre modes up to two hundred on large capsule sectors have run through ignition and burn, and higher resolution simulations resolving as high as mode twelve hundred have been run to benchmark high-resolution 2-D runs. Finally, highly resolved 3-D simulations have also been run of the jet-type perturbation caused by the fill tube fitted to the capsule. These 3-D simulations compare well with the more typical 2-D simulations used in assessing the fill tube's impact on ignition. Coupled with the latest experimental inputs from NIF, our improving simulation capability yields a fuller and more accurate picture of NIF ignition capsule performance.

Clark, D S; Haan, S W; Cook, A W; Edwards, M J; Hammel, B A; Koning, J M; Marinak, M M

2011-02-17T23:59:59.000Z

384

Los Alamos National Laboratory corregated metal pipe saw facility preliminary safety analysis report. Volume I  

SciTech Connect (OSTI)

This Preliminary Safety Analysis Report addresses site assessment, facility design and construction, and design operation of the processing systems in the Corrugated Metal Pipe Saw Facility with respect to normal and abnormal conditions. Potential hazards are identified, credible accidents relative to the operation of the facility and the process systems are analyzed, and the consequences of postulated accidents are presented. The risk associated with normal operations, abnormal operations, and natural phenomena are analyzed. The accident analysis presented shows that the impact of the facility will be acceptable for all foreseeable normal and abnormal conditions of operation. Specifically, under normal conditions the facility will have impacts within the limits posted by applicable DOE guidelines, and in accident conditions the facility will similarly meet or exceed the requirements of all applicable standards. 16 figs., 6 tabs.

NONE

1990-09-19T23:59:59.000Z

385

Observation of strong electromagnetic fields around laser-entrance holes of ignition-scale hohlraums in inertial-confinement fusion experiments at the National Ignition Facility  

E-Print Network [OSTI]

Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA 02139 USA 2 Lawrence Livermore National Laboratory, Livermore, CA 94550 USA 3 Los Alamos National Laboratory, Los Alamos, NM) experiments utilizing ignition-scaled hohlraums at the National Ignition Facility (NIF). A striking

386

RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU'S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data. (CBS)

Not Available

1991-09-01T23:59:59.000Z

387

Closure Report for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada National Security Site, Nevada  

SciTech Connect (OSTI)

This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 [as amended March 2010]). CAU 116 consists of the following two Corrective Action Sites (CASs), located in Area 25 of the Nevada National Security Site: (1) CAS 25-23-20, Nuclear Furnace Piping and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 consisted of Building 3210 and the attached concrete shield wall. CAS 25-23-20 consisted of the nuclear furnace piping and tanks. Closure activities began in January 2007 and were completed in August 2011. Activities were conducted according to Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 116 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2008). This CR provides documentation supporting the completed corrective actions and provides data confirming that closure objectives for CAU 116 were met. Site characterization data and process knowledge indicated that surface areas were radiologically contaminated above release limits and that regulated and/or hazardous wastes were present in the facility.

NSTec Environmental Restoration

2011-09-29T23:59:59.000Z

388

NERSC 2011: High Performance Computing Facility Operational Assessment for the National Energy Research Scientific Computing Center  

E-Print Network [OSTI]

NERSC 2011 High Performance Computing Facility Operationalby providing high-performance computing, information, data,s deep knowledge of high performance computing to overcome

Antypas, Katie

2013-01-01T23:59:59.000Z

389

DEDICATED HEAVY ION MEDICAL ACCELERATORS  

E-Print Network [OSTI]

Lancaster, R.B. Yourd, Pre~,Accelerator A w·ideroe~,Basedcarbon beam medical accelerator facility. N "' . ,;j "' ::lEat the MARIA Workshop III: Accelerator Systems for Relat ic

Gough, R.A.

2013-01-01T23:59:59.000Z

390

Automation of process accountability flow diagrams at Los Alamos National Laboratory's Plutonium Facility  

SciTech Connect (OSTI)

Many industrial processes (including reprocessing activities; nuclear fuel fabrication; and material storage, measurement and transfer) make use of process flow diagrams. These flows can be used for material accountancy and for data analysis. At Los Alamos National Laboratory (LANL), the Technical Area (TA)-55 Plutonium Facility is home to various research and development activities involving the use of special nuclear material (SNM). A facility conducting research and development (R and D) activities using SNM must satisfy material accountability guidelines. All processes involving SNM or tritium processing, at LANL, require a process accountability flow diagram (PAFD). At LANL a technique was developed to generate PAFDs that can be coupled to a relational database for use in material accountancy. These techniques could also be used for propagation of variance, measurement control, and inventory difference analysis. The PAFD is a graphical representation of the material flow during a specific process. PAFDs are currently stored as PowerPoint files. In the PowerPoint format, the data captured by the PAFD are not easily accessible. Converting the PAFDs to an accessible electronic format is desirable for several reasons. Any program will be able to access the data contained in the PAFD. For the PAFD data to be useful in applications such as an expert system for data checking, SNM accountability, inventory difference evaluation, measurement control, and other kinds of analysis, it is necessary to interface directly with the information contained within the PAFD. The PAFDs can be approved and distributed electronically, eliminating the paper copies of the PAFDs and ensuring that material handlers have the current PAFDs. Modifications to the PAFDs are often global. Storing the data in an accessible format would eliminate the need to manually update each of the PAFDs when a global change has occurred. The goal was to determine a software package that would store the PAFDs in an accessible format that could be interfaced by various programs. After evaluating several commercial relational database and graphing software packages, VISIO Enterprise was selected. LANL is in the process of completing conversion of the existing PAFDs into VISIO Enterprise. A number of the PAFDs have been converted to VISIO Enterprise, and the data from the drawings have been exported to an ACCESS database. After the conversion has taken place, the data contained in the PAFDs will be accessible for various programs. The data that was once stored in PowerPoint will now be available for tools, including expert analysis, propagation of a variance, SNM accountability, inventory difference analysis, measurement control, and other analysis tools that have yet to be identified. Converting from the PowerPoint format to a drawing stored as a relational database will improve the ability of plant personnel to interface with the PAFD.

Knepper, P.; Whiteson, R.; Strittmatter, R.; Mousseau, K.

1999-07-01T23:59:59.000Z

391

Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticut Regions National Science2 FusionSCGF HomeFermi National

392

Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options.  

SciTech Connect (OSTI)

The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents.

Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J. (Idaho National Laboratory, Idaho Falls, ID); Parma, Edward J., Jr.; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

2007-10-01T23:59:59.000Z

393

The National Ignition Facility Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network [OSTI]

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control roo...

Moses, E I

2001-01-01T23:59:59.000Z

394

Removal site evaluation report on the Tower Shielding Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This removal site evaluation report for the Tower Shielding Facility (TSF) at Oak Ridge National Laboratory was prepared to provide the Environmental Restoration Program with information necessary to evaluate whether hazardous and/or radiological contaminants in and around the Tower Shielding Facility pose a substantial risk to human health or the environment (i.e., a high probability of adverse effects) and if remedial site evaluations or removal actions are, therefore, required. The scope of the project included a review of historical evidence regarding operations and use of the facility; interviews with facility personnel concerning current and past operating practices; a site inspection; and identification of hazard areas requiring maintenance, removal, or remedial actions. Based an the findings of this removal site evaluation, adequate efforts are currently being made at the TSF to contain and control existing contamination and hazardous substances on site in order to protect human health and the environment No conditions requiring maintenance or removal actions to mitigate imminent or potential threats to human health and the environment were identified during this evaluation. Given the current conditions and status of the buildings associated with the TSF, this removal site evaluation is considered complete and terminated according to the requirements for removal site evaluation termination.

NONE

1996-09-01T23:59:59.000Z

395

The National Ignition Facility: Status and Plans for Laser Fusion and High-Energy-Density Experimental Studies  

E-Print Network [OSTI]

The National Ignition Facility (NIF) currently under construction at the University of California Lawrence Livermore National Laboratory (LLNL) is a 192-beam, 1.8-megajoule, 500-terawatt, 351-nm laser for inertial confinement fusion (ICF) and high-energy-density experimental studies. NIF is being built by the Department of Energy and the National Nuclear Security Agency (NNSA) to provide an experimental test bed for the U.S. Stockpile Stewardship Program to ensure the country's nuclear deterrent without underground nuclear testing. The experimental program will encompass a wide range of physical phenomena from fusion energy production to materials science. Of the roughly 700 shots available per year, about 10% will be dedicated to basic science research. Laser hardware is modularized into line replaceable units (LRUs) such as deformable mirrors, amplifiers, and multi-function sensor packages that are operated by a distributed computer control system of nearly 60,000 control points. The supervisory control room presents facility-wide status and orchestrates experiments using operating parameters predicted by physics models. A network of several hundred front-end processors (FEPs) implements device control. The object-oriented software system is implemented in the Ada and Java languages and emphasizes CORBA distribution of reusable software objects. NIF is currently scheduled to provide first light in 2004 and will be completed in 2008.

E. I. Moses

2001-11-09T23:59:59.000Z

396

High-resolution spectroscopy for Doppler-broadening ion temperature measurements of implosions at the National Ignition Facility  

SciTech Connect (OSTI)

Future implosion experiments at the national ignition facility (NIF) will endeavor to simultaneously measure electron and ion temperatures with temporal and spatial resolution in order to explore non-equilibrium temperature distributions and their relaxation toward equilibrium. In anticipation of these experiments, and with understanding of the constraints of the NIF facility environment, we have explored the use of Doppler broadening of mid-Z dopant emission lines, such as krypton He-{alpha} at 13 keV, as a diagnostic of time- and potentially space-resolved ion temperature. We have investigated a number of options analytically and with numerical raytracing, and we have identified several promising candidate spectrometer designs that meet the expected requirements of spectral and temporal resolution and data signal-to-noise ratio for gas-filled exploding pusher implosions, while providing maximum flexibility for use on a variety of experiments that potentially include burning plasma.

Koch, J. A.; Stewart, R. E.; Beiersdorfer, P.; Shepherd, R.; Schneider, M. B.; Miles, A. R.; Scott, H. A.; Smalyuk, V. A.; Hsing, W. W. [Lawrence Livermore National Laboratory, P.O. Box 808, L-493, Livermore, California 94550 (United States)

2012-10-15T23:59:59.000Z

397

Safety Basis Requirements for Nonnuclear Facilities at Lawrence Livermore National Laboratory Site-Specific Work Smart Standards Revision 1  

SciTech Connect (OSTI)

This standard establishes requirements that, when coupled with Lawrence Livermore National Laboratory's (LLNL's) Integrated Safety Management System (ISMS) methods and other Work Smart Standards for assuring worker safety, assure that the impacts of nonnuclear operations authorized in LLNL facilities are well understood and controlled in a manner that protects the health of workers, the public, and the environment. All LLNL facilities shall be classified based on potential for adverse impact of operations to the health of co-located (i.e., nearby) workers and the public in accordance with this standard, Title 10 Code of Federal Regulations (10 CFR) 830, Subpart B, and Department of Energy Order (DOE O) 420.2A. This standard provides information on: Objectives; Applicability; Safety analysis requirements; Control selection and maintenance; Documentation requirements; Safety basis review, approval, and renewal; and Safety basis implementation.

Beach, R; Brereton, S; Failor, R; Hildum, S; Spagnolo, S; Van Warmerdam, C

2003-02-24T23:59:59.000Z

398

SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticutPhotos of AEC SiteEnvironmentalSLAC National

399

SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticutPhotos of AEC SiteEnvironmentalSLAC NationalSLAC

400

SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticutPhotos of AEC SiteEnvironmentalSLAC NationalSLACSLAC

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,Bios High EnergyEliane SJuly 2007Fermi National

402

Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,Bios High EnergyEliane SJuly 2007Fermi NationalFermi

403

Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,Bios High EnergyEliane SJuly 2007Fermi NationalFermiFermi

404

SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,BiosScience (SC) Regional &ReviewSLAC National

405

SLAC National Accelerator Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,BiosScience (SC) Regional &ReviewSLAC NationalSLAC

406

Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticut Regions National Science2 FusionSCGF Home » 2010Fermi

407

Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticut Regions National Science2 FusionSCGF Home »

408

Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticut Regions National Science2 FusionSCGF Home »Fermi

409

Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticut Regions National Science2 FusionSCGF Home »FermiFermi

410

Fermi National Accelerator Laboratory | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticut Regions National Science2 FusionSCGF Home

411

EA-1616: National Carbon Research Center Project at Southern Company Services' Power Systems Development Facility near Wilsonville, Alabama  

Broader source: Energy.gov [DOE]

This EA evaluates and updates the potential environmental impacts of DOE’s proposed continued operations of the NCCC Project at the PSDF plant. The NCCC is designed to test and evaluate carbon dioxide (CO2) control technologies for power generation facilities, including CO2 capture solvents and sorbents, mass-transfer devices, lower cost water-gas shift reactors, and scaled-up membrane technologies. Additionally, the NCCC evaluates methods to integrate CO2 capture technologies with other coal-based power plant systems by testing both pre-combustion and post-combustion technologies. The NCCC provides the capability to test these systems under a wide range of fuels, including bituminous and sub-bituminous coals, lignites and biomass/coal mixtures. The goal of the NCCC project is to accelerate the development, optimization, and commercialization of viable CO2 control technologies.

412

Reconstruction of 2D x-ray radiographs at the National Ignition Facility using pinhole tomography (invited)  

SciTech Connect (OSTI)

Two-dimensional radiographs of imploding fusion capsules are obtained at the National Ignition Facility by projection through a pinhole array onto a time-gated framing camera. Parallax among images in the image array makes it possible to distinguish contributions from the capsule and from the backlighter, permitting correction of backlighter non-uniformities within the capsule radiograph. Furthermore, precise determination of the imaging system geometry and implosion velocity enables combination of multiple images to reduce signal-to-noise and discover new capsule features.

Field, J. E., E-mail: field9@llnl.gov; Rygg, J. R.; Barrios, M. A.; Benedetti, L. R.; Döppner, T.; Izumi, N.; Jones, O.; Khan, S. F.; Ma, T.; Nagel, S. R.; Pak, A.; Tommasini, R.; Bradley, D. K.; Town, R. P. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

2014-11-15T23:59:59.000Z

413

Preliminary volcanic hazards evaluation for Los Alamos National Laboratory Facilities and Operations : current state of knowledge and proposed path forward  

SciTech Connect (OSTI)

The integration of available information on the volcanic history of the region surrounding Los Alamos National Laboratory indicates that the Laboratory is at risk from volcanic hazards. Volcanism in the vicinity of the Laboratory is unlikely within the lifetime of the facility (ca. 50–100 years) but cannot be ruled out. This evaluation provides a preliminary estimate of recurrence rates for volcanic activity. If further assessment of the hazard is deemed beneficial to reduce risk uncertainty, the next step would be to convene a formal probabilistic volcanic hazards assessment.

Keating, Gordon N.; Schultz-Fellenz, Emily S.; Miller, Elizabeth D.

2010-09-01T23:59:59.000Z

414

Sandia National Laboratories/New Mexico existing environmental analyses bounding environmental test facilities.  

SciTech Connect (OSTI)

This report identifies current environmental operating parameters for the various test and support facilities at SNL/NM. The intent of this report is solely to provide the limits which bound the facilities' operations. Understanding environmental limits is important to maximizing the capabilities and working within the existing constraints of each facility, and supports the decision-making process in meeting customer requests, cost and schedule planning, modifications to processes, future commitments, and use of resources. Working within environmental limits ensures that mission objectives will be met in a manner that protects human health and the environment. It should be noted that, in addition to adhering to the established limits, other approvals and permits may be required for specific projects.

May, Rodney A.; Bailey-White, Brenda E. (Sandia Staffing Alliance, LLC, Albuquerque, NM); Cantwell, Amber (Sandia Staffing Alliance, LLC, Albuquerque, NM)

2009-06-01T23:59:59.000Z

415

Fusion Energy Research at The National Ignition Facility: The Pursuit of the Ultimate Clean, Inexhaustible  

E-Print Network [OSTI]

at the" Lawrence Radiation Laboratory" In Livermore, California..." " #12;Presentation to MIT 13NIF-0709, Inexhaustible Energy Source" John D. Moody, Lawrence Livermore National Laboratory" " Presented to: MIT ­ PSFC by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 #12;A few memories of MIT physics

416

Accelerator and electrodynamics capability review  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

Jones, Kevin W [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

417

Neutron activation diagnostics at the National Ignition Facility (invited) D. L. Bleuel, C. B. Yeamans, L. A. Bernstein, R. M. Bionta, J. A. Caggiano et al.  

E-Print Network [OSTI]

. H. G. Schneider1 1 Lawrence Livermore National Laboratory, Livermore, California 94550, USA 2 yields are measured at the National Ignition Facility (NIF) by an extensive suite of neutron activation manipulators in the NIF target chamber, 25­50 cm from the source, to measure 2.45 MeV deuterium

418

Target diagnostic system for the national ignition facility (invited) R. J. Leeper, G. A. Chandler, G. W. Cooper, M. S. Derzon, D. L. Fehl, D. E. Hebron,  

E-Print Network [OSTI]

, T. W. Phillips, D. Ress, G. L. Tietbohl, and J. E. Trebes Lawrence Livermore National Laboratory, Livermore, California 94550 R. J. Bartlett, R. Berggren, S. E. Caldwell, R. E. Chrien, B. H. Failor, J. C of a diagnostic system proposed for ignition target experiments on the National Ignition Facility NIF

419

Polar-drive implosions on OMEGA and the National Ignition Facility P. B. Radha, F. J. Marshall, J. A. Marozas, A. Shvydky, I. Gabalski et al.  

E-Print Network [OSTI]

Polar-drive implosions on OMEGA and the National Ignition Facility P. B. Radha, F. J. Marshall, J-drive implosions on OMEGA and the National Ignition Facilitya) P. B. Radha,1,b) F. J. Marshall,1 J. A. Marozas,1 A

420

Qualification of a high-efficiency, gated spectrometer for x-ray Thomson scattering on the National Ignition Facility  

SciTech Connect (OSTI)

We have designed, built, and successfully fielded a highly efficient and gated Bragg crystal spectrometer for x-ray Thomson scattering measurements on the National Ignition Facility (NIF). It utilizes a cylindrically curved Highly Oriented Pyrolytic Graphite crystal. Its spectral range of 7.4–10?keV is optimized for scattering experiments using a Zn He-? x-ray probe at 9.0 keV or Mo K-shell line emission around 18 keV in second diffraction order. The spectrometer has been designed as a diagnostic instrument manipulator-based instrument for the NIF target chamber at the Lawrence Livermore National Laboratory, USA. Here, we report on details of the spectrometer snout, its novel debris shield configuration and an in situ spectral calibration experiment with a Brass foil target, which demonstrated a spectral resolution of E/?E = 220 at 9.8 keV.

Döppner, T.; Kritcher, A. L.; Bachmann, B.; Burns, S.; Hawreliak, J.; House, A.; Landen, O. L.; LePape, S.; Ma, T.; Pak, A.; Swift, D. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Neumayer, P. [Gesellschaft für Schwerionenphysik, 64291 Darmstadt (Germany); Kraus, D. [University of California, Berkeley, California 94720 (United States); Falcone, R. W. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94309 (United States)

2014-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Status of the US National Inertial Fusion ProgramSNL Z Facility UR/LLE OMEGA  

E-Print Network [OSTI]

for inertial fusion and high energy density physics · NIF 81% complete, first ignition experiments planned Ignition Facility is 85 % complete NIF concentrates 1.8 Mega Joules of energy into a mm3 size target -- it needs to be flush left -- keep horizontal within Title/Logo limits at the top #12;7 NIF has executed

422

National Fuel Cell Technology Evaluation Center (NFCTEC) (Revised) (Fact Sheet), Energy Systems Integration Facility (ESIF), NREL (National Renewable Energy Laboratory)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleetEngineeringAnnual Report ThisNational Environmental

423

FLAME facility: The effect of obstacles and transverse venting on flame acceleration and transition on detonation for hydrogen-air mixtures at large scale  

SciTech Connect (OSTI)

This report describes research on flame acceleration and deflagration-to-detonation transition (DDT) for hydrogen-air mixtures carried out in the FLAME facility, and describes its relevance to nuclear reactor safety. Flame acceleration and DDT can generate high peak pressures that may cause failure of containment. FLAME is a large rectangular channel 30.5 m long, 2.44 m high, and 1.83 m wide. It is closed on the ignition end and open on the far end. The three test variables were hydrogen mole fraction (12--30%), degree of transverse venting (by moving steel top plates---0%, 13%, and 50%), and the absence or presence of certain obstacles in the channel (zero or 33% blockage ratio). The most important variable was the hydrogen mole fraction. The presence of the obstacles tested greatly increased the flame speeds, overpressures, and tendency for DDT compared to similar tests without obstacles. Different obstacle configurations could have greater or lesser effects on flame acceleration and DDT. Large degrees of transverse venting reduced the flame speeds, overpressures, and possibility of DDT. For small degrees of transverse venting (13% top venting), the flame speeds and overpressures were higher than for no transverse venting with reactive mixtures (>18% H/sub 2/), but they were lower with leaner mixtures. The effect of the turbulence generated by the flow out the vents on increasing flame speed can be larger than the effect of venting gas out of the channel and hence reducing the overpressure. With no obstacles and 50% top venting, the flame speeds and overpressures were low, and there was no DDT. For all other cases, DDT was observed above some threshold hydrogen concentration. DDT was obtained at 15% H/sub 2/ with obstacles and no transverse venting. 67 refs., 62 figs.

Sherman, M.P.; Tieszen, S.R.; Benedick, W.B.

1989-04-01T23:59:59.000Z

424

Eileen Berman Condor in the Fermilab Grid FacilitiesApril 30, 2008  

E-Print Network [OSTI]

Eileen Berman #12;Condor in the Fermilab Grid FacilitiesApril 30, 2008 Fermi National Accelerator of 1000' s of users working for many years, rely on Fermilab to provide the core services and software necessary to enable the research that leads to scientific discoveries The Fermilab Grid Facilities

Wisconsin at Madison, University of

425

Submission of Notice of Termination of Coverage Under the National Pollutant Discharge Elimination System General Permit No. CAS000002 for WDID No. 201C349114, Lawrence Livermore National Laboratory Ignition Facility Construction Project  

SciTech Connect (OSTI)

This is the completed Notice of Termination of Coverage under the General Permit for Storm Water Discharges Associated with Construction Activity. Construction activities at the National Ignition Facility Construction Project at Lawrence Livermore National Laboratory are now complete. The Notice of Termination includes photographs of the completed construction project and a vicinity map.

Brunckhorst, K

2009-04-21T23:59:59.000Z

426

Monte Carlo validation experiments for the gas Cherenkov detectors at the National Ignition Facility and Omega  

SciTech Connect (OSTI)

The gas Cherenkov detectors at NIF and Omega measure several ICF burn characteristics by detecting multi-MeV nuclear ? emissions from the implosion. Of primary interest are ? bang-time (GBT) and burn width defined as the time between initial laser-plasma interaction and peak in the fusion reaction history and the FWHM of the reaction history respectively. To accurately calculate such parameters the collaboration relies on Monte Carlo codes, such as GEANT4 and ACCEPT, for diagnostic properties that cannot be measured directly. This paper describes a series of experiments performed at the High Intensity ? Source (HI?S) facility at Duke University to validate the geometries and material data used in the Monte Carlo simulations. Results published here show that model-driven parameters such as intensity and temporal response can be used with less than 50% uncertainty for all diagnostics and facilities.

Rubery, M. S.; Horsfield, C. J. [Plasma Physics Department, AWE plc, Reading RG7 4PR (United Kingdom)] [Plasma Physics Department, AWE plc, Reading RG7 4PR (United Kingdom); Herrmann, H.; Kim, Y.; Mack, J. M.; Young, C.; Evans, S.; Sedillo, T.; McEvoy, A.; Caldwell, S. E. [Plasma Physics Department, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Plasma Physics Department, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Grafil, E.; Stoeffl, W. [Physics, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)] [Physics, Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Milnes, J. S. [Photek Limited UK, 26 Castleham Road, St. Leonards-on-sea TN38 9NS (United Kingdom)] [Photek Limited UK, 26 Castleham Road, St. Leonards-on-sea TN38 9NS (United Kingdom)

2013-07-15T23:59:59.000Z

427

BROOKHAVEN NATIONAL LABORATORY INSTRUMENTATION DIVISION, R AND D PROGRAMS, FACILITIES, STAFF.  

SciTech Connect (OSTI)

To develop state-of-the-art instrumentation required for experimental research programs at BNL, and to maintain the expertise and facilities in specialized high technology areas essential for this work. Development of facilities is motivated by present BNL research programs and anticipated future directions of BNL research. The Division's research efforts also have a significant impact on programs throughout the world that rely on state-of-the-art radiation detectors and readout electronics. Our staff scientists are encouraged to: Become involved in challenging problems in collaborations with other scientists; Offer unique expertise in solving problems; and Develop new devices and instruments when not commercially available. Scientists from other BNL Departments are encouraged to bring problems and ideas directly to the Division staff members with the appropriate expertise. Division staff is encouraged to become involved with research problems in other Departments to advance the application of new ideas in instrumentation. The Division Head integrates these efforts when they evolve into larger projects, within available staff and budget resources, and defines the priorities and direction with concurrence of appropriate Laboratory program leaders. The Division Head also ensures that these efforts are accompanied by strict adherence to all ES and H regulatory mandates and policies of the Laboratory. The responsibility for safety and environmental protection is integrated with supervision of particular facilities and conduct of operations.

INSTRUMENTATION DIVISION STAFF

1999-06-01T23:59:59.000Z

428

VOLUME 77, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 23 SEPTEMBER 1996 Measuring Implosion Symmetry and Core Conditions in the National Ignition Facility  

E-Print Network [OSTI]

. Pollaine, S. W. Haan, T. P. Bernat, and J. D. Kilkenny Lawrence Livermore National Laboratory, Livermore on new initiatives in inertial fusion, the National Ignition Facility (NIF) in the U.S. and the Mega-capsule implosion (0.7 kJ) in the National Ignition Facility (NIF). From such profiles, estimates are made

429

Future Fixed Target Facilities  

SciTech Connect (OSTI)

We review plans for future fixed target lepton- and hadron-scattering facilities, including the 12 GeV upgraded CEBAF accelerator at Jefferson Lab, neutrino beam facilities at Fermilab, and the antiproton PANDA facility at FAIR. We also briefly review recent theoretical developments which will aid in the interpretation of the data expected from these facilities.

Melnitchouk, Wolodymyr

2009-01-01T23:59:59.000Z

430

Pathway from the National Ignition Facility to an operational LIFE power plant  

E-Print Network [OSTI]

Lawrence Livermore National Laboratory #12;#12;Or, less than a gram of fuel per person per year next step, after NIF, is construction of a full-scale power plant NIF-1111-23807.ppt 4 #12 delivery #12;7NIF-1111-23807.ppt #12;Principle of LIFE plant operation Heat transfer DT fuel cycle

431

Neutron spectrometry--An essential tool for diagnosing implosions at the National Ignition Facility (invited)  

E-Print Network [OSTI]

D. H. Munro,2 J. McNaney,2 H. S. Park,2 J. Ralph,2 B. Remington,2 J. R. Rygg,2 S. M. Sepke,2 V, University of Rochester, Rochester, New York 14623, USA 5 Los Alamos National Laboratory, Los Alamos, New

432

A guide to research facilities at the National Renewable Energy Laboratory  

SciTech Connect (OSTI)

The guide is divided into two parts. Topping the pages are descriptions of laboratories at NREL that provide sophisticated experimental equipment, testing capabilities, or processes that may not be available in the private sector. Scientific categories are designated at the top of the pages in blue; individual laboratory descriptions follow alphabetically, along with the names and phone numbers of the laboratory managers. In blue boxes at the bottom of the pages are articles about NREL, our technology transfer program, and our facilities, as well as guidelines for students, researchers, and industrial collaborators who wish to use them. A list of key contacts and a map of the campus follows the laboratory descriptions.

Not Available

1994-04-01T23:59:59.000Z

433

The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe Energy DepartmentCategory 2 Nuclear Facility |Radioactive

434

Lawrence Livermore National Laboratory Federal Facility Compliance Order, February 24, 1997 Summary  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | DepartmentEnergy Invitation toDepartmentSite |Federal Facility

435

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

2002-05-20T23:59:59.000Z

436

Site Characterization Plan for the Old Hydrofracture Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program  

SciTech Connect (OSTI)

The aboveground structures of the Old Hydrofracture Facility (OHF) at Oak Ridge National Laboratory (ORNL) are scheduled for decontamination and decommissioning (D&D). This Site Characterization Plan presents the strategy and techniques to be used to characterize the OHF D&D structures in support of D&D planning, design, and implementation. OHF is located approximately 1 mile southwest of the main ORNL complex. From 1964 to 1979, OHF was used in the development and full-scale application of hydrofracture operations in which 969,000 gal of liquid low-level waste (LLLW) was mixed with grout and then injected under high pressure into a low-permeability shale formation approximately 1/6 mile underground.

Not Available

1994-01-01T23:59:59.000Z

437

After Action Report:Idaho National Laboratory (INL) 2014 Multiple Facility Beyond Design Basis (BDBE) Evaluated Drill October 21, 2014  

SciTech Connect (OSTI)

On October 21, 2014, Idaho National Laboratory (INL), in coordination with local jurisdictions, and Department of Energy (DOE) Idaho Operations Office (DOE ID) conducted an evaluated drill to demonstrate the ability to implement the requirements of DOE O 151.1C, “Comprehensive Emergency Management System” when responding to a beyond design basis event (BDBE) scenario as outlined in the Office of Health, Safety, and Security Operating Experience Level 1 letter (OE-1: 2013-01). The INL contractor, Battelle Energy Alliance, LLC (BEA), in coordination with CH2M-WG Idaho, LLC (CWI), and Idaho Treatment Group LLC (ITG), successfully demonstrated appropriate response measures to mitigate a BDBE event that would impact multiple facilities across the INL while protecting the health and safety of personnel, the environment, and property. Offsite response organizations participated to demonstrate appropriate response measures.

V. Scott Barnes

2014-12-01T23:59:59.000Z

438

Unusual flux-distance relationship for pulsars suggested by analysis of the Australia national telescopy facility pulsar catalogue  

SciTech Connect (OSTI)

We analyze pulsar fluxes at 1400 MHz (S(1400)) and distances d taken from the Australia National Telescope Facility (ATNF) Pulsar Catalogue. Under the assumption that pulsar populations in different parts of the Galaxy are similar, we find that either (a) pulsar fluxes diminish with distance according to a non-standard power law (we suggest S(1400){proportional_to} 1/d rather than {proportional_to} 1/d{sup 2}) or (b) that there are very significant (i.e. order of magnitude) errors in the distance estimates quoted in the ATNF Catalogue. The former conclusion (a) supports a recent model for pulsar emission that has also successfully explained the frequency spectrum of the Crab pulsar over 16 orders of magnitude of frequency, whilst alternative (b) would necessitate a radical re-evaluation of both the dispersion method for estimating pulsar distances and current ideas about the distribution of pulsars within our Galaxy.

Singleton, John [Los Alamos National Laboratory; Perez, M R [Los Alamos National Laboratory; Singleton, J [Los Alamos National Laboratory; Ardavan, H [UNIV OF CAMBRIDGE; Ardavan, A [UNIV OF OXFORD

2009-01-01T23:59:59.000Z

439

Oak Ridge National Laboratory Old Hydrofracture Facility Waste Remediation Using the Borehole-Miner Extendible-Nozzle Sluicer  

SciTech Connect (OSTI)

A borehole-miner extendible-nozzle sluicing system was designed, constructed, and deployed at Oak Ridge National Laboratory to remediate five horizontal underground storage tanks containing sludge and supernate at the ORNL Old Hydrofracture Facility site. The tanks were remediated in fiscal year 1998 to remove {approx}98% of the waste, {approx}3% greater than the target removal of >95% of the waste. The tanks contained up to 18 in. of sludge covered by supernate. The 42,000 gal of low level liquid waste were estimated to contain 30,000 Ci, with 97% of this total located in the sludge. The retrieval was successful. At the completion of the remediation, the State of Tennessee Department of Environment and Conservation agreed that the tanks were cleaned to the maximum extent practicable using pumping technology. This deployment was the first radioactive demonstration of the borehole-miner extendible-nozzle water-jetting system. The extendible nozzle is based on existing bore hole-miner technology used to fracture and dislodge ore deposits in mines. Typically borehole-miner technology includes both dislodging and retrieval capabilities. Both dislodging, using the extendible-nozzle water-jetting system, and retrieval, using a jet pump located at the base of the mast, are deployed as an integrated system through one borehole or riser. Note that the extendible-nozzle system for Oak Ridge remediation only incorporated the dislodging capability; the retrieval pump was deployed through a separate riser. The borehole-miner development and deployment is part of the Retrieval Process Development and Enhancements project under the direction of the US Department of Energy's EM-50 Tanks Focus Area. This development and deployment was conducted as a partnership between RPD and E and the Oak Ridge National Laboratory's US DOE EM040 Old Hydrofracture Facility remediation project team.

Bamberger, J.A.; Boris, G.F.

1999-10-07T23:59:59.000Z

440

The National Ignition Facility (NIF) and the issue of nonproliferation. Final study  

SciTech Connect (OSTI)

NIF, the next step proposed by DOE in a progression of Inertial Confinement Fusion (ICF) facilities, is expected to reach the goal of ICF capsule ignition in the laboratory. This report is in response to a request of a Congressman that DOE resolve the question of whether NIF will aid or hinder U.S. nonproliferation efforts. Both technical and policy aspects are addressed, and public participation was part of the decision process. Since the technical proliferation concerns at NIF are manageable and can be made acceptable, and NIF can contribute positively to U.S. arms control and nonproliferation policy goals, it is concluded that NIF supports the nuclear nonproliferation objectives of the United States.

NONE

1995-12-19T23:59:59.000Z

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility  

SciTech Connect (OSTI)

The theory of ignition for inertial confinement fusion capsules [R. Betti et al., Phys. Plasmas 17, 058102 (2010)] is used to assess the performance requirements for cryogenic implosion experiments on the Omega Laser Facility. The theory of hydrodynamic similarity is developed in both one and two dimensions and tested using multimode hydrodynamic simulations with the hydrocode DRACO [P. B. Radha et al., Phys. Plasmas 12, 032702 (2005)] of hydro-equivalent implosions (implosions with the same implosion velocity, adiabat, and laser intensity). The theory is used to scale the performance of direct-drive OMEGA implosions to the National Ignition Facility (NIF) energy scales and determine the requirements for demonstrating hydro-equivalent ignition on OMEGA. Hydro-equivalent ignition on OMEGA is represented by a cryogenic implosion that would scale to ignition on the NIF at 1.8?MJ of laser energy symmetrically illuminating the target. It is found that a reasonable combination of neutron yield and areal density for OMEGA hydro-equivalent ignition is 3 to 6?×?10{sup 13} and ?0.3?g/cm{sup 2}, respectively, depending on the level of laser imprinting. This performance has not yet been achieved on OMEGA.

Nora, R.; Betti, R.; Bose, A.; Woo, K. M.; Christopherson, A. R.; Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Fusion Science Center, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Anderson, K. S.; Shvydky, A.; Marozas, J. A.; Collins, T. J. B.; Radha, P. B.; Hu, S. X.; Epstein, R.; Marshall, F. J.; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); McCrory, R. L. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States); Department of Physics and/or Mechanical Engineering, University of Rochester, 250 East River Road, Rochester, New York 14623-1299 (United States)

2014-05-15T23:59:59.000Z

442

Idaho National Engineering Laboratory Federal Facility Agreement and Consent Order, December 9, 1991  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS CableDepartment of Energy ReportingIanIdaho National

443

Factsheet Overview The Savannah River National Laboratory's Shielded Cells Facility gives the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FYRANDOMOverview The Savannah River National

444

SLAC National Accelerator Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|Physics ResearchLCLS Sign In Launch the SLAC

445

Fermi National Accelerator Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO) ď‚·diffractive imaging withDots) -08

446

Fermi National Accelerator Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO) ď‚·diffractive imaging withDots) -0810

447

Fermi National Accelerator Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicyFeasibility of SF(STEO) ď‚·diffractive imaging withDots) -08103,

448

Fermi National Accelerator Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFORFALL NEWSFemtosecond X-ray4, Fermilab spent

449

Contaminant monitoring of biota downstream of a radioactive liquid waste treatment facility, Los Alamos National Laboratory  

SciTech Connect (OSTI)

Small mammals, plants, and sediments were sampled at one upstream location (Site 1) and two downstream locations (Site 2 and Site 3) from the National Pollution Discharge Elimination System (NPDES) outfall {number_sign}051-051 in Mortandad Canyon, Los Alamos National Laboratory, Los Alamos, New Mexico. The purpose of the sampling was to identify radionuclides potentially present, to quantitatively estimate and compare the amount of radionuclide uptake at specific locations (Site 2 and Site 3) within Mortandad Canyon to an upstream site (Site 1), and to identify the primary mode (inhalation/ingestion or surface contact) of contamination to small mammals. Three composite samples of at least five animals per sample were collected at each site. The pelt was separated from the carcass of each animal and both were analyzed independently. In addition, three composite samples were also collected for plants and sediments at each site. Samples were analyzed for americium ({sup 241}Am), strontium ({sup 90}Sr), plutonium ({sup 238}Pu and {sup 239}Pu), and total uranium (U). With the exception of total U, all mean radionuclide concentrations in small mammal carcasses and sediments were significantly higher at Site 2 than Site 1 or Site 3. No differences were detected in the mean radionuclide concentration of plant samples between sites. However, some radionuclide concentrations found at all three sites were higher than regional background. No differences were found between mean carcass radionuclide concentrations and mean pelt radionuclide concentrations, indicating that the two primary modes of contamination may be equally occurring.

Bennett, K.D.; Biggs, J.R.; Fresquez, P.R. [Los Alamos National Lab., NM (United States). Environment, Safety, and Health Div.

1996-12-31T23:59:59.000Z

450

RCRA Facility investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This report provides a detailed summary of the activities carried out to sample groundwater at Waste Area Grouping (WAG) 6. The analytical results for samples collected during Phase 1, Activity 2 of the WAG 6 Resource Conservation and Recovery Act Facility Investigation (RFI) are also presented. In addition, analytical results for Phase 1, activity sampling events for which data were not previously reported are included in this TM. A summary of the groundwater sampling activities of WAG 6, to date, are given in the Introduction. The Methodology section describes the sampling procedures and analytical parameters. Six attachments are included. Attachments 1 and 2 provide analytical results for selected RFI groundwater samples and ORNL sampling event. Attachment 3 provides a summary of the contaminants detected in each well sampled for all sampling events conducted at WAG 6. Bechtel National Inc. (BNI)/IT Corporation Contract Laboratory (IT) RFI analytical methods and detection limits are given in Attachment 4. Attachment 5 provides the Oak Ridge National Laboratory (ORNL)/Analytical Chemistry Division (ACD) analytical methods and detection limits and Resource Conservation and Recovery Act (RCRA) quarterly compliance monitoring (1988--1989). Attachment 6 provides ORNL/ACD groundwater analytical methods and detection limits (for the 1990 RCRA semi-annual compliance monitoring).

Not Available

1991-09-01T23:59:59.000Z

451

Environmental Survey preliminary report, Idaho National Engineering Laboratory, Idaho Falls, Idaho and Component Development and Integration Facility, Butte, Montana  

SciTech Connect (OSTI)

This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Idaho National Engineering Laboratory (INEL) and Component Development and Integration Facility (CDIF), conducted September 14 through October 2, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the INEL and CDIF. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations' carried on at the INEL and the CDIF, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory. When completed, the S A results will be incorporated into the INEL/CDIF Survey findings for inclusion into the Environmental Survey Summary Report. 90 refs., 95 figs., 77 tabs.

Not Available

1988-09-01T23:59:59.000Z

452

Safety Assessment for the Kozloduy National Disposal Facility in Bulgaria - 13507  

SciTech Connect (OSTI)

Due to the early decommissioning of four Water-Water Energy Reactors (WWER) 440-V230 reactors at the Nuclear Power Plant (NPP) near the city of Kozloduy in Bulgaria, large amounts of low and intermediate radioactive waste will arise much earlier than initially scheduled. In or-der to manage the radioactive waste from the early decommissioning, Bulgaria has intensified its efforts to provide a near surface disposal facility at Radiana with the required capacity. To this end, a project was launched and assigned in international competition to a German-Spanish consortium to provide the complete technical planning including the preparation of the Intermediate Safety Assessment Report. Preliminary results of operational and long-term safety show compliance with the Bulgarian regulatory requirements. The long-term calculations carried out for the Radiana site are also a good example of how analysis of safety assessment results can be used for iterative improvements of the assessment by pointing out uncertainties and areas of future investigations to reduce such uncertainties in regard to the potential radiological impact. The computer model used to estimate the long-term evolution of the future repository at Radiana predicted a maximum total annual dose for members of the critical group, which is carried to approximately 80 % by C-14 for a specific ingestion pathway. Based on this result and the outcome of the sensitivity analysis, existing uncertainties were evaluated and areas for reasonable future investigations to reduce these uncertainties were identified. (authors)

Biurrun, E.; Haverkamp, B. [DBE TECHNOLOGY GmbH, Eschenstr. 55, D-31224 Peine (Germany)] [DBE TECHNOLOGY GmbH, Eschenstr. 55, D-31224 Peine (Germany); Lazaro, A.; Miralles, A. [Westinghouse Electric Spain SAR, Padilla 17, E-28006 Madrid (Spain)] [Westinghouse Electric Spain SAR, Padilla 17, E-28006 Madrid (Spain); Stefanova, I. [SERAW, 52 A Dimitrov Blvd, 6 Fl., 1797 Sofia (Bulgaria)] [SERAW, 52 A Dimitrov Blvd, 6 Fl., 1797 Sofia (Bulgaria)

2013-07-01T23:59:59.000Z

453

Annual summary report on surveillance and maintenance activities of the surplus contaminated facilities program at Oak Ridge National Laboratory for period ending September 30, 1991  

SciTech Connect (OSTI)

The Surplus Contaminated Facilities Program (SCFP) was established at the Oak Ridge National Laboratory (ORNL) in 1985 to provide support for inactive contaminated facilities that were largely abandoned by the programs which they formerly served. This support provides for routine surveillance and maintenance (S M) and special projects beyond a routine nature when such actions are needed to ensure adequate protection of personnel or the environment. The facilities included in the program had been used for research, technology development, isotope production and processing, and waste management. Support for facilities in the SCFP has previously been provided by the Department of Energy's (DOE's) Office of Energy Research: Multiprogram Energy Laboratories -- Facilities Support (ERKG) because of multiprogram use of the facilities or because of the landlord responsibility of Energy Research. Recently, an integrated Decontamination and Decommissioning (D D) program within the DOE Office of Environmental Restoration and Waste Management has been established to collectively manage the former Surplus Facilities Management Program, Defense D D Program, and the KG-funded, ORNL-originated SCFP. This report gives an overview of the S M planning, routine S M, and special maintenance project activities which have occurred at the SCFP facilities during the 1991 Fiscal Year.

Cannon, T.R.; Ford, M.K.; Holder, L. Jr.

1991-09-01T23:59:59.000Z

454

National Renewable Energy Laboratory's Energy Systems Integration...  

Broader source: Energy.gov (indexed) [DOE]

National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This...

455

Current Awards | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

National Laser User Facilities Program Current Awards Current Awards National Laser Users' Facility Grant Program Current Awards Under Construction...

456

National Synchrotron Light Source Facility Manual Maintenance Management Program. Revision 1  

SciTech Connect (OSTI)

The purpose of this program s to meet the policy and objectives for the management and performance of cost-effective maintenance and repair of the National Synchrotron Light Source, as required by the US Department of Energy order DOE 433O.4A. It is the DOE`s policy that: The maintenance management program for the NSLS be consistent with this Order and that NSLS property is maintained in a manner which promotes operational safety, worker health, environmental protection and compliance, property preservation, and cost-effectiveness while meeting the NSLS`s programmatic mission. Structures, components and systems (active and passive) that are imporant to safe operation of the NSLS shall be subject to a maintenance program to ensure that they meet or exceed their design requirements throughout the life of the NSLS. Periodic examination of structures, systems components and equipment be performed to determine deterioration or technical obsolescence which may threaten performance and/or safety. Primary responsibility, authority, and accountability for the direction and management of the maintenance program at the NSLS reside with the line management assigned direct programmatic responsibility. Budgeting and accounting for maintenance programs are consistent with DOE Orders guidance.

Fewell, N.

1993-12-01T23:59:59.000Z

457

Mercury Removal at Idaho National Engineering and Environmental Laboratory's New Waste Calcining Facility  

SciTech Connect (OSTI)

Technologies were investigated to determine viable processes for removing mercury from the calciner (NWCF) offgas system at the Idaho National Engineering and Environmental Laboratory. Technologies for gas phase and aqueous phase treatment were evaluated. The technologies determined are intended to meet EPA Maximum Achievable Control Technology (MACT) requirements under the Clean Air Act and Resource Conservation and Recovery Act (RCRA). Currently, mercury accumulation in the calciner off-gas scrubbing system is transferred to the tank farm. These transfers lead to accumulation in the liquid heels of the tanks. The principal objective for aqueous phase mercury removal is heel mercury reduction. The system presents a challenge to traditional methods because of the presence of nitrogen oxides in the gas phase and high nitric acid in the aqueous scrubbing solution. Many old and new technologies were evaluated including sorbents and absorption in the gas phase and ion exchange, membranes/sorption, galvanic methods, and UV reduction in the aqueous phase. Process modifications and feed pre-treatment were also evaluated. Various properties of mercury and its compounds were summarized and speciation was predicted based on thermodynamics. Three systems (process modification, NOxidizer combustor, and electrochemical aqueous phase treatment) and additional technology testing were recommended.

Ashworth, Samuel Clay; Wood, R. A.; Taylor, D. D.; Sieme, D. D.

2000-03-01T23:59:59.000Z

458

Use of the target diagnostic control system in the National Ignition Facility  

SciTech Connect (OSTI)

The extreme physics of targets shocked by NIF's 192-beam laser are observed by a diverse suite of diagnostics including optical backscatter, time-integrated, time resolved and gated X-ray sensors, laser velocity interferometry, and neutron time of flight. Diagnostics to diagnose fusion ignition implosion and neutron emissions have been developed. A Diagnostic Control System (DCS) for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the DCS architecture each instrument is interfaced to a low-cost Window XP processor and Java application. Instruments are aggregated as needed in the supervisory system to form an integrated diagnostic. The Java framework provides data management, control services and operator GUI generation. During the past several years, over thirty-six diagnostics have been deployed using this architecture in support of the National Ignition Campaign (NIC). The DCS architecture facilitates the expected additions and upgrades to diagnostics as more experiments are performed. This paper presents the DCS architecture, framework and our experiences in using it during the NIC to operate, upgrade and maintain a large set of diagnostic instruments.

Shelton, R; Lagin, L; Nelson, J

2011-07-25T23:59:59.000Z

459

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility  

E-Print Network [OSTI]

, Higashi-Hiroshima, Japan, 3 HudsonAlpha-JGI, HudsonAlpha Genome Sequencing Center, Huntsville, Alabama, United States of America, 4 Department of Energy Joint Genome Institute, Walnut Creek, California, United genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve

460

E-Print Network 3.0 - accelerator electron radiotherapy Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Continuous Electron Beam Accelerator Facility, Newport News, Virginia (the Big... & Phenomenology Particle Astrophysics & Cosmology Accelerator Physics Health Physics...

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011  

SciTech Connect (OSTI)

As a condition to the Disposal Authorization Statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year 2011 annual review for Area G. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 and formally approved in 2009. These analyses are expected to provide reasonable estimates of the long-term performance of Area G and, hence, the disposal facility's ability to comply with Department of Energy (DOE) performance objectives. Annual disposal receipt reviews indicate that smaller volumes of waste will require disposal in the pits and shafts at Area G relative to what was projected for the performance assessment and composite analysis. The future inventories are projected to decrease modestly for the pits but increase substantially for the shafts due to an increase in the amount of tritium that is projected to require disposal. Overall, however, changes in the projected future inventories of waste are not expected to compromise the ability of Area G to satisfy DOE performance objectives. The Area G composite analysis addresses potential impacts from all waste disposed of at the facility, as well as other sources of radioactive material that may interact with releases from Area G. The level of knowledge about the other sources included in the composite analysis has not changed sufficiently to call into question the validity of that analysis. Ongoing environmental surveillance activities are conducted at, and in the vicinity of, Area G. However, the information generated by many of these activities cannot be used to evaluate the validity of the performance assessment and composite analysis models because the monitoring data collected are specific to operational releases or address receptors that are outside the domain of the performance assessment and composite analysis. In general, applicable monitoring data are supportive of some aspects of the performance assessment and composite analysis. Several research and development (R and D) efforts have been initiated under the performance assessment and composite analysis maintenance program. These investigations are designed to improve the current understanding of the disposal facility and site, thereby reducing the uncertainty associated with the projections of the long-term performance of Area G. The status and results of R and D activities that were undertaken in fiscal year 2011 are discussed in this report. Special analyses have been conducted to determine the feasibility of disposing of specific waste streams, to address proposed changes in disposal operations, and to consider the impacts of changes to the models used to conduct the performance assessment and composite analysis. These analyses are described and the results of the evaluations are summarized in this report. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, all disposal operations at Area G have been confined to MDA G. Material Disposal Area G is scheduled to undergo final closure in 2015; disposal of waste in the pits and shafts is scheduled to end in 2013. In anticipation of the closure of MDA G, plans are being made to ship the majority of the waste generated at LANL to off-site locations for disposal. It is not clear at this time if waste that will be disposed of at LANL will be placed in Zone 4 or if disposal operations will move to a new location at the Laboratory. Separately, efforts to optimize the final cover used in the closure of MDA G are underway; a final cover design different than that adopted for the performance assessment and composite analy

French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [WPS: WASTE PROJECTS AND SERVICES

2012-05-22T23:59:59.000Z

462

Dismantling Structures and Equipment of the MR Reactor and its Loop Facilities at the National Research Center 'Kurchatov Institute' - 12051  

SciTech Connect (OSTI)

In 2008 a design of decommissioning of research reactors MR and RFT has been developed in the National research Center 'Kurchatov institute'. The design has been approved by Russian State Authority in July 2009 year and has received the positive conclusion of ecological expertise. In 2009-2010 a preparation for decommissioning of reactors MR and RFT was spent. Within the frames of a preparation a characterization, sorting and removal of radioactive objects, including the irradiated fuel, from reactor storage facilities and pool have been executed. During carrying out of a preparation on removal of radioactive objects from reactor sluice pool water treating has been spent. For these purposes modular installation for clearing and processing of a liquid radioactive waste 'Aqua - Express' was used. As a result of work