Powered by Deep Web Technologies
Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Thomas Jefferson National Accelerator Facility Technology Marketing...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thomas Jefferson National Accelerator Facility Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Thomas...

2

Independent Oversight Inspection, Thomas Jefferson National Accelerator Facility- August 2008  

Broader source: Energy.gov [DOE]

Inspection of Environment, Safety and Health Programs at the Thomas Jefferson National Accelerator Facility

3

Thomas Jefferson National Accelerator Facility Site Tour - Accelerator Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Counting House Free Electron Accelerator Facility Machine Control Center Physics Storage Building North Linear Accelerator South Linear Accelerator VEPCO Substation Machine Control Center Annex Machine Control Center Annex II North Access Building South Access Building Central Helium Liquefier Injector Hall A Truck Ramp Hall B Truck Ramp Hall C Truck Ramp Experimental Hall A Experimental Hall B Experimental Hall C East Arc West Arc Counting House Free Electron Accelerator Facility Machine Control Center Physics Storage Building North Linear Accelerator South Linear Accelerator VEPCO Substation Machine Control Center Annex Machine Control Center Annex II North Access Building South Access Building Central Helium Liquefier Injector Hall A Truck Ramp Hall B Truck Ramp Hall C Truck Ramp Experimental Hall A Experimental Hall B Experimental Hall C East Arc West Arc Science Education Jefferson Lab Jefferson Lab Home Search Jefferson Lab Contact Jefferson Lab Science Education Home Teacher Resources Student Zone Games and Puzzles Science Cinema Programs and Events Search Education Privacy and Security Notice Jefferson Lab Site Tour Guided Tour Site Map Accelerator Area Map Administrative Area Map Tour Index

4

The HVEM-Tandem Accelerator Facility at Argonne National Laboratory  

Science Journals Connector (OSTI)

The HVEM-Tandem National User Facility consists of a modified Kratos/AE1 EM7 HVEM with a maximum accelerating voltage of 1.2 MeV, interfaced to both a 2MV National Electrostatics tandem ion accelerator and a 300 kV Texas Nuclear ion accelerator. The latter is being replaced with a 650 kV National Electrostatics accelerator which should be fully operational in FY 1987. These accelerators provide a wide range of ion species with energies from 25 keV to 8 MeV. The combination of HVEM and ion accelerators provides a truly unique capability for ion irradiation/implantation experimentation along with simultaneous microscopy. The HVEM-Tandem Facility currently is employed for a wide range of materials research, including basic in situ studies of mechanical properties, oxidation and hydrogen effects in metals, radiation effects including ion and electron irradiation-induced phase changes and general defect analysis. More than half of these studies are conducted by non-ANL scientists from universities and other national laboratories. Access to the National User Facility is by means of research proposals which are reviewed by a Steering Committee composed of both Argonne and non-Argonne scientists representing the user community.

A. Taylor; C.W. Allen; E.A. Ryan

1987-01-01T23:59:59.000Z

5

Labs at-a-Glance: Thomas Jefferson National Accelerator Facility | U.S. DOE  

Office of Science (SC) Website

Thomas Jefferson Thomas Jefferson National Accelerator Facility Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Thomas Jefferson National Accelerator Facility Print Text Size: A A A RSS Feeds FeedbackShare Page Thomas Jefferson National Accelerator Facility Logo

6

Brookhaven National Laboratory | Accelerator Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

physics, BNL will provide Program Development funding totaling 2M over the 3 years for upgrading the CO 2 laser to the level of 100 TW. Brookhaven National Laboratory |...

7

Ground Broken for New Job-Creating Accelerator Research Facility at DOE’s Fermi National Accelerator Laboratory in Illinois  

Broader source: Energy.gov [DOE]

WASHINGTON, D.C. – Today, ground was broken for a new accelerator research facility being built at the Department of Energy’s (DOE’s) Fermi National Accelerator Laboratory (Fermilab) in Batavia,...

8

Finding of No Significant Impact Improvements at the Thomas Jefferson National Accelerator Facility Newsport News, Virginia  

Broader source: Energy.gov (indexed) [DOE]

IMPROVEMENTS AT THE THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY IMPROVEMENTS AT THE THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY NEWPORT NEWS, VIRGINIA AGENCY: U.S. DEPARTMENT OF ENERGY ACTION: FINDING OF NO SIGNIFICANT IMPACT SUMMARY: The U.S. Department of Energy (DOE) has completed an Environmental Assessment (DOE/EA-1384) for proposed Improvements at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). Newport News, Virginia. Based on the results of the impacts analysis reported in the EA, DOE has determined that the proposed action is not a major Federal action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement (EIS) is not necessary, and DOE is issuing this Finding of No

9

Thomas Jefferson National Accelerator Facility | U.S. DOE Office...  

Office of Science (SC) Website

Facility Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2014 Report Cards FY 2013 Report Cards FY 2012 Report Cards Report Card Archives Laboratory...

10

Thomas Jefferson National Accelerator Facility | U.S. DOE Office...  

Office of Science (SC) Website

(Quality and Productivity of R&D) A Construction and Operation of Research Facilities A S&T ProjectProgram Management A- Contractor LeadershipStewardship A- Environment Safety...

11

Thomas Jefferson National Accelerator Facility | U.S. DOE Office...  

Office of Science (SC) Website

and Productivity of R&D) B+ Construction and Operation of Research Facilities A- S&T ProjectProgram Management B+ Contractor LeadershipStewardship A- Environment Safety...

12

Thomas Jefferson National Accelerator Facility | U.S. DOE Office...  

Office of Science (SC) Website

and Productivity of R&D) A- Construction and Operation of Research Facilities A- S&T ProjectProgram Management B+ Contractor LeadershipStewardship B+ Environment, Safety...

13

Thomas Jefferson National Accelerator Facility | U.S. DOE Office...  

Office of Science (SC) Website

and Productivity of R&D) B+ Construction and Operation of Research Facilities A- S&T ProjectProgram Management B+ Contractor LeadershipStewardship B+ Environment, Safety...

14

Thomas Jefferson National Accelerator Facility | U.S. DOE Office...  

Office of Science (SC) Website

and Productivity of R&D) A- Construction and Operation of Research Facilities B+ S&T ProjectProgram Management B Contractor LeadershipStewardship B+ Environment, Safety...

15

Thomas Jefferson National Accelerator Facility | U.S. DOE Office...  

Office of Science (SC) Website

and Productivity of R&D) A- Construction and Operation of Research Facilities B+ S&T ProjectProgram Management B+ Contractor LeadershipStewardship B+ Environment Safety...

16

Environmental Assessment Proposed Improvements at the Thomas Jefferson National Accelerator Facility Newport News, Virginia  

Broader source: Energy.gov (indexed) [DOE]

84 84 Environmental Assessment Proposed Improvements at the Thomas Jefferson National Accelerator Facility Newport News, Virginia June 2002 U. S. Department of Energy Oak Ridge Operations Oak Ridge, Tennessee DOE/EA-1384 i TABLE OF CONTENTS Executive Summary.....................................................................................................................1 1. INTRODUCTION..................................................................................................................... 6 1.1 PREVIOUS ACTIONS ............................................................................................................................................. 6 1.2 SCOPE OF THIS PROPOSED ACTION..............................................................................................................

17

Review of Natural Phenomena Hazards (NPH) Requirements Currently Applied to the Thomas Jefferson National Accelerator Facility (TJNAF)  

Broader source: Energy.gov [DOE]

Review of Natural Phenomena Hazards (NPH) Requirements Currently Applied to the Thomas Jefferson National Accelerator Facility (TJNAF) By: Integrated NPH Team: David Luke, Lead, TJSO Rusty Sprouse, JSA Michael A. Epps, TJSO Richard Korynta, TJSO

18

Implementation of DOE NPH Requirements at the Thomas Jefferson National Accelerator Facility (TJNAF), a Non-Nuclear DOE Lab  

Broader source: Energy.gov [DOE]

Implementation of DOE NPH Requirements at the Thomas Jefferson National Accelerator Facility (TJNAF), a Non-Nuclear DOE Lab David Luke, DOE, Thomas Jefferson Site Office Stephen McDuffie, DOE, Office of the Chief of Nuclear Safety

19

ORELA accelerator facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Oak Ridge Electron Linear Accelerator The Oak Ridge Electron Linear Accelerator Pulsed Neutron Source The ORELA is a powerful electron accelerator-based neutron source located in the Physics Division of Oak Ridge National Laboratory. It produces intense, nanosecond bursts of neutrons, each burst containing neutrons with energies from 10e-03 to 10e08 eV. ORELA is operated about 1200 hours per year and is an ORNL User Facility open to university, national laboratory and industrial scientists. The mission of ORELA has changed from a recent focus on applied research to nuclear astrophysics. This is an area in which ORELA has historically been very productive: most of the measurements of neutron capture cross sections necessary for understanding heavy element nucleosynthesis through the slow neutron capture process (s-process) have

20

UNITED STATES DEPARTMENT OF ENERGY (DOE) THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY (JEFFERSON LAB)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- 2014 JSAT Application Package - 2014 JSAT Application Package Page 1 of 6 UNITED STATES DEPARTMENT OF ENERGY (DOE) THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY (JEFFERSON LAB) JLAB SCIENCE ACTIVITIES FOR TEACHERS (JSAT) ATTENTION ALL 5 th , 6 th AND 8 th GRADE MIDDLE SCHOOL SCIENCE TEACHERS! THIS PROGRAM IS FOR YOU! What is it? JSAT is an after school program for 5 th , 6 th and 8 th grade science teachers designed to build teachers' skills in the physical sciences, funded by the Jefferson Science Associates Initiatives Fund. What will I do? The 2013-2014 program will include interactive activities to enhance physical science instruction at the middle school level and lectures by Jefferson Lab staff on the applications of science. And, yes, teachers WILL receive class sets of some activities!

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Powerline Conductor Accelerated Testing Facility (PCAT) The Powerline Conductor Accelerated Testing facility (PCAT) at Oak Ridge National  

E-Print Network [OSTI]

as simultaneous measuring of conductor tension, sag, and environmental conditions (e.g., wind, solar, ambient environmental conditions. The tests provide both the manufacturer and utilities with conductor performance data under accelerated field-like operating conditions. These tests short-circuit the need for utilities

22

BNL | Accelerator Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerator Test Facility Accelerator Test Facility Home Core Capabilities Photoinjector S-Band Linac Laser Systems CO2 Laser Nd:Yag Laser Beamlines Beamline Simulation Data Beamline Parameters Beam Diagnostics Detectors Beam Schedule Operations Resources Fact Sheet (.pdf) Image Library Upgrade Proposal (.pdf) Publications ES&H Experiment Start-up ATF Handbook Laser Safety Collider-Accelerator Dept. C-AD ES&H Resources Staff Users' Place Apply for Access ATF photo ATF photo ATF photo ATF photo ATF photo A user facility for advanced accelerator research The Brookhaven Accelerator Test Facility (ATF) is a proposal driven, steering committee reviewed facility that provides users with high-brightness electron- and laser-beams. The ATF pioneered the concept of a user facility for studying complex properties of modern accelerators and

23

EIS-0003: Proton-Proton Storage Accelerator Facility (Isabelle), Brookhaven National Laboratory, Upton, NY  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this EIS to analyze the significant environmental effects associated with construction and operation of the ISABELLE research facility to be built at Brookhaven National Laboratory.

24

DEVELOPMENT OF A HIGH BRIGHTNESS ELECTRON GUN FOR THE ACCELERATOR TEST FACILITY AT BROOKHAVEN NATIONAL LABORATORY*  

E-Print Network [OSTI]

954 DEVELOPMENT OF A HIGH BRIGHTNESS ELECTRON GUN FOR THE ACCELERATOR TEST FACILITY AT BROOKHAVEN, New York 11973 and K. McDonald Princeton [Jniversity Abstract An electron gun utilizing a radio). Here we report on the de;$n of the electron gun which will provide r.f. bunches of up to 10 electrons

McDonald, Kirk

25

Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

2001-01-08T23:59:59.000Z

26

Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

2004-07-23T23:59:59.000Z

27

Radiological Training for Accelerator Facilities  

Broader source: Energy.gov (indexed) [DOE]

8-2002 8-2002 May 2002 Change Notice No 1. with Reaffirmation January 2007 DOE HANDBOOK RADIOLOGICAL TRAINING FOR ACCELERATOR FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. TS This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Change Notice 1. Radiological Safety Training for Accelerator Facilities

28

Sandia National Laboratories: Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

29

E-Print Network 3.0 - accelerator test facility Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test facility Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerator test facility Page: << < 1 2 3 4 5 > >> 1 SLAC National Accelerator...

30

Simulation prediction and experiment setup of vacuum laser acceleration at Brookhaven National Lab-Accelerator Test Facility  

Science Journals Connector (OSTI)

This paper presents the pre-experiment plan and prediction of the first stage of vacuum laser acceleration (VLA) collaborating by UCLA, Fudan University and ATF-BNL. This first stage experiment is a proof-of-principle to support our previously posted novel VLA theory. Simulations show that based on ATF's current experimental conditions the electron beam with initial energy of 15 MeV can get net energy gain from an intense CO2 laser beam. The difference in electron beam energy spread is observable by the ATF beam line diagnostics system. Further, this energy spread expansion effect increases along with an increase in laser intensity. The proposal has been approved by the ATF committee and the experiment will be our next project.

L. Shao; D. Cline; X. Ding; Y.K. Ho; Q. Kong; J.J. Xu; I. Pogorelsky; V. Yakimenko; K. Kusche

2013-01-01T23:59:59.000Z

31

Independent Oversight Inspection, Thomas Jefferson National Accelerator  

Broader source: Energy.gov (indexed) [DOE]

Thomas Jefferson National Thomas Jefferson National Accelerator Facility - August 2008 Independent Oversight Inspection, Thomas Jefferson National Accelerator Facility - August 2008 August 2008 Inspection of Environment, Safety and Health Programs at the Thomas Jefferson National Accelerator Facility The U.S. Department of Energy (DOE) Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), inspected environment, safety, and health (ES&H) programs at the DOE Thomas Jefferson Site Office (TJSO) and the Thomas Jefferson National Accelerator Facility (TJNAF) during May through July 2008. The ES&H inspection was performed by Independent Oversight's Office of Environment, Safety and Health Evaluations. In coordination with TJSO, TJNAF has taken a number of actions to develop a

32

Safety of Accelerator Facilities - DOE Directives, Delegations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Health, Environmental Protection, Facility Authorization, Safety The order defines accelerators and establishes accelerator specific safety requirements and approval authorities...

33

Accelerator Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Director ATF, Accelerator External program committee W. Leemans, Chair M. Woodle Engineer Mechanical M. Montemagno Engineer Electrical I. Pogorelsky, Physicist, Laser P. Jacob...

34

Test Facility Daniil Stolyarov, Accelerator Test Facility User...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of the Solid-State Laser System for the Accelerator Test Facility Daniil Stolyarov, Accelerator Test Facility User's Meeting April 3, 2009 Outline Motivation for...

35

Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Cancels DOE O 420.2B.

2011-07-21T23:59:59.000Z

36

The 12 GeV CEBAF Upgrade Project at Thomas Jefferson National Accelerator Facility, OAS-RA-L-11-13  

Broader source: Energy.gov (indexed) [DOE]

12 GeV CEBAF Upgrade 12 GeV CEBAF Upgrade Project at Thomas Jefferson National Accelerator Facility OAS-RA-L-11-13 September 2011 Department of Energy Washington, DC 20585 September 30, 2011 MEMORANDUM FOR THE DEPUTY DIRECTOR FOR SCIENCE PROGRAMS, OFFICE OF SCIENCE DIRECTOR, OFFICE OF RISK MANAGEMENT AND FINANCIAL POLICY, OFFICE OF THE CHIEF FINANCIAL OFFICER FROM: David Sedillo, Director NNSA & Science Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The 12 GeV CEBAF Upgrade Project at Thomas Jefferson National Accelerator Facility" Audit Report Number: OAS-RA-L-11-13 BACKGROUND In September 2008, the Department of Energy's (Department) Office of Science approved a construction project to double the electron beam energy of the Continuous Electron Beam

37

Groundbreaking at National Ignition Facility | National Nuclear...  

National Nuclear Security Administration (NNSA)

Ignition Facility May 29, 1997 Groundbreaking at National Ignition Facility Livermore, CA Secretary Pena participates in the ground breaking ceremony for the National Ignition...

38

Accelerator Center: National symbol or white elephant?  

SciTech Connect (OSTI)

This article discusses the possible future of the National Accelerator Center facility in South Africa. This state of the art facility with a 200-megaelectrol-volt proton cyclotron, carries out important nuclear physics research but takes a huge part of South Africa`s total science research budget.

NONE

1995-06-02T23:59:59.000Z

39

Biomass Feedstock National User Facility  

Broader source: Energy.gov [DOE]

Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers Biomass Feedstock National User Facility Kevin L. Kenney, Director, Biomass Feedstock National User Facility, Idaho National Laboratory

40

Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Inertial Confinement Fusion Inertial Confinement Fusion Facilities Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Inertial Confinement Fusion > Facilities Facilities Office of Inertial Confinement Fusion, Facilities ICF operates a set of world-class experimental facilities to create HEDP conditions and to obtain quantitative data in support of its numerous stockpile stewardship-related activities. To learn about three high energy experimental facilities and two small lasers that provide ICF capabilities, select the links below. National Ignition Facility, Lawrence Livermore National Laboratory OMEGA and OMEGA EP, University of Rochester Laboratory for Laser Energetics Z Machine, Sandia National Laboratories

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Labs at-a-Glance: Fermi National Accelerator Laboratory | U.S. DOE Office  

Office of Science (SC) Website

Fermi National Fermi National Accelerator Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Fermi National Accelerator Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Fermi National Accelerator Laboratory Logo Visit the Fermi National Accelerator

42

Labs at-a-Glance: SLAC National Accelerator Laboratory | U.S. DOE Office of  

Office of Science (SC) Website

SLAC National SLAC National Accelerator Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: SLAC National Accelerator Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page SLAC National Accelerator Laboratory Logo Visit the SLAC National Accelerator

43

Radiological Safety Training for Accelerator Facilities  

Office of Environmental Management (EM)

HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR ACCELERATOR FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public...

44

Facilities | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Research Facility Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Tribology Laboratory Transportation Beamline at the Advanced...

45

SLAC National Accelerator Laboratory Technology Marketing Summaries...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

SLAC National Accelerator Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the SLAC National Accelerator...

46

Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Research and Development manages and oversees the operation of an exceptional suite of science, technology and engineering facilities that support and further the national...

47

National Ignition Facility & Photon Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 National Ignition Facility & Photon Science how do Lasers work? how Do Lasers work? A laser can be as small as a microscopic computer chip or as immense as the National Ignition...

48

Ground Broken for New Job-Creating Accelerator Research Facility at DOE's  

Broader source: Energy.gov (indexed) [DOE]

Ground Broken for New Job-Creating Accelerator Research Facility at Ground Broken for New Job-Creating Accelerator Research Facility at DOE's Fermi National Accelerator Laboratory in Illinois Ground Broken for New Job-Creating Accelerator Research Facility at DOE's Fermi National Accelerator Laboratory in Illinois December 16, 2011 - 11:49am Addthis WASHINGTON, D.C. - Today, ground was broken for a new accelerator research facility being built at the Department of Energy's (DOE's) Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. Supported jointly by the state of Illinois and DOE, the construction of the Illinois Accelerator Research Center (IARC) will provide a state-of-the-art facility for research, development and industrialization of particle accelerator technology, and create about 200 high-tech jobs. DOE's Office

49

Sandia National Laboratories: Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DETL, Energy, Facilities, Materials Science, News, News & Events, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, Solar Newsletter, Systems Analysis Sandia...

50

Sandia National Laboratories: Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) On December 15, 2014, in Computational Modeling & Simulation,...

51

Sandia National Laboratories: Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production Method Could Lead to Better Lights, Lenses, Solar Cells On July 1, 2014, in Capabilities, CINT, Energy, Energy Efficiency, Facilities, Materials Science,...

52

Sandia National Laboratories: Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 31, 2014, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid Integration, Infrastructure Security, News, News & Events, Photovoltaic, Renewable...

53

Princeton Plasma Physics Lab - National Ignition Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

national-ignition-facility National Ignition Facility en Summary of Assessment of Prospects for Inertial Fusion Energy http:www.pppl.govnode1361

54

June 11, 1999: National Ignition Facility  

Broader source: Energy.gov [DOE]

June 11, 1999Secretary Richardson dedicates the National Ignition Facility target chamber at DOE's Lawrence Livermore National Laboratory.

55

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test Facility Air Force Research Laboratory Testing On August 17, 2012, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, Renewable...

56

Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Office of Defense Science Office of Defense Science Facilities Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Research and Development > Facilities Facilities Office of Research and Development, Facilities The Office of Research and Development manages and oversees the operation of an exceptional suite of science, technology, and engineering facilities that support and further the national stockpile stewardship agenda. Of varying size, scope and capabilities, the facilities work in a concert to accomplish the following activities: Annual assessment of the stockpile in the face of increasing challenges due to aging or remanufacture, Reduced response times for resolving stockpile issues, Timely and certifiable completion of Life Extension Programs,

57

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test Facility (NSTTF) Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

58

Advances in Ion Accelerators Boost Argonne's ATLAS User Facility...  

Office of Science (SC) Website

science as well as accelerator driven systems for nuclear waste transmutation or power generation, high-current accelerator-based isotope production facilities, and...

59

DOE - Office of Legacy Management -- Fermi National Accelerator Laboratory  

Office of Legacy Management (LM)

Fermi National Accelerator Fermi National Accelerator Laboratory - 016 FUSRAP Considered Sites Site: Fermi National Accelerator Laboratory (016) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site began it's mission as a single-program research and development facility for the Atomic Energy Commission in 1972, when the first accelerator at the Laboratory began operations. The Laboratory¿s current mission is to conduct research in high energy physics under the direction of the Department of Energy's Office of Science. Clean-up of contamination at the site was completed in 1997. Also see Documents Related to Fermi National Accelerator Laboratory

60

ACCELERATOR TEST FACILITY SAFETY ASSESSMENT DOCUMENT TABLE OF...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Revised: March 1, 2010 i ACCELERATOR TEST FACILITY SAFETY ASSESSMENT DOCUMENT TABLE OF CONTENTS 1. INTRODUCTION AND DESCRIPTION OF THE FACILITY ......

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Oak Ridge National Laboratory - User Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

User Facilities Oak Ridge National Laboratory is home to a number of highly sophisticated experimental user facilities. These research laboratories are designed to serve staff...

62

Radiological Safety Training for Accelerator Facilities  

Broader source: Energy.gov (indexed) [DOE]

TS TS NOT MEASUREMENT SENSITIVE DOE-HDBK-1108-2002 May 2002 Reaffirmation with Change Notice 2 July 2013 DOE HANDBOOK RADIOLOGICAL SAFETY TRAINING FOR ACCELERATOR FACILITIES U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ Change Notice No.2 Radiological Training for Accelerator Facilities Page/Section Change Throughout the document: Program Management Guide Instructor's Guide Student's Guide "Shall" and "Must" statements Revised to: Program Management Instructor's Material Student's Material Reworded to non-mandatory language unless associated with a requirement

63

SLAC low emittance accelerator test facility  

SciTech Connect (OSTI)

SLAC is proposing to build a new Accelerator Test Facility (ATF) capable of producing a 50 MeV electron beam with an extremely low geometric tranverse emittance (1.5 x 10/sup -10/ rad.m) for the purpose of testing new methods of acceleration. The low emittance will be achieved by assembling a linear accelerator using one standard SLAC three-meter section and a 400 kV electron gun with a very small photocathode (40 microns in diameter). The photocathode will be illuminated from the back by short bursts (on the order of 6 ps) of visible laser light which will produce bunches of about 10/sup 5/ electrons. Higher currents could be obtained by illuminating the cathode from the front. The gun will be mounted directly against the accelerator section. Calculations show that in the absence of an rf buncher, injection of these 400 keV small radius electron bunches roughly 30/sup 0/ ahead of crest produces negligible transverse emittance growth due to radial rf forces. Acceleration of the electrons up to 50 MeV followed by collimation, energy slits and focusing will provide a 3.2 mm long waist of under 1.5 ..mu..m in diameter where laser acceleration and other techniques can be tested.

Loew, G.A.; Miller, R.H.; Sinclair, C.K.

1986-05-01T23:59:59.000Z

64

E-Print Network 3.0 - accelerator facilities coefficients Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Mathematics 32 Accelerator Test Facility www.bnl.govatf Summary: Accelerator Test Facility www.bnl.govatf Accelerator Test Facility Contact Information Phone:(631......

65

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

66

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia Wins Three R&D100 Awards On July 24, 2013, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News & Events, Photovoltaic,...

67

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Solar Power Technical Management Position On July 12, 2012, in Concentrating Solar Power, Energy, Facilities, Job Listing, National Solar Thermal Test Facility, News,...

68

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

69

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Sandia Capabilities to Support Power Industry On January 8, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

70

National Ignition Facility & Photon Science What  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

What is NiF? the national ignition Facility: bringing star Power to earth The National Ignition Facility (NIF) is the world's largest and highest energy laser system. NIF is an...

71

Sandia National Laboratories: accelerated lifetime testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

accelerated lifetime testing Sandia Solar Energy Test System Cited in National Engineering Competition On May 16, 2013, in Concentrating Solar Power, Energy, Energy Storage,...

72

Dual Axis Radiographic Hydrodynamic Test Facility | National...  

National Nuclear Security Administration (NNSA)

Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear...

73

Heating National Ignition Facility, Realistic Financial Planning...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DOEEIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic...

74

Groundbreaking at National Ignition Facility | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Groundbreaking at National Ignition Facility | National Nuclear Security Groundbreaking at National Ignition Facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Groundbreaking at National Ignition Facility Groundbreaking at National Ignition Facility May 29, 1997 Livermore, CA Groundbreaking at National Ignition Facility

75

Fermi National Accelerator Laboratory November 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

g-2 Experiment A national laboratory funded by the Office of Science of the Department of Energy. www.fnal.gov Fermi National Accelerator Laboratory November 2013 By studying the...

76

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Visit to NSTTF On September 10, 2012, in Concentrating Solar Power, EC, National Solar Thermal Test Facility, Renewable Energy Dr. David Danielson visited Sandia National...

77

National Ignition Facility (NIF): Under Pressure: Ramp-Compression...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Ignition Facility (NIF): Under Pressure: Ramp-Compression Smashes Record American Fusion News Category: National Ignition Facility Link: National Ignition Facility (NIF):...

78

Sandia National Laboratories: Scaled Wind Farm Technology Facility...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyScaled Wind Farm Technology Facility Baselining Project Accelerates Work Scaled Wind Farm Technology Facility Baselining Project Accelerates Work Increasing the...

79

Ground Broken for New Job-Creating Accelerator Research Facility...  

Office of Environmental Management (EM)

our nation in the areas of sustainable energy, a cleaner environment, economic security, health care and national defense. The accelerators of tomorrow have the potential to make...

80

Accelerator Facility Safety Implementation Guide for DOE O 420.2B, Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This document is an aid to understanding and meeting the requirements of DOE O 420.2B, Safety of Accelerator Facilities, dated 7/23/04. It does not impose requirements beyond those stated in that Order or any other DOE Order. No cancellation.

2005-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Acceleration of polarized protons in AHF (Advanced Hadron Facility)  

SciTech Connect (OSTI)

In this paper an analysis of the depolarization expected during acceleration from 0.8 to 45.0 GeV kinetic energy in the Advanced Hadron Facility (AHF) accelerators is performed.

Colton, E.P.

1987-03-20T23:59:59.000Z

82

Recent developments in the target facilities at Argonne National Laboratory  

Science Journals Connector (OSTI)

A description is given of recent developments in the target facility at Argonne National Laboratory (ANL). Highlights include equipment upgrades which enable us to provide enhanced capabilities for support of the Argonne Heavy-Ion ATLAS Accelerator Project. Also, future plans and additional equipment acquisitions will be discussed.

John P. Greene; George E. Thomas

1989-01-01T23:59:59.000Z

83

DOE Designated Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Argonne Wakefield Accelerator (AWA) Argonne Tandem Linac Accelerator System (ATLAS) Center for Nanoscale Materials Leadership Computing Facility* Brookhaven National...

84

Director of the National Ignition Facility, Lawrence Livermore National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Director of the National Ignition Facility, Lawrence Livermore National Director of the National Ignition Facility, Lawrence Livermore National Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Who We Are > In The Spotlight > Edward Moses Director of the National Ignition Facility, Lawrence Livermore National Laboratory

85

Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support LANL's security mission DARHT accelerator DARHT's electron accelerators use large, circular aluminum structures to create magnetic fields that focus and steer a stream of electrons down the length of the accelerator. Tremendous electrical energy is added along the way. When the stream of high-speed electrons exits the accelerator it is

86

Oak Ridge National Laboratory Manufacturing Demonstration Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oak Ridge National Laboratory Manufacturing Demonstration Facility Technology Collaborations | Proposal Guidelines Proposal Guidelines Proposals should be no more than 5 single...

87

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ECISEnergyRenewable EnergySolar EnergyConcentrating Solar Power ECISEnergyRenewable EnergySolar EnergyConcentrating Solar Power (CSP)National Solar Thermal Test Facility National Solar Thermal Test Facility NSTTF Interactive Tour National Solar Thermal Test Facility (NSTTF) Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility of this type in the United States. The NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants planned for large-scale power generation. In addition, the site was built and instrumented to provide test facilities for a variety of solar and nonsolar applications. The facility can provide

88

National Laser User Facilities Program | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laser User Facilities Program | National Nuclear Security Laser User Facilities Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog National Laser User Facilities Program Home > National Laser User Facilities Program National Laser User Facilities Program National Laser Users' Facility Grant Program Overview The Laboratory for Laser Energetics (LLE) at the University of Rochester

89

National Laser User Facilities Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

User Facilities Program | National Nuclear Security User Facilities Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog National Laser User Facilities Program Home > National Laser User Facilities Program National Laser User Facilities Program National Laser Users' Facility Grant Program Overview The Laboratory for Laser Energetics (LLE) at the University of Rochester

90

National Ignition Facility | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

other ICF high energy density facilities leading to demonstrate fusion ignition and thermonuclear burn in the laboratory. The NIF is also being used to support basic science and...

91

HEC-DPSSL 2012 Workshop, NIF Tour: National Ignition Facility...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deadline: August 10, 2012 Lawrence Livermore National Laboratory is home to the National Ignition Facility (NIF). NIF is a national resource a unique experimental facility...

92

Infrastructure and Facilities Management | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Infrastructure and Facilities Management | National Nuclear Security Infrastructure and Facilities Management | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Infrastructure and Facilities Management Home > content > Infrastructure and Facilities Management Infrastructure and Facilities Management NNSA restores, rebuilds, and revitalizes the physical infrastructure of the

93

Contained Firing Facility | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Contained Firing Facility | National Nuclear Security Administration Contained Firing Facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Contained Firing Facility Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Research and Development > Facilities > Contained Firing Facility

94

New Accelerator Facility for Carbon-Ion Cancer-Therapy  

Science Journals Connector (OSTI)

......rent effect in the vacuum chamber inside the...of the proposed accelerator complex are summarized...displacement 1 mm Vacuum system Ave. pressure...within 1 min. New Accelerator Facility for Carbon...for medical use. Nuclear Physics A 538...European Particle Accelerator Conference, Edinburgh......

Koji Noda; Takuji Furukawa; Takashi Fujisawa; Yoshiyuki Iwata; Tatsuaki Kanai; Mitsutaka Kanazawa; Atsushi Kitagawa; Masataka Komori; Shinichi Minohara; Takeshi Murakami; Masayuki Muramatsu; Shinji Sato; Yuka Takei; Mutsumi Tashiro; Masami Torikoshi; Satoru Yamada; Ken Yusa

2007-03-01T23:59:59.000Z

95

New Facility Saves $20 Million, Accelerates Waste Processing | Department  

Broader source: Energy.gov (indexed) [DOE]

Facility Saves $20 Million, Accelerates Waste Processing Facility Saves $20 Million, Accelerates Waste Processing New Facility Saves $20 Million, Accelerates Waste Processing August 15, 2012 - 12:00pm Addthis The new Cask Processing Enclosure (CPE) facility is located at the Transuranic Waste Processing Center (TWPC). The Transuranic Waste Processing Center (TWPC) processes, repackages, and ships the site's legacy TRU waste offsite. OAK RIDGE, Tenn. - Oak Ridge's EM program recently began operations at a newly constructed facility that will accelerate the completion of remote-handled transuranic (TRU) waste processing at the site by two years and save taxpayers more than $20 million. The new Cask Processing Enclosure (CPE) facility is located at the Transuranic Waste Processing Center (TWPC). TWPC processes, repackages, and

96

The National Ignition Facility: Status of Construction  

E-Print Network [OSTI]

Bruce Warner Deputy Associate Director, NIF Programs Lawrence Livermore National Laboratory October 11, 2005 #12;NIF-0605-10997 27EIM/cld NIF-0605-10997-L2 27EIM/cld P LLNLLLNL P9266 #12;NIF-0605-10997 27EIM/cld NIF-0605-10997-L28 27EIM/cld P LLNLLLNL National Ignition FacilityNational Ignition Facility P9292 San

97

R&D PROPOSAL FOR THE NATIONAL MUON ACCELERATOR PROGRAM  

SciTech Connect (OSTI)

This document contains a description of a multi-year national R&D program aimed at completing a Design Feasibility Study (DFS) for a Muon Collider and, with international participation, a Reference Design Report (RDR) for a muon-based Neutrino Factory. It also includes the supporting component development and experimental efforts that will inform the design studies and permit an initial down-selection of candidate technologies for the ionization cooling and acceleration systems. We intend to carry out this plan with participants from the host national laboratory (Fermilab), those from collaborating U.S. national laboratories (ANL, BNL, Jlab, LBNL, and SNAL), and those from a number of other U.S. laboratories, universities, and SBIR companies. The R&D program that we propose will provide the HEP community with detailed information on future facilities based on intense beams of muons--the Muon Collider and the Neutrino Factory. We believe that these facilities offer the promise of extraordinary physics capabilities. The Muon Collider presents a powerful option to explore the energy frontier and the Neutrino Factory gives the opportunity to perform the most sensitive neutrino oscillation experiments possible, while also opening expanded avenues for the study of new physics in the neutrino sector. The synergy between the two facilities presents the opportunity for an extremely broad physics program and a unique pathway in accelerator facilities. Our work will give clear answers to the questions of expected capabilities and performance of these muon-based facilities, and will provide defensible ranges for their cost. This information, together with the physics insights gained from the next-generation neutrino and LHC experiments, will allow the HEP community to make well-informed decisions regarding the optimal choice of new facilities. We believe that this work is a critical part of any broad strategic program in accelerator R&D and, as the P5 panel has recently indicated, is essential for the long-term health of high-energy physics.

Muon Accelerator Program; Zisman, Michael S.; Geer, Stephen

2010-02-24T23:59:59.000Z

98

User Facility | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Center for Nanoscale Materials More Electron Microscopy Center More The Nanoscience and Technology Division hosts the following user facility: The Center for Nanoscale...

99

National Ignition Facility & Photon Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NIF is the only facility that can perform controlled, experimental studies of thermonuclear burn, the phenomenon that gives rise to the immense energy of modern nuclear...

100

Kwok Ko SLAC National Accelerator Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Kwok Ko Kwok Ko SLAC National Accelerator Laboratory Work supported by US DOE Offices of HEP, ASCR and BES under contract AC02-76SF00515. Large Scale Computing and Storage Requirements for High Energy Physics Rockville, MD, November 27-28, 2012 Present and Future Computing Requirements for Advanced Modeling for Particle Accelerator 1. Advanced Modeling for Particle Accelerators (AMPA) NERSC Repositories: m349 Principal Investigator: K. Ko Senior Investigators: SLAC - L. Ge, Z. Li, C. Ng, L. Xiao, FNAL - A. Lunin, Jlab - H. Wang, BNL - S. Belomestnykh, ANL - A. Nassiri

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

High Explosives Application Facility | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Explosives Application Facility | National Nuclear Security Explosives Application Facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration High Explosives Application Facility Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > Office of Research and Development >

102

An introduction to the National Tritium Labeling Facility  

SciTech Connect (OSTI)

The facilities and projects of the National Tritium Labeling Facility are described. 5 refs., 1 fig., 1 tab.

Dorsky, A.M.; Morimoto, H.; Saljoughian, M.; Williams, P.G.; Rapoport, H.

1988-06-01T23:59:59.000Z

103

E-Print Network 3.0 - accelerator facility jefferson Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Continuous Electron Beam Accelerator Facility, Newport News, Virginia (the Big... & Phenomenology Particle Astrophysics & Cosmology Accelerator Physics Health Physics...

104

PIA - Advanced Test Reactor National Scientific User Facility...  

Energy Savers [EERE]

Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor...

105

Accelerator shield design of KIPT neutron source facility  

SciTech Connect (OSTI)

Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generated by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary at less than 0.5-mrem/hr. The shield configuration and parameters of the accelerator building have been determined and are presented in this paper. (authors)

Zhong, Z.; Gohar, Y. [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)

2013-07-01T23:59:59.000Z

106

Advanced Test Reactor National Scientific User Facility Partnerships  

SciTech Connect (OSTI)

In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin-Madison; (8) Illinois Institute of Technology (IIT) Materials Research Collaborative Access Team (MRCAT) beamline at Argonne National Laboratory's Advanced Photon Source; and (9) Nanoindenter in the University of California at Berkeley (UCB) Nuclear Engineering laboratory Materials have been analyzed for ATR NSUF users at the Advanced Photon Source at the MRCAT beam, the NIST Center for Neutron Research in Gaithersburg, MD, the Los Alamos Neutron Science Center, and the SHaRE user facility at Oak Ridge National Laboratory (ORNL). Additionally, ORNL has been accepted as a partner facility to enable ATR NSUF users to access the facilities at the High Flux Isotope Reactor and related facilities.

Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

2012-03-01T23:59:59.000Z

107

BARC TIFR Heavy Ion Accelerator Facility  

E-Print Network [OSTI]

of nuclear structure studies at high temperature and angular momentum, elastic and transfer reactions as well are initially accelerated to low energies (150-250 keV) in a short horizontal section. These low energy negative enterprise using accelerated heavy ion beams is to unravel the complexities of the nuclear world in all

Shyamasundar, R.K.

108

UCRL-PRES-225531 National ignition facility  

E-Print Network [OSTI]

Title Page UCRL-PRES-225531 #12;National ignition facility #12;NIF is 705,000 #12;NIF laser system #12;NIF us 885 #12;NIF-0506-11956 Laser bay 2 #12;Switchyard 2 #12;Target chamber in the air #12;Target chamber #12;Target chamber national geographic #12;Target chamber inside #12;Warehouse of laser

109

National Laser Users' Facility Grant Program | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Users' Facility Grant Program | National Nuclear Security Users' Facility Grant Program | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog NLUF National Laser Users' Facility Grant Program Home > About Us > Our Programs > Defense Programs > Office of Research, Development, Test, and Evaluation > University Partnerships / Academic Alliances > National Laser Users' Facility Grant Program

110

Public Reading Facilities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Reading Facilities | National Nuclear Security Administration Reading Facilities | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Public Reading Facilities Home > About Us > Our Operations > NNSA Office of General Counsel > Freedom of Information Act (FOIA) > Public Reading Facilities Public Reading Facilities The FOIA and E-FOIA require that specific types of records as well as

111

Recirculating Linac Accelerators For Future Muon Facilities  

SciTech Connect (OSTI)

Neutrino Factories (NF) and Muon Colliders (MC) require rapid acceleration of shortlived muons to multi-GeV and TeV energies. A Recirculating Linear Accelerator (RLA) that uses superconducting RF structures can provide exceptionally fast and economical acceleration to the extent that the focusing range of the RLA quadrupoles allows each muon to pass several times through each high-gradient cavity. A new concept of rapidly changing the strength of the RLA focusing quadrupoles as the muons gain energy is being developed to increase the number of passes that each muon will make in the RF cavities, leading to greater cost effectiveness. We discuss the optics and technical requirements for RLA designs, using RF cavities capable of simultaneous acceleration of both m+ and m- species. The design will include the optics for the multi-pass linac and droplet-shaped return arcs.

Yves Roblin, Alex Bogacz, Vasiliy Morozov, Kevin Beard

2012-04-01T23:59:59.000Z

112

National Renewable Energy Laboratory's Energy Systems Integration Facility Overview  

Broader source: Energy.gov [DOE]

This brochure describes the Energy Systems Integration Facility at National Renewable Energy Laboratory.

113

Linear Accelerator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Linear Accelerator (LINAC) The core of the LANSCE facility is one of the nation's most powerful proton linear accelerators or LINAC. The LINAC at LANSCE has served the nation since...

114

Status of the visible Free-Electron Laser at the Brookhaven Accelerator Test Facility  

SciTech Connect (OSTI)

The 500 nm Free-Electron Laser (ATF) of the Brookhaven National Laboratory is reviewed. We present an overview of the ATF, a high-brightness, 50-MeV, electron accelerator and laser complex which is a users' facility for accelerator and beam physics. A number of laser acceleration and FEL experiments are under construction at the ATF. The visible FEL experiment is based on a novel superferric 8.8 mm period undulator. The electron beam parameters, the undulator, the optical resonator, optical and electron beam diagnostics are discussed. The operational status of the experiment is presented. 22 refs., 7 figs.

Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fisher, A.S.; Friedman, A.; Gallardo, J.; Ingold, G.; Kirk, H.; Kramer, S.; Lin, L.; Rogers, J.T.; Sheehan, J.F.; van Steenbergen, A.; Woodle, M.; Xie, J.; Yu, L.H.; Zhang, R. (Brookhaven National Lab., Upton, NY (United States)); Bhowmik, A. (Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Div.)

1991-01-01T23:59:59.000Z

115

National Ignition Facility Title II Design Plan  

SciTech Connect (OSTI)

This National Ignition Facility (NIF) Title II Design Plan defines the work to be performed by the NIF Project Team between November 1996, when the U.S. Department of Energy (DOE) reviewed Title I design and authorized the initiation of Title H design and specific long-lead procurements, and September 1998, when Title 11 design will be completed.

Kumpan, S

1997-03-01T23:59:59.000Z

116

Impacts assessment for the National Ignition Facility  

SciTech Connect (OSTI)

This report documents the economic and other impacts that will be created by the National Ignition Facility (NIF) construction and ongoing operation, as well as the impacts that may be created by new technologies that may be developed as a result of NIF development and operation.

Bay Area Economics

1996-12-01T23:59:59.000Z

117

National Ignition Facility project acquisition plan  

SciTech Connect (OSTI)

The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF.

Callaghan, R.W.

1996-04-01T23:59:59.000Z

118

Target Visualization at the National Ignition Facility  

SciTech Connect (OSTI)

As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the targets used to achieve this goal. Techniques have been developed to measure target surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. Using these techniques we are able to produce a detailed view of the shell surface, which in turn allows us to refine target manufacturing and cleaning processes. However, the volume of data produced limits the methods by which this data can be effectively viewed by a user. This paper introduces an image-based visualization system for data exploration of target shells at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. It aims to combine multiple image sets into a single visualization to provide a method of navigating the data in ways that are not possible with existing tools.

Potter, D

2011-11-21T23:59:59.000Z

119

Facility Operations Office, Brookhaven National Laboratory, BNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Operations Office Facility Operations Office Safely supporting the missions of the laboratory... The Facility Operations Office addresses key issues in work planning, maintenance engineering, service-delivery models, and annual facility-work plans. Facility Operations Center: The Facility Operations Center provides computer programs designed to assist in the planning, management and administrative procedures required for an effective maintenance and asset management process. As an information technology tool for managing the maintenance process, a Computerized Maintenance Management System (CMMS) is a mission-essential part of any organization, and a tool for success. Infrastructure Management: IM's goal is to ensure Brookhaven National Laboratory real property assets are planned for, managed, tracked, and upgraded as required in order to meet BNL's current and future programmatic needs. To accomplish this IM performs site and utilities master planning, manages BNL's new project request and prioritization system (3PBP), maintains utilities maps, manages BNL's space and facilities data base, and provides program management for BNL's GPP, Line Item and Operating Funded Project programs.

120

Independent Oversight Inspection, Thomas Jefferson National Accelerato...  

Broader source: Energy.gov (indexed) [DOE]

Jefferson National Accelerator Facility - August 2008 August 2008 Inspection of Environment, Safety and Health Programs at the Thomas Jefferson National Accelerator Facility...

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

"DIANA" - A New, Deep-Underground Accelerator Facility for Astrophysics Experiments  

SciTech Connect (OSTI)

The DIANA project (Dakota Ion Accelerators for Nuclear Astrophysics) is a collaboration between the University of Notre Dame, University of North Carolina, Western Michigan University, and Lawrence Berkeley National Laboratory to build a nuclear astrophysics accelerator facility 1.4 km below ground. DIANA is part of the US proposal DUSEL (Deep Underground Science and Engineering Laboratory) to establish a cross-disciplinary underground laboratory in the former gold mine of Homestake in South Dakota, USA. DIANA would consist of two high-current accelerators, a 30 to 400 kV variable, high-voltage platform, and a second, dynamitron accelerator with a voltage range of 350 kV to 3 MV. As a unique feature, both accelerators are planned to be equipped with either high-current microwave ion sources or multi-charged ECR ion sources producing ions from protons to oxygen. Electrostatic quadrupole transport elements will be incorporated in the dynamitron high voltage column. Compared to current astrophysics facilities, DIANA could increase the available beam densities on target by magnitudes: up to 100 mA on the low energy accelerator and several mA on the high energy accelerator. An integral part of the DIANA project is the development of a high-density super-sonic gas-jet target which can handle these anticipated beam powers. The paper will explain the main components of the DIANA accelerators and their beam transport lines and will discuss related technical challenges.

Leitner, M.; Leitner, D.; Lemut, A.; Vetter, P.; Wiescher, M.

2009-05-28T23:59:59.000Z

122

Project definition study for the National Biomedical Tracer Facility  

SciTech Connect (OSTI)

The University of Alabama at Birmingham (UAB) has conducted a study of the proposed National Biomedical Tracer Facility (NBTF). In collaboration with General Atomics, RUST International, Coleman Research Corporation (CRC), IsoMed, Ernst and Young and the advisory committees, they have examined the issues relevant to the NBTF in terms of facility design, operating philosophy, and a business plan. They have utilized resources within UAB, CRC and Chem-Nuclear to develop recommendations on environmental, safety and health issues. The Institute of Medicine Panel`s Report on Isotopes for Medicine and the Life Sciences took the results of prior workshops further in developing recommendations for the mission of the NBTF. The IOM panel recommends that the NBTF accelerator have the capacity to accelerate protons to 80 MeV and a minimum of 750 microamperes of current. The panel declined to recommend a cyclotron or a linac. They emphasized a clear focus on research and development for isotope production including target design, separation chemistry and generator development. The facility needs to emphasize education and training in its mission. The facility must focus on radionuclide production for the research and clinical communities. The formation of a public-private partnership resembling the TRIUMF-Nordion model was encouraged. An advisory panel should assist with the NBTF operations and prioritization.

Roozen, K.

1995-02-15T23:59:59.000Z

123

A Staged Muon Accelerator Facility For Neutrino and Collider Physics  

E-Print Network [OSTI]

Muon-based facilities offer unique potential to provide capabilities at both the Intensity Frontier with Neutrino Factories and the Energy Frontier with Muon Colliders. They rely on a novel technology with challenging parameters, for which the feasibility is currently being evaluated by the Muon Accelerator Program (MAP). A realistic scenario for a complementary series of staged facilities with increasing complexity and significant physics potential at each stage has been developed. It takes advantage of and leverages the capabilities already planned for Fermilab, especially the strategy for long-term improvement of the accelerator complex being initiated with the Proton Improvement Plan (PIP-II) and the Long Baseline Neutrino Facility (LBNF). Each stage is designed to provide an R&D platform to validate the technologies required for subsequent stages. The rationale and sequence of the staging process and the critical issues to be addressed at each stage, are presented.

Delahaye, Jean-Pierre; Brice, Stephen; Bross, Alan David; Denisov, Dmitri; Eichten, Estia; Holmes, Stephen; Lipton, Ronald; Neuffer, David; Palmer, Mark Alan; Bogacz, S Alex; Huber, Patrick; Kaplan, Daniel M; Snopok, Pavel; Kirk, Harold G; Palmer, Robert B; Ryne, Robert D

2015-01-01T23:59:59.000Z

124

Secretary of Energy Advisory Board SLAC National Accelerator Laboratory  

Broader source: Energy.gov (indexed) [DOE]

SLAC National Accelerator Laboratory SLAC National Accelerator Laboratory Menlo Park, CA April 11, 2011 Agenda Open Plenary Meeting Session 8:00 AM - 8:15 AM Welcome and Overview Dr. William Perry 8:15 AM - 8:45 AM Key Issues for DOE Secretary Steven Chu 9:00 AM - 9:45 AM SLAC Overview Persis Drell 9:45 AM - 10:15 AM Breakthrough in Protein Structure Determination Enabled by LCLS Henry Chapman 10:15 AM - 11:00 AM Lab Overview - Progress and Path Forward George Miller 11:00 AM - 11:45 AM Stockpile Stewardship Overview Bruce Goodwin 11:45 AM - 12:30 PM Energy of the Future - National Ignition Facility (NIF) and Laser Inertial Fusion Energy (LIFE) Ed Moses 12:30 PM - 1:45 PM Lunch Break 2:00 PM - 2:30 PM Subcommittee Reports 2:30 PM - 3:30 PM Discussion of DOD-DOE MOU

125

Project Profile: National Solar Thermal Test Facility  

Broader source: Energy.gov [DOE]

The first solar receivers ever tested in the world were tested at the National Solar Thermal Test Facility (NSTTF). The receivers were each rated up to 5 megawatts thermal (MWt). Receivers with various working fluids have been tested here over the years, including air, water-steam, molten salt, liquid sodium, and solid particles. The NSTTF has also been used for a large variety of other tests, including materials tests, simulation of thermal nuclear pulses and aerodynamic heating, and ablator testing for NASA.

126

E-Print Network 3.0 - accelerator facility complex Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

large... of an advanced exotic beam facility evolved from the Rare Isotope Accelerator (RIA) concept. The OMB and the DOE... Focus Research Areas 1. Fundamental Accelerator...

127

HEC-DPSSL 2012 Workshop, Directions: National Ignition Facility...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Road Keep left at the fork Destination will be on the right Directions to Lawrence Livermore National Laboratory and the National Ignition Facility can be found on the...

128

CRAD, Training - Los Alamos National Laboratory TA 55 SST Facility...  

Broader source: Energy.gov (indexed) [DOE]

Training - Los Alamos National Laboratory TA 55 SST Facility CRAD, Training - Los Alamos National Laboratory TA 55 SST Facility A section of Appendix C to DOE G 226.1-2 "Federal...

129

National Ignition Facility & Photon Science NIF AT A GLANCe  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

& Photon Science NIF AT A GLANCe the national ignition Facility at a glance The National Ignition Facility (NIF) is the world's largest laser system, housed in a 10-story building...

130

National Ignition Facility & Photon Science NIF Fun Facts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 National Ignition Facility & Photon Science NIF Fun Facts niF Fun Facts The National Ignition Facility (NIF), became operational in march 2009. Planning began in the early 1990s,...

131

New User Facilities Web Page Highlights Work at National Laboratories...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

New User Facilities Web Page Highlights Work at National Laboratories New User Facilities Web Page Highlights Work at National Laboratories January 15, 2014 - 12:00am Addthis The...

132

DOE/EIS-0236, Oakland Operations Office, National Ignition Facility...  

Energy Savers [EERE]

DOEEIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic...

133

Description of Facilities and Resources Oak Ridge National Laboratory  

E-Print Network [OSTI]

1 Description of Facilities and Resources Oak Ridge National Laboratory and the UT-ORNL Joint Institute for Computational Sciences 1. Oak Ridge National Laboratory Computer Facilities. The Oak Ridge National Laboratory (ORNL) hosts three petascale computing facilities: the Oak Ridge Leadership Computing

134

I Fermi National Accelerator Laboratory I I  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

b b .?.? ... . . 1- \r I Fermi National Accelerator Laboratory I I FERMILAB-Cdnf-76 159 -EXP 2 020,000 2 02 2.000 I 1 (Submitted to the Neutrino I 9 76 Conference Aachen, Germany June 8r-13, -1976) * I 4 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or

135

Secretary Chu Speaks at SLAC National Accelerator Laboratory  

Broader source: Energy.gov [DOE]

On Friday, August 24, 2012, Secretary Chu gave a speech commemorating the 50th Anniversary of SLAC National Accelerator Laboratory. You can find the powerpoint presentation below.

136

Preliminary Notice of Violation, SLAC National Accelerator Laboratory...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Accelerator Laboratory - WEA-2009-01 Notice of Violation, Western Allied Mechanical, Inc. - WEA-2009-03 Preliminary Notice of Violation,Western Allied Mechanical, Inc....

137

Notice of Violation, SLAC National Accelerator Laboratory - WEA...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Accelerator Laboratory - WEA-2009-01 Notice of Violation, Western Allied Mechanical, Inc. - WEA-2009-03 Preliminary Notice of Violation,Western Allied Mechanical, Inc....

138

Vibrational measurement for commissioning SRF Accelerator Test Facility at Fermilab  

SciTech Connect (OSTI)

The commissioning of two cryomodule components is underway at Fermilab's Superconducting Radio Frequency (SRF) Accelerator Test Facility. The research at this facility supports the next generation high intensity linear accelerators such as the International Linear Collider (ILC), a new high intensity injector (Project X) and other future machines. These components, Cryomodule No.1 (CM1) and Capture Cavity II (CC2), which contain 1.3 GHz cavities are connected in series in the beamline and through cryogenic plumbing. Studies regarding characterization of ground motion, technical and cultural noise continue. Mechanical transfer functions between the foundation and critical beamline components have been measured and overall system displacement characterized. Baseline motion measurements given initial operation of cryogenic, vacuum systems and other utilities are considered.

McGee, M.W.; Leibfritz, J.; Martinez, A.; Pischalnikov, Y.; Schappert, W.; /Fermilab

2011-03-01T23:59:59.000Z

139

The target laboratory of the Pelletron Accelerator's facilities  

SciTech Connect (OSTI)

A short report on the activities developed in the Target Laboratory, since 1970, will be presented. Basic target laboratory facilities were provided to produce the necessary nuclear targets as well as the ion beam stripper foils. Vacuum evaporation units, a roller, a press and an analytical balance were installed in the Oscar Sala building. A brief historical report will be presented in commemoration of the 40{sup th} year of the Pelletron Accelerator.

Ueta, Nobuko; Pereira Engel, Wanda Gabriel [Nuclear Physics Department - University of Sao Paulo (Brazil)

2013-05-06T23:59:59.000Z

140

European Particle Accelerator Conference -Rome, Italy -June 7-12, 1988 DEVELOPMENT OFA HIGH BRIGHTNESS ELECTRON GUN FOR THE ACCELERATOR TEST FACILITY AT  

E-Print Network [OSTI]

BRIGHTNESS ELECTRON GUN FOR THE ACCELERATOR TEST FACILITY AT BROOKHAVEN NATIONAL LABORATORY* K. Batchelor, HDonald Princeton University At innBNL--41767 DE89 002179 Abstract An electron gun utilizing aradio frequency on the design of (he electron gun which will provide r.f. bunches of upto 101 electrons synchronized

McDonald, Kirk

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Advanced Test Reactor National Scientific User Facility  

SciTech Connect (OSTI)

The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

2011-08-01T23:59:59.000Z

142

Sandia National Laboratories: Dish Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engine Test Facility Central Receiver Test Facility Power Towers for Utilities Solar Furnace Dish Test Facility Optics Lab Parabolic Dishes Work For Others (WFO) User...

143

Sandia National Laboratories: Regional Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engine Test Facility Central Receiver Test Facility Power Towers for Utilities Solar Furnace Dish Test Facility Optics Lab Parabolic Dishes Work For Others (WFO) User...

144

Sandia National Laboratories: Central Receiver Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engine Test Facility Central Receiver Test Facility Power Towers for Utilities Solar Furnace Dish Test Facility Optics Lab Parabolic Dishes Work For Others (WFO) User...

145

Vibrational Stability of SRF Accelerator Test Facility at Fermilab  

SciTech Connect (OSTI)

Recently developed, the Superconducting Radio Frequency (SRF) Accelerator Test Facilities at Fermilab support the International Linear Collider (ILC), High Intensity Neutrino Source (HINS), a new high intensity injector (Project X) and other future machines. These facilities; Meson Detector Building (MDB) and New Muon Lab (NML) have very different foundations, structures, relative elevations with respect to grade level and surrounding soil composition. Also, there are differences in the operating equipment and their proximity to the primary machine. All the future machines have stringent operational stability requirements. The present study examines both near-field and ambient vibration in order to develop an understanding of the potential contribution of near-field sources (e.g. compressors, ultra-high and standard vacuum equipment, klystrons, modulators, utility fans and pumps) and distant noise sources to the overall system displacements. Facility vibration measurement results and methods of possible isolation from noise sources are presented and discussed.

McGee, M.W.; Volk, J.T.; /Fermilab

2009-05-01T23:59:59.000Z

146

Los Alamos National Laboratory Accelerates Transuranic Waste Shipments:  

Broader source: Energy.gov (indexed) [DOE]

Los Alamos National Laboratory Accelerates Transuranic Waste Los Alamos National Laboratory Accelerates Transuranic Waste Shipments: Spurred by a major wildfire in 2011, Los Alamos National Laboratory's TRU Waste Program accelerates shipments of transuranic waste stored aboveground to the Waste Isolation Pilot Plan Los Alamos National Laboratory Accelerates Transuranic Waste Shipments: Spurred by a major wildfire in 2011, Los Alamos National Laboratory's TRU Waste Program accelerates shipments of transuranic waste stored aboveground to the Waste Isolation Pilot Plan July 2, 2012 - 12:00pm Addthis New Mexico Governor Susana Martinez greets Terry Aguilar, governor of San Ildefonso Pueblo, while Frank Marcinowski (lower right), EM deputy assistant secretary of waste management, and Dan Cox, LANL associate deputy director for environmental affairs, look on.

147

CRAD, Maintenance - Los Alamos National Laboratory TA 55 SST Facility |  

Broader source: Energy.gov (indexed) [DOE]

Los Alamos National Laboratory TA 55 SST Los Alamos National Laboratory TA 55 SST Facility CRAD, Maintenance - Los Alamos National Laboratory TA 55 SST Facility A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Maintenance program at the Los Alamos National Laboratory TA 55 SST Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Maintenance - Los Alamos National Laboratory TA 55 SST Facility More Documents & Publications CRAD, Maintenance - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Configuration Management - Los Alamos National Laboratory TA 55 SST

148

Status of the National Ignition Facility project  

SciTech Connect (OSTI)

The ultimate goal of worldwide research in inertial confinement fusion (ICF) is to develop fusion as an inexhaustible, economic, environmentally safe source of electric power. Following nearly thirty years of laboratory and underground fusion experiments, the next step toward this goal is to demonstrate ignition and propagating burn of fusion fuel in the laboratory. The National Ignition Facility(NIF) Project is being constructed at Lawrence Livermore National Laboratory (LLNL), for just this purpose. NIF will use advanced Nd-glass laser technology to deliver 1.8 MJ of 0.35-um laser light in a shaped pulse, several nanoseconds in duration, achieving a peak power of 500 TW. A national community of U.S. laboratories is participating in this project, now in its final design phase. Franceand the United Kingdom are collaborating on development of required technology under bilateral agreements with the US. This paper presents thestatus of the laser design and development of its principal components and optical elements.

Paisner, J.A.; Lowdermilk, W.H.; Boyes, J.D.; Sorem, M.S.; Soures, J.M.

1997-04-01T23:59:59.000Z

149

Argonne National Laboratory's Accelerator Experimental Infrastructure  

E-Print Network [OSTI]

equipment developed by the outside user. Beamlines at ATLAS The ATLAS facility has two so-called general users. Capabilities within the Physics Division (NP) Superconducting Radio-frequency (rf) Facility at ANL The present SRF facility at ANL includes the joint ANL/FNAL superconducting cavity surface

Kemner, Ken

150

SATIF-2 shielding aspects of accelerators, targets and irradiation facilities  

SciTech Connect (OSTI)

Particle accelerators have evolved over the last 50 years from simple devices to powerful machines, and will continue to have an important impact on research, technology and lifestyle. Today they cover a wide range of applications, from television and computer displays in households to the investigation of the origin and structure of matter. It has become common practice to use them for material science and medical applications. In recent years, requirements from new technological and research applications have emerged, such as increased particle beams intensities, higher flexibility, etc., giving rise to new radiation shielding aspects and problems. These proceedings review recent progress in radiation shielding of accelerator facilities, and evaluate advancements with respect to international co-operation in this field.

NONE

1995-12-31T23:59:59.000Z

151

Sandia National Laboratories: Accelerated Climate Modeling for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerated Climate Modeling for Energy New Project Is the ACME of Computer Science to Address Climate Change On December 3, 2014, in Analysis, Climate, Global Climate & Energy,...

152

Fermi National Accelerator Laboratory September 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technologies developed at Fermilab will be used in the next generation of particle accelerators and will spur innovation to meet the challenges of America's future. SRF...

153

Particle Physics and Astrophysics : SLAC National Accelerator...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

scientists use accelerators which speed electrons and anti-electrons to nearly the speed of light, and study their collisions and collisions from fixed target experiments....

154

Sandia National Laboratories: Z Pulsed Power Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Z-Machine Z-Machine About Z Z Research Z News Contact Us Facebook Twitter YouTube Flickr RSS Z-Machine Z Pulsed Power Facility Science serving the nation Created to validate nuclear weapons models, the Z machine is also in the race for viable fusion energy. Z-Machine From Earth's Core to Black Holes Contributing to discovery science by studying matter at conditions found nowhere else on Earth Center of Z About Z Sandia's Z machine is the world's most powerful and efficient laboratory radiation source. It uses high magnetic fields associated with high electrical currents to produce high temperatures, high pressures, and powerful X-rays for research in high energy density science. The Z machine creates conditions found nowhere else on Earth. Z is part of Sandia's Pulsed Power program, which began in the 1960s.

155

Sandia National Laboratories: Engine Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FacilityEngine Test Facility Engine Test Facility Test Cell 1 Test Cell 2 DataControl Room Maintenance Assembly Bay Test Cell 1 This testing area is primarily configured to...

156

DOE Designated User Facilities Multiple Laboratories * ARM Climate Research Facility  

Broader source: Energy.gov (indexed) [DOE]

Designated User Facilities Designated User Facilities Multiple Laboratories * ARM Climate Research Facility Argonne National Laboratory * Advanced Photon Source (APS) * Electron Microscopy Center for Materials Research * Argonne Tandem Linac Accelerator System (ATLAS) * Center for Nanoscale Materials (CNM) * Argonne Leadership Computing Facility (ALCF) * Brookhaven National Laboratory * National Synchrotron Light Source (NSLS) * Accelerator Test Facility (ATF) * Relativistic Heavy Ion Collider (RHIC) * Center for Functional Nanomaterials (CFN) * National Synchrotron Light Source II (NSLS-II ) (under construction) Fermi National Accelerator Laboratory * Fermilab Accelerator Complex Idaho National Laboratory * Advanced Test Reactor ** * Wireless National User Facility (WNUF)

157

Sandia National Laboratories: Research: Facilities: Technology Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Sciences Experimental Facilities (ESEF) Engineering Sciences Experimental Facilities (ESEF) Technology Deployment Centers Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Trisonic Wind Tunnel Hypersonic Wind Tunnel High Altitude Chamber Explosive Components Facility Ion Beam Laboratory Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test Technology Facility Research Engineering Sciences Experimental Facilities (ESEF) The ESEF complex contains several independent laboratories for experiments and advanced diagnostics in the fields of thermodynamics, heat transfer,

158

Oak Ridge National Laboratory Carbon Fiber Technology Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Oak Ridge National Laboratory Carbon Fiber Technology Facility Low-Cost Carbon Fiber | Proposal Guidelines Proposal Guidelines Proposals should be no more than 5 single spaced...

159

Y-12 demos former utilities and maintenance facility | National...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

demos former utilities and maintenance facility | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

160

The National Ignition Facility and Laser Fusion Energy  

Science Journals Connector (OSTI)

This talk provides an update of the NIC on the National Ignition Facility at the Lawrence Livermore National Laboratory and the roadmap to demonstrate laser fusion as a viable source...

Moses, E I

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Medical Isotope Production With The Accelerator Production of Tritium (APT) Facility  

SciTech Connect (OSTI)

In order to meet US tritium needs to maintain the nuclear weapons deterrent, the Department of Energy (DOE) is pursuing a dual track program to provide a new tritium source. A record of decision is planned for late in 1998 to select either the Accelerator Production of Tritium (APT) or the Commercial Light Water Reactor (CLWR) as the technology for new tritium production in the next century. To support this decision, an APT Project was undertaken to develop an accelerator design capable of producing 3 kg of tritium per year by 2007 (START I requirements). The Los Alamos National Laboratory (LANL) was selected to lead this effort with Burns and Roe Enterprises, Inc. (BREI) / General Atomics (GA) as the prime contractor for design, construction, and commissioning of the facility. If chosen in the downselect, the facility will be built at the Savannah River Site (SRS) and operated by the SRS Maintenance and Operations (M{ampersand}O) contractor, the Westinghouse Savannah River Company (WSRC), with long-term technology support from LANL. These three organizations (LANL, BREI/GA, and WSRC) are working together under the direction of the APT National Project Office which reports directly to the DOE Office of Accelerator Production which has program authority and responsibility for the APT Project.

Buckner, M.; Cappiello, M. [Westinghouse Savannah River Co., Aiken, SC (United States); Pitcher, E. [Los Alamos National Laboratory, Los Alamos, NM (United States); O`Brien, H. [O`Brien and Associates, Los Alamos, NM (United States)

1998-08-01T23:59:59.000Z

162

Sandia National Laboratories: Leadership Computing Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to address the most challenging and demanding climate-change issues. Accelerated Climate Modeling for Energy (ACME) is designed to accel-erate the development and applica-tion of...

163

Preliminary Notice of Violation, SLAC National Accelerator Laboratory -  

Broader source: Energy.gov (indexed) [DOE]

SLAC National Accelerator SLAC National Accelerator Laboratory - WEA-2009-01 Preliminary Notice of Violation, SLAC National Accelerator Laboratory - WEA-2009-01 September 3, 2009 Notice of Violation issued to Stanford University related to a PVC Pipe Explosion at the SLAC National Accelerator Laboratory Pursuant to section 234C of the Atomic Energy Act, as amended, 42 U.S.C. § 2282c, and the Department of Energy's (DOE) regulations at 10 C.F.R. Part 851, Worker Safety and Health Program, DOE is issuing this Final Notice of Violation (FNOV) to Stanford University. The FNOV finds Stanford University liable for violations of DOE's worker safety and health requirements. The FNOV is based upon the Office of Enforcement's July 23 , 2008, Investigation Report and a careful and thorough review of all

164

Performance Evaluation Of An Irradiation Facility Using An Electron Accelerator  

SciTech Connect (OSTI)

Irradiation parameters over a period of seven years have been evaluated for a radiation processing electron accelerator facility. The parameters monitored during this time were the electron beam energy, linearity of beam current, linearity of dose with the reciprocal value of the samples speed, and dose uniformity along the scanning area after a maintenance audit performed by the electron accelerator manufacturer. The electron energy was determined from the depth-dose curve by using a two piece aluminum wedge and measuring the practical range from the obtained curves. The linearity of dose with beam current, and reciprocal value of the speed and dose uniformity along the scanning area of the electron beam were determined by measuring the dose under different beam current and cart conveyor speed conditions using film dosimetry. The results of the experiments have shown that the energy in the range from 1 to 5 MeV has not changed by more than 15% from the High Voltage setting of the machine over the evaluation period, and dose linearity with beam current and cart conveyor speed has not changed. The dose uniformity along the scanning direction of the beam showed a dose uniformity of 90% or better for energies between 2 and 5 MeV, however for 1 MeV electrons this value was reduced to 80%. This parameter can be improved by changing the beam optics settings in the control console of the accelerator though.

Uribe, R. M.; Hullihen, K. [Kent State University, Kent, Ohio (United States); Filppi, E. [Case Western Reserve University, Cleveland OH (United States)

2011-06-01T23:59:59.000Z

165

Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources  

E-Print Network [OSTI]

essential understanding of accelerator physics to advanceof high- gradient, laser plasma particle accelerators.to conventional particle accelerators, plasmas can sustain

Geddes, Cameron G.R.

2010-01-01T23:59:59.000Z

166

National Ignition Facility faces an uncertain future David Kramer  

E-Print Network [OSTI]

-member user group, with 22% of its members coming from host Lawrence Livermore National Laboratory (LLNL at the National Ignition Facility to achieve a self-sustaining fusion reaction fell short. Now NIF stands to lose that were specified for NIF when the massive laser facility was ap- proved for construction in 1996

167

Energy Systems Integration Facility at National Renewable Energy Laboratory  

Broader source: Energy.gov [DOE]

The Energy Department’s Energy Systems Integration Facility (ESIF) at the National Renewable Energy Laboratory in Golden, Colo., is the nation's premier facility to help both public- and private-sector researchers scale up promising clean energy technologies and test how they interact with each other and the grid at utility scale.

168

Argonne Accelerator Institute  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Useful Links Useful Links Argonne National Laboratory Accelerator Sites Conferences Advanced Photon Source (APS) Argonne Wakefield Accelerator (AWA) Argonne Tandem Linear Accelerator System (ATLAS) High Energy Physics Division RIA (????) Link to JACoW (Joint Accelerator Conferences Website) Fermi National Accelerator Laboratory Fermilab-Argonne Collaboration Accelerator Physics Center Workshops Other Accelerator Institutes Energy Recovering Linacs Center for Advance Studies of Accelerators (Jefferson Labs) Center for Beam Physics (LBNL) Accelerator Test Facility (BNL) The Cockcroft Institute (Daresbury, UK) John Adams Institute (Rutherford, UK) ERL2009 to be held at Cornell ERL2007 ERL2005 DOE Laboratory with Accelerators Fermilab Stanford Linear Accelerator Center Brookhaven National Laboratory

169

National Ignition Facility Project Site Safety Program  

SciTech Connect (OSTI)

This Safety Program for the National Ignition Facility (NIF) presents safety protocols and requirements that management and workers shall follow to assure a safe and healthful work environment during activities performed on the NIF Project site. The NIF Project Site Safety Program (NPSSP) requires that activities at the NIF Project site be performed in accordance with the ''LLNL ES&H Manual'' and the augmented set of controls and processes described in this NIF Project Site Safety Program. Specifically, this document: (1) Defines the fundamental NIF site safety philosophy. (2) Defines the areas covered by this safety program (see Appendix B). (3) Identifies management roles and responsibilities. (4) Defines core safety management processes. (5) Identifies NIF site-specific safety requirements. This NPSSP sets forth the responsibilities, requirements, rules, policies, and regulations for workers involved in work activities performed on the NIF Project site. Workers are required to implement measures to create a universal awareness that promotes safe practice at the work site and will achieve NIF management objectives in preventing accidents and illnesses. ES&H requirements are consistent with the ''LLNL ES&H Manual''. This NPSSP and implementing procedures (e.g., Management Walkabout, special work procedures, etc.,) are a comprehensive safety program that applies to NIF workers on the NIF Project site. The NIF Project site includes the B581/B681 site and support areas shown in Appendix B.

Dun, C

2003-09-30T23:59:59.000Z

170

E-Print Network 3.0 - accelerator facilities Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: radiation facilities for biology and material sciences. Beam physics--study of beams in accelerators... southwest of The University of Chicago, there are several...

171

E-Print Network 3.0 - accelerator facility project Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: radiation facilities for biology and material sciences. Beam physics--study of beams in accelerators... southwest of The University of Chicago, there are several...

172

Access to High Technology User Facilities at DOE National Laboratories |  

Broader source: Energy.gov (indexed) [DOE]

Access to High Technology User Facilities at DOE National Access to High Technology User Facilities at DOE National Laboratories Access to High Technology User Facilities at DOE National Laboratories In recognition of the nation's expanding need to engage businesses and universities in the areas of commercial and basic science research, the Department has developed two special types of agreements for use at all DOE National Laboratories with approved designated user facilities. For non-commercial, basic science research, researchers may seek to use the Non-proprietary User Agreement. Under this type of agreement, the user pays its own costs of the research with the DOE laboratory, may access specialized laboratory equipment and collaborate with laboratory scientists. The non-proprietary user and the National Laboratory retain

173

NREL Facility Named One of Nation's Top Sustainable Buildings |  

Broader source: Energy.gov (indexed) [DOE]

NREL Facility Named One of Nation's Top Sustainable Buildings NREL Facility Named One of Nation's Top Sustainable Buildings NREL Facility Named One of Nation's Top Sustainable Buildings June 24, 2011 - 12:31pm Addthis The 222,000 sq. ft. RSF has been recognized for its innovative construction and efficiency. | Courtesy of Dennis Schroeder, National Renewable Energy Laboratory staff photographer. The 222,000 sq. ft. RSF has been recognized for its innovative construction and efficiency. | Courtesy of Dennis Schroeder, National Renewable Energy Laboratory staff photographer. Eric Escudero Eric Escudero Senior Public Affairs Specialist & Contractor, Golden Field Office It's been a little over a year since the Energy Department's Research Support Facility (RSF) opened on the National Renewable Energy Laboratory (NREL) campus in Colorado. The innovative approach taken in the design and

174

NREL Facility Named One of Nation's Top Sustainable Buildings |  

Broader source: Energy.gov (indexed) [DOE]

NREL Facility Named One of Nation's Top Sustainable Buildings NREL Facility Named One of Nation's Top Sustainable Buildings NREL Facility Named One of Nation's Top Sustainable Buildings June 24, 2011 - 12:31pm Addthis The 222,000 sq. ft. RSF has been recognized for its innovative construction and efficiency. | Courtesy of Dennis Schroeder, National Renewable Energy Laboratory staff photographer. The 222,000 sq. ft. RSF has been recognized for its innovative construction and efficiency. | Courtesy of Dennis Schroeder, National Renewable Energy Laboratory staff photographer. Eric Escudero Eric Escudero Senior Public Affairs Specialist & Contractor, Golden Field Office It's been a little over a year since the Energy Department's Research Support Facility (RSF) opened on the National Renewable Energy Laboratory (NREL) campus in Colorado. The innovative approach taken in the design and

175

Facility Centered Assessment of the Los Alamos National Laboratory Science and Technology Operations - Facility Operations Director Managed Facilities, August 2011  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Review Report Review Report Facility Centered Assessment of the Los Alamos National Laboratory Science and Technology Operations - Facility Operations Director Managed Facilities May 2011 August 2011 Office of Health, Safety and Security Office of Enforcement and Oversight Office of Safety and Emergency Management Evaluations Table of Contents Background ................................................................................................................................................... 1 Results ........................................................................................................................................................... 2 Conduct of the FCA ......................................................................................................................... 2

176

Facility Centered Assessment of the Los Alamos National Laboratory Science and Technology Operations - Facility Operations Director Managed Facilities, August 2011  

Broader source: Energy.gov (indexed) [DOE]

Review Report Review Report Facility Centered Assessment of the Los Alamos National Laboratory Science and Technology Operations - Facility Operations Director Managed Facilities May 2011 August 2011 Office of Health, Safety and Security Office of Enforcement and Oversight Office of Safety and Emergency Management Evaluations Table of Contents Background ................................................................................................................................................... 1 Results ........................................................................................................................................................... 2 Conduct of the FCA ......................................................................................................................... 2

177

Sandia National Laboratories: Research: Facilities: Technology Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Explosive Components Facility Explosive Components Facility The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis capabilities for energetic materials and explosive components: advanced design of energetic devices and subsystems optical ordnance energetic materials testing of explosives and explosive components and subsystems advanced explosives diagnostics reliability analyses failure modes evaluation safety evaluation The ECF has the full-range of capabilities necessary to support the understanding of energetic materials and components: Optical and Semiconductor Bridge (SCB) Initiation Laboratories Characterization Laboratories thermal properties gas analyses powder characterization

178

High Explosives Application Facility | National Nuclear Security...  

National Nuclear Security Administration (NNSA)

at the micron scale in its microdetonics laboratory, and utilizing multiple firing tanks for larger scale explosives experiments. No other facility in the world supports such...

179

Engine Research Facility | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

under realistic operating conditions. The facility's engines range in size from automobile- to locomotive-sized, as well as stationary electric power production engines. The...

180

Radioactive waste management and decommissioning of accelerator facilities  

Science Journals Connector (OSTI)

......produced in nuclear power plants and in accelerators is that there...high-energy accelerator is of solid...of magnets, vacuum pipes and components...of particle accelerators are: iron...content. Several nuclear processes contribute......

Luisa Ulrici; Matteo Magistris

2009-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Sandia National Laboratories: Research: Facilities: Gamma Irradiation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Gamma Irradiation Facility Gamma Irradiation Facility Photo of Gamma Irradiation Facility The Gamma Irradiation Facility (GIF) provides high-fidelity simulation of nuclear radiation environments for materials and component testing. The low-dose irradiation facility also offers an environment for long-duration testing of materials and electronic components. Such testing may take place over a number of months or even years. Research and other activities The single-structure GIF can house a wide variety of gamma irradiation experiments with various test configurations and at different dose and dose rate levels. Radiation fields at the GIF are produced by high-intensity gamma-ray sources. To induce ionizing radiation effects and damage in test objects, the objects are subjected to high-energy photons from gamma-source

182

Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources  

E-Print Network [OSTI]

of high- gradient, laser plasma particle accelerators.accelerators that use laser-driven plasma waves. Theseleft) showing the laser (red), plasma wake density (purple-

Geddes, Cameron G.R.

2010-01-01T23:59:59.000Z

183

Fermi National Accelerator Laboratory September 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 2 Tritium, which has a half-life of 12.3 years, is an expected byproduct of accelerator operations at Fermilab. As part of our environmental monitoring program, we regularly sample the water discharged into the creeks on site and report the results to the Illinois Environmental Protection Agency, as required by state regulations. We also regularly test the water in the sanitary sewers. The low levels of tritium found since 2005 in Indian Creek, some Fermilab ponds and the sanitary sewers are far lower than the standards Fermilab is required to meet. They pose no threat to human health or the environment. Fermilab is committed to go beyond merely satisfying the regulatory standards. We strive to keep the tritium discharges as low as reasonably achievable, keep the public fully informed, and engage

184

Sandia National Laboratories: Research: Facilities: Technology Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shock Thermodynamic Applied Research Facility (STAR) Shock Thermodynamic Applied Research Facility (STAR) The STAR facility, within Sandia's Solid Dynamic Physics Department, is one of a few institutions in the world with a major shock-physics program. This is the only experimental test facility in the world that can cover the full range of pressure (bars to multi-Mbar) for material property study utilizing gas/propellant launchers, ramp-loading pulsers, and ballistic applications. Material Characterization Shock wave experiments are an established technique to determine the equation of state at high pressures and temperature, which can be applied to virtually all materials. This technique allows the probing of the internal structure of the material as it undergoes deformation. This provides a better understanding of the material properties for development

185

South Carolina Opens Nation's Largest Wind Drivetrain Testing Facility  

Office of Energy Efficiency and Renewable Energy (EERE)

Today, U.S. Deputy Secretary of Energy Daniel Poneman joined with officials from Clemson University to dedicate the nation's largest and one of the world's most advanced wind energy testing facilities in North Charleston, S.C.

186

National Ignition Facility & Photon Science HOW NIF WORKS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NIF WORKS beam me up: how niF works In the National Ignition Facility (NIF), 192 laser beams travel a long path, about 1,500 meters, from their birth at the master oscillator-a...

187

CRAD, Configuration Management- Los Alamos National Laboratory Weapons Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Configuration Management program at the Los Alamos National Laboratory, Weapons Facility.

188

E-Print Network 3.0 - accelerator mass spectrometry Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

accelerator mass... ATLAS Argonne Tandem Linear Accelerator System The prime national facility for nuclear structure... , accelerated in the world's first superconducting linear...

189

President Reagan Calls for a National Spent Fuel Storage Facility |  

National Nuclear Security Administration (NNSA)

Reagan Calls for a National Spent Fuel Storage Facility | Reagan Calls for a National Spent Fuel Storage Facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > President Reagan Calls for a National Spent ... President Reagan Calls for a National Spent Fuel Storage Facility October 08, 1981

190

Uranium Processing Facility | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About / Transforming Y-12 / Uranium Processing Facility About / Transforming Y-12 / Uranium Processing Facility Uranium Processing Facility UPF will be a state-of-the-art, consolidated facility for enriched uranium operations including assembly, disassembly, dismantlement, quality evaluation, and product certification. An integral part of Y-12's transformation efforts and a key component of the National Nuclear Security Administration's Uranium Center of Excellence, the Uranium Processing Facility is one of two facilities at Y-12 whose joint mission will be to accomplish the storage and processing of all enriched uranium in one much smaller, centralized area. Safety, security and flexibility are key design attributes of the facility, which is in the preliminary design phase of work. UPF will be built to modern standards and engage new technologies through a responsive and agile

191

UT OAK RIDGE FACILITY To Y-12 National  

E-Print Network [OSTI]

5 UT ­ OAK RIDGE FACILITY To Y-12 National Security Complex To East Tennessee Technology Park (ETTP To Knoxville and McGhee Tyson Airport Via 162 / I-140 (Pellissippi Parkway) OAK RIDGE TURNPIKE 10 2 MILES 95 To Oak Ridge National Laboratory 9 3 2 4 1 9 7 6 8 TU LANE TU LANE NEWYORK UT OUTREACH CENTER UT-OAK

192

Status of Experiments on National Ignition Facility Presented to  

E-Print Network [OSTI]

into the hohlraum temperature range for ignition experiments at 280-300 eV · The laser, diagnostic, targetStatus of Experiments on National Ignition Facility Presented to 31st Annual Meeting and Symposium Associates 4NIF­1110-20542.ppt #12;National Ignition Campaign goals Moses - 31st Annual Meeting and Symposium

193

KCP celebrates production milestone at new facility | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

celebrates production milestone at new facility | National Nuclear celebrates production milestone at new facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > KCP celebrates production milestone at new facility KCP celebrates production milestone at new facility Posted By Office of Public Affairs The Kansas City Plant celebrated yet another milestone at the National

194

Summary - Idaho CERCLA Disposal Facility (ICDF) at Idaho National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

INL, Idaho INL, Idaho EM Project: Idaho CERCLA Disposal Facility ETR Report Date: December 2007 ETR-10 United States Department of Energy Office of Environmental Management (DOE-EM) External Technical Review of Idaho CERCLA Disposal Facility (ICDF) At Idaho National Laboratory (INL) Why DOE-EM Did This Review The Idaho CERCLA Disposal Facility (ICDF) is a land disposal facility that is used to dispose of LLW and MLW generated from remedial activities at the Idaho National Laboratory (INL). Components of the ICDF include a landfill that is used for disposal of solid waste, an evaporation pond that is used to manage leachate from the landfill and other aqueous wastes (8.3 million L capacity), and a staging and treatment facility. The ICDF is located near the southwest

195

Newest LANL Facility Receives LEED Gold Certification | National Nuclear  

National Nuclear Security Administration (NNSA)

Newest LANL Facility Receives LEED Gold Certification | National Nuclear Newest LANL Facility Receives LEED Gold Certification | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Newest LANL Facility Receives LEED Gold Certification Newest LANL Facility Receives LEED Gold Certification Posted By Office of Public Affairs RULOB LANL's newest facility, the Radiological Laboratory Utility Office

196

NNSA Holds Groundbreaking at MOX Facility | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Groundbreaking at MOX Facility | National Nuclear Security Groundbreaking at MOX Facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > NNSA Holds Groundbreaking at MOX Facility NNSA Holds Groundbreaking at MOX Facility October 14, 2005 Aiken, SC NNSA Holds Groundbreaking at MOX Facility

197

Status and Plans for an SRF Accelerator Test Facility at Fermilab  

E-Print Network [OSTI]

A superconducting RF accelerator test facility is currently under construction at Fermilab. The accelerator will consist of an electron gun, 40 MeV injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, and multiple downstream beam lines for testing diagnostics and performing beam experiments. With 3 cryomodules installed this facility will initially be capable of generating an 810 MeV electron beam with ILC beam intensity. The facility can accommodate up to 6 cryomodules for a total beam energy of 1.5 GeV. This facility will be used to test SRF cryomodules under high intensity beam conditions, RF power equipment, instrumentation, and LLRF and controls systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

Church, M; Nagaitsev, S

2012-01-01T23:59:59.000Z

198

Sandia National Laboratories' Readiness in Technical Base and Facilities Program  

Broader source: Energy.gov (indexed) [DOE]

Sandia National Laboratories' Sandia National Laboratories' Readiness in Technical Base and Facilities Program OAS-L-13-13 September 2013 Department of Energy Washington, DC 20585 September 5, 2013 MEMORANDUM FOR THE MANAGER, SANDIA FIELD OFFICE FROM: David Sedillo, Director Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Sandia National Laboratories' Readiness in Technical Base and Facilities Program" BACKGROUND The Department of Energy's (Department) Sandia National Laboratories (Sandia) is a Government-owned, contractor operated Laboratory that is part of the National Nuclear Security Administration's (NNSA) nuclear weapons complex. One of Sandia's key missions is to ensure the safety, reliability and performance of the Nation's nuclear weapons stockpile. To accomplish

199

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

200

Sandia National Laboratories: Research: Facilities: Technology Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Detection Materials Characterization Laboratory Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas: (1) testing and characterizing radiation detector materials and devices; and (2) determining the relationships between the physical properties of the detector materials and the device response. Systems of interest include scintillators and room-temperature semiconductors for detection arrays of x-rays, gamma rays and neutrons. User Support The facility's special capabilities include: low-noise environment to test solid-state detectors for x-ray, gamma-ray, and neutron response mass spectrometry to quantify contaminants in detectors and detector-grade materials photoluminescence and thermally-stimulated current to measure

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Sandia National Laboratories: Research: Facilities: Technology Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Deployment Centers Technology Deployment Centers CRF Many of Sandia's unique research centers are available for use by U.S. industry, universities, academia, other laboratories, state and local governments, and the scientific community in general. Technology deployment centers are a unique set of scientific research capabilities and resources. The primary function of technology deployment centers is to satisfy Department of Energy programmatic needs, while remaining accessible to outside users. Contact For more information about Sandia technology deployment centers or for help in selecting a center to meet your needs, contact Mary Monson at mamonso@sandia.gov, (505) 844-3289. Advanced Power Sources Laboratory Combustion Research Facility Design, Evaluation, and Test Technology Facility

202

Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC  

ScienceCinema (OSTI)

Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

Andrei Seryi

2010-01-08T23:59:59.000Z

203

LANL Plutonium-Processing Facilities National Security  

E-Print Network [OSTI]

of technical capabilities. These capabilities form a center of excellence for actinide science and technology, dismantlement, and materi- als management. Among other things, these efforts support requests for power sources acceptability. Plutonium experiments at TA-55 support the nation's stockpile assessment, without the need

204

Biological shield design and analysis of KIPT accelerator-driven subcritical facility.  

SciTech Connect (OSTI)

Argonne National Laboratory of the United States and Kharkov Institute of Physics and Technology of Ukraine have been collaborating on the conceptual design development of an electron accelerator-driven subcritical facility. The facility will be utilized for performing basic and applied nuclear research, producing medical isotopes, and training young nuclear specialists. This paper presents the design and analyses of the biological shield performed for the top section of the facility. The neutron source driving the subcritical assembly is generated from the interaction of a 100-kW electron beam with a natural uranium target. The electron energy is in the range of 100 to 200 MeV, and it has a uniform spatial distribution. The shield design and the associated analyses are presented including different parametric studies. In the analyses, a significant effort was dedicated to the accurate prediction of the radiation dose outside the shield boundary as a function of the shield thickness without geometrical approximations or material homogenization. The MCNPX Monte Carlo code was utilized for the transport calculation of electrons, photons, and neutrons. Weight window variance-reduction techniques were introduced, and the dose equivalent outside the shield can be calculated with reasonably good statistics.

Zhong, Z.; Gohar, Y.; Nuclear Engineering Division

2009-12-01T23:59:59.000Z

205

Neutron source in the MCNPX shielding calculating for electron accelerator driven facility  

SciTech Connect (OSTI)

Argonne National Laboratory (ANL) of USA and Kharkov Inst. of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of an experimental neutron source facility. It is an accelerator driven system (ADS) utilizing a subcritical assembly driven by electron accelerator. The facility will be utilized for performing basic and applied nuclear researches, producing medical isotopes, and training young nuclear specialists. Monte Carlo code MCNPX has been utilized as a design tool due to its capability to transport electrons, photons, and neutrons at high energies. However the facility shielding calculations with MCNPX need enormous computational resources and the small neutron yield per electron makes sampling difficulty for the Monte Carlo calculations. A method, based on generating and utilizing neutron source file, was proposed and tested. This method reduces significantly the required computer resources and improves the statistics of the calculated neutron dose outside the shield boundary. However the statistical errors introduced by generating the neutron source were not directly represented in the results, questioning the validity of this methodology, because an insufficiently sampled neutron source can cause error on the calculated neutron dose. This paper presents a procedure for the validation of the generated neutron source file. The impact of neutron source statistic on the neutron dose is examined by calculating the neutron dose as a function of the number of electron particles used for generating the neutron source files. When the value of the calculated neutron dose converges, it means the neutron source has scored sufficient records and statistic does not have apparent impact on the calculated neutron dose. In this way, the validity of neutron source and the shield analyses could be verified. (authors)

Zhong, Z.; Gohar, Y. [Nuclear Engineering Div., Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

2012-07-01T23:59:59.000Z

206

Lawrence Berkeley National Laboratory Facilities Division- Optimizing Activity-level Work Planning and Control Lessons Learned  

Broader source: Energy.gov [DOE]

Presenter: Ken Fletcher, Deputy Division Director for Facilities, Lawrence Berkeley National Laboratory

207

Hot Springs National Park Space Heating Low Temperature Geothermal Facility  

Open Energy Info (EERE)

Space Heating Low Temperature Geothermal Facility Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hot Springs National Park Space Heating Low Temperature Geothermal Facility Facility Hot Springs National Park Sector Geothermal energy Type Space Heating Location Hot Springs, Arkansas Coordinates 34.5037004°, -93.0551795° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

208

High Explosives Pressing Facility on budget and on schedule | National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Explosives Pressing Facility on budget and on schedule | National Explosives Pressing Facility on budget and on schedule | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > High Explosives Pressing Facility on budget and ... High Explosives Pressing Facility on budget and on schedule Posted By Office of Public Affairs Construction crews prepare to pour concrete at the new High Explosives

209

High Explosives Pressing Facility on budget and on schedule | National  

National Nuclear Security Administration (NNSA)

Pressing Facility on budget and on schedule | National Pressing Facility on budget and on schedule | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > High Explosives Pressing Facility on budget and ... High Explosives Pressing Facility on budget and on schedule Posted By Office of Public Affairs Construction crews prepare to pour concrete at the new High Explosives

210

Hanford, WA Selected as Plutonium Production Facility | National Nuclear  

National Nuclear Security Administration (NNSA)

Hanford, WA Selected as Plutonium Production Facility | National Nuclear Hanford, WA Selected as Plutonium Production Facility | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Hanford, WA Selected as Plutonium Production Facility Hanford, WA Selected as Plutonium Production Facility January 16, 1943 Hanford, WA

211

SuperHILAC: Heavy-ion linear accelerator: Summary of capabilities, facilities, operations, and research  

SciTech Connect (OSTI)

This report consists of a description of the accelerator facilities and a review of research programs being conducted there. Lists of SuperHILAC researchers and publications are also given.

McDonald, R.J. (ed.)

1987-09-01T23:59:59.000Z

212

Order Module--DOE O 420.2B, SAFETY OF ACCELERATOR FACILITIES | Department  

Broader source: Energy.gov (indexed) [DOE]

420.2B, SAFETY OF ACCELERATOR FACILITIES 420.2B, SAFETY OF ACCELERATOR FACILITIES Order Module--DOE O 420.2B, SAFETY OF ACCELERATOR FACILITIES This module will discuss the objectives and requirements associated with the Order and the contractor requirements document. We have provided an example to help familiarize you with the material. The example will also help prepare you for the practice at the end of this module and for the criterion test. Before continuing, you should obtain a copy of the Order at DOE Directives, Regulations, and Standards Portal Home Page or through the course manager. You may need to refer to these documents to complete the example, practice, and criterion test. DOE Order Self Study Modules - DOE O 420.1B Facility Safety More Documents & Publications Order Module--DOE O 420.1B, FACILITY SAFETY

213

Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab  

SciTech Connect (OSTI)

The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

Leibfritz, J.; Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Kucera, M.; Martinez, A.; Nagaitsev, S.; /Fermilab

2012-05-01T23:59:59.000Z

214

OSCAR API v2.1 with Flexible Accelerator Control Facilities  

E-Print Network [OSTI]

OSCAR API v2.1 with Flexible Accelerator Control Facilities Keiji Kimura, Waseda University 13. The execution timing of them can be notified by FlagVariables Overview of OSCAR API v2.0 (before 2 ! Accelerators ! Based on the subset of OpenMP ! Very popular parallel processing API ! Shared memory programming

Kasahara, Hironori

215

South Carolina Opens Nation’s Largest Wind Drivetrain Testing Facility  

Broader source: Energy.gov [DOE]

Today, U.S. Deputy Secretary of Energy Daniel Poneman joined with officials from Clemson University to dedicate the nation's largest and one of the world's most advanced wind energy testing facilities in North Charleston, S.C.

216

Confinement of ignition and yield on the National Ignition Facility  

SciTech Connect (OSTI)

The National Ignition Facility Target Areas and Experimental Systems has reached mid-Title I design. Performance requirements for the Target Area are reviewed and design changes since the Conceptual Design Report are discussed. Development activities confirm a 5-m radius chamber and the viability of a boron carbide first wall. A scheme for cryogenic target integration with the NIF Target Area is presented.

Tobin, M.; Karpenko, V.; Foley, D.; Anderson, A.; Burnham, A.; Reitz, T.; Latkowski, J.; Bernat, T.

1996-06-14T23:59:59.000Z

217

Description of the Argonne National Laboratory target making facility  

Science Journals Connector (OSTI)

A description is given of some recent developments at the target facility at Argonne National Laboratory. Highlights include equipment upgrades which enable us to provide enhanced capabilities for support of the Argonne Heavy-Ion Program. Work currently in progress is described and future prospects are discussed.

G.E Thomas; J.P Greene

1995-01-01T23:59:59.000Z

218

Oak Ridge National Laboratory Carbon Fiber Technology Facility  

E-Print Network [OSTI]

Oak Ridge National Laboratory Carbon Fiber Technology Facility Low-Cost Carbon Fiber | Proposal opportunity and how low-cost carbon fiber can facilitate successful entry. Submit completed proposal package and equipment, visit www.ornl.gov/manufacturing. #12;MDF: CFTF Low-Cost Carbon Fiber Proposal Guidelines 2 4

Pennycook, Steve

219

Idaho National Engineering Laboratory Consolidated Transportation Facility. Environmental Assessment  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0822, addressing environmental impacts that could result from siting, construction, and operation of a consolidated transportation facility at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. The DOE proposes to construct and operate a new transportation facility at the Central Facilities Area (CFA) at the INEL. The proposed facility would replace outdated facilities and consolidate in one location operations that are conducted at six different locations at the CFA. The proposed facility would be used for vehicle and equipment maintenance and repair, administrative support, bus parking, and bus driver accommodation. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969, as amended. Therefore, the preparation of an environmental impact statement (EIS) is not required and the Department is issuing this finding of no significant impact.

Not Available

1993-04-01T23:59:59.000Z

220

Facility Effluent Monitoring Plan for Pacific Northwest National Laboratory Balance-of-Plant Facilities  

SciTech Connect (OSTI)

The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R and D) facilities for the Department of Energy on the Hanford Site. According to DOE Order 5400.1, a Facility Effluent Monitoring Plan is required for each site, facility, or process that uses, generates, releases, or manages significant pollutants or hazardous materials. Three of the R and D facilities: the 325, 331, and 3720 Buildings, are considered major emission points for radionuclide air sampling and thus individual Facility Effluent Monitoring Plans (FEMPs) have been developed for them. Because no definition of ''significant'' is provided in DOE Order 5400.1 or the accompanying regulatory guide DOE/EH-0173T, this FEMP was developed to describe monitoring requirements in the DOE-owned, PNNL-operated facilities that do not have individual FEMPs. The remainder of the DOE-owned, PNNL-operated facilities are referred to as Balance-of-Plant (BOP) facilities. Activities in the BOP facilities range from administrative to laboratory and pilot-scale R and D. R and D activities include both radioactive and chemical waste characterization, fluid dynamics research, mechanical property testing, dosimetry research, and molecular sciences. The mission and activities for individual buildings are described in the FEMP.

Ballinger, M.Y.; Shields, K.D.

1999-04-02T23:59:59.000Z

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Radioactive waste management and decommissioning of accelerator facilities  

Science Journals Connector (OSTI)

......the removed radioactive waste shall be treated and processed for either long-term storage or disposal. delayed...facility itself becomes a long-term storage that shall be...dismantling resources, waste storage space or development......

Luisa Ulrici; Matteo Magistris

2009-11-01T23:59:59.000Z

222

National RF Test Facility as a multipurpose development tool  

SciTech Connect (OSTI)

Additions and modifications to the National RF Test Facility design have been made that (1) focus its use for technology development for future large systems in the ion cyclotron range of frequencies (ICRF), (2) expand its applicability to technology development in the electron cyclotron range of frequencies (ECRF) at 60 GHz, (3) provide a facility for ELMO Bumpy Torus (EBT) 60-GHz ring physics studies, and (4) permit engineering studies of steady-state plasma systems, including superconducting magnet performance, vacuum vessel heat flux removal, and microwave protection. The facility will continue to function as a test bed for generic technology developments for ICRF and the lower hybrid range of frequencies (LHRF). The upgraded facility is also suitable for mirror halo physics experiments.

McManamy, T.J.; Becraft, W.R.; Berry, L.A.; Blue, C.W.; Gardner, W.L.; Haselton, H.H.; Hoffman, D.J.; Loring, C.M. Jr.; Moeller, F.A.; Ponte, N.S.

1983-01-01T23:59:59.000Z

223

Accelerator Facility Safety Implementation Guide for DOE Order (0) 420.2C, Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The revision will address implementation of roles and responsibilities, improve operational efficiency using operating experience, and clarify the use of program requirements such as the Unreviewed Safety Issue and Accelerator Readiness Review.

2013-07-17T23:59:59.000Z

224

Implosion dynamics measurements at the National Ignition Facility  

SciTech Connect (OSTI)

Measurements have been made of the in-flight dynamics of imploding capsules indirectly driven by laser energies of 1-1.7 MJ at the National Ignition Facility [Miller et al., Nucl. Fusion 44, 228 (2004)]. These experiments were part of the National Ignition Campaign [Landen et al., Phys. Plasmas 18, 051002 (2011)] to iteratively optimize the inputs required to achieve thermonuclear ignition in the laboratory. Using gated or streaked hard x-ray radiography, a suite of ablator performance parameters, including the time-resolved radius, velocity, mass, and thickness, have been determined throughout the acceleration history of surrogate gas-filled implosions. These measurements have been used to establish a dynamically consistent model of the ablative drive history and shell compressibility throughout the implosion trajectory. First results showed that the peak velocity of the original 1.3-MJ Ge-doped polymer (CH) point design using Au hohlraums reached only 75% of the required ignition velocity. Several capsule, hohlraum, and laser pulse changes were then implemented to improve this and other aspects of implosion performance and a dedicated effort was undertaken to test the sensitivity of the ablative drive to the rise time and length of the main laser pulse. Changing to Si rather than Ge-doped inner ablator layers and increasing the pulse length together raised peak velocity to 93% {+-} 5% of the ignition goal using a 1.5 MJ, 420 TW pulse. Further lengthening the pulse so that the laser remained on until the capsule reached 30% (rather than 60%-70%) of its initial radius, reduced the shell thickness and improved the final fuel {rho}R on companion shots with a cryogenic hydrogen fuel layer. Improved drive efficiency was observed using U rather than Au hohlraums, which was expected, and by slowing the rise time of laser pulse, which was not. The effect of changing the Si-dopant concentration and distribution, as well as the effect of using a larger initial shell thickness were also examined, both of which indicated that instabilities seeded at the ablation front are a significant source of hydrodynamic mix into the central hot spot. Additionally, a direct test of the surrogacy of cryogenic fuel layered versus gas-filled targets was performed. Together all these measurements have established the fundamental ablative-rocket relationship describing the dependence of implosion velocity on fractional ablator mass remaining. This curve shows a lower-than-expected ablator mass at a given velocity, making the capsule more susceptible to feedthrough of instabilities from the ablation front into the fuel and hot spot. This combination of low velocity and low ablator mass indicates that reaching ignition on the NIF will require >20 {mu}m ({approx}10%) thicker targets and laser powers at or beyond facility limits.

Hicks, D. G.; Meezan, N. B.; Dewald, E. L.; Mackinnon, A. J.; Callahan, D. A.; Doeppner, T.; Benedetti, L. R.; Bradley, D. K.; Celliers, P. M.; Clark, D. S.; Di Nicola, P.; Dixit, S. N.; Dzenitis, E. G.; Eggert, J. E.; Farley, D. R.; Glenn, S. M.; Glenzer, S. H.; Hamza, A. V.; Heeter, R. F.; Holder, J. P. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

2012-12-15T23:59:59.000Z

225

Grand Opening of Abengoa’s Biorefinery: Nation’s Third Commercial-Scale Facility  

Broader source: Energy.gov [DOE]

The nation’s third commercial-scale cellulosic ethanol biorefinery celebrates its grand opening on October 17, 2014, in Hugoton, Kansas. The Abengoa Bioenergy Biomass of Kansas (ABBK) facility is the first of its kind to use a proprietary enzymatic hydrolysis process which turns cellulosic biomass into fermentable sugars that are then converted into transportation fuels.

226

National Biomedical Tracer Facility (NBTF). Project definition study: Phase I  

SciTech Connect (OSTI)

This report describes a five-year plan for the construction and commissioning of a reliable and versatile NBTF facility for the production of high-quality, high-yield radioisotopes for research, biomedical, and industrial applications. The report is organized in nine sections providing, in consecutive order, responses to the nine questions posed by the U.S. Department of Energy in its solicitation for the NBTF Project Definition Study. In order to preserve direct correspondence (e.g., Sec. 3 = 3rd item), this Introduction is numbered {open_quotes}0.{close_quotes} Accelerator and facility designs are covered in Section 1 (Accelerator Design) and Section 2 (Facility Design). Preliminary estimates of capital costs are detailed in Section 3 (Design and Construction Costs). Full licensing requirements, including federal, state, and local ordinances, are discussed in Section 4 (Permits). A plan for the management of hazardous materials to be generated by NBTF is presented in Section 5 (Waste Management). An evaluation of NBTF`s economic viability and its potential market impact is detailed in Section 6(Business Plan), and is complemented by the plans in Section 7 (Operating Plan) and Section 8 (Radioisotope Plan). Finally, a plan for NBTF`s research, education, and outreach programs is presented in Section 9 (Research and Education Programs).

Lagunas-Solar, M.C.

1995-02-15T23:59:59.000Z

227

Ultra-Accelerated Natural Sunlight Exposure Testing Facilities  

DOE Patents [OSTI]

A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

Lewandowski, Allan A. (Evergreen, CO); Jorgensen, Gary J. (Pine, CO)

2004-11-23T23:59:59.000Z

228

High Performance Imaging Streak Camera for the National Ignition Facility  

SciTech Connect (OSTI)

An x-ray streak camera platform has been characterized and implemented for use at the National Ignition Facility. The camera has been modified to meet the experiment requirements of the National Ignition Campaign and to perform reliably in conditions that produce high EMI. A train of temporal UV timing markers has been added to the diagnostic in order to calibrate the temporal axis of the instrument and the detector efficiency of the streak camera was improved by using a CsI photocathode. The performance of the streak camera has been characterized and is summarized in this paper. The detector efficiency and cathode measurements are also presented.

Opachich, Y. P. [LLNL; Kalantar, D. [LLNL; MacPhee, A. [LLNL; Holder, J. [LLNL; Kimbrough, J. [LLNL; Bell, P. M. [LLNL; Bradley, D. [LLNL; Hatch, B. [LLNL; Brown, C. [LLNL; Landen, O. [LLNL; Perfect, B. H. [LLNL, HMC; Guidry, B. [LLNL; Mead, A. [NSTec; Charest, M. [NSTec; Palmer, N. [LLNL; Homoelle, D. [LLNL; Browning, D. [LLNL; Silbernagel, C. [NSTec; Brienza-Larsen, G. [NSTec; Griffin, M. [NSTec; Lee, J. J. [NSTec; Haugh, M. J. [NSTec

2012-12-01T23:59:59.000Z

229

The National Ignition Facility: The world's largest optical system  

SciTech Connect (OSTI)

The National Ignition Facility (NIF), a 192-beam fusion laser, is presently under construction at the Lawrence Livermore National Laboratory with an expected completion in 2008. The facility contains 7,456 meter-scale optics for amplification, beam steering, vacuum barriers, focusing, polarization rotation, and wavelength conversion. A multiphase program was put in place to increase the monthly optical manufacturing rate by up to 20x while simultaneously reducing cost by up to 3x through a sub-scale development, full-scale facilitization, and a pilot production phase. Currently 80% of the optics are complete with over 50% installed. In order to manufacture the high quality optics at desired manufacturing rate of over 100 precision optics per month, new more deterministic advanced fabrication technologies had to be employed over those used to manufacture previous fusion lasers.

Stolz, C J

2007-10-15T23:59:59.000Z

230

Argonne National Laboratory Terahertz- and Millimeter-Wave Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PROFILE: PROFILE: Argonne Homeland Security Technologies APPLICATIONS A R G O N N E N A T I O N A L L A B O R A T O R Y Terahertz- and Millimeter-Wave Test Facility B E N E F I T S Detect Terrorist-Related Contraband with Terahertz Technology * Spectral "fingerprints" uniquely identify materials * Can identify the factory where explosives and other chemicals were manufactured * Detects minute amounts of chemicals from a distance * Identifies materials in seconds Companies that develop or manufacture instruments to detect terrorist contraband can benefit by using a unique facility at the U.S. Department of Energy's Argonne National Laboratory. Called the Terahertz Test Facility, its sensitive, new instruments - developed at Argonne and available nowhere else in the world - can obtain spectral "fingerprints" that uniquely

231

Idaho CERCLA Disposal Facility at Idaho National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

Idaho Operations Idaho Operations Review of the Idaho CERCLA Disposal Facility (ICDF) at Idaho National Laboratory By Craig H. Benson, PhD, PE; William H. Albright, PhD; David P. Ray, PE, and John Smegal Sponsored by: The Office of Engineering and Technology (EM-20) 5 December 2007 i TABLE OF CONTENTS 1. INTRODUCTION 1 2. OBJECTIVE AND SCOPE 1 3. LINE OF INQUIRY NO. 1 2 3.1 Containerized Waste 2 3.2 Compacted Mixtures of Soil and Debris 3 3.3 Final Cover Settlement 3 3.4 Leachate Collection System and Leak Detection Zone Monitoring 4 4. LINE OF INQUIRY NO. 2 4 5. LINE OF INQUIRY NO. 3 5 6. SUMMARY OF RECOMMENDATIONS 6 7. ACKNOWLEDGEMENTS 6 FIGURES 7 1 1. INTRODUCTION The Idaho CERCLA Disposal Facility (ICDF) is a land disposal facility authorized by the US

232

The role of the National Ignition Facility in energy production from inertial fusion  

Science Journals Connector (OSTI)

...in IFE attractive. inertial fusion energy|laser fusion|ignition (lasers)|thermonuclear gain|National Ignition Facility...inertial fusion energy; laser fusion; ignition (lasers); thermonuclear gain; National Ignition Facility...

1999-01-01T23:59:59.000Z

233

Oak Ridge Facilities Construction | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities ... Oak Ridge Facilities Construction Work in wet and mud was common during the construction of Oak Ridge facilities...

234

Thomas Jefferson National Accelerator Facility | U.S. DOE Office...  

Office of Science (SC) Website

and Development (LDRD) Management & Operating (M&O) Contracts Technology Transfer Work for Others Contact Information Laboratory Policy U.S. Department of Energy SC-32...

235

The Dust Accelerator Facility of the Colorado Center for Lunar Dust and Atmospheric Studies  

SciTech Connect (OSTI)

The NASA Lunar Institute's Colorado Center for Lunar Dust and Atmospheric Studies has recently completed the construction of a new experimental facility to study hypervelocity dust impacts. The installation includes a 3 MV Pelletron, accelerating small particles in the size range of 0.1 to few microns to velocities in the range of 1 to 100 km/s. Here we report the capabilities of our facility, and the results of our first experiments.

Horanyi, M.; Colette, A.; Drake, K.; Gruen, E.; Kempf, S.; Munsat, T.; Robertson, S.; Shu, A.; Sternovsky, Z.; Wang, X. [NASA Lunar Science Institute Colorado Center for Lunar Dust and Atmospheric Studies University of Colorado, Boulder, CO, 80309 (United States)

2011-11-29T23:59:59.000Z

236

Independent Oversight Review, Los Alamos National Laboratory Chemistry and Metallurgy Research Facility- January 2012  

Broader source: Energy.gov [DOE]

Review of the Los Alamos National Laboratory Chemistry and Metallurgy Research Facility Fire Suppression Vital Safety System

237

Thermal effects testing at the National Solar Thermal Test Facility  

SciTech Connect (OSTI)

The National Solar Thermal Test Facility is operated by Sandia National Laboratories and located on Kirkland Air Force Base in Albuquerque, New Mexico. The permanent features of the facility include a heliostat field and associated receiver tower, two solar furnaces, two point-focus parabolic concentrators, and Engine Test Facility. The heliostat field contains 220 computer-controlled mirrors, which reflect concentrated solar energy to test stations on a 61-m tower. The field produces a peak flux density of 250 W/cm{sup 2} that is uniform over a 15-cm diameter with a total beam power of over 5 MW{sub t}. The solar beam has been used to simulate aerodynamic heating for several customers. Thermal nuclear blasts have also been simulated using a high-speed shutter in combination with heliostat control. The shutter can accommodate samples up to 1 m {times} 1 m and it has been used by several US and Canadian agencies. A glass-windowed wind tunnel is also available in the Solar Tower. It provides simultaneous exposure to the thermal flux and air flow. Each solar furnace at the facility includes a heliostat, an attenuator, and a parabolic concentrator. One solar furnace produces flux levels of 270 W/cm{sup 2} over and delivers a 6-mm diameter and total power of 16 kW{sub t}. A second furnace produces flux levels up to 1000 W/cm{sup 2} over a 4 cm diameter and total power of 60 kW{sub t}. Both furnaces include shutters and attenuators that can provide square or shaped pulses. The two 11 m diameter tracking parabolic point-focusing concentrators at the facility can each produce peak flux levels of 1500 W/cm{sup 2} over a 2.5 cm diameter and total power of 75 kW{sub t}. High-speed shutters have been used to produce square pulses.

Ralph, M.E.; Cameron, C.P. [Sandia National Labs., Albuquerque, NM (United States); Ghanbari, C.M. [Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States)

1992-12-31T23:59:59.000Z

238

Thermal effects testing at the National Solar Thermal Test Facility  

SciTech Connect (OSTI)

The National Solar Thermal Test Facility is operated by Sandia National Laboratories and located on Kirkland Air Force Base in Albuquerque, New Mexico. The permanent features of the facility include a heliostat field and associated receiver tower, two solar furnaces, two point-focus parabolic concentrators, and Engine Test Facility. The heliostat field contains 220 computer-controlled mirrors, which reflect concentrated solar energy to test stations on a 61-m tower. The field produces a peak flux density of 250 W/cm[sup 2] that is uniform over a 15-cm diameter with a total beam power of over 5 MW[sub t]. The solar beam has been used to simulate aerodynamic heating for several customers. Thermal nuclear blasts have also been simulated using a high-speed shutter in combination with heliostat control. The shutter can accommodate samples up to 1 m [times] 1 m and it has been used by several US and Canadian agencies. A glass-windowed wind tunnel is also available in the Solar Tower. It provides simultaneous exposure to the thermal flux and air flow. Each solar furnace at the facility includes a heliostat, an attenuator, and a parabolic concentrator. One solar furnace produces flux levels of 270 W/cm[sup 2] over and delivers a 6-mm diameter and total power of 16 kW[sub t]. A second furnace produces flux levels up to 1000 W/cm[sup 2] over a 4 cm diameter and total power of 60 kW[sub t]. Both furnaces include shutters and attenuators that can provide square or shaped pulses. The two 11 m diameter tracking parabolic point-focusing concentrators at the facility can each produce peak flux levels of 1500 W/cm[sup 2] over a 2.5 cm diameter and total power of 75 kW[sub t]. High-speed shutters have been used to produce square pulses.

Ralph, M.E.; Cameron, C.P. (Sandia National Labs., Albuquerque, NM (United States)); Ghanbari, C.M. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (United States))

1992-01-01T23:59:59.000Z

239

ASTA at Fermilab: Accelerator Physics and Accelerator Education Programs at the Modern Accelerator R&D Users Facility for HEP and Accelerator Applications.  

SciTech Connect (OSTI)

We present the current and planned beam physics research program and accelerator education program at Advanced Superconducting Test Accelerator (ASTA) at Fermilab.

Shiltsev, V.; Piot, P.

2013-09-01T23:59:59.000Z

240

The National Ignition Facility and the Path to Fusion Energy  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is operational and conducting experiments at the Lawrence Livermore National Laboratory (LLNL). The NIF is the world's largest and most energetic laser experimental facility with 192 beams capable of delivering 1.8 megajoules of 500-terawatt ultraviolet laser energy, over 60 times more energy than any previous laser system. The NIF can create temperatures of more than 100 million degrees and pressures more than 100 billion times Earth's atmospheric pressure. These conditions, similar to those at the center of the sun, have never been created in the laboratory and will allow scientists to probe the physics of planetary interiors, supernovae, black holes, and other phenomena. The NIF's laser beams are designed to compress fusion targets to the conditions required for thermonuclear burn, liberating more energy than is required to initiate the fusion reactions. Experiments on the NIF are focusing on demonstrating fusion ignition and burn via inertial confinement fusion (ICF). The ignition program is conducted via the National Ignition Campaign (NIC) - a partnership among LLNL, Los Alamos National Laboratory, Sandia National Laboratories, University of Rochester Laboratory for Laser Energetics, and General Atomics. The NIC program has also established collaborations with the Atomic Weapons Establishment in the United Kingdom, Commissariat a Energie Atomique in France, Massachusetts Institute of Technology, Lawrence Berkeley National Laboratory, and many others. Ignition experiments have begun that form the basis of the overall NIF strategy for achieving ignition. Accomplishing this goal will demonstrate the feasibility of fusion as a source of limitless, clean energy for the future. This paper discusses the current status of the NIC, the experimental steps needed toward achieving ignition and the steps required to demonstrate and enable the delivery of fusion energy as a viable carbon-free energy source.

Moses, E

2011-07-26T23:59:59.000Z

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

The Advanced Test Reactor National Scientific User Facility  

SciTech Connect (OSTI)

In 2007, the Advanced Test Reactor (ATR), located at Idaho National Laboratory (INL), was designated by the Department of Energy (DOE) as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by approved researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide those researchers with the best ideas access to the most advanced test capability, regardless of the proposer’s physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, obtained access to additional PIE equipment, taken steps to enable the most advanced post-irradiation analysis possible, and initiated an educational program and digital learning library to help potential users better understand the critical issues in reactor technology and how a test reactor facility could be used to address this critical research. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program invited universities to nominate their capability to become part of a broader user facility. Any university is eligible to self-nominate. Any nomination is then peer reviewed to ensure that the addition of the university facilities adds useful capability to the NSUF. Once added to the NSUF team, the university capability is then integral to the NSUF operations and is available to all users via the proposal process. So far, six universities have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these university capabilities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user’s technical needs. The current NSUF partners are shown in Figure 1. This article describes the ATR as well as the expanded capabilities, partnerships, and services that allow researchers to take full advantage of this national resource.

Todd R. Allen; Collin J. Knight; Jeff B. Benson; Frances M. Marshall; Mitchell K. Meyer; Mary Catherine Thelen

2011-08-01T23:59:59.000Z

242

The National Ignition Facility National Ignition Campaign Short Pulse Lasers High-Average-Power Laser  

E-Print Network [OSTI]

#12;The National Ignition Facility National Ignition Campaign Short Pulse Lasers High hole shields SSD, Polarization smoothing Improvements in ignition point designs have reduced laser Campaign NIF-0905-11310 09EIM/dj 1997 1.7 MJ ignition point design 0.5 0.4 0.3 0.2 0.1 0 0 0.5 1 1.5 Laser

243

Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities  

E-Print Network [OSTI]

This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernàndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

2006-01-01T23:59:59.000Z

244

High brightness photocathode injector for BNL Accelerator Test Facility  

SciTech Connect (OSTI)

An analysis of the BNL photocathode (1-1/2 cell) Gun'' operating at 2856 MHZ, is presented. The beam parameters including beam energy, and emittance are calculated. A review of the Gun parameters and full input and output of our analysis with program PARMELA, is given in Section 2, some of our results, are tabulated. The phase plots and the beam parameters, at downstream ends of the elements, from cathode through the cavity, first cell is labeled as element 2; and second cell is labeled as element to the exit of the GUN. The analysis was made for 3 cases, using three different initial values (EO) for the average accelerating gradient (MV/m), for comparison with previous works. For illustration, the field obtained with program SUPERFISH is given, and conclusion including shunt impedances obtained for the cells and the cavity are given in Section 6. PARMELA is used as a standard design program at ATF. At the request of some of the users of program PARMELA, this request of some of the users of program PARMELA, this report include and illustrates some of our data, in the input and output format of the program PARMELA. 5 refs., 7 figs., 3 tabs.

Parsa, Z.; Young, L.

1990-01-01T23:59:59.000Z

245

Laser design basis for the National Ignition Facility  

SciTech Connect (OSTI)

Controlled nuclear fusion initiated by highly intense laser beams has been the subject of experiment for many years. The National Ignition Facility (NIF) represents the culmination of design efforts to provide a laser facility that will successfully demonstrate fusion ignition in the laboratory. In this so-called inertial confinement approach, energetic driver beams (laser, X-ray, or charged particle) heat the outer surface of a spherical capsule containing deuterium and tritium (DT) fuel. As the capsule surface explosively evaporates, reaction pressure compresses the DT fuel causing the central core of the fuel to reach extreme density and temperature. When the central temperature is high enough, DT fusion reactions occur. The energy released from these reactions further heats the compressed fuel, and fusion burn propagates outward through the colder regions of the capsule much more rapidly than the inertially confined capsule can expand. The resulting fusion reactions yield many times more energy than was absorbed from the driver beams.

Hunt, J.T.; Manes, K.R.; Murray, J.R.; Renard, P.A.; Sawicki, R.; Trenholme, J.B.; Williams, W.

1994-06-01T23:59:59.000Z

246

HEP Accelerator R&D Expertise | U.S. DOE Office of Science (SC...  

Office of Science (SC) Website

by university grants. As needed, promising concepts are tested at national laboratory test facilities, such as the Advanced Wakefield Accelerator (AWA) at ANL, the Accelerator...

247

Progress Toward Ignition on the National Ignition Facility  

SciTech Connect (OSTI)

The principal approach to ignition on the National Ignition Facility (NIF) is indirect drive. A schematic of an ignition target is shown in Figure 1. The laser beams are focused through laser entrance holes at each end of a high-Z cylindrical case, or hohlraum. The lasers irradiate the hohlraum walls producing x-rays that ablate and compress the fuel capsule in the center of the hohlraum. The hohlraum is made of Au, U, or other high-Z material. For ignition targets, the hohlraum is {approx}0.5 cm diameter by {approx}1 cm in length. The hohlraum absorbs the incident laser energy producing x-rays for symmetrically imploding the capsule. The fuel capsule is a {approx}2-mm-diameter spherical shell of CH, Be, or C filled with DT fuel. The DT fuel is in the form of a cryogenic layer on the inside of the capsule. X-rays ablate the outside of the capsule, producing a spherical implosion. The imploding shell stagnates in the center, igniting the DT fuel. NIC has overseen installation of all of the hardware for performing ignition experiments, including commissioning of approximately 50 diagnostic systems in NIF. The diagnostics measure scattered optical light, x-rays from the hohlraum over the energy range from 100 eV to 500 keV, and x-rays, neutrons, and charged particles from the implosion. An example of a diagnostic is the Magnetic Recoil Spectrometer (MRS) built by a collaboration of scientists from MIT, UR-LLE, and LLNL shown in Figure 2. MRS measures the neutron spectrum from the implosion, providing information on the neutron yield and areal density that are metrics of the quality of the implosion. Experiments on NIF extend ICF research to unexplored regimes in target physics. NIF can produce more than 50 times the laser energy and more than 20 times the power of any previous ICF facility. Ignition scale hohlraum targets are three to four times larger than targets used at smaller facilities, and the ignition drive pulses are two to five times longer. The larger targets and longer pulse lengths produce unique plasma conditions for laser-plasma instabilities that could reduce hohlraum coupling efficiency. Initial experiments have demonstrated efficient coupling of laser energy to x-rays. X-ray drive greater than 300 eV has been measured in gas-filled ignition hohlraum and shows the expected scaling with laser energy and hohlraum scale size. Experiments are now optimizing capsule implosions for ignition. Ignition conditions require assembling the fuel with sufficient density and temperature for thermonuclear burn. X-rays ablate the outside of the capsule, accelerating and spherically compressing the capsule for assembling the fuel. The implosion stagnates, heating the central core and producing a hot spot that ignites and burns the surrounding fuel. The four main characteristics of the implosion are shell velocity, central hot spot shape, fuel adiabat, and mix. Experiments studying these four characteristics of implosions are used to optimize the implosion. Integrated experiments using cryogenic fuel layer experiments demonstrate the quality of the implosion as the optimization experiments progress. The final compressed fuel conditions are diagnosed by measuring the x-ray emission from the hot core and the neutrons and charged particles produced in the fusion reactions. Metrics of the quality of the implosion are the neutron yield and the shell areal density, as well as the size and shape of the core. The yield depends on the amount of fuel in the hot core and its temperature and is a gauge of the energy coupling to the fuel. The areal density, the density of the fuel times its thickness, diagnoses the fuel assembly, which is measured using the fraction of neutrons that are down scattered passing through the dense shell. The yield and fraction of down scattered neutrons, or shell rho-r, from the cryogenic layered implosions are shown in Figure 3. The different sets of data represent results after a series of implosion optimization experiments. Both yield and areal density show significant increases as a result of the optimiza

Kauffman, R L

2011-10-17T23:59:59.000Z

248

Accelerators, Electrodynamics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science and Innovation Capabilities Accelerators, Electrodynamics science-innovationassetsimagesicon-science.jpg Accelerators, Electrodynamics National security depends...

249

National Ignition Facility Cryogenic Target Systems Interim Management Plan  

SciTech Connect (OSTI)

Restricted availability of funding has had an adverse impact, unforeseen at the time of the original decision to projectize the National Ignition Facility (NIF) Cryogenic Target Handling Systems (NCTS) Program, on the planning and initiation of these efforts. The purpose of this document is to provide an interim project management plan describing the organizational structure and management processes currently in place for NCTS. Preparation of a Program Execution Plan (PEP) for NCTS has been initiated, and a current draft is provided as Attachment 1 to this document. The National Ignition Facility is a multi-megajoule laser facility being constructed at Lawrence Livermore National Laboratory (LLNL) by the National Nuclear Security Administration (NNSA) in the Department of Energy (DOE). Its primary mission is to support the Stockpile Stewardship Program (SSP) by performing experiments studying weapons physics, including fusion ignition. NIF also supports the missions of weapons effects, inertial fusion energy, and basic science in high-energy-density physics. NIF will be operated by LLNL under contract to the University of California (UC) as a national user facility. NIF is a low-hazard, radiological facility, and its operation will meet all applicable federal, state, and local Environmental Safety & Health (ES&H) requirements. The NCTS Interim Management Plan provides a summary of primary design criteria and functional requirements, current organizational structure, tracking and reporting procedures, and current planning estimates of project scope, cost, and schedule. The NIF Director controls the NIF Cryogenic Target Systems Interim Management Plan. Overall scope content and execution schedules for the High Energy Density Physics Campaign (SSP Campaign 10) are currently undergoing rebaselining and will be brought into alignment with resources expected to be available throughout the NNSA Future Years National Security Plan (FYNSP). The revised schedule for delivering this system will be decided at the national level, based on experiment campaign requirement dates that will be derived through this process. The current milestone date for achieving indirect-drive ignition on the NIF is December 2010. Maintaining this milestone requires that the cryogenic systems be complete and available for fielding experiments early enough that the planned experimental campaigns leading up to ignition can be carried out. The capability of performing non-ignition cryogenic experiments is currently required by March 2006, when the NIF's first cluster of beams is operational. Plans for cryogenic and non-cryogenic experiments on the NIF are contained in NNSA's Campaign 10 Program Plans for Ignition (MTE 10.1) and High Energy Density Sciences (MTE 10.2). As described in this document, the NCTS Program Manager is responsible for managing NIF Cryogenic Target Systems development, engineering, and deployment. Through the NIF Director, the NCTS Program Manager will put in place an appropriate Program Execution Plan (draft attached) at a later time consistent with the maturing and funding these efforts. The PEP will describe management methods for carrying out these activities.

Warner, B

2002-04-25T23:59:59.000Z

250

A sensitive neutron spectrometer for the National Ignition Facility  

SciTech Connect (OSTI)

We are developing a sensitive neutron spectrometer for the National Ignition Facility laser at Livermore. The spectrometer will consist of a 1020 channel single-neutron-interaction time-of-flight detector array fielded 23 m from the neutron-producing target. It will use an existing detector array together with upgraded electronics for improved time resolution. Measurements of neutron yield, ion and electron temperatures, and density-radius product are all possible under certain conditions using one-, two-, or three-step reaction processes. The locations of the most important potential sources of scattered neutron backgrounds are determined as the first step in designing collimation to reduce these backgrounds.

Watt, R. G.; Chrien, R. E.; Klare, K. A.; Murphy, T. J.; Wilson, D. C.; Haan, S.

2001-01-01T23:59:59.000Z

251

Plastic ablator ignition capsule design for the National Ignition Facility  

SciTech Connect (OSTI)

This paper describes current efforts to develop a plastic ablator capsule design for the first ignition attempt on the National Ignition Facility. The trade-offs in capsule scale and laser energy that must be made to achieve ignition probabilities comparable to those with other candidate ablators, beryllium and high-density carbon, are emphasized. Large numbers of 1-D simulations, meant to assess the statistical behavior of the target design, as well as 2-D simulations to assess the target's susceptibility to Rayleigh-Taylor growth are discussed.

Clark, D S; Haan, S W; Hammel, B A; Salmonson, J D; Callahan, D A; Town, R J

2009-10-06T23:59:59.000Z

252

National Laboratory Photovoltaics Research  

Broader source: Energy.gov [DOE]

DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

253

National ignition facility environment, safety, and health management plan  

SciTech Connect (OSTI)

The ES&H Management Plan describes all of the environmental, safety, and health evaluations and reviews that must be carried out in support of the implementation of the National Ignition Facility (NIF) Project. It describes the policy, organizational responsibilities and interfaces, activities, and ES&H documents that will be prepared by the Laboratory Project Office for the DOE. The only activity not described is the preparation of the NIF Project Specific Assessment (PSA), which is to be incorporated into the Programmatic Environmental Impact Statement for Stockpile Stewardship and Management (PEIS). This PSA is being prepared by Argonne National Laboratory (ANL) with input from the Laboratory participants. As the independent NEPA document preparers ANL is directly contracted by the DOE, and its deliverables and schedule are agreed to separately with DOE/OAK.

NONE

1995-11-01T23:59:59.000Z

254

Sandia National Laboratories, California proposed CREATE facility environmental baseline survey.  

SciTech Connect (OSTI)

Sandia National Laboratories, Environmental Programs completed an environmental baseline survey (EBS) of 12.6 acres located at Sandia National Laboratories/California (SNL/CA) in support of the proposed Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) Facility. The survey area is comprised of several parcels of land within SNL/CA, County of Alameda, California. The survey area is located within T 3S, R 2E, Section 13. The purpose of this EBS is to document the nature, magnitude, and extent of any environmental contamination of the property; identify potential environmental contamination liabilities associated with the property; develop sufficient information to assess the health and safety risks; and ensure adequate protection for human health and the environment related to a specific property.

Catechis, Christopher Spyros

2013-10-01T23:59:59.000Z

255

RCRA Facilities Assessment (RFA)---Oak Ridge National Laboratory  

SciTech Connect (OSTI)

US Department of Energy (DOE) facilities are required to be in full compliance with all federal and state regulations. In response to this requirement, the Oak Ridge National Laboratory (ORNL) has established a Remedial Action Program (RAP) to provide comprehensive management of areas where past and current research, development, and waste management activities have resulted in residual contamination of facilities or the environment. This report presents the RCRA Facility Assessment (RFA) required to meet the requirements of RCRA Section 3004(u). Included in the RFA are (1) a listing of all sites identified at ORNL that could be considered sources of releases or potential releases; (2) background information on each of these sites, including location, type, size, period of operation, current operational status, and information on observed or potential releases (as required in Section II.A.1 of the RCRA permit); (3) analytical results obtained from preliminary surveys conducted to verify the presence or absence of releases from some of the sites; and (4) ORNL`s assessment of the need for further remedial attention.

Not Available

1987-03-01T23:59:59.000Z

256

RCRA Facilities Assessment (RFA)---Oak Ridge National Laboratory  

SciTech Connect (OSTI)

US Department of Energy (DOE) facilities are required to be in full compliance with all federal and state regulations. In response to this requirement, the Oak Ridge National Laboratory (ORNL) has established a Remedial Action Program (RAP) to provide comprehensive management of areas where past and current research, development, and waste management activities have resulted in residual contamination of facilities or the environment. This report presents the RCRA Facility Assessment (RFA) required to meet the requirements of RCRA Section 3004(u). Included in the RFA are (1) a listing of all sites identified at ORNL that could be considered sources of releases or potential releases; (2) background information on each of these sites, including location, type, size, period of operation, current operational status, and information on observed or potential releases (as required in Section II.A.1 of the RCRA permit); (3) analytical results obtained from preliminary surveys conducted to verify the presence or absence of releases from some of the sites; and (4) ORNL's assessment of the need for further remedial attention.

Not Available

1987-03-01T23:59:59.000Z

257

Microsoft Word - Designated_User_Facilities_April_13_2010  

Broader source: Energy.gov (indexed) [DOE]

4/13/2010 4/13/2010 DOE Designated Scientific User Facilities Laboratory/Facility Argonne National Laboratory Advanced Photon Source (APS) Intense Pulsed Neutron Source (IPNS) Electron Microscopy Center for Materials Research Argonne Wakefield Accelerator (AWA) Argonne Tandem Linac Accelerator System (ATLAS) Center for Nanoscale Materials Leadership Computing Facility* Brookhaven National Laboratory Scanning Transmission Electron Microscope Facility National Synchrotron Light Source (NSLS) Accelerator Test Facility (ATF) Relativistic Heavy Ion Collider (RHIC) Center for Functional Nanomaterials Fermi National Accelerator Laboratory 1,000 GeV Superconducting Accelerator System

258

National Environmental Justice Advisory Council Federal Facilities Working Group Report  

Broader source: Energy.gov [DOE]

Environmental Justice and Federal Facilities: recommendations for improving stakeholder relations between federal facilities and environmental justice communities, October 2004

259

Physics Division Argonne National Laboratory description of the programs and facilities.  

SciTech Connect (OSTI)

The ANL Physics Division traces its roots to nuclear physics research at the University of Chicago around the time of the second world war. Following the move from the University of Chicago out to the present Argonne site and the formation of Argonne National Laboratory: the Physics Division has had a tradition of research into fundamental aspects of nuclear and atomic physics. Initially, the emphasis was on areas such as neutron physics, mass spectrometry, and theoretical studies of the nuclear shell model. Maria Goeppert Maier was an employee in the Physics Division during the time she did her Nobel-Prize-winning work on the nuclear shell model. These interests diversified and at the present time the research addresses a wide range of current problems in nuclear and atomic physics. The major emphasis of the current experimental nuclear physics research is in heavy-ion physics, centered around the ATLAS facility (Argonne Tandem-Linac Accelerator System) with its new injector providing intense, energetic ion beams over the fill mass range up to uranium. ATLAS is a designated National User Facility and is based on superconducting radio-frequency technology developed in the Physics Division. A small program continues in accelerator development. In addition, the Division has a strong program in medium-energy nuclear physics carried out at a variety of major national and international facilities. The nuclear theory research in the Division spans a wide range of interests including nuclear dynamics with subnucleonic degrees of freedom, dynamics of many-nucleon systems, nuclear structure, and heavy-ion interactions. This research makes contact with experimental research programs in intermediate-energy and heavy-ion physics, both within the Division and on the national and international scale. The Physics Division traditionally has strong connections with the nation's universities. We have many visiting faculty members and we encourage students to participate in our programs for performing thesis research. The Division in early 1999 has 105 full-time members [36 regular scientific (Ph.D. level) staff, 19 postdoctoral appointees and visitors, and 50 technical, administrative, and secretarial personnel] and an annual operating budget of about $17 million. On average, the Division annually supports 50 graduate and undergraduate students.

Thayer, K.J. [ed.

1999-05-24T23:59:59.000Z

260

Diagnosing implosion performance at the National Ignition Facility (NIF) by means of neutron spectrometry  

E-Print Network [OSTI]

, Cambridge, MA 02139, USA 2 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA 3 LaboratoryDiagnosing implosion performance at the National Ignition Facility (NIF) by means of neutron.1088/0029-5515/53/4/043014 Diagnosing implosion performance at the National Ignition Facility (NIF) by means of neutron spectrometry J

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Acceleration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Acceleration Acceleration of porous media simulations on the Cray XE6 platform Kirsten M. Fagnan, Michael Lijewski, George Pau, Nicholas J. Wright Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 94720 May 18, 2011 1 Introduction In this paper we investigate the performance of the Porous Media with Adaptive Mesh Refinment (PMAMR) code which was developed in the Center for Computational Science and Engineering at Lawrence Berkeley National Laboratory. This code is being used to model carbon sequestration and contaminant transport as part of the Advanced Simulation Capability for Environmental Management (ASCEM) project. The goal of the ASCEM project is to better understand and quantify flow and contaminant transport behavior in complex geological systems. It will also address the long-term performance of engineered components including cementitious materials in

262

CRAD, Quality Assurance - Los Alamos National Laboratory TA 55 SST Facility  

Broader source: Energy.gov (indexed) [DOE]

TA 55 SST TA 55 SST Facility CRAD, Quality Assurance - Los Alamos National Laboratory TA 55 SST Facility A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Quality Assurance Program at the Los Alamos National Laboratory TA 55 SST Facility. CRADs provide a recommended approach and the types of information to gather to assess elements of a DOE contractor's programs. CRAD, Quality Assurance - Los Alamos National Laboratory TA 55 SST Facility More Documents & Publications CRAD, Quality Assurance - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Management - Los Alamos National Laboratory TA 55 SST Facility

263

Diagnosing and controlling mix in National Ignition Facility implosion experiments  

SciTech Connect (OSTI)

High mode number instability growth of ''isolated defects'' on the surfaces of National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] capsules can be large enough for the perturbation to penetrate the imploding shell, and produce a jet of ablator material that enters the hot-spot. Since internal regions of the CH ablator are doped with Ge, mixing of this material into the hot-spot results in a clear signature of Ge K-shell emission. Evidence of jets entering the hot-spot has been recorded in x-ray images and spectra, consistent with simulation predictions [Hammel et al., High Energy Density Phys. 6, 171 (2010)]. Ignition targets have been designed to minimize instability growth, and capsule fabrication improvements are underway to reduce ''isolated defects.'' An experimental strategy has been developed where the final requirements for ignition targets can be adjusted through direct measurements of mix and experimental tuning.

Hammel, B. A.; Scott, H. A.; Cerjan, C.; Clark, D. S.; Edwards, M. J.; Glenzer, S. H.; Haan, S. W.; Izumi, N.; Koch, J. A.; Landen, O. L.; Langer, S. H.; Smalyuk, V. A.; Suter, L. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Regan, S. P.; Epstein, R. [University of Rochester, Laboratory for Laser Energetics, Rochester, New York 14623 (United States); Kyrala, G. A.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Peterson, K. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

2011-05-15T23:59:59.000Z

264

Hydrodynamic instabilities in beryllium targets for the National Ignition Facility  

SciTech Connect (OSTI)

Beryllium ablators offer higher ablation velocity, rate, and pressure than their carbon-based counterparts, with the potential to increase the probability of achieving ignition at the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. We present here a detailed hydrodynamic stability analysis of low (NIF Revision 6.1) and high adiabat NIF beryllium target designs. Our targets are optimized to fully utilize the advantages of beryllium in order to suppress the growth of hydrodynamic instabilities. This results in an implosion that resists breakup of the capsule, and simultaneously minimizes the amount of ablator material mixed into the fuel. We quantify the improvement in stability of beryllium targets relative to plastic ones, and show that a low adiabat beryllium capsule can be at least as stable at the ablation front as a high adiabat plastic target.

Yi, S. A., E-mail: austinyi@lanl.gov; Simakov, A. N.; Wilson, D. C.; Olson, R. E.; Kline, J. L.; Batha, S. H. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 (United States); Clark, D. S.; Hammel, B. A.; Milovich, J. L.; Salmonson, J. D.; Kozioziemski, B. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

2014-09-15T23:59:59.000Z

265

Shock timing on the National Ignition Facility: First Experiments  

SciTech Connect (OSTI)

An experimental campaign to tune the initial shock compression sequence of capsule implosions on the National Ignition Facility (NIF) was initiated in late 2010. The experiments use a NIF ignition-scale hohlraum and capsule that employs a reentrant cone to provide optical access to the shocks as they propagate in the liquid deuterium-filled capsule interior. The strength and timing of the shock sequence is diagnosed with velocity interferometry that provides target performance data used to set the pulse shape for ignition capsule implosions that follow. From the start, these measurements yielded significant new information on target performance, leading to improvements in the target design. We describe the results and interpretation of the initial tuning experiments.

Celliers, P M; Robey, H F; Boehly, T R; Alger, E; Azevedo, S; Berzins, L V; Bhandarkar, S D; Bowers, M W; Brereton, S J; Callahan, D; Castro, C; Chandrasekaran, H; Choate, C; Clark, D; Coffee, K R; Datte, P S; Dewald, E L; DiNicola, P; Dixit, S; Doeppner, T; Dzenitis, E; Edwards, M J; Eggert, J H; Fair, J; Farley, D R; Frieders, G; Gibson, C R; Giraldez, E; Haan, S; Haid, B; Hamza, A V; Haynam, C; Hicks, D G; Holunga, D M; Horner, J B; Jancaitis, K; Jones, O S; Kalantar, D; Kline, J L; Krauter, K G; Kroll, J J; LaFortune, K N; Pape, S L; Malsbury, T; Maypoles, E R; Milovich, J L; Moody, J D; Moreno, K; Munro, D H; Nikroo, A; Olson, R E; Parham, T; Pollaine, S; Radousky, H B; Ross, G F; Sater, J; Schneider, M B; Shaw, M; Smith, R F; Thomas, C A; Throop, A; Town, R J; Trummer, D; Van Wonterghem, B M; Walters, C F; Widmann, K; Widmayer, C; Young, B K; Atherton, L J; Collins, G W; Landen, O L; Lindl, J D; MacGowan, B J; Meyerhofer, D D; Moses, E I

2011-10-24T23:59:59.000Z

266

Configuring the National Ignition Facility for direct-drive experiments  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is a project whose primary mission is to provide an above-ground experimental capability for maintaining nuclear competence and weapons effects simulation, and to pursue the achievement of fusion ignition utilizing solid state lasers as the energy driver. In this facility a large number of laser beams are focused onto a small target located at the center of a spherical target chamber. The laser energy is delivered in a few billionths of a second, raising the temperature and density of the nuclear materials in the target to levels where significant thermonuclear energy is released. The thermonuclear reaction proceeds very rapidly, so that the target materials remain confined by their own inertia during the thermonuclear reaction. This type of approach is called inertial confinement fusion (ICF). The proposed project is described in a conceptual design report (CDR) that was released in May 1994. Early in FY95, a collaboration between the University of Rochester and the Lawrence Livermore National Laboratory was established to study reconfiguring the NIF to accommodate direct-drive experiments. The present paper is a report to the scientific community, primarily the scientists and engineers working on the design of the NIF. It represents results from work in progress, specifically work completed by the end of the second quarter FY95. This report has two main sections. The first describes the target requirements on the laser drive, and the second part describes how the NIF laser can be configured to accommodate both indirect and direct drive. The report includes a description of the scientific basis for these conclusions. Though a complete picture does not exist, the present understanding is sufficient to conclude that the primary target requirements and laser functional requirements for indirect and direct drive are quite compatible. It is evidently straightforward to reconfigure the NIF to accommodate direct and indirect drive.

Eimerl, D. [ed.

1995-07-01T23:59:59.000Z

267

Target diagnostic system for the national ignition facility (invited)  

SciTech Connect (OSTI)

A review of recent progress on the design of a diagnostic system proposed for ignition target experiments on the National Ignition Facility (NIF) will be presented. This diagnostic package contains an extensive suite of optical, x ray, gamma ray, and neutron diagnostics that enable measurements of the performance of both direct and indirect driven NIF targets. The philosophy used in designing all of the diagnostics in the set has emphasized redundant and independent measurement of fundamental physical quantities relevant to the operation of the NIF target. A unique feature of these diagnostics is that they are being designed to be capable of operating in the high radiation, electromagnetic pulse, and debris backgrounds expected on the NIF facility. The diagnostic system proposed can be categorized into three broad areas: laser characterization, hohlraum characterization, and capsule performance diagnostics. The operating principles of a representative instrument from each class of diagnostic employed in this package will be summarized and illustrated with data obtained in recent prototype diagnostic tests. {copyright} {ital 1997 American Institute of Physics.}

Leeper, R.J.; Chandler, G.A.; Cooper, G.W.; Derzon, M.S.; Fehl, D.L.; Hebron, D.E.; Moats, A.R.; Noack, D.D.; Porter, J.L.; Ruggles, L.E.; Ruiz, C.L.; Torres, J.A. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Cable, M.D.; Bell, P.M.; Clower, C.A.; Hammel, B.A.; Kalantar, D.H.; Karpenko, V.P.; Kauffman, R.L.; Kilkenny, J.D.; Lee, F.D.; Lerche, R.A.; MacGowan, B.J.; Moran, M.J.; Nelson, M.B.; Olson, W.; Orzechowski, T.J.; Phillips, T.W.; Ress, D.; Tietbohl, G.L.; Trebes, J.E. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bartlett, R.J.; Berggren, R.; Caldwell, S.E.; Chrien, R.E.; Failor, B.H.; Fernandez, J.C.; Hauer, A.; Idzorek, G.; Hockaday, R.G.; Murphy, T.J.; Oertel, J.; Watt, R.; Wilke, M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Bradley, D.K.; Knauer, J. [University of Rochester, Rochester, New York 14627 (United States)] [University of Rochester, Rochester, New York 14627 (United States); Petrasso, R.D.; Li, C.K. [Massachusetts Institute of Technology, Plasma Fusion Center, Cambridge, Massachusetts 02139 (United States)] [Massachusetts Institute of Technology, Plasma Fusion Center, Cambridge, Massachusetts 02139 (United States)

1997-01-01T23:59:59.000Z

268

The Sodium Process Facility at Argonne National Laboratory-West  

SciTech Connect (OSTI)

Argonne National Laboratory-West (ANL-W) has approximately 680,000 liters of raw sodium stored in facilities on site. As mandated by the State of Idaho and the US Department of Energy (DOE), this sodium must be transformed into a stable condition for land disposal. To comply with this mandate, ANL-W designed and built the Sodium Process Facility (SPF) for the processing of this sodium into a dry, sodium carbonate powder. The major portion of the sodium stored at ANL-W is radioactively contaminated. The sodium will be processed in three separate and distinct campaigns: the 290,000 liters of Fermi-1 primary sodium, the 50,000 liters of the Experimental Breeder Reactor-II (EBR-II) secondary sodium, and the 330,000 liters of the EBR-II primary sodium. The Fermi-1 and the EBR-II secondary sodium contain only low-level of radiation, while the EBR-II primary sodium has radiation levels up to 0.5 mSv (50 mrem) per hour at 1 meter. The EBR-II primary sodium will be processed last, allowing the operating experience to be gained with the less radioactive sodium prior to reacting the most radioactive sodium. The sodium carbonate will be disposed of in 270 liter barrels, four to a pallet. These barrels are square in cross-section, allowing for maximum utilization of the space on a pallet, minimizing the required landfill space required for disposal.

Michelbacher, J.A.; Henslee, S.P. McDermott, M.D.; Price, J.R.; Rosenberg, K.E.; Wells, P.B.

1998-07-01T23:59:59.000Z

269

President Reagan Calls for a National Spent Fuel Storage Facility...  

National Nuclear Security Administration (NNSA)

Spent Fuel Storage Facility Washington, DC The Reagan Administration announces a nuclear energy policy that anticipates the establishment of a facility for the storage of...

270

Oak Ridge National Laboratory - Facilities and Operations Directorate  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities and Operations Directorate Administrative information for the Facilities and Operations Directorate is provided below. Contacts Jimmy Stone, Director Kay Thacker,...

271

Measurement on the National Ignition Facility Advance the Science of Inertial Confinement Fusion  

Science Journals Connector (OSTI)

The National Ignition Facility at Lawrence Livermore National Laboratory is a 1.8 MJ, 192 beam laser designed to produce the conditions of temperature and density in compressed...

Kilkenny, Joe

272

Management Of Experiments And Data At The National Ignition Facility  

SciTech Connect (OSTI)

Experiments, or 'shots', conducted at the National Ignition Facility (NIF) are discrete events that occur over a very short time frame (tens of nanoseconds) separated by many hours. Each shot is part of a larger campaign of shots to advance scientific understanding in high-energy-density physics. In one campaign, scientists use energy from the 192-beam, 1.8-Megajoule pulsed laser in the NIF system to symmetrically implode a hydrogen-filled target, thereby creating conditions similar to the interior of stars in a demonstration of controlled fusion. Each NIF shot generates gigabytes of data from over 30 diagnostics that measure optical, x-ray, and nuclear phenomena from the imploding target. We have developed systems to manage all aspects of the shot cycle. Other papers will discuss the control of the lasers and targets, while this paper focuses on the setup and management of campaigns and diagnostics. Because of the low duty cycle of shots, and the thousands of adjustments for each shot (target type, composition, shape; laser beams used, their power profiles, pointing; diagnostic systems used, their configuration, calibration, settings) it is imperative that we accurately define all equipment prior to the shot. Following the shot, and capture of the data by the automatic control system, it is equally imperative that we archive, analyze and visualize the results within the required 30 minutes post-shot. Results must be securely archived, approved, web-visible and downloadable in order to facilitate subsequent publication. To-date NIF has successfully fired over 2,500 system shots, as well as thousands of test firings and dry-runs. We will present an overview of the highly-flexible and scalable campaign management systems and tools employed at NIF that control experiment configuration of the facility all the way through presentation of analyzed results.

Azevedo, S; Casey, A; Beeler, R; Bettenhausen, R; Bond, E; Chandrasekaran, H; Foxworthy, C; Hutton, M; Krammen, J; Liebman, J; Marsh, A; Pannell, T; Rhodes, J; Tappero, J; Warrick, A

2011-03-18T23:59:59.000Z

273

National Ignition Facility core x-ray streak camera  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) core x-ray streak camera will be used for laser performance verification experiments as well as a wide range of physics experiments in the areas of high-energy-density science, inertial confinement fusion, and basic science. The x-ray streak camera system is being designed to record time-dependent x-ray emission from NIF targets using an interchangeable family of snouts for measurements such as one-dimensional (1D) spatial imaging or spectroscopy. the NIF core x-ray streak camera will consist of an x-ray-sensitive photocathode that detects x rays with 1D spatial resolution coupled to an electron streak tube to detect a continuous time history of the x rays incident on the photocathode over selected time periods. A charge-coupled-device (CCD) readout will record the signal from the streak tube. The streak tube, CCD, and associated electronics will reside in an electromagnetic interference, and electromagnetic pulse protected, hermetically sealed, temperature-controlled box whose internal pressure is approximately 1 atm. The streak tube itself will penetrate through the wall of the box into the target chamber vacuum. We are working with a goal of a spatial resolution of 15 lp/mm with 50% contrast transfer function at the photocathode and adjustment sweep intervals of 1--50 ns. The camera spectral sensitivity extends from soft x rays to 20 keV x rays, with varying quantum efficiency based on photocathode selection. The system will have remote control, monitoring, and Ethernet communications through an embedded controller. The core streak camera will be compatible with the instrument manipulators at the OMEGA (University of Rochester) and NIF facilities.

Kimbrough, J. R.; Bell, P. M.; Christianson, G. B.; Lee, F. D.; Kalantar, D. H.; Perry, T. S.; Sewall, N. R.; Wootton, A. J.

2001-01-01T23:59:59.000Z

274

Status Of The National Ignition Campaign And National Ignition Facility Integrated Computer Control System  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility that will contains a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn. NIF is operated by the Integrated Computer Control System (ICCS) in an object-oriented, CORBA-based system distributed among over 1800 frontend processors, embedded controllers and supervisory servers. In the fall of 2010, a set of experiments began with deuterium and tritium filled targets as part of the National Ignition Campaign (NIC). At present, all 192 laser beams routinely fire to target chamber center to conduct fusion and high energy density experiments. During the past year, the control system was expanded to include automation of cryogenic target system and over 20 diagnostic systems to support fusion experiments were deployed and utilized in experiments in the past year. This talk discusses the current status of the NIC and the plan for controls and information systems to support these experiments on the path to ignition.

Lagin, L; Brunton, G; Carey, R; Demaret, R; Fisher, J; Fishler, B; Ludwigsen, P; Marshall, C; Reed, R; Shelton, R; Townsend, S

2011-03-18T23:59:59.000Z

275

Lessons from shielding retrofits at the LAMPF/LANSCE/PSR accelerator, beam lines and target facilities  

SciTech Connect (OSTI)

The experience in the past 7 years to improve the shielding and radiation control systems at the Los Alamos Meson Physics Facility (LAMPF) and the Manuel Lujan Jr. Neutron Scattering Center (LANSCE) provides important lessons for the design of radiation control systems at future, high beam power proton accelerator facilities. Major issues confronted and insight gained in developing shielding criteria and in the use of radiation interlocks are discussed. For accelerators and beam lines requiring hands-on-maintenance, our experience suggests that shielding criteria based on accident scenarios will be more demanding than criteria based on routinely encountered beam losses. Specification and analysis of the appropriate design basis accident become all important. Mitigation by active protection systems of the consequences of potential, but severe, prompt radiation accidents has been advocated as an alternate choice to shielding retrofits for risk management at both facilities. Acceptance of active protection systems has proven elusive primarily because of the difficulty in providing convincing proof that failure of active systems (to mitigate the accident) is incredible. Results from extensive shielding assessment studies are presented including data from experimental beam spill tests, comparisons with model estimates, and evidence bearing on the limitations of line-of-sight attenuation models in complex geometries. The scope and significant characteristics of major shielding retrofit projects at the LAMPF site are illustrated by the project to improve the shielding beneath a road over a multiuse, high-intensity beam line (Line D).

Macek, R.J.

1994-07-01T23:59:59.000Z

276

Sandia National Laboratories: acceler-ated lifetime test  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

acceler-ated lifetime test Sandia R&D Funded under New DOE SunShot Program On November 27, 2013, in Energy, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar,...

277

Hydrodynamic instability growth and mix experiments at the National Ignition Facility  

SciTech Connect (OSTI)

Hydrodynamic instability growth and its effects on implosion performance were studied at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 443, 2841 (2004)]. Implosion performance and mix have been measured at peak compression using plastic shells filled with tritium gas and containing embedded localized carbon-deuterium diagnostic layers in various locations in the ablator. Neutron yield and ion temperature of the deuterium-tritium fusion reactions were used as a measure of shell-gas mix, while neutron yield of the tritium-tritium fusion reaction was used as a measure of implosion performance. The results have indicated that the low-mode hydrodynamic instabilities due to surface roughness were the primary culprits for yield degradation, with atomic ablator-gas mix playing a secondary role. In addition, spherical shells with pre-imposed 2D modulations were used to measure instability growth in the acceleration phase of the implosions. The capsules were imploded using ignition-relevant laser pulses, and ablation-front modulation growth was measured using x-ray radiography for a shell convergence ratio of ?2. The measured growth was in good agreement with that predicted, thus validating simulations for the fastest growing modulations with mode numbers up to 90 in the acceleration phase. Future experiments will be focused on measurements at higher convergence, higher-mode number modulations, and growth occurring during the deceleration phase.

Smalyuk, V. A.; Barrios, M.; Caggiano, J. A.; Casey, D. T.; Cerjan, C. J.; Clark, D. S.; Edwards, M. J.; Haan, S. W.; Hammel, B. A.; Hamza, A.; Hsing, W. W.; Hurricane, O.; Kroll, J.; Landen, O. L.; Lindl, J. D.; Ma, T.; McNaney, J. M.; Mintz, M.; Parham, T.; Peterson, J. L. [Lawrence Livermore National Laboratory, NIF Directorate, Livermore, California 94550 (United States)] [Lawrence Livermore National Laboratory, NIF Directorate, Livermore, California 94550 (United States); and others

2014-05-15T23:59:59.000Z

278

Independent Oversight Review of the Idaho National Laboratory Fuel Conditioning Facility Safety Basis  

Broader source: Energy.gov (indexed) [DOE]

INDEPENDENT OVERSIGHT INDEPENDENT OVERSIGHT REVIEW OF THE IDAHO NATIONAL LABORATORY FUEL CONDITIONING FACILITY SAFETY BASIS April 2010 U.S. Department of Energy Office of Health, Safety and Security Office of Independent Oversight i INDEPENDENT OVERSIGHT REVIEW OF THE IDAHO NATIONAL LABORATORY FUEL CONDITIONING FACILITY SAFETY BASIS Table of Contents Acronyms ............................................................................................................................ ii Executive Summary ........................................................................................................... iii 1.0 Introduction ..................................................................................................................1

279

Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry and  

E-Print Network [OSTI]

CMR Chemistry and Metallurgy Research Facility The Los Alamos National Laboratory (LANL) Chemistry analytical chemistry and metallurgy. In 1952, the first LANL CMR facility was completed. At that time chemistry and metallurgy. Upgrades to the original CMR were completed in 2002. In 2012, the CMR facility

280

Concepts for the magnetic design of the MITICA neutral beam test facility ion accelerator  

SciTech Connect (OSTI)

The megavolt ITER injector concept advancement neutral injector test facility will be constituted by a RF-driven negative ion source and by an electrostatic Accelerator, designed to produce a negative Ion with a specific energy up to 1 MeV. The beam is then neutralized in order to obtain a focused 17 MW neutral beam. The magnetic configuration inside the accelerator is of crucial importance for the achievement of a good beam efficiency, with the early deflection of the co-extracted and stripped electrons, and also of the required beam optic quality, with the correction of undesired ion beamlet deflections. Several alternative magnetic design concepts have been considered, comparing in detail the magnetic and beam optics simulation results, evidencing the advantages and drawbacks of each solution both from the physics and engineering point of view.

Chitarin, G. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy); Department of Engineering and Management, University of Padova, Vicenza (Italy); Agostinetti, P.; Marconato, N.; Marcuzzi, D.; Sartori, E.; Serianni, G.; Sonato, P. [Consorzio RFX, Corso Stati Uniti 4, 35127 Padova (Italy)

2012-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Programmable Beam Spatial Shaping System for the National Ignition Facility  

SciTech Connect (OSTI)

A system of customized spatial light modulators has been installed onto the front end of the laser system at the National Ignition Facility (NIF). The devices are capable of shaping the beam profile at a low-fluence relay plane upstream of the amplifier chain. Their primary function is to introduce 'blocker' obscurations at programmed locations within the beam profile. These obscurations are positioned to shadow small, isolated flaws on downstream optical components that might otherwise limit the system operating energy. The modulators were designed to enable a drop-in retrofit of each of the 48 existing Pre Amplifier Modules (PAMs) without compromising their original performance specifications. This was accomplished by use of transmissive Optically Addressable Light Valves (OALV) based on a Bismuth Silicon Oxide photoconductive layer in series with a twisted nematic liquid crystal (LC) layer. These Programmable Spatial Shaper packages in combination with a flaw inspection system and optic registration strategy have provided a robust approach for extending the operational lifetime of high fluence laser optics on NIF.

Heebner, J; Borden, M; Miller, P; Hunter, S; Christensen, K; Scanlan, M; Haynam, C; Wegner, P; Hermann, M; Brunton, G; Tse, E; Awwal, A; Wong, N; Seppala, L; Franks, M; Marley, E; Wong, N; Seppala, L; Franks, M; Marley, E; Williams, K; Budge, T; Henesian, M; Stolz, C; Suratwala, T; Monticelli, M; Walmer, D; Dixit, S; Widmayer, C; Wolfe, J; Bude, J; McCarty, K; DiNicola, J M

2011-01-21T23:59:59.000Z

282

Visualization of Target Inspection data at the National Ignition Facility  

SciTech Connect (OSTI)

As the National Ignition Facility continues its campaign to achieve ignition, new methods and tools will be required to measure the quality of the target capsules used to achieve this goal. Techniques have been developed to measure capsule surface features using a phase-shifting diffraction interferometer and Leica Microsystems confocal microscope. These instruments produce multi-gigabyte datasets which consist of tens to hundreds of files. Existing software can handle viewing a small subset of an entire dataset, but none can view a dataset in its entirety. Additionally, without an established mode of transport that keeps the target capsules properly aligned throughout the assembly process, a means of aligning the two dataset coordinate systems is needed. The goal of this project is to develop web based software utilizing WebGL which will provide high level overview visualization of an entire dataset, with the capability to retrieve finer details on demand, in addition to facilitating alignment of multiple datasets with one another based on common features that have been visually identified by users of the system.

Potter, D; Antipa, N

2012-02-16T23:59:59.000Z

283

Neutron source reconstruction from pinhole imaging at National Ignition Facility  

SciTech Connect (OSTI)

The neutron imaging system at the National Ignition Facility (NIF) is an important diagnostic tool for measuring the two-dimensional size and shape of the neutrons produced in the burning deuterium-tritium plasma during the ignition stage of inertial confinement fusion (ICF) implosions at NIF. Since the neutron source is small (?100 ?m) and neutrons are deeply penetrating (>3 cm) in all materials, the apertures used to achieve the desired 10-?m resolution are 20-cm long, single-sided tapers in gold. These apertures, which have triangular cross sections, produce distortions in the image, and the extended nature of the pinhole results in a non-stationary or spatially varying point spread function across the pinhole field of view. In this work, we have used iterative Maximum Likelihood techniques to remove the non-stationary distortions introduced by the aperture to reconstruct the underlying neutron source distributions. We present the detailed algorithms used for these reconstructions, the stopping criteria used and reconstructed sources from data collected at NIF with a discussion of the neutron imaging performance in light of other diagnostics.

Volegov, P.; Danly, C. R.; Grim, G. P.; Guler, N.; Merrill, F. E.; Wilde, C. H.; Wilson, D. C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Fittinghoff, D. N.; Izumi, N.; Ma, T.; Warrick, A. L. [Livermore National Laboratory, Livermore, California 94550 (United States)] [Livermore National Laboratory, Livermore, California 94550 (United States)

2014-02-15T23:59:59.000Z

284

The National Ignition Facility (NIF) and the National Ignition Campaign (NIC)  

SciTech Connect (OSTI)

The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is now operational at Lawrence Livermore National Laboratory (LLNL). NIF construction was certified by the Department of Energy as complete on March 27, 2009. NIF, a 192-beam Nd:glass laser facility, will ultimately produce 1.8-MJ, 500-TW of 351-nm third-harmonic, ultraviolet light. On March 10, 2009, total 192-beam energy of 1.1 MJ was demonstrated; this is approximately 30 times more energy than ever produced in an ICF laser system. The principal goal of NIF is to achieve ignition of a deuterium-tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and broader frontier scientific exploration. NIF experiments in support of indirect-drive ignition began in August 2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). The NIC is a national effort to achieve fusion ignition and is coordinated through a detailed execution plan that includes the science, technology, and equipment. Equipment required for ignition experiments includes diagnostics, a cryogenic target manipulator, and user optics. Participants in this effort include LLNL, General Atomics (GA), Los Alamos National Laboratory (LANL), Sandia National Laboratory (SNL), and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational, integrated into the facility, and ready to begin a credible ignition campaign in 2010. With NIF now operational, the long-sought goal of achieving self-sustained nuclear fusion and energy gain in the laboratory is much closer to realization. Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of Inertial Fusion Energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and Fast Ignition concepts. Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science. The NIC will develop the full set of capabilities required to operate NIF as a major national and international user facility. A solicitation for NIF frontier science experiments is planned for summer 2009. This paper summarizes the design, performance, and status of NIF and plans for the NIF ignition experimental program. A brief summary of the overall NIF experimental program is also presented.

Moses, E

2009-09-17T23:59:59.000Z

285

Fermilab | Illinois Accelerator Research Center | Illinois Accelerator  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

photo: IARC photo: IARC As envisioned, the Illinois Accelerator Research Center will provide approximately 83,000 square feet of technical, office and classroom space for scientists and industrial partners. The Illinois Accelerator Research Center (IARC) is a new accelerator research facility being built at Fermi National Accelerator Laboratory. At the Illinois Accelerator Research Center, scientists and engineers from Fermilab, Argonne and Illinois universities will work side by side with industrial partners to research and develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security. Located on the Fermilab campus this 83,000 square foot, state-of-the-art facility will house offices, technical and educational space to study

286

Accelerator & Detector Research & Development | U.S. DOE Office...  

Office of Science (SC) Website

whose cost and complexity require shared support. Research at the Accelerator Test Facility at Brookhaven National Laboratory is jointly funded by the High Energy Physics...

287

Sandia National Laboratories: Scaled Wind Farm Technology Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy, Facilities, News, News & Events, Partnership, Renewable Energy, SWIFT, Wind Energy One of the primary roles of Sandia's Scaled Wind Farm Technology (SWiFT)...

288

Sandia National Laboratories: Excellence Award in the 2012 Facilities...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Testing Excellence Award in the 2012 Facilities Environmental, Safety and Health Go Green Initiative On December 19, 2012, in Concentrating Solar Power, Energy, Events,...

289

Precision Shock Tuning on the National Ignition Facility H. F. Robey,1  

E-Print Network [OSTI]

. Atherton,1 J. D. Lindl,1 D. D. Meyerhofer,3 and E. Moses1 1 Lawrence Livermore National Laboratory, Livermore, California 94551, USA 2 Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA 3 implosions on the National Ignition Facility (NIF) [1] are underway using the indirect-drive concept, where

290

Copper activation deuterium-tritium neutron yield measurements at the National Ignition Facility  

E-Print Network [OSTI]

, New Mexico 87131, USA 2 Sandia National Laboratories, Albuquerque, New Mexico 87185, USA 3 Lawrence Livermore National Laboratories, Livermore, California 94550, USA 4 Plasma Science and Fusion Center, MIT(+ ) and 65 Cu(n,2n) 64 Cu(+ ), has been fielded at the National Ignition Facility (NIF). The induced copper

291

So Far Unfruitful, Fusion Project Faces a Frugal Congress National Ignition Facility  

E-Print Network [OSTI]

laser at the Lawrence Livermore National Laboratory in California. By WILLIAM J. BROAD September 29 have broad repercussions not only for the big laser, which is based at the Lawrence Livermore National the government have long assailed the laser project, known as the National Ignition Facility, or NIF

292

Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report  

SciTech Connect (OSTI)

This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

Amann, J.; Bane, K.; /SLAC

2009-10-30T23:59:59.000Z

293

Nuclear Energy Advisory Committee, Facility Subcommittee visit to Idaho National Laboratory May 19-20, 2010  

Broader source: Energy.gov (indexed) [DOE]

Committee, Facility Subcommittee visit to Idaho National Committee, Facility Subcommittee visit to Idaho National Laboratory May 19-20, 2010 The Nuclear Energy Advisory Committee, Facility Subcommittee visited the Idaho National Laboratory on 19-20 May 2010 to tour the nuclear infrastructure and to discuss the INL plans for facility modernization as a dimension of the DOE Office of Nuclear Energy's (NE) mission. Team Members: Dr. John Ahearne, Sigma Xi, Research Triangle Park, NC Dr. Dana Christensen, Oak Ridge National Laboratory Dr. Thomas Cochran, Natural Resource Defense Council, Washington DC Dr. Andrew Klein, Oregon State University (second day only) Mr. Paul Murray, AREVA Federal Services Dr. John I. Sackett, Idaho National Laboratory, Retired, Support: Andrew Griffith, DOE/NE

294

FACET User Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

AD SLACPortal > Accelerator Research Division > FACET User Facility AD SLACPortal > Accelerator Research Division > FACET User Facility Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES FACET User Facility : FACET An Office of Science User Facility Search this site... Search Help (new window) Top Link Bar FACET User Facility FACET Home About FACET FACET Experimental Facilities FACET Users Research at FACET SAREC Expand SAREC FACET FAQs FACET User Facility Quick Launch FACET Users Home FACET Division ARD Home About FACET FACET News FACET Users FACET Experimental Facilities FACET Research Expand FACET Research FACET Images Expand FACET Images SAREC Expand SAREC FACET Project Site (restricted) FACET FAQs FACET Site TOC All Site Content

295

Bauer named Facilities, Infrastructure and Services head | Y-12 National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bauer named Facilities, ... Bauer named Facilities, ... Bauer named Facilities, Infrastructure and Services head Posted: August 27, 2012 - 1:01pm B&W Y-12 President and General Manager Chuck Spencer has named Linda Bauer as vice president of Facilities, Infrastructure and Services (FI&S). Bauer most recently served as senior vice president with Los Alamos Technical Associates, Inc. helping direct large-scale government and private endeavors, such as the Portsmouth Environmental Restoration Project and the Depleted Uranium Hexafluoride Conversion Project. Linda Bauer, vice president of Facilities, Infrastructure and Services With 24 years of experience, she also has held positions such as senior operations manager for the Babcock and Wilcox Technical Services Group and multiple management roles at BWXT Savannah River Company.

296

Sandia National Laboratories: Research: Facilities: Sandia Pulsed Reactor  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sandia Pulsed Reactor Facility - Critical Experiments Sandia Pulsed Reactor Facility - Critical Experiments Sandia scientist John Ford places fuel rods in the Seven Percent Critical Experiment (7uPCX) at the Sandia Pulsed Reactor Facility Critical Experiments (SPRF/CX) test reactor - a reactor stripped down to its simplest form. The Sandia Pulsed Reactor Facility - Critical Experiments (SPRF/CX) provides a flexible, shielded location for performing critical experiments that employ different reactor core configurations and fuel types. The facility is also available for hands-on nuclear criticality safety training. Research and other activities The 7% series, an evaluation of various core characteristics for higher commercial-fuel enrichment, is currently under way at the SPRF/CX. Past critical experiments at the SPRF/CX have included the Burnup Credit

297

3rd Annual National CHP Roadmap Workshop CHP and DER for Federal Facilities EPA CHP Partnership Meeting, October 2002  

Broader source: Energy.gov [DOE]

Announcement letter for 3rd Annual National CHP Roadmap Workshop, A Combined Event for Federal Facility Managers and CHP Advocates

298

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under a cooperative agreement by Associated Universities, Inc. Astronomy: The Visible and Invisible Universe  

E-Print Network [OSTI]

The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under a cooperative agreement by Associated Universities, Inc. Astronomy: The Visible and Invisible Universe #12;The National Radio Astronomy Observatory is a facility of the National Science Foundation

Groppi, Christopher

299

Los Alamos National Laboratory opens new waste repackaging facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to increase its capability to process nuclear waste for permanent disposal. March 7, 2013 A view of the new box line facility where transuranic waste will be repackaged at Los...

300

Appendices and Risk Assessment Spreadsheet Version No. Fermi National Accelerator Laboratory Engineering Manual  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Links to related documents referenced within the Engineering Manual: Links to related documents referenced within the Engineering Manual: Appendices and Risk Assessment Spreadsheet Version No. Fermi National Accelerator Laboratory Engineering Manual 07/10 Overview i Engineering at Fermilab 4 ii Purpose and Scope 5 iii Responsibilities 7 Fermilab Engineering Process 1 Requirements and Specifications 9 2 Engineering Risk Assessment 10 3 Requirements and Specifications Review 17 4 System Design 18 5 Engineering Design Review 21 6 Procurement and Implementation 23 7 Testing and Validation 26 8 Release to Operations 28 9 Final Documentation 29 Closing Thoughts 31 Appendices 33 Table of Contents Overview Fermi National Accelerator Laboratory Engineering Manual Page No. Version No. Fermi National Accelerator Laboratory Engineering Manual

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Fermi National Accelerator Lab: Progress on a Grand Design  

Science Journals Connector (OSTI)

...support for the National Institutes of Health re-search and training programs. Ford...have been obligated. With the "kitty" depleted, there will no longer be a cushion for...and chemically extract the remaining uranium and its by-product plutonium for later...

John Walsh

1974-08-30T23:59:59.000Z

302

The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

Radioactive Liquid Waste Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory OAS-L-13-15 September 2013 Department of Energy Washington, DC 20585 September 26, 2013 MEMORANDUM FOR THE ASSOCIATE ADMINISTRATOR FOR ACQUISITION AND PROJECT MANAGEMENT MANAGER LOS ALAMOS FIELD OFFICE FROM: David Sedillo Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory" BACKGROUND The Department of Energy's Los Alamos National Laboratory (Los Alamos) is a Government- owned, contractor operated Laboratory that is part of the National Nuclear Security Administration's (NNSA) nuclear weapons complex. Los Alamos' primary responsibility is to

303

The National Ignition Facility: A New Era in High Energy Density Science  

SciTech Connect (OSTI)

The National Ignition Facility, the world's most energetic laser system, is now operational. This talk will describe NIF, the ignition campaign, and new opportunities in fusion energy and high energy density science enabled by NIF.

Moses, E

2009-06-10T23:59:59.000Z

304

A nuclear physics program at the Rare Isotope Beams Accelerator Facility in Korea  

SciTech Connect (OSTI)

This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL) and fragmentation capability to produce rare isotopes beams (RIBs) and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to cross section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.

Moon, Chang-Bum, E-mail: cbmoon@hoseo.edu [Hoseo University, Asan, Chung-Nam 336-795 (Korea, Republic of)] [Hoseo University, Asan, Chung-Nam 336-795 (Korea, Republic of)

2014-04-15T23:59:59.000Z

305

COLLOQUIUM: In Pursuit of Ignition on the National Ignition Facility...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Lawrence Livermore National Laboratory with the goal of igniting a propagating thermonuclear burn wave in DT fuel leading to energy gain (defined as fusion yieldinput laser...

306

CRAD, Criticality Safety- Los Alamos National Laboratory TA 55 SST Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Criticality Safety program at the Los Alamos National Laboratory, TA 55 SST Facility.

307

CRAD, Occupational Safety & Health- Los Alamos National Laboratory TA 55 SST Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Industrial Hygiene program at the Los Alamos National Laboratory TA 55 SST Facility.

308

CRAD, Configuration Management- Los Alamos National Laboratory TA 55 SST Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Configuration Management program at the Los Alamos National Laboratory, TA 55 SST Facility.

309

CRAD, Management- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Management portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

310

CRAD, Maintenance- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Maintenance Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

311

CRAD, Engineering- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Engineering Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

312

CRAD, Safety Basis- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Safety Basis portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

313

CRAD, Emergency Management- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Emergency Management Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

314

CRAD, Environmental Protection- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Environmental Compliance Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

315

CRAD, Fire Protection- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Fire Protection Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

316

CRAD, Training- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Training Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

317

CRAD, DOE Oversight- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Conduct of Operations Program portion of an Operational Readiness Review at the Los Alamos National Laboratory, Waste Characterization, Reduction, and Repackaging Facility.

318

CRAD, Conduct of Operations- Los Alamos National Laboratory TA 55 SST Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Conduct of Operations program at the Los Alamos National Laboratory, TA 55 SST Facility.

319

CRAD, Conduct of Operations- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Conduct of Operations Program portion of an Operational Readiness Review at the Los Alamos National Laboratory, Waste Characterization, Reduction, and Repackaging Facility.

320

CRAD, Occupational Safety & Health- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Occupational and Industrial Safety and Hygiene Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

CRAD, Emergency Management- Los Alamos National Laboratory TA 55 SST Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Emergency Management program at the Los Alamos National Laboratory TA 55 SST Facility.

322

CRAD, Radiological Controls- Los Alamos National Laboratory TA 55 SST Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Radiation Protection Program at the Los Alamos National Laboratory TA 55 SST Facility.

323

CRAD, Radiological Controls- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Radiation Protection Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

324

CRAD, Quality Assurance- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Quality Assurance Program portion of an Operational Readiness Review at the Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility.

325

CRAD, Quality Assurance- Los Alamos National Laboratory TA 55 SST Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Quality Assurance Program at the Los Alamos National Laboratory TA 55 SST Facility.

326

The proton injector for the accelerator facility of antiproton and ion research (FAIR)  

SciTech Connect (OSTI)

The new international accelerator facility for antiproton and ion research (FAIR) at GSI in Darmstadt, Germany, is one of the largest research projects worldwide and will provide an antiproton production rate of 7 × 10{sup 10} cooled pbars per hour. This is equivalent to a primary proton beam current of 2 × 10{sup 16} protons per hour. For this request a high intensity proton linac (p-linac) will be built with an operating rf-frequency of 325 MHz to accelerate a 35 mA proton beam at 70 MeV, using conducting crossed-bar H-cavities. The repetition rate is 4 Hz with beam pulse length of 36 ?s. The microwave ion source and low energy beam transport developed within a joint French-German collaboration GSI/CEA-SACLAY will serve as an injector of the compact proton linac. The 2.45 GHz ion source allows high brightness ion beams at an energy of 95 keV and will deliver a proton beam current of 100 mA at the entrance of the radio frequency quadrupole (RFQ) within an acceptance of 0.3? mm?mrad (norm., rms)

Ullmann, C., E-mail: c.ullmann@gsi.de; Kester, O. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany) [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Institut für Angewandte Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main (Germany); Berezov, R.; Fils, J.; Hollinger, R.; Vinzenz, W. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany)] [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Chauvin, N.; Delferriere, O. [Commissariat à l’Energie Atomique et aux Energies Alternatives, IRFU, F-91191-Gif-sur-Yvette (France)] [Commissariat à l’Energie Atomique et aux Energies Alternatives, IRFU, F-91191-Gif-sur-Yvette (France)

2014-02-15T23:59:59.000Z

327

Assessment of the Integrated Facility Disposition Project at Oak Ridge National Laboratory & Y-12 for Transfer of Facilities & Materials to EM  

Broader source: Energy.gov (indexed) [DOE]

Integrated Facilities Disposition Project Integrated Facilities Disposition Project Technical Assistance Page 1 of 2 Oak Ridge National Laboratory Y-12 National Security Complex Tennessee Tennessee Assessment of the Integrated Facility Disposition Project at ORNL & Y-12 for Transfer of Facilities & Materials to EM Challenge In December 2007, the Assistant Secretary for Environmental Management (EM-1) invited the DOE Program Secretarial Offices (PSOs) of Nuclear Energy (NE), Science (SC), and the National Nuclear Security Administration (NNSA) to propose facilities and legacy waste for transfer to Environmental Management (EM) for final disposition or deactivation and decommissioning (D&D). In parallel with the EM-1 initiative, the Oak Ridge Reservation was conducting a Critical

328

The National Carbon Capture Center at the Power Systems Development Facility  

SciTech Connect (OSTI)

The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of high efficiency coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to promote new technologies for CO{sub 2} capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO{sub 2} capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development path to commercialization. During the calendar year 2012 portion of the Budget Period Four reporting period, efforts at the NCCC focused on testing of pre- and post-combustion CO{sub 2} capture processes and gasification support technologies. Preparations for future testing were on-going as well, and involved facility upgrades and collaboration with numerous technology developers. In the area of pre-combustion, testing was conducted on a new water-gas shift catalyst, a CO{sub 2} solvent, and gas separation membranes from four different technology developers, including two membrane systems incorporating major scale-ups. Post-combustion tests involved advanced solvents from three major developers, a gas separation membrane, and two different enzyme technologies. An advanced sensor for gasification operation was evaluated, operation with biomass co-feeding with coal under oxygen-blown conditions was achieved, and progress continued on refining several gasification support technologies.

None

2012-12-31T23:59:59.000Z

329

The National Carbon Capture Center at the Power Systems Development Facility  

SciTech Connect (OSTI)

The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy (DOE) and dedicated to the advancement of clean coal technology. In addition to the development of high efficiency coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to promote new technologies for CO2 capture from coal-derived flue gas and syngas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived flue gas and syngas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development paths to commercialization. During the calendar year 2013 portion of the Budget Period Four reporting period, efforts at the NCCC focused on post-combustion CO2 capture, gasification, and pre-combustion CO2 capture technology testing. Preparations for future testing were on-going as well, and involved facility upgrades and collaboration with numerous technology developers. In the area of post-combustion, testing was conducted on an enzyme-based technology, advanced solvents from two major developers, and a gas separation membrane. During the year, the gasification process was operated for three test runs, supporting development of water-gas shift and COS hydrolysis catalysts, a mercury sorbent, and several gasification support technologies. Syngas produced during gasification operation was also used for pre-combustion capture technologies, including gas separation membranes from three different technology developers, a CO2 sorbent, and CO2 solvents.

None, None

2014-07-14T23:59:59.000Z

330

Air quality investigations of the Sandia National Laboratories Sol se Mete Aerial Cable Facility  

SciTech Connect (OSTI)

The air quality implications of the test and evaluation activities at the Sandia National Laboratories Sol se Mete Aerial Cable Facility are examined. All facets of the activity that affect air quality are considered. Air contaminants produced directly include exhaust products of rocket motors used to accelerate test articles, dust and gas from chemical explosives, and exhaust gases from electricity generators in the test arenas. Air contaminants produced indirectly include fugitive dust and exhaust contaminants from vehicles used to transport personnel and material to the test area, and effluents produced by equipment used to heat the project buildings. Both the ongoing program and the proposed changes in the program are considered. Using a reliable estimate of th maximum annual testing level, the quantities of contaminants released by project activities ar computed either from known characteristics of test items or from EPA-approved emission factors Atmospheric concentrations of air contaminants are predicted using EPA dispersion models. The predicted quantities and concentrations are evaluated in relation to Federal, New Mexico, an Bernalillo County air quality regulations and the human health and safety standards of the American Conference of Governmental Industrial Hygienists.

Gutman, W.M.; Silver, R.J. [New Mexico State Univ., Las Cruces, NM (United States). Physical Science Lab.

1994-12-01T23:59:59.000Z

331

: The Resumption of Criticality Experiments Facility Operations at the Nevada National Security Site  

Broader source: Energy.gov (indexed) [DOE]

Resumption of Criticality Resumption of Criticality Experiments Facility Operations at the Nevada National Security Site OAS-M-13-09 September 2013 Department of Energy Washington, DC 20585 September 30, 2013 MEMORANDUM FOR THE PRINCIPAL DEPUTY ADMINISTRATOR, NATIONAL NUCLEAR SECURITY ADMINISTRATION FROM: George W. Collard Assistant Inspector General for Audits Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Resumption of Criticality Experiments Facility Operations at the Nevada National Security Site" BACKGROUND The mission of the Criticality Experiments Facility, located at the Los Alamos National Laboratory (Los Alamos) was to conduct nuclear criticality experiments and hands-on training in nuclear safeguards, criticality safety and emergency response in support of the National

332

Burnup calculations for KIPT accelerator driven subcritical facility using Monte Carlo computer codes-MCB and MCNPX.  

SciTech Connect (OSTI)

Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical (ADS) facility, using the KIPT electron accelerator. The neutron source of the subcritical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and electron energy in the range of 100 to 200 MeV. The main functions of the subcritical assembly are the production of medical isotopes and the support of the Ukraine nuclear power industry. Neutron physics experiments and material structure analyses are planned using this facility. With the 100 KW electron beam power, the total thermal power of the facility is {approx}375 kW including the fission power of {approx}260 kW. The burnup of the fissile materials and the buildup of fission products reduce continuously the reactivity during the operation, which reduces the neutron flux level and consequently the facility performance. To preserve the neutron flux level during the operation, fuel assemblies should be added after long operating periods to compensate for the lost reactivity. This process requires accurate prediction of the fuel burnup, the decay behavior of the fission produces, and the introduced reactivity from adding fresh fuel assemblies. The recent developments of the Monte Carlo computer codes, the high speed capability of the computer processors, and the parallel computation techniques made it possible to perform three-dimensional detailed burnup simulations. A full detailed three-dimensional geometrical model is used for the burnup simulations with continuous energy nuclear data libraries for the transport calculations and 63-multigroup or one group cross sections libraries for the depletion calculations. Monte Carlo Computer code MCNPX and MCB are utilized for this study. MCNPX transports the electrons and the produced neutrons and photons but the current version of MCNPX doesn't support depletion/burnup calculation of the subcritical system with the generated neutron source from the target. MCB can perform neutron transport and burnup calculation for subcritical system using external neutron source, however it cannot perform electron transport calculations. To solve this problem, a hybrid procedure is developed by coupling these two computer codes. The user tally subroutine of MCNPX is developed and utilized to record the information of the each generated neutron from the photonuclear reactions resulted from the electron beam interactions. MCB reads the recorded information of each generated neutron thorough the user source subroutine. In this way, the neutron source generated by electron reactions could be utilized in MCB calculations, without the need for MCB to transport the electrons. Using the source subroutines, MCB could get the external neutron source, which is prepared by MCNPX, and perform depletion calculation for the driven subcritical facility.

Gohar, Y.; Zhong, Z.; Talamo, A.; Nuclear Engineering Division

2009-06-09T23:59:59.000Z

333

National Ignition Facility & Photon Science Seven WonderS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laser Glass Joe Cimino (left) and dave sapak of sChOTT North America, Inc., examine a laser glass slab at the company's duryea, PA, facility. niF&Ps is a Program oF the u.s....

334

Oak Ridge National Laboratory Multiprogram Research Facility (MRF)  

High Performance Buildings Database

Oak Ridge, TN The Multiprogram Research Facility (MRF) was implemented through a design-build contract, but is a complex mixture of labs and offices that have stringent operational, security, and environmental and energy requirements. The program was highly developed and has detailed technical parameters that could not be compromised.

335

Nuclear Energy Advisory Committee Facility Subcommittee visit to Oak Ridge National  

Broader source: Energy.gov (indexed) [DOE]

Facility Subcommittee visit to Oak Ridge National Facility Subcommittee visit to Oak Ridge National Laboratory 26 August 2010 The NEAC Facilities Subcommittee made a site visit to Oak Ridge National Laboratory (ORNL) on August 26, 2010. Subcommittee members included John Ahearne (Vice Chairman of NEAC and Facilities Subcommittee Chairman), Dana Christensen (ORNL), Thomas B. Cochran (Natural Resources Defense Council), Michael Corradini, (University of Wisconsin-Madison), and Andrew Klein (Oregon State University). Tansel Selekler (Department of Energy Office of Nuclear Energy) accompanied the Subcommittee. The visit was well-coordinated by Sherrell Greene, who insured that briefings were on time and that Cochran, Corridini, and Ahearne could get to the airport on time to catch departing flights.

336

Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility, July 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ANL-2012-07-20 ANL-2012-07-20 Site: Argonne National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations (HS-45) Activity Report for Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility Dates of Activity : 07/17/2012 - 07/20/2012 Report Preparer: Joseph P. Drago Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) activity was to shadow the Argonne Site Office (ASO) Facility Representative (FR) performing a review of the technical safety requirements (TSRs) for the Alpha-Gamma Hot Cell Facility (AGHCF), a hazard category 2 nuclear facility. The ASO review evaluated the flow down of the TSRs into the facility documentation of surveillance procedures, datasheets, and the performance of the surveillance.

337

Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility, July 2012  

Broader source: Energy.gov (indexed) [DOE]

ANL-2012-07-20 ANL-2012-07-20 Site: Argonne National Laboratory Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations (HS-45) Activity Report for Operational Awareness Oversight of the Argonne National Laboratory Alpha-Gamma Hot Cell Facility Dates of Activity : 07/17/2012 - 07/20/2012 Report Preparer: Joseph P. Drago Activity Description/Purpose: The purpose of this Office of Health, Safety and Security (HSS) activity was to shadow the Argonne Site Office (ASO) Facility Representative (FR) performing a review of the technical safety requirements (TSRs) for the Alpha-Gamma Hot Cell Facility (AGHCF), a hazard category 2 nuclear facility. The ASO review evaluated the flow down of the TSRs into the facility documentation of surveillance procedures, datasheets, and the performance of the surveillance.

338

E-Print Network 3.0 - accelerator-based bnct facility Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Beam Physics Research at The University of Chicago Summary: Accelerator (RIA) project for a state-of -the-art ion accelerator based of super- conducting rf...

339

Photo Credit: Peter GinterSLAC National Accelerator Laboratory Dark Energy  

E-Print Network [OSTI]

Photo Credit: Peter GinterSLAC National Accelerator Laboratory #12;Dark Energy 70% Dark Matter 26://janus.astro.umd.edu/SolarSystems/ Planetary Motion Credit: The Astronomy Workshop A collection of interactive web-based programs and Advanced Camera for Surveys #12;Dark Energy 70% Dark Matter 26% Ordinary Matter 4% #12;Dark Energy 70% Dark

Osheroff, Douglas D.

340

Fermi National Accelerator Laboratory FERMILAB-Pub-99/354-E  

E-Print Network [OSTI]

Fermi National Accelerator Laboratory FERMILAB-Pub-99/354-E D0 The Isolated Photon Cross Section Purposes. #12;Fermilab-Pub-99 354-E The Isolated Photon Cross Section in pp Collisions at ps = 1.8 TeV B

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Innovative cement helps DOE safeguard nuclear facilities | Argonne National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Innovative cement helps DOE safeguard nuclear facilities Innovative cement helps DOE safeguard nuclear facilities By Jared Sagoff * April 25, 2008 Tweet EmailPrint ARGONNE, Ill. - When Argonne materials scientists Arun Wagh and Dileep Singh initially developed Ceramicrete®, a novel phosphate cement that stabilizes radioactive waste streams, they did not immediately recognize that with one or two extra ingredients, the cement could solve another problem in the nuclear complex. In the course of the development of the Ceramicrete technology, Wagh and Singh formed a multilayered collaboration among Argonne, the Russian Federal Nuclear Center (VNIIEF) in Sarov, Russia, and Ceradyne Boron Products LLC. This international scientific partnership created an unusually efficient nuclear shield that blocks the neutrons and gamma rays

342

Target design optimization for an electron accelerator driven subcritical facility with circular and square beam profiles.  

SciTech Connect (OSTI)

A subcritical facility driven by an electron accelerator is planned at the Kharkov Institute of Physics and Technology (KIPT) in Ukraine for medical isotope production, materials research, training, and education. The conceptual design of the facility is being pursued through collaborations between ANL and KIPT. As part of the design effort, the high-fidelity analyses of various target options are performed with formulations to reflect the realistic configuration and the three dimensional geometry of each design. This report summarizes the results of target design optimization studies for electron beams with two different beam profiles. The target design optimization is performed via the sequential neutronic, thermal-hydraulic, and structural analyses for a comprehensive assessment of each configuration. First, a target CAD model is developed with proper emphasis on manufacturability to provide a basis for separate but consistent models for subsequent neutronic, thermal-hydraulic, and structural analyses. The optimizations are pursued for maximizing the neutron yield, streamlining the flow field to avoid hotspots, and minimizing the thermal stresses to increase the durability. In addition to general geometric modifications, the inlet/outlet channel configurations, target plate partitioning schemes, flow manipulations and rates, electron beam diameter/width options, and cladding material choices are included in the design optimizations. The electron beam interactions with the target assembly and the neutronic response of the subcritical facility are evaluated using the MCNPX code. the results for the electron beam energy deposition, neutron generation, and utilization in the subcritical pile are then used to characterize the axisymmetric heat generation profiles in the target assembly with explicit simulations of the beam tube, the coolant, the clad, and the target materials. Both tungsten and uranium are considered as target materials. Neutron spectra from tungsten and uranium are very similar allowing the use of either material in the subcritical assembly without changing its characteristics. However, the uranium target has a higher neutron yield, which increases the neutron flux of the subcritical assembly. Based on the considered dimensions and heat generation profiles, the commercial CFD software Star-CD is used for the thermal-hydraulic analysis of each target design to satisfy a set of thermal criteria, the most limiting of which being to maintain the water temperature 50 below the boiling point. It is found that the turbulence in the inlet channels dissipates quickly in narrow gaps between the target plates and, as a result, the heat transfer is limited by the laminar flow conditions. On average, 3-D CFD analyses of target assemblies agree well with 1-D calculations using RELAP (performed by KIPT). However, the recirculation and stagnation zones predicted with the CFD models prove the importance of a 3-D analysis to avoid the resulting hotspots. The calculated temperatures are subsequently used for the structural analysis of each target configuration to satisfy the other engineering design requirements. The thermo-structural calculations are performed mostly with NASTRAN and the results occasionally compared with the results from MARC. Both, NASTRAN and MARC are commercially available structural-mechanics analysis software. Although, a significant thermal gradient forms in target elements along the beam direction, the high thermal stresses are generally observed peripherally around the edge of thin target disks/plates. Due to its high thermal conductivity, temperatures and thermal stresses in tungsten target are estimated to be significantly lower than in uranium target. The deformations of the target disks/plates are found to be insignificant, which eliminate concerns for flow blockages in narrow coolant channels. Consistent with the specifications of the KIPT accelerator to be used in this facility, the electron beam power is 100-kW with electron energy in the range of 100 to 200 MeV. As expected, the 100 MeV el

Gohar, M. Y. A; Sofu, T.; Zhong, Z.; Belch, H.; Naberezhnev, D.; Nuclear Engineering Division

2008-10-30T23:59:59.000Z

343

Activation of Air and Utilities in the National Ignition Facility  

SciTech Connect (OSTI)

Detailed 3-D modeling of the NIF facility is developed to accurately simulate the radiation environment within the NIF. Neutrons streaming outside the NIF Target Chamber will activate the air present inside the Target Bay and the Ar gas inside the laser tubes. Smaller levels of activity are also generated in the Switchyard air and in the Ar portion of the SY laser beam path. The impact of neutron activation of utilities located inside the Target Bay is analyzed for variety of shot types. The impact of activating TB utilities on dose received by maintenance personnel post-shot is analyzed. The current NIF facility model includes all important features of the Target Chamber, shielding system, and building configuration. Flow of activated air from the Target Bay is controlled by the HVAC system. The amount of activated Target Bay air released through the stack is very small and does not pose significant hazard to personnel or the environment. Activation of Switchyard air is negligible. Activation of Target Bay utilities result in a manageable dose rate environment post high yield (20 MJ) shots. The levels of activation generated in air and utilities during D-D and THD shots are small and do not impact work planning post shots.

Khater, H; Pohl, B; Brererton, S

2010-04-08T23:59:59.000Z

344

Sandia National Laboratories: Z Pulsed Power Facility: Z Research: Fusion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Fusion Fusion Sun Plasma The ultimate energy source Fusion occurs when two atomic nuclei are joined together. To fuse the atoms, the force that repels them as they come together must be overcome. Accelerators accomplish this by forcing molecules to collide with one another at very high temperatures (high temperatures are simply molecules moving at high speeds). When light nuclei are involved, fusion can produce more energy than was required to start the reaction. This process is the force that powers the Sun, whose source of energy is an ongoing fusion chain reaction. As an unconfined event, fusion was first developed for use in nuclear weapons. Fusion's great potential as a new energy source depends on scientists' ability to harness its power in laboratory events. The Z

345

The National Ignition Facility and the Ignition Campaign  

E-Print Network [OSTI]

February 14-18, 2013 Debra A. Callahan Group Leader for ICF/IFE Target design Lawrence Livermore National(atm-s) Indirect drive on the NIF is within a factor of 2-3 of the conditions required for ignition Callahan -- AAAS, February 14-18, 2013 82013-047661s2.ppt NIF Ignition #12;2013-047661s2.ppt Callahan -- AAAS

346

Feasibility study of channeling acceleration experiment at the Fermilab ASTA facility  

E-Print Network [OSTI]

Crystal channeling technology has offered various opportunities in accelerator community with a viability of ultrahigh gradient (TV/m) acceleration for future HEP collider in Energy Frontier. The major challenge of the channeling acceleration is that ultimate acceleration gradients might require high power driver at hard x-ray regime (~ 40 keV), exceeding those conceivable for x-rays as of today, though x-ray lasers can efficiently excite solid plasma and accelerate particles inside a crystal channel. Moreover, only disposable crystal accelerators are possible at such high externally excited fields which would exceed the ionization thresholds destroying the atomic structure, so acceleration will take place only in a short time before full dissociation of the lattice. Carbon- based nanostructures have great potential with a wide range of flexibility and superior physical strength, which can be applied to channeling acceleration. This paper present beam-driven channeling acceleration concept with CNTs and discu...

Shin, Young-Min; Still, Dean A; Shiltsev, Vladimir

2015-01-01T23:59:59.000Z

347

E-Print Network 3.0 - accelerating electronic tag Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NATIONAL LABORATORY Summary: 012004 Page 1 of 3 Subject: Accelerator Test Facility Safety Training Course Contents Prepared by: Michael... Zarcone Reviewed by: ES&H...

348

South Carolina Opens Nation’s Largest Wind Drivetrain Testing Facility  

Office of Energy Efficiency and Renewable Energy (EERE)

Clemson University Project Converted Former Navy Warehouse to First-of-its-Kind Testing Facility for Land-Based and Offshore Wind Turbines

349

Omega Laser Facility Completes Record 25,000 Experiments | National Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Omega Laser Facility Completes Record 25,000 Experiments | National Nuclear Omega Laser Facility Completes Record 25,000 Experiments | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Press Releases > Omega Laser Facility Completes Record 25,000 Experiments Press Release Omega Laser Facility Completes Record 25,000 Experiments Nov 5, 2013

350

Idaho National Engineering Laboratory Federal Facility Agreement and Consent Order, December 9, 1991  

Broader source: Energy.gov (indexed) [DOE]

Engineering Laboratory ("INEL") Federal Facility Agreement and Consent Order, December 9, 1991 Engineering Laboratory ("INEL") Federal Facility Agreement and Consent Order, December 9, 1991 EM Home | Regulatory Compliance | Environmental Compliance Agreements Idaho National Engineering Laboratory ("INEL") Federal Facility Agreement and Consent Order, December 9, 1991 THE UNITED STATES ENVIRONMENTAL PROTECTION AGENCY, REGION 10, THE STATE OF IDAHO, DEPARTMENT OF HEALTH AND WELFARE, AND THE UNITED STATES DEPARTMENT OF ENERGY IN THE MATTER OF: ) FEDERAL FACILITY AGREEMENT ) AND CONSENT ORDER THE U.S. DEPARTMENT OF ENERGY ) IDAHO NATIONAL ENGINEERING ) LABORATORY ("INEL"), ) ) Administrative Docket Number: ) 1088-06-120 Idaho Falls, Idaho ) Table of Contents I. Jurisdiction II. Definitions III. Parties IV. Statement Of Purpose

351

Sandia National Laboratories: Z Pulsed Power Facility: About Z  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About Z About Z Picture of Z Machine Sandia's Z machine is Earth's most powerful pulsed-power facility and X-ray generator. Z compresses energy in time and space to achieve extreme powers and intensities, found nowhere else on Earth. In approximately 200 shots Z fires every year, the machine uses currents of about 26 million amps to reach peak X-ray emissions of 350 terawatts and an X-ray output of 2.7 megajoules. The Z machine is located in Albuquerque, N.M., and is part of Sandia's Pulsed Power Program, which began in the 1960s. Pulsed power is a technology that concentrates electrical energy and turns it into short pulses of enormous power, which are then used to generate X-rays and gamma rays. Produced in the laboratory, this controlled radiation creates conditions similar to those caused by the detonation of nuclear weapons,

352

DOE/EIS-0236, Oakland Operations Office, National Ignition Facility Final  

Broader source: Energy.gov (indexed) [DOE]

DOE/EIS-0236, Oakland Operations Office, National Ignition Facility DOE/EIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement Volume II: Response to Public Comments (January 2 DOE/EIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic Environmental Impact Statement Volume II: Response to Public Comments (January 2 DOE issued the Draft SEIS for public review and comment by mailings to stakeholders and by announcements in the Federal Register (FR) on November 5, 1999, (64 FR 60430) (Attachment 4 of Volume I) and on November 12, 1999 (64 FR 61635) correcting a document title (Attachment 5 of Volume I). On

353

Lawrence Livermore National Laboratory Federal Facility Compliance Order, February 24, 1997 Summary  

Broader source: Energy.gov (indexed) [DOE]

Federal Facility Compliance Act Order for Lawrence Federal Facility Compliance Act Order for Lawrence Livermore National Laboratory Compliance Order HWCA 96/97-5002 State California Agreement Type Federal Facility Agreement Legal Driver(s) FFCAct Scope Summary Require compliance by the DOE with a Site Treatment Plan for the treatment of mixed waste at Lawrence Livermore National Laboratory Parties DOE; State of California Environmental Protection Agency (Department of Toxic Substances Control) Date 2/24/1997 SCOPE * Require compliance by the DOE with a Site Treatment Plan for the treatment of mixed waste at Lawrence Livermore National Laboratory. * Address LDR requirements pertaining to storage and treatment of covered waste at LLNL. ESTABLISHING MILESTONES * The Compliance Plan Volume of the STP provides overall schedules for achieving

354

Radiological safety at Argonne national laboratory's heavy ion research facility  

Science Journals Connector (OSTI)

This paper discusses the radiological safety system to be employed at the Argonne tandem—linac accelerator system (ATLAS). The design parameters of ATLAS that affect safety have remained unchanged since ATLAS construction began in 1982. The specialized radiological safety considerations of ATLAS were discussed in 1982 [1]. This paper will present the details of the hardware, the administrative controls, and the radiation monitoring that will be in effect when beam is produced in April 1985. The experimental hall utilizing the maximum energy beam ( ? 27 MeV per nucleon) from the completed ATLAS has been partitioned with shielding blocks into its final configuration. Because scientists want access to some of the partitioned-off areas while beam is present in other areas, an interlock and logic system allowing such occupancy has been designed. The rationale and hardware of the system will be discussed. Since one of the potential radiation hazards is high-energy forward-directed neutrons from any location where the beam impinges (such as collimators, bending and focussing systems, experimental targets, and beam stops), radiation surveys and hazard assessments are necessary for the administrative controls that allow occupancy of various areas. Because of the various uses of ATLAS, neutrons (the dominant beam hazard) will be non-existent in some experiments and will be of energies ? 10 MeV for a few experiments. These conditions may exist at specific locations during beam preparation but may change rapidly when beam is finally delivered to an experimental area. Monitoring and assessing such time varying and geographically changing hazards will be a challenge since little data will be available on source terms until various beams are produced of sufficient intensity and energy to make measurements. How the operating division for ATLAS and the Argonne safety division are addressing this aspect through administrative controls will also be discussed.

R.H. Cooke; R.A. Wynveen

1985-01-01T23:59:59.000Z

355

Sandia National Laboratories: Z Pulsed Power Facility: Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Z-Machine Z-Machine About Z Z Research Z News Contact Us Facebook Twitter YouTube Flickr RSS Top Z News Publications Z-Machine Publications Archive Inertial Confinement Fusion Dynamic Hohlraums Thomas W. L. Sanford, "Overview of the Dynamic-Hohlraum X-ray Source at Sandia National Laboratories," April 2007 (1.5 MB PDF) T.W.L. Sanford, "Comparative properties of the Interior and Blowoff Plasmas in a dynamic Hohlraum," April 2007 (1.39 KB PDF) Tom Nash, "Current Scaling of Axially Radiated Power in dynamic Hohlraums and Dynamic Hohlraum Load Design for ZR," March 2007 (2.15 PDF) R. A. Vesey, "Target Design for High Fusion Yield with the Double Z-pinch driven Hohlraums," March 2007 (1.65 PDF) T.W.L. Sanford, "Wire Initiation Critical for Radiation symmetry

356

Sandia National Laboratories: Z Pulsed Power Facility: Z News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Z News Z News Dry-run experiments verify key aspect of Sandia nuclear fusion concept View All News Releases News Releases Fusion instabilities lessened by unexpected effect Jan. 9, 2014 Japanese city councilor journeys to end furor over Sandia Z tests May 23, 2013 Sandia physicist wins two national awards Nov. 29, 2012 Dry-run experiments verify key aspect of Sandia nuclear fusion concept Sept. 17, 2012 Nuclear fusion simulation shows high-gain energy output March 20, 2012 Z researcher Dan Sinars awarded $2.5 million DOE Early Career grant May 25, 2011 Second Z plutonium "shot" safely tests materials for NNSA May 11, 2011 Sandia effort images the sea monster of nuclear fusion: the Rayleigh-Taylor instability Nov. 11, 2010 Image Gallery Video Z In the News Triple-threat method sparks hope for fusion

357

EA-1975: LINAC Coherent Light Source-Il, SLAC National Accelerator Laboratory, Menlo Park, California  

Broader source: Energy.gov [DOE]

DOE is preparing an EA on the potential environmental impacts of a proposal to upgrade the existing LINAC Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. The proposed LCLS-II would extend the photon energy range, increase control over photon pulses, and enable two-color pump-probe experiments. The X-ray laser beams generated by LCLS-II would enable a new class of experiments: the simultaneous investigation of a material’s electronic and structural properties.

358

High Energy Physics User Facilities | U.S. DOE Office of Science (SC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HEP User Facilities HEP User Facilities User Facilities ASCR User Facilities BES User Facilities BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Facilities Frequently Asked Questions User Facility Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 HEP User Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page The High Energy Physics program supports the operation of the following national scientific user facilities: Fermilab Accelerator Complex External link The Fermilab Accelerator Complex at Fermi National Accelerator Laboratory is composed of the accelerator complex and several experiments-both actual and proposed--that utilize its protons. The complex currently

359

National Ignition Facility computational fluid dynamics modeling and light fixture case studies  

SciTech Connect (OSTI)

This report serves as a guide to the use of computational fluid dynamics (CFD) as a design tool for the National Ignition Facility (NIF) program Title I and Title II design phases at Lawrence Livermore National Laboratory. In particular, this report provides general guidelines on the technical approach to performing and interpreting any and all CFD calculations. In addition, a complete CFD analysis is presented to illustrate these guidelines on a NIF-related thermal problem.

Martin, R.; Bernardin, J.; Parietti, L.; Dennison, B.

1998-02-01T23:59:59.000Z

360

Plasma Wakefield Acceleration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rpwa rpwa Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES FACET User Facility : FACET An Office of Science User Facility Search this site... Search Help (new window) Top Link Bar FACET User Facility FACET Home About FACET FACET Experimental Facilities FACET Users Research at FACET SAREC Expand SAREC FACET FAQs FACET User Facility Quick Launch FACET Users Home FACET Division ARD Home About FACET FACET News FACET Users FACET Experimental Facilities FACET Research Expand FACET Research FACET Images Expand FACET Images SAREC Expand SAREC FACET Project Site (restricted) FACET FAQs FACET Site TOC All Site Content Department of Energy Page Content Plasma Wakefield Acceleration

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EIS-0133: Decontamination and Waste Treatment Facility for the Lawrence Livermore National Laboratory Livermore, California  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy’s San Francisco Operations Office developed this statement to analyze the potential environmental and socioeconomic impacts of alternatives for constructing and operating a Decontamination and Waste Treatment Facility for nonradioactive (hazardous and nonhazardous) mixed and radioactive wastes at Lawrence Livermore National Laboratory.

362

Status of the US National Inertial Fusion ProgramSNL Z Facility UR/LLE OMEGA  

E-Print Network [OSTI]

Status of the US National Inertial Fusion ProgramSNL Z Facility UR/LLE OMEGA Presentation to the Fusion Energy Sciences Advisory Committee Meeting by: Dr. Allan A. Hauer Director, Office of Inertial Confinement Fusion March 1, 2006 #12;2 The US Inertial Fusion Program has 3 principal components · The first

363

The National Ignition Facility: The Path to a Carbon-Free Energy Future  

SciTech Connect (OSTI)

The National Ignition Facility (NIF), the world's largest and most energetic laser system, is now operational at Lawrence Livermore National Laboratory (LLNL). The NIF will enable exploration of scientific problems in national strategic security, basic science and fusion energy. One of the early NIF goals centers on achieving laboratory-scale thermonuclear ignition and energy gain, demonstrating the feasibility of laser fusion as a viable source of clean, carbon-free energy. This talk will discuss the precision technology and engineering challenges of building the NIF and those we must overcome to make fusion energy a commercial reality.

Stolz, C J

2011-03-16T23:59:59.000Z

364

RHIC & AGS Userscenter;User Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

User Facilities User Facilities Experimenters work at one of five user facilities. The largest of these facilities is the Relativistic Heavy Ion Collider (RHIC), others include the Alternating Gradient Synchrotron facility (AGS), the Tandem Van de Graaff, the Accelerator Test Facility (ATF), and the NASA Space Radiation Laboratory (NSRL). See also: National User Facility Organization (NUFO). Accelerator Test Facility (ATF) Brookhaven's newest user facility, the ATF is a proposal driven Program Committee reviewed Users' Facility dedicated for long-term R&D in Physics of Beams. Alternating Gradient Synchrotron (AGS) Since 1960, the Alternating Gradient Synchrotron (AGS) has been one of the world's premiere particle accelerators, well known for the three Nobel Prizes won as a result of research performed there.

365

E-Print Network 3.0 - accelerator target facilities Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The experiments were performed using... (University of Michigan) Multi-MeV ion beams accelerated using ... Source: Levine, Alex J. - Department of Chemistry and...

366

E-Print Network 3.0 - accelerator facility target Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The experiments were performed using... (University of Michigan) Multi-MeV ion beams accelerated using ... Source: Levine, Alex J. - Department of Chemistry and...

367

Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility  

Broader source: Energy.gov (indexed) [DOE]

HSS Independent Activity Report - Rev. 0 Report Number: HIAR LLNL-2013-02-27 Site: Lawrence Livermore National Laboratory (LLNL) Subject: Office of Enforcement and Oversight's Office of Safety and Emergency Management Evaluations Activity Report for the Lawrence Livermore National Laboratory Operational Drill at the B332 Plutonium Facility Date of Activity: 02/27/2013 Report Preparer: Thomas Rogers Activity Description/Purpose: The Livermore Site Office (LSO) and Lawrence Livermore National Security, LLC (LLNS) requested personnel from the U.S. Department of Energy (DOE) Office of Safety and Emergency Management Evaluations (HS-45) to observe an operational drill at the Plutonium Facility in Building 332 (B332). LSO and LLNS desired HS-45's participation to help

368

Defense Nuclear Facilities Safety Board Review at the Nevada National Security Site  

Broader source: Energy.gov (indexed) [DOE]

NNSS-2011-001 NNSS-2011-001 Site: Nevada National Security Site Subject: Office of Independent Oversight's Office of Environment, Safety and Health Evaluations Activity Report for the Defense Nuclear Facilities Safety Board Review at the Nevada National Security Site Dates of Activity 02/14/2011 - 02/17/2011 Report Preparer William Macon Activity Description/Purpose: The U.S. Department of Energy Office of Independent Oversight, within the Office of Health, Safety and Security (HSS), visited the Nevada Site Office (NSO) and the Nevada National Security Site (NNSS) from February 14-17, 2011. The purpose of the visit was to observe the Defense Nuclear Facilities Safety Board (DNFSB) review and maintain operational awareness of NNSS activities. Result:

369

Advances in inertial confinement fusion at the National Ignition Facility (NIF)  

Science Journals Connector (OSTI)

The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratory—temperatures over 100 million K, densities of 1000 g/cm3, and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1 MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

Edward I. Moses

2010-01-01T23:59:59.000Z

370

Advances in Inertial Confinement Fusion at the National Ignition Facility (NIF)  

SciTech Connect (OSTI)

The 192-beam National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is now operational and conducting experiments. NIF, the flagship facility of the U.S. Inertial Confinement Fusion (ICF) Program, will achieve high-energy-density conditions never previously obtained in the laboratory - temperatures over 100 million K, densities of 1,000 g/cm3, and pressures exceeding 100 billion atmospheres. Such conditions exist naturally only in the interiors of the stars and during thermonuclear burn. Demonstration of ignition and thermonuclear burn in the laboratory is a major NIF goal. To date, the NIF laser has demonstrated all pulse shape, beam quality, energy, and other specifications required to meet the ignition challenge. On March 10, 2009, the NIF laser delivered 1.1 MJ of ultraviolet laser energy to target chamber center, approximately 30 times more energy than any previous facility. The ignition program at NIF is the National Ignition Campaign (NIC), a national collaboration for ignition experimentation with participation from General Atomics, LLNL, Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the University of Rochester Laboratory for Laser Energetics (LLE). The achievement of ignition at NIF will demonstrate the scientific feasibility of ICF and focus worldwide attention on fusion as a viable energy option. A particular energy concept under investigation is the LIFE (Laser Inertial Fusion Energy) scheme. The LIFE engine is inherently safe, minimizes proliferation concerns associated with the nuclear fuel cycle, and can provide a sustainable carbon-free energy generation solution in the 21st century. This talk will describe NIF and its potential as a user facility and an experimental platform for high-energy-density science, NIC, and the LIFE approach for clean, sustainable energy.

Moses, E

2009-10-15T23:59:59.000Z

371

The Joint Actinide Shock Physics Experimental Research Facility at the Nevada National Security Site, OAS-L-12-05  

Broader source: Energy.gov (indexed) [DOE]

Joint Actinide Shock Physics Joint Actinide Shock Physics Experimental Research Facility at the Nevada National Security Site OAS-L-12-05 April 2012 Department of Energy Washington, DC 20585 April 23, 2012 MEMORANDUM FOR THE MANAGER, NEVADA SITE OFFICE FROM: David Sedillo, Director Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Joint Actinide Shock Physics Experimental Research Facility at the Nevada National Security Site" BACKGROUND The Department of Energy, National Nuclear Security Administration's, Joint Actinide Shock Physics Experimental Research (JASPER) facility plays an integral role in the certification of the Nation's nuclear weapons stockpile by providing a method to generate and measure data

372

Lawrence Livermore National Laboratory Federal Facility Agreement, June 29, 1992 Summary  

Broader source: Energy.gov (indexed) [DOE]

Site 300) Site 300) Agreement Name Lawrence Livermore National Laboratory Federal Facility Agreement Under CERCLA Section 120, June 29, 1992 State California Agreement Type Federal Facility Agreement Legal Driver(s) CERCLA Scope Summary Establish a procedural framework and schedule for developing, implementing, and monitoring appropriate response actions at the Site Parties DOE; USEPA; California Department of Toxic Substances Control; Central Valley Regional Water Quality Control Board Date 6/29/1992 SCOPE * Establish a procedural framework and schedule for developing, implementing, and monitoring appropriate response actions at the Site. * Identify operable units (OUs) which are appropriate at the Site prior to the implementation of final remedial action(s).

373

Measurements at Los Alamos National Laboratory Plutonium Facility in Support of Global Security Mission Space  

SciTech Connect (OSTI)

The Los Alamos National Laboratory Plutonium Facility at Technical Area (TA) 55 is one of a few nuclear facilities in the United States where Research & Development measurements can be performed on Safeguards Category-I (CAT-I) quantities of nuclear material. This capability allows us to incorporate measurements of CAT-IV through CAT-I materials as a component of detector characterization campaigns and training courses conducted at Los Alamos. A wider range of measurements can be supported. We will present an overview of recent measurements conducted in support of nuclear emergency response, nuclear counterterrorism, and international and domestic safeguards. This work was supported by the NNSA Office of Counterterrorism.

Stange, Sy [Los Alamos National Laboratory; Mayo, Douglas R. [Los Alamos National Laboratory; Herrera, Gary D. [Los Alamos National Laboratory; McLaughlin, Anastasia D. [Los Alamos National Laboratory; Montoya, Charles M. [Los Alamos National Laboratory; Quihuis, Becky A. [Los Alamos National Laboratory; Trujillo, Julio B. [Los Alamos National Laboratory; Van Pelt, Craig E. [Los Alamos National Laboratory; Wenz, Tracy R. [Los Alamos National Laboratory

2012-07-13T23:59:59.000Z

374

Use of the LEDA Facility as an ADS High-Power Accelerator Test Bed  

SciTech Connect (OSTI)

The Low-Energy Demonstration Accelerator (LEDA) was built to generate high-current proton beams. Its successful full-power operation and testing in 1999-2001 confirmed the feasibility of a high-power linear accelerator (linac) front end, the most technically challenging portion of such a machine. The 6.7-MeV accelerator operates reliably at 95-mA CW beam current with few interruptions orjaults, and qualiJes as one of the most powerful accelerators in the world. LEDA is now available to address the needs of other programs. LEDA can be upgraded in a staged fashion to allow for full-power accelerator demonstrations. The proposed post-h!FQ accelerator structures are 350-MHz superconducting spoke cavities developed for the AAA /APT program. The superconducting portion of the accelerator is designed for a IOO-mA proton beam current. Superconducting cavities were chosen because of the signijkant thermal issues with room-temperature structures, the larger superconducting cavity apertures, and the lower operating costs ('because of improved electrical efficiency) of a superconducting accelerator. Since high reliability is a major issue for an ADS system, the superconducting design architecture alIows operation through faults due to the failure of single magnets or superconducting cavities. The presently installed power capacity of 13 MVA of input ACpower is capable of supporting a 40-MeVproton beam at 100 mA. (The input power is easily expandable to 25 MVA, allowing up to 100-MeV operation). Operation at 40-MeV would provide a complete demonstration of all of the critical accelerator sub-systems ofa full-power ADS system.

Garnett, R. W. (Robert W.); Sheffield, R. L. (Richard L.)

2003-01-01T23:59:59.000Z

375

Assessment of Nuclear Safety Culture at the Y-12 National Security Complex Urnaium Processing Facility Project, June 2012  

Broader source: Energy.gov (indexed) [DOE]

Y-12 National Security Complex Y-12 National Security Complex Uranium Processing Facility Project May 2011 June 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Independent Oversight Assessment of Safety Culture at the Y-12 National Security Complex Uranium Processing Facility Project Table of Contents 1.0 Introduction ........................................................................................................................................... 1 2.0 Scope and Methodology ....................................................................................................................... 2 3.0 Results and Conclusions ....................................................................................................................... 3

376

Assessment of Nuclear Safety Culture at the Y-12 National Security Complex Urnaium Processing Facility Project, June 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Y-12 National Security Complex Y-12 National Security Complex Uranium Processing Facility Project May 2011 June 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy i Independent Oversight Assessment of Safety Culture at the Y-12 National Security Complex Uranium Processing Facility Project Table of Contents 1.0 Introduction ........................................................................................................................................... 1 2.0 Scope and Methodology ....................................................................................................................... 2 3.0 Results and Conclusions ....................................................................................................................... 3

377

National Ignition Facility & Photon Science - Bringing Star Power to Earth  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NIF Go NIF Go LLNL Logo Lawrence Livermore National Laboratory LLNL Home NIF Home LIFE Home Jobs Site Map Contact News Press Releases In the News Status Update Media Assistance About Us National Ignition Facility About NIF How NIF Works The Seven Wonders of NIF Building NIF An Engineering Marvel NIFFY Early Light Collaborators Status Visiting NIF Missions National Security Energy for the Future Understanding the Universe People The People of NIF Awards NIF Professor Sabbatical Opportunities NIF Online Store Programs National Ignition Campaign How to Make a Star (ICF) Target Physics Target Fabrication Cryogenic Target System Diagnostics Participants Photon Science & Applications Advanced Optics Advanced Radiography Directed Energy Fusion Energy Inertial Fusion Energy How IFE Works Science at the Extremes

378

Experimental basis for laser-plasma interactions in ignition hohlraums at the National Ignition Facility  

SciTech Connect (OSTI)

A series of laser plasma interaction experiments at OMEGA (LLE, Rochester) using gas-filled hohlraums shed light on the behavior of stimulated Raman scattering and stimulated Brillouin scattering at various plasma conditions encountered in indirect drive ignition designs. We present detailed experimental results that quantify the density, temperature, and intensity thresholds for both of these instabilities. In addition to controlling plasma parameters, the National Ignition Campaign relies on optical beam smoothing techniques to mitigate backscatter. We show that polarization smoothing is effective at controlling backscatter. These results provide an experimental basis for forthcoming experiments on National Ignition Facility.

Froula, D H; Divol, L; London, R A; Berger, R L; Doeppner, T; Meezan, N B; Ralph, J; Ross, J S; Suter, L J; Glenzer, S H

2009-11-12T23:59:59.000Z

379

A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility  

SciTech Connect (OSTI)

A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors (GXD) it records sixteen time-gated spectra between 250 and 1000eV with 100ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and VUV beamline at the National Synchrotron Light Source (NSLS), evidence a <100{micro}m spatial resolution in combination with a source-size limited spectral resolution that is <10eV at photon energies of 300eV.

Moore, A S; Guymer, T M; Kline, J L; Morton, J; Taccetti, M; Lanier, N E; Bentley, C; Workman, J; Peterson, B; Mussack, K; Cowan, J; Prasad, R; Richardson, M; Burns, S; Kalantar, D H; Benedetti, L R; Bell, P; Bradley, D; Hsing, W; Stevenson, M

2012-05-01T23:59:59.000Z

380

A soft x-ray transmission grating imaging-spectrometer for the National Ignition Facility  

SciTech Connect (OSTI)

A soft x-ray transmission grating spectrometer has been designed for use on high energy-density physics experiments at the National Ignition Facility (NIF); coupled to one of the NIF gated x-ray detectors it records 16 time-gated spectra between 250 and 1000 eV with 100 ps temporal resolution. The trade-off between spectral and spatial resolution leads to an optimized design for measurement of emission around the peak of a 100-300 eV blackbody spectrum. Performance qualification results from the NIF, the Trident Laser Facility and vacuum ultraviolet beamline at the National Synchrotron Light Source, evidence a <100 {mu}m spatial resolution in combination with a source-size limited spectral resolution that is <10 eV at photon energies of 300 eV.

Moore, A. S.; Guymer, T. M.; Morton, J.; Bentley, C.; Stevenson, M. [Directorate Science and Technology, AWE Aldermaston, Reading, RG7 4PR (United Kingdom); Kline, J. L.; Taccetti, M.; Lanier, N. E.; Workman, J.; Peterson, B.; Mussack, K.; Cowan, J. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Prasad, R.; Richardson, M.; Burns, S.; Kalantar, D. H.; Benedetti, L. R.; Bell, P.; Bradley, D.; Hsing, W. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States)

2012-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Factsheet Overview The Savannah River National Laboratory's Shielded Cells Facility gives the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview Overview The Savannah River National Laboratory's Shielded Cells Facility gives the laboratory the ability to safely work with a wide variety of highly radioactive samples and items in support of various research and development initiatives. Skilled operators, standing safely outside the cells, use manipulator arms to perform work inside the cells. The facility consists of sixteen 6-foot by 6-foot work stations or cells with the following features: The exterior walls of the facility are made of 3-foot-thick high-density * concrete with a 1/8-inch thick stainless steel liner. Each cell has a 3' x3' shielding window. Shielding windows are 3-foot thick * leaded glass, filled with mineral oil for optimal viewing capabilities.

382

Assessment and Mitigation of Diagnostic-Generated Electromagnetic Interference at the National Ignition Facility  

SciTech Connect (OSTI)

Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effects of diagnostic-generated EMI on NIF diagnostics.

Brown, C G; Ayers, M J; Felker, B; Ferguson, W; Holder, J P; Nagel, S R; Piston, K W; Simanovskaia, N; Throop, A L; Chung, M; Hilsabeck, T

2012-04-20T23:59:59.000Z

383

First Hot Electron Measurements in Near-ignition Scale Hohlraums on the National Ignition Facility  

SciTech Connect (OSTI)

On the National Ignition Facility (NIF), the hot electrons generated in laser heated hohlraums are inferred from the >20 keV bremsstrahlung emission measured with the FFLEX broadband spectrometer. New high energy (>200 keV) time resolved channels were added to meet requirements for ignition and to infer the generated >170 keV hot electrons that can cause ignition capsule preheat. First hot electron measurements in near ignition scaled hohlraums heated by 96-192 NIF laser beams are presented.

Dewald, E L; Suter, L J; Thomas, C; Hunter, S; Meeker, D; Meezan, N; Glenzer, S H; Bond, E; Kauffman, R L; Kilkenny, J; Landen, O

2009-10-08T23:59:59.000Z

384

Hot electron measurements in ignition relevant Hohlraums on the National Ignition Facility  

SciTech Connect (OSTI)

On the National Ignition Facility (NIF), hot electrons generated in laser heated Hohlraums are inferred from the >20 keV bremsstrahlung emission measured with the time integrated FFLEX broadband spectrometer. New high energy (>200 keV) time resolved channels were added to infer the generated >170 keV hot electrons that can cause ignition capsule preheat. First hot electron measurements in near ignition scaled Hohlraums heated by 96-192 NIF laser beams are presented.

Dewald, E. L.; Thomas, C.; Hunter, S.; Divol, L.; Meezan, N.; Glenzer, S. H.; Suter, L. J.; Bond, E.; Celeste, J.; Bradley, D.; Bell, P.; Kauffman, R. L.; Landen, O. L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Kline, J. L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kilkenny, J. [General Atomics, P.O. Box 85608, San Diego, California 92186 (United States)

2010-10-15T23:59:59.000Z

385

BNL | Accelerators for Applied Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerators for Applied Research Accelerators for Applied Research Brookhaven National Lab operates several accelerator facilities dedicated to applied research. These facilities directly address questions and concerns on a tremendous range of fields, including medical imaging, cancer therapy, computation, and space exploration. Leading scientists lend their expertise to these accelerators and offer crucial assistant to collaborating researchers, pushing the limits of science and technology. Interested in gaining access to these facilities for research? See the contact number listed for each facility. RHIC tunnel Brookhaven Linac Isotope Producer The Brookhaven Linac Isoptope Producer (BLIP)-positioned at the forefront of research into radioisotopes used in cancer treatment and diagnosis-produces commercially unavailable radioisotopes for use by the

386

Construction Begins on New Waste Processing Facility | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Construction Begins on New Waste Processing Facility Construction Begins on New Waste Processing Facility Construction Begins on New Waste Processing Facility February 9, 2012 - 12:00pm Addthis Workers construct a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad for permanent disposal. Workers construct a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) in Carlsbad for permanent disposal. Construction has begun on a new facility that will help Los Alamos National Laboratory accelerate the shipment of transuranic (TRU) waste stored in large boxes at Technical Area 54, Area G. Construction has begun on a new facility that will help Los Alamos National

387

New X-ray Scattering Facility at Ris National Laboratory Jens Wenzel Andreasen, Dag Werner Breiby, Martin Drews, Martin Meedom Nielsen  

E-Print Network [OSTI]

New X-ray Scattering Facility at Risø National Laboratory Jens Wenzel Andreasen, Dag Werner Breiby, DK-4000 Roskilde, Denmark The new X-ray facility at the Danish Polymer Centre, Risø National

388

E-Print Network 3.0 - accelerator-based radiobiology facilities...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NASA 12:00 PM Important Concepts in Radiobiology Dosimetry Will Hanson... for solicited research Service - NIH-based facility (RPC-like) or fee for service or private non-profit...

389

E-Print Network 3.0 - accelerator facilities doe Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

JUSTIFICATION MEMO ON REVISION OF DOE O Summary: ON REVISION OF DOE O 5480.19, CONDUCT OF OPERATIONS REQUIREMENTS FOR DOE FACILITIES Executive Summary... will be applicable to DOE...

390

Future Accelerators (?)  

E-Print Network [OSTI]

I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

John Womersley

2003-08-09T23:59:59.000Z

391

E-Print Network 3.0 - accelerator facility atlas Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

experimentalists (ATLAS, T2K, SNOLAB, smaller experiments) - 70 theorists (phenomenology, string theory, formal... theory) 12;TRIUMF National lab for subatomic physics...

392

Labs at-a-Glance: Argonne National Laboratory | U.S. DOE Office of Science  

Office of Science (SC) Website

Argonne National Argonne National Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Argonne National Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Argonne National Laboratory Logo Visit the Argonne National Laboratory

393

Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research  

SciTech Connect (OSTI)

The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called User’s Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. User’s week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

John Jackson; Todd Allen; Frances Marshall; Jim Cole

2013-03-01T23:59:59.000Z

394

Environmental assessment for the Radioactive and Mixed Waste Management Facility: Sandia National Laboratories/New Mexico  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-0466) under the National Environmental Policy Act (NEPA) of 1969 for the proposed completion of construction and subsequent operation of a central Radioactive and Mixed Waste Management Facility (RMWMF), in the southeastern portion of Technical Area III at Sandia National Laboratory, Albuquerque (SNLA). The RMWMF is designed to receive, store, characterize, conduct limited bench-scale treatment of, repackage, and certify low-level waste (LLW) and mixed waste (MW) (as necessary) for shipment to an offsite disposal or treatment facility. The RMWMF was partially constructed in 1989. Due to changing regulatory requirements, planned facility upgrades would be undertaken as part of the proposed action. These upgrades would include paving of road surfaces and work areas, installation of pumping equipment and lines for surface impoundment, and design and construction of air locks and truck decontamination and water treatment systems. The proposed action also includes an adjacent corrosive and reactive metals storage area, and associated roads and paving. LLW and MW generated at SNLA would be transported from the technical areas to the RMWMF in containers approved by the Department of Transportation. The RMWMF would not handle nonradioactive hazardous waste. Based on the analysis in the EA, the proposed completion of construction and operation of the RMWMF does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of NEPA. Therefore, preparation of an environmental impact statement for the proposed action is not required.

Not Available

1993-06-01T23:59:59.000Z

395

Laser-Plasma Coupling with Ignition-Scale Targets: New Regimes and Frontiers on the National Ignition Facility  

Science Journals Connector (OSTI)

It is very exciting that the National Ignition Facility (NIF) is now operational and being used to irradiate ignition-scale hohlraums. As discussed in the last ... Summer School in Physics on the topic of laser-p...

William L. Kruer

2013-01-01T23:59:59.000Z

396

National Ignition Facility subsystem design requirements NIF site improvements SSDR 1.2.1  

SciTech Connect (OSTI)

This Subsystem Design Requirements (SSDR) document establishes the performance, design, and verification requirements associated with the NIF Project Site at Lawrence Livermore National Laboratory (LLNL) at Livermore, California. It identifies generic design conditions for all NIF Project facilities, including siting requirements associated with natural phenomena, and contains specific requirements for furnishing site-related infrastructure utilities and services to the NIF Project conventional facilities and experimental hardware systems. Three candidate sites were identified as potential locations for the NIF Project. However, LLNL has been identified by DOE as the preferred site because of closely related laser experimentation underway at LLNL, the ability to use existing interrelated infrastructure, and other reasons. Selection of a site other than LLNL will entail the acquisition of site improvements and infrastructure additional to those described in this document. This SSDR addresses only the improvements associated with the NIF Project site located at LLNL, including new work and relocation or demolition of existing facilities that interfere with the construction of new facilities. If the Record of Decision for the PEIS on Stockpile Stewardship and Management were to select another site, this SSDR would be revised to reflect the characteristics of the selected site. Other facilities and infrastructure needed to support operation of the NIF, such as those listed below, are existing and available at the LLNL site, and are not included in this SSDR. Office Building. Target Receiving and Inspection. General Assembly Building. Electro- Mechanical Shop. Warehousing and General Storage. Shipping and Receiving. General Stores. Medical Facilities. Cafeteria services. Service Station and Garage. Fire Station. Security and Badging Services.

Kempel, P.; Hands, J.

1996-08-19T23:59:59.000Z

397

Measurements of an Ablator-Gas Atomic Mix in Indirectly Driven Implosions at the National Ignition Facility  

E-Print Network [OSTI]

. Town,1 K. Widmann,1 D. C. Wilson,2 and C. B. Yeamans1 1 Lawrence Livermore National Laboratory, Livermore, California 94550, USA 2 Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA 3 (NIF) [3,4] uses a 1.6 MJ laser pulse at a peak power of 410 TW to accelerate the DT fuel to a peak

398

Work plan for the High Ranking Facilities Deactivation Project at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

The High Ranking Facilities Deactivation Project (HRFDP), commissioned by the US Department of Energy Nuclear Materials and Facility Stabilization Program, is to place four primary high-risk surplus facilities with 28 associated ancillary facilities at Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition as rapidly and economically as possible. The facilities will be deactivated and left in a condition suitable for an extended period of minimized surveillance and maintenance (S and M) prior to decontaminating and decommissioning (D and D). These four facilities include two reactor facilities containing spent fuel. One of these reactor facilities also contains 55 tons of sodium with approximately 34 tons containing activated sodium-22, 2.5 tons of lithium hydride, approximately 100 tons of potentially contaminated lead, and several other hazardous materials as well as bulk quantities of contaminated scrap metals. The other two facilities to be transferred include a facility with a bank of hot cells containing high levels of transferable contamination and also a facility containing significant quantities of uranyl nitrate and quantities of transferable contamination. This work plan documents the objectives, technical requirements, and detailed work plans--including preliminary schedules, milestones, and conceptual FY 1996 cost estimates--for the Oak Ridge National Laboratory (ORNL). This plan has been developed by the Environmental Restoration (ER) Program of Lockheed Martin Energy Systems (Energy Systems) for the US Department of Energy (DOE) Oak Ridge Operations Office (ORO).

NONE

1996-03-01T23:59:59.000Z

399

The Big Accelerator: Competition for AEC Facility Is Stirring Up Communities throughout Country  

Science Journals Connector (OSTI)

...cultural life, and public services. The quest...facilities for some 2000 scientific and technical...Club at a luncheon meeting held at the Elks Club. Follow-ing the meeting, the Portsmouth...necessary to make Hanford the best spot for...or ten" sites as meeting the criteria, according...

D. S. Greenberg

1965-08-13T23:59:59.000Z

400

Documentation of acceptable knowledge for Los Alamos National Laboratory Plutonium Facility TRU waste stream  

SciTech Connect (OSTI)

Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the TRU waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility`s mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC.

Montoya, A.J.; Gruetzmacher, K.M.; Foxx, C.L.; Rogers, P.Z.

1998-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Gamma Irradiation Facility at Sandia National Laboratories, Albuquerque, New Mexico. Final environmental assessment  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed construction and operation of a new Gamma Irradiation Facility (GIF) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to: enhance capabilities to assure technical excellence in nuclear weapon radiation environments testing, component development, and certification; comply with all applicable ES and H safeguards, standards, policies, and regulations; reduce personnel radiological exposure to comply with ALARA limits in accordance with DOE orders and standards; consolidate major gamma ray sources into a central, secured area; and reduce operational risks associated with operation of the GIF and LICA in their present locations. This proposed action provides for the design, construction, and operation of a new GIF located within TA V and the removal of the existing GIF and Low Intensity Cobalt Array (LICA). The proposed action includes potential demolition of the gamma shield walls and removal of equipment in the existing GIF and LICA. The shielding pool used by the existing GIF will remain as part of the ACRR facility. Transportation of the existing {sup 60}Co sources from the existing LICA and GIF to the new facility is also included in the proposed action. Relocation of the gamma sources to the new GIF will be accomplished by similar techniques to those used to install the sources originally.

NONE

1995-11-01T23:59:59.000Z

402

Review of the Facility Centered Assessment of the Los Alamos National Laboratory Waste Disposition Project, September 2011  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Centered Assessment of the Facility Centered Assessment of the Los Alamos National Laboratory Waste Disposition Project September 2011 Office of Safety and Emergency Management Evaluations Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Introduction ............................................................................................................................ 1 2.0 Background ............................................................................................................................ 1 3.0 Results .................................................................................................................................... 2 4.0 Conclusions ............................................................................................................................ 7

403

Review of the Facility Centered Assessment of the Los Alamos National Laboratory Waste Disposition Project, September 2011  

Broader source: Energy.gov (indexed) [DOE]

Facility Centered Assessment of the Facility Centered Assessment of the Los Alamos National Laboratory Waste Disposition Project September 2011 Office of Safety and Emergency Management Evaluations Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Introduction ............................................................................................................................ 1 2.0 Background ............................................................................................................................ 1 3.0 Results .................................................................................................................................... 2 4.0 Conclusions ............................................................................................................................ 7

404

Distributed Feedback Fiber Laser The Heart of the National Ignition Facility  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is a world-class laser fusion machine that is currently under construction at Lawrence Livermore National Laboratory (LLNL). The 192 laser beams that converge on the target at the output of the NIF laser system originate from a low power fiber laser in the Master Oscillator Room (MOR). The MOR is responsible for generating the single pulse that seeds the entire NIF laser system. This single pulse is phase-modulated to add bandwidth, and then amplified and split into 48 separate beam lines all in single-mode polarizing fiber. Before leaving the MOR, each of the 48 output beams are temporally sculpted into high contrast shapes using Arbitrary Waveform Generators. The 48 output beams of the MOR are amplified in the Preamplifier Modules (PAMs), split and amplified again to generate 192 laser beams. The 192 laser beams are frequency converted to the third harmonic and then focused at the center of a 10-meter diameter target chamber. The MOR is an all fiber-based system utilizing highly reliable Telecom-Industry type hardware. The nearly 2,000,000 joules of energy at the output of the NIF laser system starts from a single fiber oscillator that fits in the palm of your hand. This paper describes the design and performance of the laser source that provides the precision light to the National Ignition Facility. Shown below is a simplified diagram illustrating the MOR's basic functions.

Browning, D F; Erbert, G V

2003-12-01T23:59:59.000Z

405

The National Ignition Facility Data Requirements Tim Frazier and Alice Koniges, LLNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ignition Facility Data Requirements Ignition Facility Data Requirements Tim Frazier and Alice Koniges, LLNL SC08 BOF: Computing with Massive and Persistent Data LLNL-PRES-408909. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344 2 Target chamber One Terabyte of data to be downloaded in ~50 Minutes for each shot. 5 Full Aperture Backscatter Diagnostic Instrument Manipulator (DIM) Diagnostic Instrument Manipulator (DIM) X-ray imager Streaked x-ray detector VISAR Velocity Measurements Static x-ray imager FFLEX Hard x-ray spectrometer Near Backscatter Imager DANTE Soft x-ray temperature Diagnostic Alignment System Cross Timing System Each Diagnostic Produces Data that Requires Analysis 6 Tools are being built to manage and integrate:

406

Brookhaven National Laboratory is home to world-class research facilities and sc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

is home to world-class research facilities and scientific is home to world-class research facilities and scientific departments which attract resident and visiting scientists in many fields. This outstanding mix of machine- and mind-power has on seven occasions produced research deemed worthy of the greatest honor in science: the Nobel Prize. 2009 Nobel Prize in Chemistry Venkatraman Ramakrishnan, of the Medical Research Council Laboratory of Molecular Biology in Cambridge, UK, a former employee in Brookhaven's Biology Department, and a long-time user of Brookhaven's National Synchrotron Light Source (NSLS), and Thomas A. Steitz of Yale University, also a long-time NSLS user, shared the prize with Ada E. Yonath of the Weizmann Institute of Science for studying the structure and function of the ribosome.

407

Grouting at the Idaho National Laboratory Tank Farm Facility, R. Mark Shaw  

Broader source: Energy.gov (indexed) [DOE]

Grouting at the Grouting at the Idaho National Laboratory Tank Farm Facility R. Mark Shaw, U. S. Department of Energy safety v performance v cleanup v closure M E Environmental Management Environmental Management 2 Topics/Agenda * Tank Farm Overview * Tank and Vault Grouting * Cooling Coil and Transfer Line Grouting safety v performance v cleanup v closure M E Environmental Management Environmental Management 3 INTEC TANK FARM CLOSURE INTEC TANK FARM CLOSURE VES-WM-103 VES-WM-104 VES-WM-105 VES-WM-106 182 183 185 186 187 189 190 188 184 181 180 Tank Farm Facility Octagon Vaults: WM-180, WM-181 Pillar and Panel Vaults: WM-182, WM-183, WM-184, WM-185, WM-186 Square Vaults: WM-187, WM-188, WM-189, WM-190 GV99 0008 safety v performance v cleanup v closure M E Environmental Management

408

PLANNING TOOLS FOR ESTIMATING RADIATION EXPOSURE AT THE NATIONAL IGNITION FACILITY  

SciTech Connect (OSTI)

A set of computational tools was developed to help estimate and minimize potential radiation exposure to workers from material activation in the National Ignition Facility (NIF). AAMI (Automated ALARA-MCNP Interface) provides an efficient, automated mechanism to perform the series of calculations required to create dose rate maps for the entire facility with minimal manual user input. NEET (NIF Exposure Estimation Tool) is a web application that combines the information computed by AAMI with a given shot schedule to compute and display the dose rate maps as a function of time. AAMI and NEET are currently used as work planning tools to determine stay-out times for workers following a given shot or set of shots, and to help in estimating integrated doses associated with performing various maintenance activities inside the target bay. Dose rate maps of the target bay were generated following a low-yield 10{sup 16} D-T shot and will be presented in this paper.

Verbeke, J; Young, M; Brereton, S; Dauffy, L; Hall, J; Hansen, L; Khater, H; Kim, S; Pohl, B; Sitaraman, S

2010-10-22T23:59:59.000Z

409

Standard design for National Ignition Facility x-ray streak and framing cameras  

SciTech Connect (OSTI)

The x-ray streak camera and x-ray framing camera for the National Ignition Facility were redesigned to improve electromagnetic pulse hardening, protect high voltage circuits from pressure transients, and maximize the use of common parts and operational software. Both instruments use the same PC104 based controller, interface, power supply, charge coupled device camera, protective hermetically sealed housing, and mechanical interfaces. Communication is over fiber optics with identical facility hardware for both instruments. Each has three triggers that can be either fiber optic or coax. High voltage protection consists of a vacuum sensor to enable the high voltage and pulsed microchannel plate phosphor voltage. In the streak camera, the high voltage is removed after the sweep. Both rely on the hardened aluminum box and a custom power supply to reduce electromagnetic pulse/electromagnetic interference (EMP/EMI) getting into the electronics. In addition, the streak camera has an EMP/EMI shield enclosing the front of the streak tube.

Kimbrough, J. R.; Bell, P. M.; Bradley, D. K.; Holder, J. P.; Kalantar, D. K.; MacPhee, A. G.; Telford, S. [Lawrence Livermore National Laboratory, Livermore, California 94551-0808 (United States)

2010-10-15T23:59:59.000Z

410

Fermi National Accelerator Laboratory FERMILAB-Conf-94/419-E  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory Laboratory FERMILAB-Conf-94/419-E CDF The Top.. . is it There? A Survey of the CDF and DO Experiments A.V. Tollestrup Fermi National Accelerator Laboratory P.O. Box 500, Batauia, Illinois 60510 December 1994 Published Proceedings Frontiers in Particle Physics, Cargese 94, Institu D'Etudes Scientifiques de Cargese, Cargese, Corsica, August l-13, 1994 e Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with Uw United States DepMnent of Energy Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,

411

Data Sharing Report Characterization of Isotope Row Facilities Oak Ridge National Laboratory Oak Ridge TN  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort was designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D&D). The process for D&D and final dismantlement of facilities requires that the known contaminants of concern (COCs) be evaluated and quantified and to identify and quantify any additional contaminants in order to satisfy the waste acceptance criteria requirements for the desired disposal pathway. Known facility contaminants include, but are not limited to, asbestos-containing material (ACM), radiological contaminants, and chemical contaminants including polychlorinated biphenyls (PCBs) and metals.

Weaver, Phyllis C

2013-12-12T23:59:59.000Z

412

Proton beam therapy facility  

SciTech Connect (OSTI)

It is proposed to build a regional outpatient medical clinic at the Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, to exploit the unique therapeutic characteristics of high energy proton beams. The Fermilab location for a proton therapy facility (PTF) is being chosen for reasons ranging from lower total construction and operating costs and the availability of sophisticated technical support to a location with good access to patients from the Chicago area and from the entire nation. 9 refs., 4 figs., 26 tabs.

Not Available

1984-10-09T23:59:59.000Z

413

Thermal Storage Materials Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Materials Storage Materials Laboratory may include: * CSP technology developers * Utilities * Certification laboratories * Government agencies * Universities * Other National laboratories Contact Us If you are interested in working with NREL's Thermal Storage Materials Laboratory, please contact: ESIF Manager Carolyn Elam Carolyn.Elam@nrel.gov 303-275-4311 Thermal Storage Materials Laboratory The Thermal Storage Materials Laboratory at NREL's Energy Systems Integration Facility (ESIF) investigates materials that can be used as high-temperature heat transfer fluids or thermal energy storage media in concentrating solar power (CSP) plants. Research objectives include the discovery and evaluation of

414

Buildings to Grid Integration Technical Meeting: National Renewable Energy Laboratory, Energy Systems Integration Facility, Golden, CO  

Broader source: Energy.gov (indexed) [DOE]

Buildings to Grid Integration Buildings to Grid Integration Technical Meeting: National Renewable Energy Laboratory, Energy Systems Integration Facility Golden, CO December 2012 1 WELCOME Welcome to the Buildings to Grid Integration Technical Meeting and to Golden, Colorado. On behalf of the U.S. Department of Energy Building Technologies Program, I would like to thank you for attending and for your active participation. I look forward to meeting you and hearing your perspective on enabling significant buildings to grid integration. Everyone is here because we are working to make efficient transactions between buildings and the grid a commercial reality, whether it is through

415

Electrical Characterization Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrical Characterization Electrical Characterization Laboratory may include: * Equipment manufacturers * Universities * Other National laboratories Contact Us If you are interested in working with NREL's Energy Systems Integration Laboratory, please contact: ESIF Manager Carolyn Elam Carolyn.Elam@nrel.gov 303-275-4311 Electrical Characterization Laboratory Electrical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on the detailed electrical characterization of components and systems. This laboratory allows researchers to test the ability of equipment to withstand high voltage surges and high current faults, including equipment using

416

Shock Ignition: A New Approach to High Gain Inertial Confinement Fusion on the National Ignition Facility  

Science Journals Connector (OSTI)

Shock ignition, an alternative concept for igniting thermonuclear fuel, is explored as a new approach to high gain, inertial confinement fusion targets for the National Ignition Facility (NIF). Results indicate thermonuclear yields of ?120–250??MJ may be possible with laser drive energies of 1–1.6 MJ, while gains of ?50 may still be achievable at only ?0.2??MJ drive energy. The scaling of NIF energy gain with laser energy is found to be G?126E??(MJ)0.510. This offers the potential for high-gain targets that may lead to smaller, more economic fusion power reactors and a cheaper fusion energy development path.

L. J. Perkins; R. Betti; K. N. LaFortune; W. H. Williams

2009-07-23T23:59:59.000Z

417

A three wavelength scheme to optimize hohlraum coupling on the National Ignition Facility  

SciTech Connect (OSTI)

By using three tunable wavelengths on different cones of laser beams on the National Ignition Facility, numerical simulations show that the energy transfer between beams can be tuned to redistribute the energy within the cones of beams most prone to backscatter instabilities. These radiative hydrodynamics and laser-plasma interaction simulations have been tested against large scale hohlraum experiments with two tunable wavelengths, and reproduce the hohlraum energetics and symmetry. Using a third wavelength provides a greater level of control of the laser energy distribution and coupling in the hohlraum, and could significantly reduce stimulated Raman scattering losses and increase the hohlraum radiation drive while maintaining a good implosion symmetry.

Michel, P; Divol, L; Town, R; Rosen, M

2010-12-16T23:59:59.000Z

418

Collider-Accelerator Department  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RHIC Tunnel and Magnets RHIC Tunnel and Magnets RHIC Tunnel and Magnets AGS Tunnel and Magnets NSRL Beamline RF Kicker Snake 200-MeV LINAC AGS Cold Snake Magnet About the Collider-Accelerator Department The mission of the Collider-Accelerator Department is to develop, improve and operate the suite of particle / heavy ion accelerators used to carry out the program of accelerator-based experiments at BNL; to support the experimental program including design, construction and operation of the beam transports to the experiments plus support of detector and research needs of the experiments; to design and construct new accelerator facilities in support of the BNL and national missions. The C-A Department supports an international user community of over 1500 scientists. The department performs all these functions in an environmentally responsible and safe manner under a rigorous conduct of operations approach.

419

Development and Implementation of a Scaled Saltstone Facility at Savannah River National Laboratory - 13346  

SciTech Connect (OSTI)

The Savannah River National Laboratory (SRNL) has supported the Saltstone Production Facility (SPF) since its conception. However, bench scaled tests have not always provided process or performance data related to the mixing, transfer, and other operations utilized in the SPF. A need was identified to better understand the SPF processes and to have the capabilities at SRNL to simulate the SPF unit operations to support an active low-level radioactive waste (LLW) processing facility. At the SPF, the dry premix is weighed, mixed and transferred to the Readco '10-inch' continuous mixer where it is mixed with the LLW salt solution from the Salt Feed Tank (SFT) to produce fresh Saltstone slurry. The slurry is discharged from the mixer into a hopper. The hopper feeds the grout pump that transfers the slurry through at least 457.2 meters of piping and discharges it into the Saltstone Disposal Units (SDU) for permanent disposal. In conjunction with testing individual SPF processes over several years, SRNL has designed and fabricated a scaled Saltstone Facility. Scaling of the system is primarily based on the volume capacity of the mixer and maintaining the same shear rate and total shear at the wall of the transfer line. At present, SRNL is utilizing the modular capabilities of the scaled Saltstone Facility to investigate the erosion issues related to the augers and paddles inside the SPF mixer. Full implementation of the scaled Saltstone Facility is still ongoing, but it is proving to be a valuable resource for testing alternate Saltstone formulations, cleaning sequences, the effect of pumping Saltstone to farther SDU's, optimization of the SPF mixer, and other operational variables before they are implemented in the SPF. (authors)

Reigel, Marissa M.; Fowley, Mark D.; Hansen, Erich K.; Hera, Kevin R.; Marzolf, Athneal D.; Cozzi, Alex D. [Savannah River National Laboratory, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

420

Optimization of parameters for the inline-injection system at Brookhaven Accelerator Test Facility  

SciTech Connect (OSTI)

We present some of our parameter optimization results utilizing code PARMLEA, for the ATF Inline-Injection System. The new solenoid-Gun-Solenoid -- Drift-Linac Scheme would improve the beam quality needed for FEL and other experiments at ATF as compared to the beam quality of the original design injection system. To optimize the gain in the beam quality we have considered various parameters including the accelerating field gradient on the photoathode, the Solenoid field strengths, separation between the gun and entrance to the linac as well as the (type size) initial charge distributions. The effect of the changes in the parameters on the beam emittance is also given.

Parsa, Z. [Brookhaven National Lab., Upton, NY (United States); Ko, S.K. [Ulsan Univ. (Korea, Republic of)

1995-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Effects On Beam Alignment Due To Neutron-Irradiated CCD Images At The National Ignition Facility  

SciTech Connect (OSTI)

The 192 laser beams in the National Ignition Facility (NIF) are automatically aligned to the target-chamber center using images obtained through charged coupled device (CCD) cameras. Several of these cameras are in and around the target chamber during an experiment. Current experiments for the National Ignition Campaign are attempting to achieve nuclear fusion. Neutron yields from these high energy fusion shots expose the alignment cameras to neutron radiation. The present work explores modeling and predicting laser alignment performance degradation due to neutron radiation effects, and demonstrates techniques to mitigate performance degradation. Camera performance models have been created based on the measured camera noise from the cumulative single-shot fluence at the camera location. We have found that the effect of the neutron-generated noise for all shots to date have been well within the alignment tolerance of half a pixel, and image processing techniques can be utilized to reduce the effect even further on the beam alignment.

Awwal, A; Manuel, A; Datte, P; Burkhart, S

2011-02-28T23:59:59.000Z

422

Labs at-a-Glance: Oak Ridge National Laboratory | U.S. DOE Office of  

Office of Science (SC) Website

Oak Ridge Oak Ridge National Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Oak Ridge National Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Oak Ridge National Laboratory Logo Visit the Oak Ridge National Laboratory

423

Labs at-a-Glance: Pacific Northwest National Laboratory | U.S. DOE Office  

Office of Science (SC) Website

Pacific Pacific Northwest National Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Pacific Northwest National Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Pacific Northwest National Laboratory Logo Visit the Pacific Northwest National

424

Labs at-a-Glance: Brookhaven National Laboratory | U.S. DOE Office of  

Office of Science (SC) Website

Brookhaven Brookhaven National Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Brookhaven National Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Brookhaven National Laboratory Logo Visit the Brookhaven National Laboratory

425

Labs at-a-Glance: Lawrence Berkeley National Laboratory | U.S. DOE Office  

Office of Science (SC) Website

Lawrence Lawrence Berkeley National Laboratory Laboratories Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National Laboratory Oak Ridge National Laboratory Pacific Northwest National Laboratory Princeton Plasma Physics Laboratory SLAC National Accelerator Laboratory Thomas Jefferson National Accelerator Facility Laboratory Policy and Evaluation Safety, Security and Infrastructure Laboratory Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 Labs at-a-Glance: Lawrence Berkeley National Laboratory Print Text Size: A A A RSS Feeds FeedbackShare Page Lawrence Berkeley National Laboratory Logo Visit the Lawrence Berkeley National

426

Recent developments of the ion sources at Tri University Meson Factory/Isotope Separator and ACcelerator Facility  

SciTech Connect (OSTI)

This paper describes the recent progresses concerning the on-line ion source at the Tri University Meson Factory/Isotope Separator and ACcelerator (TRIUMF/ISAC) Radioactive Ion-Beam Facility; description of the new design of the surface-ion-source for improved stability of the beam intensity, description of the transport path to the east target station at ISAC, description of the new brazing techniques that solved recurrent problems with water leaks on the target/ion source assembly in the vacuum system, finally, recent developments concerning the Forced Electron Beam Induced Arc Discharge (FEBIAD) ion source are reported. In particular, a study on the effect of the plasma chamber volume on the ionization efficiency was completed.

Bricault, P. G.; Ames, F.; Dombsky, M.; Labrecque, F.; Lassen, J.; Mjos, A.; Minor, G. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Tigelhoefer, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Department Of Physics, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)

2012-02-15T23:59:59.000Z

427

Diagnosing ablator R and R asymmetries in capsule implosions using charged-particle spectrometry at the National Ignition Facility  

E-Print Network [OSTI]

American Institute of Physics. DOI: 10.1063/1.2965829 I. INTRODUCTION Ignition of an indirectly laser at the National Ignition Facility J. A. Frenje,1 C. K. Li,1 J. R. Rygg,1,a F. H. Séguin,1 D. T. Casey,1 R. D for Laser Energetics, University of Rochester, Rochester, New York 14623, USA 3 Lawrence Livermore National

428

High-energy x-ray microscopy of laser-fusion plasmas at the National Ignition Facility  

SciTech Connect (OSTI)

Multi-keV x-ray microscopy will be an important laser-produced plasma diagnostic at future megajoule facilities such as the National Ignition Facility (NIF).In preparation for the construction of this facility, we have investigated several instrumentation options in detail, and we conclude that near normal incidence single spherical or toroidal crystals may offer the best general solution for high-energy x-raymicroscopy at NIF and at similar large facilities. Kirkpatrick-Baez microscopes using multi-layer mirrors may also be good secondary options, particularly if apertures are used to increase the band-width limited field of view.

Koch, J.A.; Landen, O.L.; Hammel, B.A. [and others

1997-08-26T23:59:59.000Z

429

The Use of Staff Augmentation Subcontracts at the National Nuclear Security Administration's Mixed Oxide Fuel Fabrication Facility, IG-0887  

Broader source: Energy.gov (indexed) [DOE]

The Use of Staff Augmentation The Use of Staff Augmentation Subcontracts at National Nuclear Security Administration's Mixed Oxide Fuel Fabrication Facility DOE/IG-0887 May 2013 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 May 15, 2013 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Use of Staff Augmentation Subcontracts at the National Nuclear Security Administration's Mixed Oxide Fuel Fabrication Facility" BACKGROUND Shaw AREVA MOX Services, LLC (MOX Services) is responsible for the design and construction of the National Nuclear Security Administration's (NNSA) nearly $5 billion Mixed

430

Target area and diagnostic interface issues on the National Ignition Facility (invited)  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) is under construction at Lawrence Livermore National Laboratory for the DOE Stockpile Stewardship Program. It will be used for experiments for inertial confinement fusion ignition, high energy density science, and basic science. Many interface issues confront the experimentalist who wishes to design, fabricate, and install diagnostics, and to help this process, a set of standards and guideline documents is being prepared. Compliance with these will be part of a formal diagnostic design review process. In this article we provide a short description of each, with reference to more complete documentation. The complete documentation will also be available through the NIF Diagnostics web page. Target area interface issues are grouped into three categories. First are the layout and utility interface issues which include the safety analysis report, target area facility layout; target chamber port locations; diagnostic interferences and envelopes; utilities and cable tray distribution; and timing and fiducial systems. Second are the environment interface issues which include radiation electromagnetic interference/electromagnetic pulse effects and mitigation; electrical grounding, shielding, and isolation; and cleanliness and vacuum guidelines. Third are the operational interface issues which include manipulator based target diagnostics, diagnostic alignment, shot life cycle and setup, diagnostic controllers; integrated computer control system; shot data archival; classified operations; and remote operations.

Bell, Perry; Lee, Dean; Wootton, Alan; Mascio, Bill; Kimbrough, Joe; Sewall, Noel; Hibbard, Wilthea; Dohoney, Pat; Landon, Mark; Christianson, George (and others) [and others

2001-01-01T23:59:59.000Z

431

Pacific Northwest National Laboratory Facility Radionuclide Emissions Units and Sampling Systems  

SciTech Connect (OSTI)

Battelle-Pacific Northwest Division operates numerous research and development (R and D) laboratories in Richland, WA, including those associated with Pacific Northwest National Laboratory (PNNL) on the U.S. Department of Energy (DOE)'s Hanford Site and PNNL Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all emission units that have the potential for radionuclide air emissions. Potential emissions are assessed annually by PNNL staff members. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission unit system performance, operation, and design information. For sampled systems, a description of the buildings, exhaust units, control technologies, and sample extraction details is provided for each registered emission unit. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided. Deregistered emission unit details are provided as necessary for up to 5 years post closure.

Barnett, J. M.; Brown, Jason H.; Walker, Brian A.

2012-04-01T23:59:59.000Z

432

Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico  

SciTech Connect (OSTI)

The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2.

OSCAR,DEBBY S.; WALKER,SHARON ANN; HUNTER,REGINA LEE; WALKER,CHERYL A.

1999-12-01T23:59:59.000Z

433

Site characterization report for the Old Hydrofracture Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

Several Old Hydrofracture Facility (OHF) structures (i.e., Building 7852, the bulk storage bins, the pump house, water tank T-5, and pump P-3) are surplus facilities at Oak Ridge National Laboratory (ORNL) slated for decontamination and decommissioning (D and D). OHF was constructed in 1963 to allow experimentation and operations with an integrated solids storage, handling, mixing, and grout injection facility. It was shut down in 1980 and transferred to ORNL`s Surveillance and Maintenance Program. The hydrofracture process was a unique disposal method that involved injecting waste materials mixed with grout and additives under pumping pressures of 2,000 psi or greater into a deep, low-permeability shale formation. The injected slurry spread along fractures and bedding planes for hundreds of feet from the injection points, forming thin grout sheets (often less than 1/8 in. thick). The grout ostensibly immobilized and solidified the liquid wastes. Site characterization activities were conducted in the winter and spring of 1994 to collect information necessary to plan the D and D of OHF structures. This site characterization report documents the results of the investigation of OHF D and D structures, presenting data from the field investigation and laboratory analyses in the form of a site description, as-built drawings, summary tables of radiological and chemical contaminant concentrations, and a waste volume estimate. 25 refs., 54 figs., 17 tabs.

NONE

1995-01-01T23:59:59.000Z

434

Performance Assessment for the Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility  

SciTech Connect (OSTI)

This performance assessment for the Remote-Handled Low-Level Radioactive Waste Disposal Facility at the Idaho National Laboratory documents the projected radiological dose impacts associated with the disposal of low-level radioactive waste at the facility. This assessment evaluates compliance with the applicable radiological criteria of the U.S. Department of Energy and the U.S. Environmental Protection Agency for protection of the public and the environment. The calculations involve modeling transport of radionuclides from buried waste to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses are calculated for both offsite receptors and individuals who inadvertently intrude into the waste after site closure. The results of the calculations are used to evaluate the future performance of the low-level radioactive waste disposal facility and to provide input for establishment of waste acceptance criteria. In addition, one-factor-at-a-time, Monte Carlo, and rank correlation analyses are included for sensitivity and uncertainty analysis. The comparison of the performance assessment results to the applicable performance objectives provides reasonable expectation that the performance objectives will be met

Annette L. Schafer; A. Jeffrey Sondrup; Arthur S. Rood

2012-05-01T23:59:59.000Z

435

DOE/EA-1310: Environmental Assessment for Decontamination and Dismantlement of the Advanced Reactivity Measurement Facility and Couples Fast Reactivity Measurements Facility at the Idaho National Engineering and Environmental Laboratory  

Broader source: Energy.gov (indexed) [DOE]

0 0 March 2000 Environmental Assessment for Decontamination and Dismantlement of the Advanced Reactivity Measurement Facility and Coupled Fast Reactivity Measurements Facility at the Idaho National Engineering and Environmental Laboratory DOE/EA-1310 Environmental Assessment for Decontamination and Dismantlement of the Advanced Reactivity Measurement Facility and Coupled Fast Reactivity Measurements Facility at the Idaho National Engineering and Environmental Laboratory Published March 2000 Prepared for the U.S. Department of Energy Idaho Operations Office iii CONTENTS ACRONYMS ............................................................................................................................... v HELPFUL INFORMATION ........................................................................................................

436

Development of a national spill test facility data base. Topical report, February 1994--February 1995  

SciTech Connect (OSTI)

In the United States, the production of gas, liquid and solid fuels and the associated chemical use accounts for significant volumes of material with the potential of becoming hazardous. Accidental spills or releases of these hazardous materials do occur, and action must be taken to minimize damage to life, property, and the environment. Because of the hazards of testing with chemical spills, a national spill test facility (STF) and an associated testing program have been established to systematically develop new data on the effects and mitigation of hazardous chemical spills Western Research Institute (WRI), in conjunction with the DOE, is developing a comprehensive national spill test data base. I The data base will be easily accessible by industry and the public on the Spill Research Bulletin Board System and will allow users to download spill test data and test descriptions, as well as an extensive bibliography. The 1990 Clean Air Act and Amendments (CAAA) requires that at least two chemicals be field tested at the STF and at least 10 chemicals be studied each year. The chemicals to be studied are chosen with priority given to those that present the greatest risk to human health. The National Spill Test Facility Data Base will include a common chemical data base covering the overlap of federal chemical lists and significant information from other sources. Also, the (CAAA) directs the DOE and EPA to work together with the STF and industry to provide a scientific and engineering basis for writing regulations for implementation of the (CAAA). The data base will be a primary resource in this effort.

NONE

1995-02-01T23:59:59.000Z

437

Ignition on the National Ignition Facility: a path towards inertial fusion energy  

Science Journals Connector (OSTI)

The National Ignition Facility (NIF), the world's largest and most powerful laser system for inertial confinement fusion (ICF) and experiments studying high-energy-density (HED) science, is nearing completion at Lawrence Livermore National Laboratory (LLNL). NIF, a 192-beam Nd-glass laser facility, will produce 1.8?MJ, 500?TW of light at the third-harmonic, ultraviolet light of 351?nm. The NIF project is scheduled for completion in March 2009. Currently, all 192 beams have been operationally qualified and have produced over 4.0?MJ of light at the fundamental wavelength of 1053?nm, making NIF the world's first megajoule laser. The principal goal of NIF is to achieve ignition of a deuterium–tritium (DT) fuel capsule and provide access to HED physics regimes needed for experiments related to national security, fusion energy and for broader scientific applications.The plan is to begin 96-beam symmetric indirect-drive ICF experiments early in FY2009. These first experiments represent the next phase of the National Ignition Campaign (NIC). This national effort to achieve fusion ignition is coordinated through a detailed plan that includes the science, technology and equipment such as diagnostics, cryogenic target manipulator and user optics required for ignition experiments. Participants in this effort include LLNL, General Atomics, Los Alamos National Laboratory, Sandia National Laboratory and the University of Rochester Laboratory for Energetics (LLE). The primary goal for NIC is to have all of the equipment operational and integrated into the facility soon after project completion and to conduct a credible ignition campaign in 2010. When the NIF is complete, the long-sought goal of achieving self-sustaining nuclear fusion and energy gain in the laboratory will be much closer to realization.Successful demonstration of ignition and net energy gain on NIF will be a major step towards demonstrating the feasibility of inertial fusion energy (IFE) and will likely focus the world's attention on the possibility of an ICF energy option. NIF experiments to demonstrate ignition and gain will use central-hot-spot (CHS) ignition, where a spherical fuel capsule is simultaneously compressed and ignited. The scientific basis for CHS has been intensively developed (Lindl 1998 Inertial Confinement Fusion: the Quest for Ignition and Energy Gain Using Indirect Drive (New York: American Institute of Physics)) and has a high probability of success. Achieving ignition with CHS will open the door for other advanced concepts, such as the use of high-yield pulses of visible wavelength rather than ultraviolet and fast ignition concepts (Tabak et al 1994 Phys. Plasmas 1 1626–34, Tabak et al 2005 Phys. Plasmas 12 057305). Moreover, NIF will have important scientific applications in such diverse fields as astrophysics, nuclear physics and materials science.This paper summarizes the design, performance and status of NIF, experimental plans for NIC, and will present laser inertial confinement fusion–fission energy (LIFE) as a path to achieve carbon-free sustainable energy.

Edward I. Moses

2009-01-01T23:59:59.000Z

438

Installation of semiconductor crystal growth and processing facilities in the Building 166 addition at Lawrence Livermore National Laboratory  

SciTech Connect (OSTI)

A new addition has been constructed to Building 166 at Lawrence Livermore National Laboratory (LLNL). This addition is intended to contain facilities as described below. The Metalorganic Chemical Vapor Deposition (MOCVD) facility is a proposed facility for the growth of semiconductor crystals composed of various combinations of gallium, aluminum, indium, arsenic, phosphorous, antimony, silicon, and zinc. This facility will utilize hazardous metal hydride gases (arsine, silane, and disilane) and pyrophoric materials (metal alkyls). The MOCVD process has been intensively developed over the past 10 years and is being safetly utilized in over 75 locations worldwide in both research and manufacturing applications. All equipment in the LLNL MOCVD facility is commercially available and is typical of that used in similar facilities in both industry and academia. The Semiconductor Device Fabrication (SDF) facility is a proposed facility for the fabrication of semiconductor devices from crystals grown in the MOCVD facility. General laboratory chemicals and silane gas will be utilized in this facility. The remaining space in the building addition will consist of an optics laboratory and general purpose work area. The only hazardous materials to be used in these areas are small quantities of common laboratory solvents. For the purposes of this Environmental Assessment, these areas will be considered to be part of the SDF. 27 refs., 4 figs., 6 tabs.

Not Available

1990-08-01T23:59:59.000Z

439

Tools for remote collaboration on the DIII-D National Fusion Facility  

Science Journals Connector (OSTI)

The DIII-D National Fusion Facility, a tokamak experiment funded by the US Department of Energy and operated by General Atomics (GA), is an international resource for plasma physics and fusion energy science research. This facility has a long history of collaborations with scientists from a wide variety of laboratories and universities from around the world. That collaboration has mostly been conducted by travel to and participation at the DIII-D site. Many new developments in the computing and technology fields are now facilitating collaboration from remote sites, thus reducing some of the needs to travel to the experiment. Some of these developments include higher speed wide area networks, powerful workstations connected within a distributed computing environment, network based audio/video capabilities, and the use of the world wide web. As the number of collaborators increases, the need for remote tools become important options to efficiently utilize the DIII-D facility. In the last two years a joint study by GA, Princeton Plasma Physics Laboratory (PPPL), Lawrence Livermore National Laboratory (LLNL), and Oak Ridge National Laboratory (ORNL) has introduced remote collaboration tools into the DIII-D environment and studied their effectiveness. These tools have included the use of audio/video for communication from the DIII-D control room, the broadcast of meetings, use of inter-process communication software to post events to the network during a tokamak shot, the creation of a DCE (distributed computing environment) cell for creating a common collaboratory environment, distributed use of computer cycles, remote data access, and remote display of results. This study also included sociological studies of how scientists in this environment work together as well as apart. As a result of these studies, there is now in place an automated distributed processing environment connected to the real-time experimental operations which can be joined by users at remote locations. This environment will allow further exploration of the technology and sociology of remote participation in the DIII-D program. Having the tools in place has already permitted remote participation in DIII-D experiments that would not have occurred otherwise, and thus the introduction of these tools has shown the initial feasibility of increasing and improving remote collaboration.

B.B. McHarg Jr; T.A. Casper; S. Davis; D. Greenwood

1999-01-01T23:59:59.000Z

440

Polar-drive implosions on OMEGA and the National Ignition Facility P. B. Radha, F. J. Marshall, J. A. Marozas, A. Shvydky, I. Gabalski et al.  

E-Print Network [OSTI]

)1 permits direct-drive-ignition experi- ments on laser facilities like the National IgnitionPolar-drive implosions on OMEGA and the National Ignition Facility P. B. Radha, F. J. Marshall, J-drive implosions on OMEGA and the National Ignition Facilitya) P. B. Radha,1,b) F. J. Marshall,1 J. A. Marozas,1 A

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Measurements of emittance growth through the achromatic bend at the BNL Accelerator Test Facility  

SciTech Connect (OSTI)

Measurements of emittance growth in a high peak current beam as it passes through an achromatic double bend are summarized. Experiments were performed using the ATF at Brookhaven National Laboratory by X.J. Wang and D. Kehne as a collaboration resulting from the proposal attached at the end of the document. The ATF consists off an RF gun (1 MeV), two sections of linac (40-75 MeV), a diagnostic section immediately following the linac, a 20{degree} bend magnet, a variable aperture slit at a high dispersion point, 5 quadrupoles, then another 20{degree} bend followed by another diagnostic section. The TRANSPORT deck describing the region from the end of the linac to the end of the diagnostic line following the achromatic bends is attached to the end of this document. Printouts of the control screens are also attached.

Wang, X.J.; Kehne, D.

1997-07-01T23:59:59.000Z

442

DOE/EA-1149; Environmental Assessment: Closure of the Waste Calcining Facility, Idaho Nation Engineering Laboratory (and FONSI)  

Broader source: Energy.gov (indexed) [DOE]

9 9 July 1996 Environmental Assessment Closure of the Waste Calcining Facility (CPP-633), Idaho National Engineering Laboratory U. S. DEPARTMENT OF ENERGY FINDING OF NO SIGNIFICANT IMPACT FOR THE CLOSURE OF THE WASTE CALCINING FACILITY AT THE IDAHO NATIONAL ENGINEERING LABORATORY Agency: U. S. Department of Energy (DOE) Action: Finding of No Significant Impact SUMMARY: The DOE-Idaho Operations Office has prepared an environmental assessment (EA) to analyze the environmental impacts of closing the Waste Calcining Facility (WCF) at the Idaho National Engineering Laboratory (INEL). The purpose of the action is to reduce the risk of radioactive exposure and release of radioactive and hazardous constituents and eliminate the need for extensive long-term surveillance and maintenance. DOE has determined that the closure is needed to reduce the risks to human

443

Accident Investigation at the Idaho National Laboratory Engineering Demonstration Facility, February 2013  

Broader source: Energy.gov [DOE]

On Monday, February 12, 2013, a principal investigator at the Idaho National Laboratory (INL) Engineering Demonstration Facility (IEDF) was testing the system configuration of experimental process involving liquid sodium carbonate. An unanticipated event occurred that resulted in the ejection of the 900° C liquid sodium carbonate from the system. The ejected liquid came into contact with the principal investigator and caused multiple second and third degree burn injuries to approximately 10 percent of his body. The Office of Health, Safety and Security (HSS) Site Lead for the Idaho Site shadowed the accident investigation team assembled by the contractor in an effort to independently verify that a rigorous, thorough, and unbiased investigation was taking place, and to maintain awareness of the events surrounding the accident

444

Overview of the gamma reaction history diagnostic for the national ignition facility (NIF)  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) has a need for measuring gamma radiation as part of a nuclear diagnostic program. A new gamma-detection diagnostic uses 900 off-axis parabolic mirrors to rel ay Cherenkov light from a volume of pressurized gas. This non imaging optical system has the high-speed detector placed at a stop position with the Cherenkov light delayed until after the prompt gammas have passed through the detector. Because of the wavelength range (250 to 700 nm), the optical element surface finish was a key design constraint. A cluster of four channels (each set to a different gas pressure) will collect the time histories for different energy ranges of gammas.

Kim, Yong Ho [Los Alamos National Laboratory; Evans, Scott C [Los Alamos National Laboratory; Herrmann, Hans W [Los Alamos National Laboratory; Mack, Joseph M [Los Alamos National Laboratory; Young, Carl S [Los Alamos National Laboratory; Malone, Robert M [Los Alamos National Laboratory; Cox, Brian C [Los Alamos National Laboratory; Frogget, Brent C [Los Alamos National Laboratory; Kaufman, Morris I [Los Alamos National Laboratory; Tunnell, Thomas W [Los Alamos National Laboratory; Tibbitts, Aric [Los Alamos National Laboratory; Palagi, Martin J [NST/LAS VEGAS; Stoeffl, Wolfgang [LLNL

2010-01-01T23:59:59.000Z

445

Radiation transport and energetics of laser-driven half-hohlraums at the National Ignition Facility  

SciTech Connect (OSTI)

Experiments that characterize and develop a high energy-density half-hohlraum platform for use in benchmarking radiation hydrodynamics models have been conducted at the National Ignition Facility (NIF). Results from the experiments are used to quantitatively compare with simulations of the radiation transported through an evolving plasma density structure, colloquially known as an N-wave. A half-hohlraum is heated by 80 NIF beams to a temperature of 240?eV. This creates a subsonic diffusive Marshak wave, which propagates into a high atomic number Ta{sub 2}O{sub 5} aerogel. The subsequent radiation transport through the aerogel and through slots cut into the aerogel layer is investigated. We describe a set of experiments that test the hohlraum performance and report on a range of x-ray measurements that absolutely quantify the energetics and radiation partition inside the target.

Moore, A. S., E-mail: alastair.moore@physics.org; Graham, P.; Comley, A. J.; Foster, J. [Directorate Science and Technology, AWE Aldermaston, Reading RG7 4PR (United Kingdom); Cooper, A. B. R.; Schneider, M. B.; MacLaren, S.; Lu, K.; Seugling, R.; Satcher, J.; Klingmann, J.; Marrs, R.; May, M.; Widmann, K.; Glendinning, G.; Castor, J.; Sain, J.; Baker, K.; Hsing, W. W.; Young, B. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); and others

2014-06-15T23:59:59.000Z

446

Extracting core shape from x-ray images at the National Ignition Facility  

SciTech Connect (OSTI)

Measuring the shape of implosions is critical to inertial confinement fusion experiments at the National Ignition Facility. We have developed techniques that have proven successful for extracting shape information from images of x-ray self-emission recorded by a variety of diagnostic instruments for both DT-filled targets and low-yield surrogates. These key results help determine optimal laser and target parameters leading to ignition. We have compensated for instrumental response and have employed a variety of image processing methods to remove artifacts from the images while retaining salient features. The implosion shape has been characterized by decomposing intensity contours into Fourier and Legendre modes for different lines of sight. We also describe procedures we have developed for estimating uncertainties in these measurements.

Glenn, S. M.; Benedetti, L. R.; Bradley, D. K.; Hammel, B. A.; Izumi, N.; Khan, S. F.; Ma, T.; Milovich, J. L.; Pak, A. E.; Smalyuk, V. A.; Tommasini, R.; Town, R. P. [Lawrence Livermore National Laboratory, Livermore, California 94555 (United States); Kyrala, G. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

2012-10-15T23:59:59.000Z

447

South pole bang-time diagnostic on the National Ignition Facility  

SciTech Connect (OSTI)

The south pole bang-time (SPBT) diagnostic views National Ignition Facility (NIF) implosions through the lower hohlraum laser entrance hole to measure the time of peak x-ray emission (peak compression) in indirect drive implosions. Five chemical-vapor-deposition (CVD) diamond photoconductive detectors (PCD's) with different filtrations and sensitivities record the time-varying x rays emitted by the target. Wavelength-selecting highly oriented pyrolytic graphite (HOPG) crystal mirror monochromators increase the x-ray signal-to-background ratio by filtering for 11-keV emission. Diagnostic timing and the in-situ temporal instrument response function are determined from laser impulse shots on the NIF. After signal deconvolution and background removal, the bang time is determined to 45-ps accuracy. The x-ray 'yield' (mJ/sr/keV at 11 keV) is determined from the total area under the peak.

MacPhee, A; Edgell, D; Bradley, D K; Bond, E J; Burns, S; Callahan, D A; Celeste, J; Kimbrough, J; Mackinnon, A J; Magoon, J; Eckart, M J; Glebov, V; Hey, D; Lacielle, G; Kilkenny, J; Parker, J; Sangster, T C; Shoup, M J; Stoeckl, C; Thomas, T

2012-05-01T23:59:59.000Z

448

Asymmetric directly driven capsule implosions: Modeling and experiments-A requirement for the National Ignition Facility  

SciTech Connect (OSTI)

Direct-drive experiments at the University of Rochester's OMEGA laser [T. R. Boehly, R. L. McCrory, C. P. Verdon et al., Fusion Eng. Des. 44, 35 (1999)] have been performed to prototype eventual campaigns on the National Ignition Facility (NIF) [E. I. Moses and C. R. Wuest, Fusion Sci. Technol. 43, 420 (2003)] to investigate the mixing of target materials. Spherical-implosion targets with equatorial defects have been irradiated with polar direct drive, a requirement for direct-drive experiments at NIF. The physics question addressed by these results is whether simulations can match data on 0th-order hydrodynamics and implosion symmetry, the most basic implosion features, with and without the defect. The successful testing of hydrodynamic simulations leads to better designs for experiments and guides accurate planning for polar-direct-drive-ignition studies on the NIF platform.

Cobble, J. A.; Murphy, T. J.; Schmitt, M. J.; Bradley, P. A.; Krashenninikova, N. S.; Obrey, K. A.; Hsu, S. C.; Tregillis, I. L.; Magelssen, G. R.; Wysocki, F. J.; Batha, S. H. [Los Alamos National Laboratory, Mail Stop E527, Los Alamos, New Mexico 87545 (United States)

2012-12-15T23:59:59.000Z

449

Shock timing on the National Ignition Facility: the first precision tuning series  

SciTech Connect (OSTI)

Ignition implosions on the National Ignition Facility (NIF) [Lindl et al., Phys. Plasmas 11, 339 (2004)] are driven with a very carefully tailored sequence of four shock waves that must be timed to very high precision in order to keep the fuel on a low adiabat. The first series of precision tuning experiments on NIF have been performed. These experiments use optical diagnostics to directly measure the strength and timing of all four shocks inside the hohlraum-driven, cryogenic deuterium-filled capsule interior. The results of these experiments are presented demonstrating a significant decrease in the fuel adiabat over previously un-tuned implosions. The impact of the improved adiabat on fuel compression is confirmed in related deuterium-tritium (DT) layered capsule implosions by measurement of fuel areal density (rR), which show the highest fuel compression (rR {approx} 1.0 g/cm{sup 2}) measured to date.

Robey, H F; Celliers, P M; Kline, J L; Mackinnon, A J

2011-10-27T23:59:59.000Z

450

Design of a deuterium and tritium-ablator shock ignition target for the National Ignition Facility  

SciTech Connect (OSTI)

Shock ignition presents a viable path to ignition and high gain on the National Ignition Facility (NIF). In this paper, we describe the development of the 1D design of 0.5 MJ class, all-deuterium and tritium (fuel and ablator) shock ignition target that should be reasonably robust to Rayleigh-Taylor fluid instabilities, mistiming, and hot electron preheat. The target assumes 'day one' NIF hardware and produces a yield of 31 MJ with reasonable allowances for laser backscatter, absorption efficiency, and polar drive power variation. The energetics of polar drive laser absorption require a beam configuration with half of the NIF quads dedicated to launching the ignitor shock, while the remaining quads drive the target compression. Hydrodynamic scaling of the target suggests that gains of 75 and yields 70 MJ may be possible.

Terry, Matthew R.; Perkins, L. John; Sepke, Scott M. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, California 94550 (United States)

2012-11-15T23:59:59.000Z

451

A polar-drive shock-ignition design for the National Ignition Facility  

SciTech Connect (OSTI)

Shock ignition [R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007)] is being pursued as a viable option to achieve ignition on the National Ignition Facility (NIF). Shock-ignition target designs use a high-intensity laser spike at the end of a low-adiabat assembly pulse to launch a spherically convergent strong shock to ignite the hot spot of an imploding capsule. A shock-ignition target design for the NIF is presented. One-dimensional simulations indicate an ignition threshold factor of 4.1 with a gain of 58. A polar-drive beam-pointing configuration for shock-ignition experiments on the NIF at 750 kJ is proposed. The capsule design is shown to be robust to the various one- and two-dimensional effects and nonuniformities anticipated on the NIF. The target is predicted to ignite with a gain of 38 when including all anticipated levels of nonuniformity and system uncertainty.

Anderson, K. S.; McKenty, P. W.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Marozas, J. A.; Skupsky, S.; Shvydky, A. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States)] [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States) [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States); Departments of Mechanical Engineering and Physics, University of Rochester, Rochester, New York 14627 (United States); Hohenberger, M.; Theobald, W.; Lafon, M.; Nora, R. [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States) [Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States)

2013-05-15T23:59:59.000Z

452

Simulation of Radiation Backgrounds associated with the HEXRI Diagnostics at the National Ignition Facility  

SciTech Connect (OSTI)

Experiments resulting in a significant neutron yield are scheduled to start in 2010 at the National Ignition Facility (NIF). A wide range of diagnostics will be used to measure several parameters of implosion such as the core and fuel shape, temperatures and densities, and neutron yield. Accurate evaluations of the neutron and gamma backgrounds are important for several diagnostics, such as the High Energy X-ray Imager (HEXRI). Several Monte-Carlo simulations were performed to identify the expected signal to background ratios at several potential locations for the HEXRI diagnostics. Gamma backgrounds were significantly reduced by using tungsten collimators. The collimators resulted in the reduction of the gamma background at the HEXRI scintillators by more than an order of magnitude during the first 40 ns following a THD shot.

Khater, H; Dauffy, L; Tommasini, R; Eckart, M; Eder, D

2009-10-05T23:59:59.000Z

453

Optomechanical considerations for the VISAR diagnostic at the National Ignition Facility (NIF)  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) requires optical diagnostics for measuring shock velocities in shock physics experiments. The velocity interferometer for any reflector measures shock velocities at a location remote to the NIF target chamber. Our team designed two systems, one for a polar port orientation, and the other to accommodate two equatorial ports. The polar-oriented design requires a 48-m optical relay to move the light from inside the target chamber to a separately housed measurement and laser illumination station. The currently operational equatorial design requires a much shorter relay of 21 m. Both designs posed significant optomechanical challenges due to the long optical path length, large quantity of optical elements, and stringent NIF requirements. System design had to tightly control the use of lubricants and materials, especially those inside the vacuum chamber; tolerate earthquakes and radiation; and consider numerous other tolerance, alignment, and steering adjustment issues. To ensure compliance with NIF performance requirements, we conducted a finite element analysis.

Kaufman, Morris I.; Celeste, John R.; Frogget, Brent C.; Lee, Tony L.; GacGowan, Brian J.; Malone, Robert M.; Ng, Edmund W.; Tunnell, Tom W.; Watts, Phillip W.

2006-09-01T23:59:59.000Z

454

Review of Safety Basis Development for the Los Alamos National Laboratory Transuranic Waste Facility  

Broader source: Energy.gov (indexed) [DOE]

of6 of6 Subject: Review of Safety Basis HS: HSS CRAD 45-59 U.S. Department of Development for the Los Alamos Rev: 0 National Laboratory Transuranic Eff. Date: May 6, 2013 Energy Waste Facility - Criteria and Review Approach Document Office of Safety and ~ Emergency Management Acting Djector, Of~e of Safety and Evaluations Emergency Management Evaluations Date: May 6, 2013 firo,~ Page 1of6 Criteria and Review e;dJatnes 0. Low Approach Document Date: May 6, 2013 1.0 PURPOSE Within the Office of Health, Safety and Security (HSS), the Office of Enforcement and Oversight, Office of Safety and Emergency Management Evaluations (HS-45) mission is to assess the effectiveness of the environment, safety, health, and emergency management systems and practices used by line and

455

Overview of the Gamma Reaction History Diagnostic for the National Ignition Facility (NIF)  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) has a need for measuring gamma radiation as part of a nuclear diagnostic program. A new gamma-detection diagnostic uses 90º off-axis parabolic mirrors to relay Cherenkov light from a volume of pressurized gas. This nonimaging optical system has the high-speed detector placed at a stop position with the Cherenkov light delayed until after the prompt gammas have passed through the detector. Because of the wavelength range (250 to 700 nm), the optical element surface finish was a key design constraint. A cluster of four channels (each set to a different gas pressure) will collect the time histories for different energy ranges of gammas.

Malone, R M; Frogget, B C; Kaufman, M I; Tibbitts, A; Tunnell, T W; Evans, S C; Herrmann, H W; Kim, Y H; Mack, J M; Young, C S; McGillivray, K D; Palagi, M J

2010-09-01T23:59:59.000Z

456

The National Ignition Facility: enabling fusion ignition for the 21st century  

Science Journals Connector (OSTI)

The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, when completed in 2008, will contain a 192-beam, 1.8?MJ, 500?TW, ultraviolet laser system together with a 10?m diameter target chamber and room for 100 diagnostics. NIF is housed in a 26?000?m2 environmentally controlled building and is the world's largest and most energetic laser experimental system. NIF provides a scientific centre for the study of inertial confinement fusion and the physics of matter at extreme energy densities and pressures. NIF's energetic laser beams will compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. Other NIF experiments will study physical processes at temperatures and pressures approaching 108?K and 1011?bar, respectively, conditions that exist naturally only in the interior of stars and planets. NIF is currently configured with four laser beams activated in late 2002. These beams are being regularly used for laser performance and physics experiments, and to date nearly 250 system shots have been conducted. NIF's laser beams have generated 106?kJ in 23?ns pulses of infrared light and over 16?kJ in 3.5?ns pulses at the third harmonic (351?nm). A number of target experimental systems are being commissioned in support of experimental campaigns. This paper provides a detailed look at the NIF laser systems, laser and optical performance, and results from laser commissioning shots. We also discuss NIF's high-energy density and inertial fusion experimental capabilities, the first experiments on NIF, and plans for future capabilities of this unique facility.

George H. Miller; Edward I. Moses; Craig R. Wuest

2004-01-01T23:59:59.000Z

457

Noise and vibration investigations of the Sandia National Laboratories Sol se Mete Aerial Cable Facility  

SciTech Connect (OSTI)

This document is an assessment of the noise, vibration, and overpressure effects and fragmentation hazards of the operation of the Sandia National Laboratories Sol de Mete Aerial Cable Facility (ACF). Major noise sources associated with project operations and considered in this report include rocket motors, chemical explosions, 3-inch gun, 20-mm gun, vehicular traffic, and engines of electricity generators. In addition, construction equipment noise is considered. Noise exposure of ACF personnel is expressed as the equivalent sound level for the 8-hour work day, and is computed by scaling to the proper distance and combining the appropriate noise values for continuously operating equipment such as vehicles and generators. Explosions and gun firings are impulsive events, and overpressures are predicted and expressed as decibel (dB) at the control building, at other nearby facilities, at Sol se Mete. The conclusion reached in the noise analysis is that continuously operating equipment would not produce a serious noise hazard except in the immediate vicinity of the electricity generators and heavy equipment where hearing protection devices should be used. Rocket motors, guns, and detonations of less than 54 kilograms (kg) (120 lb) of explosives would not produce noise levels above the threshold for individual protection at the control building, other nearby test areas, or Sol se Mete Spring. Rare tests involving explosive weights between 54 and 454 kg (120 and 1,000 lb) could produce impulsive noise levels above 140 dB that would require evacuation or other provision for individual hearing protection at the ACF control building and at certain nearby facilities not associated with ACF. Other blast effects including overpressure, ground vibration, and fragmentation produce hazard radii that generally are small than the corresponding noise hazard radius, which is defined as the distance at which the predicted noise level drops to 140 dB.

Matise, B.K.; Gutman, W.M.; Cunniff, R.A.; Silver, R.J.; Stepp, W.E. [New Mexico State Univ., Las Cruces, NM (United States). Physical Science Lab.

1994-11-01T23:59:59.000Z

458

THE NATIONAL CARBON CAPTURE CENTER AT THE POWER SYSTEMS DEVELOPMENT FACILITY  

SciTech Connect (OSTI)

The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period Three reporting period, efforts at the NCCC/PSDF focused on testing of pre-combustion CO2 capture and related processes; commissioning and initial testing at the post-combustion CO2 capture facilities; and operating the gasification process to develop gasification related technologies and for syngas generation to test syngas conditioning technologies.

None, None

2012-09-01T23:59:59.000Z

459

THE NATIONAL CARBON CAPTURE CENTER AT THE POWER SYSTEMS DEVELOPMENT FACILITY  

SciTech Connect (OSTI)

The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period Two reporting period, efforts at the PSDF/NCCC focused on new technology assessment and test planning; designing and constructing post-combustion CO2 capture facilities; testing of pre-combustion CO2 capture and related processes; and operating the gasification process to develop gasification related technologies and for syngas generation to test syngas conditioning technologies.

None, None

2011-05-11T23:59:59.000Z

460

THE NATIONAL CARBON CAPTURE CENTER AT THE POWER SYSTEMS DEVELOPMENT FACILITY  

SciTech Connect (OSTI)

The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The newly established NCCC will include multiple, adaptable test skids that will allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period One reporting period, efforts at the PSDF/NCCC focused on developing a screening process for testing consideration of new technologies; designing and constructing pre- and post-combustion CO2 capture facilities; developing sampling and analytical methods; expanding fuel flexibility of the Transport Gasification process; and operating the gasification process for technology research and for syngas generation to test syngas conditioning technologies.

None, None

2011-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "national accelerator facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

A polar-drive-ignition design for the National Ignition Facility  

SciTech Connect (OSTI)

Polar drive [Skupsky et al., Phys. Plasmas 11, 2763 (2004)] will enable direct-drive experiments to be conducted on the National Ignition Facility (NIF) [Miller et al., Opt. Eng. 43, 2841 (2004)], while the facility is configured for x-ray drive. A polar-drive ignition design for the NIF has been developed that achieves a gain of 32 in two-dimensional (2-D) simulations, which include single- and multiple-beam nonuniformities and ice and outer-surface roughness. This design requires both single-beam UV polarization smoothing and one-dimensional (1-D) multi-frequency modulator (MFM) single-beam smoothing to achieve the required laser uniformity. The multi-FM smoothing is employed only during the low-intensity portion of the laser pulse, allowing for the use of sufficient smoothing-by-spectral-dispersion bandwidth while maintaining safe laser operations during the high-intensity part of the pulse. This target is robust to all expected sources of perturbations.

Collins, T. J. B.; Marozas, J. A.; Anderson, K. S.; Craxton, R. S.; Delettrez, J. A.; Goncharov, V. N.; Harding, D. R.; Marshall, F. J.; McCrory, R. L.; McKenty, P. W.; Radha, P. B.; Shvydky, A.; Skupsky, S.; Zuegel, J. D. [Laboratory for Laser Energetics, 250E. River Rd, Rochester, New York 14623 (United States); Betti, R.; Meyerhofer, D. D. [Laboratory for Laser Energetics, 250E. River Rd, Rochester, New York 14623 (United States); Departments of Mechanical Engineering and Physics, University of Rochester, Rochester, New York 14623 (United States); Fusion Science Center, University of Rochester, Rochester, New York 14623 (United States)

2012-05-15T23:59:59.000Z

462

2011 Status of the Automatic Alignment System for the National Ignition Facility  

SciTech Connect (OSTI)

Automated alignment for the National Ignition Facility (NIF) is accomplished using a large-scale parallel control system that directs 192 laser beams along the 300-m optical path. The beams are then focused down to a 50-micron spot in the middle of the target chamber. The entire process is completed in less than 50 minutes. The alignment system commands 9,000 stepping motors for highly accurate adjustment of mirrors and other optics. 41 control loops per beamline perform parallel processing services running on a LINUX cluster to analyze high-resolution images of the beams and their references. This paper describes the status the NIF automatic alignment system and the challenges encountered as NIF development has transitioned from building the laser, to becoming a research project supporting a 24 hour, 7 day laser facility. NIF is now a continuously operated system where performance monitoring is increasingly more critical for operation, maintenance, and commissioning tasks. Equipment wear and the effects of high energy neutrons from fusion experiments are issues which alter alignment efficiency and accuracy. New sensors needing automatic alignment assistance are common. System modifications to improve efficiency and accuracy are prevalent. Handling these evolving alignment and maintenance needs while minimizing the impact on NIF experiment schedule is expected to be an on-going challenge for the planned 30 year operational life of NIF.

Wilhelmsen, K; Awwal, A; Burkhart, S; McGuigan, D; Kamm, V M; Leach, R; Lowe-Webb, R; Wilson, R

2011-07-19T23:59:59.000Z

463

Monte Carlo simulations for the shielding of the future high-intensity accelerator facility fair at GSI  

Science Journals Connector (OSTI)

......the universal linear accelerator, UNILAC, the heavy-ion...expands on the present accelerator system at the GSI...beams are produced in nuclear reactions induced by...PROTON AND HEAVY-ION ACCELERATOR During the acceleration...certain flight path in the vacuum. The wall thickness......

T. Radon; F. Gutermuth; G. Fehrenbacher

2005-12-20T23:59:59.000Z

464

The National Labs on Flickr | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Flickr Flickr The National Labs on Flickr The interior of the National Ignition Facility target chamber at Lawrence Livermore National Laboratory. The service module carrying technicians can be seen on the left. The target positioner, which holds the target, is on the right. | Photo courtesy of Lawrence Livermore National Laboratory. The interior of the National Ignition Facility target chamber at Lawrence Livermore National Laboratory. The service module carrying technicians can be seen on the left. The target positioner, which holds the target, is on the right. | Photo courtesy of Lawrence Livermore National Laboratory. EXPLORE THE NATIONAL LABS ON FLICKR Ames Laboratory Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory

465

2013 Annual Wastewater Reuse Report for the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant  

SciTech Connect (OSTI)

This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at the Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2012, through October 31, 2013. The report contains, as applicable, the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of compliance conditions and activities • Discussion of the facility’s environmental impacts. During the 2013 permit year, no wastewater was land-applied to the irrigation area of the Central Facilities Area Sewage Treatment Plant and therefore, no effluent flow volumes or samples were collected from wastewater sampling point WW-014102. However, soil samples were collected in October from soil monitoring unit SU-014101.

Mike Lewis

2014-02-01T23:59:59.000Z

466

The National Ignition Facility: The Path to Ignition, High Energy Density Science and Inertial Fusion Energy  

SciTech Connect (OSTI)

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in Livermore, CA, is a Nd:Glass laser facility capable of producing 1.8 MJ and 500 TW of ultraviolet light. This world's most energetic laser system is now operational with the goals of achieving thermonuclear burn in the laboratory and exploring the behavior of matter at extreme temperatures and energy densities. By concentrating the energy from its 192 extremely energetic laser beams into a mm{sup 3}-sized target, NIF can produce temperatures above 100 million K, densities of 1,000 g/cm{sup 3}, and pressures 100 billion times atmospheric pressure - conditions that have never been created in a laboratory and emulate those in the interiors of planetary and stellar environments. On September 29, 2010, NIF performed the first integrated ignition experiment which demonstrated the successful coordination of the laser, the cryogenic target system, the array of diagnostics and the infrastructure required for ignition. Many more experiments have been completed since. In light of this strong progress, the U.S. and the international communities are examining the implication of achieving ignition on NIF for inertial fusion energy (IFE). A laser-based IFE power plant will require a repetition rate of 10-20 Hz and a 10% electrical-optical efficiency laser, as well as further advances in large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to a prototype IFE demonstration plant in 10- to 15-years. LLNL, in partnership with other institutions, is developing a Laser Inertial Fusion Energy (LIFE) baseline design and examining various technology choices for LIFE power plant This paper will describe the unprecedented experimental capabilities of the NIF, the results achieved so far on the path toward ignition, the start of fundamental science experiments and plans to transition NIF to an international user facility providing access to researchers around the world. The paper will conclude with a discussion of LIFE, its development path and potential to enable a carbon-free clean energy future.

Moses, E

2011-03-25T23:59:59.000Z

467

Sandia National Laboratories: New Facility Tool at SWiFT Makes...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Updated New Facility Tool at SWiFT Makes Rotor Work More Efficient On January 22, 2014, in Energy, Facilities, News, News & Events, Partnership, Renewable Energy, SWIFT,...

468

Conceptual Design of a 50--100 MW Electron Beam Accelerator System for the National Hypersonic Wind Tunnel Program  

SciTech Connect (OSTI)

The National Hypersonic Wind Tunnel program requires an unprecedented electron beam source capable of 1--2 MeV at a beam power level of 50--100 MW. Direct-current electron accelerator technology can readily generate high average power beams to approximately 5 MeV at output efficiencies greater than 90%. However, due to the nature of research and industrial applications, there has never been a requirement for a single module with an output power exceeding approximately 500 kW. Although a 50--100 MW module is a two-order extrapolation from demonstrated power levels, the scaling of accelerator components appears reasonable. This paper presents an evaluation of component and system issues involved in the design of a 50--100 MW electron beam accelerator system with precision beam transport into a high pressure flowing air environment.

SCHNEIDER,LARRY X.

2000-06-01T23:59:59.000Z

469

X-ray driven implosions at ignition relevant velocities on the National Ignition Facility  

SciTech Connect (OSTI)

Backlit convergent ablator experiments on the National Ignition Facility [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)] are indirect drive implosions that study the inflight dynamics of an imploding capsule. Side-on, backlit radiography provides data used by the National Ignition Campaign to measure time-dependent properties of the capsule ablator including its center of mass radius, velocity, and unablated mass. Previously, Callahan [D. A. Callahan et al., Phys. Plasmas 19, 056305 (2012)] and Hicks [D. H. Hicks et al., Phys. Plasmas 19, 122702 (2012)] reported backlit convergent ablator experiments demonstrating velocities approaching those required for ignition. This paper focuses on implosion performance data in the “rocket curve” plane, ve