National Library of Energy BETA

Sample records for nation recycling center

  1. New Choctaw Nation Recycling Center Posts Quick Results

    Broader source: Energy.gov [DOE]

    “If you build it, they will come" ...to recycle. That line from the 1989 film Field of Dreams is as good a way as any to describe how the Choctaw Nation of Oklahoma’s new regional recycling center is being received.

  2. EECBG Success Story: New Choctaw Nation Recycling Center Posts Quick Results

    Broader source: Energy.gov [DOE]

    The Choctaw Nation in Oklahoma used approximately $800,000 in Energy Efficiency and Conservation Block Grant funding to build a state-of-the-art recycling center and improve stewardship of the land and environment. Learn more.

  3. recycling | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    recycling | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy...

  4. Nuclear recycling | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear recycling Pyroprocessing facilities 1 of 8 Pyroprocessing facilities Frances Dozier conducts pyroprocessing research inside a glovebox at Argonne National Laboratory....

  5. Chemical Recycling | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Recycling Chemical Recycling

  6. Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    for Solar Power Yellowstone Park Recycles Vehicle Batteries for Solar Power to someone by E-mail Share Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries for Solar Power on Facebook Tweet about Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries for Solar Power on Twitter Bookmark Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries for Solar Power on Google Bookmark Alternative Fuels Data Center: Yellowstone Park Recycles

  7. First National Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    First National Technology First National Technology Center Center Electronic Equipment - manufactured to withstand 8 milliseconds of voltage disruption CBEMA Curve - Chips ...

  8. Argonne National Laboratory's Recycling Pilot Plant

    ScienceCinema (OSTI)

    Spangenberger, Jeff; Jody, Sam;

    2013-04-19

    Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills.) For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

  9. Argonne National Laboratory's Recycling Pilot Plant

    SciTech Connect (OSTI)

    Spangenberger, Jeff; Jody, Sam;

    2009-01-01

    Argonne has a Recycling Pilot Plant designed to save the non-metal portions of junked cars. Here, program managers demonstrate how plastic shredder residue can be recycled. (Currently these automotive leftovers are sent to landfills.) For more information, visit Argonne's Transportation Technology R&D Center Web site at http://www.transportation.anl.gov.

  10. Recycle

    SciTech Connect (OSTI)

    1988-10-01

    ;Contents: The Problem; What`s In Our Trash; Where Does Trash Go; Where Does Our Trash Go; The Solution; What Is Recycling; Why Should We Recycle; A National Goal of 25%; What Can We Recycle; What Do We Do With Our Recyclables.

  11. National Security Education Center

    SciTech Connect (OSTI)

    Hurd, Alan J.

    2015-04-22

    Information about the National Security Education Center is given. Information about the Center’s history and current practices, including its facilities and its practicality are outlined.

  12. factsheet: National Prototype Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the World Safer This enduring national asset integrates science and technology for manufacturing success that meets our customer's special manufacturability challenges. Since its establishment in 1997, more than 5,0 0 0 i ndustr ies and government agencies have capitalized on the resources of the National Prototype Center (NPC). These customers received subject -matter expertise as well as critical manufacturing resources enabling development of i n novat ive manufacturing solutions.

  13. Expanded recycling at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Betschart, J.F.; Malinauskas, L.; Burns, M.

    1996-07-01

    The Pollution Prevention Program Office has increased recycling activities, reuse, and options to reduce the solid waste streams through streamlining efforts that applied best management practices. The program has prioritized efforts based on volume and economic considerations and has greatly increased Los Alamos National Laboratory`s (LANL`s) recycle volumes. The Pollution Prevention Program established and chairs a Solid Waste Management Solutions Group to specifically address and solve problems in nonradioactive, Resource Conservation and Recovery Act (RCRA), state-regulated, and sanitary and industrial waste streams (henceforth referred to as sanitary waste in this paper). By identifying materials with recycling potential, identifying best management practices and pathways to return materials for reuse, and introducing the concept and practice of {open_quotes}asset management,{open_quotes} the Group will divert much of the current waste stream from disposal. This Group is developing procedures, agreements, and contracts to stage, collect, sort, segregate, transport and process materials, and is also garnering support for the program through the involvement of upper management, facility managers, and generators.

  14. National Fertilizer Development Center

    Office of Legacy Management (LM)

    h-L National Fertilizer Development Center May 15, 1980 nww Hr. William Et Mott, Director Environmental Control Technology Division Office of Environment Dcpartiaent of Energy Washington, DC 20545 Dear Mr. Mott: This is in response to your letter of May 5 requesting ccmments on a report dated Xarct; 1930 which summarizes a preliminary radiological survey of facilities used in the early 1950's for studies of recovery of uranium from leached zone ore. I have made a few suggested changes to the

  15. BLM National Training Center | Open Energy Information

    Open Energy Info (EERE)

    National Training Center Jump to: navigation, search Logo: BLM National Training Center Name: BLM National Training Center Address: 9828 North 31st Avenue Place: Phoenix, AZ Zip:...

  16. First National Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE)

    Speaker presentation prepared by Dennis Hughes, a lead property manager with First National Buildings Inc.

  17. NREL National Bioenergy Center Overview

    SciTech Connect (OSTI)

    Foust, Thomas; Pienkos, Phil; Sluiter, Justin; Magrini, Kim; McMillan, Jim

    2014-07-28

    The demand for clean, sustainable, secure energy is growing... and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) is answering the call. NREL's National Bioenergy Center is pioneering biofuels research and development and accelerating the pace these technologies move into the marketplace.

  18. Recycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recycling Recycling Reducing our impact requires big and small behavioral changes, from printing pages double-sided to separating metals during multi-million-dollar building projects. April 12, 2012 LANL's progress toward recycling goals: 2008 - 2012. LANL's progress toward recycling goals. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email In FY 2012, our overall recycling rate was 81 percent. Recycling goals Engaging in

  19. Recycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recycle LANL innovates recycling paths for various materials. Aerosol cans Asphalt Batteries Cardboard Concrete Light bulbs Metal Pallets Paper Tires Toner cartridges Vegetation...

  20. National Bioenergy Center Biochemical Platform Integration Project

    SciTech Connect (OSTI)

    Not Available

    2008-07-01

    April through June 2008 update on activities of the National Bioenergy Center's Biochemical Platform Integration Project.

  1. Y-12: Seawolf to National Prototype Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Propulsor, which ultimately led to Y-12 being designated as the National Prototype Center. ... This "propulsor development center" at Y-12 led to other opportunities for unique designs ...

  2. National Training Center | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Organizational Chart » National Training Center National Training Center MISSION The National Training Center (NTC), the Department's Center of Excellence for Security and Safety Training and Professional Development, designs, develops, and implements state-of-the-art security and safety training programs for Department federal and contractor personnel nationwide, including the National Nuclear Security Administration (NNSA). Conducts on-going job analysis, and develops and delivers training in

  3. recycling

    National Nuclear Security Administration (NNSA)

    6%2A en Y-12's rough roads smoothed over with 23,000 tons of recycled asphalt http:nnsa.energy.govblogy%E2%80%9112%E2%80%99s-rough-roads-smoothed-over-23000-tons-recycled-asph...

  4. How Can We Enable EV Battery Recycling? | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How Can We Enable EV Battery Recycling? Title How Can We Enable EV Battery Recycling? Publication Type Presentation Year of Publication 2015 Authors Gaines, LL Abstract...

  5. The Future of Automobile Battery Recycling | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Future of Automobile Battery Recycling Title The Future of Automobile Battery Recycling Publication Type Presentation Year of Publication 2014 Authors Gaines, LL Abstract...

  6. Enabling Future Li-Ion Battery Recycling | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Li-Ion Battery Recycling Title Enabling Future Li-Ion Battery Recycling Publication Type Presentation Year of Publication 2014 Authors Gaines, LL Abstract Presentation made...

  7. Learning Center | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Learning Center The Argonne Learning Center contains four student research laboratories, three learning classrooms and a historic 1960's control room facility where...

  8. NREL: National Wind Technology Center Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL: National Wind Technology Center National Wind Technology Center The National Wind Technology Center (NWTC) at NREL is the nation's premier wind energy technology research facility. The NWTC advances the development of innovative land-based and offshore wind energy technologies through its research and testing facilities. Researchers draw on years of experience and their wealth of expertise in fluid dynamics and structural testing to also advance marine and hydrokinetic water power

  9. Sandia National Laboratories: Due Diligence on Lead Acid Battery Recycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Due Diligence on Lead Acid Battery Recycling March 23, 2011 Lead Acid Batteries on secondary containment pallet Lead Acid Batteries on secondary containment pallet In 2004, the US Geological Survey estimated that 95% of lead in the United States is recycled, primarily from used lead acid batteries. A broader 2009 European study estimated that globally about 52% of lead is recycled, and a 2008 Asian study estimated a global recycle rate of 68%. Unfortunately, many incidents over the past decade

  10. Material Recycle and Recovery | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recycle and ... Material Recycle and Recovery Y-12 recycles and recovers enriched uranium from retired weapons and other excess or salvage materials, including some retired fuel elements and nuclear materials from other countries. This mission ensures that excess materials from Y-12 and other parts of the world are processed to a safer form for long-term storage or reuse. Recycled material is used for such things as feedstock for the Naval Reactors Program or for research reactors that produce

  11. operations center | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Operations Center The Office of Emergency Operations Support maintains situational awareness of the nation's energy infrastructure and nuclear weapons complex and facilitates...

  12. National Energy Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3,072 Material Simulations in Joint Center for Artificial Photosynthesis (JCAP) PI: Frances A. Houle, Lawrence Berkeley National Laboratory Edison 3,072 LLNL MFE Supercomputing...

  13. Center for Nanoscale Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale Materials About Research Capabilities For Users People...

  14. NERSC National Energy Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Energy Research Scientific Computing Center 2007 Annual Report National Energy Research Scientific Computing Center 2007 Annual Report Ernest Orlando Lawrence Berkeley National Laboratory 1 Cyclotron Road, Berkeley, CA 94720-8148 This work was supported by the Director, Office of Science, Office of Ad- vanced Scientific Computing Research of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. LBNL-1143E, October 2008 iii National Energy Research Scientific Computing

  15. NREL: National Center for Photovoltaics Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Center for Photovoltaics Research Cell Efficiency Records Chart image Download the latest chart on record cell efficiencies and check out explanatory notes. The National Center for Photovoltaics (NCPV) at the National Renewable Energy Laboratory (NREL) focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's capabilities in PV research, development, deployment, and outreach. To help the U.S.

  16. National Fuel Cell Technology Evaluation Center (NFCTEC)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Fuel Cell Technology Evaluation Center (NFCTEC) Jim Alkire U.S. Department of Energy Fuel Cell Technologies Office Jennifer Kurtz & Sam Sprik National Renewable Energy Laboratory 2 Outline * About NFCTEC * Benefits to the Hydrogen & Fuel Cell Community * New Fuel Cell Cost/Price Aggregation Project About NFCTEC 4 National Fuel Cell Technology Evaluation Center a national resource for hydrogen and fuel cell stakeholders supported through Energy Efficiency and Renewable Energy's

  17. The National Carbon Capture Center

    Office of Scientific and Technical Information (OSTI)

    ... Laboratory OD Outer Diameter OSU Ohio State University PC Pulverized Coal PC4 Post-Combustion Carbon Capture Center PCC Post-Combustion CO 2 Capture PCD Particulate ...

  18. National Wind Technology Center - Local Information | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center - Local Information This page provides information for travelers visiting the National Wind Technology Center. Transportation There is no public transportation to the National Wind Technology Center. Please note that the NWTC is not located at the main NREL facility in Golden, Colorado; it is approximately 25 miles north of Golden. Visit the Denver International Airport site to find: Car rental agencies Shuttle services, and Ground transportation options, including shuttles, taxicabs, and

  19. Way to recycle, BES Technologies | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program / Way to recycle, BES ... Way to recycle, BES Technologies Posted: July 29, 2015 - 10:31am At right, Brian Quinley, Chief Operations Officer for BES Technologies, LLC, gives Rep. John Duncan a tour of the laundry facility at East Tennessee Technology Park. BES Technologies, LLC, a service-disabled veteran-owned small business, has reached a major milestone by recycling 1 million gallons of radiological waste water through its laundry operations located at the East Tennessee Technology

  20. National Carbon Capture Center Launches Post-Combustion Test Center |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Carbon Capture Center Launches Post-Combustion Test Center National Carbon Capture Center Launches Post-Combustion Test Center June 6, 2011 - 2:32pm Addthis Jenny Hakun What does this mean for me? Commercial deployment of the processes tested here could cut carbon pollution. Innovation is important to finding ways to make energy cleaner. And testing the ideas and processes that researchers come up with is critical to moving ideas from the lab to the marketplace. That's

  1. National Carbon Capture Center Launches Post-Combustion Test Center |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Carbon Capture Center Launches Post-Combustion Test Center National Carbon Capture Center Launches Post-Combustion Test Center June 7, 2011 - 1:00pm Addthis Washington, D.C. - The recent successful commissioning of an Alabama-based test facility is another step forward in research that will speed deployment of innovative post-combustion carbon dioxide (CO2) capture technologies for coal-based power plants, according to the U.S. Department of Energy (DOE). Technologies

  2. National Center for Photovoltaics at NREL

    ScienceCinema (OSTI)

    VanSant, Kaitlyn; Wilson, Greg; Berry, Joseph; Al-Jassim, Mowafak; Kurtz, Sarah

    2014-06-10

    The National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL) focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's capabilities in PV research, development, deployment, and outreach.

  3. National Center for Photovoltaics at NREL

    SciTech Connect (OSTI)

    VanSant, Kaitlyn; Wilson, Greg; Berry, Joseph; Al-Jassim, Mowafak; Kurtz, Sarah

    2013-11-07

    The National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL) focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's capabilities in PV research, development, deployment, and outreach.

  4. The National Carbon Capture Center

    Office of Scientific and Technical Information (OSTI)

    ... systems to meet the national need for cleaner, m ore efficient power production from coal. ... being off-line during tw o m ajor outages o f Gaston U nit 5. The PC4 has operated ...

  5. Egypt National Cleaner Production Center (ENCPC) | Open Energy...

    Open Energy Info (EERE)

    Egypt National Cleaner Production Center (ENCPC) Jump to: navigation, search Name Egypt National Cleaner Production Center (ENCPC) AgencyCompany Organization United Nations...

  6. National Atmospheric Release Advisory Center | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) National Atmospheric Release Advisory Center NARAC Logo NNSA's Atmospheric Release Advisory Capability's (ARAC) role in an emergency begins when hazardous material is released into the atmosphere by a radiological dispersal device, improvised nuclear weapon, or nuclear radiological accident. ARAC is hosted in a facility called the National Atmospheric Release Advisory Center (NARAC), operated by Lawrence Livermore National Laboratory. The NARAC's centralized,

  7. Operations Center | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Response Operations Center The Office of Emergency Operations Support maintains situational awareness of the nation's energy infrastructure and nuclear weapons complex and facilitates management of national emergency events via a secure nationwide communications network. The Operations Center provides an integrated, scalable, mobile and/or virtual response capability to enable NNSA to successfully conduct routine and emergency operations through the leverage of mission critical resources in

  8. National Energy Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Computing Center 2004 annual report Cover image: Visualization based on a simulation of the density of a fuel pellet after it is injected into a tokamak fusion reactor. See page 40 for more information. National Energy Research Scientific Computing Center 2004 annual report Ernest Orlando Lawrence Berkeley National Laboratory * University of California * Berkeley, California 94720 This work was supported by the Director, Office of Science, Office of Advanced Scientific Computing

  9. National Atmospheric Release Advisory Center | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Atmospheric Release Advisory Center NNSA & Nuclear Security Enterprise support nation's preparedness Scientists at NNSA facilities study climate and meteorology. Other sites are key players in weather preparedness. Today, on National Weatherperson Day, NNSA recognizes numerous contributions to the nation's climate and weather readiness in any situation. With emergency response as one of its core

  10. Almost 20 years of recycling makes a big difference | Y-12 National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Almost 20 years of ... Almost 20 years of recycling makes a big difference Posted: January 16, 2013 - 2:00pm Thanks to a Y-12 National Security Complex aluminum beverage can ...

  11. The National Wind Technology Center

    SciTech Connect (OSTI)

    Thresher, R.W.; Hock, S.M.; Loose, R.R.; Cadogon, J.B.

    1994-07-01

    Wind energy research began at the Rocky Flats test site in 1976 when Rockwell International subcontracted with the Energy Research and Development Administration (ERDA). The Rocky Flats Plant was competitively selected from a number of ERDA facilities primarily because it experienced high instantaneous winds and provided a large, clear land area. By 1977, several small wind turbines were in place. During the facility`s peak of operation, in 1979-1980, researchers were testing as many as 23 small wind turbines of various configurations, including commercially available machines and prototype turbines developed under subcontract to Rocky Flats. Facilities also included 8-kW, 40-kW, and 225-kW dynamometers; a variable-speed test bed; a wind/hybrid test facility; a controlled velocity test facility (in Pueblo, Colorado); a modal test facility, and a multimegawatt switchgear facility. The main laboratory building was dedicated in July 1981 and was operated by the Rocky Flats Plant until 1984, when the Solar Energy Research Institute (SERI) and Rocky Flats wind energy programs were merged and transferred to SERI. SERI and now the National Renewable Energy Laboratory (NREL) continued to conduct wind turbine system component tests after 1987, when most program personnel were moved to the Denver WEst Office Park in Golden and site ownership was transferred back to Rocky Flats. The Combined Experiment test bed was installed and began operation in 1988, and the NREL structural test facility began operation in 1990. In 1993, the site`s operation was officially transferred to the DOE Golden Field Office that oversees NREL. This move was in anticipation of NREL`s renovation and reoccupation of the facility in 1994.

  12. Missouri Department of National Resources Energy Center Mo DNR...

    Open Energy Info (EERE)

    Department of National Resources Energy Center Mo DNR Jump to: navigation, search Name: Missouri Department of National Resources Energy Center (Mo DNR) Place: Jefferson City,...

  13. EERC National Center for Hydrogen Technology | Open Energy Information

    Open Energy Info (EERE)

    National Center for Hydrogen Technology Jump to: navigation, search Name: EERC National Center for Hydrogen Technology Place: Grand Forks, North Dakota Zip: 58203 Sector: Hydro,...

  14. National Center for Photovoltaics NCPV | Open Energy Information

    Open Energy Info (EERE)

    Center for Photovoltaics NCPV Jump to: navigation, search Name: National Center for Photovoltaics (NCPV) Product: String representation "The National Ce ... ics community.'" is too...

  15. National Air & Space Intelligence Center Holds Program About...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Air & Space Intelligence Center Holds Program About Empowering Women in the Workplace National Air & Space Intelligence Center Holds Program About Empowering Women in the...

  16. NREL: News - Director of National Bioenergy Center Named

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director of National Bioenergy Center Named Thursday December 12, 2002 Golden, CO. - Michael Pacheco has accepted the position of director of the National Bioenergy Center (NBC). ...

  17. How Can We Enable EV Battery Recycling? | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Florida, March 9-12, 2015. URL https:anl.box.comsk0v7g1kd6otk24ibjrvi7d9o01z8rsjr Related Projects Lithium-Ion Battery Recycling and Life Cycle Analysis Google Scholar...

  18. Sandia National Laboratories: Cooperative Monitoring Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cooperative Monitoring Center IPB Building "Achieving International Security Through Technical Collaborations" Established at Sandia National Laboratories in 1994, the Cooperative Monitoring Center (CMC) provides a venue in which experts on technology and policy from around the world can explore the use of shareable, unclassified technology and research to: Implement Confidence Building Measures (CBMs) Monitor compliance with treaties or other agreements As part of Sandia's Global

  19. National Criticality Experiments Research Center (NCERC) capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NCERC capabilities National Criticality Experiments Research Center (NCERC) capabilities WHEN: Feb 20, 2015 6:00 PM - 8:00 PM WHERE: Courtyard by Marriott Santa Fe, NM CONTACT: Evelyn Mullen 505-665-7576 CATEGORY: Science INTERNAL: Calendar Login Event Description This talk will provide an overview of the capabilities and machines of NCERC followed by a description of the process of restarting Godiva in a new location as presented at the 2014 ANS Winter Meeting. Los Alamos National Laboratory

  20. Blade Testing at NREL's National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Hughes, S.

    2010-07-20

    Presentation of Blade Testing at NREL's National Wind Technology Center for the 2010 Sandia National Laboratories Blade Testing Workshop.

  1. EECBG Success Story: New Choctaw Nation Recycling Center Posts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    stewardship of the land and environment. Learn more. Addthis Related Articles Ajani Stewart was close to losing his job as environmental coordinator for the city of Miami before...

  2. Center of Excellence | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Center of Excellence NNSA Deputy Administrator Creedon Travels to China In March, National Nuclear Security Administration (NNSA) Principal Deputy Administrator Madelyn Creedon traveled to China to participate in activities related to NNSA's cooperative engagement with various Chinese ministries on nuclear security. Creedon was accompanied by Principal Assistant

  3. National Wind Technology Center: A Proven and Valued Wind Industry Partner (Fact Sheet), National Wind Technology Center (NWTC)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    The fact sheet gives an overview of the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory.

  4. National Center for Nuclear Security - NCNS

    SciTech Connect (OSTI)

    2014-11-12

    As the United States embarks on a new era of nuclear arms control, the tools for treaty verification must be accurate and reliable, and must work at stand-off distances. The National Center for Nuclear Security, or NCNS, at the Nevada National Security Site, is poised to become the proving ground for these technologies. The center is a unique test bed for non-proliferation and arms control treaty verification technologies. The NNSS is an ideal location for these kinds of activities because of its multiple environments; its cadre of experienced nuclear personnel, and the artifacts of atmospheric and underground nuclear weapons explosions. The NCNS will provide future treaty negotiators with solid data on verification and inspection regimes and a realistic environment in which future treaty verification specialists can be trained. Work on warhead monitoring at the NCNS will also support future arms reduction treaties.

  5. National Center for Nuclear Security - NCNS

    ScienceCinema (OSTI)

    None

    2015-01-09

    As the United States embarks on a new era of nuclear arms control, the tools for treaty verification must be accurate and reliable, and must work at stand-off distances. The National Center for Nuclear Security, or NCNS, at the Nevada National Security Site, is poised to become the proving ground for these technologies. The center is a unique test bed for non-proliferation and arms control treaty verification technologies. The NNSS is an ideal location for these kinds of activities because of its multiple environments; its cadre of experienced nuclear personnel, and the artifacts of atmospheric and underground nuclear weapons explosions. The NCNS will provide future treaty negotiators with solid data on verification and inspection regimes and a realistic environment in which future treaty verification specialists can be trained. Work on warhead monitoring at the NCNS will also support future arms reduction treaties.

  6. National Infrastructure Simulation and Analysis Center Overview

    SciTech Connect (OSTI)

    Berscheid, Alan P.

    2012-07-30

    National Infrastructure Simulation and Analysis Center (NISAC) mission is to: (1) Improve the understanding, preparation, and mitigation of the consequences of infrastructure disruption; (2) Provide a common, comprehensive view of U.S. infrastructure and its response to disruptions - Scale & resolution appropriate to the issues and All threats; and (3) Built an operations-tested DHS capability to respond quickly to urgent infrastructure protection issues.

  7. | ANSER Center | Argonne-Northwestern National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forms for more information. ANSER Center Travel Checklist ANSER Center Grant Acknowledgment ANSER Center Purchase Order Instructions ANSER Center Purchase Order Form Bid ...

  8. Northwest National Marine Renewable Energy Center | Open Energy...

    Open Energy Info (EERE)

    Marine Renewable Energy Center Jump to: navigation, search Name: Northwest National Marine Renewable Energy Center Address: 4000 15th Ave Place: Seattle, Washington Zip: 98105...

  9. US National Fuel Cell Research Center NFCRC | Open Energy Information

    Open Energy Info (EERE)

    Fuel Cell Research Center NFCRC Jump to: navigation, search Name: US National Fuel Cell Research Center (NFCRC) Place: Irvine, California Zip: 92697-3550 Product: Academic research...

  10. Alternative Fuels Data Center: Propane Mowers Help National Park Cut

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Emissions Propane Mowers Help National Park Cut Emissions to someone by E-mail Share Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Facebook Tweet about Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Twitter Bookmark Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Google Bookmark Alternative Fuels Data Center: Propane Mowers Help National Park Cut Emissions on Delicious Rank Alternative

  11. National Wind Technology Center (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01

    This overview fact sheet is one in a series of information fact sheets for the National Wind Technology Center (NWTC). Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center (NWTC), the nation's premier wind energy technology research facility, fosters innovative wind energy technologies in land-based and offshore wind through its research and testing facilities and extends these capabilities to marine hydrokinetic water power. Research and testing conducted at the NWTC offers specialized facilities and personnel and provides technical support critical to the development of advanced wind energy systems. From the base of a system's tower to the tips of its blades, NREL researchers work side-by-side with wind industry partners to increase system reliability and reduce wind energy costs. The NWTC's centrally located research and test facilities at the foot of the Colorado Rockies experience diverse and robust wind patterns ideal for testing. The NWTC tests wind turbine components, complete wind energy systems and prototypes from 400 watts to multiple megawatts in power rating.

  12. AARP, National Consumer Law Center, and Public Citizen Comments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AARP, National Consumer Law Center, and Public Citizen Comments to:DEPARTMENT OF ENERGY Smart Grid RFI: Addressing Policy and Logistical Challenges AARP, National Consumer Law...

  13. AARP, National Consumer Law Center, and Public Citizen Comments...

    Office of Environmental Management (EM)

    AARP, National Consumer Law Center, and Public Citizen Comments to:DEPARTMENT OF ENERGY Smart Grid RFI: Addressing Policy and Logistical Challenges AARP, National Consumer Law ...

  14. The Ben Gurion National Solar Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Gurion National Solar Energy Center Jump to: navigation, search Name: The Ben-Gurion National Solar Energy Center Place: Sede-Boqer Campus, Israel Zip: 84990 Sector: Solar Product:...

  15. Nuclear fuel recycling in 4 minutes | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration | (NNSA) Nuclear disarmament with a personal touch February 15, 2012 Team Led by Y-12 Site Office Employee Visits Russian girl Aided by U.S. Monitors File NR-01-12 Sofia safe | National Nuclear Security Administration | (NNSA)

    forensics, explained: NNSA analytic chemists help keep the world safe Thursday, February 25, 2016 - 2:46pm One of the gravest threats the world faces is the possibility that terrorists will acquire nuclear weapons or the necessary materials to

  16. Distributed Energy Research Center | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Energy Research Center Argonne's Distributed Energy Research Center (DERC) allows researchers to develop and demonstrate novel technologies to reduce emissions and ...

  17. NREL Names Director for National Center for Photovoltaics - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL NREL Names Director for National Center for Photovoltaics Ryne Raffaelle to join NREL August 31, 2009 July 30, 2009 Photo of Dr. Ryne P. Raffaelle Dr. Ryne P. Raffaelle has been named director of the National Center for Photovoltaics at NREL. Dr. Ryne P. Raffaelle has been named director of the National Center for Photovoltaics at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL). Raffaelle most recently has been Academic Director for the Golisano

  18. National Clean Energy Incubators Spawn New Commercialization Centers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Clean Energy Incubators Spawn New Commercialization Centers National Clean Energy Incubators Spawn New Commercialization Centers June 27, 2016 - 3:26pm Addthis National Clean Energy Incubators Spawn New Commercialization Centers Trish Williams Communications Specialist, EERE Communications Office What are the key facts? NIICE has established a national network of more than 19 different incubators and supporting organizations. Incubatenergy Network members are

  19. Greg Wilson to Lead National Center for Photovoltaics - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greg Stewart About Us Greg Stewart - SLAC National Accelerator Laboratory Greg Stewart is a graphic designer for SLAC National Accelerator Laboratory, one of the Department of Energy's 17 National Laboratories. Most Recent Three Ways to Bust Ghostly Dark Matter March 30 NREL

    Greg Wilson to Lead National Center for Photovoltaics November 11, 2011 Photo of Dr. Gregory M. Wilson Dr. Gregory M. Wilson has been named director of the National Center for Photovoltaics at NREL. Dr. Gregory M.

  20. NREL: Wind Research - National Wind Technology Center Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Wind Technology Center Map Explore the interactive graphic below to learn about the National Wind Technology Center's facilities and associated capabilities. Click on the numbered areas to discover photos and videos as well as brief descriptions and links to detailed specifications. Map of the National Wind Technology Center in Golden, Colorado Structural Testing Laboratory (STL) As wind turbines grow in size and their blades become longer and more flexible, it becomes more difficult to

  1. National Marine Renewable Energy Center (UH) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Marine Renewable Energy Center (UH) National Marine Renewable Energy Center (UH) National Marine Renewable Energy Center (UH) 21_hinmrec_university_of_hawaii_rocheleau.ppt (12.61 MB) More Documents & Publications Vehicle Technologies Office Merit Review 2014: EV Project: Solar-Assisted Charging Demo Ocean Thermal Extractable Energy Visualization: Final Technical Report Microsoft PowerPoint - 06 Crawley Drive for Net Zero Energy Commercial Buildings

  2. Northwest National Marine Renewable Energy Center (OSUUW) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Northwest National Marine Renewable Energy Center (OSUUW) Northwest National Marine Renewable Energy Center (OSUUW) Northwest National Marine Renewable Energy Center (OSUUW) 22_nnmrec_batten_final.ppt (10.5 MB) More Documents & Publications NREL - FY09 Lab Call: Supporting Research and Testing for MHK Presentation from the 2011 Water Program Peer Review FY 09 Lab Call: Research & Assessment for MHK Development 2014 Water Power Program Peer Review Compiled Presentations: Marine

  3. Southeast National Marine Renewable Energy Center (FAU) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Southeast National Marine Renewable Energy Center (FAU) Southeast National Marine Renewable Energy Center (FAU) Southeast National Marine Renewable Energy Center (FAU) 20_snmrec-doe_peer_review_2011_final.pptx (375.69 KB) More Documents & Publications NREL - FY09 Lab Call: Supporting Research and Testing for MHK Presentation from the 2011 Water Program Peer Review Dehlsen (TRL 5 6 System) - Aquantis C-Plane Ocean Current Turbine Project Snohomish PUD No 1 (TRL 7 8 System) - Puget

  4. National Fuel Cell Technology Evaluation Center (NFCTEC) | Department...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Fuel Cell Technologies Office webinar "National Fuel Cell Technology Evaluation Center ... CSD Safety and Reliability Data An Evaluation of the Total Cost of Ownership of Fuel ...

  5. PROJECT PROFILE: National Center for Photovoltaics (NCPV) Community Engagement

    Office of Energy Efficiency and Renewable Energy (EERE)

    This project will support National Center for Photovoltaics (NCPV) educational and outreach activities, including Hands-On PV Experience (HOPE) for students.

  6. The National Energy Research Scientific Computing Center: Forty...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The National Energy Research Scientific Computing Center: Forty Years of Supercomputing ... discovery has been evident in both simulation and data analysis for many years. ...

  7. March 2015 | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    nation's only center for extracting, recycling and processing tritium, an isotope of hydrogen that is a vital component to the nation's nuclear defense. She also visited SRS'...

  8. Electron Microscopy Center | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Microscopy Center Electron Microscopy Center The Electron Microscopy Center Group (EMC) develops and maintains unique capabilities for electron beam characterization and applies those capabilities to solve materials challenges. EMC emphasizes three major areas: materials research, experimental technique and instrumentation development, and operation of unique and state-of-the-art instrumentation. The goals of EMC materials research are closely aligned with those of our user community.

  9. Center for Electrochemical Energy Science | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Science Research Program Publications & Presentations News An Energy Frontier Research Center Exploring the electrochemical reactivity of oxide materials and their...

  10. Endorsement: Residential Treatment Center Los Alamos National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    centers are medically monitored with 24-hour medical availability and 24-hour on-side nursing service for patients with mental illness andor chemical dependency disorders. ...

  11. Chief Scientist, Los Alamos National Laboratory - Center for Integrated

    National Nuclear Security Administration (NNSA)

    Nanotechnologies | National Nuclear Security Administration | (NNSA) Chief Scientist, Los Alamos National Laboratory - Center for Integrated Nanotechnologies Samuel "Tom" Picraux Samuel Picraux November 2009 Los Alamos National Laboratory Fellow Six Los Alamos scientists have been designated 2009 Los Alamos National Laboratory Fellows in recognition of sustained, outstanding scientific contributions and exceptional promise for continued professional achievement. The title of Fellow

  12. The recycling of waste oxides at Great Lakes Division, National Steel Corporation

    SciTech Connect (OSTI)

    Landow, M.P.; Martinez, M.; Barnett, T.

    1997-12-31

    This paper describes the design, construction, and startup operations of a briquetting plant to recycle the revert dust, sludges and other materials generated from the iron and steelmaking processes. The specific plant constructed for National Steel Corporation`s Great Lakes Division was designed to recycle 273,000 metric tons (300,000 net tons) of integrated steel plant revert materials, such as BOP dust, blast furnace flue dust and sludge, and mill scale. The majority of the briquette plant production, about 80 percent, will recycle through the blast furnace and the remaining 20 percent through the steelmaking furnaces. This paper discusses the criteria used for plant design, construction, and startup. The plant design and construction period was 12 months with construction during the last 33 week period. The startup of the plant proceeded extremely well with the ramping up of production rates faster than the proposed startup plan. In addition, the blast furnace production was initiated using a newly developed blast furnace binder.

  13. Pollution prevention opportunity assessment for Sandia National Laboratories/California recycling programs.

    SciTech Connect (OSTI)

    Wrons, Ralph Jordan; Vetter, Douglas Walter

    2007-07-01

    This Pollution Prevention Opportunity Assessment (PPOA) was conducted for the Sandia National Laboratories/California (SNL/CA) Environmental Management Department between May 2006 and March 2007, to evaluate the current site-wide recycling program for potential opportunities to improve the efficiency of the program. This report contains a summary of the information collected and analyses performed with recommended options for implementation. The SNL/NM Pollution Prevention (P2) staff worked with the SNL/CA P2 Staff to arrive at these options.

  14. ATLAS Support Center | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS Support Center Our mission is to support ATLAS physics analyses and hardware R&D, in particular for U.S. ATLAS physicists. We are one of the three ATLAS Support Centers in the U.S. We offer for ATLAS users: A model Tier-3 (T3g) for ATLAS analysis Meeting and office space for visitors A dedicated video conference facility Computer accounts ATLAS software expertise and consultation T3g setup expertise and consultation Analysis expertise and consultation The support center is operated by

  15. The National Carbon Capture Center at the Power Systems Development

    Office of Scientific and Technical Information (OSTI)

    Facility (Other) | SciTech Connect Other: The National Carbon Capture Center at the Power Systems Development Facility Citation Details In-Document Search Title: The National Carbon Capture Center at the Power Systems Development Facility The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy (DOE) and dedicated to the advancement of clean coal technology. In addition to the development of high efficiency coal gasification

  16. The National Carbon Capture Center at the Power Systems Development

    Office of Scientific and Technical Information (OSTI)

    Facility (Technical Report) | SciTech Connect The National Carbon Capture Center at the Power Systems Development Facility Citation Details In-Document Search Title: The National Carbon Capture Center at the Power Systems Development Facility The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of high efficiency coal gasification

  17. Energy Frontier Research Centers | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The above figure depicts an ALD-Modified "Rust" Surface for enhanced electrode activity. Energy Frontier Research Centers Argonne pulls together science and engineering leaders across institutional boundaries, allowing them to take a collaborative approach to specific scientific challenges. In 2009, the U.S. Department of Energy's Office of Science/Office of Basic Energy Sciences established the Energy Frontier Research Centers (EFRCs). These EFRCs are composed of small teams of

  18. Center for Computational Excellence | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Computational Excellence The Center for Computational Excellence (CCE) provides the connections, resources, and expertise that facilitate a more common HEP computing environment and when possible move away from experiment-specific software. This means helping members of the community connect to one another to avoid reinventing the wheel by find existing solutions or engineering experiment-independent solutions. HEP-CCE activity will take place under three types of programs. The first

  19. Center for Transportation Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center for Transportation Research Argonne's Center for Transportation Research (CTR) provides innovative solutions to challenges involving fuel efficiency, emissions, durability, safety, design and operating efficiency, petroleum dependence, interoperability, compatibility and codes/standards compliance and harmonization. The CTR is home to a well-balanced transportation research program staffed by world-class researchers and engineers, who are well known in the technical community and within

  20. National Energy Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Verification and Scaling Prototype PI: John M. Shalf, Lawrence Berkeley National ... NERSC Fields Its First Student Cluster Competition Team June 6, 2016 DoughertyValley5 26 ...

  1. NREL's National Wind Technology Center Director Named ASME Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Wind Technology Center Director Named ASME Fellow For more information contact: Terry Monrad, (303) 275-4096 Golden, Colo., January 25, 1996 -- Dr. Robert W. Thresher, director of the National Wind Technology Center (NWTC), will receive the grade of Fellow from the American Society of Mechanical Engineers (ASME) in ceremonies Jan. 29, 1996, in Houston, Texas. The NWTC, part of the Department of Energy's National Renewable Energy Laboratory (NREL), conducts research on advanced wind

  2. DHS/National Operations Center | National Nuclear Security Administrat...

    National Nuclear Security Administration (NNSA)

    Apply for Our Jobs Our Jobs Working at NNSA Blog Home ... DHSNational Operations Center The Department of Energy ... real-time response management system Federal Radiological ...

  3. Mailing Addresses for National Laboratories and Technology Centers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Mailing Addresses for National Laboratories and Technology Centers Mailing Addresses for National Laboratories and Technology Centers Name Telephone Number U.S. Department of Energy Albany Research Center 1450 Queen Ave. SW Albany, OR 97321-2198 541-967-5892 U.S. Department of Energy Ames Laboratory #311 TASF, Iowa State University Ames, Iowa 50011 515-294-2680 U.S. Department of Energy Argonne National Laboratory (East) 9700 S. Cass Avenue Argonne, IL 60439 630-252-2000

  4. Center for Nanoscale Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rewritable artificial magnetic charge ice More Butterfly Effects: X-rays reveal the photonic crystals in butterfly wings that create color More The Friendly Faces of CNM More A Lithium-Air Battery Based on Lithium Superoxide More Borophene: Atomically Thin Metallic Boron More Video Highlight A Look Inside Argonne's Center for Nanoscale Materials BROCHURES & NEWSLETTERS CNM Overview Brochure CNM Fact Sheet Key Research Areas Nanofabrication & Devices Nanophotonics & Biofunctional

  5. Madelyn Creedon visits Savannah River Site | National Nuclear...

    National Nuclear Security Administration (NNSA)

    She visited the nation's only center for extracting, recycling and processing tritium, an isotope of hydrogen that is a vital component to the nation's nuclear defense. She also ...

  6. Endorsement: Residential Treatment Center Los Alamos National Security, LLC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Adminstered by: Endorsement: Residential Treatment Center Los Alamos National Security, LLC Effective July 1, 2014 lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll This 2014 benefit changes endorsement is made a part of your Blue Cross and Blue Shield of New Mexico

  7. Electron Microscopy Center Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Microscopy Center Capabilities ACAT: Argonne Chromatic Aberration-corrected TEM This FEI Titan 80-300 ST has a CEOS Cc/Cs corrector on the imaging side of the column to correct both spherical and chromatic aberrations. The Cc/Cs corrector also provides greatly-improved resolution and signal for energy filtered imaging and EELS. FEI Tecnai F20ST TEM/STEM This premier analytical transmission electron microscope (AEM) has specialized accessories including an energy-dispersive x-ray

  8. National Agricultural-Based Lubricants (NABL) Center

    SciTech Connect (OSTI)

    Honary, Lou

    2013-09-30

    This project, while defined as a one year project from September 30, 2012 – September 30, 2013, was a continuation of a number of tasks that were defined in previous years. Those tasks were performed and were finalized in this period. The UNI-NABL Center, which has been in operation in various forms since 1991, has closed its facilities since September 2013 and will be phasing out in June 2014. This report covers the individual tasks that were identified in the previous reports and provides closure to each task in its final stage.

  9. Who owns the recyclables

    SciTech Connect (OSTI)

    Parker, B.

    1994-05-01

    On March 31, the California Supreme Court decided the much awaited Rancho Mirage'' case (Waste Management of the Desert, Inc., and the City of Rancho Mirage v. Palm Springs Recycling Center, Inc.), and held that the California Integrated Waste Management Act of 1989 does not allow an exclusive franchise for the collection of recyclables not discarded by their owner.'' This ends a three-year slugfest between secondary materials processors in the state and municipalities and their franchised garbage haulers who also collect and process recyclables as part of their exclusive arrangement. Central to this nationally-watched litigation is a most fundamental question in waste management: at what point in time do articles in the solid waste stream become actual or potentially valuable secondary materials

  10. AARP, National Consumer Law Center, and Public Citizen Comments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to:DEPARTMENT OF ENERGY Smart Grid RFI: Addressing Policy and Logistical Challenges | Department of Energy AARP, National Consumer Law Center, and Public Citizen Comments to:DEPARTMENT OF ENERGY Smart Grid RFI: Addressing Policy and Logistical Challenges AARP, National Consumer Law Center, and Public Citizen Comments to:DEPARTMENT OF ENERGY Smart Grid RFI: Addressing Policy and Logistical Challenges AARP submits the following comments on consumers and smart grid issues in response to the

  11. Kazmerski Leads National Center for Solar Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kazakhstan NNSA's Defense Nuclear Nonproliferation leaders gather in nation's capital Recently, the NNSA held the fourth meeting of the Office of Defense Nuclear Nonproliferation Science Council in Washington, DC. The Science Council provides a way for senior-level leadership from NNSA headquarters and the labs, plants, and sites to share information and discuss strategies to... NNSA Hosts International Nuclear Forensics Workshop with Participants from Eight Countries WASHINGTON, D.C. - During

  12. Nuclear and Radiological Field Training Center | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Complex ... Nuclear and Radiological Field Training Center A site used for nuclear research in Oak Ridge, Tennessee during the Manhattan Project is now the Y-12 National Security Complex's Nuclear and Radiological Field Training Center - the only facility of its kind in the world. The Center provides world-class nuclear and radiological training in a safe, secure, realistic environment using expert instruction and personnel to serve as observers/evaluators for customer training. For military

  13. National Wind Tecnology Center Provides Dual Axis Resonant Blade Testing

    ScienceCinema (OSTI)

    Felker, Fort

    2014-06-10

    NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides experimental laboratories, computer facilities for analytical work, space for assembling components and turbines for atmospheric testing as well as office space for industry researchers. Fort Felker, center director at the NWTC, discusses NREL's state-of-the-art structural testing capabilities and shows a flapwise and edgewise blade test in progress.

  14. National Wind Tecnology Center Provides Dual Axis Resonant Blade Testing

    SciTech Connect (OSTI)

    Felker, Fort

    2013-11-13

    NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides experimental laboratories, computer facilities for analytical work, space for assembling components and turbines for atmospheric testing as well as office space for industry researchers. Fort Felker, center director at the NWTC, discusses NREL's state-of-the-art structural testing capabilities and shows a flapwise and edgewise blade test in progress.

  15. Computing and Computational Sciences Directorate - National Center for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    Computational Sciences Search Go! ORNL * Find People * Contact * Site Index * Comments Home Divisions and Centers Computational Sciences and Engineering Computer Science and Mathematics Information Technology Joint Institute for Computational Sciences National Center for Computational Sciences Supercomputing Projects Awards Employment Opportunities Student Opportunities About Us Organization In the News Contact Us Visitor Information ORNL Research Areas Neutron Sciences Biological Systems

  16. Webinar: National Fuel Cell Technology Evaluation Center | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fuel Cell Technology Evaluation Center Webinar: National Fuel Cell Technology Evaluation Center Below is the text version of the webinar titled "National Fuel Cell Technology Evaluation Center (NFCTEC)," originally presented on March 11, 2014. In addition to this text version of the audio, you can access the presentation slides. Alli Aman: I'm going to go through a few housekeeping items before I turn it over to today's speakers. Today's webinar is being recorded. So a

  17. Connectivity to National Atmospheric Release Advisory Center (NARAC)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-08-11

    To establish requirements for connectivity with the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory for all DOE and NNSA sites and facilities with potential for hazardous materials releases at levels that require emergency response. The requirements of this Notice have been incorporated into DOE O 151.1C, Comprehensive Emergency Management System, dated 11-2-05. No cancellations.

  18. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #21, October - December 2008

    SciTech Connect (OSTI)

    Schell, D.

    2009-01-01

    October to December, 2008 edition of the National Bioenergy Center?s Biochemical Platform Integration Project quarterly newsletter.

  19. Supply Chain Management Center | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Supply Chain Management Center

  20. Los Alamos Neutron Science Center | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Los Alamos Neutron Science Center LANSCE provides the scientific community with intense sources of neutrons supporting both civilian and national security applications. The principal sponsors of LANSCE include the DOE, NNSA, Office of Science and Office of Nuclear Energy, Science and Technology. Users conduct research at state-of-the-art facilities within LANSCE. These facilities include the Isotope Production Facility (IPF); the Lujan Neutron Scattering Center (Lujan

  1. Sandia National Laboratories: Center for Collaboration & Commercialization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (C3) Center for Collaboration & Commercialization (C3) Center for Collaboration & Commercialization (C3) C3 will be an inspiring and energizing place that will serve as the "front door" to Sandia National Laboratories, providing access to the Labs, and building linkages with the community. It will be a place where Sandians and their industrial, academic, and government partners can interact easily and freely, outside the gates. Located in the Sandia Science & Technology

  2. Sandia National Labs: Physical, Chemical and Nano Sciences Center (PCNSC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home Page Home About Us Departments News Partnering Research J. Charles Barbour J. Charles Barbour Director Beverly Eppinga Beverly A. Eppinga Sr. Mgt. Asst. DOI Research Briefs CINT Physical, Chemical, and Nano Sciences Center The Physical, Chemical, and Nano Sciences Center supports Sandia's mission by providing new scientific knowledge.We have two key activities: Support the National Nuclear Security Administration's (NNSA) mission with our unique expertise in science-based solutions

  3. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema (OSTI)

    None

    2013-05-29

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  4. OREGON STATE UNIVERSITY AND NORTHWEST NATIONAL MARINE RENEWABLE ENERGY CENTER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OREGON STATE UNIVERSITY AND NORTHWEST NATIONAL MARINE RENEWABLE ENERGY CENTER WAVE ENERGY TEST PROJECT DRAFT ENVIRONMENTAL ASSESSMENT June 2012 DOE/EA-1917 U.S. Department of Energy Golden Field Office 1617 Cole Boulevard Golden, CO 80401 NNMREC and OSU Wave Energy Test Project Draft Environmental Assessment i June 2012 Contents List of Tables .......................................................................................................................................... iv List of

  5. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #23, April-June 2009

    SciTech Connect (OSTI)

    Schell, D.

    2009-08-01

    April to June, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

  6. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #20, July-September 2008

    SciTech Connect (OSTI)

    Schell, D. J.

    2008-12-01

    July to September, 2008 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

  7. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #25, October - December 2009

    SciTech Connect (OSTI)

    Schell, D.

    2010-01-01

    October to December, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

  8. National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #15, April - June 2007

    SciTech Connect (OSTI)

    Schell, D.

    2007-07-01

    July quarterly update for the National Bioenergy Center's Biochemical Processing Platform Integration Project.

  9. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #22, January - March 2009

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    January to March, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

  10. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #24, July-September 2009

    SciTech Connect (OSTI)

    Schell, D.

    2009-10-01

    July to September, 2009 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter.

  11. National Fuel Cell Technology Evaluation Center (NFCTEC); (NREL) National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Kurtz, Jennifer; Sprik, Sam

    2014-03-11

    This presentation gives an overview of the National Fuel Cell Technology Evaluation Center (NFCTEC), describes how NFCTEC benefits the hydrogen and fuel cell community, and introduces a new fuel cell cost/price aggregation project.

  12. FY09 recycling opportunity assessment for Sandia National Laboratories/New Mexico.

    SciTech Connect (OSTI)

    McCord, Samuel Adam

    2010-07-01

    This Recycling Opportunity Assessment (ROA) is a revision and expansion of the FY04 ROA. The original 16 materials are updated through FY08, and then 56 material streams are examined through FY09 with action items for ongoing improvement listed for most. In addition to expanding the list of solid waste materials examined, two new sections have been added to cover hazardous waste materials. Appendices include energy equivalencies of materials recycled, trends and recycle data, and summary tables of high, medium, and low priority action items.

  13. Recycling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recycling Recycling In support of the Department's goal of implementing environmental sustainability practices across the complex, all DOE employees and contractors should incorporate the three "R's" of wise resource use as a core principle of their daily activities: reduce, reuse, and recycle. The Department's recycling program at Headquarters earns monetary credits from the GSA which is then credited to the Sheila Jo Watkins Memorial Child Development Centers for tuition assistance

  14. Interagency Visitor Center at Santa Monica Mountains National Recreation Area

    High Performance Buildings Database

    Calabasas, CA This project was to develop the first visitor center for the Santa Monica Mountains National Recreation Area located in the Los Angeles, California area. The previous visitor center was across from a shopping mall in rental space at park headquarters in Thousand Oaks. The new facility is centrally located in the park at a much more appropriate natural and cultural resource setting. It is a partnership project with the Mountains Recreation and Conservation Authority, which is a local land conservation and park agency. It is also a joint facility with California State Parks.

  15. Amarillo National Resource Center for Plutonium 1999 plan

    SciTech Connect (OSTI)

    1999-01-30

    The purpose of the Amarillo National Resource Center for Plutonium is to serve the Texas Panhandle, the State of Texas and the US Department of Energy by: conducting scientific and technical research; advising decision makers; and providing information on nuclear weapons materials and related environment, safety, health, and nonproliferation issues while building academic excellence in science and technology. This paper describes the electronic resource library which provides the national archives of technical, policy, historical, and educational information on plutonium. Research projects related to the following topics are described: Environmental restoration and protection; Safety and health; Waste management; Education; Training; Instrumentation development; Materials science; Plutonium processing and handling; and Storage.

  16. Applied wind energy research at the National Wind Technology Center

    SciTech Connect (OSTI)

    Robinson, M C; Tu, P

    1996-06-01

    Applied research activities at the National Wind Technology Center are divided into several technical disciplines. Not surprisingly, these engineering and science disciplines highlight the technology similarities between aircraft and wind turbine design requirements. More often than not, wind turbines are assumed to be a subset of the much larger and more comprehensive list of well understood aerospace engineering accomplishments and it is difficult for the general public to understand the poor performance history of wind turbines in sustained operation. Often overlooked are the severe environmental conditions and operational demands placed on turbine designs which define unique requirements beyond typical aerospace applications. It is the role of the National Wind Technology Center to investigate and quantify the underlying physical phenomena which make the wind turbine design problem unique and to provide the technology advancements necessary to overcome current operational limitations. This paper provides a brief overview of research areas involved with the design of wind turbines.

  17. Students learn STEM leadership skills at Space Center | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Students learn STEM leadership skills at Space Center Wednesday, March 25, 2015 - 11:26am NNSA Blog Three children of NNSA's National Security Campus employees were among 300 students from 39 countries selected to attend the Honeywell Leadership Challenge Academy. The scholarship program uses interactive technology and science-oriented workshops and team exercises to teach students leadership skills in science, technology, engineering and math (STEM). Held at

  18. Vermont and Sandia National Laboratories Announce Energy Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vermont and Sandia National Laboratories Announce Energy Research Center - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear

  19. Energy use baselining study for the National Naval Medical Center

    SciTech Connect (OSTI)

    Parker, G.B.; Halverson, M.A.

    1992-04-01

    This report provides an energy consumption profile for fourteen buildings at the National Naval Medical Center (NNMC) in Bethesda, Maryland. Recommendations are also made for viable energy efficiency projects funded with assistance from the servicing utility (Potomic Electric Power Company) in the form of rebates and incentives available in their Demand Side Management (DSM) program and through Shared Energy Savings (SES) projects. This report also provides estimates of costs and potential energy savings of the recommended projects.

  20. National Atmospheric Release Advisory Center (NARAC) Capabilities for Homeland Security

    SciTech Connect (OSTI)

    Sugiyama, G; Nasstrom, J; Baskett, R; Simpson, M

    2010-03-08

    The Department of Energy's National Atmospheric Release Advisory Center (NARAC) provides critical information during hazardous airborne releases as part of an integrated national preparedness and response strategy. Located at Lawrence Livermore National Laboratory, NARAC provides 24/7 tools and expert services to map the spread of hazardous material accidentally or intentionally released into the atmosphere. NARAC graphical products show affected areas and populations, potential casualties, and health effect or protective action guideline levels. LLNL experts produce quality-assured analyses based on field data to assist decision makers and responders. NARAC staff and collaborators conduct research and development into new science, tools, capabilities, and technologies in strategically important areas related to airborne transport and fate modeling and emergency response. This paper provides a brief overview of some of NARAC's activities, capabilities, and research and development.

  1. Recycling, Source Reduction,

    U.S. Energy Information Administration (EIA) Indexed Site

    ... Recovery and Electricity Generation" "(d)","Relative to National Average Landfill" "GREENHOUSE GAS EFFECTS OF RECYCLING, SOURCE REDUCING, AND COMPOSTING VARIOUS WASTE MATERIALS ...

  2. Pantex to Become Wind Energy Research Center | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) to Become Wind Energy Research Center May 01, 2014 Officials from the National Nuclear Security Administration Production Office (NPO) and Texas Tech University (TTU) signed an agreement today that could pave the way for the Pantex Plant to become a leading force in the drive to increase use of renewable wind energy. File 2014-05-01 NPO Wind Research.docx NPO Press Releases September 2016 (1) August 2016 (1) May 2016 (1) February 2016 (1) January 2016 (1) March 2015

  3. Nuclear Wallet Cards from the National Nuclear Data Center (NNDC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tuli, Jagdish K.

    Nuclear Wallet Cards present properties for ground and isomeric states of all known nuclides. Properties given are: spin and parity assignments, nuclear mass excesses, half-life, isotopic abundances, and decay modes. Appendices contain properties of elements, fundamental constants and other useful information. Nuclear Wallet Cards booklet is published by the National Nuclear Data Center and its electronic (current) version is periodically updated. The Nuclear Wallet Cards by Dr. Jagdish K. Tuli, presently in its 8th edition, is distributed in print as well as in PDA-adaptable Palm Pilot format; the data table as an ASCII file is available upon request. [Taken from http://www.nndc.bnl.gov/wallet/

  4. National Criticality Experiments Research Center: Capability and Status

    SciTech Connect (OSTI)

    Hayes, David K.; Myers, William L.

    2012-07-12

    After seven years, the former Los Alamos Critical Experiments Facility (LACEF), or Pajarito Site, has reopened for business as the National Criticality Experiments Research Center (NCERC) at the Nevada National Security Site (NNSS). Four critical assembly machines (Comet, Planet, Flat-Top, and Godiva-IV) made the journey from Los Alamos to the NNSS. All four machines received safety system upgrades along with new digital control systems. Between these machines, systems ranging from the thermal through the intermediate to the fast spectrum may be assembled. Steady-State, transient, and super-prompt critical conditions may be explored. NCERC is the sole remaining facility in the United States capable of conducting general-purpose nuclear materials handling including the construction and operation of high-multiplication assemblies, delayed critical assemblies, and prompt critical assemblies. Reconstitution of the unique capabilities at NCERC ensures the viability of (1) The Nuclear Renaissance, (2) Stockpile Stewardship, and (3) and the next generation of criticality experimentalists.

  5. National Training Center (NTC) Launches a New DOE-Wide Voluntary...

    Broader source: Energy.gov (indexed) [DOE]

    National Training Center (NTC) Launches a New DOE-Wide Voluntary Training Reciprocity and Collaboration Initiative The Office of Health, Safety and Security's National Training ...

  6. National Wind Technology Center sitewide, Golden, CO: Environmental assessment

    SciTech Connect (OSTI)

    1996-11-01

    The National Renewable Energy Laboratory (NREL), the nation`s primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate.

  7. National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #12, July-September 2006

    SciTech Connect (OSTI)

    Schell, D.

    2006-10-01

    Volume 12 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

  8. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #13, October-December 2006

    SciTech Connect (OSTI)

    Schell, D. J.

    2007-01-01

    Volume 13 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Biochemical Processing Integration Task.

  9. National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #10, January-March 2006

    SciTech Connect (OSTI)

    Not Available

    2006-04-01

    Volume 10 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

  10. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #14, January - March 2007

    SciTech Connect (OSTI)

    Schell, D.

    2007-04-01

    Volume 14 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Biochemical Processing Integration Task.

  11. National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #9, October-December 2005

    SciTech Connect (OSTI)

    Schell, D. J.

    2006-01-01

    Volume 9 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

  12. National Bioenergy Center Biochemical Platform Process Integration Project: Quarterly Update #18, January-March 2008

    SciTech Connect (OSTI)

    Schell, D.

    2008-04-01

    January-March, 2008 edition of the quarterly update for the National Bioenergy Center's Biochemical Platform Integration Project.

  13. National Bioenergy Center Sugar Platform Integration Project: Quarterly Update #11, April-June 2006

    SciTech Connect (OSTI)

    Schell, D.

    2006-07-01

    Volume 11 of a quarterly newsletter that describes the activities of the National Bioenergy Center's Sugar Platform Integration Project.

  14. Y-12 History Center | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 History Center Y-12 History Center Located within the New Hope Center at Y-12, the History Center houses a fascinating collection of informational materials and historical...

  15. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    SciTech Connect (OSTI)

    Felker, Fort

    2013-11-13

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  16. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    ScienceCinema (OSTI)

    Felker, Fort

    2014-06-10

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  17. Chart of Nuclides from the National Nuclear Data Center (NNDC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Chart of Nuclides is a software product that allows users to search and plot nuclear structure and nuclear decay data interactively. The Chart of Nuclides was developed by the National Nuclear Data Center (NNDC). It provides an interface between web users and several databases containing nuclear structure, nuclear decay and some neutron-induced nuclear reaction information. Using the Chart of Nuclides, it is possible to search for nuclear level properties (energy, half-life, spin-parity), gamma-ray information (energy, intensity, multipolarity, coincidences),radiation information following nuclear decay (energy, intensity, dose), and neutron-induced reaction data from the BNL-325 book (thermal cross section and resonance integral). The information provided by the Chart of Nuclides can be seen in tables, level schemes and an interactive chart of nuclides. (From the Chart of Nuclides Description at http://www.nndc.bnl.gov/chart/help/index.jsp?product=chart)

  18. http://nevadarecycles.gov/main/recyclables.htm

    National Nuclear Security Administration (NNSA)

    in Nevada National Recycling Web Resources Earth911.com provides a listing of recycling resources to help you find a way to reuse or recycle much of your solid waste items. ...

  19. Turbine Inflow Characterization at the National Wind Technology Center

    SciTech Connect (OSTI)

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J. K.

    2012-01-01

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results show that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  20. Turbine Inflow Characterization at the National Wind Technology Center: Preprint

    SciTech Connect (OSTI)

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J.

    2012-01-01

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results shown that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  1. Nuclear and Radiological Field Training Center | Y-12 National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Nuclear and Radiological Field Training Center A site used for nuclear research in Oak ... and Radiological Field Training Center - the only facility of its kind in the world. ...

  2. Alternative Fuels Data Center: Idaho National Laboratory Dual-Fuel Buses

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Reduce Operating Costs and Emissions Idaho National Laboratory Dual-Fuel Buses Reduce Operating Costs and Emissions to someone by E-mail Share Alternative Fuels Data Center: Idaho National Laboratory Dual-Fuel Buses Reduce Operating Costs and Emissions on Facebook Tweet about Alternative Fuels Data Center: Idaho National Laboratory Dual-Fuel Buses Reduce Operating Costs and Emissions on Twitter Bookmark Alternative Fuels Data Center: Idaho National Laboratory Dual-Fuel Buses Reduce Operating

  3. Alternative Fuels Data Center: Kansas City Home to Nation's Largest Network

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    of EV Charging Stations Kansas City Home to Nation's Largest Network of EV Charging Stations to someone by E-mail Share Alternative Fuels Data Center: Kansas City Home to Nation's Largest Network of EV Charging Stations on Facebook Tweet about Alternative Fuels Data Center: Kansas City Home to Nation's Largest Network of EV Charging Stations on Twitter Bookmark Alternative Fuels Data Center: Kansas City Home to Nation's Largest Network of EV Charging Stations on Google Bookmark Alternative

  4. Benchmarking survey for recycling.

    SciTech Connect (OSTI)

    Marley, Margie Charlotte; Mizner, Jack Harry

    2005-06-01

    This report describes the methodology, analysis and conclusions of a comparison survey of recycling programs at ten Department of Energy sites including Sandia National Laboratories/New Mexico (SNL/NM). The goal of the survey was to compare SNL/NM's recycling performance with that of other federal facilities, and to identify activities and programs that could be implemented at SNL/NM to improve recycling performance.

  5. Sandia National Labs: Physical, Chemical and Nano Sciences Center (PCNSC):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Departments Vision & Mission/Values Strengths & Capabilities Center Thrusts Resources Organization Chart Departments News Partnering Research Center 1100 Vision & Mission/Values Strengths & Capabilities Center Thrusts Resources Assistants Organization Chart Center 1100 Team Celebration 2011

  6. Amarillo National Resource Center for Plutonium. Quarterly technical progress report, May 1, 1997--July 31, 1997

    SciTech Connect (OSTI)

    1997-09-01

    Progress summaries are provided from the Amarillo National Center for Plutonium. Programs include the plutonium information resource center, environment, public health, and safety, education and training, nuclear and other material studies.

  7. Center for Nanoscale Materials Fact Sheet | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    instruments, and infrastructure for interdisciplinary nanoscience and nanotechnology research. Academic, industrial, and international researchers can access the center...

  8. A Look Inside Argonne's Center for Nanoscale Materials | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory A Look Inside Argonne's Center for Nanoscale Materials Share Topic Programs Materials science Nanoscience

  9. Oak Ridge Metrology Center | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Services Oak Ridge Metrology Center Capabilities Disciplines Contacts Secure Manufacturing Technical Services Ultrasonic cleaner cuts costs, enhances safety Nuclear...

  10. National Energy Research Scientific Computing Center | U.S. DOE...

    Office of Science (SC) Website

    National Labs, Profiles, and Contacts National Energy Research Scientific Computing ... Technology Transfer U.S. Department of Energy SC-29Germantown Building 1000 ...

  11. Brookhaven National Laboratory Collaboration Meeting | MIT-Harvard Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Excitonics National Laboratory Collaboration Meeting November 7, 2014 at 10 - 4 pm/ Brookhaven National Laboratory Visit to Brookhaven to discuss collaboration and tour the facilites.

  12. National Training Center (NTC) Launches a New DOE-Wide Voluntary Training Reciprocity and Collaboration Initiative

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Office of Health, Safety and Security's National Training Center (NTC) recently launched an exciting new DOE-wide voluntary Training Reciprocity and Collaboration initiative. Under the...

  13. Students go on moon walk at U.S. Space Center | National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    go on moon walk at U.S. Space Center | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

  14. NREL: MIDC/National Wind Technology Center M2 Tower (39.91 N, 105.235 W,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1855 m, GMT-7) National Wind Technology Center M2 Tower

  15. Sandia National Laboratories: The Center for Global Security and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cooperation (CGSC) The Center for Global Security and Cooperation (CGSC) International Programs Building The Center for Global Security and Cooperation (formerly the International Programs Building) is home to the Cooperative Monitoring Center in Albuquerque, New Mexico. Located on the east side of Eubank Boulevard, near the entrance of Kirtland Air Force Base (KAFB), the building houses several well-appointed conference rooms, office space, a specialized library for visiting scholars, and a

  16. Radiation Emergency Assistance Center / Training Site | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Radiation Emergency Assistance Center / Training Site NNSA's Radiation Emergency Assistance Center / Training Site (REAC/TS) is on-call 24 hours a day, to provide medical REACTS logo care or consultative assistance involving the exposure to ionizing radiation or radiological contamination. REAC/TS, located in Methodist Medical Center of Oak Ridge in Oak Ridge, Tennessee, was established in 1976 and has assisted in more than 2,400 calls for assistance

  17. Center for Environment and National Security at Scripps | Open...

    Open Energy Info (EERE)

    is an organization based in San Diego, California. "The Center uses the formidable science and research capacity of Scripps Institution of Oceanography to clarify significant...

  18. Contact Us | ANSER Center | Argonne-Northwestern National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Home > Contact Us Visit the ANSER Center Map of Northwestern University Parking Map for NU Evanston Campus Visitor Parking Permits Map of Argonne Please direct general ...

  19. Resources | ANSER Center | Argonne-Northwestern National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchase Order Form Bid Documentation Form Sole Source Justification Form Project Cafe Security Express Form Instructions Project Cafe Security Express Form ANSER Center...

  20. Nuclear Detection and Sensor Testing Center | Y-12 National Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Detection and ... Nuclear Detection and Sensor Testing Center As part of our increased global nuclear nonproliferation efforts, Y-12 commissioned the Nuclear Detection and Sensor ...

  1. National Energy Research Scientific Computing Center NERSC Exceeds...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientific Computing Center NERSC Exceeds Reliability Standards With Tape-Based Active ... on the archive, NERSC's storage capacity and reliability requirements are significant. ...

  2. Y-12's rough roads smoothed over with recycled asphalt | Y-12 National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NNSA's systems administrators keep the computers running For Systems Administrator (SysAdmin) Day, meet some of the men & women keeping NNSA going. Thanks for all you do! Michelle Swinkels, Senior Systems and Network Technologist at NNSA's Lawrence Livermore National Laboratory What excites you about your work for NNSA? I'... NNSA innovation fuels space exploration Today, in accordance with a 1971 Presidential proclamation, the United States commemorates the first human setting foot on the

  3. Working with the National Center of Photovoltaics (NCPV) (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Working with the National Center for Photovoltaics. One-sided sheet that includes projects in various areas: Technology Pathway Partnerships, CRADAs, Incubator Program, Pre-Incubator Program, Universities, Next-Generation Program, and NREL T&E.

  4. U.S. Department of Energy National Training Center Receives eLearning Award

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy U.S. Department of Energy National Training Center Receives eLearning Award U.S. Department of Energy National Training Center Receives eLearning Award February 9, 2015 - 10:53am Addthis U.S. Department of Energy National Training Center (NTC) won a prestigious eLearning award at the recent eLearning Guild DevLearn 2014 Conference and Expo, the leading training and learning event in North America focused on learning technologies. U.S. Department of Energy National

  5. Oak Ridge National Laboratory TRU Waste Processing Center Tank...

    Office of Environmental Management (EM)

    ... BVEST W-Tank System Control Trailer Off-Gas Skid Pipe bridge Jet Pump Skid Charge Vessels W-21 W-22 W-23 Valve Skid SL Mobilization ORNL TRU Waste Processing Center Questions 242 A ...

  6. The National Carbon Capture Center at the Power Systems Development

    Office of Scientific and Technical Information (OSTI)

    None 01 COAL, LIGNITE, AND PEAT; 20 FOSSIL-FUELED POWER PLANTS; 54 ENVIRONMENTAL SCIENCES The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored...

  7. Pantex night held at discovery center | National Nuclear Security...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    event featured an exhibit on the extinct Megalodon shark as well as a mummy in the Lost Egypt exhibit. B&W Pantex sponsored the shark exhibit. Pantex night held at discovery center...

  8. The National Carbon Capture Center at the Power Systems Development...

    Office of Scientific and Technical Information (OSTI)

    Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy (DOE) and dedicated to the advancement of clean coal technology. ...

  9. The National Carbon Capture Center at the Power Systems Development...

    Office of Scientific and Technical Information (OSTI)

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology...

  10. Research Facilities | ANSER Center | Argonne-Northwestern National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Facilities Home > Research > Research Facilities Facilities Beyond the extensive facilities available in laboratories of ANSER Center members, the participating institutions below bring substantial collateral resources that strengthen ANSER Center programs. The Argonne Advanced Photon Source (APS): a third-generation synchrotron hard x-ray source providing unprecedented brilliance and photon flux for state-of-the-art time-resolved structural characterization The Northwestern

  11. The Center for Functional Nanomaterials at Brookhaven National Lab

    SciTech Connect (OSTI)

    Dickerson, James

    2015-07-09

    Scientists from all over the world visit the Center for Functional Nanomaterials to explore strange phenomena hidden on the nanoscale—an exciting and powerful landscape spanning just billionths of a meter. The U.S. Department of Energy opened the CFN, one of its five nanoscale science research centers in the United States, to develop unprecedented energy technologies and solve fundamental scientific puzzles. Learn more about the CFN: https://www.bnl.gov/cfn/.

  12. Federal Radiological Monitoring and Assessment Center | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Federal Radiological Monitoring and Assessment Center The Federal Radiological Monitoring and Assessment Center (FRMAC) is a federal asset available on request by the Department of Homeland Security (DHS) and state and local agencies to respond to a nuclear or radiological incident. The FRMAC is an interagency organization with representation from the NNSA, the Department of Defense (DOD), the Environmental Protection Agency (EPA), the Department of Health

  13. NNSA Contract Reform in Action: Supply Chain Management Center | National

    National Nuclear Security Administration (NNSA)

    Nuclear Security Administration | (NNSA) Contract Reform in Action: Supply Chain Management Center December 22, 2009 As part of NNSA's commitment to being a responsible steward of tax dollars, NNSA Administrator Thomas D'Agostino (then the head of Defense Programs) created the Supply Chain Management Center (SCMC) in 2006 and selected Honeywell, operator of the Kansas City Plant, as the lead contractor for managing the initiative. Since Management and Operating (M&O) contractors spend

  14. Sandia National Laboratories: Microsystems Science & Technology Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facebook Twitter YouTube Flickr RSS Microsystems Science & Technology Center Microsystems Science & Technology Center MSTC Extensive scientific and engineering expertise in areas such as material growth and process development for silicon and compounds, device and product design, advanced packaging technologies for 3-D integration, and reliability and failure analysis expertise MSTC Banner Home of the MESA Complex MESA building The MESA Complex integrates the numerous scientific

  15. NREL: Learning - National Wind Technology Center Video (Text...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The video opens with spinning blades of wind turbines and the National Renewable Energy ... The video shows an offshore wind farm, with several turbines spinning over the ocean. ...

  16. Alternative Fuels Data Center: Clean Cities Helps the National...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    propane mowers on the National Mall to cut petroleum use and reduce air pollutants. ... Fuels Dec. 25, 2010 Tennessee Reduces Pollution With Propane Hybrid Trolleys Dec. 11, ...

  17. Savannah River Technology Center (SRTC) Designated as a National Laboratory

    Broader source: Energy.gov [DOE]

    In 2004, the Secretary of Energy designated SRTC as a national laboratory based on its contributions and important role it has played in both energy and defense programs of the United States. The lab was also renamed the Savannah River National Laboratory (SRNL).

  18. National Wind Technology Center Video (Text Version) | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The video opens with spinning blades of wind turbines and the National Renewable Energy Laboratory logo. It then cuts to images of windmills turning on farms. The video cuts in ...

  19. DOE Announces Selection of National Laboratory Center for Solid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Mediated Emission from InGaN LEDs using Nano-patterned Metal Films Summary: This ... Recipient: Oak Ridge National Laboratory Title: Low-Cost Nano-engineered Transparent ...

  20. Sandia National Laboratories: The Center for Cyber Defenders...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Sandia National Laboratories for high school and college students interested in Computer Science and Cyber Security. A typical Cyber Boot Camp lasts from 9:00am until 3pm...

  1. NISAC | National Infrastructure Simulation and Analysis Center | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NISAC Featured Previous National Transportatio... National Transportation Fuels Model This model informs analyses of the availability of transportation fuel in the event the fuel supply chain is disrupted. The portion of the fuel supply system represented by the network model (see figure) spans from oil fields to fuel distribution terminals. Different components of this system (e.g., crude oil import terminals, refineries,... Read More Chemical Supply Chain ... Chemical Supply Chain Analysis

  2. DOE Establishes National Carbon Capture Center to Speed Deployment of CO2

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capture Processes | Department of Energy DOE Establishes National Carbon Capture Center to Speed Deployment of CO2 Capture Processes DOE Establishes National Carbon Capture Center to Speed Deployment of CO2 Capture Processes May 27, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy has announced the creation of a new National Carbon Capture Center (NCCC) to develop and test technologies to capture carbon dioxide (CO2) from coal-based power plants. Managed and operated by

  3. Solvent recycle/recovery

    SciTech Connect (OSTI)

    Paffhausen, M.W.; Smith, D.L.; Ugaki, S.N.

    1990-09-01

    This report describes Phase I of the Solvent Recycle/Recovery Task of the DOE Chlorinated Solvent Substitution Program for the US Air Force by the Idaho National Engineering Laboratory, EG G Idaho, Inc., through the US Department of Energy, Idaho Operations Office. The purpose of the task is to identify and test recovery and recycling technologies for proposed substitution solvents identified by the Biodegradable Solvent Substitution Program and the Alternative Solvents/Technologies for Paint Stripping Program with the overall objective of minimizing hazardous wastes. A literature search to identify recycle/recovery technologies and initial distillation studies has been conducted. 4 refs.

  4. Nuclear Security Centers of Excellence: Fact Sheet | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Nuclear Security Centers of Excellence: Fact Sheet March 23, 2012 "We [the Participating States]... Acknowledge the need for capacity building for nuclear security and cooperation at bilateral, regional and multilateral levels for the promotion of nuclear security culture through technology development, human resource development, education, and training; and stress the importance of optimizing international cooperation and coordination of

  5. EA-0845: Expansion of the Idaho National Engineering Laboratory Research Center, Idaho Falls, Idaho

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to expand and upgrade facilities at the U.S. Department of Energy's Idaho National Engineering Laboratory Research Center, located in Idaho...

  6. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #26, January - March 2010

    SciTech Connect (OSTI)

    Schell, D.

    2010-04-01

    January-March, 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: understanding and improving sugar measurements in biomass hydrolysates; expansion of the NREL/DOE Biochemical Pilot Plant.

  7. National Bioenergy Center--Biochemical Platform Integration Project: Quarterly Update, Fall 2010

    SciTech Connect (OSTI)

    Schell, D.

    2010-12-01

    Fall 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: rapid analysis models for compositional analysis of intermediate process streams; engineered arabinose-fermenting Zymomonas mobilis strain.

  8. National Air & Space Intelligence Center Holds Program About Empowering Women in the Workplace

    Broader source: Energy.gov [DOE]

    The National Air and Space Intelligence Center, Wright-Patterson Air Force Base, hosted a dialogue on addressing female employees' workplace concerns during an equal opportunity team event Sept. 18.

  9. NREL: National Center for Photovoltaics - John F. Geisz, Ph.D.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inaugural History of the National Center for Photovoltaics In November of 1996, the U.S. Department of Energy (DOE) announced the newly formed National Center for Photovoltaics (NCPV) to be the focal point for developing technology and disseminating information about photovoltaics (PV) in the United States. When created, the NCPV's long-term goals were for PV modules and systems to reach still higher efficiencies with improved reliability, while lowering costs. Then, as now, it was essential to

  10. Bio Centers Announcement at the National Press Club | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bio Centers Announcement at the National Press Club Bio Centers Announcement at the National Press Club June 26, 2007 - 2:08pm Addthis Remarks as Prepared for Secretary Bodman WASHINGTON, DC - Good afternoon, ladies and gentlemen, and welcome. I want to start by thanking Ray Orbach for introducing me today, for the excellent work his people did overseeing this particular announcement and for the excellence he and his team bring to the pursuit of scientific discovery every day on the country's

  11. Laboratory Directed Research & Development Page National Energy Research Scientific Computing Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directed Research & Development Page National Energy Research Scientific Computing Center T3E Individual Node Optimization Michael Stewart, SGI/Cray, 4/9/98 * Introduction * T3E Processor * T3E Local Memory * Cache Structure * Optimizing Codes for Cache Usage * Loop Unrolling * Other Useful Optimization Options * References 1 Laboratory Directed Research & Development Page National Energy Research Scientific Computing Center Introduction * Primary topic will be single processor

  12. National Energy Research Scientific Computing Center | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) National Labs, Profiles, and Contacts » National Energy Research Scientific Computing Center (NERSC) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) SBIR/STTR Home About Funding Opportunity Announcements (FOAs) Applicant and Awardee Resources Quick Links DOE SBIR Online Learning Center External link DOE Phase 0 Small Business Assistance External link Protecting your Trade Secrets, Commercial, and Financial Information Preparing and

  13. U.S. Fish and Wildlife Service National Conservation Training Center, Shepherdstown, West Virginia

    Broader source: Energy.gov [DOE]

    Shepherdstown, West Virginia, is the home of the U.S. Fish and Wildlife Service (USFWS) National Conservation Training Center (NCTC). The 500-acre site includes 16 buildings that accommodate education and training facilities for the USFWS. The center was designed to use passive solar and low-energy technologies that are readily available, easily maintained and cost effective.

  14. Center for Materials at Irradiation and Mechanical Extremes: Los National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alamos Laboratory Arthur F. Voter image of art voter Contact Information Los Alamos National Laboratory Theoretical Division, MS-B268 Phone: (505) 667-6198 Fax: (505) 665-3909 afv@lanl.gov Bio Arthur F. Voter received his Ph.D. in Chemistry from California Institute of Technology in 1983, began postdoctoral work at LANL in 1983, and became a staff member in T-12 (now T-1) in 1985. His research has focused on the development of advanced atomistic simulation methods, especially designing

  15. Case Study: Fuel Cells Increase Reliability at First National Bank of Omaha Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cells Increase Reliability at First National Bank of Omaha Technology Center Fuel cells are a viable primary power choice for data centers-they generate highly reliable on-site power and useful thermal energy, and they can reduce greenhouse gas emissions by more than 50% compared to the baseline. 1 First National Bank of Omaha installed a fuel cell system in 1999 to provide primary power to its data center in Omaha, Nebraska. In more than 89,000 hours of operation through October 2009, the

  16. Energy Department Launches National Fuel Cell Technology Evaluation Center to Advance Fuel Cell Technologies

    Broader source: Energy.gov [DOE]

    Following Energy Secretary Ernest Moniz's visit to the National Renewable Energy Laboratory (NREL), the Energy Department today announced the unveiling of a one-of-its-kind national secure data center dedicated to the independent analysis of advanced hydrogen and fuel cell technologies at the Energy Department's Energy Systems Integration Facility (ESIF) located at NREL in Golden, Colorado.

  17. Eric Rus > Postdoc - Brookhaven National Laboratory > Center Alumni > The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Materials Center at Cornell Eric Rus Postdoc - Brookhaven National Laboratory erus@bnl.gov After receiving his PhD in 2011, Eric stayed on with the Abruña Group for a year-long Postdoc. He has since moved to the Sustainable Energy Technologies Department at Brookhaven National Lab, where he has received a Postdoc position.

  18. Upcoming Webinar March 11: National Fuel Cell Technology Evaluation Center (NFCTEC)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department will present a live webinar on the National Fuel Cell Technology Evaluation Center (NFCTEC), which is dedicated to the independent analysis of advanced hydrogen and fuel cell technologies at the Energy Department's Energy Systems Integration Facility located at the National Renewable Energy Laboratory in Golden, Colorado.

  19. The Computational Physics Program of the national MFE Computer Center

    SciTech Connect (OSTI)

    Mirin, A.A.

    1989-01-01

    Since June 1974, the MFE Computer Center has been engaged in a significant computational physics effort. The principal objective of the Computational Physics Group is to develop advanced numerical models for the investigation of plasma phenomena and the simulation of present and future magnetic confinement devices. Another major objective of the group is to develop efficient algorithms and programming techniques for current and future generations of supercomputers. The Computational Physics Group has been involved in several areas of fusion research. One main area is the application of Fokker-Planck/quasilinear codes to tokamaks. Another major area is the investigation of resistive magnetohydrodynamics in three dimensions, with applications to tokamaks and compact toroids. A third area is the investigation of kinetic instabilities using a 3-D particle code; this work is often coupled with the task of numerically generating equilibria which model experimental devices. Ways to apply statistical closure approximations to study tokamak-edge plasma turbulence have been under examination, with the hope of being able to explain anomalous transport. Also, we are collaborating in an international effort to evaluate fully three-dimensional linear stability of toroidal devices. In addition to these computational physics studies, the group has developed a number of linear systems solvers for general classes of physics problems and has been making a major effort at ascertaining how to efficiently utilize multiprocessor computers. A summary of these programs are included in this paper. 6 tabs.

  20. National Wind Technology Center to Debut New Dynamometer (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New test facility will be used to accelerate the development and deployment of next-generation wind energy technologies. This fall, the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) will open a new dynamometer test facility. Funded by a grant from the U.S. Department of Energy under the American Recovery and Reinvestment Act (ARRA), the new facility will offer wind industry engineers a unique opportunity to conduct a wide range of tests on the

  1. Louis Stokes Midwest Center for Excellence | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    858 2.763 2.718 2.671 2.771 2.788 2000-2016 All Grades - Reformulated Areas 2.858 2.763 2.718 2.671 2.771 2.788 2000-2016 Regular 2.808 2.714 2.668 2.622 2.722 2.739 2000-2016 Reformulated Areas 2.808 2.714 2.668 2.622 2.722 2.739 2000-2016 Midgrade 2.915 2.818 2.774 2.726 2.827 2.844 2000-2016 Reformulated Areas 2.915 2.818 2.774 2.726 2.827 2.844 2000-2016 Premium 3.015 2.918 2.874 2.826 2.927 2.943 2000-2016 Reformulated Areas 3.015 2.918 2.874 2.826 2.927 2.943

    Los alamos national

  2. Online Catalog of Isotope Products from DOE's National Isotope Development Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The National Isotope Development Center (NIDC) interfaces with the User Community and manages the coordination of isotope production across the facilities and business operations involved in the production, sale, and distribution of isotopes. A virtual center, the NIDC is funded by the Isotope Development and Production for Research and Applications (IDPRA) subprogram of the Office of Nuclear Physics in the U.S. Department of Energy Office of Science. The Isotope subprogram supports the production, and the development of production techniques of radioactive and stable isotopes that are in short supply for research and applications. Isotopes are high-priority commodities of strategic importance for the Nation and are essential for energy, medical, and national security applications and for basic research; a goal of the program is to make critical isotopes more readily available to meet domestic U.S. needs. This subprogram is steward of the Isotope Production Facility (IPF) at Los Alamos National Laboratory (LANL), the Brookhaven Linear Isotope Producer (BLIP) facility at BNL, and hot cell facilities for processing isotopes at ORNL, BNL and LANL. The subprogram also coordinates and supports isotope production at a suite of university, national laboratory, and commercial accelerator and reactor facilities throughout the Nation to promote a reliable supply of domestic isotopes. The National Isotope Development Center (NIDC) at ORNL coordinates isotope production across the many facilities and manages the business operations of the sale and distribution of isotopes.

  3. National Bioenergy Center - Biochemical Platform Integration Project: Quarterly Update, Winter 2010

    SciTech Connect (OSTI)

    Schell, D.

    2011-02-01

    Winter 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program topic areas; results from reactive membrane extraction of inhibitors from dilute-acid pretreated corn stover; list of 2010 task publications.

  4. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #28, Spring 2011

    SciTech Connect (OSTI)

    Schell, D. J.

    2011-04-01

    Spring 2011 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: 33rd Symposium on Biotechnology for Fuels and Chemicals program sessions and special topic sessions; assessment of waste water treatment needs; and an update on new arabinose-to-ethanol fermenting Zymomonas mobilis strains.

  5. National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Summer 2011 (Newsletter)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    Summer 2011 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: evaluating new analytical techniques for measuring soluble sugars in the liquid portion of biomass hydrolysates, and measurement of the fraction of insoluble solids in biomass slurries.

  6. National Bioenergy Center Biochemical Platform Integration Project: Quarterly Update #27, April - June 2010

    SciTech Connect (OSTI)

    Schell, D.

    2010-07-01

    April-June, 2010 edition of the National Bioenergy Center's Biochemical Platform Integration Project quarterly newsletter. Issue topics: understanding performance of alternative process configurations for producing ethanol from biomass; investigating Karl Fischer Titration for measuring water content of pretreated biomass slurries.

  7. Amarillo National Resource Center for Plutonium quarterly technical progress report, August 1, 1997--October 31, 1997

    SciTech Connect (OSTI)

    1997-12-31

    This report summarizes activities of the Amarillo National Resource Center for Plutonium during the quarter. The report describes the Electronic Resource Library; DOE support activities; current and future environmental health and safety programs; pollution prevention and pollution avoidance; communication, education, training, and community involvement programs; and nuclear and other material studies, including plutonium storage and disposition studies.

  8. National Center for Nuclear Security: The Nuclear Forensics Project (F2012)

    SciTech Connect (OSTI)

    Klingensmith, A. L.

    2012-03-21

    These presentation visuals introduce the National Center for Nuclear Security. Its chartered mission is to enhance the Nations verification and detection capabilities in support of nuclear arms control and nonproliferation through R&D activities at the NNSS. It has three focus areas: Treaty Verification Technologies, Nonproliferation Technologies, and Technical Nuclear Forensics. The objectives of nuclear forensics are to reduce uncertainty in the nuclear forensics process & improve the scientific defensibility of nuclear forensics conclusions when applied to nearsurface nuclear detonations. Research is in four key areas: Nuclear Physics, Debris collection and analysis, Prompt diagnostics, and Radiochemistry.

  9. The National Criticality Experiments Research Center at the Device Assembly Facility, Nevada National Security Site: Status and Capabilities, Summary Report

    SciTech Connect (OSTI)

    S. Bragg-Sitton; J. Bess; J. Werner

    2011-09-01

    The National Criticality Experiments Research Center (NCERC) was officially opened on August 29, 2011. Located within the Device Assembly Facility (DAF) at the Nevada National Security Site (NNSS), the NCERC has become a consolidation facility within the United States for critical configuration testing, particularly those involving highly enriched uranium (HEU). The DAF is a Department of Energy (DOE) owned facility that is operated by the National Nuclear Security Agency/Nevada Site Office (NNSA/NSO). User laboratories include the Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory (LANL). Personnel bring their home lab qualifications and procedures with them to the DAF, such that non-site specific training need not be repeated to conduct work at DAF. The NNSS Management and Operating contractor is National Security Technologies, LLC (NSTec) and the NNSS Safeguards and Security contractor is Wackenhut Services. The complete report provides an overview and status of the available laboratories and test bays at NCERC, available test materials and test support configurations, and test requirements and limitations for performing sub-critical and critical tests. The current summary provides a brief summary of the facility status and the method by which experiments may be introduced to NCERC.

  10. Letter to Science from Michael Wang, Center for Transportation Research, Argonne National Laboratory

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Letter to Science (Original version submitted to Science on Feb. 14 th , 2008; revised on March 14 th , 2008) Michael Wang Center for Transportation Research Argonne National Laboratory Zia Haq Office of Biomass Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy The article by Searchinger et al. in Sciencexpress ("Use of U.S. Croplands for Biofuels Increases Greenhouse Gases through Emissions from Land Use Change," February 7, 2008) provides a timely

  11. National laboratories` capabilities summaries for the DOE Virtual Center for Multiphase Dynamics (VCMD)

    SciTech Connect (OSTI)

    Joyce, E.L.

    1997-03-01

    The Virtual Center For Multiphase Dynamics (VCMD) integrates and develops the resources of industry, government, academia, and professional societies to enable reliable analysis in multiphase computational fluid dynamics. The primary means of the VCMD focus will be by the creation, support, and validation of a computerized simulation capability for multiphase flow and multiphase flow applications. This paper briefly describes the capabilities of the National Laboratories in this effort.

  12. Data Assimilation J. S. Van Baelen(a) National Center for Atmospheric Research(b)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S. Van Baelen(a) National Center for Atmospheric Research(b) Boulder, CO 80307-3000 Introduction of wind profilers to provide accurate estimates of the momentum and heat fluxes might be their most important contribution yet to the field of atmospheric dynamic studies, especially when those measurements can be ingested into circulation models. In particular, flux measurements in the planetary boundary layer can provide critically needed information on the pel turbulent structures and their effect

  13. Princeton Plasma Physics Lab | A Collaborative National Center for Fusion &

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    Plasma Research emergency.pppl.gov Join Our Mailing List A Collaborative National Center for Fusion & Plasma Research Search form Search Search Home About Overview Learn More Visiting PPPL History Fusion Basics DOE and Fusion Links Speakers Bureau Tours 10 Facts About Fusion Energy Contract Documents News News Room News Archive American Fusion News Press Releases Publications Princeton Journal Watch Blog PPPL Experts Research at Princeton Events Upcoming Events Events Calendar Colloquia

  14. C. Benedetti BELLA Center, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficient modeling of laser-plasma accelerators using the ponderomotive-based code INF&RNO C. Benedetti BELLA Center, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA Laser plasma accelerators (LPAs) can produce accelerating gradients on the order of tens to hundreds of GV/m, making them attractive as compact particle accelerators for radiation production or as drivers for future high-energy colliders. [1, 2] In a laser plasma accelerator, a short and intense laser

  15. Hierarchical Diagnosis A. J. Heymsfield and J. L. Coen National Center for Atmospheric Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A. J. Heymsfield and J. L. Coen National Center for Atmospheric Research Boulder, CO 80307-3000 dispersion of hydrometeors in a stratiform anvil cloud. Given the momentum, vapor, and ice fluxes into the stratiform region and the temperature and humidity structure in the anvil's environment, this model will suggest anvil properties and structure. We will be using microphysical measurements from Kwajalein and the Tropical Ocean Global Atmosphere (TOGA) Coupled Ocean Atmosphere Response Experiment

  16. Development of a National Center for Hydrogen Technology. A Summary Report of Activities Completed at the National Center for Hydrogen Technology - Year 6

    SciTech Connect (OSTI)

    Holmes, Michael

    2012-08-01

    The Energy & Environmental Research Center (EERC) located in Grand Forks, North Dakota, has operated the National Center for Hydrogen Technology (NCHT) since 2005 under a Cooperative Agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL). The EERC has a long history of hydrogen generation and utilization from fossil fuels, and under the NCHT Program, the EERC has accelerated its research on hydrogen generation and utilization topics. Since the NCHT's inception, the EERC has received more than $65 million in funding for hydrogen-related projects ($24 million for projects in the NCHT, which includes federal and corporate partner development funds) involving more than 85 partners (27 with the NCHT). The NCHT Program's nine activities span a broad range of technologies that align well with the Advanced Fuels Program goals and, specifically, those described in the Hydrogen from Coal Program research, development, and demonstration (RD&D) plan that refers to realistic testing of technologies at adequate scale, process intensification, and contaminant control. A number of projects have been completed that range from technical feasibility of several hydrogen generation and utilization technologies to public and technical education and outreach tools. Projects under the NCHT have produced hydrogen from natural gas, coal, liquid hydrocarbons, and biomass. The hydrogen or syngas generated by these processes has also been purified in many of these instances or burned directly for power generation. Also, several activities are still undergoing research, development, demonstration, and commercialization at the NCHT. This report provides a summary overview of the projects completed in Year 6 of the NCHT. Individual activity reports are referenced as a source of detailed information on each activity.

  17. Development of a national center for hydrogen technology. A summary report of activities completed at the national center hydrogen technology from 2005 to 2010

    SciTech Connect (OSTI)

    Holmes, Michael J.

    2011-06-01

    The Energy & Environmental Research Center (EERC) located in Grand Forks, North Dakota, has operated the National Center for Hydrogen Technology® (NCHT®) since 2005 under a Cooperative Agreement with the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL). The EERC has a long history of hydrogen generation and utilization from fossil fuels, and under the NCHT Program, the EERC has accelerated its research of hydrogen generation and utilization topics. Since the NCHT's inception, the EERC has received more than $65 million in funding of hydrogen-related projects ($20 million for the NCHT project which includes federal and corporate development partner funds) involving more than 85 partners (27 with the NCHT). The NCHT project's 19 activities span a broad range of technologies that align well with the Advanced Fuels Program goals and, specifically, those described in the Hydrogen from Coal Program research, development, and demonstration (RD&D) plan. A number of projects have been completed which range from technical feasibility of several hydrogen generation and utilization technologies to public and technical education and outreach tools. Projects under the NCHT have produced hydrogen from natural gas, coal, liquid hydrocarbons, and biomass. The hydrogen or syngas generated by these processes has also been purified to transportation-grade quality in many of these instances or burned directly for power generation. Also, several activities are still undergoing research, development, demonstration, and commercialization at the NCHT. This report provides a summary overview of the projects completed in the first 5 years of the NCHT. Individual activity reports are referenced as a source of detailed information on each activity.

  18. The National Center for Biomedical Ontology: Advancing Biomedicinethrough Structured Organization of Scientific Knowledge

    SciTech Connect (OSTI)

    Rubin, Daniel L.; Lewis, Suzanna E.; Mungall, Chris J.; Misra,Sima; Westerfield, Monte; Ashburner, Michael; Sim, Ida; Chute,Christopher G.; Solbrig, Harold; Storey, Margaret-Anne; Smith, Barry; Day-Richter, John; Noy, Natalya F.; Musen, Mark A.

    2006-01-23

    The National Center for Biomedical Ontology(http://bioontology.org) is a consortium that comprises leadinginformaticians, biologists, clinicians, and ontologists funded by the NIHRoadmap to develop innovative technology and methods that allowscientists to record, manage, and disseminate biomedical information andknowledge in machine-processable form. The goals of the Center are: (1)to help unify the divergent and isolated efforts in ontology developmentby promoting high quality open-source, standards-based tools to create,manage, and use ontologies, (2) to create new software tools so thatscientists can use ontologies to annotate and analyze biomedical data,(3) to provide a national resource for the ongoing evaluation,integration, and evolution of biomedical ontologies and associated toolsand theories in the context of driving biomedical projects (DBPs), and(4) to disseminate the tools and resources of the Center and to identify,evaluate, and communicate best practices of ontology development to thebiomedical community. The Center is working toward these objectives byproviding tools to develop ontologies and to annotate experimental data,and by developing resources to integrate and relate existing ontologiesas well as by creating repositories of biomedical data that are annotatedusing those ontologies. The Center is providing training workshops inontology design, development, and usage, and is also pursuing research inontology evaluation, quality, and use of ontologies to promote scientificdiscovery. Through the research activities within the Center,collaborations with the DBPs, and interactions with the biomedicalcommunity, our goal is to help scientists to work more effectively in thee-science paradigm, enhancing experiment design, experiment execution,data analysis, information synthesis, hypothesis generation and testing,and understand human disease.

  19. The National Center for Biomedical Ontology: Advancing Biomedicinethrough Structured Organization of Scientific Knowledge

    SciTech Connect (OSTI)

    Rubin, Daniel L.; Lewis, Suzanna E.; Mungall, Chris J.; Misra,Sima; Westerfield, Monte; Ashburner, Michael; Sim, Ida; Chute,Christopher G.; Solbrig, Harold; Storey, Margaret-Anne; Smith, Barry; Day-Richter, John; Noy, Natalya F.; Musen, Mark A.

    2006-01-23

    The National Center for Biomedical Ontology (http://bioontology.org) is a consortium that comprises leading informaticians, biologists, clinicians, and ontologists funded by the NIH Roadmap to develop innovative technology and methods that allow scientists to record, manage, and disseminate biomedical information and knowledge in machine-processable form. The goals of the Center are: (1) to help unify the divergent and isolated efforts in ontology development by promoting high quality open-source, standards-based tools to create, manage, and use ontologies, (2) to create new software tools so that scientists can use ontologies to annotate and analyze biomedical data, (3) to provide a national resource for the ongoing evaluation, integration, and evolution of biomedical ontologies and associated tools and theories in the context of driving biomedical projects (DBPs), and (4) to disseminate the tools and resources of the Center and to identify, evaluate, and communicate best practices of ontology development to the biomedical community. The Center is working toward these objectives by providing tools to develop ontologies and to annotate experimental data, and by developing resources to integrate and relate existing ontologies as well as by creating repositories of biomedical data that are annotated using those ontologies. The Center is providing training workshops in ontology design, development, and usage, and is also pursuing research in ontology evaluation, quality, and use of ontologies to promote scientific discovery. Through the research activities within the Center, collaborations with the DBPs, and interactions with the biomedical community, our goal is to help scientists to work more effectively in the e-science paradigm, enhancing experiment design, experiment execution, data analysis, information synthesis, hypothesis generation and testing, and understand human disease.

  20. Future Bottlenecks for Industrial Water Recycling. Brady, Patrick...

    Office of Scientific and Technical Information (OSTI)

    Future Bottlenecks for Industrial Water Recycling. Brady, Patrick V. Abstract Not Provided Sandia National Laboratories USDOE National Nuclear Security Administration (NNSA) United...

  1. News | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Researchers with the Argonne Center for Collaborative Energy Storage Science (ACCESS) will partner with industry to improve lead-acid battery performance. (Photo: Shutterstock) Lead-acid battery companies join forces with Argonne National Laboratory to enhance battery performance Full Story » Exploring the unrealized potential of lead batteries is the goal of a new collaboration between Argonne National Laboratory and two leading lead recycling and lead battery manufacturing companies, RSR

  2. Mr. Frank Russo, Project Director Bechtel National, Inc. 2435 Stevens Center Place

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NTO. ~,U.S. Department of Energy P.O. Box 450, MSIN 1-6-60 IAIFSO\Richland, Washington 99352 SEP 1 7 Z012 I 2-WTP-0291 Mr. Frank Russo, Project Director Bechtel National, Inc. 2435 Stevens Center Place Richland. Washington 99354 Dear Mr. Russo: CONTRACT NO. DF-AC27-01 RV 14136 -AWARD ELIF 1)ETERMINATION FOR PERIO[D 2 012 -A References: 1 . Contract No. DE-AC27-()IRV 14136 -Section 13.7 Ax\ ard Fee Administration. 2. Performance Evaluation and Measurement Plan (PFN'P) for Award Fee Period 2012-A.

  3. National Bioenergy Center, Biochemical Platform Integration Project: Quarterly Update, Winter 2011-2012 (Newsletter)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    Winter 2011-2012 issue of the National Bioenergy Center Biochemical Platform Integration Project quarterly update. Issue topics: 34th Symposium on Biotechnology for Fuels and Chemicals; feasibility of NIR spectroscopy-based rapid feedstock reactive screening; demonstrating integrated pilot-scale biomass conversion. The Biochemical Process Integration Task focuses on integrating the processing steps in enzyme-based lignocellulose conversion technology. This project supports the U.S. Department of Energy's efforts to foster development, demonstration, and deployment of 'biochemical platform' biorefineries that economically produce ethanol or other fuels, as well as commodity sugars and a variety of other chemical products, from renewable lignocellulosic biomass.

  4. DFPARThIl!NT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlIfiNATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    s DFPARThIl!NT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERlIfiNATION Page 1 of3 RECIPIENT :State of Hawaii DBEOT STATE : HI PROJECf TITLE: Loan Loss Reserve Funding Opportunity Announc~ment Number DE-FOA-0000052 Procurement Inslrument Number DE-EEOOOO216 NEPA Control Number em Number GF0-0000216-001 GO Based on my review ofthe informalion concerning the proposed aClion, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: ex, EA, EIS

  5. US DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DEI'ER1IllNATION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE PROJECT MANAGEMENT CENTER NEPA DEI'ER1IllNATION Page I of3 RECIPIENT:Verdant Power, Inc. STATE: NY PROJECT TITLE : Advancement of the Kinetic Hydropower System (KHPS) to DOE TRL 7/8 Funding Opportunity Announcement Number DE-FOA-OOOO293 Procurement Instrument Number NEPA Control Number CID Number DE-EEOOO5929 GF0-0005929-OO1 EE5929 Based on my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following

  6. Introducing National Center for Genome Resources (NCGR) Informatics (Seventh Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting 2012)

    ScienceCinema (OSTI)

    Crow, John [National Center for Genome Resources

    2013-01-25

    John Crow from the National Center for Genome Resources discusses his organization's informatics at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.

  7. Type B Accident Investigation of the Exertional Heat Illnesses during SPOTC 2006 at the National Training Center, Albuquerque, New Mexico

    Office of Environmental Management (EM)

    Type B Accident Investigation Exertional Heat Illnesses During SPOTC 2006 at the National Training Center Albuquerque, New Mexico July 2006 This Page Intentionally Left Blank ii This Page Intentionally Left Blank TABLE OF CONTENTS ACRONYMS ................................................................................................................................. v

  8. LANL exceeds Early Recovery Act recycling goals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL exceeds Early Recovery Act recycling goals LANL exceeds Early Recovery Act recycling goals Lab demolition projects under the American Recovery and Reinvestment Act have recovered more than 136 tons of recyclable metal since work began last year. March 8, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  9. Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling Sandia Algae Researchers Cut Costs with Improved Nutrient Recycling October 5, 2015 - 12:16pm Addthis Ryan Davis and Sandia National Laboratories colleagues have developed a method to recycle critical and costly algae cultivation nutrients phosphate and nitrogen. Photo by Dino Vournas. Ryan Davis and Sandia National Laboratories colleagues have developed a method to recycle critical and costly algae

  10. More Recycling Means Less Waste for Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recycling Means Less Waste for Complex What do batteries, lead bricks, and mineral oil have in common? They are all on the list of recently recycled materials at the Nevada National Security Site (NNSS). The goal of these recycling efforts is to minimize waste volumes at the site and encourage the repurposing of materials across the U.S. Department of Energy (DOE) Complex. In September 2011, a total of 33,000 pounds of lead was shipped from the NNSS to the recycling company, Toxco Inc. A portion

  11. Nudat: Nuclear Structure and Decay Data from the National Nuclear Data Center (NNDC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    NuDat allows users to search and plot nuclear structure and decay data interactively. NuDat was developed by the National Nuclear Data Center (NNDC)but utilizes contributions from physicists around the world. It provides an interface between web users and several databases containing nuclear structure, nuclear decay and some neutron-induced nuclear reaction information. Users can search for nuclear level properties (energy, half-life, spinparity), gamma-ray information (energy, intensity, multipolarity, coincidences), radiation information following nuclear decay (energy, intensity, dose), and neutron-induced reaction data from the BNL-325 book (thermal cross section and resonance integral). The information provided by NuDat 2 can be viewed in tables, level schemes and an interactive chart of nuclides.

  12. INEEL Lead Recycling in a Moratorium Environment

    SciTech Connect (OSTI)

    Kooda, K. E.; Galloway, K.; McCray, C. W.; Aitken, D. W.

    2003-02-26

    Since 1999, the Idaho National Engineering and Environmental Laboratory (INEEL) Lead Project successfully recycled over 700,000 pounds of excess INEEL lead to the private sector. On February 14, 2000, the Secretary of Energy, Bill Richardson, formalized the January 12, 2000, moratorium on recycling radioactive scrap metal that prevented the unrestricted release of recycled scrap metals to the private sector. This moratorium created significant problems for the INEEL lead recycling program and associated plans; however, through the cooperative efforts of the INEEL and Idaho State University as well as innovative planning and creative thinking the recycling issues were resolved. This collaboration has recycled over 160,000 pounds of excess lead to Idaho State University with a cost savings of over $.5M.

  13. INEEL Lead Recycling in a Moratorium Environment

    SciTech Connect (OSTI)

    Kooda, Kevin Evan; Mc Cray, Casey William; Aitken, Darren William; Galloway, Kelly

    2003-02-01

    Since 1999, the Idaho National Engineering and Environmental Laboratory (INEEL) Lead Project successfully recycled over 700,000 pounds of excess INEEL lead to the private sector. On February 14, 2000, the Secretary of Energy, Bill Richardson, formalized the January 12, 2000, moratorium on recycling radioactive scrap metal that prevented the unrestricted release of recycled scrap metals to the private sector. This moratorium created significant problems for the INEEL lead recycling program and associated plans; however, through the cooperative efforts of the INEEL and Idaho State University as well as innovative planning and creative thinking the recycling issues were resolved. This collaboration has recycled over 160,000 pounds of excess lead to Idaho State University with a cost savings of over $.5M.

  14. The National Carbon Capture Center at the Power Systems Development Facility: Topical Report

    SciTech Connect (OSTI)

    None, None

    2011-03-01

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The newly established NCCC will include multiple, adaptable test skids that will allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period One reporting period, efforts at the PSDF/NCCC focused on developing a screening process for testing consideration of new technologies; designing and constructing pre- and post-combustion CO2 capture facilities; developing sampling and analytical methods; expanding fuel flexibility of the Transport Gasification process; and operating the gasification process for technology research and for syngas generation to test syngas conditioning technologies.

  15. NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jager, D.; Andreas, A.

    The National Wind Technology Center (NWTC), located at the foot of the Rocky Mountains near Boulder, Colorado, is a world-class research facility managed by NREL for the U.S. Department of Energy. NWTC researchers work with members of the wind energy industry to advance wind power technologies that lower the cost of wind energy through research and development of state-of-the-art wind turbine designs. NREL's Measurement and Instrument Data Center provides data from NWTC's M2 tower which are derived from instruments mounted on or near an 82 meter (270 foot) meteorological tower located at the western edge of the NWTC site and about 11 km (7 miles) west of Broomfield, and approximately 8 km (5 miles) south of Boulder, Colorado. The data represent the mean value of readings taken every two seconds and averaged over one minute. The wind speed and direction are measured at six heights on the tower and air temperature is measured at three heights. The dew point temperature, relative humidity, barometric pressure, totalized liquid precipitation, and global solar radiation are also available.

  16. NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jager, D.; Andreas, A.

    1996-09-24

    The National Wind Technology Center (NWTC), located at the foot of the Rocky Mountains near Boulder, Colorado, is a world-class research facility managed by NREL for the U.S. Department of Energy. NWTC researchers work with members of the wind energy industry to advance wind power technologies that lower the cost of wind energy through research and development of state-of-the-art wind turbine designs. NREL's Measurement and Instrument Data Center provides data from NWTC's M2 tower which are derived from instruments mounted on or near an 82 meter (270 foot) meteorological tower located at the western edge of the NWTC site and about 11 km (7 miles) west of Broomfield, and approximately 8 km (5 miles) south of Boulder, Colorado. The data represent the mean value of readings taken every two seconds and averaged over one minute. The wind speed and direction are measured at six heights on the tower and air temperature is measured at three heights. The dew point temperature, relative humidity, barometric pressure, totalized liquid precipitation, and global solar radiation are also available.

  17. Los Alamos neutron science center nuclear weapons stewardship and unique national scientific capabilities

    SciTech Connect (OSTI)

    Schoenberg, Kurt F

    2010-12-15

    This presentation gives an overview of the Los Alamos Neutron Science Center (LANSCE) and its contributions to science and the nuclear weapons program. LANSCE is made of multiple experimental facilities (the Lujan Center, the Weapons Neutron Research facility (WNR), the Ultra-Cold Neutron facility (UCN), the proton Radiography facility (pRad) and the Isotope Production Facility (IPF)) served by the its kilometer long linear accelerator. Several research areas are supported, including materials and bioscience, nuclear science, materials dynamics, irradiation response and medical isotope production. LANSCE is a national user facility that supports researchers worldwide. The LANSCE Risk Mitigation program is currently in progress to update critical accelerator equipment to help extend the lifetime of LANSCE as a key user facility. The Associate Directorate of Business Sciences (ADBS) plays an important role in the continued success of LANSCE. This includes key procurement support, human resource support, technical writing support, and training support. LANSCE is also the foundation of the future signature facility MARIE (Matter-Radiation Interactions in Extremes).

  18. THE NATIONAL CARBON CAPTURE CENTER AT THE POWER SYSTEMS DEVELOPMENT FACILITY

    SciTech Connect (OSTI)

    None, None

    2011-05-11

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period Two reporting period, efforts at the PSDF/NCCC focused on new technology assessment and test planning; designing and constructing post-combustion CO2 capture facilities; testing of pre-combustion CO2 capture and related processes; and operating the gasification process to develop gasification related technologies and for syngas generation to test syngas conditioning technologies.

  19. The national carbon capture center at the power systems development facility

    SciTech Connect (OSTI)

    None, None

    2012-09-01

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of advanced coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to study CO2 capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity. During the Budget Period Three reporting period, efforts at the NCCC/PSDF focused on testing of pre-combustion CO2 capture and related processes; commissioning and initial testing at the post-combustion CO2 capture facilities; and operating the gasification process to develop gasification related technologies and for syngas generation to test syngas conditioning technologies.

  20. Evaluated Nuclear Structure Data File (ENSDF) from the National Nuclear Data Center (NNDC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    ENSDF contains evaluated nuclear structure and decay data in a standard format. An international network of evaluators contributes to the database, which is maintained by the National Nuclear Data Center at Brookhaven National Laboratory. Information in the database is regularly updated to reflect revised evaluation results. Most of the recently completed evaluations are published in Nuclear Data Sheets, a monthly journal published by Academic Press, a division of Elsevier Science. For each nuclide, all known experimental data used to deduce nuclear structure information are included. Each type of experiment is presented as a separate dataset. In addition, there is a dataset of "adopted" level and gamma-ray transition properties, which represent the evaluator's determination of the best values for these properties, based on all available experimental data. As of February 2008, the ENSDF database contains 16236 datasets for 3030 nuclides. (Taken from the NNDC's information page on ENSDF at http://www.nndc.bnl.gov/ensdf/ensdf_info.jsp) ENSDF may be browsed or the data may be retrieved based on nuclide, charge, or mass, or by indexed reaction and decay quantities. (Specialized interface)

  1. News Room | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Room Researchers with the Argonne Center for Collaborative Energy Storage Science (ACCESS) will partner with industry to improve lead-acid battery performance. (Photo: Shutterstock) Lead-acid battery companies join forces with Argonne National Laboratory to enhance battery performance Full Story » Exploring the unrealized potential of lead batteries is the goal of a new collaboration between Argonne National Laboratory and two leading lead recycling and lead battery manufacturing

  2. The National Carbon Capture Center at the Power Systems Development Facility

    SciTech Connect (OSTI)

    None, None

    2014-07-14

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy (DOE) and dedicated to the advancement of clean coal technology. In addition to the development of high efficiency coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to promote new technologies for CO2 capture from coal-derived flue gas and syngas. The NCCC includes multiple, adaptable test skids that allow technology development of CO2 capture concepts using coal-derived flue gas and syngas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development paths to commercialization. During the calendar year 2013 portion of the Budget Period Four reporting period, efforts at the NCCC focused on post-combustion CO2 capture, gasification, and pre-combustion CO2 capture technology testing. Preparations for future testing were on-going as well, and involved facility upgrades and collaboration with numerous technology developers. In the area of post-combustion, testing was conducted on an enzyme-based technology, advanced solvents from two major developers, and a gas separation membrane. During the year, the gasification process was operated for three test runs, supporting development of water-gas shift and COS hydrolysis catalysts, a mercury sorbent, and several gasification support technologies. Syngas produced during gasification operation was also used for pre-combustion capture technologies, including gas separation membranes from three different technology developers, a CO2 sorbent, and CO2 solvents.

  3. The National Carbon Capture Center at the Power Systems Development Facility

    SciTech Connect (OSTI)

    None, None

    2014-12-30

    The National Carbon Capture Center (NCCC) at the Power Systems Development Facility supports the Department of Energy (DOE) goal of promoting the United States’ energy security through reliable, clean, and affordable energy produced from coal. Work at the NCCC supports the development of new power technologies and the continued operation of conventional power plants under CO2 emission constraints. The NCCC includes adaptable slipstreams that allow technology development of CO2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development path to commercialization. During its first contract period, from October 1, 2008, through December 30, 2014, the NCCC designed, constructed, and began operation of the Post-Combustion Carbon Capture Center (PC4). Testing of CO2 capture technologies commenced in 2011, and through the end of the contract period, more than 25,000 hours of testing had been achieved, supporting a variety of technology developers. Technologies tested included advanced solvents, enzymes, membranes, sorbents, and associated systems. The NCCC continued operation of the existing gasification facilities, which have been in operation since 1996, to support the advancement of technologies for next-generation gasification processes and pre-combustion CO2 capture. The gasification process operated for 13 test runs, supporting over 30,000 hours combined of both gasification and pre-combustion technology developer testing. Throughout the contract period, the NCCC incorporated numerous modifications to the facilities to accommodate technology developers and increase test capabilities. Preparations for further testing were ongoing to continue advancement of the most promising technologies for

  4. The National Carbon Capture Center at the Power Systems Development Facility

    SciTech Connect (OSTI)

    2012-12-31

    The Power Systems Development Facility (PSDF) is a state-of-the-art test center sponsored by the U.S. Department of Energy and dedicated to the advancement of clean coal technology. In addition to the development of high efficiency coal gasification processes, the PSDF features the National Carbon Capture Center (NCCC) to promote new technologies for CO{sub 2} capture from coal-derived syngas and flue gas. The NCCC includes multiple, adaptable test skids that allow technology development of CO{sub 2} capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research at the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development path to commercialization. During the calendar year 2012 portion of the Budget Period Four reporting period, efforts at the NCCC focused on testing of pre- and post-combustion CO{sub 2} capture processes and gasification support technologies. Preparations for future testing were on-going as well, and involved facility upgrades and collaboration with numerous technology developers. In the area of pre-combustion, testing was conducted on a new water-gas shift catalyst, a CO{sub 2} solvent, and gas separation membranes from four different technology developers, including two membrane systems incorporating major scale-ups. Post-combustion tests involved advanced solvents from three major developers, a gas separation membrane, and two different enzyme technologies. An advanced sensor for gasification operation was evaluated, operation with biomass co-feeding with coal under oxygen-blown conditions was achieved, and progress continued on refining several gasification support technologies.

  5. Recycling Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recycling Programs Recycling Programs The Office of Administration manages many recycling activities at DOE Headquarters that significantly impact energy and the environment. The ...

  6. Super recycled water: quenching computers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Super recycled water: quenching computers Super recycled water: quenching computers New facility and methods support conserving water and creating recycled products. Using reverse ...

  7. Characterization of silicon photomultipliers at National Nano-Fab Center for PET-MR

    SciTech Connect (OSTI)

    Kim, Hyoungtaek; Cho, Gyuseong; Sul, Woo Suk

    2014-10-15

    The silicon photomultipliers (SiPMs) were fabricated for magnetic resonance compatible positron emission tomography (PET) applications using customized CMOS processes at National NanoFab Center. Each micro-cell consists of a shallow n+/p well junction on a p-type epitaxial wafer and passive quenching circuit was applied. The size of the SiPM is 3 3 mm{sup 2} and the pitch of each micro-cell is 65 ?m. In this work, several thousands of SiPMs were packaged and tested to build a PET ring detector which has a 60 mm axial and 390 mm radial field of view. I-V characteristics of the SiPMs are shown good uniformity and breakdown voltage is around 20 V. The photon detection efficiency was measured via photon counting method and the maximum value was recorded as 16% at 470 nm. The gamma ray spectrum of a Ge-68 isotope showed nearly 10% energy resolution at 511 keV with a 3 3 20 mm{sup 3} LYSO crystal.

  8. Expansion of the Idaho National Engineering Laboratory Research Center: Environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The US Department of Energy (DOE) proposes to expand and upgrade facilities at the Idaho National Engineering Laboratory (INEL) Research Center (IRC) by constructing a research laboratory addition on the northeast corner of existing laboratory building; upgrading the fume hood system in the existing laboratory building; and constructing a hazardous waste handling facility and a chemical storage building. The DOE also proposes to expand the capabilities of biotechnology research programs by increasing use of radiolabeled compounds to levels in excess of current facility limits for three radionuclides (carbon-14, sulfur-35, and phosphorus-32). This Environmental assessment identifies the need for the new facilities, describes the proposed projects and environmental setting, and evaluates the potential environmental effects. Impacts associated with current operation are discussed and established as a baseline. Impacts associated with the proposed action and cumulative impacts are described against this background. Alternatives to the proposed action (No action; Locating proposed facilities at a different site) are discussed and a list of applicable regulations is provided. The no action alternative is continuation of existing operations at existing levels as described in Section 4 of this EA. Proposed facilities could be constructed at a different location, but these facilities would not be useful or practical since they are needed to provide a support function for IRC operations. Further, the potential environmental impacts would not be reduced if a different site was selected.

  9. National Nuclear Security Administration Service Center Environmental Programs Long-Term Environmental Stewardship Baseline Handbook

    SciTech Connect (OSTI)

    Griswold, D. D.; Rohde, K.

    2003-02-26

    As environmental restoration (ER) projects move toward completion, the planning, integration, and documentation of long-term environmental stewardship (LTES) activities is increasingly important for ensuring smooth transition to LTES. The Long-Term Environmental Stewardship Baseline Handbook (Handbook) prepared by the National Nuclear Security Administration (NNSA) Service Center Environmental Programs Department (EPD) outlines approaches for integrating site-specific LTES planning and implementation into site ER baseline documentation. Since LTES will vary greatly from site to site, the Handbook also provides for flexibility in addressing LTES in ER Project life-cycle baselines, while clearly identifying Environmental Management (EM) requirements. It provides suggestions for enacting LTES principles and objectives through operational activities described in site-specific LTES plans and life cycle ER Project baseline scope, cost, and schedule documentation and tools for more thorough planning, better quantification, broader understanding of risk and risk management factors, and more comprehensive documentation. LTES planning applied to baselines in a phased approach will facilitate seamlessly integrating LTES into site operational activities, thereby minimizing the use of resources.

  10. THE NATIONAL CENTER FOR RADIOECOLOGY: A NETWORK OF EXCELLENCE FOR ENVIRONMENTAL AND HUMAN RADIATION RISK REDUCTION

    SciTech Connect (OSTI)

    Jannik, T.

    2013-01-09

    Radioecology in the United States can be traced back to the early 1950s when small research programs were established to address the fate and effects of radionuclides released in the environment from activities at nuclear facilities. These programs focused primarily on local environmental effects, but global radioactive fallout from nuclear weapons testing and the potential for larger scale local releases of radioisotopes resulted in major concerns about the threat, not only to humans, but to other species and to ecosystems that support all life. These concerns were shared by other countries and it was quickly recognized that a multi-disciplinary approach would be required to address and understand the implications of anthropogenic radioactivity in the environment. The management, clean-up and long-term monitoring of legacy wastes at Department of Energy (DOE), Department of Defense (DOD), and Nuclear Regulatory Commission (NRC)-regulated facilities continues to be of concern as long as nuclear operations continue. Research conducted through radioecology programs provides the credible scientific data needed for decision-making purposes. The current status of radioecology programs in the United States are: fragmented with little coordination to identify national strategies and direct programs; suffering from a steadily decreasing funding base; soon to be hampered by closure of key infrastructure; hampered by aging and retiring workforce (loss of technical expertise); and in need of training of young scientists to ensure continuation of the science (no formal graduate education program in radioecology remaining in the U.S.). With these concerns in mind, the Savannah River National Laboratory (SRNL) took the lead to establish the National Center for Radioecology (NCoRE) as a network of excellence of the remaining radioecology expertise in the United States. As part of the NCoRE mission, scientists at SRNL are working with six key partner universities to re-establish a

  11. MIDWESTERN REGIONAL CENTER OF THE DOE NATIONAL INSTITUTE FOR CLIMATIC CHANGE RESEARCH

    SciTech Connect (OSTI)

    Burton, Andrew J.

    2014-02-28

    The goal of NICCR (National Institute for Climatic Change Research) was to mobilize university researchers, from all regions of the country, in support of the climatic change research objectives of DOE/BER. The NICCR Midwestern Regional Center (MRC) supported work in the following states: North Dakota, South Dakota, Nebraska, Kansas, Oklahoma, Minnesota, Iowa, Missouri, Wisconsin, Illinois, Michigan, Indiana, and Ohio. The MRC of NICCR was able to support nearly $8 million in climatic change research, including $6,671,303 for twenty projects solicited and selected by the MRC over five requests for proposals (RFPs) and $1,051,666 for the final year of ten projects from the discontinued DOE NIGEC (National Institute for Global Environmental Change) program. The projects selected and funded by the MRC resulted in 135 peer-reviewed publications and supported the training of 25 PhD students and 23 Masters students. Another 36 publications were generated by the final year of continuing NIGEC projects supported by the MRC. The projects funded by the MRC used a variety of approaches to answer questions relevant to the DOE’s climate change research program. These included experiments that manipulated temperature, moisture and other global change factors; studies that sought to understand how the distribution of species and ecosystems might change under future climates; studies that used measurements and modeling to examine current ecosystem fluxes of energy and mass and those that would exist under future conditions; and studies that synthesized existing data sets to improve our understanding of the effects of climatic change on terrestrial ecosystems. In all of these efforts, the MRC specifically sought to identify and quantify responses of terrestrial ecosystems that were not well understood or not well modeled by current efforts. The MRC also sought to better understand and model important feedbacks between terrestrial ecosystems, atmospheric chemistry, and regional

  12. DOE Announces Selection of National Laboratory Center for Solid-State Lighting R&D and Seven Projects for Core Technology Research in Nanotechnology

    Office of Energy Efficiency and Renewable Energy (EERE)

    The National Energy Technology Laboratory (NETL), on behalf of the U.S. Department of Energy (DOE), is pleased to announce the selection of the National Laboratory Center for Solid-State Lighting...

  13. Explosives Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives Center Explosives Center at Los Alamos National Laboratory A world leader in energetic materials research, development and applications, the Explosives Center's unique capabilities enable a dynamic, flexible response to address multiple evolving mission needs. explosives experiment Comprehensive energetic materials development, characterization and testing are key strengths at Los Alamos National Laboratory. An experimental explosive is shown igniting during small-scale impact

  14. Department of Energy’s ARM Climate Research Facility External Data Center Operations Plan Located At Brookhaven National Laboratory

    SciTech Connect (OSTI)

    Cialella, A.; Gregory, L.; Lazar, K.; Liang, M.; Ma, L.; Tilp, A.; Wagener, R.

    2015-05-01

    The External Data Center (XDC) Operations Plan describes the activities performed to manage the XDC, located at Brookhaven National Laboratory (BNL), for the Department of Energy’s Atmospheric Radiation Measurement (ARM) Climate Research Facility. It includes all ARM infrastructure activities performed by the Data Management and Software Engineering Group (DMSE) at BNL. This plan establishes a baseline of expectation within the ARM Operations Management for the group managing the XDC.

  15. Design and Optimization of Photovoltaics Recycling Infrastructure

    SciTech Connect (OSTI)

    Choi, J.K.; Fthenakis, V.

    2010-10-01

    With the growing production and installation of photovoltaics (PV) around the world constrained by the limited availability of resources, end-of-life management of PV is becoming very important. A few major PV manufacturers currently are operating several PV recycling technologies at the process level. The management of the total recycling infrastructure, including reverse-logistics planning, is being started in Europe. In this paper, we overview the current status of photovoltaics recycling planning and discuss our mathematic modeling of the economic feasibility and the environmental viability of several PV recycling infrastructure scenarios in Germany; our findings suggest the optimum locations of the anticipated PV take-back centers. Short-term 5-10 year planning for PV manufacturing scraps is the focus of this article. Although we discuss the German situation, we expect the generic model will be applicable to any region, such as the whole of Europe and the United States.

  16. A National Tracking Center for Monitoring Shipments of HEU, MOX, and Spent Nuclear Fuel: How do we implement?

    SciTech Connect (OSTI)

    Mark Schanfein

    2009-07-01

    Nuclear material safeguards specialists and instrument developers at US Department of Energy (USDOE) National Laboratories in the United States, sponsored by the National Nuclear Security Administration (NNSA) Office of NA-24, have been developing devices to monitor shipments of UF6 cylinders and other radioactive materials , . Tracking devices are being developed that are capable of monitoring shipments of valuable radioactive materials in real time, using the Global Positioning System (GPS). We envision that such devices will be extremely useful, if not essential, for monitoring the shipment of these important cargoes of nuclear material, including highly-enriched uranium (HEU), mixed plutonium/uranium oxide (MOX), spent nuclear fuel, and, potentially, other large radioactive sources. To ensure nuclear material security and safeguards, it is extremely important to track these materials because they contain so-called “direct-use material” which is material that if diverted and processed could potentially be used to develop clandestine nuclear weapons . Large sources could be used for a dirty bomb also known as a radioactive dispersal device (RDD). For that matter, any interdiction by an adversary regardless of intent demands a rapid response. To make the fullest use of such tracking devices, we propose a National Tracking Center. This paper describes what the attributes of such a center would be and how it could ultimately be the prototype for an International Tracking Center, possibly to be based in Vienna, at the International Atomic Energy Agency (IAEA).

  17. B&W Y-12 donates $75,000 to Emory Valley Center | Y-12 National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... B&W Y-12 donates 75,000 to Emory Valley Center Posted: December 4, 2013 - 4:54pm B&W President and General Manager Chuck Spencer (left) and Deputy General Manager Jim Haynes ...

  18. Amarillo National Resource Center for Plutonium quarterly technical progress report, August 1--October 31, 1998

    SciTech Connect (OSTI)

    1998-11-01

    This paper describes activities of the Center under the following topical sections: Electronic resource library; Environmental restoration and protection; Health and safety; Waste management; Communication program; Education program; Training; Analytical development; Materials science; Plutonium processing and handling; and Storage.

  19. Annual report procurement and logistics management center Sandia National Laboratories fiscal year 2002.

    SciTech Connect (OSTI)

    Palmer, David L.

    2003-05-01

    This report summarizes the purchasing and transportation activities of the Procurement and Logistics Management Center for Fiscal Year 2002. Activities for both the New Mexico and California locations are included.

  20. Recycling Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recycling Programs Recycling Programs The Office of Administration manages many recycling activities at DOE Headquarters that significantly impact energy and the environment. The Department of Energy Headquarters has instituted several recycling programs, starting with standard, solid waste recycling in 1991, and has expanded to include carperting, batteries, and toner cartridges. Follow this link for a detailed listing of the products that DOE Headquarters recycles, and where to recycle them.

  1. Accident Investigation of the August 21, 2012, Contamination Incident at the Los Alamos Neutron Science Center at the Los Alamos National Laboratory

    Broader source: Energy.gov [DOE]

    On August 25, 2012, radioactive contamination was identified on Flight Path 04 of the Lujan Center, an experimental area that is part of the Los Alamos Neutron Science Center at the Los Alamos National Laboratory in New Mexico. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC. The Operating Contractor quickly determined that the contamination had spread offsite, and response teams were immediately brought in.

  2. Recycle My Fridge

    Broader source: Energy.gov [DOE]

    The Illinois Municipal Electricity Agency (IMEA), a nonprofit organization representing 33 Illinois municipal and co-op electricity providers, administers the Illinois Recycle My Fridge program in...

  3. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  4. Renewable Resources: a national catalog of model projects. Volume 3. Southern Solar Energy Center Region

    SciTech Connect (OSTI)

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Southern Solar Energy Center Region. (WHK)

  5. A knowledge continuity management program for the energy, infrastructure and knowledge systems center, Sandia National Laboratories.

    SciTech Connect (OSTI)

    Menicucci, David F.

    2006-07-01

    A growing recognition exists in companies worldwide that, when employees leave, they take with them valuable knowledge that is difficult and expensive to recreate. The concern is now particularly acute as the large ''baby boomer'' generation is reaching retirement age. A new field of science, Knowledge Continuity Management (KCM), is designed to capture and catalog the acquired knowledge and wisdom from experience of these employees before they leave. The KCM concept is in the final stages of being adopted by the Energy, Infrastructure, and Knowledge Systems Center and a program is being applied that should produce significant annual cost savings. This report discusses how the Center can use KCM to mitigate knowledge loss from employee departures, including a concise description of a proposed plan tailored to the Center's specific needs and resources.

  6. Renewable Resources: a national catalog of model projects. Volume 1. Northeast Solar Energy Center Region

    SciTech Connect (OSTI)

    1980-07-01

    This compilation of diverse conservation and renewable energy projects across the United States was prepared through the enthusiastic participation of solar and alternate energy groups from every state and region. Compiled and edited by the Center for Renewable Resources, these projects reflect many levels of innovation and technical expertise. In many cases, a critique analysis is presented of how projects performed and of the institutional conditions associated with their success or failure. Some 2000 projects are included in this compilation; most have worked, some have not. Information about all is presented to aid learning from these experiences. The four volumes in this set are arranged in state sections by geographic region, coinciding with the four Regional Solar Energy Centers. The table of contents is organized by project category so that maximum cross-referencing may be obtained. This volume includes information on the Northeast Solar Energy Center Region. (WHK).

  7. Evaluation of radioactive scrap metal recycling

    SciTech Connect (OSTI)

    Nieves, L.A.; Chen, S.Y.; Kohout, E.J.; Nabelssi, B.; Tilbrook, R.W.; Wilson, S.E.

    1995-12-01

    This report evaluates the human health risks and environmental and socio-political impacts of options for recycling radioactive scrap metal (RSM) or disposing of and replacing it. Argonne National Laboratory (ANL) is assisting the US Department of Energy (DOE), Office of Environmental Restoration and Waste Management, Oak Ridge Programs Division, in assessing the implications of RSM management alternatives. This study is intended to support the DOE contribution to a study of metal recycling being conducted by the Task Group on Recycling and Reuse of the Organization for Economic Cooperation and Development. The focus is on evaluating the justification for the practice of recycling RSM, and the case of iron and steel scrap is used as an example in assessing the impacts. To conduct the evaluation, a considerable set of data was compiled and developed. Much of this information is included in this document to provide a source book of information.

  8. Public Use of New Hope Center | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NHC will not be used for political purposes or for any purpose that discriminates on the basis of age, race, color, religion, sex, physical or mental handicap, or national origin. ...

  9. EA-2005: Chromium Plume Control Interim Measure And Plume-Center Characterization, Los Alamos National Laboratory, Los Alamos, NM

    Broader source: Energy.gov [DOE]

    This Environmental Assessment evaluates an interim measure to control chromium plume migration and maintain the 50 parts-per-billion (ppb) and greater chromium contamination level with the Los Alamos National Laboratory (LANL) boundary while long-term corrective action remedies are evaluated and implemented. Concentrations of chromium within the groundwater plume beneath Mortadad Canyon exceed the New Mexico groundwater standard of 50 ppb near the property boundary between LANL and the Pueblo de San Ildefonso and are as high as 1,000 ppb in the plume center.

  10. Lighting Retrofit Workbook: A Practical "How To" Guide for the National Park Service Visitor Centers

    Office of Energy Efficiency and Renewable Energy (EERE)

    Workbook describes ways to maximize lighting energy savings while maintaining, or improving the lighting quality in national parks. It guides people through a lighting audit, assists in determining problem areas, and recommends a course of action. The workbook offers assistance in the development of an overall plan, suggests mechanisms for design and financial assistance, and recommends a routine maintenance program.

  11. National Renewable Energy Laboratory's Hydrogen Technologies and Systems Center is Helping to Facilitate the Transition to a New Energy Future

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    The Hydrogen Technologies and Systems Center (HTSC) at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) uses a systems engineering and integration approach to hydrogen research and development to help the United States make the transition to a new energy future - a future built on diverse and abundant domestic renewable resources and integrated hydrogen systems. Research focuses on renewable hydrogen production, delivery, and storage; fuel cells and fuel cell manufacturing; technology validation; safety, codes, and standards; analysis; education; and market transformation. Hydrogen can be used in fuel cells to power vehicles and to provide electricity and heat for homes and offices. This flexibility, combined with our increasing demand for energy, opens the door for hydrogen power systems. HTSC collaborates with DOE, other government agencies, industry, communities, universities, national laboratories, and other stakeholders to promote a clean and secure energy future.

  12. FAA Airworthiness Assurance NDI Validation Center (AANC) operated by Sandia National Laboratories.

    SciTech Connect (OSTI)

    Roach, Dennis Patrick; Hartman, Roger D.

    2010-09-01

    Airworthiness Assurance NDI Validation Center (AANC) objectives are: (1) Enhance aircraft safety and reliability; (2) Aid developing advanced aircraft designs and maintenance techniques; (3) Provide our customers with comprehensive, independent, and quantitative/qualitative evaluations of new and enhanced inspection, maintenance, and repair techniques; (4) Facilitate transferring effective technologies into the aviation industry; (5) Support FAA rulemaking process by providing guidance on content & necessary tools to meet requirements or recommendations of FARs, ADs, ACs, SBs, SSIDs, CPCP, and WFD; and (6) Coordinate with and respond to Airworthiness Assurance Working Group (AAWG) in support of FAA Aviation Rulemaking Advisory Committee (ARAC).

  13. Amarillo National Resource Center for plutonium. Work plan progress report, November 1, 1995--January 31, 1996

    SciTech Connect (OSTI)

    Cluff, D.

    1996-04-01

    The Center operates under a cooperative agreement between DOE and the State of Texas and is directed and administered by an education consortium. Its programs include developing peaceful uses for the materials removed from dismantled weapons, studying effects of nuclear materials on environment and public health, remedying contaminated soils and water, studying storage, disposition, and transport of Pu, HE, and other hazardous materials removed from weapons, providing research and counsel to US in carrying out weapons reductions in cooperation with Russia, and conducting a variety of education and training programs.

  14. CMI Webinar: Recycling of Rare Earth Elements: A Microbiological Approach |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Materials Institute Recycling of Rare Earth Elements: A Microbiological Approach The CMI Webinar series includes a presentation CMI Webinar: Recycling of Rare Earth Elements: A Microbiological Approach by David Reed, Idaho National Laboratory (INL), on April 23, 2015. The recording of the webinar runs nearly 39 minutes (38:52

  15. Final Scientific/Technical Report: National Institute for Climatic Change Research Coastal Center

    SciTech Connect (OSTI)

    Tornqvist, Torbjorn; Chambers, Jeffrey

    2014-01-07

    It is widely recognized that coastal environments are under particular threat due to changes associated with climate change. Accelerated sea-level rise, in some regions augmented by land subsidence, plus the possibility of a changing storm climate, renders low-lying coastal landscapes and their ecosystems vulnerable to future change. This is a pressing problem, because these ecosystems commonly rank as some of the most valuable on the planet. The objective of the NICCR Coastal Center was to support basic research that aims at reducing uncertainty about ecosystem changes during the next century, carried out along the U.S. coastlines. The NICCR Coastal Center has funded 20 projects nationwide (carried out at 27 institutions) that addressed numerous aspects of the problems outlined above. The research has led to a variety of new insights, a significant number of which published in elite scientific journals. It is anticipated that the dissemination of this work in the scientific literature will continue for several more years, given that a number of projects have only recently reached their end date. In addition, NICCR funds have been used to support research at Tulane University. The lion’s share of these funds has been invested in the development of unique facilities for experimental research in coastal ecosystems. This aspect of the work could have a lasting impact in the future.

  16. Magnetic Resonance Facility (Fact Sheet), National Bioenergy Center Laboratory Capabilities (NBCLC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resonance Facility Liquid and solid-state analysis capability for a variety of biomass, photovoltaic, and materials characterization applications across NREL NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL scientists analyze solid and liquid samples on three nuclear magnetic resonance (NMR) spectrometers. NREL's state-of-the-art Magnetic Resonance Facility provides: *

  17. Matthew Rigsby > Researcher - Oakridge National Lab > Center Alumni > The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Matthew Moury About Us Matthew Moury - Associate Under Secretary for Environment, Health, Safety and Security Matthew Moury Mr. Matthew Moury is the Associate Under Secretary for Environment, Health, Safety and Security. The office provides corporate leadership and strategic approaches for protecting DOE's workers, the public, the environment and national security assets. This is accomplished through developing corporate policies and standards; sharing operating experience, lessons learned, and

  18. Western Regional Center of the National Institute for Climatic Change Research

    SciTech Connect (OSTI)

    Hungate, Bruce A.

    2013-05-02

    The major goal of this project was fostering, integrating, synthesizing, and disseminating experimental, observational, and modeling research on predicted climate change in the western region of the U.S. and the impacts of that change on the structure, productivity, and climatic interactions of the region's natural and managed ecological systems. This was accomplished through administering a competitive grants program developed in collaboration with the other four regional centers of the NICCR. The activities supported included efforts to synthesize research on climate change in the western U.S. through meta-analysis studies, model comparisons, and data synthesis workshops. Results from this work were disseminated to the scientific and public media. This project also supported the development of the NICCR web site, hosted at NAU, which was used as the means to accept pre-proposal and proposal submissions for each funding cycle, and served as a clearing house for public outreach for results from NICCR-funded research

  19. Recycle plastics into feedstocks

    SciTech Connect (OSTI)

    Kastner, H.; Kaminsky, W.

    1995-05-01

    Thermal cracking of mixed-plastics wastes with a fluidized-bed reactor can be a viable and cost-effective means to meet mandatory recycling laws. Strict worldwide environmental statutes require the hydrocarbon processing industry (HPI) to develop and implement product applications and technologies that reuse post-consumer mixed-plastics waste. Recycling or reuse of plastics waste has a broad definition. Recycling entails more than mechanical regranulation and remelting of polymers for film and molding applications. A European consortium of academia and refiners have investigated if it is possible and profitable to thermally crack plastics into feedstocks for refining and petrochemical applications. Development and demonstration of pyrolysis methods show promising possibilities of converting landfill garbage into valuable feedstocks such as ethylene, propylene, BTX, etc. Fluidized-bed reactor technologies offer HPI operators a possible avenue to meet recycling laws, conserve raw materials and yield a profit. The paper describes thermal cracking for feedstocks and pyrolysis of polyolefins.

  20. Recycling Magnets | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recycling Magnets Recycling Magnets July 15, 2013 The cost of a nuclear or particle physics experiment can be enormous, several hundred million dollars for the Large Hadron Collider Experiments, ATLAS and CMS at CERN, several tens of millions of dollars for an experiment like our GlueX experiment in Hall D, being built as part of our upgrade project. Among the expensive components of many experiments is a large magnet or sometimes more than one magnet. Sometimes the magnets have interesting

  1. The value of recycling on water conservation.

    SciTech Connect (OSTI)

    Ludi-Herrera, Katlyn D.

    2013-07-01

    Sandia National Laboratories (SNL) is working to conserve water through recycling. This report will focus on the water conservation that has been accumulated through the recycling of paper, ceiling tiles, compost, and plastic. It will be discussed the use of water in the process of manufacturing these materials and the amount of water that is used. The way that water is conserved will be reviewed. From the stand point of SNL it will be discussed the amount of material that has been accumulated from 2010 to the first two quarters of 2013 and how much water this material has saved.

  2. DWPF RECYCLE EVAPORATOR FLOWSHEET EVALUATION (U)

    SciTech Connect (OSTI)

    Stone, M

    2005-04-30

    must be pumpable to the DWPF SRAT vessel and should not precipitate solids to avoid fouling the evaporator vessel and heat transfer coils. The evaporation process must not generate excessive foam and must have a high Decontamination Factor (DF) for many species in the evaporator feed to allow the condensate to be transferred to the ETP. An initial scoping study was completed in 2001 to evaluate the feasibility of the evaporator which concluded that the concentration objectives could be met. This initial study was based on initial estimates of recycle concentration and was based solely on OLI modeling of the evaporation process. The Savannah River National Laboratory (SRNL) has completed additional studies using simulated recycle streams and OLI{reg_sign} simulations. Based on this work, the proposed flowsheet for the recycle evaporator was evaluated for feasibility, evaporator design considerations, and impact on the DWPF process. This work was in accordance with guidance from DWPF-E and was performed in accordance with the Technical Task and Quality Assurance Plan.

  3. Scrap uranium recycling via electron beam melting

    SciTech Connect (OSTI)

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R&D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility.

  4. Characterization of DWPF recycle condensate materials

    SciTech Connect (OSTI)

    Bannochie, C. J.; Adamson, D. J.; King, W. D.

    2015-04-01

    A Defense Waste Processing Facility (DWPF) Recycle Condensate Tank (RCT) sample was delivered to the Savannah River National Laboratory (SRNL) for characterization with particular interest in the concentration of I-129, U-233, U-235, total U, and total Pu. Since a portion of Salt Batch 8 will contain DWPF recycle materials, the concentration of I-129 is important to understand for salt batch planning purposes. The chemical and physical characterizations are also needed as input to the interpretation of future work aimed at determining the propensity of the RCT material to foam, and methods to remediate any foaming potential. According to DWPF the Tank Farm 2H evaporator has experienced foaming while processing DWPF recycle materials. The characterization work on the RCT samples has been completed and is reported here.

  5. Help Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory Advanced Simulation and Computing Menu Events Partnerships Help Center Events Partnerships Help Center Videos Advanced Simulation and Computing Program » Help Center Computing Help Center Help hotlines, hours of operation, training, technical assistance, general information Los Alamos National Laboratory Hours: Monday through Friday, 8:00 a.m. - noon, 1:00-5:00 p.m. Mountain time Telephone: (505) 665-4444 option 3 Fax: (505) 665-6333 E-mail: consult@lanl.gov 24

  6. National Center of Excellence for Energy Storage Technology 168.10

    SciTech Connect (OSTI)

    Guezennec, Yann

    2011-12-31

    This report documents the performance of the Ohio State University (OSU) and Edison Welding Institute (EWI) in the period from 10/1/2010 to 12/31/2012. The objective of the project is to establish a Center of Excellence that leverages the strengths of the partners to establish a unique capability to develop and transfer energy storage industries to establish a unique capability in the development and transfer of energy storage system technology through a fundamental understanding of battery electrical and thermal performance, damage and aging mechanisms, and through the development of reliable, high-speed processes for joining substrates in battery cell, module and pack assemblies with low manufacturing variability. During this period, the OSU activity focused on procuring the equipment, materials and supplies necessary to conduct the experiments planned in the statement of project objectives. In detail, multiple laboratory setups were developed to enable for characterizing the open-circuit potential of cathode and anode materials for Li-ion batteries, perform experiments on calorimetry, and finally built multiple cell and module battery cyclers to be able to perform aging campaign on a wide variety of automotive grade battery cells and small modules. This suite of equipment feeds directly into the development, calibration of battery models ranging from first principle electrochemical models to electro-thermal equivalent circuit models suitable for use in control and xEV vehicle simulations. In addition, it allows to develop and calibrate ‘aging’ models for Li-ion batteries that enable the development of diagnostics and prognostics tools to characterize and predict battery degradation from automotive usage under a wide array of environmental and usage scenarios. The objective of the EWI work scope is to develop improved processes for making metal-tometal joints in advanced battery cells and packs. It will focus on developing generic techniques for making

  7. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F

  8. Bayshore Recycling Solar Project | Open Energy Information

    Open Energy Info (EERE)

    Bayshore Recycling Solar Project Jump to: navigation, search Name Bayshore Recycling Solar Project Facility Bayshore Recycling Solar Project Sector Solar Facility Type Roof-mount...

  9. Improving Reuse & Recycling | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving Reuse & Recycling series of images of recycling: trash heap, light bulbs, circuit boards diagram for focus area three, improving reuse and recycling (A click on the org...

  10. NRC's 13th Annual Congress highlights the mainstream of recycling

    SciTech Connect (OSTI)

    White, K.M.

    1994-12-01

    The theme of the National Recycling Coalition's (NRC, Washington, DC) recent 13th Annual Congress and Exposition in Portland, OR, was ''Jump into the Mainstream: Recycle,'' which is an action organizers of the show set out to prove is currently happening across this country. Indeed, this year's congress was designed to demonstrate how far recycling has jumped into the mainstream of American life, and show attendees what it will take to make recycling succeed in the future. Lending testament to recycling's increasing visibility, the most dominant topic at this year's show was the creation of national recycling policy. Through this agenda, and other programs that surfaced at the congress, NRC is hoping to move closer to its goal of making recycling as mainstream as taking out the garbage. NRC's board of directors unanimously voted to adopt a draft advocacy message that promotes recycling initiatives at the national level, but rejected a proposed demand-side initiative that would have established post-consumer-content recycling rates for certain materials, with product-specific, minimum-content standards as an alternative method of compliance. The initiative had called for glass, metal, paper, plastic, and wood used in primary and secondary packaging to achieve a 50% post-consumer recycling rate by the year 2000. As an alternative method of compliance, individual companies could meet the following post-consumer, minimum-content standards for products: glass, metal, paper, plastic, and wood packaging: 40% by 2000; newsprint and tissue paper: 50% by 2000; and printing and writing papers: 25% by 2000.

  11. Integrated Recycling Test Fuel Fabrication

    SciTech Connect (OSTI)

    R.S. Fielding; K.H. Kim; B. Grover; J. Smith; J. King; K. Wendt; D. Chapman; L. Zirker

    2013-03-01

    The Integrated Recycling Test is a collaborative irradiation test that will electrochemically recycle used light water reactor fuel into metallic fuel feedstock. The feedstock will be fabricated into a metallic fast reactor type fuel that will be irradiation tested in a drop in capsule test in the Advanced Test Reactor on the Idaho National Laboratory site. This paper will summarize the fuel fabrication activities and design efforts. Casting development will include developing a casting process and system. The closure welding system will be based on the gas tungsten arc burst welding process. The settler/bonder system has been designed to be a simple system which provides heating and controllable impact energy to ensure wetting between the fuel and cladding. The final major pieces of equipment to be designed are the weld and sodium bond inspection system. Both x-radiography and ultrasonic inspection techniques have been examine experimentally and found to be feasible, however the final remote system has not been designed. Conceptual designs for radiography and an ultrasonic system have been made.

  12. CABS: Green Energy for Our Nation's Future (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    SciTech Connect (OSTI)

    Jan Jaworski; Sayre, Richard T.; CABS Staff

    2011-05-01

    'CABS: Green Energy for our Nation's Future' was submitted by the Center for Advanced Biofuel Systems (CABS) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CABS, an EFRC directed by Jan Jaworski at the Donald Danforth Plant Science Center is a partnership of scientists from five institutions: Donald Danforth Plant Science Center (lead), Michigan State University, the University of Nebraska, New Mexico Consortium/LANL, and Washington State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  13. CABS: Green Energy for Our Nation's Future (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Jan Jaworski (Director, Center for Advanced Biofuel Systems); Sayre, Richard T. (previous Director); CABS Staff

    2011-11-03

    'CABS: Green Energy for our Nation's Future' was submitted by the Center for Advanced Biofuel Systems (CABS) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CABS, an EFRC directed by Jan Jaworski at the Donald Danforth Plant Science Center is a partnership of scientists from five institutions: Donald Danforth Plant Science Center (lead), Michigan State University, the University of Nebraska, New Mexico Consortium/LANL, and Washington State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  14. Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division I N S I D E 2 From Alex's Desk 3 lujAn Center reseArCh FeAtureD on Cover oF Langmuir 4 FunCtionAl oxiDes unDer extreme ConDi- tions-quest For new mAteriAls 6 heADs uP! By Diana Del Mauro ADEPS Communications Inside the Lujan Neutron Scattering Center, Victor Fanelli is busy preparing a superconducting magnet. In a series of delicate steps,

  15. U.S. Environmental Protection Agency national network of research centers: A case study in socio-political influences on research

    SciTech Connect (OSTI)

    Morehouse, K.

    1995-12-01

    During the 15 years that the U.S. Environmental Protection Agency (EPA) has supported university-based research centers, there have been many changes in mission, operating style, funding level, eligibility, and selection process. Even the definition of the term {open_quotes}research center{close_quotes} is open to debate. Shifting national priorities, political realities, and funding uncertainties have powered the evolution of research centers in EPA, although the agency`s basic philosophy on the purpose and value of this approach to research remains essentially unchanged. Today, EPA manages 28 centers, through the Office of Exploratory Research. These centers are administered under three distinct programs. Each program has its own mission and goals which guide the way individual centers are selected and operated. This paper will describe: (1) EPA`s philosophy of reserach centers, (2) the complicated history of EPA research centers, (3) coordination and interaction among EPA centers and others, (4) opportunities for collaboration, and (5) plans for the future.

  16. EA-1376: Proposed Construction and Operation of a New Interagency Emergency Operations Center at Los Alamos National Laboratory, Los Alamos, NM

    Broader source: Energy.gov [DOE]

    Proposed Construction and Operation of a New Interagency Emergency Operations Center at Los Alamos National Laboratory, Los Alamos, NMThe Proposed Action is the construction and operation of a new Interagency Emergency Operations Center (Center) at Technical Area 69. The new Center would include a 30,000-square-foot (2,700-square-meter) facility, a garage, a 130-car parking lot, and a 150-foot (45-meter) tall fire suppression water storage tank with antenna attachments on about a 5-acre (2-hectare) site. The new Center would be designed as a state-of-the-art multi-use facility housing about 30 fulltime University of California and Los Alamos County (or their contractor) staff.

  17. Super recycled water: quenching computers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Super recycled water: quenching computers Super recycled water: quenching computers New facility and methods support conserving water and creating recycled products. Using reverse osmosis to "super purify" water allows the system to reuse water and cool down our powerful yet thirsty computers. January 30, 2014 Super recycled water: quenching computers LANL's Sanitary Effluent Reclamation Facility, key to reducing the Lab's discharge of liquid. Millions of gallons of industrial

  18. Issues in recycling galvanized scrap

    SciTech Connect (OSTI)

    Koros, P.J.; Hellickson, D.A.; Dudek, F.J.

    1995-02-10

    The quality of the steel used for most galvanizing (and tinplate) applications makes scrap derived from their production and use a premier solid charge material for steelmaking. In 1989 the AISI created a Task Force to define the issues and to recommend technologically and economically sound approaches to assure continued, unhindered recyclability of the growing volume of galvanized scrap. The AISI program addressed the treatment of full-sized industrial bales of scrap. The current, on-going MRI (US)--Argonne National Laboratory program is focused on ``loose`` scrap from industrial and post-consumer sources. Results from these programs, issues of scrap management from source to steel melting, the choices for handling zinc in iron and steelmaking and the benefits/costs for removal of zinc (and lead) from scrap prior to melting in BOF and foundry operations are reviewed in this paper.

  19. National Atmospheric Release Advisory Center dispersion modeling of the Full-scale Radiological Dispersal device (FSRDD) field trials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Neuscamman, Stephanie J.; Yu, Kristen L.

    2016-05-01

    The results of the National Atmospheric Release Advisory Center (NARAC) model simulations are compared to measured data from the Full-Scale Radiological Dispersal Device (FSRDD) field trials. The series of explosive radiological dispersal device (RDD) experiments was conducted in 2012 by Defence Research and Development Canada (DRDC) and collaborating organizations. During the trials, a wealth of data was collected, including a variety of deposition and air concentration measurements. The experiments were conducted with one of the stated goals being to provide measurements to atmospheric dispersion modelers. These measurements can be used to facilitate important model validation studies. For this study, meteorologicalmore » observations recorded during the tests are input to the diagnostic meteorological model, ADAPT, which provides 3–D, time-varying mean wind and turbulence fields to the LODI dispersion model. LODI concentration and deposition results are compared to the measured data, and the sensitivity of the model results to changes in input conditions (such as the particle activity size distribution of the source) and model physics (such as the rise of the buoyant cloud of explosive products) is explored. The NARAC simulations predicted the experimentally measured deposition results reasonably well considering the complexity of the release. Lastly, changes to the activity size distribution of the modeled particles can improve the agreement of the model results to measurement.« less

  20. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    research of national importance at research centers and through the National Biodiesel Board. For more information, see the STRDD Program website. The program is not...

  1. Los Alamos National Laboratory completes demolition, recycling...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARSEC Environmental, LLC was the general contractor for the demolition of the structure-four stories plus a basement-which opened in 1956 and closed in September 2008. Norris ...

  2. Sandia National Laboratories: Pollution Prevention: Recycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Diversion continues to improve, most recently reaching 66% of the two facilities' waste. cb-collection Electronics If computer and laboratory equipment don't find a reuse at ...

  3. Emulsified industrial oils recycling

    SciTech Connect (OSTI)

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  4. Recycler barrier RF buckets

    SciTech Connect (OSTI)

    Bhat, C.M.; /Fermilab

    2011-03-01

    The Recycler Ring at Fermilab uses a barrier rf systems for all of its rf manipulations. In this paper, I will give an overview of historical perspective on barrier rf system, the longitudinal beam dynamics issues, aspects of rf linearization to produce long flat bunches and methods used for emittance measurements of the beam in the RR barrier rf buckets. Current rf manipulation schemes used for antiproton beam stacking and longitudinal momentum mining of the RR beam for the Tevatron collider operation are explained along with their importance in spectacular success of the Tevatron luminosity performance.

  5. Dismantling Structures and Equipment of the MR Reactor and its Loop Facilities at the National Research Center 'Kurchatov Institute' - 12051

    SciTech Connect (OSTI)

    Volkov, V.G.; Danilovich, A.S.; Zverkov, Yu. A.; Ivanov, O.P.; Kolyadin, V.I.; Lemus, A.V.; Muzrukova, V.D.; Pavlenko, V.I.; Semenov, S.G.; Fadin, S.Yu.; Shisha, A.D.; Chesnokov, A.V.

    2012-07-01

    In 2008 a design of decommissioning of research reactors MR and RFT has been developed in the National research Center 'Kurchatov institute'. The design has been approved by Russian State Authority in July 2009 year and has received the positive conclusion of ecological expertise. In 2009-2010 a preparation for decommissioning of reactors MR and RFT was spent. Within the frames of a preparation a characterization, sorting and removal of radioactive objects, including the irradiated fuel, from reactor storage facilities and pool have been executed. During carrying out of a preparation on removal of radioactive objects from reactor sluice pool water treating has been spent. For these purposes modular installation for clearing and processing of a liquid radioactive waste 'Aqua - Express' was used. As a result of works it was possible to lower volume activity of water on three orders in magnitude that has allowed improving essentially of radiating conditions in a reactor hall. Auxiliary systems of ventilation, energy and heat supplies, monitoring systems of radiating conditions of premises of the reactor and its loop-back installations are reconstructed. In 2011 the license for a decommissioning of the specified reactors has been received and there are begun dismantling works. Within the frames of works under the design the armature and pipelines are dismantled in a under floor space of a reactor hall where a moving and taking away pipelines of loop facilities and the first contour of the MR reactor were replaced. A dismantle of the main equipment of loop facility with the gas coolant has been spent. Technologies which were used on dismantle of the radioactive contaminated equipment are presented, the basic works on reconstruction of systems of maintenance of on the decommissioning works are described, the sequence of works on the decommissioning of reactors MR and RFT is shown. Dismantling works were carried out with application of means of a dust suppression that, in

  6. Argonne explains nuclear recycling in 4 minutes

    SciTech Connect (OSTI)

    2012-01-01

    Currently, when using nuclear energy only about five percent of the uranium used in a fuel rod gets fissioned for energy; after that, the rods are taken out of the reactor and put into permanent storage. There is a way, however, to use almost all of the uranium in a fuel rod. Recycling used nuclear fuel could produce hundreds of years of energy from just the uranium we've already mined, all of it carbon-free. Problems with older technology put a halt to recycling used nuclear fuel in the United States, but new techniques developed by scientists at Argonne National Laboratory address many of those issues. For more information, visit http://www.anl.gov/energy/nuclear-energy.

  7. Argonne explains nuclear recycling in 4 minutes

    ScienceCinema (OSTI)

    None

    2013-04-19

    Currently, when using nuclear energy only about five percent of the uranium used in a fuel rod gets fissioned for energy; after that, the rods are taken out of the reactor and put into permanent storage. There is a way, however, to use almost all of the uranium in a fuel rod. Recycling used nuclear fuel could produce hundreds of years of energy from just the uranium we've already mined, all of it carbon-free. Problems with older technology put a halt to recycling used nuclear fuel in the United States, but new techniques developed by scientists at Argonne National Laboratory address many of those issues. For more information, visit http://www.anl.gov/energy/nuclear-energy.

  8. Garbage project on recycling behavior

    SciTech Connect (OSTI)

    McGuire, R.H.; Hughes, W.W.; Rathje, W.L.

    1982-02-01

    Results are presented of a study undertaken to determine the factors which are most effective in motivating different socio-economic groups to change their recycling behaviors and participate in recycling programs. Four types of data were collected and analyzed in Tucson: (1) purchase data from local recyclers, (2) traditional interview-survey data on recycling behavior, (3) long-term and short-term household refuse data, and (4) combined interview-garbage data. Findings reveal that disposal patterns for newspapers and aluminum cans are tuse data, and (4) combined interview-garbage data. Findings reveal that disposal patterns for newspapers and aluminum cans are the same across census tracts with significantly different socio-economic characteristics. Further, analysis of interview and garbage data matched by household reaffirm that what people say about recycling and how they dispose of recyclable materials are two different things. Thus, interview reports of newspaper recycling correlate with higher income informants, but their interview reports do not correlate with what is thrown into their garbage cans. Money is concluded to be the most powerful incentive toward recycling.

  9. Is recycling worth the trouble

    SciTech Connect (OSTI)

    Boltz, C.M.

    1995-03-01

    A panel of waste industry experts met recently at a Washington, DC, conference to discuss and debate the costs, benefits, and economics of recycling solid waste. The nearly unanimous conclusion from some of the speakers--that recycling, as it is implemented today, has costs that far outweigh its benefits--is evidence of a growing backlash among solid waste officials against a recycling movement they feel has been grossly over-inflated by environmental groups as a solution to a non-existent problem known as the garbage crisis. The public should not place such a strong emphasis on recycling as a cure-all for environmental problems, according to the panel of four waste management policy analysts at The State of Garbage'' session held in mid-January at the 1995 US/Canadian Federation Solid Waste Management Conference. Moreover, some panel members said, recycling should take place only if it makes economic sense.

  10. Waste tire recycling by pyrolysis

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This project examines the City of New Orleans' waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans' waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city's limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city's waste tire problem. Pending state legislation could improve the city's ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  11. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, 'clean coal' combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered 'allowable' under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and private-sector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  12. Combustion Byproducts Recycling Consortium

    SciTech Connect (OSTI)

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, clean coal combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered allowable under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  13. Future Bottlenecks for Industrial Water Recycling. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Future Bottlenecks for Industrial Water Recycling. Citation Details In-Document Search Title: Future Bottlenecks for Industrial Water Recycling. Authors: Brady, Patrick V....

  14. Xcel Energy - Appliance Recycling Rebate Program | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Program Rebate Amount 40appliance Summary The Appliance Recycling Program offers free pick up and recycling of old, inefficient, working refrigerators and freezers....

  15. Contribution of cooperative sector recycling to greenhouse gas emissions reduction: A case study of Ribeirão Pires, Brazil

    SciTech Connect (OSTI)

    King, Megan F.; Gutberlet, Jutta

    2013-12-15

    Highlights: • Cooperative recycling achieves environmental, economic and social objectives. • We calculate GHG emissions reduction for a recycling cooperative in São Paulo, Brazil. • The cooperative merits consideration as a Clean Development Mechanism (CDM) project. • A CDM project would enhance the achievements of the recycling cooperative. • National and local waste management policies support the recycling cooperative. - Abstract: Solid waste, including municipal waste and its management, is a major challenge for most cities and among the key contributors to climate change. Greenhouse gas emissions can be reduced through recovery and recycling of resources from the municipal solid waste stream. In São Paulo, Brazil, recycling cooperatives play a crucial role in providing recycling services including collection, separation, cleaning, stocking, and sale of recyclable resources. The present research attempts to measure the greenhouse gas emission reductions achieved by the recycling cooperative Cooperpires, as well as highlight its socioeconomic benefits. Methods include participant observation, structured interviews, questionnaire application, and greenhouse gas accounting of recycling using a Clean Development Mechanism methodology. The results show that recycling cooperatives can achieve important energy savings and reductions in greenhouse gas emissions, and suggest there is an opportunity for Cooperpires and other similar recycling groups to participate in the carbon credit market. Based on these findings, the authors created a simple greenhouse gas accounting calculator for recyclers to estimate their emissions reductions.

  16. Center for Inverse Design: Partner Institutions in the Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partner Institutions in the Center for Inverse Design This page provides information about the six institutions that are partners in the Center of Inverse Design: the National ...

  17. The Amarillo National Resource Center for Plutonium. Quarterly progress detailed report, 1 November 1996--31 January 1997

    SciTech Connect (OSTI)

    1997-03-01

    Progress for this quarter is given for each of the following Center programs: (1) plutonium information resource; (2) advisory function (DOE and state support); (3) environmental, public health and safety; (3) communication, education, and training; and (4) nuclear and other material studies. Both summaries of the activities and detailed reports are included.

  18. Energy Return on Investment from Recycling Nuclear Fuel

    SciTech Connect (OSTI)

    2011-08-17

    This report presents an evaluation of the Energy Return on Investment (EROI) from recycling an initial batch of 800 t/y of used nuclear fuel (UNF) through a Recycle Center under a number of different fuel cycle scenarios. The study assumed that apart from the original 800 t of UNF only depleted uranium was available as a feed. Therefore for each subsequent scenario only fuel that was derived from the previous fuel cycle scenario was considered. The scenarios represent a good cross section of the options available and the results contained in this paper and associated appendices will allow for other fuel cycle options to be considered.

  19. Coal liquefaction with preasphaltene recycle

    DOE Patents [OSTI]

    Weimer, Robert F.; Miller, Robert N.

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  20. Progress reported in PET recycling

    SciTech Connect (OSTI)

    Not Available

    1989-06-01

    The Goodyear Polyester Division has demonstrated its ability to break down polyethylene terephthalate (PET) from recycled plastic soft drink bottles and remanufacture the material into PET suitable for containers. Most people are familiar with PET in the form of lightweight, shatter resistant beverage bottles. About 20 percent of these beverage containers currently are being recycled. The recycled PET is currently used in many applications such as carpeting, pillow stuffing, sleeping bag filling, insulation for water heaters and non-food containers. This is the first step of Goodyear's increased efforts to recycle PET from containers into a material suitable for food packing. The project is extremely complex, involving sophisticated understanding of the chemical reactions involved, PET production and the technology testing protocols necessary to design a process that addresses all the technical, safety, and regulatory concerns. The research conducted so far indicated that additional processing beyond simply cleaning the shredded material, called flake, will be required to assure a quality polymer.

  1. LANSCE | Lujan Center | Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy, National Nuclear Security Administration nnsa.energy.gov Publications 2009 Publications Please use the following acknowledgement when publishing results based on data measured at the Lujan Center: "This work has benefited from the use of [add here name of specific Lujan instruments] at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC

  2. Forensic Technology Center of Excellence | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center; the National Center for Forensic Science; the National Clearinghouse for Science, Technology, and the Law; Marshall University's Forensic Science Center; and the Midwest...

  3. Waste tire recycling by pyrolysis

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    This project examines the City of New Orleans` waste tire problem. Louisiana State law, as of January 1, 1991, prohibits the knowing disposal of whole waste tires in landfills. Presently, the numerous waste tire stockpiles in New Orleans range in size from tens to hundreds of tires. New Orleans` waste tire problem will continue to increase until legal disposal facilities are made accessible and a waste tire tracking and regulatory system with enforcement provisions is in place. Tires purchased outside of the city of New Orleans may be discarded within the city`s limits; therefore, as a practical matter this study analyzes the impact stemming from the entire New Orleans metropolitan area. Pyrolysis mass recovery (PMR), a tire reclamation process which produces gas, oil, carbon black and steel, is the primary focus of this report. The technical, legal and environmental aspects of various alternative technologies are examined. The feasibility of locating a hypothetical PMR operation within the city of New Orleans is analyzed based on the current economic, regulatory, and environmental climate in Louisiana. A thorough analysis of active, abandoned, and proposed Pyrolysis operations (both national and international) was conducted as part of this project. Siting a PMR plant in New Orleans at the present time is technically feasible and could solve the city`s waste tire problem. Pending state legislation could improve the city`s ability to guarantee a long term supply of waste tires to any large scale tire reclamation or recycling operation, but the local market for PMR end products is undefined.

  4. Health assessment for Seymour Recycling Corporation, Seymour, Indiana, Region 5. CERCLIS No. IND040313017. Final report

    SciTech Connect (OSTI)

    Not Available

    1987-04-02

    The Seymour Recycling Corporation site (number 57 on the National Priorities List) is located approximately two miles southwest of Seymour, Indiana. From the very early 1970s to 1980, the site was operated as a processing center for waste chemicals. Distillation was the major method of product reclamation with as many as 11 columns operating simultaneously. Overall environmental monitoring has identified more than 70 contaminants on-site within soil and aquifer samples. The shallow and deep aquifers exhibit both on-site and off-site contamination. The existence of the surface clay cap and fencing to restrict access has removed direct contact as an exposure route for remaining on-site contaminants. The existence of the surface cap should also be preventing contaminant-laden dust from moving off-site.

  5. RSF Data Center Tour

    SciTech Connect (OSTI)

    Powers, Chuck

    2011-01-01

    The Data Center in the Research Support Facility on the campus of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) marks a significant accomplishment in its ultra-efficiency. Data centers by nature are very energy intensive. The RSF Data Center was designed to use 80% less energy than NREL's old data center, which had been in use for the last 30 years. This tour takes you through the data center highlighting its energy saving techniques.

  6. Sandia National Laboratories: About Sandia: Environmental Responsibili...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Sandia Long-term management aimed at preserving and enhancing the quality of the environment has evolved at Sandia National Laboratories for more than 50 years. Recycling,...

  7. Recycling of spent hydroprocessing catalysts: EURECAT technology

    SciTech Connect (OSTI)

    Berrebi, G.; Dufresne, P.; Jacquier, Y. )

    1993-05-01

    Disposal of spent catalysts is a growing concern for all refiners. Environmental regulations are becoming stricter and stricter and state recommendations are to develop disposal routes which would emphasize recycling as much as possible, and processing the wastes as near as possible to the production center. In this context, EURECAT has developed a recycling process for the hydroprocessing catalysts used in oil refineries (NiMo, CoMo, NiW on alumina or mixed alumina silica). The process starts with a regeneration of the catalyst to eliminate hydrocarbons, carbon and sulfur. After a caustic roasting, the material is leached to obtain a solution containing mainly molybdenum (or tungsten) and vanadium and a solid containing essentially alumina, cobalt and/or nickel. Molybdenum and vanadium are separated by an ion exchange resin technique. The solid is processed in an arc furnace to separate the alumina. Nickel and cobalt are separated by conventional solvent extraction to obtain pure metal. Alumina is disposed of as an inert slag. The strength of the process lies in the combination of proven technologies applied by companies whose reliability in their respective field is well known. The aspects concerning spent catalyst handling, packaging and transport are also discussed. 13 refs., 2 figs., 1 tab.

  8. What can recycling in thermal reactors accomplish?

    SciTech Connect (OSTI)

    Piet, Steven J.; Matthern, Gretchen E.; Jacobson, Jacob J.

    2007-07-01

    Thermal recycle provides several potential benefits when used as stop-gap, mixed, or backup recycling to recycling in fast reactors. These three roles involve a mixture of thermal and fast recycling; fast reactors are required to some degree at some time. Stop-gap uses thermal reactors only until fast reactors are adequately deployed and until any thermal-recycle-only facilities have met their economic lifetime. Mixed uses thermal and fast reactors symbiotically for an extended period of time. Backup uses thermal reactors only if problems later develop in the fast reactor portion of a recycling system. Thermal recycle can also provide benefits when used as pure thermal recycling, with no intention to use fast reactors. However, long term, the pure thermal recycling approach is inadequate to meet several objectives. (authors)

  9. Fuel Cell Demonstration Project - 200 kW - Phosphoric Acid Fuel Cell Power Plant Located at the National Transportation Research Center: FINAL REPORT

    SciTech Connect (OSTI)

    Berry, JB

    2005-05-06

    Oak Ridge National Laboratory (ORNL) researches and develops distributed generation technology for the Department of Energy, Energy Efficiency and Renewable Energy Distributed Energy Program. This report describes installation and operation of one such distributed generation system, a United Technology Corporation fuel cell located at the National Transportation Research Center in Knoxville, Tennessee. Data collected from June 2003 to June of 2004, provides valuable insight regarding fuel cell-grid compatibility and the cost-benefit of the fuel cell operation. The NTRC fuel cell included a high-heat recovery option so that use of thermal energy improves project economics and improves system efficiency to 59% year round. During the year the fuel cell supplied a total of 834MWh to the NTRC and provided 300MBtu of hot water. Installation of the NTRC fuel cell was funded by the Distributed Energy Program with partial funding from the Department of Defense's Climate Change Fuel Cell Buy Down Program, administered by the National Energy Technology Laboratory. On-going operational expenses are funded by ORNL's utility budget and are paid from operational cost savings. Technical information and the benefit-cost of the fuel cell are both evaluated in this report and sister reports.

  10. A Ceramic membrane to Recycle Caustic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Ceramic membrane to Recycle Caustic A Ceramic membrane to Recycle Caustic PDF icon A Ceramic membrane to Recycle Caustic More Documents & Publications Caustic Recovery Technology ...

  11. Better Biomass Conversion with Recyclable GVL Solvent - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Better Biomass Conversion with Recyclable GVL Solvent Great Lakes Bioenergy Research Center Contact GLBRC About This Technology Technology Marketing Summary To recover useful carbohydrates locked in biomass, molecular bonds must be broken while avoiding further reaction of the resulting glucose and xylose sugars. This is a challenge because glucose can degrade quicker than it is produced. Fast, hot reactions try to minimize such degradation, but are impractical. Expensive catalysts

  12. Process to recycle shredder residue

    DOE Patents [OSTI]

    Jody, Bassam J.; Daniels, Edward J.; Bonsignore, Patrick V.

    2001-01-01

    A system and process for recycling shredder residue, in which separating any polyurethane foam materials are first separated. Then separate a fines fraction of less than about 1/4 inch leaving a plastics-rich fraction. Thereafter, the plastics rich fraction is sequentially contacted with a series of solvents beginning with one or more of hexane or an alcohol to remove automotive fluids; acetone to remove ABS; one or more of EDC, THF or a ketone having a boiling point of not greater than about 125.degree. C. to remove PVC; and one or more of xylene or toluene to remove polypropylene and polyethylene. The solvents are recovered and recycled.

  13. Production and isolation of homologs of flerovium and element 115 at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry

    SciTech Connect (OSTI)

    Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; Brown, Thomas A.; Grant, Patrick M.; Henderson, Roger A.; Moody, Kent J.; Tumey, Scott J.; Shaughnessy, Dawn A.; Sudowe, Ralf

    2015-10-01

    Here, new procedures have been developed to isolate no-carrier-added (NCA) radionuclides of the homologs and pseudo-homologs of flerovium (Hg, Sn) and element 115 (Sb), produced by 12–15 MeV proton irradiation of foil stacks with the tandem Van-de-Graaff accelerator at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry (CAMS) facility. The separation of 113Sn from natIn foil was performed with anion-exchange chromatography from hydrochloric and nitric acid matrices. A cation-exchange chromatography method based on hydrochloric and mixed hydrochloric/hydroiodic acids was used to separate 124Sb from natSn foil. A procedure using Eichrom TEVA resin was developed to separate 197Hg from Au foil. These results demonstrate the suitability of using the CAMS facility to produce NCA radioisotopes for studies of transactinide homologs.

  14. Production and isolation of homologs of flerovium and element 115 at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; Brown, Thomas A.; Grant, Patrick M.; Henderson, Roger A.; Moody, Kent J.; Tumey, Scott J.; Shaughnessy, Dawn A.; Sudowe, Ralf

    2015-10-01

    Here, new procedures have been developed to isolate no-carrier-added (NCA) radionuclides of the homologs and pseudo-homologs of flerovium (Hg, Sn) and element 115 (Sb), produced by 12–15 MeV proton irradiation of foil stacks with the tandem Van-de-Graaff accelerator at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry (CAMS) facility. The separation of 113Sn from natIn foil was performed with anion-exchange chromatography from hydrochloric and nitric acid matrices. A cation-exchange chromatography method based on hydrochloric and mixed hydrochloric/hydroiodic acids was used to separate 124Sb from natSn foil. A procedure using Eichrom TEVA resin was developed to separate 197Hg frommore » Au foil. These results demonstrate the suitability of using the CAMS facility to produce NCA radioisotopes for studies of transactinide homologs.« less

  15. Recycling of used perfluorosulfonic acid membranes

    DOE Patents [OSTI]

    Grot, Stephen; Grot, Walther

    2007-08-14

    A method for recovering and recycling catalyst coated fuel cell membranes includes dissolving the used membranes in water and solvent, heating the dissolved membranes under pressure and separating the components. Active membranes are produced from the recycled materials.

  16. Howard Waste Recycling Ltd | Open Energy Information

    Open Energy Info (EERE)

    Waste Recycling Ltd Jump to: navigation, search Name: Howard Waste Recycling Ltd Place: London, England, United Kingdom Zip: N18 3PU Sector: Biomass Product: London-based project...

  17. Los Alamos National Laboratory scientists will codirect $14.5...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Center for Systems Biology Los Alamos National Laboratory scientists will codirect 14.5 million National Center for Systems Biology The new Spatiotemporal Modeling Center is ...

  18. Center for Nanoscale Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. www.anl.gov CENTER FOR NANOSCALE MATERIALS A premier user facility providing expertise, instruments, and infrastructure for interdisciplinary nanoscience and nanotechnology research. The Center for Nanoscale Materials (CNM) is a premier user facility operating as one of the five centers built across the nation as part of the U.S. Department of Energy's (DOE's) Nanoscale Science Research Center program under

  19. Ames Lab 101: Rare-Earth Recycling

    ScienceCinema (OSTI)

    Ryan Ott

    2013-06-05

    Recycling keeps paper, plastics, and even jeans out of landfills. Could recycling rare-earth magnets do the same? Perhaps, if the recycling process can be improved. Scientists at the U.S. Department of Energy's Ames Laboratory are working to more effectively remove the neodymium, a rare earth, from the mix of other materials in a magnet.

  20. Recycling technologies and market opportunities: Proceedings

    SciTech Connect (OSTI)

    Goland, A.N.; Petrakis, L.

    1993-09-20

    These proceedings are the result of our collective effort to meet that challenge. They reflect the dedication and commitment of many people in government, academia, the private sector and national laboratories to finding practical solutions to one of the most pressing problems of our time -- how to deal effectively with the growing waste s that is the product of our affluent industrial society. The Conference was successful in providing a clear picture of the scope of the problem and of the great potential that recycling holds for enhancing economic development while at the same time, having a significant positive impact on the waste management problem. That success was due in large measure to the enthusiastic response of our panelists to our invitation to participate and share their expertise with us.

  1. National Atmospheric Release Advisory Center | National Nuclear...

    National Nuclear Security Administration (NNSA)

    ... links using the internet, and using web tools implemented by NARAC. Emergency ... website by using a standard web browser run on standard desktop and laptop computers. ...

  2. Long-Term Demonstration of Hydrogen Production from Coal at Elevated Temperatures Year 6 - Activity 1.12 - Development of a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Stanislowski, Joshua; Tolbert, Scott; Curran, Tyler; Swanson, Michael

    2012-04-30

    The Energy & Environmental Research Center (EERC) has continued the work of the National Center for Hydrogen Technology® (NCHT®) Program Year 6 Task 1.12 project to expose hydrogen separation membranes to coal-derived syngas. In this follow-on project, the EERC has exposed two membranes to coal-derived syngas produced in the pilot-scale transport reactor development unit (TRDU). Western Research Institute (WRI), with funding from the State of Wyoming Clean Coal Technology Program and the North Dakota Industrial Commission, contracted with the EERC to conduct testing of WRI’s coal-upgrading/gasification technology for subbituminous and lignite coals in the EERC’s TRDU. This gasifier fires nominally 200–500 lb/hour of fuel and is the pilot-scale version of the full-scale gasifier currently being constructed in Kemper County, Mississippi. A slipstream of the syngas was used to demonstrate warm-gas cleanup and hydrogen separation using membrane technology. Two membranes were exposed to coal-derived syngas, and the impact of coal-derived impurities was evaluated. This report summarizes the performance of WRI’s patent-pending coalupgrading/ gasification technology in the EERC’s TRDU and presents the results of the warm-gas cleanup and hydrogen separation tests. Overall, the WRI coal-upgrading/gasification technology was shown to produce a syngas significantly lower in CO2 content and significantly higher in CO content than syngas produced from the raw fuels. Warm-gas cleanup technologies were shown to be capable of reducing sulfur in the syngas to 1 ppm. Each of the membranes tested was able to produce at least 2 lb/day of hydrogen from coal-derived syngas.

  3. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    million National Center for Systems Biology July 28, 2009 Lab contributes computer ... Center for Systems Biology located at the University of New Mexico in Albuquerque. ...

  4. Vanadium recycling for fusion reactors

    SciTech Connect (OSTI)

    Dolan, T.J.; Butterworth, G.J.

    1994-04-01

    Very stringent purity specifications must be applied to low activation vanadium alloys, in order to meet recycling goals requiring low residual dose rates after 50--100 years. Methods of vanadium production and purification which might meet these limits are described. Following a suitable cooling period after their use, the vanadium alloy components can be melted in a controlled atmosphere to remove volatile radioisotopes. The aim of the melting and decontamination process will be the achievement of dose rates low enough for ``hands-on`` refabrication of new reactor components from the reclaimed metal. The processes required to permit hands-on recycling appear to be technically feasible, and demonstration experiments are recommended. Background information relevant to the use of vanadium alloys in fusion reactors, including health hazards, resources, and economics, is provided.

  5. Slag recycling of irradiated vanadium

    SciTech Connect (OSTI)

    Gorman, P.K.

    1995-04-05

    An experimental inductoslag apparatus to recycle irradiated vanadium was fabricated and tested. An experimental electroslag apparatus was also used to test possible slags. The testing was carried out with slag materials that were fabricated along with impurity bearing vanadium samples. Results obtained include computer simulated thermochemical calculations and experimentally determined removal efficiencies of the transmutation impurities. Analyses of the samples before and after testing were carried out to determine if the slag did indeed remove the transmutation impurities from the irradiated vanadium.

  6. Coal Ash Behavior in Reducing Environments (CABRE) III Year 6 - Activity 1.10 - Development of a National Center for Hydrogen

    SciTech Connect (OSTI)

    Stanislowski, Joshua; Azenkeng, Alexander; McCollor, Donald; Galbreath, Kevin; Jensen, Robert; Lahr, Brent

    2012-03-31

    The Energy & Environmental Research Center (EERC) has been conducting research on gasification for six decades. One of the objectives of this gasification research has been to maximize carbon conversion and the water–gas shift process for optimal hydrogen production and syngas quality. This research focus and experience were a perfect fit for the National Center for Hydrogen Technology ® (NCHT®) Program at the EERC for improving all aspects of coal gasification, which ultimately aids in the production and purification of hydrogen. A consortia project was developed under the NCHT Program to develop an improved predictive model for ash formation and deposition under the project entitled “Coal Ash Behavior in Reducing Environments (CABRE) III: Development of the CABRE III Model.” The computer-based program is now applicable to the modeling of coal and ash behavior in both entrained-flow and fluidized-bed gasification systems to aid in overall gasification efficiency. This model represents a significant improvement over the CABRE II model and runs on a Microsoft Windows PC platform. The major achievements of the CABRE III model are partitioning of inorganic transformations between various phases for specific gas cleanup equipment; slag property predictions, including standard temperature–viscosity curves and slag flow and thickness; deposition rates in gasification cleanup equipment; provision for composition analysis for all input and output streams across all process equipment, including major elements and trace elements of interest; composition analysis of deposit streams for various deposit zones, including direct condensation on equipment surfaces (Zone A), homogeneous particulate deposition (Zone B), and entrained fly ash deposition (Zone C); and physical removal of ash in cyclones based on D50 cut points. Another new feature of the CABRE III model is a user-friendly interface and detailed reports that are easily exportable into Word documents, Excel

  7. Enforcement Notice of Intent to Investigate, Los Alamos National...

    Broader source: Energy.gov (indexed) [DOE]

    the National Criticality Experiments Research Center at the Nevada National Security Site. ... the National Criticality Experiments Research Center at the Nevada National Security Site. ...

  8. National Wind Technology Center | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and provide government-issued photo identification (for example driver's license, passport, or military ID) to obtain a security badge before entering the site. Foreign...

  9. Sandia's Cooperative Monitoring Center celebrates 20 years |...

    National Nuclear Security Administration (NNSA)

    Cooperative Monitoring Center celebrates 20 years Tuesday, November 18, 2014 - 4:10pm Sandia National Laboratories' Cooperative Monitoring Center is celebrating its 20th ...

  10. Lujan Neutron Scattering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    responds to radiological incident August 27, 2012 The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center August 27, 2012-The Laboratory is investigating the inadvertent spread of Technetium 99 by employees and contractors at the Lujan Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE), a multidisciplinary accelerator facility used for both civilian and national security research. The

  11. WIPP - Joint Information Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Joint Information Center is located at 4021 National Parks Highway in Carlsbad, N.M. Joint Information Center In the unlikely event of an emergency, the WIPP Joint Information Center (JIC) serves as a central control point to coordinate multi-agency efforts to issue timely and accurate information to the public, news media and project employees. Emergency contact information: The public If the JIC is activated, members of the general public, including family members, may call (575) 234-7380

  12. LOS ALAMOS, New Mexico, October 11, 2011-Los Alamos National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ad Building demolition, recycling completed October 11, 2011 Project finished under budget, ahead of schedule LOS ALAMOS, New Mexico, October 11, 2011-Los Alamos National...

  13. Greenhouse Gas Reductions: SF6 | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greenhouse Gas Reductions: SF6 Share Description Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of...

  14. Request for Information on Photovoltaic Module Recycling

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy SunShot Initiative requests feedback from industry, academia, research laboratories, government agencies, and other stakeholders on issues related to photovoltaic (PV) module recycling technology. SunShot intends to understand the current state of recycling technology and the areas of research that could lead to impactful recycling technologies to support the developing PV industry. The intent of this request for information is to generate discussion related to planning for the end of life of photovoltaic modules and to create a list of high impact research topics in photovoltaics recycling.

  15. Recycled Energy Development | Open Energy Information

    Open Energy Info (EERE)

    search Name: Recycled Energy Development Place: Westmont, Illinois Zip: 60559 Product: RED acquires industrial utility plants and then builds and installs waste energy capture...

  16. Recommendation 221: Recommendation Regarding Recycling of Metals...

    Office of Environmental Management (EM)

    recycling program to address radiologically contaminated metals and equipment for free-release. PDF icon Recommendation 221 PDF icon Responseto221.pdf More Documents &...

  17. End-of-life vehicle recycling : state of the art of resource recovery from shredder residue.

    SciTech Connect (OSTI)

    Jody, B. J.; Daniels, E. J.; Energy Systems

    2007-03-21

    Each year, more than 50 million vehicles reach the end of their service life throughout the world. More than 95% of these vehicles enter a comprehensive recycling infrastructure that includes auto parts recyclers/dismantlers, remanufacturers, and material recyclers (shredders). Today, about 75% of automotive materials are profitably recycled via (1) parts reuse and parts and components remanufacturing and (2) ultimately by the scrap processing (shredding) industry. The process by which the scrap processors recover metal scrap from automobiles involves shredding the obsolete automobiles, along with other obsolete metal-containing products (such as white goods, industrial scrap, and demolition debris), and recovering the metals from the shredded material. The single largest source of recycled ferrous scrap for the iron and steel industry is obsolete automobiles. The non-metallic fraction that remains after the metals are recovered from the shredded materials (about 25% of the weight of the vehicle)--commonly called shredder residue--is disposed of in landfills. Over the past 10 to 15 years, a significant amount of research and development has been undertaken to enhance the recycle rate of end-of-life vehicles (ELVs), including enhancing dismantling techniques and improving remanufacturing operations. However, most of the effort has focused on developing technology to recover materials, such as polymers, from shredder residue. To make future vehicles more energy efficient, more lighter-weight materials--primarily polymers and polymer composites--will be used in manufacturing these vehicles. These materials increase the percentage of shredder residue that must be disposed of, compared with the percentage of metals. Therefore, as the complexity of automotive materials and systems increases, new technologies will be required to sustain and maximize the ultimate recycling of these materials and systems at end-of-life. Argonne National Laboratory (Argonne), in cooperation

  18. Energy return on investment of used nuclear fuel recycling

    Energy Science and Technology Software Center (OSTI)

    2011-08-31

    N-EROI calculates energy return on investment (EROI) for recycling of used nublear fuel in four scenarios: one-pass recycle in light water reactors; two-pass recycle in light water reactors; mulit-pass recycle in burner fast reactora; one-pass recycle in breeder fast reactors.

  19. LANSCE | Lujan Center | Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Publications Please use the following acknowledgement when publishing results based on data measured at the Lujan Center: "This work has benefited from the use of [add here name of specific Lujan instruments] at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396." Year Citation citation # (as of 06/2013) Instrument 115

  20. LANSCE | Lujan Center | Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Publications Please use the following acknowledgement when publishing results based on data measured at the Lujan Center: "This work has benefited from the use of [add here name of specific Lujan instruments] at the Lujan Center at Los Alamos Neutron Science Center, funded by DOE Office of Basic Energy Sciences. Los Alamos National Laboratory is operated by Los Alamos National Security LLC under DOE Contract DE-AC52-06NA25396." Year Citation citation # (as of 06/2013) Instrument 244

  1. Trash processing and recycling using the zero landfill solution

    SciTech Connect (OSTI)

    Thompson, W.J.

    1994-12-31

    Each person in the US produces approximately one ton of trash per year. The environmentally friendly municipal trash processing and recycling complex used for illustrative purposes in this paper is designed and sized to handle trash from typical municipalities ranging from 500,000 to 750,000 populations. This translates into a nominal 2,000 ton per day (TPD) facility. A typical component breakdown of municipal solid waste is shown in appendix A. The layout of the complex is shown in appendix B. Today`s municipal trash processing and recycling center should be designed to serve the needs of the municipality for at least the next 20 to 30 years. It should also be designed in such a way as to allow any new technology advancements to be added easily and in a cost effective manner to extend the useful service life of the facility almost indefinitely. 100% of the trash will be recycled. There will be no need for a dump, landfill, or disposal site at all. No curbside separation is required.

  2. Comment Period Extended: EA-2005: Chromium Plume Control Interim Measure and Plume-Center Characterization, Los Alamos National Laboratory, Los Alamos, NM

    Broader source: Energy.gov [DOE]

    The Office of Environmental Management has extended the Public Comment Period on the Draft Environmental Assessment for Chromium Plume Control Interim Measure And Plume-Center Characterization, Los...

  3. Implementation of the National Incident Management System (NIMS)/Incident Command System (ICS) in the Federal Radiological Monitoring and Assessment Center(FRMAC) - Emergency Phase

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2007-04-01

    Homeland Security Presidential Directive HSPD-5 requires all federal departments and agencies to adopt a National Incident Management System (NIMS)/Incident Command System (ICS) and use it in their individual domestic incident management and emergency prevention, preparedness, response, recovery, and mitigation programs and activities, as well as in support of those actions taken to assist state and local entities. This system provides a consistent nationwide template to enable federal, state, local, and tribal governments, private-sector, and nongovernmental organizations to work together effectively and efficiently to prepare for, prevent, respond to, and recover from domestic incidents, regardless of cause, size, or complexity, including acts of catastrophic terrorism. This document identifies the operational concepts of the Federal Radiological Monitoring and Assessment Center's (FRMAC) implementation of the NIMS/ICS response structure under the National Response Plan (NRP). The construct identified here defines the basic response template to be tailored to the incident-specific response requirements. FRMAC's mission to facilitate interagency environmental data management, monitoring, sampling, analysis, and assessment and link this information to the planning and decision staff clearly places the FRMAC in the Planning Section. FRMAC is not a mitigating resource for radiological contamination but is present to conduct radiological impact assessment for public dose avoidance. Field monitoring is a fact-finding mission to support this effort directly. Decisions based on the assessed data will drive public protection and operational requirements. This organizational structure under NIMS is focused by the mission responsibilities and interface requirements following the premise to provide emergency responders with a flexible yet standardized structure for incident response activities. The coordination responsibilities outlined in the NRP are based on the NIMS

  4. Preconceptual Design Description for Caustic Recycle Facility

    SciTech Connect (OSTI)

    Sevigny, Gary J.; Poloski, Adam P.; Fountain, Matthew S.; Kurath, Dean E.

    2008-04-12

    The U.S. Department of Energy plans to vitrify both high-level and low-activity waste at the Hanford Site in southeastern Washington State. One aspect of the planning includes a need for a caustic recycle process to separate sodium hydroxide for recycle. Sodium is already a major limitation to the waste-oxide loading in the low-activity waste glass to be vitrified at the Waste Treatment Plant, and additional sodium hydroxide will be added to remove aluminum and to control precipitation in the process equipment. Aluminum is being removed from the high level sludge to reduce the number of high level waste canisters produced. A sodium recycle process would reduce the volume of low-activity waste glass produced and minimize the need to purchase new sodium hydroxide, so there is a renewed interest in investigating sodium recycle. This document describes an electrochemical facility for recycling sodium for the WTP.

  5. Solid waste recycling programs at Rocky Flats

    SciTech Connect (OSTI)

    Millette, R.L.; Blackman, T.E.; Shepard, M.D.

    1994-12-31

    The Rocky Flats (RFP) recycling programs for solid waste materials have been in place for over ten years. Within the last three years, the programs were centralized under the direction of the Rocky Flats Waste Minimization department, with the assistance of various plant organizations (e.g., Trucking, Building Services, Regulated Waste Operations, property Utilization and Disposal and Security). Waste Minimization designs collection and transportation systems for recyclable materials and evaluates recycling markets for opportunities to add new commodities to the existing programs. The Waste Minimization department also promotes employee participation in the Rocky Flats Recycling Programs, and collects all recycling data for publication. A description of the program status as of January 1994 is given.

  6. Project 25 - Major Nutrient Recycling for Sustained Algal Production (9.1.1.3)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    25 - Major Nutrient Recycling for Sustained Algal Production (9.1.1.3) 5/24/2013 Algae Peer Review Todd W. Lane Ph.D. Sandia National Laboratories This presentation does not contain any proprietary, confidential, or otherwise restricted information Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract

  7. Heterogeneous Recycling in Fast Reactors

    SciTech Connect (OSTI)

    Forget, Benoit; Pope, Michael; Piet, Steven J.; Driscoll, Michael

    2012-07-30

    Current sodium fast reactor (SFR) designs have avoided the use of depleted uranium blankets over concerns of creating weapons grade plutonium. While reducing proliferation risks, this restrains the reactor design space considerably. This project will analyze various blanket and transmutation target configurations that could broaden the design space while still addressing the non-proliferation issues. The blanket designs will be assessed based on the transmutation efficiency of key minor actinide (MA) isotopes and also on mitigation of associated proliferation risks. This study will also evaluate SFR core performance under different scenarios in which depleted uranium blankets are modified to include minor actinides with or without moderators (e.g. BeO, MgO, B4C, and hydrides). This will be done in an effort to increase the sustainability of the reactor and increase its power density while still offering a proliferation resistant design with the capability of burning MA waste produced from light water reactors (LWRs). Researchers will also analyze the use of recycled (as opposed to depleted) uranium in the blankets. The various designs will compare MA transmutation efficiency, plutonium breeding characteristics, proliferation risk, shutdown margins and reactivity coefficients with a current reference sodium fast reactor design employing homogeneous recycling. The team will also evaluate the out-of-core accumulation and/or burn-down rates of MAs and plutonium isotopes on a cycle-by-cycle basis. This cycle-by-cycle information will be produced in a format readily usable by the fuel cycle systems analysis code, VISION, for assessment of the sustainability of the deployment scenarios.

  8. Massive Hanford Test Reactor Removed - Plutonium Recycle Test...

    Office of Environmental Management (EM)

    Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed from Hanford's 300 Area Massive Hanford Test Reactor Removed - Plutonium Recycle Test Reactor removed ...

  9. FY 2009 Progress Report for Lightweighting Materials - 11. Recycling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1. Recycling FY 2009 Progress Report for Lightweighting Materials - 11. Recycling The primary Lightweight Materials activity goal is to validate a cost-effective weight reduction ...

  10. FY 2008 Progress Report for Lightweighting Materials - 11. Recycling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1. Recycling FY 2008 Progress Report for Lightweighting Materials - 11. Recycling Lightweighting Materials focuses on the development and validation of advanced materials and ...

  11. Energy Return on Investment - Fuel Recycle (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Energy Return on Investment - Fuel Recycle Citation Details In-Document Search Title: Energy Return on Investment - Fuel Recycle This report provides a ...

  12. Tribune carries magnet recycling story | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tribune carries magnet recycling story Ames Tribune staff writer Julie Ferrell talked recently with Ames Laboratory researcher Ikenna Nlebedim about his work in recycling...

  13. Can Automotive Battery Recycling Help Meet Lithium Demand? |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Can Automotive Battery Recycling Help Meet Lithium Demand? Title Can Automotive Battery Recycling Help Meet Lithium Demand? Publication Type Presentation Year of Publication 2013...

  14. Recycling of Nutrients and Water in Algal Biofuels Production

    Broader source: Energy.gov (indexed) [DOE]

    Peer Review Recycling of Nutrients and Water in Algal Biofuels Production Civil and ... and demonstrating efficient recycling of water, nutrients, & some carbon. * Without ...

  15. China Recycling Energy Corp CREG | Open Energy Information

    Open Energy Info (EERE)

    Recycling Energy Corp CREG Jump to: navigation, search Name: China Recycling Energy Corp (CREG) Place: Reno, Nevada Zip: 89511 Product: A US-incorporated company that develops...

  16. Bioflame Mid UK Recycling JV | Open Energy Information

    Open Energy Info (EERE)

    search Name: Bioflame & Mid-UK Recycling JV Place: England, United Kingdom Product: Joint Venture between Bioflame and Mid-UK Recycling References: Bioflame & Mid-UK...

  17. EDI as a Treatment Module in Recycling Spent Rinse Waters

    SciTech Connect (OSTI)

    Donovan, Robert P.; Morrison, Dennis J.

    1999-08-11

    Recycling of the spent rinse water discharged from the wet benches commonly used in semiconductor processing is one tactic for responding to the targets for water usage published in the 1997 National Technology Roadmap for Semiconductors (NTRS). Not only does the NTRS list a target that dramatically reduces total water usage/unit area of silicon manufactured by the industry in the future but for the years 2003 and beyond, the NTRS actually touts goals which would have semiconductor manufacturers drawing less water from a regional water supply per unit area of silicon manufactured than the quantity of ultrapure water (UPW) used in the production of that same silicon. Achieving this latter NTRS target strongly implies more widespread recycling of spent rinse waters at semiconductor manufacturing sites. In spite of the fact that, by most metrics, spent rinse waters are of much higher purity than incoming municipal waters, recycling of these spent rinse waters back into the UPW production plant is not a simple, straightforward task. The rub is that certain of the chemicals used in semiconductor manufacturing, and thus potentially present in trace concentrations (or more) in spent rinse waters, are not found in municipal water supplies and are not necessarily removed by the conventional UPW production sequence used by semiconductor manufacturers. Some of these contaminants, unique to spent rinse waters, may actually foul the resins and membranes of the UPW system, posing a threat to UPW production and potentially even causing a shutdown.

  18. National Aeronautical and Space Administration (NASA) Johnson...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Aeronautical and Space Administration (NASA) Johnson Space Flight Center National Aeronautical and Space Administration (NASA) Johnson Space Flight Center Space Shuttle ...

  19. Center Organization | Center for Energy Efficient Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center Organization People People Scientific Advisory Board Center Organization

  20. Recycling end-of-life vehicles of the future. Final CRADA report.

    SciTech Connect (OSTI)

    Jody, B. J.; Pomykala, J. A.; Spangenberger, J. S.; Daniels, E.; Energy Systems

    2010-01-14

    Argonne National Laboratory (the Contractor) entered into a Cooperative Research and Development Agreement (CRADA) with the following Participants: Vehicle Recycling Partnership, LLC (VRP, which consists of General Motors [GM], Ford, and Chrysler), and the American Chemistry Council - Plastics Division (ACC-PD). The purpose of this CRADA is to provide for the effective recycling of automotive materials. The long-term goals are to (1) enable the optimum recycling of automotive materials, thereby obviating the need for legislative mandates or directives; (2) enable the recovery of automotive materials in a cost-competitive manner while meeting the performance requirements of the applications and markets for the materials; and (3) remove recycling barriers/reasons, real or perceived, to the use of advanced lightweighting materials or systems in future vehicles. The issues, technical requirements, and cost and institutional considerations in achieving that goal are complex and will require a concerted, focused, and systematic analysis, together with a technology development program. The scope and tasks of this program are derived from 'A Roadmap for Recycling End-of-Life Vehicles of the Future,' prepared in May 2001 for the DOE Office of Energy, Efficiency, and Renewable Energy (EERE)-Vehicle Technologies Program. The objective of this research program is to enable the maximum recycling of automotive materials and obsolete vehicles through the development and commercialization of technologies for the separation and recovery of materials from end-of-life vehicles (ELVs). The long-term goals are to (1) enable the optimum recycling of automotive materials, thereby obviating the need for legislative mandates or directives; (2) enable the recovery of automotive materials in a cost-competitive manner while meeting the performance requirements of the applications and markets for the materials; and (3) remove recycling barriers/reasons, real or perceived, to the use of

  1. Center for Advanced Photophysics | Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos National Laboratory National Renewable Energy Laboratory U.S. Department of Energy Home About The Center Science Publications News & Press Releases Center Science The research of this Center focuses on (1) novel physical principles for solar energy conversion, (2) charge manipulation and exploratory photovoltaic device structures, and (3) novel nanomaterials. Research Thrusts Diagram of three overlapping circles. The upper left circle is labeled as Novel Physical Principles and

  2. The National Conversion Pilot Project

    SciTech Connect (OSTI)

    Roberts, A.V.

    1995-12-31

    The National Conversion Pilot Project (NCPP) is a recycling project under way at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS) in Colorado. The recycling aim of the project is threefold: to reuse existing nuclear weapon component production facilities for the production of commercially marketable products, to reuse existing material (uranium, beryllium, and radioactively contaminated scrap metals) for the production of these products, and to reemploy former Rocky Flats workers in this process.

  3. Energy Security Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Security Center Energy Security Center Developing new ideas for reliable, secure, and sustainable carbon neutral energy solutions for the nation-the portal to LANL's diverse energy security research enterprise. Contact Leader Steven Buelow (505) 663 5629 Email Program Administrator Jutta Kayser (505) 663-5649 Email Research focus areas Materials and concepts for clean energy Science for renewable energy sources Superconducting cables Energy storage Fuel cells Mitigating impacts of global

  4. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientists will codirect $14.5 million National Center for Systems Biology July 28, 2009 Lab contributes computer modeling, antibody engineering capabilities Los Alamos, New Mexico, July 28, 2009- Los Alamos National Laboratory scientists will codirect a new National Center for Systems Biology located at the University of New Mexico in Albuquerque. The new Spatiotemporal Modeling Center (STMC) is funded by a $14.5 million, five- year grant from the National Institute for General Medical Sciences

  5. Nylon Carpet Recycling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reductions (Thousand Tons) Carbon 6.953 7.222 6.794 6.318 ... Recycled over 200 million pounds of post-consumer carpeting ... carpeting and carpet fibers including caprolactam, ...

  6. Loveland Water & Power- Refrigerator Recycling Program

    Broader source: Energy.gov [DOE]

    Loveland Water & Power is providing an incentive for customers to recycle older, working refrigerators. Interested customers can call the utility to arrange a time to pick up the old...

  7. BWR Assembly Optimization for Minor Actinide Recycling

    SciTech Connect (OSTI)

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  8. Renewable, Recycled and Conserved Energy Objective | Department...

    Broader source: Energy.gov (indexed) [DOE]

    an objective that 10% of all retail electricity sales in the state be obtained from renewable and recycled energy by 2015. In March 2009, this policy was modified by allowing...

  9. Enhanced Photon Recycling in Multijunction Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ferreira, X. Li, E. Yablonovitch, a nd J .A. R ogers, " Device A rchitectures f or E nhanced Photon Recycling in Thin---Film MulQjuncQon Solar Cells." Adv. Energy M ater. (2014). ...

  10. WIPP Information Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP milestones are noted on banners at the WIPP Experience Exhibit at the Skeen-Whitlock Building in Carlsbad. The WIPP Experience Exhibit at 4021 National Parks Highway in Carlsbad, N.M. WIPP Information Center Address: 4021 National Parks Highway Carlsbad, NM 88220 Toll-free telephone number: 1-800-336-WIPP (9477) E-mail inquiries are welcomed For emergency contact information, please refer to the Joint Information Center page. Media Contacts Tim Runyon U.S. Department of Energy WIPP Recovery

  11. Economic Feasibility of Recycling Photovoltaic Modules

    SciTech Connect (OSTI)

    Choi, J.K.; Fthenakis, V.

    2010-12-01

    The market for photovoltaic (PV) electricity generation has boomed over the last decade, and its expansion is expected to continue with the development of new technologies. Taking into consideration the usage of valuable resources and the generation of emissions in the life cycle of photovoltaic technologies dictates proactive planning for a sound PV recycling infrastructure to ensure its sustainability. PV is expected to be a 'green' technology, and properly planning for recycling will offer the opportunity to make it a 'double-green' technology - that is, enhancing life cycle environmental quality. In addition, economic feasibility and a sufficient level of value-added opportunity must be ensured, to stimulate a recycling industry. In this article, we survey mathematical models of the infrastructure of recycling processes of other products and identify the challenges for setting up an efficient one for PV. Then we present an operational model for an actual recycling process of a thin-film PV technology. We found that for the case examined with our model, some of the scenarios indicate profitable recycling, whereas in other scenarios it is unprofitable. Scenario SC4, which represents the most favorable scenario by considering the lower bounds of all costs and the upper bound of all revenues, produces a monthly profit of $107,000, whereas the least favorable scenario incurs a monthly loss of $151,000. Our intent is to extend the model as a foundation for developing a framework for building a generalized model for current-PV and future-PV technologies.

  12. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    captures eight NNSA Pollution Prevention awards April 15, 2009 LOS ALAMOS, New Mexico, April 15, 2009-Los Alamos National Laboratory employee teams and organizations earned eight 2009 Pollution Prevention awards from the National Nuclear Security Administration (NNSA). The awards are based on an NNSA-wide competition that acknowledges pollution prevention, recycling, and affirmative procurement accomplishments. The Laboratory also received a Department of Energy "E Star" award for its

  13. Private Companies, Federal Agencies and National Labs Join Better Buildings Challenge to Drive Greater Efficiency in U.S. Data Centers

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – As a part of the Administration’s effort to support greater energy efficiency through the Better Buildings Challenge, the Energy Department today announced the first data center owners and operators who have committed to reduce their energy use by at least 20 percent over the next decade.

  14. $18.8 Million Award for Power Systems Engineering Research Center Continues Collaboration of 13 Universities and 35 Utilities for Electric Power Research, Building the Nation's Energy Workforce

    Broader source: Energy.gov [DOE]

    The Department of Energy awarded a cooperative agreement on January 16, 2009, to the Arizona State University (ASU) Board of Regents to operate the Power Systems Engineering Research Center (PSERC). PSERC is a collaboration of 13 universities with 35 electricity industry member organizations including utilities, transmission companies, vendors and research organizations.

  15. Y-12's rough roads smoothed over with 23,000 tons of recycled asphalt |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) 's rough roads smoothed over with 23,000 tons of recycled asphalt Tuesday, December 29, 2015 - 12:00am NNSA Blog Some 23,000 tons of asphalt removed during this summer's UPF site work have been put to use throughout the site. Potholes and gravel roads are now "paved" with the recycled asphalt that has been ground into a material called base course. Unlike gravel, the material tends to rebind into a solid form as it is packed down,

  16. Advanced process research and development to enhance metals and materials recycling.

    SciTech Connect (OSTI)

    Daniels, E. J.

    1997-12-05

    Innovative, cost-effective technologies that have a positive life-cycle environmental impact and yield marketable products are needed to meet the challenges of the recycling industry. Four materials-recovery technologies that are being developed at Argonne National Laboratory in cooperation with industrial partners are described in this paper: (1) dezincing of galvanized steel scrap; (2) material recovery from auto-shredder residue; (3) high-value-plastics recovery from obsolete appliances; and (4) aluminum salt cake recycling. These technologies are expected to be applicable to the production of low-cost, high-quality raw materials from a wide range of waste streams.

  17. ITER movie created by Oak Ridge National Laboratory, National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ITER movie created by Oak Ridge National Laboratory, National Center for Computational Sciences American Fusion News Category: U.S. ITER Link: ITER movie created by Oak Ridge ...

  18. Way to recycle, BES Technologies | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on to customers by cleaning and reusing water. Using a state-of-the-art radiological water treatment system, the laundering service is able to reuse more than 70 percent of...

  19. Initiatives | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS Support Center Center for Computational Excellence Coordinating Panel for Advanced Detectors Publications News & Events Upcoming Events Press Releases Feature Stories In the News Videos Downloads About HEP at Work Career Opportunities Staff Directory About HEP at Work Career Opportunities Staff Directory Argonne National Laboratory High Energy Physics Research Facilities Capabilities Initiatives Publications News & Events Initiatives ATLAS Support Center Center for Computational

  20. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers National Solar Thermal Test Facility HomeTag:National Solar Thermal Test Facility Permalink Air Force Research Laboratory Testing ...

  1. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility HomeNational Solar Thermal Test Facility Permalink High-Efficiency Solar Thermochemical Reactor for Hydrogen Production Center for ...

  2. Collection and recycling of electronic scrap: A worldwide overview and comparison with the Brazilian situation

    SciTech Connect (OSTI)

    Reis de Oliveira, Camila; Moura Bernardes, Andrea; Gerbase, Annelise Engel

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Review of the different e-waste collection systems and recycling processes. Black-Right-Pointing-Pointer We present the e-waste collection systems used in Europe and in the US. Black-Right-Pointing-Pointer We present e-waste collection systems used in Asia and Latin America. Black-Right-Pointing-Pointer E-waste management between developed and developing countries is very different. Black-Right-Pointing-Pointer We made a comparison of the world situation to the current Brazilian reality. - Abstract: Recycling and the related issue of sustainable development are increasing in importance around the world. In Brazil, the new National Policy on Solid Wastes has prompted discussion on the future of electronic waste (e-waste). Over the last 10 years, different e-waste collection systems and recycling processes have been applied globally. This paper presents the systems used in different countries and compares the world situation to the current Brazilian reality. To establish a recycling process, it is necessary to organize efficient collection management. The main difficulty associated with the implementation of e-waste recycling processes in Brazil is the collection system, as its efficiency depends not only on the education and cooperation of the people but also on cooperation among industrial waste generators, distributors and the government. Over half a million waste pickers have been reported in Brazil and they are responsible for the success of metal scrap collection in the country. The country also has close to 2400 companies and cooperatives involved in recycling and scrap trading. On the other hand, the collection and recycling of e-waste is still incipient because e-wastes are not seen as valuable in the informal sector. The Brazilian challenge is therefore to organize a system of e-waste management including the informal sector without neglecting environmentally sound management principles.

  3. operations center

    National Nuclear Security Administration (NNSA)

    servers and other critical Operations Center equipment

  4. Independent air supply system filtered to protect against biological and radiological agents (99.7%).
  5. <...

  6. Energy implications of glass-container recycling

    SciTech Connect (OSTI)

    Gaines, L L; Mintz, M M

    1994-03-01

    This report addresses the question of whether glass-container recycling actually saves energy. Glass-container production in 1991 was 10{sup 7} tons, with cullet making up about 30% of the input to manufacture. Two-thirds of the cullet is postconsumer waste; the remainder is in-house scrap (rejects). Most of the glass recycled is made into new containers. Total primary energy consumption includes direct process-energy use by the industry (adjusted to account for the efficiency of fuel production) plus fuel and raw-material transportation and production energies; the grand total for 1991 is estimated to be about 168 {times} 10{sup 12} Btu. The total primary energy use decreases as the percent of glass recycled rises, but the maximum energy saved is only about 13%. If distance to the landfill is kept fixed and that to the recovery facility multiplied by about eight, to 100 mi, a break-even point is reached, and recycling saves no energy. Previous work has shown that to save energy when using glass bottles, reuse is the clear choice. Recycling of glass does not save much energy or valuable raw material and does not reduce air or water pollution significantly. The most important impacts are the small reduction of waste sent to the landfill and increased production rates at glass plants.

  7. 10 Facts to Know About Data Centers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 Facts to Know About Data Centers 10 Facts to Know About Data Centers November 17, 2014 - 12:24pm Addthis The headquarters and data center at Home Depot. | Photo courtesy of the Home Depot. The headquarters and data center at Home Depot. | Photo courtesy of the Home Depot. The Lawrence Berkeley National Laboratory headquarters and data center. | Photo courtesy of Lawrence Berkeley National Laboratory. The Lawrence Berkeley National Laboratory headquarters and data center. | Photo courtesy of

  8. National Transportation Fuels Model | NISAC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Organizational Chart » National Training Center National Training Center MISSION The National Training Center (NTC), the Department's Center of Excellence for Security and Safety Training and Professional Development, designs, develops, and implements state-of-the-art security and safety training programs for Department federal and contractor personnel nationwide, including the National Nuclear Security Administration (NNSA). Conducts on-going job analysis, and develops and delivers training in

  9. Plutonium Recycle Test Reactor 309 B-Roll | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plutonium Recycle Test Reactor 309 B-Roll Plutonium Recycle Test Reactor 309 B-Roll Addthis Description Plutonium Recycle Test Reactor 309 B-Roll

  10. Automotive Lithium-ion Battery Supply Chain and U.S. Competitiveness Considerations (Presentation), Clean Energy Manufacturing Analysis Center (CMAC), NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Automo&ve Lithium---ion Ba1ery (LIB) Supply Chain and U.S. Compe&&veness Considera&ons Donald Chung, Emma Elgqvist, S hriram Santhanagopalan, CEMAC With contribu,ons from experts at the U.S. Department of Energy, Argonne Na,onal Laboratory, the Na,onal Renewable Energy Laboratory, and Industry Partners June 2, 2015 NREL/PR---6A50---63354 Contract No. DE---AC36---08GO28308 June 2015 CEMAC ▪ Clean Energy Manufacturing Analysis Center ▪ ManufacturingCleanEnergy.org DISCLAIMER

  11. Los Alamos Neutron Science Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Science Center gets capacity boost December 2, 2010 Los Alamos National Security funds upgrade to key facility LOS ALAMOS, New Mexico, December 2, 2010-The National Nuclear Security Administration's Los Alamos Site Office and Los Alamos National Security, LLC, the contractor that operates Los Alamos National Laboratory, have agreed to allocate money LANS could have earned from its prime contract fee to upgrade a facility serving industrial designers and researchers at the Los Alamos

  12. New developments in RTR fuel recycling

    SciTech Connect (OSTI)

    Lelievre, F.; Brueziere, J.; Domingo, X.; Valery, J.F.; Leroy, J.F.; Tribout-Maurizi, A.

    2013-07-01

    As most utilities in the world, Research and Test Reactors (RTR) operators are currently facing two challenges regarding the fuel, in order to comply with local safety and waste management requirements as well as global non-proliferation obligation: - How to manage used fuel today, and - How fuel design changes that are currently under development will influence used fuel management. AREVA-La-Hague plant has a large experience in used fuel recycling, including traditional RTR fuel (UAl). Based on that experience and deep knowledge of RTR fuel manufacturing, AREVA is currently examining possible options to cope with both challenges. This paper describes the current experience of AREVA-La-Hague in UAl used fuels recycling and its plan to propose recycling for various types of fuels such as U{sub 3}Si{sub 2} fuel or UMo fuel on an industrial scale. (authors)

  13. PIA - Environmental Management Consolidated Business Center (EMCBC) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Management Consolidated Business Center (EMCBC) PIA - Environmental Management Consolidated Business Center (EMCBC) PIA - Environmental Management Consolidated Business Center (EMCBC) PIA - Environmental Management Consolidated Business Center (EMCBC) (3.42 MB) More Documents & Publications PIA - Bonneville Power Adminstration Ethics Helpline PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 LM Records Handling System (LMRHS01) - Rocky

  14. PROCEEDINGS OF THE 2003 NATIONAL OILHEAT RESEARCH ALLIANCE TECHNOLOGY SYMPOSIUM, HELD AT THE 2003 NEW ENGLAND FUEL INSTITUTE CONVENTION AND 30TH NORTH AMERICAN HEATING AND ENERGY EXPOSITION, HYNES CONVENTION CENTER, PRUDENTIAL CENTER, BOSTON, MASSACHUSETTS, JUNE 9 - 10, 2003.

    SciTech Connect (OSTI)

    MCDONALD,R.J.

    2003-06-09

    This meeting is the sixteenth oilheat industry technology meeting held since 1984 and the third since the National Oilheat Research Alliance (NORA) was formed. This year's symposium is a very important part of the effort in technology transfer, which is supported by the Oilheat Research Fuel Flexibility Program under the United States Department of Energy, Distributed Energy and Electricity Reliability Program (DEER). The foremost reason for the conference is to provide a platform for the exchange of information and perspectives among international researchers, engineers, manufacturers, service technicians, and marketers of oil-fired space-conditioning equipment. The conference provides a conduit by which information and ideas can be exchanged to examine present technologies, as well as helping to develop the future course for oil heating advancement. These conferences also serve as a stage for unifying government representatives, researchers, fuel oil marketers, and other members of the oil-heat industry in addressing technology advancements in this important energy use sector. The specific objectives of the conference are to: (1) Identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost effectively, reliably, and safely; (2) Foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation.

  15. Self Assembly for Nanostructured Electronic Devices at the Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charles Black Center for Functional Nanomaterials, Brookhaven National Laboratory BlackChuckD0331112 abstract: The Center for Functional Nanomaterials (CFN) at Brookhaven ...

  16. Building America Solution Center - 2014 BTO Peer Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Review Building America Solution Center - 2014 BTO Peer Review Presenter: Michael Baechler, Pacific Northwest National Laboratory The Building America Solution Center ...

  17. Methanation process utilizing split cold gas recycle

    DOE Patents [OSTI]

    Tajbl, Daniel G.; Lee, Bernard S.; Schora, Jr., Frank C.; Lam, Henry W.

    1976-07-06

    In the methanation of feed gas comprising carbon monoxide and hydrogen in multiple stages, the feed gas, cold recycle gas and hot product gas is mixed in such proportions that the mixture is at a temperature sufficiently high to avoid carbonyl formation and to initiate the reaction and, so that upon complete reaction of the carbon monoxide and hydrogen, an excessive adiabatic temperature will not be reached. Catalyst damage by high or low temperatures is thereby avoided with a process that utilizes extraordinarily low recycle ratios and a minimum of investment in operating costs.

  18. Center for Energy Efficient Design

    High Performance Buildings Database

    Rocky Mount, VA As the first Passivhaus public school in North America, the Center for Energy Efficient Design (CEED) in Rocky Mount, Virginia, is a national model for green school construction. An extension of The Leonard A.

  19. National RES Las Vegas

    Broader source: Energy.gov [DOE]

    RES Las Vegas is another multifaceted event from The National Center which will feature unparalleled access to respected tribal leaders, members of congress, federal agency representatives, state...

  20. 2015 SACNAS National Conference

    Broader source: Energy.gov [DOE]

    Location: The Gaylord Conventiona Center at The National Harbor, Prince George's County, MD POC: Recruitment@doe.gov Website: 2015 SACNAS Conference

  21. Solar Energy Resource Center | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    SunShot Initiative's Solar Energy Resource Center contains work developed by DOE, national laboratories and SunShot awardees. The Solar Energy Resource Center has over 100 unique ...

  22. NSIDC Data Center: Energy Reduction Strategies (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-05-01

    The Green Data Center Project was a successful effort to significantly reduce the energy use of the National Snow and Ice Data Center (NSIDC) and this paper describes this project.

  1. Center for Inverse Design: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center the Inverse Design Highlights Read short descriptions of some recent successes by researchers within the Center for Inverse Design, an Energy Research Frontier Center led by the National Renewable Energy Laboratory. Illustration of Seebeck coefficient mapping instrument showing various components in an "exploded" view. Spatially Resolved Seebeck Coefficient Measurements An instrument for spatially resolved Seebeck coefficient measurements has been developed and applied to test

  2. Poeh Cultural Center wins grant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Poeh Cultural Center wins grant, educates public Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Poeh Cultural Center wins grant Native American Venture Acceleration Fund money helps increase education and tourism. May 2, 2016 Poeh Cultural Center and Museum received a grant through the Native American Venture Acceleration Fund in January to develop training programs for artists and to

  3. NNSA Service Center Chart | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NNSA Service Center Chart NNSA Service Center Chart Office of Chief Counsel at the NNSA Service Center in Albuquerque, NM NNSA Service Center Chart (504.86 KB) More Documents & Publications Technical Qualification Program Accreditation Schedule EIS-0466: Notice of Intent to Prepare an Environmental Impact Statement Federal Register Notice: National Nuclear Security Administration Site-Wide Environmental Impact Statement for Sandia National Laboratories, New Mexico (S

  4. London Waste and Recycling Board | Open Energy Information

    Open Energy Info (EERE)

    Waste and Recycling Board Jump to: navigation, search Name: London Waste and Recycling Board Place: London, England, United Kingdom Zip: SE1 0AL Sector: Services Product: UK-based...

  5. Breakout Session: Getting in the Loop: PV Hardware Recycling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Getting in the Loop: PV Hardware Recycling and Sustainability Breakout Session: Getting in the Loop: PV Hardware Recycling and Sustainability May 21, 2014 6:30PM to 7:30PM PDT ...

  6. Scientists Can Recycle CO2 Using Gold | Department of Energy

    Office of Environmental Management (EM)

    Can Recycle CO2 Using Gold Scientists Can Recycle CO2 Using Gold May 27, 2016 - 9:57am Addthis A new chemical process has the potential to reduce atmospheric CO2 emissions by ...

  7. Electron-Impact Ionization of Multicharged Ions: Cross-Sections Data from Oak Ridge National Laboratory (ORNL) and the Controlled Fusion Atomic Data Center (CFADC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This website presents experimental ionization cross sections measured using the Electron-Ion Crossed Beams apparatus in the Multicharged Ion Research Facility (MIRF) at the Physics Division of Oak Ridge National Laboratory (ORNL). The data are given in both graphical and tabular form along with the reference to the original publication of the experimental results. Also presented in the figures are theoretical cross sections supporting the experiments. For details of the theoretical work, refer to the original publication given for the particular experiment. These pages are based primarily on three technical memorandums issued by ORNL: 1(D. H. Crandall, R. A. Phaneuf, and D. C. Gregory, Electron Impact Ionization of Multicharged Ions, ORNL/TM-7020, Oak Ridge National Laboratory, 1979; 2) D. C. Gregory, D. H. Crandall, R. A. Phaneuf, A. M. Howald, G. H. Dunn, R. A. Also presented are more recent (1993-present) data, both published and unpublished. The data pages feature dynamic plotting, allowing the user to choose which sets of data to plot and zoom in on regions of interest within the plot. [Taken from http://www-cfadc.phy.ornl.gov/xbeam/index.html

  8. National Security Facility (NSF) | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security Facility (NSF) National Security Facility (NSF) Argonne National Laboratory's National Security Facility (NSF) is a flexible, state-of-the-art secure user facility that contains multiple national security networks, video teleconference capability, high-resolution graphics support, a fully powered and cooled data center, multi-level training facilities, and conferencing facilities. The NSF provides tools and resources to enable and strengthen connections between government

  9. Woody biomass production in waste recycling systems

    SciTech Connect (OSTI)

    Rockwood, D.L.; Snyder, G.H.; Sprinkle, R.R.

    1994-12-31

    Combining woody biomass production with waste recycling offers many mutual advantages, including increased tree growth and nutrient and water reclamation. Three biomass/recycling studies collectively involving Eucalyptus amplifolia, E. camaldulensis, and E. grandis, rapidly growing species potentially tolerant of high water and nutrient levels, are (1) evaluating general potential for water/nutrient recycling systems to enhance woody biomass production and to recycle water and nutrients, (2) documenting Eucalyptus growth, water use, and nutrient uptake patterns, and (3) identifying Eucalyptus superior for water and nutrient uptake in central and southern Florida. In a 1992-93 study assessing the three Eucalyptus species planted on the outside berms of sewage effluent holding ponds, position on the berms (top to bottom) and genotypes influenced tree size. The potential of the trees to reduce effluent levels in the ponds was assessed. In a stormwater holding pond planted in 1993, these Eucalyptus genotypes varied significantly for tree size but not for survival. E. camaldulensis appears generally superior when flooded with industrial stormwater. Potential sizes of ponds needed for different stormwater applications were estimated. Prolonged flooding of 4- and 5-year-old E. camaldulensis with agricultural irrigation runoff has had no observable effects on tree growth or survival. Younger E. camaldulensis, E. amplifolia, and E. grandis were assessed for water use and nutrient uptake during a Summer 1994 flooding.

  10. Selective purge for hydrogenation reactor recycle loop

    DOE Patents [OSTI]

    Baker, Richard W.; Lokhandwala, Kaaeid A.

    2001-01-01

    Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

  11. WINCO Metal Recycle annual report, FY 1993

    SciTech Connect (OSTI)

    Bechtold, T.E.

    1993-12-01

    This report is a summary of the first year progress of the WINCO Metal Recycle Program. Efforts were directed towards assessment of radioactive scrap metal inventories, economics and concepts for recycling, technology development, and transfer of technology to the private sector. Seven DOE laboratories worked together to develop a means for characterizing scrap metal. Radioactive scrap metal generation rates were established for several of these laboratories. Initial cost estimates indicate that recycle may be preferable over burial if sufficient decontamination factors can be achieved during melt refining. Radiation levels of resulting ingots must be minimized in order to keep fabrication costs low. Industry has much of the expertise and capability to execute the recycling of radioactive scrap metal. While no single company can sort, melt, refine, roll and fabricate, a combination of two to three can complete this operation. The one process which requires development is in melt refining for removal of radionuclides other than uranium. WINCO is developing this capability in conjunction with academia and industry. This work will continue into FY-94.

  12. Transverse instability at the recycler ring

    SciTech Connect (OSTI)

    Ng, K.Y.; /Fermilab

    2004-10-01

    Sporadic transverse instabilities have been observed at the Fermilab Recycler Ring leading to increase in transverse emittances and beam loss. The driving source of these instabilities has been attributed to the resistive-wall impedance with space-charge playing an important role in suppressing Landau damping. Growth rates of the instabilities are computed. Remaining problems are discussed.

  13. REGULATIONS ON PHOTOVOLTAIC MODULE DISPOSAL AND RECYCLING.

    SciTech Connect (OSTI)

    FTHENAKIS,V.

    2001-01-29

    Environmental regulations can have a significant impact on product use, disposal, and recycling. This report summarizes the basic aspects of current federal, state and international regulations which apply to end-of-life photovoltaic (PV) modules and PV manufacturing scrap destined for disposal or recycling. It also discusses proposed regulations for electronics that may set the ground of what is to be expected in this area in the near future. In the US, several states have started programs to support the recycling of electronic equipment, and materials destined for recycling often are excepted from solid waste regulations during the collection, transfer, storage and processing stages. California regulations are described separately because they are different from those of most other states. International agreements on the movement of waste between different countries may pose barriers to cross-border shipments. Currently waste moves freely among country members of the Organization of Economic Cooperation and Development (OECD), and between the US and the four countries with which the US has bilateral agreements. However, it is expected, that the US will adopt the rules of the Basel Convention (an agreement which currently applies to 128 countries but not the US) and that the Convection's waste classification system will influence the current OECD waste-handling system. Some countries adopting the Basel Convention consider end-of-life electronics to be hazardous waste, whereas the OECD countries consider them to be non-hazardous. Also, waste management regulations potentially affecting electronics in Germany and Japan are mentioned in this report.

  14. operations center

    National Nuclear Security Administration (NNSA)

    logistics and mobilization actions during periods of national emergencies, natural and man-made disasters, acts of terrorism, or other extraordinary situations requiring...

  15. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated research facilities. As a U.S. Department of Energy national laboratory, Argonne offers access to the facilities listed below through a variety of arrangements. Advanced Powertrain Research Facility Center for Transportation Research Materials Engineering Research Facility Distributed Energy Research Center

  16. GNEP Element:Demonstrate More Proliferation-Resistant Recycling |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy GNEP Element:Demonstrate More Proliferation-Resistant Recycling GNEP Element:Demonstrate More Proliferation-Resistant Recycling An article describing GNEP element of recycling. GNEP Element:Demonstrate More Proliferation-Resistant Recycling (478.08 KB) More Documents & Publications GNEP Element:Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet - Develop Enhanced Nuclear Safeguards Global Nuclear Energy Partnership Fact Sheet -

  17. Recycler ring conceptual design study

    SciTech Connect (OSTI)

    Jackson, G.

    1995-07-18

    The Tevatron Collider provides the highest center of mass energy collisions in the world. To fully exploit this unique tool, Fermilab is committed to a program of accelerator upgrades for the purpose of increasing the Collider luminosity. Over the past 7 years the luminosity has been increased from a peak of 1.6{times}10{sup 30}cm{sup {minus}2}sec{sup {minus}1} in 1989 to over 3{times}10{sup 31}cm{sup {minus}2}sec{sup {minus}1} during 1995. The Main Injector will supply a larger flux of protons for antiproton production and more intense proton bunches for use in the Collider, and this is expected to increase the peak luminosity to close to 1{times}10{sup 32}cm{sup {minus}2}sec{sup {minus}1}. Further increases in luminosity will require additional upgrades to the Fermilab accelerator complex. This report documents the design of a new fixed-energy storage ring to be placed in the Main Injector tunnel which will provide an initial factor of 2 increase to 2{times}10{sup 32}cm{sup {minus}2}sec{sup {minus}1}, and ultimately provide the basis for an additional order of magnitude luminosity increase up to 1{times}10{sup 33}cm{sup {minus}2}sec{sup {minus}1}.

  18. DOE Energy Frontier Research Centers (EFRCs)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Idaho National Laboratory Idaho Falls ID Center for Materials Science of Nuclear Fuel Wolf, Dieter 10,000,000 Develop predictive computational models, validated by experiments, ...

  19. National Geothermal Academy. Geo-Heat Center Quarterly Bulletin, Vol. 31 No. 2 (Complete Bulletin). A Quarterly Progress and Development Report on the Direct Utilization of Geothermal Resources

    SciTech Connect (OSTI)

    Boyd, Tonya; Maddi, Phillip

    2012-08-01

    The National Geothermal Academy (NGA) is an intensive 8-week overview of the different aspects involved in developing a geothermal project, hosted at University of Nevada, Reno. The class of 2012 was the second graduating class from the academy and included 21 students from nine states, as well as Saudi Arabia, Dominica, India, Trinidad, Mexico. The class consisted of people from a wide range of scholastic abilities from students pursuing a Bachelor’s or Master’s degrees, to entrepreneurs and professionals looking to improve their knowledge in the geothermal field. Students earned 6 credits, either undergraduate or graduate, in engineering or geology. Overall, the students of the NGA, although having diverse backgrounds in engineering, geology, finance, and other sciences, came together with a common passion to learn more about geothermal.

  20. Distributed H{sub 2} Supply for Fuel Cell Utility Vehicles Year 6 - Activity 3.5 - Development fo a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Almlie, Jay

    2012-04-15

    The Energy & Environmental Research Center (EERC) has developed a high-pressure hydrogen production system that reforms a liquid organic feedstock and water at operating pressures up to 800 bar (~12,000 psig). The advantages of this system include the elimination of energy-intensive hydrogen compression, a smaller process footprint, and the elimination of gaseous or liquid hydrogen transport. This system could also potentially enable distributed hydrogen production from centralized coal. Processes have been investigated to gasify coal and then convert the syngas into alcohol or alkanes. These alcohols and alkanes could then be easily transported in bulk to distributed high-pressure water-reforming (HPWR)-based systems to deliver hydrogen economically. The intent of this activity was to utilize the EERC’s existing HPWR hydrogen production process, previously designed and constructed in a prior project phase, as a basis to improve operational and production performance of an existing demonstration unit. Parameters to be pursued included higher hydrogen delivery pressure, higher hydrogen production rates, and the ability to refill within a 5-minute time frame.

  1. U.S. Fish and Wildlife Service National Conservation Training...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fish and Wildlife Service National Conservation Training Center, Shepherdstown, West Virginia U.S. Fish and Wildlife Service National Conservation Training Center, Shepherdstown, ...

  2. Lawrence Berkeley National Laboratory | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Berkeley National Laboratory NNSA engineer teaches young people STEM, makes mark on Livermore lab communities. Rick Roses Job: Federal fire protection engineer and explosives safety engineer Educational background: Bachelor's degree in mechanical engineering, University of California, Berkeley (1984) and a master's in national resource strategy, National Defense University (2010). Rick Roses,... Lab employees, officials, business leaders dedicate Livermore Solar Center

  3. Child Development Centers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits » Wellness Programs » Child Development Centers Child Development Centers Headquarters operates National Association for the Education of Young Children (NAEYC) accredited child development centers at its Forrestal and Germantown facilities. Each center provides day care services that accommodate up to 70 children ranging in age from 6 weeks through 6 years. The Child Development Centers are open from 7:15 a.m. until 6:15 p.m. Monday through Friday. Parental visits are encouraged, as

  4. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recognizes employee teams with 2015 Pollution Prevention Awards April 22, 2015 Projects save taxpayer dollars, promote environmental stewardship, sustainability LOS ALAMOS, N.M., April 22, 2015-Nearly 400 Los Alamos National Laboratory employees on 32 teams received Pollution Prevention awards during an Earth Day awards ceremony on Wednesday, saving taxpayers $5.6 million while also reusing, recycling, re-tasking and re-routing waste. "The goal of the Laboratory's pollution prevention

  5. Model institutional infrastructures for recycling of photovoltaic modules

    SciTech Connect (OSTI)

    Reaven, S.J.; Moskowitz, P.D.; Fthenakis, V.

    1996-01-01

    How will photovoltaic modules (PVMS) be recycled at the end of their service lives? This question has technological and institutional components (Reaven, 1994a). The technological aspect concerns the physical means of recycling: what advantages and disadvantages of the several existing and emerging mechanical, thermal, and chemical recycling processes and facilities merit consideration? The institutional dimension refers to the arrangements for recycling: what are the operational and financial roles of the parties with an interest in PVM recycling? These parties include PVM manufacturers, trade organizations; distributors, and retailers; residential, commercial, and utility PVM users; waste collectors, transporters, reclaimers, and reclaimers; and governments.

  6. noc | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    noc DHS/National Operations Center The Department of Energy (DOE)/ Department of Homeland Security (DHS) Watch Office Desk in DHS's National Operations Center (NOC) represents DOE/NNSA within the NOC. In conjunction with over 80 federal, state, and local government agencies, the DOE/DHS Operations Center Watch Officer(s)... Operations Center The Office of Emergency Operations Support maintains situational awareness of the nation's energy infrastructure and nuclear weapons complex and facilitates

  7. Center for Functional Nanomaterials

    ScienceCinema (OSTI)

    BNL

    2009-09-01

    Staff from Brookhaven's new Center for Functional Nanomaterials (CFN) describe how this advanced facility will focus on the development and understanding of nanoscale materials. The CFN provides state-of-the-art capabilities for the fabrication and study of nanoscale materials, with an emphasis on atomic-level tailoring to achieve desired properties and functions. The overarching scientific theme of the CFN is the development and understanding of nanoscale materials that address the Nation's challenges in energy security.

  8. Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers Science for our Nation's Energy Future US Department of Energy Office of Science www.energyfrontier.us 43 ABOVE: CFSES addresses safe, secure and economical underground storage of CO2 by integrating multiple scientific disciplines to understand the various processes occurring from molecular to field scales. TOP: CFSES combines experimental data (top left) with state-of-the-art simulations (top right) to create tools that will help determine what will happen when CO2 is injected

  9. LANSCE | Lujan Center | Instruments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HIPPO Engineering Diffraction SMARTS Protein Crystallography PCS Neutron Imaging Capability Neutron Radiography Contacts Lujan Center Leader Aaron Couture (acting) 505.667.1730 Deputy Leader Fredrik Tovesson 505.665.9652 Deputy Leader & Experimental Area Manager Charles Kelsey 505.665.5579 Experiment Coordinator Charles Kelsey (acting) 505.667.8755 User Program Administration lujan-uo@lanl.gov Administrative Assistant Julie Quintana-Valdez 505.665.5390 Department of Energy, National Nuclear

  10. Center for Integrated Nanotechnologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADEPS » MPA » MPA-CINT Center for Integrated Nanotechnologies Nanomaterials integration is one of many approaches we take in addressing a range of challenges, from human health to national defense. Contact Us CINT Co-Director Quanxi Jia Email Deputy Group Leader (acting) Alex Lacerda Email Group Office (505) 667-9243 First in-situ images of void collapse in explosives Los Alamos researchers and collaborators demonstrated a crucial diagnostic for studying how voids affect explosives under shock

  11. Partnering to Create an Energy Efficient Data Center

    Broader source: Energy.gov [DOE]

    The Energy Department's National Lab builds one of the world’s most energy efficient data centers.

  12. Craig Thomas Discovery & Visitor Center

    High Performance Buildings Database

    Moose, WY Grand Teton National Park's rugged landscape and stunning array of wildlife attract nearly three million visitors every year, making it one of our most popular national parks. A new Grand Teton National Park visitor center near the park's headquarters north of Jackson, Wyoming, replaces an outdated building, educates an increased number of visitors, and inspires further exploration of this extraordinary landscape. The project site is located along the Snake River, between a riparian forest and a sagebrush meadow.

  13. Microbial Fuel Cells for Recycle of Process Water from Cellulosic Ethanol

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biorefineries - Energy Innovation Portal Microbial Fuel Cells for Recycle of Process Water from Cellulosic Ethanol Biorefineries Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryA method was invented at ORNL for removing inhibitor compounds from process water in biomass-to-ethanol production. This invention can also be used to produce power for other industrial processes. DescriptionLarge amounts of water are used in the processing of cellulosic

  14. OSTIblog Articles in the recycling Topic | OSTI, US Dept of Energy Office

    Office of Scientific and Technical Information (OSTI)

    of Scientific and Technical Information recycling Topic #Energypledge by Erin Anderson 06 Mar, 2013 in Science Communications Personnel of the Office of Scientific and Technical Information (OSTI) recently contributed to the Department of Energy's (DOE) "2013 Energy Pledge Campaign"! The 2013 Energy Pledge Campaign was part of DOE's efforts regarding the National Day of Service. Federal Agencies and Individuals joined together to make commitments to a wide range of causes,

  15. End-of-life vehicle recycling : state of the art of resource recovery from shredder residue.

    SciTech Connect (OSTI)

    Jody, B. J.; Daniels, E. J.; Duranceau, C. M.; Pomykala, J. A.; Spangenberger, J. S.

    2011-02-22

    vehicles. Many of these materials increase the percentage of shredder residue that must be disposed of, compared with the percentage of metals that are recovered. In addition, the number of hybrid vehicles and electric vehicles on the road is rapidly increasing. This trend will also introduce new materials for disposal at the end of their useful lives, including batteries. Therefore, as the complexity of automotive materials and systems increases, new technologies will be required to sustain and maximize the ultimate recycling of these materials and systems. Argonne National Laboratory (Argonne), the Vehicle Recycling Partnership, LLC. (VRP) of the United States Council for Automotive Research, LLC. (USCAR), and the American Chemistry Council-Plastics Division (ACC-PD) are working to develop technology for recovering materials from end-of-life vehicles, including separating and recovering polymers and residual metals from shredder residue. Several other organizations worldwide are also working on developing technology for recycling materials from shredder residue. Without a commercially viable shredder industry, our nation and the world will most likely face greater environmental challenges and a decreased supply of quality scrap, and thereby be forced to turn to primary ores for the production of finished metals. This will result in increased energy consumption and increased damage to the environment, including increased greenhouse gas emissions. The recycling of polymers, other organics, and residual metals in shredder residue saves the equivalent of over 23 million barrels of oil annually. This results in a 12-million-ton reduction in greenhouse gas emissions. This document presents a review of the state-of-the-art in the recycling of automotive materials.

  16. Dependence of Recycling and Edge Profiles on Lithium Evaporation in High Triangularity, High Performance NSTX H-mode Discharges

    SciTech Connect (OSTI)

    Maingi, R; Osborne, T H; Bell, M G; Bell, R E; Boyle, D P; Canik, J M; Dialla, A; Kaita, R; Kaye, S M; Kugel, H W; LeBlanc, B P; Sabbagh, S A; Skinner, C H; Soukhanovskii, V A

    2014-04-01

    In this paper, the effects of a pre-discharge lithium evaporation scan on highly shaped discharges in the National Spherical Torus Experiment (NSTX) are documented. Lithium wall conditioning ('dose') was routinely applied onto graphite plasma facing components between discharges in NSTX, partly to reduce recycling. Reduced D[sub]α emission from the lower and upper divertor and center stack was observed, as well as reduced midplane neutral pressure; the magnitude of reduction increased with the pre-discharge lithium dose. Improved energy confinement, both raw τ[sub]E and H-factor normalized to scalings, with increasing lithium dose was also observed. At the highest doses, we also observed elimination of edge-localized modes. The midplane edge plasma profiles were dramatically altered, comparable to lithium dose scans at lower shaping, where the strike point was farther from the lithium deposition centroid. This indicates that the benefits of lithium conditioning should apply to the highly shaped plasmas planned in NSTX-U.

  17. Probe for contamination detection in recyclable materials

    DOE Patents [OSTI]

    Taleyarkhan, Rusi

    2003-08-05

    A neutron detection system for detection of contaminants contained within a bulk material during recycling includes at least one neutron generator for neutron bombardment of the bulk material, and at least one gamma ray detector for detection of gamma rays emitted by contaminants within the bulk material. A structure for analyzing gamma ray data is communicably connected to the gamma ray detector, the structure for analyzing gamma ray data adapted. The identity and concentration of contaminants in a bulk material can also be determined. By scanning the neutron beam, discrete locations within the bulk material having contaminants can be identified. A method for recycling bulk material having unknown levels of contaminants includes the steps of providing at least one neutron generator, at least one gamma ray detector, and structure for analyzing gamma ray data, irradiating the bulk material with neutrons, and then determining the presence of at least one contaminant in the bulk material from gamma rays emitted from the bulk material.

  18. National Aeronautical and Space Administration (NASA) Johnson...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aeronautical and Space Administration (NASA) Johnson Space Flight Center National Aeronautical and Space Administration (NASA) Johnson Space Flight Center Space Shuttle Endeavour, ...

  19. Ferrite insertion at Recycler Flying Wire System

    SciTech Connect (OSTI)

    K.Y. Ng

    2004-02-27

    Ferrite rods are installed inside the flying-wire cavity of the Recycler Ring and at entrance and exit beam pipes in order to absorb high-frequency electromagnetic waves excited by the beam. However, these rods may also deteriorate the vacuum pressure of the ring. An investigation is made to analyze the necessity of the ferrite rods at the entrance and exit beam pipes.

  20. Regional cooperative marketing of recyclable materials

    SciTech Connect (OSTI)

    Prete, P.J. )

    1993-01-01

    This paper discusses cooperative marketing and its role in recycling programs. The first section of the paper presents a snapshot of cooperative marketing, describes trends, and analyzes driving forces. The maturing recycling industry is examined to speculate on why cooperative marketing is emerging at this time, in certain areas, and in specific subsets of the industry. The second section provides analytical tools to help waste management personnel evaluate cooperative marketing alternatives. Criteria are presented to help evaluate programs to determine if and when cooperative marketing is practical and advantageous for rural, low budget, or new programs. Situations driven by special problems with local recyclable materials markets will be discussed. The last section focuses on steps for putting cooperative marketing programs in place. Attendees are given insight that should enable them to initiate the process of pursuing cooperative marketing. Strategies addressed range from developing program objectives compatible with other community programs and arranging necessary communications, to assessing markets, determining resource needs, predicting material quantities, and optimizing materials supplies to meet market requirements.

  1. Research, Commercialization, & Workforce Development in the Polymer/Electronics Recycling Industry

    SciTech Connect (OSTI)

    Carl Irwin; Rakesh Gupta; Richard Turton; GangaRao Hota; Cyril Logar; Tom Ponzurick; Buddy Graham; Walter Alcorn; Jeff Tucker

    2006-02-01

    The Mid-Atlantic Recycling Center for End-of-Life Electronics (MARCEE) was set up in 1999 in response to a call from Congressman Alan Mollohan, who had a strong interest in this subject. A consortium was put together which included the Polymer Alliance Zone (PAZ) of West Virginia, West Virginia University (WVU), DN American and Ecolibrium. The consortium developed a set of objectives and task plans, which included both the research issues of setting up facilities to demanufacture End-of-Life Electronics (EoLE), the economics of the demanufacturing process, and the infrastructure development necessary for a sustainable recycling industry to be established in West Virginia. This report discusses the work of the MARCEE Project Consortium from November 1999 through March 2005. While the body of the report is distributed in hard-copy form the Appendices are being distributed on CD's.

  2. Recycling efficiency: The shape of things to come

    SciTech Connect (OSTI)

    Miller, C.

    1995-09-01

    In the mid-`70s, curbside recycling was easy. Virtually all the programs collected only newspaper at the curbside. They were placed in a rack beneath the garbage truck or in a trailer behind the truck. Of course, the rack might fill up too soon, but that was a minor problem, usually resolved by offloading sites for the newspaper. Today, curbside recycling is much more complicated. Curbside programs can collect a bewildering array of materials, including plastics, mixed paper, and even textiles. The simple rack is in the Smithsonian, replaced by highly sophisticated vehicles. Some can automatically collect recyclables without the driver ever getting out of the cab. Simplicity, it seems, has given way to complexity as recycling rates have skyrocketed. The recycling industry has been buffeted recently by a slew of anti-recycling articles in the popular press, yet, ironically, it has been enjoying the best markets has blunted the anti-recyclers. However, bull markets are not forever. Recyclers cannot afford to adopt a ``What, me worry?`` attitude towards the business of recycling. As collectors become increasingly skilled in collecting recyclables, they can translating these skills into more efficient programs.

  3. Sandia National Laboratories: 39,000 Pounds of Ceiling Tiles...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    39,000 Pounds of Ceiling Tiles Recycled December 21, 2010 ceiling tile shipment Ceiling tile shipment It took over two years to accumulate, but Sandia National LaboratoriesNew...

  4. National Security, Weapons Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security, Weapons Science National Security, Weapons Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. CoMuEx» Explosives Center» Dual-Axis Radiographic Hydrodynamic Test Facility (DARHT) The Dual-Axis Radiographic Hydrodynamic Test Facility at Los Alamos National Laboratory is part of the DOE's stockpile stewardship

  5. Making manufacturers responsible for recycling: Passing the garbage buck

    SciTech Connect (OSTI)

    Chilton, K.; Boerner, C.; Ansehl-Fellow, J.

    1995-09-01

    During a meeting with the Conference of Mayor and the National Association of Counties in April of 1993, Senator Max Baucus, then-Chairman of the Senate Environment and Public Works Committee, unveiled his solution to America`s {open_quotes}garbage crisis{close_quotes}. Modeled after Germany`s draconian {open_quotes}green dot{close_quotes} recycling program, the Senator`s solution rested on a principle which he called {open_quotes}manufacturers` responsibility for the life-cycle of a product.{close_quotes} {open_quotes}Anyone who sells a product,{close_quotes} Senator Baucus noted, {open_quotes}should also be responsible for the product when it becomes waste{close_quotes}. Other variations on this life-cycle stewardship concept were a central element of Congress`s failed attempts in 1992-1993 to reauthorize the Resource Conservation and Recovery Act (RCRA). Likewise, on July 11, 1994 the United States Conference of Mayors` Energy and Environment Committee passed a resolution calling on Congress to study the concept of {open_quotes}shared responsibility for waste reduction{close_quotes}. The committee cited the virtues of Western Europe`s systems of manufacturers` responsibility and claimed that a U.S. version would create jobs, promote new environmental technology and {open_quotes}result in the emergence of entire new industries{close_quotes}. This report describes a recycling program in Germany in which the manaufacturers are responsible for waste collection. The overall waste reduction benefits are described.

  6. National Science Bowl 2013 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Bowl 2013 National Science Bowl 2013 Addthis National Science Bowl 2013 1 of 16 National Science Bowl 2013 The 2013 National Science Bowl started off at the 4H Center,...

  7. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community invited to learn about emerging technologies July 6, 2016 DisrupTech showcases innovation from Los Alamos National Laboratory LOS ALAMOS, N.M., July 6, 2016-New technologies emerging from Los Alamos National Laboratory that address everything from fusion energy to medical testing will be on display for members of the community, investors and business leaders at the DisrupTech showcase, Thursday, July 14, starting at 1:00 p.m. at the Los Alamos Golf Course Event Center. "We call it

  8. Advanced recycling and research complexes: A second strategic use for installations on the base closure list

    SciTech Connect (OSTI)

    Walter, D.W.; Kuusinen, T.L.; Beck, J.E.

    1993-05-01

    Obstacles currently facing the solid waste recycling industry are often related to a lack of public and investor confidence, issues of profitability and liability, and insufficient consumer identification with products made from recycled materials. Resolution of these issues may not be possible without major changes in the way the solid waste recycling business is structured. At the same time, we are faced with opportunities which will not likely recur in our lifetimes: access to educated, well trained work forces; and large tracts of land that are contiguous with metropolitan areas and are developed for heavy industry and transportation. Military installations are being converted to civilian use just in time to serve as important a role in our national resource conservation policy. The future of recycling in North America converges with the future of selected bases on the closure list and takes the form of converting these bases into Advanced Recycling and Research Complexes. The premise is simple: use these strategically-located facilities as industrial parks where a broad range of secondary wastes are separated, refined, or converted and made into new products on site. The wastes would include municipal solid waste (MSW), demolition waste, landscape trimmings, used tires, scrap metal, agricultural waste, food processing waste, and other non-hazardous materials. The park would consist of separation and conversion facilities, research and product standards laboratories, and industries that convert the materials into products and fuels. Energy conversion systems using some waste streams as fuel could be located at the park to supplement energy demands of the industrial operations. The strategic co-location of the resource providers and user industries would minimize transportation costs.

  9. Fluid-Bed Testing of Greatpoint Energy's Direct Oxygen Injection Catalytic Gasification Process for Synthetic Natural Gas and Hydrogen Coproduction Year 6 - Activity 1.14 - Development of a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Swanson, Michael; Henderson, Ann

    2012-04-01

    The GreatPoint Energy (GPE) concept for producing synthetic natural gas and hydrogen from coal involves the catalytic gasification of coal and carbon. GPE’s technology “refines” coal by employing a novel catalyst to “crack” the carbon bonds and transform the coal into cleanburning methane (natural gas) and hydrogen. The GPE mild “catalytic” gasifier design and operating conditions result in reactor components that are less expensive and produce pipeline-grade methane and relatively high purity hydrogen. The system operates extremely efficiently on very low cost carbon sources such as lignites, subbituminous coals, tar sands, petcoke, and petroleum residual oil. In addition, GPE’s catalytic coal gasification process eliminates troublesome ash removal and slagging problems, reduces maintenance requirements, and increases thermal efficiency, significantly reducing the size of the air separation plant (a system that alone accounts for 20% of the capital cost of most gasification systems) in the catalytic gasification process. Energy & Environmental Research Center (EERC) pilot-scale gasification facilities were used to demonstrate how coal and catalyst are fed into a fluid-bed reactor with pressurized steam and a small amount of oxygen to “fluidize” the mixture and ensure constant contact between the catalyst and the carbon particles. In this environment, the catalyst facilitates multiple chemical reactions between the carbon and the steam on the surface of the coal. These reactions generate a mixture of predominantly methane, hydrogen, and carbon dioxide. Product gases from the process are sent to a gas-cleaning system where CO{sub 2} and other contaminants are removed. In a full-scale system, catalyst would be recovered from the bottom of the gasifier and recycled back into the fluid-bed reactor. The by-products (such as sulfur, nitrogen, and CO{sub 2}) would be captured and could be sold to the chemicals and petroleum industries, resulting in

  10. WINDExchange: About Regional Resource Centers

    Wind Powering America (EERE)

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers About Economic Development Siting About Regional Resource Centers Significant expansion of wind energy deployment will be required to achieve the President's goal of doubling renewable energy production in the United States by 2020. Wind energy currently provides more than 4% of the nation's electricity but has the potential to provide much more. Increasing the country's percentage from wind power will mean

  11. Magnetic Divertor for Low Plasma Recycling in Tokamaks Ernesto Mazzucato |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Magnetic Divertor for Low Plasma Recycling in Tokamaks Ernesto Mazzucato Existing experiments indicate that low recycling of exhausted particles can improve the energy confinement in tokamaks, very likely by preventing the cooling of the plasma edge and thereby causing a reduction in the level of plasma turbulence. This can reduce the size of a tokamak fusion reactor, making the latter a more viable source of energy. The necessary conditions for low recycling can

  12. Pollution Prevention, Waste Reduction, and Recycling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pollution Prevention, Waste Reduction, and Recycling Pollution Prevention, Waste Reduction, and Recycling The purpose of pollution prevention and waste reduction as stated in the Departments Strategic Sustainability Performance Plan is to "prevent or reduce pollution at the source whenever feasible. Pollutants and wastes that cannot be prevented through source reduction will be diverted from entering the waste stream through environmentally safe and cost-effective reuse or recycling to the

  13. Models Help Pinpoint Material for Better Nuclear Fuel Recycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Models Help Pinpoint Material for Better Nuclear Fuel Recycling Models Help Pinpoint Material for Better Nuclear Fuel Recycling Sifting 125,000 Candidates Yields Ideal Candidate for Xenon, Krypton Recovery June 13, 2016 Contact: Jon Bashor, jbashor@lbl.gov, +1 510.486.5849 SBMOF-1 illlustration A new material, dubbed SBMOF-1 illustrated here, could be used to separate xenon and krypton gases from the waste produced in recycling spent nuclear fuels using less energy than conventional methods. The

  14. QER- Comment of National Wildlife Foundation

    Broader source: Energy.gov [DOE]

    Mollie Simon Climate and Energy National Wildlife Federation - National Advocacy Center 901 E. Street, NW Suite 400 Washington, DC 20004 +1 202.797.6651

  15. Independent Oversight Review, Los Alamos National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 2011 Independent Oversight Review, Los Alamos National Laboratory - September 2011 September 2011 Review of the Facility Centered Assessment of the Los Alamos National ...

  16. Independent Oversight Inspection, Oak Ridge National Laboratory- October 2008

    Broader source: Energy.gov [DOE]

    Inspection of Nuclear Safety at the Oak Ridge National Laboratory Radiochemical Engineering Development Center, Building 7920

  17. Michelle Buchanan > Oak Ridge National Laboratory > Scientific Advisory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Board > The Energy Materials Center at Cornell Michelle Buchanan Oak Ridge National Laboratory

  18. Hydrogen Centers of Excellence - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Centers of Excellence April 27, 2004 Golden, Colo. - Secretary of Energy Spencer Abraham announced that the Department of Energy (DOE) has selected more than $150 million in hydrogen storage research projects to support President Bush's Hydrogen Fuel Initiative. The awards include the formation of three "Centers of Excellence," at the National Renewable Energy Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory, integrating the expertise of the DOE

  19. Models Help Pinpoint Material for Better Nuclear Fuel Recycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers are investigating a new material that might help in nuclear fuel recycling and waste reduction by capturing certain gases released during reprocessing. Conventional ...

  20. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT...

    Office of Scientific and Technical Information (OSTI)

    IN LIGHT WATER REACTORS USING HYDRIDE FUEL Citation Details In-Document Search Title: FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING ...