Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nasi sodium silicide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Sodium  

SciTech Connect

Some of the properties of sodium are reviewed, particularly its properties which make it useful as a FBR coolant. The FFTF and other sodium research facilities at HEDL are described. (DLC)

1979-09-27T23:59:59.000Z

2

Stability and Schottky barrier of silicides: First-principles study  

Science Conference Proceedings (OSTI)

Using first-principles calculations, we explain why some metal atoms such as Ni produce bulk silicides and the others like Au never produce silicides, why silicides with some stoichiometry are difficult to grow on Si substrate, and why Schottky barrier ... Keywords: First-principles calculation, Schottky barrier, Silicide, Silicide/Si interfaces, Stability

T. Nakayama; S. Sotome; S. Shinji

2009-07-01T23:59:59.000Z

3

Metal Silicides: An Integral Part of Microelectronics  

Science Conference Proceedings (OSTI)

Metal silicide thin films are integral parts of all microelectronics devices. .... with activation energy around 1–1.5 eV for refractory metal/silicon systems and 0.5 eV

4

Is there a future for semiconducting silicides? (invited)  

Science Conference Proceedings (OSTI)

Keywords: &bgr;FeSi2, Ru2Si3, electroluminescence, ion beam synthesis, semiconducting silicides, silicon-based light-emitting diode

Karen J. Reeson; Jane Sharpe; Milton Harry; Daniel Leong; Colin McKinty; Adrian Kewell; Manon Lourenço; Yan Ling Chen; G. Shao; Kevin P. Homewood

2000-01-01T23:59:59.000Z

5

Cosine (Cobalt Silicide Growth Through Nitrogen-Induced Epitaxy) Process For Epitaxial Cobalt Silicide Formation For High Performance Sha  

DOE Patents (OSTI)

A method for forming an epitaxial cobalt silicide layer on a MOS device includes sputter depositing cobalt in an ambient to form a first layer of cobalt suicide on a gate and source/drain regions of the MOS device. Subsequently, cobalt is sputter deposited again in an ambient of argon to increase the thickness of the cobalt silicide layer to a second thickness.

Lim, Chong Wee (Urbana, IL); Shin, Chan Soo (Daejeon, KR); Gall, Daniel (Troy, NY); Petrov, Ivan Georgiev (Champaign, IL); Greene, Joseph E. (Champaign, IL)

2004-09-28T23:59:59.000Z

6

Molybdenum silicide based materials and their properties  

Science Conference Proceedings (OSTI)

Molybdenum disilicide (MoSi{sub 2}) is a promising candidate material for high temperature structural applications. It is a high melting point (2030 C) material with excellent oxidation resistance and a moderate density (6.24 g/cm{sup 3}). However, low toughness at low temperatures and high creep rates at elevated temperatures have hindered its commercialization in structural applications. Much effort has been invested in MoSi{sub 2} composites as alternatives to pure molybdenum disilicide for oxidizing and aggressive environments. Molybdenum disilicide-based heating elements have been used extensively in high-temperature furnaces. The low electrical resistance of silicides in combination with high thermal stability, electron-migration resistance, and excellent diffusion-barrier characteristics is important for microelectronic applications. Projected applications of MoSi{sub 2}-based materials include turbine airfoils, combustion chamber components in oxidizing environments, missile nozzles, molten metal lances, industrial gas burners, diesel engine glow plugs, and materials for glass processing. On this paper, synthesis, fabrication, and properties of the monolithic and composite molybdenum silicides are reviewed.

Yao, Z.; Stiglich, J.; Sudarshan, T.S. [Materials Modification, Inc., Fairfax, VA (United States)] [Materials Modification, Inc., Fairfax, VA (United States)

1999-06-01T23:59:59.000Z

7

Improved thermal stability of Ni-silicides on Si: C epitaxial layers  

Science Conference Proceedings (OSTI)

The thermal stability of Ni-silicides on tensily strained in situ P doped Si:C epitaxial layers was evaluated. The baseline Ni silicidation process was shown to be compatible with Si:C Recessed Source-Drain (RSD) stressors for NMOS strain engineering ... Keywords: Epitaxy, Ni, SiC stressors, Silicide, Thermal stability

V. Machkaoutsan; S. Mertens; M. Bauer; A. Lauwers; K. Verheyden; K. Vanormelingen; P. Verheyen; R. Loo; M. Caymax; S. Jakschik; D. Theodore; P. Absil; S. G. Thomas; E. H. A. Granneman

2007-11-01T23:59:59.000Z

8

Ni-Pt silicide formation through Ti mediating layers  

Science Conference Proceedings (OSTI)

With Ni"1"-"xPt"xSi, the variation in queue time between the final surface cleaning and Ni-Pt deposition represents a significant manufacturability issue. A short queue time is often difficult to maintain, leading to the formation of an oxide layer on ... Keywords: Mediated reaction, Nickel silicide, Oxidation, Titanium

Paul Besser; Christian Lavoie; Ahmet Ozcan; Conal Murray; Jay Strane; Keith Wong; Michael Gribelyuk; Yun-Yu Wang; Christopher Parks; Jean Jordan-Sweet

2007-11-01T23:59:59.000Z

9

Fuel-cycle cost comparisons with oxide and silicide fuels  

SciTech Connect

This paper addresses fuel cycle cost comparisons for a generic 10 MW reactor with HEU aluminide fuel and with LEU oxide and silicide fuels in several fuel element geometries. The intention of this study is to provide a consistent assessment of various design options from a cost point of view. Fuel cycle cost benefits could result if a number of reactors were to utilize fuel elements with the same number or different numbers of the same standard fuel plate. Data are presented to quantify these potential cost benefits. This analysis shows that there are a number of fuel element designs using LEU oxide or silicide fuels that have either the same or lower total fuel cycle costs than the HEU design. Use of these fuels with the uranium densities considered requires that they are successfully demonstrated and licensed.

Matos, J.E.; Freese, K.E.

1982-01-01T23:59:59.000Z

10

Detailed analysis of uranium silicide dispersion fuel swelling  

SciTech Connect

Swelling of U{sub 3}Si and U{sub 3}Si{sub 2} is analyzed. The growth of fission gas bubbles appears to be affected by fission rate, fuel loading, and microstructural change taking place in the fuel compounds during irradiation. Several mechanisms are explored to explain the observations. The present work is aimed at a better understanding of the basic swelling phenomenon in order to accurately model irradiation behavior of uranium silicide disperson fuel. 5 refs., 10 figs.

Hofman, G.L.; Ryu, Woo-Seog.

1989-01-01T23:59:59.000Z

11

Structure and property of magnetron sputtered ternary cobalt-nickel silicide films  

Science Conference Proceedings (OSTI)

Ternary cobalt-nickel silicide films were prepared using magnetron sputtering from an equiatomic cobalt-nickel alloy target on Si substrate. The effect of post-deposition annealing on the phase formation, structural properties and resistivity of the ... Keywords: Annealing, Magnetron sputtering, Resistivity, Ternary cobalt-nickel silicides

Zhou Xia; Shihua Huang

2010-10-01T23:59:59.000Z

12

Stress evolution during Ni-Si compound formation for fully silicided (FUSI) gates  

Science Conference Proceedings (OSTI)

The stress (force) evolution during the formation of different Ni silicide phases was monitored by in situ curvature measurements, for the reaction of thin Ni films of various thicknesses with 100nm polycrystalline-Si deposited on oxidized (100) Si substrates. ... Keywords: In situ XRD, In situ curvature measurements, Ni-silicides

C. Torregiani; C. Van Bockstael; C. Detavernier; C. Lavoie; A. Lauwers; K. Maex; J. A. Kittl

2007-11-01T23:59:59.000Z

13

Stacked silicide/silicon mid- to long-wavelength infrared detector  

DOE Patents (OSTI)

The use of stacked Schottky barriers (16) with epitaxially grown thin silicides (10) combined with selective doping (22) of the barriers provides high quantum efficiency infrared detectors (30) at longer wavelengths that is compatible with existing silicon VLSI technology.

Maserjian, Joseph (Goleta, CA)

1990-03-13T23:59:59.000Z

14

In situ study of the formation of silicide phases in amorphous Co-Si mixed layers  

Science Conference Proceedings (OSTI)

We investigate Co silicide phase formation when extra Si is added within an as deposited 50nm Co film. The addition of Si is investigated for both the Co/SiO"2 and Co/Si(100) system. A series of 10 Co-Si mixed films with a Si content varying from 21 ... Keywords: Cobalt silicides, EBSD, Grain size, In situ XRD, Nucleation

C. Van Bockstael; K. De Keyser; J. Demeulemeester; A. Vantomme; R. L. Van Meirhaeghe; C. Detavernier; J. L. Jordan-Sweet; C. Lavoie

2010-03-01T23:59:59.000Z

15

Progress in alkaline peroxide dissolution of low-enriched uranium metal and silicide targets  

SciTech Connect

This paper reports recent progress on two alkaline peroxide dissolution processes: the dissolution of low-enriched uranium metal and silicide (U{sub 3}Si{sub 2}) targets. These processes are being developed to substitute low-enriched for high-enriched uranium in targets used for production of fission-product {sup 99}Mo. Issues that are addressed include (1) dissolution kinetics of silicide targets, (2) {sup 99}Mo lost during aluminum dissolution, (3) modeling of hydrogen peroxide consumption, (4) optimization of the uranium foil dissolution process, and (5) selection of uranium foil barrier materials. Future work associated with these two processes is also briefly discussed.

Chen, L.; Dong, D.; Buchholz, B.A.; Vandegrift, G.F. [Argonne National Lab., IL (United States). Chemical Technology Div.; Wu, D. [Univ. of Illinois, Urbana, IL (United States)

1996-12-31T23:59:59.000Z

16

Use of silicide fuel in the Ford Nuclear Reactor - to lengthen fuel element lifetimes  

SciTech Connect

Based on economic considerations, it has been proposed to increase the lifetime of LEU fuel elements in the Ford Nuclear Reactor by raising the {sup 235}U plate loading from 9.3 grams in aluminide (UAl{sub x}) fuel to 12.5 grams in silicide (U{sub 3}Si{sub 2}) fuel. For a representative core configuration, preliminary neutronic depletion and steady state thermal hydraulic calculations have been performed to investigate core characteristics during the transition from an all-aluminide to an all-silicide core. This paper discusses motivations for this fuel element upgrade, results from the calculations, and conclusions.

Bretscher, M.M.; Snelgrove, J.L. [Argonne National Lab., IL (United States); Burn, R.R.; Lee, J.C. [Univ. of Michigan, Ann Arbor, MI (United States). Phoenix Memorial Lab.

1995-12-31T23:59:59.000Z

17

Method for forming metallic silicide films on silicon substrates by ion beam deposition  

DOE Patents (OSTI)

Metallic silicide films are formed on silicon substrates by contacting the substrates with a low-energy ion beam of metal ions while moderately heating the substrate. The heating of the substrate provides for the diffusion of silicon atoms through the film as it is being formed to the surface of the film for interaction with the metal ions as they contact the diffused silicon. The metallic silicide films provided by the present invention are contaminant free, of uniform stoichiometry, large grain size, and exhibit low resistivity values which are of particular usefulness for integrated circuit production.

Zuhr, R.A.; Holland, O.W.

1989-01-24T23:59:59.000Z

18

Thermal Analysis of a Uranium Silicide Miniplate Irradiation Experiment  

Science Conference Proceedings (OSTI)

This paper outlines the thermal analysis for the irradiation of high density uranium-silicide (U3Si2 dispersed in an aluminum matrix and clad in aluminum) booster fuel for a Boosted Fast Flux Loop designed to provide fast neutron flux test capability in the ATR. The purpose of this experiment (designated as Gas Test Loop-1 [GTL-1]) is two-fold: (1) to assess the adequacy of the U3Si2/Al dispersion fuel and the aluminum alloy 6061 cladding, and (2) to verify stability of the fuel cladding boehmite pre-treatment at nominal power levels in the 430 to 615 W/cm2 (2.63 to 3.76 Btu/s•in2) range. The GTL-1 experiment relies on a difficult balance between achieving a high heat flux, yet keeping fuel centerline temperature below a specified maximum value throughout an entire operating cycle of the reactor. A detailed finite element model was constructed to calculate temperatures and heat flux levels and to reveal which experiment parameters place constraints on reactor operations. Analyses were performed to determine the bounding lobe power level at which the experiment could be safely irradiated, yet still provide meaningful data under nominal operating conditions. Then, simulations were conducted for nominal and bounding lobe power levels under steady-state and transient conditions with the experiment in the reactor. Reactivity changes due to a loss of commercial power with pump coast-down to emergency flow or a standard in-pile tube pump discharge break were evaluated. The time after shutdown for which the experiment can be adequately cooled by natural convection cooling was determined using a system thermal hydraulic model. An analysis was performed to establish the required in-reactor cooling time prior to removal of the experiment from the reactor. The inclusion of machining tolerances in the numerical model has a large effect on heat transfer.

Donna Post Guillen

2009-09-01T23:59:59.000Z

19

Microalloying of transition metal silicides by mechanical activation and field-activated reaction  

DOE Patents (OSTI)

Alloys of transition metal suicides that contain one or more alloying elements are fabricated by a two-stage process involving mechanical activation as the first stage and densification and field-activated reaction as the second stage. Mechanical activation, preferably performed by high-energy planetary milling, results in the incorporation of atoms of the alloying element(s) into the crystal lattice of the transition metal, while the densification and field-activated reaction, preferably performed by spark plasma sintering, result in the formation of the alloyed transition metal silicide. Among the many advantages of the process are its ability to accommodate materials that are incompatible in other alloying methods.

Munir, Zuhair A. (Davis, CA); Woolman, Joseph N. (Davis, CA); Petrovic, John J. (Los Alamos, NM)

2003-09-02T23:59:59.000Z

20

FLOWSHEET EVALUATION FOR THE DISSOLVING AND NEUTRALIZATION OF SODIUM REACTOR EXPERIMENT USED NUCLEAR FUEL  

Science Conference Proceedings (OSTI)

This report includes the literature review, hydrogen off-gas calculations, and hydrogen generation tests to determine that H-Canyon can safely dissolve the Sodium Reactor Experiment (SRE; thorium fuel), Ford Nuclear Reactor (FNR; aluminum alloy fuel), and Denmark Reactor (DR-3; silicide fuel, aluminum alloy fuel, and aluminum oxide fuel) assemblies in the L-Bundles with respect to the hydrogen levels in the projected peak off-gas rates. This is provided that the number of L-Bundles charged to the dissolver is controlled. Examination of SRE dissolution for potential issues has aided in predicting the optimal batching scenario. The calculations detailed in this report demonstrate that the FNR, SRE, and DR-3 used nuclear fuel (UNF) are bounded by MURR UNF and may be charged using the controls outlined for MURR dissolution in a prior report.

Daniel, W. E.; Hansen, E. K.; Shehee, T. C.

2012-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "nasi sodium silicide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

{sup 45}Sc Solid State NMR studies of the silicides ScTSi (T=Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt)  

SciTech Connect

The silicides ScTSi (T=Fe, Co, Ni, Cu, Ru, Rh, Pd, Ir, Pt) were synthesized by arc-melting and characterized by X-ray powder diffraction. The structures of ScCoSi, ScRuSi, ScPdSi, and ScIrSi were refined from single crystal diffractometer data. These silicides crystallize with the TiNiSi type, space group Pnma. No systematic influences of the {sup 45}Sc isotropic magnetic shift and nuclear electric quadrupolar coupling parameters on various structural distortion parameters calculated from the crystal structure data can be detected. {sup 45}Sc MAS-NMR data suggest systematic trends in the local electronic structure probed by the scandium atoms: both the electric field gradients and the isotropic magnetic shifts relative to a 0.2 M aqueous Sc(NO{sub 3}){sub 3} solution decrease with increasing valence electron concentration and within each T group the isotropic magnetic shift decreases monotonically with increasing atomic number. The {sup 45}Sc nuclear electric quadrupolar coupling constants are generally well reproduced by quantum mechanical electric field gradient calculations using the WIEN2k code. Highlights: Black-Right-Pointing-Pointer Arc-melting synthesis of silicides ScTSi. Black-Right-Pointing-Pointer Single crystal X-ray data of ScCoSi, ScRuSi, ScPdSi, and ScIrSi. Black-Right-Pointing-Pointer {sup 45}Sc solid state NMR of silicides ScTSi.

Harmening, Thomas [Institut fuer Anorganische und Analytische Chemie and NRW Graduate School of Chemistry, Universitaet Muenster, Corrensstrasse 30, D-48149 Muenster (Germany); Eckert, Hellmut, E-mail: eckerth@uni-muenster.de [Institut fuer Physikalische Chemie, Universitaet Muenster, Corrensstrasse 30, D-48149 Muenster (Germany); Fehse, Constanze M. [Institut fuer Physikalische Chemie, Universitaet Muenster, Corrensstrasse 30, D-48149 Muenster (Germany); Sebastian, C. Peter, E-mail: sebastiancp@jncasr.ac.in [New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064 (India); Poettgen, Rainer, E-mail: pottgen@uni-muenster.de [Institut fuer Anorganische und Analytische Chemie and NRW Graduate School of Chemistry, Universitaet Muenster, Corrensstrasse 30, D-48149 Muenster (Germany)

2011-12-15T23:59:59.000Z

22

METHOD FOR REMOVING SODIUM OXIDE FROM LIQUID SODIUM  

DOE Patents (OSTI)

A method is described for removing sodium oxide from a fluent stream of liquid sodium by coldtrapping the sodium oxide. Apparatus utilizing this method is disclosed in United States Patent No. 2,745,552. Sodium will remain in a molten state at temperatures below that at which sodium oxide will crystallize out and form solid deposits, therefore, the contaminated stream of sodium is cooled to a temperature at which the solubility of sodium oxide in sodium is substantially decreased. Thereafter the stream of sodium is passed through a bed of stainless steel wool maintained at a temperature below that of the stream. The stream is kept in contact with the wool until the sodium oxide is removed by crystal growth on the wool, then the stream is reheated and returned to the system. This method is useful in purifying reactor coolants where the sodium oxide would otherwise deposit out on the walls and eventually plug the coolant tubes.

Bruggeman, W.H.; Voorhees, B.G.

1957-12-01T23:59:59.000Z

23

Human Sodium Risks  

NLE Websites -- All DOE Office Websites (Extended Search)

comes from restaurants and it can be hard for a person to tell how much sodium is in restaurant foods. Brands of foods matter: Different brands of the same foods may have...

24

Sodium sulfur battery seal  

DOE Patents (OSTI)

This disclosure is directed to an improvement in a sodium sulfur battery construction in which a seal between various battery compartments is made by a structure in which a soft metal seal member is held in a sealing position by holding structure. A pressure applying structure is used to apply pressure on the soft metal seal member when it is being held in sealing relationship to a surface of a container member of the sodium sulfur battery by the holding structure. The improvement comprises including a thin, well-adhered, soft metal layer on the surface of the container member of the sodium sulfur battery to which the soft metal seal member is to be bonded.

Mikkor, Mati (Ann Arbor, MI)

1981-01-01T23:59:59.000Z

25

Categorical Exclusion (CX) Determinations By Date | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2009 3, 2009 CX-000207: Categorical Exclusion Determination NaSi (Sodium Silicide) and Na-SG (Sodium Silica Gell) Powder Hydrogen Fuel Cells CX(s) Applied: B3.6 Date: 11/23/2009 Location(s): New York Office(s): Energy Efficiency and Renewable Energy, Golden Field Office November 23, 2009 CX-000445: Categorical Exclusion Determination Sulfur Dioxide resistant Immobilized Amine Sorbents for Carbon Dioxide Capture CX(s) Applied: A9, A11, B3.1 Date: 11/23/2009 Location(s): Akron, Ohio Office(s): Fossil Energy, National Energy Technology Laboratory November 23, 2009 CX-000206: Categorical Exclusion Determination Michigan Biogas Center of Excellence CX(s) Applied: A9, B3.6 Date: 11/23/2009 Location(s): Flint, Michigan Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

26

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11 - 4820 of 29,416 results. 11 - 4820 of 29,416 results. Download CX-000207: Categorical Exclusion Determination NaSi (Sodium Silicide) and Na-SG (Sodium Silica Gell) Powder Hydrogen Fuel Cells CX(s) Applied: B3.6 Date: 11/23/2009 Location(s): New York Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-000207-categorical-exclusion-determination Download CX-001522: Categorical Exclusion Determination Activity 8 CX(s) Applied: B5.1 Date: 04/01/2010 Location(s): Sacramento County, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-001522-categorical-exclusion-determination Download CX-010683: Categorical Exclusion Determination Glen Canyon Substation Stage 09- 50MVA 230/69KV Transformer addition

27

Categorical Exclusion Determinations: B3.6 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24, 2009 24, 2009 CX-000549: Categorical Exclusion Determination Solubility Testing of Boron and Gadolinium in Nitric Acid CX(s) Applied: B3.6 Date: 11/24/2009 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office November 23, 2009 CX-000207: Categorical Exclusion Determination NaSi (Sodium Silicide) and Na-SG (Sodium Silica Gell) Powder Hydrogen Fuel Cells CX(s) Applied: B3.6 Date: 11/23/2009 Location(s): New York Office(s): Energy Efficiency and Renewable Energy, Golden Field Office November 23, 2009 CX-000206: Categorical Exclusion Determination Michigan Biogas Center of Excellence CX(s) Applied: A9, B3.6 Date: 11/23/2009 Location(s): Flint, Michigan Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

28

New York | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 23, 2009 November 23, 2009 CX-000091: Categorical Exclusion Determination Cheektowaga's Installation of Photovoltaic Solar Panels CX(s) Applied: B5.1 Date: 11/23/2009 Location(s): Cheektowaga, New York Office(s): Energy Efficiency and Renewable Energy November 23, 2009 CX-000207: Categorical Exclusion Determination NaSi (Sodium Silicide) and Na-SG (Sodium Silica Gell) Powder Hydrogen Fuel Cells CX(s) Applied: B3.6 Date: 11/23/2009 Location(s): New York Office(s): Energy Efficiency and Renewable Energy, Golden Field Office November 23, 2009 CX-000097: Categorical Exclusion Determination Mount Vernon's Energy Efficiency Retrofits and Programs CX(s) Applied: B5.1, B1.32, A1, A9, A11 Date: 11/23/2009 Location(s): Mount Vernon, New York Office(s): Energy Efficiency and Renewable Energy

29

Categorical Exclusion Determinations: New York | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 23, 2009 November 23, 2009 CX-000091: Categorical Exclusion Determination Cheektowaga's Installation of Photovoltaic Solar Panels CX(s) Applied: B5.1 Date: 11/23/2009 Location(s): Cheektowaga, New York Office(s): Energy Efficiency and Renewable Energy November 23, 2009 CX-000207: Categorical Exclusion Determination NaSi (Sodium Silicide) and Na-SG (Sodium Silica Gell) Powder Hydrogen Fuel Cells CX(s) Applied: B3.6 Date: 11/23/2009 Location(s): New York Office(s): Energy Efficiency and Renewable Energy, Golden Field Office November 23, 2009 CX-000097: Categorical Exclusion Determination Mount Vernon's Energy Efficiency Retrofits and Programs CX(s) Applied: B5.1, B1.32, A1, A9, A11 Date: 11/23/2009 Location(s): Mount Vernon, New York Office(s): Energy Efficiency and Renewable Energy

30

Categorical Exclusion Determinations: Office of Energy Efficiency and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23, 2009 23, 2009 CX-000208: Categorical Exclusion Determination Recovery Act - PEM (Polymer Electrolyte Membrane) Fuel Cell Systems Providing Emergency Reserve and Backup Power CX(s) Applied: B5.1 Date: 11/23/2009 Location(s): Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office November 23, 2009 CX-000207: Categorical Exclusion Determination NaSi (Sodium Silicide) and Na-SG (Sodium Silica Gell) Powder Hydrogen Fuel Cells CX(s) Applied: B3.6 Date: 11/23/2009 Location(s): New York Office(s): Energy Efficiency and Renewable Energy, Golden Field Office November 23, 2009 CX-000206: Categorical Exclusion Determination Michigan Biogas Center of Excellence CX(s) Applied: A9, B3.6 Date: 11/23/2009 Location(s): Flint, Michigan Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

31

Sodium sulfur battery seal  

SciTech Connect

This invention is directed to a seal for a sodium sulfur battery in which a flexible diaphragm sealing elements respectively engage opposite sides of a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

Topouzian, Armenag (Birmingham, MI)

1980-01-01T23:59:59.000Z

32

SURVEY OF SODIUM PUMP TECHNOLOGY  

SciTech Connect

A review is presented of the current status of sodium pump development as related to nuclear power applications. A description is given of the design features and performance characteristics of the more important types of sodium and sodium-- potassium alloy (NaK) pumps. Some requirements for sodium pumps for future large liquid metal reactor systems are presented with some preliminary consideration of the potential of various pump types to meet these requirements. (auth)

Nixon, D.R.

1963-06-01T23:59:59.000Z

33

It's Elemental - The Element Sodium  

NLE Websites -- All DOE Office Websites (Extended Search)

Neon Neon Previous Element (Neon) The Periodic Table of Elements Next Element (Magnesium) Magnesium The Element Sodium [Click for Isotope Data] 11 Na Sodium 22.98976928 Atomic Number: 11 Atomic Weight: 22.98976928 Melting Point: 370.95 K (97.80°C or 208.04°F) Boiling Point: 1156 K (883°C or 1621°F) Density: 0.97 grams per cubic centimeter Phase at Room Temperature: Solid Element Classification: Metal Period Number: 3 Group Number: 1 Group Name: Alkali Metal What's in a name? From the English word soda and from the Medieval Latin word sodanum, which means "headache remedy." Sodium's chemical symbol comes from the Latin word for sodium carbonate, natrium. Say what? Sodium is pronounced as SO-dee-em. History and Uses: Although sodium is the sixth most abundant element on earth and comprises

34

Coal desulfurization with sodium hypochlorite.  

E-Print Network (OSTI)

??Wet desulfurization of Pittsburgh No. 8 coal and Illinois No. 6 coal were conducted with sodium hypochlorite in the laboratory. Pittsburgh No. 8 coal was… (more)

Li, Wei, M.S.

2004-01-01T23:59:59.000Z

35

M5Si3(M=Ti, Nb, Mo) Based Transition-Metal Silicides for High Temperature Applications  

Science Conference Proceedings (OSTI)

Transition metal silicides are being considered for future engine turbine components at temperatures up to 1600 C. Although significant improvement in high temperature strength, room temperature fracture toughness has been realized in the past decade, further improvement in oxidation resistance is needed. Oxidation mechanism of Ti{sub 5}Si{sub 3}-based alloys was investigated. Oxidation behavior of Ti{sub 5}Si{sub 3}-based alloy strongly depends on the atmosphere. Presence of Nitrogen alters the oxidation behavior of Ti{sub 5}Si{sub 3} by nucleation and growth of nitride subscale. Ti{sub 5}Si{sub 3.2} and Ti{sub 5}Si{sub 3}C{sub 0.5} alloys exhibited an excellent oxidation resistance in nitrogen bearing atmosphere due to limited dissolution of nitrogen and increased Si/Ti activity ratio. MoSi{sub 2} coating developed by pack cementation to protect Mo-based Mo-Si-B composites was found to be effective up to 1500 C. Shifting coating composition to T1+T2+Mo{sub 3}Si region showed the possibility to extend the coating lifetime above 1500 C by more than ten times via formation of slow growing Mo{sub 3}Si or T2 interlayer without sacrificing the oxidation resistance of the coating. The phase equilibria in the Nb-rich portion of Nb-B system has been evaluated experimentally using metallographic analysis and differential thermal analyzer (DTA). It was shown that Nb{sub ss} (solid solution) and NbB are the only two primary phases in the 0-40 at.% B composition range, and the eutectic reaction L {leftrightarrow} Nb{sub SS} + NbB was determined to occur at 2104 {+-} 5 C by DTA.

Zhihong Tang

2007-12-01T23:59:59.000Z

36

Thermophysical Properties of Sodium Nitrate and Sodium Chloride  

Office of Scientific and Technical Information (OSTI)

Thermophysical Properties of Sodium Nitrate and Sodium Chloride Thermophysical Properties of Sodium Nitrate and Sodium Chloride Solutions and Their Effects on Fluid Flow in Unsaturated Media Tianfu Xu and Karsten Pruess Earth Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 ABSTRACT. Understanding movement of saline sodium nitrate (NaNO 3 ) waste solutions is important for assessing the contaminant migration near leaking waste storage tanks in the unsaturated zone at the Hanford site (Washington, USA). The purpose of this study is to contribute a basic understanding of effects of the thermophysical behavior of NaNO 3 solutions on fluid flow in unsaturated media. We first present mathematical expressions for the dependence of density, viscosity, solubility and vapor pressure of

37

Simulation of sodium boiling experiments with THERMIT sodium version  

E-Print Network (OSTI)

Natural and forced convection experiments(SBTF and French) are simulated with the sodium version of the thermal-hydraulic computer code THERMIT. Simulation is done for the test secti- -on with the pressure-velocity boundary ...

Huh, Kang Yul

1982-01-01T23:59:59.000Z

38

Water simulation of sodium reactors  

Science Conference Proceedings (OSTI)

The thermal hydraulic simulation of a large sodium reactor by a scaled water model is examined. The Richardson Number, friction coefficient and the Peclet Number can be closely matched with the water system at full power and the similarity is retained for buoyancy driven flows. The simulation of thermal-hydraulic conditions in a reactor vessel provided by a scaled water experiment is better than that by a scaled sodium test. Results from a correctly scaled water test can be tentatively extrapolated to a full size sodium system.

Grewal, S.S.; Gluekler, E.L.

1981-06-28T23:59:59.000Z

39

Low-Pressure Sodium Lighting  

Energy.gov (U.S. Department of Energy (DOE))

Low-pressure sodium lighting provides more energy-efficient outdoor lighting than high-intensity discharge lighting, but it has very poor color rendition. Typical applications include highway and...

40

Vacuum pyrolysis of sodium stearate  

DOE Green Energy (OSTI)

Vacuum pyrolysis of sodium stearate was studied to provide useful information for Green River oil shale pyrolysis. Sodium stearate is a typical compound of carboxylic acid salts amounting to 3.6% of total organic materials in the oil shale by methanol extraction. Sodium stearate contained in a stainless steel miniature reactor was heated at 450/sup 0/C in a fluidized sand bath. Pyrolysis times ranged from 15 to 120 minutes. The amounts of gas and liquid products were measured and composition determined by gas chromatography. Ethane, methane, propylene plus propane, hydrogen, carbon dioxide, and carbon monoxide are the major gaseous products, in order of decreasing concentration. The predominant liquid product is a C/sub 17/ alkene with C/sub 12/-C/sub 21/ alkene/alkane pairs present. The first order decomposition rate constant for sodium stearate at 450/sup 0/C was calculated to be 6.4 x 10/sup -3/ min./sup -1/. 18 refs., 7 figs.

Chong, S.L.

1985-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nasi sodium silicide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Seal for sodium sulfur battery  

SciTech Connect

This invention is directed to a seal for a sodium sulfur battery in which the sealing is accomplished by a radial compression seal made on a ceramic component of the battery which separates an anode compartment from a cathode compartment of the battery.

Topouzian, Armenag (Birmingham, MI); Minck, Robert W. (Lathrup Village, MI); Williams, William J. (Northville, MI)

1980-01-01T23:59:59.000Z

42

Volume efficient sodium sulfur battery  

SciTech Connect

In accordance with the teachings of this specification, a sodium sulfur battery is formed as follows. A plurality of box shaped sulfur electrodes are provided, the outer surfaces of which are defined by an electrolyte material. Each of the electrodes have length and width dimensions substantially greater than the thicknesses thereof as well as upwardly facing surface and a downwardly facing surface. An electrode structure is contained in each of the sulfur electrodes. A holding structure is provided for holding the plurality of sulfur electrodes in a stacked condition with the upwardly facing surface of one sulfur electrode in facing relationship to the downwardly facing surface of another sulfur electrode thereabove. A small thickness dimension separates each of the stacked electrodes thereby defining between each pair of sulfur electrodes a volume which receives the sodium reactant. A reservoir is provided for containing sodium. A manifold structure interconnects the volumes between the sulfur electrodes and the reservoir. A metering structure controls the flow of sodium between the reservoir and the manifold structure.

Mikkor, Mati (Ann Arbor, MI)

1980-01-01T23:59:59.000Z

43

Energy Basics: Low-Pressure Sodium Lighting  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low-Pressure Sodium Lighting Low-pressure sodium lighting provides more energy-efficient outdoor lighting than high-intensity discharge lighting, but it has very poor color...

44

Protective tubes for sodium heated water tubes  

DOE Patents (OSTI)

A heat exchanger in which water tubes are heated by liquid sodium which minimizes the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes. A cylindrical protective tube envelopes each water tube and the sodium flows axially in the annular spaces between the protective tubes and the water tubes.

Essebaggers, Jan (39 Honeyman Dr., Succasunna, NJ 07876)

1979-01-01T23:59:59.000Z

45

Chloride substitution in sodium borohydride  

Science Conference Proceedings (OSTI)

The dissolution of sodium chloride and sodium borohydride into each other resulting in formation of solid solutions of composition Na(BH{sub 4}){sub 1-x}Cl{sub x} is studied. The dissolution reaction is facilitated by two methods: ball milling or combination of ball milling and annealing at 300 deg. C for three days of NaBH{sub 4}-NaCl samples in molar ratios of 0.5:0.5 and 0.75:0.25. The degree of dissolution is studied by Rietveld refinement of synchrotron radiation powder X-ray diffraction (SR-PXD) data. The results show that dissolution of 10 mol% NaCl into NaBH{sub 4}, forming Na(BH{sub 4}){sub 0.9}Cl{sub 0.1}, takes place during ball milling. A higher degree of dissolution of NaCl in NaBH{sub 4} is obtained by annealing resulting in solid solutions containing up to 57 mol% NaCl, i.e. Na(BH{sub 4}){sub 0.43}Cl{sub 0.57}. In addition, annealing results in dissolution of 10-20 mol% NaBH{sub 4} into NaCl. The mechanism of the dissolution during annealing and the decomposition pathway of the solid solutions are studied by in situ SR-PXD. Furthermore, the stability upon hydrogen release and uptake were studied by Sieverts measurements. - Graphical Abstract: Dissolution of sodium chloride and sodium borohydride into each other resulting in formation of solid solutions of composition Na(BH{sub 4}){sub 1-x}Cl{sub x} is studied. Dissolution is facilitated by two methods: ball milling or annealing at 300 deg. C for three days of NaBH{sub 4}-NaCl samples. Sample compositions and dissolution mechanism are studied by Rietveld refinement of synchrotron radiation powder X-ray diffraction data. Highlights: > Studies of dissolution of sodium chloride and sodium borohydride into each other. > Solid state diffusion facilitated by mechanical and thermal treatments. > Dissolution is more efficiently induced by heating than by mechanical treatment. > Mechanism for dissolution studied by Rietveld refinement of in situ SR-PXD data.

Ravnsbaek, Dorthe B.; Rude, Line H. [Center for Materials Crystallography (CMC), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Arhus C (Denmark); Jensen, Torben R., E-mail: trj@chem.au.dk [Center for Materials Crystallography (CMC), Interdisciplinary Nanoscience Center (iNANO), Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Arhus C (Denmark)

2011-07-15T23:59:59.000Z

46

Fire suppressing apparatus. [sodium fires  

DOE Patents (OSTI)

Apparatus for smothering a liquid sodium fire comprises a pan, a perforated cover on the pan, and tubed depending from the cover and providing communication between the interior of the pan and the ambient atmosphere through the perforations in the cover. Liquid caught in the pan rises above the lower ends of the tubes and thus serves as a barrier which limits the amount of air entering the pan.

Buttrey, K.E.

1980-12-19T23:59:59.000Z

47

Electron microscopy studies of lutetium doped erbium silicide (Er{sub 0.9}Lu{sub 0.1}){sub 5}Si{sub 4}  

Science Conference Proceedings (OSTI)

Examination of bulk microstructures of lutetium doped erbium silicide (Er{sub 0.9}Lu{sub 0.1}){sub 5}Si{sub 4} (space group: Pnma) using scanning and transmission electron microscopy (SEM, TEM) reveals the existence of thin plates of a hexagonal phase (space group: P6{sub 3}/mcm) where the stoichiometric ratio in moles between the rare earths and Si is 5 to 3, i. e the 5:3 phase. The orientation relationship between the matrix and the plates was determined as [010]{sub m} {approx} -parallel [-1010]{sub p.} This observation adds credence to the assumption that all linear features noted in alloys of the rare-earth intermetallic family R{sub 5}(Si{sub x}Ge{sub 1-x}){sub 4} are of the stoichiometric ratio 5:3 and possess a common orientation relationship with the parent 5:4 alloys. - Highlights: {yields} The linear features observed in the (Er{sub 0.9}Lu{sub 0.1}){sub 5}Si{sub 4} sample are hexagonal 5:3 plates. {yields} Thickness of 5:3 plates in 5:4 alloys made by tri-arc pulling is greater than made by arc-melting. {yields} The orientation relationship between 5:3 plates and the matrix is [010]{sub m} {approx} ||[-1010]{sub p}.

Cao, Q., E-mail: qcao@iastate.edu; Chumbley, L.S.

2011-08-15T23:59:59.000Z

48

Sodium technology, 1972--1973  

SciTech Connect

References to 897 publications on sodium and NaK technology cited in Nuclear Science Abstracts Volume 26 (1972) through Volume 27 (1973 through June) are contained in this bibliography. Keyword indexing is displayed under each citation to provide information on the contents of the document. References are arranged in order by the original NSA abstract number which approximately places them in chronological order. Sequence numbers appear beside each reference, and the personal author index refers to these sequence numbers. The subject index refers to the original abstract numbers. (auth)

1974-02-01T23:59:59.000Z

49

Batteries with Orthorhombic Sodium Manganese Oxide Cathodes  

Berkeley National Laboratory researchers have discovered a low-cost, low-toxicity manganese oxide for rechargeable lithium and sodium batteries.

50

Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes  

SciTech Connect

An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

2012-09-18T23:59:59.000Z

51

In-Situ Method for Treating Residual Sodium  

DOE Patents (OSTI)

A unique process for deactivating residual sodium in Liquid Metal Fast Breeder Reactor (LMFBR) systems which uses humidified (but not saturated) carbon dioxide at ambient temperature and pressure to convert residual sodium into solid sodium bicarbonate.

Sherman, Steven R.; Henslee, S. Paul

2005-07-19T23:59:59.000Z

52

SO/sub 2/ scrubbing: more work for sodium  

SciTech Connect

The effects that dry scrubbing of flue gases with sodium sorbents could have on supplies of naturally-occurring sodium compounds such as nahcolite and trona are discussed.

Not Available

1984-07-18T23:59:59.000Z

53

Radial power flattening in sodium fast reactors  

E-Print Network (OSTI)

In order to improve a new design for a uranium startup sodium cooled fast reactor which was proposed at MIT, this thesis evaluated radial power flattening by varying the fuel volume fraction at a fixed U-235 enrichment of ...

Krentz-Wee, Rebecca (Rebecca Elizabeth)

2012-01-01T23:59:59.000Z

54

Low-temperature Sodium-Beta Battery  

Rechargeable metallic sodium batteries have application in large-scale energy storage applications such as electric power generation and distribution, in motive applications such as electric vehicles, hybrids, and plug-in hybrids, and for aerospace ...

55

Method of preparing silicon from sodium fluosilicate  

DOE Patents (OSTI)

A process for preparing high purity silicon metal from Na.sub.2 SiF.sub.6 (sodium fluosilicate). The sodium fluosilicate is heated to decomposition temperature to form NaF, which retains most of the impurities, and gaseous SiF.sub.4. The SiF.sub.4 is then reduced by the bomb reduction method using a reductant having a low packing density.

Schmidt, Frederick A. (Ames, IA); Rehbein, David (Ames, IA); Chiotti, Premo (Ames, IA)

1984-01-01T23:59:59.000Z

56

Method of making a sodium sulfur battery  

SciTech Connect

A method of making a portion of a sodium sulfur battery is disclosed. The battery portion made is a portion of the container which defines the volume for the cathodic reactant materials which are sulfur and sodium polysulfide materials. The container portion is defined by an outer metal casing with a graphite liner contained therein, the graphite liner having a coating on its internal diameter for sealing off the porosity thereof. The steel outer container and graphite pipe are united by a method which insures that at the operating temperature of the battery, relatively low electrical resistance exists between the two materials because they are in intimate contact with one another.

Elkins, Perry E. (Santa Ana, CA)

1981-01-01T23:59:59.000Z

57

INHIBITION OF WASHED SLUDGE WITH SODIUM NITRITE  

SciTech Connect

This report describes the results of electrochemical tests used to determine the relationship between the concentration of the aggressive anions in washed sludge and the minimum effective inhibitor concentration. Sodium nitrate was added as the inhibitor because of its compatibility with the DWPF process. A minimum of 0.05M nitrite is required to inhibit the washed sludge simulant solution used in this study. When the worst case compositions and safety margins are considered, it is expected that a minimum operating limit of nearly 0.1M nitrite will be specified. The validity of this limit is dependent on the accuracy of the concentrations and solubility splits previously reported. Sodium nitrite additions to obtain 0.1M nitrite concentrations in washed sludge will necessitate the additional washing of washed precipitate in order to decrease its sodium nitrite inhibitor requirements sufficiently to remain below the sodium limits in the feed to the DWPF. Nitrite will be the controlling anion in "fresh" washed sludge unless the soluble chloride concentration is about ten times higher than predicted by the solubility splits. Inhibition of "aged" washed sludge will not be a problem unless significant chloride dissolution occurs during storage. It will be very important tomonitor the composition of washed sludge during processing and storage.

Congdon, J.; Lozier, J.

2012-09-25T23:59:59.000Z

58

PROGRAM TOPIC: GASIFICATION TECHNOLOGIES PREVENTING AGGLOMERATION PROBLEMS DURING GASIFICATION OF HIGH-SODIUM LIGNITE  

E-Print Network (OSTI)

Previous gasification studies have shown that sodium vapor released from high-sodium lignites can react with silica to form sticky sodium silicates. 1,2,3

Robert S. Dahlin; Johnny R. Dorminey; Southern Company Services; Wanwang Peng; Southern Company Services; Pannalal Vimalch; Southern Company Services

2008-01-01T23:59:59.000Z

59

The electrical conductivity of sodium polysulfide melts  

DOE Green Energy (OSTI)

The sodium polysulfide melt has been described by a macroscopic model. This model considers the melt to be composed of sodium cations, monosulfide anions, and neutral sulfur solvent. The transport equations of concentrated-solution theory are used to derived the governing equations for this binaryelectrolyte melt model. These equations relate measurable transport properties to fundamental transport parameters. The focus of this research is to measure the electrical conductivity of sodium polysulfide melts and calculate one of fundamental transport parameters from the experimental data. The conductance cells used in the conductivity measurements are axisymmetric cylindrical cells with a microelectrode. The electrode effects, including double-layer capacity, charge transfer resistance, and concentration overpotential, were minimized by the use of the alternating current at an adequately high frequency. The high cell constants of the conductance cells not only enhanced the experimental accuracy but also made the electrode effects negligible. The electrical conductivities of sodium polysulfide Na{sub 2}S{sub 4} and Na{sub 2}S{sub 5} were measured as a function of temperature (range: 300 to 360{degree}C). Variations between experiments were only up to 2%. The values of the Arrhenius activation energy derived from the experimental data are about 33 kJ/mol. The fundamental transport parameter which quantifies the interaction within sodium cations and monosulfide anions are of interest and expected to be positive. Values of it were calculated from the experimental conductivity data and most of them are positive. Some negative values were obtained probably due to the experimental errors of transference number, diffusion coefficient, density or conductivity data.

Meihui Wang

1992-06-01T23:59:59.000Z

60

Viscosity and density tables of sodium chloride solutions  

DOE Green Energy (OSTI)

A file is presented containing tabulated data extracted from the scientific literature on the density and viscosity of aqueous sodium chloride solutions. Also included is a bibliography of the properties of aqueous sodium chloride solutions. (MHR)

Fair, J.A.; Ozbek, H. (comps.) [comps.

1977-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "nasi sodium silicide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Structure and Properties of Piezoelectric Sodium Bismuth Titanate ...  

Science Conference Proceedings (OSTI)

Presentation Title, Structure and Properties of Piezoelectric Sodium Bismuth Titanate ... Nanostructures and Their Potential for Mechanical Energy Scavenging.

62

Sodium and sulfur release and recapture during black liquor burning  

DOE Green Energy (OSTI)

The objective of this study was to provide data on sulfur and sodium volatilization during black liquor burning, and on SO2 capture by solid sodium carbonate and sodium chloride. This data was interpreted and modeled into rate equations suitable for use in computational models for recovery boilers.

Frederick, W.J.; Iisa, K.; Wag, K.; Reis, V.V.; Boonsongsup, L.; Forssen, M.; Hupa, M.

1995-08-01T23:59:59.000Z

63

Corrosion performance of advanced structural materials in sodium.  

SciTech Connect

This report gives a description of the activities in design, fabrication, construction, and assembling of a pumped sodium loop for the sodium compatibility studies on advanced structural materials. The work is the Argonne National Laboratory (ANL) portion of the effort on the work project entitled, 'Sodium Compatibility of Advanced Fast Reactor Materials,' and is a part of Advanced Materials Development within the Reactor Campaign. The objective of this project is to develop information on sodium corrosion compatibility of advanced materials being considered for sodium reactor applications. This report gives the status of the sodium pumped loop at Argonne National Laboratory, the specimen details, and the technical approach to evaluate the sodium compatibility of advanced structural alloys. This report is a deliverable from ANL in FY2010 (M2GAN10SF050302) under the work package G-AN10SF0503 'Sodium Compatibility of Advanced Fast Reactor Materials.' Two reports were issued in 2009 (Natesan and Meimei Li 2009, Natesan et al. 2009) which examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design specifications for the ANL pumped loop for testing advanced structural materials. Available information was presented on solubility of several metallic and nonmetallic elements along with a discussion of the possible mechanisms for the accumulation of impurities in sodium. That report concluded that the solubility of many metals in sodium is low (<1 part per million) in the temperature range of interest in sodium reactors and such trace amounts would not impact the mechanical integrity of structural materials and components. The earlier report also analyzed the solubility and transport mechanisms of nonmetallic elements such as oxygen, nitrogen, carbon, and hydrogen in laboratory sodium loops and in reactor systems such as Experimental Breeder Reactor-II, Fast Flux Test Facility, and Clinch River Breeder Reactor. Among the nonmetallic elements discussed, oxygen is deemed controllable and its concentration in sodium can be maintained in sodium for long reactor life by using cold-trap method. It was concluded that among the cold-trap and getter-trap methods, the use of cold trap is sufficient to achieve oxygen concentration of the order of 1 part per million. Under these oxygen conditions in sodium, the corrosion performance of structural materials such as austenitic stainless steels and ferritic steels will be acceptable at a maximum core outlet sodium temperature of {approx}550 C. In the current sodium compatibility studies, the oxygen concentration in sodium will be controlled and maintained at {approx}1 ppm by controlling the cold trap temperature. The oxygen concentration in sodium in the forced convection sodium loop will be controlled and monitored by maintaining the cold trap temperature in the range of 120-150 C, which would result in oxygen concentration in the range of 1-2 ppm. Uniaxial tensile specimens are being exposed to flowing sodium and will be retrieved and analyzed for corrosion and post-exposure tensile properties. Advanced materials for sodium exposure include austenitic alloy HT-UPS and ferritic-martensitic steels modified 9Cr-1Mo and NF616. Among the nonmetallic elements in sodium, carbon was assessed to have the most influence on structural materials since carbon, as an impurity, is not amenable to control and maintenance by any of the simple purification methods. The dynamic equilibrium value for carbon in sodium systems is dependent on several factors, details of which were discussed in the earlier report. The current sodium compatibility studies will examine the role of carbon concentration in sodium on the carburization-decarburization of advanced structural materials at temperatures up to 650 C. Carbon will be added to the sodium by exposure of carbon-filled iron tubes, which over time will enable carbon to diffuse through iron and dissolve into sodium. The method enables addition of dissolved carbon (without carb

Natesan, K.; Momozaki, Y.; Li, M.; Rink, D.L. (Nuclear Engineering Division)

2012-05-16T23:59:59.000Z

64

CAST STONE FORMULATION AT HIGHER SODIUM CONCENTRATIONS  

SciTech Connect

A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leach indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The thermal analyses completed in this study provide some preliminary insight, although the limited

Fox, K.; Edwards, T.; Roberts, K.

2013-10-02T23:59:59.000Z

65

CAST STONE FORMULATION AT HIGHER SODIUM CONCENTRATIONS  

SciTech Connect

A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leach indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The thermal analyses completed in this study provide some preliminary insight, although the limited

Fox, K.; Roberts, K.; Edwards, T.

2013-09-17T23:59:59.000Z

66

Large-scale sodium spray fire code validation (SOFICOV) test  

Science Conference Proceedings (OSTI)

A large-scale, sodium, spray fire code validation test was performed in the HEDL 850-m/sup 3/ Containment System Test Facility (CSTF) as part of the Sodium Spray Fire Code Validation (SOFICOV) program. Six hundred fifty eight kilograms of sodium spray was sprayed in an air atmosphere for a period of 2400 s. The sodium spray droplet sizes and spray pattern distribution were estimated. The containment atmosphere temperature and pressure response, containment wall temperature response and sodium reaction rate with oxygen were measured. These results are compared to post-test predictions using SPRAY and NACOM computer codes.

Jeppson, D.W.; Muhlestein, L.D.

1985-01-01T23:59:59.000Z

67

Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment March 28, 2013 - 12:00pm Addthis CWI engineers Jeff Jones, David Tolman, right, and Kirk Dooley (seated) developed a treatment to safely dissolve a bicarbonate crust and treat and remove the sodium in the Experimental Breeder Reactor-II at the Idaho site. CWI engineers Jeff Jones, David Tolman, right, and Kirk Dooley (seated) developed a treatment to safely dissolve a bicarbonate crust and treat and remove the sodium in the Experimental Breeder Reactor-II at the Idaho site. Piping in the east boiler basement of the sodium processing building was color coded for easy identification. Orange indicates sodium and green identifies cooling water.

68

Sodium Plugging Test Loop - Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

Sodium Plugging Test Loop Sodium Plugging Test Loop Sodium Plugging Test Loop Overview Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Sodium Plugging Test Loop This experimental setup is part of the Global Nuclear Energy Partnership (GNEP) Advanced Fuel Cycle R&D work carried out at Argonne on advanced sodium component technology. Bookmark and Share For long range sodium technology research and development, employing supercritical CO2 Brayton cycle power conversion technology as an advanced balance of plant technology is being considered. The component that provides the interface between the sodium and supercritical CO2 is a compact heat exchanger known as a printed circuit heat exchanger (PCHE). This heat exchanger has very small coolant flow passages that may foul or

69

Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Obtains Patent for Nuclear Reactor Sodium Cleanup Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment Idaho Site Obtains Patent for Nuclear Reactor Sodium Cleanup Treatment March 28, 2013 - 12:00pm Addthis CWI engineers Jeff Jones, David Tolman, right, and Kirk Dooley (seated) developed a treatment to safely dissolve a bicarbonate crust and treat and remove the sodium in the Experimental Breeder Reactor-II at the Idaho site. CWI engineers Jeff Jones, David Tolman, right, and Kirk Dooley (seated) developed a treatment to safely dissolve a bicarbonate crust and treat and remove the sodium in the Experimental Breeder Reactor-II at the Idaho site. Piping in the east boiler basement of the sodium processing building was color coded for easy identification. Orange indicates sodium and green identifies cooling water.

70

Low-Pressure Sodium Lighting Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Low-Pressure Sodium Lighting Basics Low-Pressure Sodium Lighting Basics Low-Pressure Sodium Lighting Basics August 16, 2013 - 10:17am Addthis Low-pressure sodium lighting provides more energy-efficient outdoor lighting than high-intensity discharge lighting, but it has very poor color rendition. Typical applications include highway and security lighting, where color is not important. Low-pressure sodium lamps work somewhat like fluorescent lamps. Like high-intensity discharge lighting, low-pressure sodium lamps require up to 10 minutes to start and have to cool before they can restart. Therefore, they are most suitable for applications in which they stay on for hours at a time. They are not suitable for use with motion detectors. The chart below compares low-pressure sodium lamps and high-intensity

71

Report on sodium compatibility of advanced structural materials.  

SciTech Connect

This report provides an update on the evaluation of sodium compatibility of advanced structural materials. The report is a deliverable (level 3) in FY11 (M3A11AN04030403), under the Work Package A-11AN040304, 'Sodium Compatibility of Advanced Structural Materials' performed by Argonne National Laboratory (ANL), as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing corrosion and tensile data from the standpoint of sodium compatibility of advanced structural alloys. The scope of work involves exposure of advanced structural alloys such as G92, mod.9Cr-1Mo (G91) ferritic-martensitic steels and HT-UPS austenitic stainless steels to a flowing sodium environment with controlled impurity concentrations. The exposed specimens are analyzed for their corrosion performance, microstructural changes, and tensile behavior. Previous reports examined the thermodynamic and kinetic factors involved in the purity of liquid sodium coolant for sodium reactor applications as well as the design, fabrication, and construction of a forced convection sodium loop for sodium compatibility studies of advanced materials. This report presents the results on corrosion performance, microstructure, and tensile properties of advanced ferritic-martensitic and austenitic alloys exposed to liquid sodium at 550 C for up to 2700 h and at 650 C for up to 5064 h in the forced convection sodium loop. The oxygen content of sodium was controlled by the cold-trapping method to achieve {approx}1 wppm oxygen level. Four alloys were examined, G92 in the normalized and tempered condition (H1 G92), G92 in the cold-rolled condition (H2 G92), G91 in the normalized and tempered condition, and hot-rolled HT-UPS. G91 was included as a reference to compare with advanced alloy, G92. It was found that all four alloys showed weight loss after sodium exposures at 550 and 650 C. The weight loss of the four alloys was comparable after sodium exposures at 550 C; the weight loss of ferritic-martensitic steels, G92 and G91 is more significant than that of austenitic stainless steel, HT-UPS after sodium exposures at 650 C. Sodium exposures up to 2700 h at 550 C had no significant influence on tensile properties, while sodium exposures up to 5064 h at 650 C dramatically lowered the tensile strengths of the four alloys. The ultimate tensile strength of H1 G92, H2 G92, and G91 ferritic-martensitic steels was reduced to as much as nearly half of its initial value after sodium exposures at 650 C. Though the uniform elongation was recovered to some extent, these three ferritic-martensitic steels showed considerable strain softening after sodium exposures. The yield stress of HT-UPS austenitic stainless steel increased, the ultimate tensile strength decreased, and the total elongation was reduced after sodium exposures at 650 C. The dynamic strain aging effect observed in the as-received HT-UPS specimens became less pronounced after sodium exposures at 650 C. Microstructural characterization of sodium-exposed specimens showed no appreciable surface deterioration or grain structure changes under an optical microscope, except for the H2 G92 steel, in which the martensite structure transformed to large grain ferrite after sodium exposures at 650 C. TEM observations of the sodium-exposed H2 G92 steel showed significant recrystallization after sodium exposure for 2700 h at 550 C, and transformation of martensite to ferrite and high density of precipitates in nearly dislocation-free matrix after sodium exposures at 650 C. Further microstructural analysis and evaluation of decarburization/carburization behavior is needed to understand the dramatic changes in the tensile strengths of advanced ferritic-martensitic and austenitic steels after sodium exposures at 650 C.

Li, M.; Natesan, K.; Momozaki, Y.; Rink, D.L.; Soppet, W.K.; Listwan, J.T. (Nuclear Engineering Division)

2012-07-09T23:59:59.000Z

72

Super-radiance in the sodium resonance lines from sodium iodide arc lamps  

Science Conference Proceedings (OSTI)

Super-radiance observed within the centers of the sodium resonance D lines emitted by arc lamps containing sodium iodide as additive in a high-pressure mercury plasma environment was studied by high-resolution emission spectroscopy. The spectral radiance of these self-reversed lines including super-radiance was simulated by considering a local enhancement of the source function due to the presence of an additional source of radiation near the arc wall. Causes of this hitherto unrecognized source of radiation are given.

Karabourniotis, D. [Department of Physics, Institute of Plasma Physics, University of Crete, 71003 Heraklion (Greece); Drakakis, E. [Department of Electrical Engineering, Technological Educational Institute, Heraklion (Greece)

2010-08-09T23:59:59.000Z

73

Factors contributing to the breakdown of sodium beta-alumina  

DOE Green Energy (OSTI)

Clarification of the breakdown process occurring during charge transfer in sodium beta alumina solid electrolytes was derived from: (1) studying the effects of molten sodium contact at 350/sup 0/C on single crystal sodium beta alumina and polycrystalline sodium beta alumina; (2) determination of critical current density by monitoring acoustic emissions accompanying crack growth in sodium/sodium beta alumina/sodium cells subjected to linear current ramping at 1 mA cm/sup -2/ sec/sup -1/; (3) failure analysis conducted on cycled electrolytes, some from commercial sodium/sulfur cells, which had been subjected to up to 703 Ahr cm/sup -2/ of charge transfer. Gray coloration developing in beta aluminas in contact with molten sodium was found to be a consequence of formation, through reduction by sodium, of oxygen vacancies charge compensated by electrons. Electronic conductivity of the electrolyte increases as a result. No second phase formation was detected. Colored electrolytes from sodium/sulfur cells show evidence of a newly recognized degradation mechanism in which fracture occurs when sodium is reduced and deposited internally under pressure as metal in regions where an electronic conductivity gradient exists. Heating colored beta aluminas in air produces reoxidation and bleaching. Kinetics and other properties of the coloration and bleaching processes were determined. Critical current density was found to bear an inverse relation to average electrolyte grain size. Evidence was found in the cycled electrolytes for a slow crack growth mechanism and a progressive mode of degradation advancing from the sulfur electrode interface. Implications of the findings for the construction and operation of sodium/sulfur battery systems are discussed.

Buechele, A.C.

1982-05-01T23:59:59.000Z

74

Fact Sheet: Sodium-Beta Batteries (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sodium-Beta Batteries Sodium-Beta Batteries Improving the performance and reducing the cost of sodium-beta batteries for large-scale energy storage Sodium-beta batteries (Na-beta batteries or NBBs) use a solid beta-alumina (ß˝-Al 2 O 3 ) electrolyte membrane that selectively allows sodium ion transport between a positive electrode (e.g., a metal halide) and a negative sodium electrode. NBBs typically operate at temperatures near 350˚C. They are increasingly used in renewable storage and utility applications due to their high round-trip efficiency, high energy densities, and energy storage capacities ranging from a few kilowatt-hours to multiple megawatt-hours. In fact, U.S. utilities

75

Sodium/Phosphorus-Sulfur Cells II. Phase Equilibria  

NLE Websites -- All DOE Office Websites (Extended Search)

II. Phase Equilibria II. Phase Equilibria Title Sodium/Phosphorus-Sulfur Cells II. Phase Equilibria Publication Type Journal Article Year of Publication 1996 Authors Ridgway, Paul L., Frank R. McLarnon, and John S. Newman Journal Journal of the Electrochemistry Society Volume 143 Issue 2 Pagination 412-417 Keywords 25 ENERGY STORAGE, 36 MATERIALS SCIENCE, ALUMINIUM OXIDES, equilibrium, performance, PHASE DIAGRAMS, PHOSPHIDES, PHOSPHORUS ADDITIONS, SODIUM COMPOUNDS, SODIUM SULFIDES, SODIUM-SULFUR BATTERIES Abstract Equilibrium open-circuit cell voltage data from a sodium/{beta}{double_prime}-alumina/phosphorus-sulfur cell utilizing P/S ratios of 0, 0.143, and 0.332 and a sodium atom fraction ranging from 0 to 0.4 were interpreted to construct ternary phase diagrams of the Na-P-S ternary system at 350 and 400 C.

76

Review of Chemical Processes for the Synthesis of Sodium Borohydride  

NLE Websites -- All DOE Office Websites (Extended Search)

Review of Chemical Processes for the Synthesis of Sodium Borohydride Review of Chemical Processes for the Synthesis of Sodium Borohydride Millennium Cell Inc. Prepared by Ying Wu Michael T. Kelly Jeffrey V. Ortega Under DOE Cooperative Agreement DE-FC36-04GO14008 August 2004 Table of Contents Introduction..................................................................................................................................... 1 Section 1: Commercially Practiced Sodium Borohydride Synthesis Process ............................... 2 The Brown-Schlesinger Process ................................................................................................. 2 The Bayer Process.......................................................................................................................

77

METHOD FOR REDUCING THE IMPURITY RESISTIVITY OF SODIUM  

DOE Patents (OSTI)

The inherent resistivity of sodium, at cryogenic temperatures, can be reduced by clustering the impurity atoms within the crystal latiice structure of the sodium, thereby reducing the effective electron collision cross section and thus reducing the number of collisions between the electrons and such lattice imperfections. The clustering is effected by heating the sodium to a temperature approaching its melting point, and maintaining the temperature for a period of time ranging generally from two to six days. (AEC)

Post, R.F.; Taylor, C.E.

1963-08-13T23:59:59.000Z

78

PROCESSING OF SODIUM--POTASSIUM NIOBATE CERAMICS.  

SciTech Connect

Sintering studies of undoped (Na{sub 0.5}K{sub 0.5})NbO{sub 3} and the same material doped with 1/2, 1, 2, and 4 mole percent BaO and 2 mole % B{sub 2}O{sub 3} were made. The persistence of a second phase after calcining to form the compound led to a study of reactions occurring during calcination. The calcining of sodium-potassium niobates involves the formation of an intermediate compound (the second phase) and its subsequent reaction with sodium oxide and potassium oxide to form (Na{sub 0.5}K{sub 0.5})NbO{sub 3}. Sintering data show that up to 1/2 mole % BaO added to the system increases the initial densification. However, the sintered bodies then exhibit densification and form sharp cubic grains and large voids. Indications are that a liquid phase is the major contributor to densification of this system through the mechanism of particle rearrangement, and that the contribution of any sintering mechanism to densification is negligible.

Powell, B.R. Jr.

1971-01-01T23:59:59.000Z

79

Sodium tetraphenylborate solubility and dissolution rates  

DOE Green Energy (OSTI)

The rate of solid sodium tetraphenylborate (NaTPB) dissolution in In-Tank Precipitation salt solutions has been experimentally determined. The data indicates that the dissolution rate of solid NaTPB is a minor contributor the lag time experienced in the 1983 Salt Decontamination Demonstration Test and should not be considered as the rate determining step. Current analytical models for predicting the time to reach the composite lower flammability limit assume that the lag time is not more than 6 hours, and the data supports this assumption (i.e., dissolution by itself requires much less than 6 hours). The data suggests that another step--such as mass transport, the reaction of a benzene precursor or the mixing behavior--is the rate determining factor for benzene release to the vapor space in Tank 48H. In addition, preliminary results from this program show that the degree of agitation employed is not a significant parameter in determining the rate of NaTPB dissolution. As a result of this study, an improved equation for predicting equilibrium tetraphenylborate solubility with respect to temperature and sodium ion concentration has been determined.

Barnes, M.J.; Peterson, R.A.; Swingle, R.F.; Reeves, C.T.

1995-12-31T23:59:59.000Z

80

Sodium Reactor Experiment decommissioning. Final report  

Science Conference Proceedings (OSTI)

The Sodium Reactor Experiment (SRE) located at the Rockwell International Field Laboratories northwest of Los Angeles was developed to demonstrate a sodium-cooled, graphite-moderated reactor for civilian use. The reactor reached full power in May 1958 and provided 37 GWh to the Southern California Edison Company grid before it was shut down in 1967. Decommissioning of the SRE began in 1974 with the objective of removing all significant radioactivity from the site and releasing the facility for unrestricted use. Planning documentation was prepared to describe in detail the equipment and techniques development and the decommissioning work scope. A plasma-arc manipulator was developed for remotely dissecting the highly radioactive reactor vessels. Other important developments included techniques for using explosives to cut reactor vessel internal piping, clamps, and brackets; decontaminating porous concrete surfaces; and disposing of massive equipment and structures. The documentation defined the decommissioning in an SRE dismantling plan, in activity requirements for elements of the decommissioning work scope, and in detailed procedures for each major task.

Carroll, J.W.; Conners, C.C.; Harris, J.M.; Marzec, J.M.; Ureda, B.F.

1983-08-15T23:59:59.000Z

Note: This page contains sample records for the topic "nasi sodium silicide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Sodium Bearing Waste Treatment Project ? Countdown to Startup  

NLE Websites -- All DOE Office Websites (Extended Search)

Date: March 19, 2012 Media Contact: Natalie Packer, 208-533-0253 Sodium Bearing Waste Treatment Project Countdown to Startup Marking completion of another major...

82

Energy absorber for sodium-heated heat exchanger  

DOE Patents (OSTI)

A heat exchanger is described in which water-carrying tubes are heated by liquid sodium and in which the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes is minimized. An energy absorbing chamber contains a compressible gas and is connected to the body of flowing sodium by a channel so that, in the event of a sodium-water reaction, products of the reaction will partially fill the energy absorbing chamber to attenuate the rise in pressure within the heat exchanger.

Essebaggers, J.

1975-12-01T23:59:59.000Z

83

Battery Electrode Materials Based on Layered Sodium Titanates  

Berkeley Lab researcher Marca Doeff and colleagues have developed a new electrode material based on a layered sodium titanate compound that can be ...

84

Interaction of sodium vapor and graphite studied by ...  

Science Conference Proceedings (OSTI)

The kinetics of the reaction between graphite and sodium vapor is analyzed with support ... High temperature compression test to determine the anode paste ...

85

Low Temperature Sodium-Sulfur Grid Storage and EV Battery  

Berkeley Lab researcher Gao Liu has developed an innovative design for a battery, made primarily of sodium and sulfur, that holds promise for both ...

86

Low Temperature Sodium-Sulfur Grid Storage and EV Battery ...  

Berkeley Lab researcher Gao Liu has developed an innovative design for a battery, made primarily of sodium and sulfur, that holds promise for both large-scale grid ...

87

NASICON-Type Electrolytes for Low Temperature Sodium Battery ...  

Science Conference Proceedings (OSTI)

Presentation Title, NASICON-Type Electrolytes for Low Temperature Sodium Battery Applications. Author(s), Hui Zhang, Xingbo Liu. On-Site Speaker ( Planned) ...

88

ESS 2012 Peer Review - Sodium Intercalation Battery for Stationary...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LLC 35 Hartwell Avenue Lexington, MA 02421-3102 www.TIAXLLC.com Sodium Intercalation Battery for Stationary Storage Energy Storage Systems Program (ESS) Peer Review and Update...

89

Sodium cobalt bronze batteries and a method for making same  

SciTech Connect

A solid state secondary battery utilizing a low cost, environmentally sound, sodium cobalt bronze electrode. A method is provided for producing same.

Doeff, Marca M. (Hayward, CA); Ma, Yanping (Berkeley, CA); Visco, Steven J. (Berkeley, CA); DeJonghe, Lutgard (Lafayette, CA)

1999-01-01T23:59:59.000Z

90

Reductive Sulfur-fixation Smelting of Stibnite Concentrate in Sodium ...  

Science Conference Proceedings (OSTI)

Abstract Scope, A new process to extracted antimony directly from stibnite concentrate by reductive sulfur-fixation smelting in sodium molten salt has been ...

91

Influence of Petroleum Coke Sulphur Content on the Sodium ... - TMS  

Science Conference Proceedings (OSTI)

Feb 1, 1993 ... Influence of Petroleum Coke Sulphur Content on the Sodium Sensitivity of Carbon Anodes by S.M. Hume ... TMS Student Member price: 0.00.

92

Sodium cobalt bronze batteries and a method for making same  

DOE Patents (OSTI)

A solid state secondary battery utilizing a low cost, environmentally sound, sodium cobalt bronze electrode is described. A method is provided for producing same. 11 figs.

Doeff, M.M.; Ma, Y.; Visco, S.J.; DeJonghe, L.

1999-06-29T23:59:59.000Z

93

Planar Sodium Metal Halide Battery for Renewable Integration and ...  

Science Conference Proceedings (OSTI)

In this work we will present a sodium ߔ-alumina cell designed for widespread renewable energy integration and electrical grid applications. The new generation ...

94

Sodium fast reactor safety and licensing research plan. Volume II.  

SciTech Connect

Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

Ludewig, H. (Brokhaven National Laboratory, Upton, NY); Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A. (Argonne National Laboratory, Argonne, IL); Phillips, J.; Zeyen, R. (Institute for Energy Petten, Saint-Paul-lez-Durance, France); Clement, B. (IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France); Garner, Frank (Radiation Effects Consulting, Richland, WA); Walters, Leon (Advanced Reactor Concepts, Los Alamos, NM); Wright, Steve; Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Suo-Anttila, Ahti Jorma; Denning, Richard (Ohio State University, Columbus, OH); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki, Japan); Ohno, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Miyhara, S. (Japan Atomic Energy Agency, Ibaraki, Japan); Yacout, Abdellatif (Argonne National Laboratory, Argonne, IL); Farmer, M. (Argonne National Laboratory, Argonne, IL); Wade, D. (Argonne National Laboratory, Argonne, IL); Grandy, C. (Argonne National Laboratory, Argonne, IL); Schmidt, R.; Cahalen, J. (Argonne National Laboratory, Argonne, IL); Olivier, Tara Jean; Budnitz, R. (Lawrence Berkeley National Laboratory, Berkeley, CA); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki, Japan); Serre, Frederic (Centre d'%C3%94etudes nucl%C3%94eaires de Cadarache, Cea, France); Natesan, Ken (Argonne National Laboratory, Argonne, IL); Carbajo, Juan J. (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin-Madison, Madison, WI); Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN); Bari, R. (Brokhaven National Laboratory, Upton, NY); Porter D. (Idaho National Laboratory, Idaho Falls, ID); Lambert, J. (Argonne National Laboratory, Argonne, IL); Hayes, S. (Idaho National Laboratory, Idaho Falls, ID); Sackett, J. (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.

2012-05-01T23:59:59.000Z

95

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 3, Transport of sodium-sulfur and sodium-metal-chloride batteries  

DOE Green Energy (OSTI)

This report examines the shipping regulations that govern the shipment of dangerous goods. Since the elemental sodium contained in both sodium-sulfur and sodium-metal-chloride batteries is classified as a dangerous good, and is listed on both the national and international hazardous materials listings, both national and international regulatory processes are considered in this report The interrelationships as well as the differences between the two processes are highlighted. It is important to note that the transport regulatory processes examined in this report are reviewed within the context of assessing the necessary steps needed to provide for the domestic and international transport of sodium-beta batteries. The need for such an assessment was determined by the Shipping Sub-Working Group (SSWG) of the EV Battery Readiness Working Group (Working Group), created in 1990. The Working Group was created to examine the regulatory issues pertaining to in-vehicle safety, shipping, and recycling of sodium-sulfur batteries, each of which is addressed by a sub-working group. The mission of the SSWG is to establish basic provisions that will ensure the safe and efficient transport of sodium-beta batteries. To support that end, a proposal to the UN Committee of Experts was prepared by the SSWG, with the goal of obtaining a proper shipping name and UN number for sodium-beta batteries and to establish the basic transport requirements for such batteries (see the appendix for the proposal as submitted). It is emphasized that because batteries are large articles containing elemental sodium and, in some cases, sulfur, there is no existing UN entry under which they can be classified and for which modal transport requirements, such as the use of packaging appropriate for such large articles, are provided for. It is for this reason that a specific UN entry for sodium-beta batteries is considered essential.

Hammel, C.J.

1992-09-01T23:59:59.000Z

96

Sodium waste technology: A summary report. [Melt-drain-evaporation-calcination (MEDEC)  

SciTech Connect

The Sodium Waste Technology (SWT) Program was established to resolve long-standing issues regarding disposal of sodium-bearing waste and equipment. Comprehensive SWT research programs investigated a variety of approaches for either removing sodium from sodium-bearing items, or disposal of items containing sodium residuals. The most successful of these programs was the design, test, and the production operation of the Sodium Process Demonstration Facility at ANL-W. The technology used was a series of melt-drain-evaporate operations to remove nonradioactive sodium from sodium-bearing items and then converting the sodium to storable compounds.

Abrams, C.S.; Witbeck, L.C.

1987-01-01T23:59:59.000Z

97

It's Elemental - Isotopes of the Element Sodium  

NLE Websites -- All DOE Office Websites (Extended Search)

Neon Neon Previous Element (Neon) The Periodic Table of Elements Next Element (Magnesium) Magnesium Isotopes of the Element Sodium [Click for Main Data] Most of the isotope data on this site has been obtained from the National Nuclear Data Center. Please visit their site for more information. Naturally Occurring Isotopes Mass Number Natural Abundance Half-life 23 100% STABLE Known Isotopes Mass Number Half-life Decay Mode Branching Percentage 18 1.3×10-21 seconds Proton Emission 100.00% 19 < 40 nanoseconds Proton Emission No Data Available 20 447.9 milliseconds Electron Capture with delayed Alpha Decay 20.05% Electron Capture 100.00% 21 22.49 seconds Electron Capture 100.00% 22 2.6027 years Electron Capture 100.00% 23 STABLE - - 24 14.997 hours Beta-minus Decay 100.00%

98

Low temperature sodium-beta battery  

SciTech Connect

A battery that will operate at ambient temperature or lower includes an enclosure, a current collector within the enclosure, an anode that will operate at ambient temperature or lower within the enclosure, a cathode that will operate at ambient temperature or lower within the enclosure, and a separator and electrolyte within the enclosure between the anode and the cathode. The anode is a sodium eutectic anode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower. The cathode is a low melting ion liquid cathode that will operate at ambient temperature or lower and is made of a material that is in a liquid state at ambient temperature or lower.

Farmer, Joseph C

2013-11-19T23:59:59.000Z

99

Update; Sodium advanced fast reactor (SAFR) concept  

SciTech Connect

This paper reports on the sodium advanced fast reactor (SAFR) concept developed by the team of Rockwell International, Combustion Engineering, and Bechtel during the 3-year period extending from January 1985 to December 1987 as one element in the U.S. Department of Energy's Advanced Liquid Metal Reactor Program. In January 1988, the team was expanded to include Duke Engineering and Services, Inc., and the concept development was extended under DOE's Program for Improvement in Advanced Modular LMR Design. The SAFR plant concept employs a 450-MWe pool-type liquid metal cooled reactor as its basic module. The reactor assembly module is a standardized shop-fabricated unit that can be shipped to the plant site by barge for installation. Shop fabrication minimizes nuclear-grade field fabrication and reduces the plant construction schedule. Reactor modules can be used individually or in multiples at a given site to supply the needed generating capacity.

Oldenkamp, R.D.; Brunings, J.E. (Rockwell International Corp., Canoga Park, CA (USA)); Guenther, E. (Combustion Engineering, Windsor, CT (US)); Hren, R. (Bechtel National Inc., San Francisco, CA (US))

1988-01-01T23:59:59.000Z

100

FUEL PROGRAMMING FOR SODIUM GRAPHITE REACTORS  

SciTech Connect

The effect of fuel programming, i.e., the scheme used for changing fuel in a core, on the reactivity and specific power of a sodium graphite reactor is discussed Fuel programs considered Include replacing fuel a core-load at a time or a radial zone at a time, replacing fuel to manutain the same average exposure of fuel elements throughout the core, and replacing and transferring fuel elements to maintain more highly exposed fuel in the center or at the periphery of the core. Flux and criticality calculations show the degree of power flattening and the concurrent decrease in effective multiplication which results from maintaining more exposed fuel toward the core center. Corverse effects are shown for the case of maintaining more exposed fuel near the core periphery. The excess reactivity which must be controlled in the various programs is considered. Illustrative schedules for implementing each of these programs in an SGR are presented. (auth)

Connolly, T.J.

1959-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "nasi sodium silicide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Method of removing bulk sodium from metallic surfaces  

DOE Patents (OSTI)

A process of removing sodium from an article, particularly one made of stainless steel, by treating it with a mixture of water vapor and a gas which is inert to sodium is described. By selecting combinations of temperature and water vapor-to-gas ratio, the reaction temperature is controlled to prevent damage to the articles.

Maffei, H.P.; Borisch, R.R.

1975-11-11T23:59:59.000Z

102

Solid-state sodium batteries using polymer electrolytes and sodium intercalation electrode materials  

DOE Green Energy (OSTI)

Solid-state sodium cells using polymer electrolytes (polyethylene oxide mixed with sodium trifluoromethanesulfonate: PEO{sub n}NaCF{sub 3}SO{sub 3}) and sodium cobalt oxide positive electrodes are characterized in terms of discharge and charge characteristics, rate capability, cycle life, and energy and power densities. The P2 phase Na{sub x}CoO{sub 2} can reversibly intercalate sodium in the range of x = 0.3 to 0.9, giving a theoretical specific energy of 440 Wh/kg and energy density of 1,600 Wh/l. Over one hundred cycles to 60% depth of discharge have been obtained at 0.5 mA/cm{sup 2}. Experiments show that the electrolyte/Na interface is stable and is not the limiting factor to cell cycle life. Na{sub 0.7}CoO{sub 2} composite electrodes containing various amounts of carbon black additive are investigated. The transport properties of polymer electrolytes are the critical factors for performance. These properties (the ionic conductivity, salt diffusion coefficient, and ion transference number) are measured for the PEO{sub n}NaCF{sub 3}SO{sub 3} system over a wide range of concentrations at 85 C. All the three transport properties are very salt-concentration dependent. The ionic conductivity exhibits a maximum at about n = 20. The transference number, diffusion coefficient, and thermodynamic factor all vary with salt concentration in a similar fashion, decreasing as the concentration increases, except for a local maximum. These results verify that polymer electrolytes cannot be treated as ideal solutions. The measured transport-property values are used to analyze and optimize the electrolytes by computer simulation and also cell testing. Salt precipitation is believed to be the rate limiting process for cells using highly concentrated solutions, as a result of lower values of these properties, while salt depletion is the limiting factor when a dilute solution is used.

Ma, Y. [Univ. of California, Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering]|[Lawrence Berkeley National Lab., CA (United States). Materials Sciences Div.

1996-08-01T23:59:59.000Z

103

Independent Oversight Assessment, Idaho Cleanup Project Sodium Bearing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Cleanup Project Sodium Idaho Cleanup Project Sodium Bearing Waste Treatment Project - November 2012 Independent Oversight Assessment, Idaho Cleanup Project Sodium Bearing Waste Treatment Project - November 2012 November 2012 Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent assessment of nuclear safety culture at the DOE Sodium Bearing Waste Treatment Project (SBWTP). The primary objective of the evaluation was to provide information regarding the status of the safety culture at SBWTP. The data collection phase of the assessment occurred in April and May 2012. SBWTP is one of DOE's largest nuclear

104

Independent Oversight Review, Sodium Bearing Waste Treatment Project -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sodium Bearing Waste Treatment Sodium Bearing Waste Treatment Project - Federal - June 2012 Independent Oversight Review, Sodium Bearing Waste Treatment Project - Federal - June 2012 June 2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Federal Operational Readiness Review This report documents the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), independent review of the Sodium Bearing Waste Treatment Project-Integrated Waste Treatment Unit (SBWTP-IWTU) DOE (Federal) Operational Readiness Review (D-ORR). The review was performed by the HSS Office of Safety and Emergency Management Evaluations and was intended to assess the effectiveness of the CORR process as implemented for

105

EIS-0287: Notice of Preferred Sodium Bearing Waste Treatment Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preferred Sodium Bearing Waste Treatment Preferred Sodium Bearing Waste Treatment Technology EIS-0287: Notice of Preferred Sodium Bearing Waste Treatment Technology Idaho High-Level Waste (HLW) and Facilities Disposition In October 2002, the U.S. Department of Energy (DOE or the Department) issued the Final Idaho High-Level Waste (HLW) and Facilities Disposition Environmental Impact Statement (DOE/EIS-0287 (Final EIS)). The Final EIS contains an evaluation of reasonable alternatives for the management of mixed transuranic waste/sodium bearing waste (SBW),1 mixed HLW calcine, and associated low-level waste (LLW), as well as disposition alternatives for HLW facilities when their missions are completed. DOE/EIS-0287, Notice of Preferred Sodium Bearing Waste Treatment Technology, Office of Environmental Management, Idaho, 70 FR 44598 (August

106

Independent Oversight Review, Sodium Bearing Waste Treatment Project -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sodium Bearing Waste Treatment Sodium Bearing Waste Treatment Project - Contractor - June 2012 Independent Oversight Review, Sodium Bearing Waste Treatment Project - Contractor - June 2012 June 2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Contractor Operational Readiness Review This report documents the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), independent review of the Sodium Bearing Waste Treatment Project-Integrated Waste Treatment Unit (SBWTP-IWTU) contractor Operational Readiness Review (C-ORR). The review was conducted at the Idaho Site from February 27 to March 6, 2012. This report discusses the background, scope, results, and conclusions of the review, as well as

107

Decommissioning of Experimental Breeder Reactor - II Complex, Post Sodium Draining  

Science Conference Proceedings (OSTI)

The Experimental Breeder Reactor - II (EBR-II) was shutdown in September 1994 as mandated by the United States Department of Energy. This sodium-cooled reactor had been in service since 1964. The bulk sodium was drained from the primary and secondary systems and processed. Residual sodium remaining in the systems after draining was converted into sodium bicarbonate using humid carbon dioxide. This technique was tested at Argonne National Laboratory in Illinois under controlled conditions, then demonstrated on a larger scale by treating residual sodium within the EBR-II secondary cooling system, followed by the primary tank. This process, terminated in 2002, was used to place a layer of sodium bicarbonate over all exposed surfaces of sodium. Treatment of the remaining EBR-II sodium is governed by the Resource Conservation and Recovery Act (RCRA). The Idaho Department of Environmental Quality issued a RCRA Operating Permit in 2002, mandating that all hazardous materials be removed from EBR-II within a 10 year period, with the ability to extend the permit and treatment period for another 10 years. A preliminary plan has been formulated to remove the remaining sodium and NaK from the primary and secondary systems using moist carbon dioxide, steam and nitrogen, and a water flush. The moist carbon dioxide treatment was resumed in May 2004. As of August 2005, approximately 60% of the residual sodium within the EBR-II primary tank had been treated. This process will continue through the end of 2005, when it is forecast that the process will become increasingly ineffective. At that time, subsequent treatment processes will be planned and initiated. It should be noted that the processes and anticipated costs associated with these processes are preliminary. Detailed engineering has not been performed, and approval for these methods has not been obtained from the regulator or the sponsors.

J. A. (Bart) Michelbacher; S. Paul Henslee; Collin J. Knight; Steven R. sherman

2005-09-01T23:59:59.000Z

108

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation and Recycle of Sodium Hydroxide and Sodium Nitrate  

SciTech Connect

This research was intended to provide the scientific foundation upon which the feasibility of liquid-liquid extraction chemistry for bulk reduction of the volume of high-activity tank waste can be evaluated. Primary focus has been on sodium hydroxide separation, with potential Hanford application. Value in sodium hydroxide separation can potentially be found in alternative flowsheets for treatment and disposal of low-activity salt waste. Additional value can be expected in recycle of sodium hydroxide for use in waste retrieval and sludge washing, whereupon additions of fresh sodium hydroxide to the waste can be avoided. Potential savings are large both because of the huge cost of vitrification of the low-activity waste stream and because volume reduction of high-activity wastes could obviate construction of costly new tanks. Toward these ends, the conceptual development begun in the original proposal was extended with the formulation of eight fundamental approaches that could be undertaken for extraction of sodium hydroxide.

Bruce A. Moyer; Alan P. Marchand; Peter V. Bonnesen; Jeffrey C. Bryan; Tamara J. Haverlock

2004-06-08T23:59:59.000Z

109

Experimental investigations on sodium plugging in narrow flow channels.  

SciTech Connect

A series of experiments was performed to investigate the potential for plugging of narrow flow channels of sodium by impurities (e.g., oxides). In the first phase of the experiments, clean sodium was circulated through the test sections simulating flow channels in a compact diffusion-bonded heat exchanger such as a printed circuit heat exchanger. The primary objective was to see if small channels whose cross sections are semicircles of 2, 4, and 6 mm in diameter are usable in liquid sodium applications where sodium purity is carefully controlled. It was concluded that the 2-mm channels, the smallest of the three, could be used in clean sodium systems at temperatures even as low as 100 to 110 C without plugging. In the second phase, sodium oxide was added to the loop, and the oxygen concentration in the liquid sodium was controlled by means of varying the cold-trap temperature. Intentional plugging was induced by creating a cold spot in the test sections, and the subsequent plugging behavior was observed. It was found that plugging in the 2-mm test section was initiated by lowering the cold spot temperature below the cold-trap temperature by 10 to 30 C. Unplugging of the plugged channels was accomplished by heating the affected test section.

Momozaki, Y.; Cho, D. H.; Sienicki, J. J.; Moisseytsev, A.; Nuclear Engineering Division

2010-08-01T23:59:59.000Z

110

Sodium Bearing Waste Processing Alternatives Analysis  

SciTech Connect

A multidisciplinary team gathered to develop a BBWI recommendation to DOE-ID on the processing alternatives for the sodium bearing waste in the INTEC Tank Farm. Numerous alternatives were analyzed using a rigorous, systematic approach. The data gathered were evaluated through internal and external peer reviews for consistency and validity. Three alternatives were identified to be top performers: Risk-based Calcination, MACT to WIPP Calcination and Cesium Ion Exchange. A dual-path through early Conceptual design is recommended for MACT to WIPP Calcination and Cesium Ion Exchange since Risk-based Calcination does not require design. If calcination alternatives are not considered based on giving Type of Processing criteria significantly greater weight, the CsIX/TRUEX alternative follows CsIX in ranking. However, since CsIX/TRUEX shares common uncertainties with CsIX, reasonable backups, which follow in ranking, are the TRUEX and UNEX alternatives. Key uncertainties must be evaluated by the decision-makers to choose one final alternative. Those key uncertainties and a path forward for the technology roadmapping of these alternatives is provided.

Murphy, James Anthony; Palmer, Brent J; Perry, Keith Joseph

2003-12-01T23:59:59.000Z

111

Structure and Aqueous Solubility of Sodium Isosaccharinate  

SciTech Connect

It has been recently shown that isosaccharinic acid, C6H12O6 (ISA), and its derivative salts have a great potential for practical application in the area of nuclear waste treatment and disposal sites management. Several studies demonstrated the effect of ISA complexation on radionuclide solubility and sorptive properties, especially on actinides in (+4) oxidation state like Np(IV) and Th(IV). The presence of ISA and/or its derivatives strongly affects the migration of radionuclides by increasing their solubility in water by several orders of magnitude and Na-ISA has been proposed as a component of decontamination formulations for actinide-contaminated surfaces. Here we report the synthesis, crystal's structure and characterization (FTIR, TGA) of sodium isosaccharate, NaC6H11O6-H2O (Na-ISA). The structure has been solved by single crystal X-ray diffraction methods. The solubility of Na-ISA has been evaluated and compared to that of Ca-ISA based on the structural features of both compounds.

Bontchev, Ranko P.; Moore, Robert; Tucker, Mark; Holt, Kathleen

2004-03-29T23:59:59.000Z

112

Molecular dynamics study of sodium using a model pseudopotential  

Science Conference Proceedings (OSTI)

The dynamics of sodium is investigated using the coulomb and Born-Mayer interaction augmented by a model pseudopotential to represent the electron interactions including screening, exchange, and correlation. The model parameters were previously determined and have been shown to accurately reproduce experimental equation-of-state, lattice vibration, and crystal phase properties of sodium in the harmonic limit. In this paper the equation-of-state and structural properties are examined in molecular dynamics calculations. The long range effects of the potential are included. Typically, each particle interacts with about 500 neighbors. The calculated equation of state of sodium in the hcp, bcc, and liquid structures is discussed.

Swanson, R.E.; Straub, G.K.; Holian, B.L.

1981-01-01T23:59:59.000Z

113

NMR monitoring of intracellular sodium in dog and rabbit kidney tubules  

SciTech Connect

{sup 23}Na-nuclear magnetic resonance (NMR) was used to monitor intra- and extracellular sodium in suspensions of dog cortical tubules, rabbit cortical tubules, and dog thick ascending limbs. The NMR visibility of the intracellular sodium was determined by comparing the NMR and flame photometry results and by redistributing the sodium ions between the intra- and extracellular compartments using the ionophore nystatin (influx) or sodium substitution for choline in the extracellular fluid (efflux). The intracellular sodium visibility was {approximately}30% for the total sodium and 58% for the transportable sodium. Addition of sodium to sodium-depleted homogenates of dog renal cortex also showed a loss of visibility. The values of the relaxation times T{sub 1} and T{sub 2} were determined but could not be correlated with the visibility measurements. The intracellular sodium concentration in dog cortical tubules incubated in optimal biochemical conditions was estimated at 51 mM was dependent on the extracellular sodium concentration.

Boulanger, Y.; Vinay, P.; Boulanger, M. (Universite de Montreal, Quebec (Canada))

1987-11-01T23:59:59.000Z

114

ADVANCED ONCE-THROUGH STEAM GENERATOR FOR SODIUM APPLICATION  

SciTech Connect

Preliminary design calculations were performed for a once-through type steam generator and reheater for advanced sodium power plants in the 300-Mwe range. Parameters and performance data are presented. (D.L.C.)

Terpe, G.R.

1960-09-19T23:59:59.000Z

115

Internal structure, hygroscopic and reactive properties of mixed sodium  

NLE Websites -- All DOE Office Websites (Extended Search)

Internal structure, hygroscopic and Internal structure, hygroscopic and reactive properties of mixed sodium methanesulfonate-sodium chloride particles Internal structure, hygroscopic and reactive properties of mixed sodium methanesulfonate-sodium chloride particles Print Friday, 13 May 2011 00:00 Scientists recently combined experimental approaches and molecular dynamics modeling to gain new insights into the internal structure of sea salt particles and relate it to their fundamental chemical reactivity in the atmosphere. This research shows that surface enhancement or depletion of chemical components in marine particles can occur because of the difference in the chemical nature of the species. Because the atmospheric chemistry of the salt particles takes place at the gas-particle interface, understanding their complex surfaces provides new insights about their effect on the environment and climate change. Article Link.

116

Probabilistic transient analysis of fuel choices for sodium fast reactors  

E-Print Network (OSTI)

This thesis presents the implications of using a risk-informed licensing framework to inform the design of Sodium Fast Reactors. NUREG-1860, more commonly known as the Technology Neutral Framework (TNF), is a risk-informed ...

Denman, Matthew R

2011-01-01T23:59:59.000Z

117

United States, France and Japan Increase Cooperation on Sodium...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

on Sodium-Cooled Fast Reactor Prototypes February 1, 2008 - 11:13am Addthis WASHINGTON, DC -The U.S Department of Energy (DOE), the French Atomic Energy Commission (CEA) and...

118

Probabilistic transient analysis of fuel choices for sodium fast reactors.  

E-Print Network (OSTI)

??This thesis presents the implications of using a risk-informed licensing framework to inform the design of Sodium Fast Reactors. NUREG-1860, more commonly known as the… (more)

Denman, Matthew R

2011-01-01T23:59:59.000Z

119

Reactor protection system design alternatives for sodium fast reactors  

E-Print Network (OSTI)

Historically, unprotected transients have been viewed as design basis events that can significantly challenge sodium-cooled fast reactors. The perceived potential consequences of a severe unprotected transient in a ...

DeWitte, Jacob D. (Jacob Dominic)

2011-01-01T23:59:59.000Z

120

Loop simulation capability for sodium-cooled systems  

E-Print Network (OSTI)

A one-dimensional loop simulation capability has been implemented in the thermal-hydraulic analysis code, THERMIT-4E. This code had been used to simulate and investigate flow in test sections of experimental sodium loops ...

Adekugbe, Oluwole A.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nasi sodium silicide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

ESS 2012 Peer Review - Sodium-based Battery Development - Dave...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Security Administration under contract DE-AC04-94AL85000. Sodium-based Battery Development A Family of Batteries for Large Scale Energy Storage D. Ingersoll, C....

122

Wall pressure exerted by hydrogenation of sodium aluminum hydride.  

DOE Green Energy (OSTI)

Wall pressure exerted by the bulk expansion of a sodium aluminum hydride bed was measured as a function of hydrogen content. A custom apparatus was designed and loaded with sodium alanates at densities of 1.0, 1.1, and 1.16 g/cc. Four complete cycles were performed to identify variations in measured pressure. Results indicated poor correlation between exerted pressure and hydrogen capacity of the sodium alanate beds. Mechanical pressure due to the hydrogenation of sodium alanates does not influence full-scale system designs as it falls within common design factors of safety. Gas pressure gradients within the porous solid were identified and may limit reaction rates, especially for high aspect ratio beds.

Perras, Yon E.; Dedrick, Daniel E.; Zimmerman, Mark D.

2009-06-01T23:59:59.000Z

123

Hydrogen storage in sodium aluminum hydride.  

DOE Green Energy (OSTI)

Sodium aluminum hydride, NaAlH{sub 4}, has been studied for use as a hydrogen storage material. The effect of Ti, as a few mol. % dopant in the system to increase kinetics of hydrogen sorption, is studied with respect to changes in lattice structure of the crystal. No Ti substitution is found in the crystal lattice. Electronic structure calculations indicate that the NaAlH{sub 4} and Na{sub 3}AlH{sub 6} structures are complex-ionic hydrides with Na{sup +} cations and AlH{sub 4}{sup -} and AlH{sub 6}{sup 3-} anions, respectively. Compound formation studies indicate the primary Ti-compound formed when doping the material at 33 at. % is TiAl{sub 3} , and likely Ti-Al compounds at lower doping rates. A general study of sorption kinetics of NaAlH{sub 4}, when doped with a variety of Ti-halide compounds, indicates a uniform response with the kinetics similar for all dopants. NMR multiple quantum studies of solution-doped samples indicate solvent interaction with the doped alanate. Raman spectroscopy was used to study the lattice dynamics of NaAlH{sub 4}, and illustrated the molecular ionic nature of the lattice as a separation of vibrational modes between the AlH{sub 4}{sup -} anion-modes and lattice-modes. In-situ Raman measurements indicate a stable AlH{sub 4}{sup -} anion that is stable at the melting temperature of NaAlH{sub 4}, indicating that Ti-dopants must affect the Al-H bond strength.

Ozolins, Vidvuds; Herberg, J.L. (Lawrence Livermore National Laboratories, Livermore, CA); McCarty, Kevin F.; Maxwell, Robert S. (Lawrence Livermore National Laboratories, Livermore, CA); Stumpf, Roland Rudolph; Majzoub, Eric H.

2005-11-01T23:59:59.000Z

124

SODIUM-HEATED STEAM GENERATOR DEVELOPMENT. Interim Status Report  

SciTech Connect

Design and development of a once -through sodiumheated steam generator are discussed. Research proposals are discussed for evaluating: carbon transfer and mass transfer effects in the steam generator, effect on heat transfer and two- phase flow of coiling tubes, corrosion of Croloy 21/4 in products of sodium-water reactions, procedure for welding tube to back side of the tube sheet, radiographic inspection of back side tube welds, and chemical simulation of sodium environment for leak testing. (N.W.R.)

1964-01-22T23:59:59.000Z

125

High temperature sodium testing of the CRBR prototype primary pump  

Science Conference Proceedings (OSTI)

Qualification testing in sodium of the CRBR primary pump was conducted through 1982. This paper presents an overview of the test program, a description of the Sodium Pump Test Facility (largest of its kind in the world), a brief description of the test article and summary overview of results. Of special interest were the high temperature gas convection tests and the extensive flow/speed control (dynamic) tests. Special innovative test methods were employed to investigate these phenomena.

Tessier, M.J.; Grimaldi, J.L.

1983-01-01T23:59:59.000Z

126

Alignment and operability analysis of a vertical sodium pump  

SciTech Connect

With the objective of identifying important alignment features of pumps such as FFTF, HALLAM, EBR II, PNC, PHENIX, and CRBR, alignment of the vertical sodium pump for the Clinch River Breeder Reactor Plant (CRBRP) is investigated. The CRBRP pump includes a flexibly coupled pump shaft and motor shaft, two oil-film tilting-pad hydrodynamic radial bearings in the motor plus a vertical thrust bearing, and two sodium hydrostatic bearings straddling the double-suction centrifugal impeller in the pump.

Gupta, V.K.; Fair, C.E.

1981-01-01T23:59:59.000Z

127

Advanced sodium fast reactor accident source terms : research needs.  

Science Conference Proceedings (OSTI)

An expert opinion elicitation has been used to evaluate phenomena that could affect releases of radionuclides during accidents at sodium-cooled fast reactors. The intent was to identify research needed to develop a mechanistic model of radionuclide release for licensing and risk assessment purposes. Experts from the USA, France, the European Union, and Japan identified phenomena that could affect the release of radionuclides under hypothesized accident conditions. They qualitatively evaluated the importance of these phenomena and the need for additional experimental research. The experts identified seven phenomena that are of high importance and have a high need for additional experimental research: High temperature release of radionuclides from fuel during an energetic eventEnergetic interactions between molten reactor fuel and sodium coolant and associated transfer of radionuclides from the fuel to the coolantEntrainment of fuel and sodium bond material during the depressurization of a fuel rod with breached claddingRates of radionuclide leaching from fuel by liquid sodiumSurface enrichment of sodium pools by dissolved and suspended radionuclidesThermal decomposition of sodium iodide in the containment atmosphereReactions of iodine species in the containment to form volatile organic iodides. Other issues of high importance were identified that might merit further research as development of the mechanistic model of radionuclide release progressed.

Powers, Dana Auburn; Clement, Bernard [IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France] IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France; Denning, Richard [Ohio State University, Columbus, OH] Ohio State University, Columbus, OH; Ohno, Shuji [Japan Atomic Energy Agency, Ibaraki, Japan] Japan Atomic Energy Agency, Ibaraki, Japan; Zeyen, Roland [Institute for Energy Petten, Saint-Paul-lez-Durance, France] Institute for Energy Petten, Saint-Paul-lez-Durance, France

2010-09-01T23:59:59.000Z

128

Advanced sodium fast reactor accident source terms : research needs.  

SciTech Connect

An expert opinion elicitation has been used to evaluate phenomena that could affect releases of radionuclides during accidents at sodium-cooled fast reactors. The intent was to identify research needed to develop a mechanistic model of radionuclide release for licensing and risk assessment purposes. Experts from the USA, France, the European Union, and Japan identified phenomena that could affect the release of radionuclides under hypothesized accident conditions. They qualitatively evaluated the importance of these phenomena and the need for additional experimental research. The experts identified seven phenomena that are of high importance and have a high need for additional experimental research: High temperature release of radionuclides from fuel during an energetic eventEnergetic interactions between molten reactor fuel and sodium coolant and associated transfer of radionuclides from the fuel to the coolantEntrainment of fuel and sodium bond material during the depressurization of a fuel rod with breached claddingRates of radionuclide leaching from fuel by liquid sodiumSurface enrichment of sodium pools by dissolved and suspended radionuclidesThermal decomposition of sodium iodide in the containment atmosphereReactions of iodine species in the containment to form volatile organic iodides. Other issues of high importance were identified that might merit further research as development of the mechanistic model of radionuclide release progressed.

Powers, Dana Auburn; Clement, Bernard [IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France] IRSN/DPAM.SEMIC Bt 702, Saint-Paul-lez-Durance, France; Denning, Richard [Ohio State University, Columbus, OH] Ohio State University, Columbus, OH; Ohno, Shuji [Japan Atomic Energy Agency, Ibaraki, Japan] Japan Atomic Energy Agency, Ibaraki, Japan; Zeyen, Roland [Institute for Energy Petten, Saint-Paul-lez-Durance, France] Institute for Energy Petten, Saint-Paul-lez-Durance, France

2010-09-01T23:59:59.000Z

129

Independent Oversight Assessment, Idaho Cleanup Project Sodium Bearing Waste Treatment Project- November 2012  

Energy.gov (U.S. Department of Energy (DOE))

Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project

130

Method of and apparatus for removing silicon from a high temperature sodium coolant  

DOE Patents (OSTI)

A method of and system for removing silicon from a high temperature liquid sodium coolant system for a nuclear reactor. The sodium is cooled to a temperature below the silicon saturation temperature and retained at such reduced temperature while inducing high turbulence into the sodium flow for promoting precipitation of silicon compounds and ultimate separation of silicon compound particles from the liquid sodium.

Yunker, Wayne H. (Richland, WA); Christiansen, David W. (Kennewick, WA)

1987-01-01T23:59:59.000Z

131

Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan  

SciTech Connect

This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

Shank, D.R.

1994-12-29T23:59:59.000Z

132

Generation IV International Forum Signs Agreement to Collaborate on Sodium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Forum Signs Agreement to Collaborate on Forum Signs Agreement to Collaborate on Sodium Cooled Fast Reactors Generation IV International Forum Signs Agreement to Collaborate on Sodium Cooled Fast Reactors February 17, 2006 - 11:58am Addthis FUKUI , JAPAN - The Department of Energy today announced that the United States signed a sodium-cooled fast reactor systems arrangement with France and Japan, providing the framework for collaboration among these countries on the research and development of these advanced nuclear reactors. The signing of the agreement took place on February 16, 2006. This arrangement will support the development of technologies associated with the U.S.-led Global Nuclear Energy Partnership (GNEP), announced earlier this month by Secretary of Energy Samuel W. Bodman. GNEP is a

133

Independent Oversight Review, Sodium Bearing Waste Treatment Project -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal - June 2012 Federal - June 2012 Independent Oversight Review, Sodium Bearing Waste Treatment Project - Federal - June 2012 June 2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Federal Operational Readiness Review This report documents the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), independent review of the Sodium Bearing Waste Treatment Project-Integrated Waste Treatment Unit (SBWTP-IWTU) DOE (Federal) Operational Readiness Review (D-ORR). The review was performed by the HSS Office of Safety and Emergency Management Evaluations and was intended to assess the effectiveness of the CORR process as implemented for the SBWTP-IWTU. This review also provides additional data regarding

134

Independent Oversight Review, Sodium Bearing Waste Treatment Project -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contractor - June 2012 Contractor - June 2012 Independent Oversight Review, Sodium Bearing Waste Treatment Project - Contractor - June 2012 June 2012 Review of the Sodium Bearing Waste Treatment Project - Integrated Waste Treatment Unit Contractor Operational Readiness Review This report documents the U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), independent review of the Sodium Bearing Waste Treatment Project-Integrated Waste Treatment Unit (SBWTP-IWTU) contractor Operational Readiness Review (C-ORR). The review was conducted at the Idaho Site from February 27 to March 6, 2012. This report discusses the background, scope, results, and conclusions of the review, as well as opportunities for improvement (OFIs) and items identified for further

135

Method of forming and starting a sodium sulfur battery  

SciTech Connect

A method of forming a sodium sulfur battery and of starting the reactive capability of that battery when heated to a temperature suitable for battery operation is disclosed. An anodic reaction zone is constructed in a manner that sodium is hermetically sealed therein, part of the hermetic seal including fusible material which closes up openings through the container of the anodic reaction zone. The hermetically sealed anodic reaction zone is assembled under normal atmospheric conditions with a suitable cathodic reaction zone and a cation-permeable barrier. When the entire battery is heated to an operational temperature, the fusible material of the hermetically sealed anodic reaction zone is fused, thereby allowing molten sodium to flow from the anodic reaction zone into reactive engagement with the cation-permeable barrier.

Paquette, David G. (Costa Mesa, CA)

1981-01-01T23:59:59.000Z

136

Study of cesium volatility from sodium carbonate based melts  

SciTech Connect

Purpose of this study was to obtain thermodynamic data on cesium volatility from sodium carbonate-based molten salts for application to the Rockwell-ETEC molten salt oxidation process. At 1073 to 1373 K, volatility tests were conducted on a horizontal and a vertical transpiration apparatus using a carrier gas composed of CO{sub 2}(g) and H{sub 2}O(g) which was passed over or bubbled through a sodium carbonate bath containing cesium carbonate and various additives. The major vapor species was identified to be CsOH(g) except when greater than 3% chloride is present in the melt, then the major vapor species is CsCl(g). The decrease in volatility of cesium as a function of cesium concentration in Cs{sub 2}CO{sub 3{minus}}Na{sub 2}CO{sub 3} mixtures follows Raoult`s law very closely. Thus, this system exhibits close to ideal solution behavior. Addition of 22.5 wt % sodium sulfate decreases the cesium volatility by just under a factor of 2, and the addition of 10.0 wt % sodium chloride increases the cesium volatility about an order of magnitude. The addition of 2.0 wt % ash, molecular sieve, or silica show little or no effect. However, the data indicate that higher concentrations of ash will decrease the cesium volatility. For the addition of 22.5 wt % sodium sulfate the activity coefficient, {gamma}(Cs{sub 2}CO{sub 3}){sup {1/2}}, is calculated to be 0.720 {plus_minus} 0.068, and for the addition of 10.0 wt % sodium chloride, the activity coefficient, {gamma}(CsCl), is calculated to be 8.118 {plus_minus} 2.317. Assuming that Henry`s law applies, these activity coefficients are used to extrapolate the effect on cesium retention in the molten salt oxidizer of sulfate and chloride at lower cesium concentrations.

Ebbinghaus, B.B.; Krikorian, O.H.; Adamson, M.G.; Fleming, D.L.

1993-12-01T23:59:59.000Z

137

ESS 2012 Peer Review - Sodium-based Battery Development - Dave Ingersoll, SNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sodium-based Battery Development Sodium-based Battery Development A Family of Batteries for Large Scale Energy Storage D. Ingersoll, C. Apblett, E. Spoerke, K. Zavadil, R. Cygan, J. Ihlefeld, F. Delnick, & T. Anderson Sandia National Laboratories, Albuquerque, NM Prof. E. Wachsman University of Maryland, College Park, MD Profs. R. Kee & J. Porter, Dr. H. Zhu Colorado School of Mines, Golden, CO S. Bhavaraju & M. Robins Ceramatec, Inc, Salt Lake City, UT D. Beeaff CoorsTek, Inc, Golden, CO J. Martin Boulder Ionics, Golden CO US DOE Energy Storage Systems Research Program Peer Review, Washington, DC, Sept. 26-28, 2012 Sodium-based batteries  Purpose  Demonstrate a family of sodium-based battery chemistries  sodium-iodine, sodium-bromine, sodium-air, sodium insertion, sodium-metal, etc

138

Sodium and lithium corrosion in molybdenum heat pipes  

SciTech Connect

Sodium and lithium corrosin in molybdenum heat pipes has been shown to be impurity dependent rather than solubility dependent. Impurities represent the major contributors to corrosion in the heat pipes tested. Our experiments have shown no evidence of direct solution of molybdenum by either sodium or lithium. Analysis has suggested that a critical concentration of impurities is required to initiate corrosion. Thus it appears that corrosion in Mo/Na and Mo/Li heat pipes can be controlled if impurity concentration can be limited by removal of impurities from the working fluid and heat pipe components prior to operation or by internal gettering during operation.

Lundberg, L.B.; Merrigan, M.A.

1984-01-01T23:59:59.000Z

139

Solid-state laser system for laser cooling of Sodium  

E-Print Network (OSTI)

We demonstrate a frequency-stabilized, all-solid laser source at 589 nm with up to 800 mW output power. The laser relies on sum-frequency generation from two laser sources at 1064 nm and 1319 nm through a PPKTP crystal in a doubly-resonant cavity. We obtain conversion efficiency as high as 2 W/W^2 after optimization of the cavity parameters. The output wavelength is tunable over 60 GHz, which is sufficient to lock on the Sodium D2 line. The robustness, beam quality, spectral narrowness and tunability of our source make it an alternative to dye lasers for atomic physics experiments with Sodium atoms.

Emmanuel Mimoun; Luigi de Sarlo; Jean-Jacques Zondy; Jean Dalibard; Fabrice Gerbier

2009-08-03T23:59:59.000Z

140

Solid-state laser system for laser cooling of Sodium  

E-Print Network (OSTI)

We demonstrate a frequency-stabilized, all-solid laser source at 589 nm with up to 800 mW output power. The laser relies on sum-frequency generation from two laser sources at 1064 nm and 1319 nm through a PPKTP crystal in a doubly-resonant cavity. We obtain conversion efficiency as high as 2 W/W^2 after optimization of the cavity parameters. The output wavelength is tunable over 60 GHz, which is sufficient to lock on the Sodium D2 line. The robustness, beam quality, spectral narrowness and tunability of our source make it an alternative to dye lasers for atomic physics experiments with Sodium atoms.

Mimoun, Emmanuel; Zondy, Jean-Jacques; Dalibard, Jean; Gerbier, Fabrice

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nasi sodium silicide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Sodium-Doped Molybdenum Targets for Controllable Sodium Incorporation in CIGS Solar Cells: Preprint  

DOE Green Energy (OSTI)

The efficiency of Cu(In,Ga)Se2 (CIGS) solar cells is enhanced when Na is incorporated in the CIGS absorber layer. This work examines Na incorporation in CIGS utilizing Na-doped Mo sputtered from targets made with sodium molybdate-doped (MONA) powder. Mo:Na films with varying thicknesses were sputtered onto Mo-coated borosilicate glass (BSG) or stainless steel substrates for CIGS solar cells. By use of this technique, the Na content of CIGS can be varied from near-zero to higher than that obtained from a soda-lime glass (SLG) substrate. Targets and deposition conditions are described. The doped Mo films are analyzed, and the resulting devices are compared to devices fabricated on Mo-coated SLG as well as Mo-coated BSG with NaF. Completed devices utilizing MONA exceeded 15.7% efficiency without anti-reflective coating, which was consistently higher than devices prepared with the NaF precursor. Strategies for minimizing adhesion difficulties are presented.

Mansfield, L. M.; Repins, I. L.; Glynn, S.; Carducci, M. D.; Honecker, D. M.; Pankow, J.; Young, M.; DeHart, C.; Sundaramoorthy, R.; Beall, C. L.; To, B.

2011-07-01T23:59:59.000Z

142

Nickel container of highly-enriched uranium bodies and sodium  

SciTech Connect

A fuel element comprises highly a enriched uranium bodies coated with a nonfissionable, corrosion resistant material. A plurality of these bodies are disposed in layers, with sodium filling the interstices therebetween. The entire assembly is enclosed in a fluid-tight container of nickel.

Zinn, Walter H. (Hinsdale, IL)

1976-01-01T23:59:59.000Z

143

Compatibility Assessment of Advanced Stainless Steels in Sodium  

Science Conference Proceedings (OSTI)

Type 316L stainless steel capsules containing commercially pure sodium and miniature tensile specimens of HT-UPS (austenitic, 14Cr-16Ni), NF-616 (ferritic/martensitic, 9Cr-2W-0.5Mo), or 316L (austenitic, 17Cr-10Ni-2Mo) stainless steel were exposed at 600 or 700 C for 100 and 400 h as a screening test for compatibility. Using weight change, tensile testing, and metallographic analysis, HT-UPS and 316L were found to be largely immune to changes resulting from sodium exposure, but NF-616 was found susceptible to substantial decarburization at 700 C. Subsequently, two thermal convection loops (TCLs) constructed of 316L and loaded with commercially pure sodium and miniature tensile specimens of HT-UPS and 316L were operated for 2000 h each one between 500 and 650 C, the other between 565 and 725 C at a flow rate of about 1.5 cm/s. Changes in specimen appearance, weight, and tensile properties were observed to be very minor in all cases, and there was no metallographic evidence of microstructure changes, composition gradients, or mass transfer resulting from prolonged exposure in a TCL. Thus, it appears that HT-UPS and 316L stainless steels are similarly compatible with commercially pure sodium under these exposure conditions.

Pawel, Steven J [ORNL

2012-01-01T23:59:59.000Z

144

Volatility of Aqueous Acetic Acid, Formic Acid, and Sodium Acetate  

Science Conference Proceedings (OSTI)

The quality of water and steam is central to ensuring power plant component availability and reliability. A key part of developing operating cycle chemistry guidelines is an understanding of the impurity distribution between water and steam. This report examines the volatility of some of the principal cycle organic corrodents: acetic acid, formic acid, and sodium acetate.

2000-07-28T23:59:59.000Z

145

Method of generating hydrogen gas from sodium borohydride  

DOE Patents (OSTI)

A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

Kravitz, Stanley H. (Placitas, NM); Hecht, Andrew M. (Sandia Park, NM); Sylwester, Alan P. (Albuquerque, NM); Bell, Nelson S. (Albuquerque, NM)

2007-12-11T23:59:59.000Z

146

Method of Manufacturing Micro-Disperse Particles of Sodium Borohydride  

DOE Patents (OSTI)

A compact solid source of hydrogen gas, where the gas is generated by contacting water with micro-disperse particles of sodium borohydride in the presence of a catalyst, such as cobalt or ruthenium. The micro-disperse particles can have a substantially uniform diameter of 1-10 microns, and preferably about 3-5 microns. Ruthenium or cobalt catalytic nanoparticles can be incorporated in the micro-disperse particles of sodium borohydride, which allows a rapid and complete reaction to occur without the problems associated with caking and scaling of the surface by the reactant product sodium metaborate. A closed loop water management system can be used to recycle wastewater from a PEM fuel cell to supply water for reacting with the micro-disperse particles of sodium borohydride in a compact hydrogen gas generator. Capillary forces can wick water from a water reservoir into a packed bed of micro-disperse fuel particles, eliminating the need for using an active pump.

Kravitz, Stanley H. (Placitas, NM); Hecht, Andrew M. (Sandia Park, NM); Sylwester. Alan P. (Albuquerque, NM); Bell, Nelson S. (Albuquerque, NM)

2008-09-23T23:59:59.000Z

147

Sodium sulfur container with chromium/chromium oxide coating  

SciTech Connect

A coating of chromium/chromium oxide is disclosed for coating the surfaces of electrically conducting components of a sodium sulfur battery. This chromium/chromium oxide coating is placed on the surfaces of the electrically conducting components of the battery which are in contact with molten polysulfide and sulfur reactants during battery operation.

Ludwig, Frank A. (Irvine, CA); Higley, Lin R. (Santa Ana, CA)

1981-01-01T23:59:59.000Z

148

An Electrical Cathode Model of a High Pressure Sodium Lamp  

Science Conference Proceedings (OSTI)

An electrical cathode model (ECM) of a high pressure sodium lamp (HPS) based on physical laws has been developed. The proposed ECM calculates the instantaneous voltage drop in a cathode sheath and the temperature distribution inside the cathode using ... Keywords: cathode model, HPS lamp ballast designs

Jose Luis Tapia; Joel O. Pacheco Sotelo; Eduardo Diaz Rodriguez; Yulia Nikolaevna Ledeneva; Rene Arnulfo Garcia Hernandez

2010-09-01T23:59:59.000Z

149

Chemical kinetic studies on dry sorbents. Final report. [Sodium bicarbonate  

Science Conference Proceedings (OSTI)

The scope of this research investigation has included a review of potential additives suitable for dry flue-gas desulfurization (FGD) and a bench scale laboratory study to determine the chemical kinetics for the reaction of five different sorbents with sulfur dioxide. The sorbents chosen included sodium bicarbonate (NaHCO/sub 3/), soda ash (Na/sub 2/CO/sub 3/), trona, lime (CaO) and hydrated lime (Ca(OH)/sub 2/). This study has shown that: (1) The reaction rate increases with temperature for soda ash and calcium oxide. The reaction temperature has an inverse effect on sodium bicarbonate and trona due, primarily, to the simultaneous thermal activation reaction. The calcium hydroxide-SO/sub 2/ reaction increased up to 550/sup 0/F, and then decreased, due to uneven gas flow distribution. (2) The reaction rates for soda ash, calcium oxide and calcium hydroxide were increased by decreasing their particle size. This effect was not confirmed for sodium bicarbonate and trona where reaction temperature was the most important reaction parameter. (3) Reaction with soda ash was found to be limited by the presence of an impervious ash layer which prevented interparticle gaseous diffusion. Calcium oxide and calcium hydroxide were found to be limited by a slow chemical reaction rate. Results on the rate-limiting steps for sodium bicarbonate and trona were inconclusive because of the simultaneous thermal activation reaction. (4) The effect of thermal activation was to increase the reaction rate for sodium bicarbonate and trona at lower temperatures. This effect was less pronounced at higher temperatures. (5) Results obtained for nitric oxide show limited adsorption for the five sorbents tested as compared to the finding for sulfur dioxide.

Davis, W.T.; Keener, T.C.

1982-02-15T23:59:59.000Z

150

Method of and apparatus for removing silicon from a high temperature sodium coolant  

DOE Patents (OSTI)

This patent discloses a method of and system for removing silicon from a high temperature liquid sodium coolant system for a nuclear reactor. The sodium is cooled to a temperature below the silicon saturation temperature and retained at such reduced temperature while inducing high turbulence into the sodium flow for promoting precipitation of silicon compounds and ultimate separation of silicon compound particles from the liquid sodium.

Yunker, W.H.; Christiansen, D.W.

1983-11-25T23:59:59.000Z

151

Go No-Go Recommendation for Sodium Borohydride for On-Board Vehicular Hydrogen Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

Independent review panel recommendation for go/no go decision on use of hydrolysis of sodium borohydride for hydrogen storage.

152

A new approach in signal processing for sodium boiling noise detection by probability density function estimates  

Science Conference Proceedings (OSTI)

The probability density function (pdf) method of noise signal processing has been investigated for its capability and quality in detecting sodium boiling noise. In an attempt to identify proper features of the pdf for sodium boiling noise detection, the segmented areas under the pdf curves have been found sensitive to sodium boiling noise. New approaches have been followed in selecting the feature threshold and achieving the targeted probabilities for false and missed sodium boiling noise detection.

Reddy, C.P.; Singh, O.P.; Vyjayanthi, R.K.; Prabhakar, R.

1988-03-01T23:59:59.000Z

153

Microsoft Word - EC Sodium coolant removal.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 SECTION A. Project Title: MFC - EBR-II Sodium Removal/RCRA Closure Activities SECTION B . Project Description The proposed action will remove the sodium from the Experimental Breeder Reactor (EBR)-II piping system and tanks to achieve clean-closure for eventual decommissioning, deactivation and demolition (DD&D). The clean-closure will be completed in compliance with the EBR-II Hazardous Waste Management Act/Resource Conservation and Recovery Act (HWMA/RCRA) Storage and Treatment Permit PER-120, which includes the closure plan. EBR-II is located at the Materials and Fuels Complex at the Idaho National Laboratory. The EBR-II DD&D actions will be addressed under the Comprehensive Environmental Response Compensation, and Liability Act, specifically, the Engineering Evaluation/Cost

154

First-Principles Study on Electron Conduction in Sodium Nanowire  

E-Print Network (OSTI)

Abstract. We present detailed first-principles calculations of the electron-conduction properties of a three-sodium-atom nanowire suspended between semi-infinite crystalline Na(001) electrodes during its elongation. Our investigations reveal that the conductance is ? 1 G0 before the nanowire breaks and only one channel with the characteristic of the 3s orbital of the center atom in the nanowire contributes to the electron conduction. Moreover, the channel fully opens around the Fermi level, and the behavior of the channel-current density is insensitive to the structural deformation of the nanowire. These results verify that the conductance trace as a function of the electrode spacing exhibits a flat plateau at ? 1 G0 during elongation. First-Principles Study on Electron Conduction in Sodium Nanowire 2 1.

Yoshiyuki Egami; Takashi Sasaki; Tomoya Ono

2004-01-01T23:59:59.000Z

155

Preventing ash agglomeration during gasification of high-sodium lignite  

Science Conference Proceedings (OSTI)

Various additives were evaluated to assess their ability to prevent ash agglomeration during the gasification of high-sodium lignite. Additives that showed promise in simple muffle furnace tests included meta-kaolin, vermiculite, two types of silica fume, and one type of bauxite. Additives that were tested and rejected included dolomite, calcite, sand flour, kaolinite, fine kaolin, and calcined bauxite. Based on the muffle furnace test results, the meta-kaolin was selected for a follow-on demonstration in a pilot-scale coal gasifier. Pilot-scale testing showed that the addition of coarse (minus 14-mesh, 920-{mu}m mean size) meta-kaolin at a feed rate roughly equivalent to the ash content of the lignite (10 wt %) successfully prevented agglomeration and deposition problems during gasification of high-sodium lignite at a maximum operating temperature of 927{sup o}C (1700{sup o}F). 13 refs., 24 figs., 1 tab.

Robert S. Dahlin; Johnny R. Dorminey; WanWang Peng; Roxann F. Leonard; Pannalal Vimalchand [Southern Research Institute and Southern Company Services, Wilsonville, AL (USA). Power Systems Development Facility

2009-01-15T23:59:59.000Z

156

Sodium-Beta Alumina Batteries: Status and Challenges  

DOE Green Energy (OSTI)

Sodium-beta alumina batteries, have been extensively developed for a few decades and encouraging progress has been achieved so far. The anode is typically molten sodium while the cathode can be molten sulfur (Na-S battery) or solid transition metal halides plus a liquid phase secondary electrolyte (e.g., ZEBRA battery). The electrolyte typically used is a ?"-Al2O3 solid membrane. The issues prohibiting broad commercialization of this type of technology are dependent on the materials used, but can be broadly described as relatively high cost, safety (particularly for the Na-S couple), and low power. This paper offers a review on materials and designs for the batteries and discusses the challenges ahead for further technology improvement.

Lu, Xiaochuan; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

2010-09-05T23:59:59.000Z

157

TEN-YEAR SODIUM-REACTOR DEVELOPMENT PROGRAM  

SciTech Connect

>A 10-year program of development and construction of large-scale, sodium-cooled reactors is summarized. The current state of development of the SGR and its associated components is sufficiently advanced to permit construction of economic plants within the 10-year period. Two advanced Sodium Reactor concepts are presented. A construction program involving two reactor experiments and two full-scale plants with a capacity of 550 Mwe, together with associated development, is estimated to cost 6 million. Of this amount approximately 06 million would be borne by the AEC and the remainder by power utility companies. Escalation and construction loan interest charges are included in these figures. The cost of power from the larger power plant would be approximately 6 mills/kw-hr, based on 1959 dollars. (auth)

1959-04-11T23:59:59.000Z

158

CORE PARAMETER STUDY FOR A 300-MW SODIUM GRAPHITE REACTOR  

SciTech Connect

A core parameter study of the operating costs was performed for a 300- Mwe sodium graphite reactor, a scale-up of the Hallam Power Reactor. The results of the study indicate that the core design is nsar optimum and that core modifications would reduce the power costs by less than 5%. The lattice spacing, fuel rod diameter, and sodium flow can be varied within a rather broad range without significant changes in power generation costs. The effect of the fuel cladning thickness is more significant; fuel cycle costs can be reduced if stainless steel canning is replaced with zirconium canning. Use of UC in place of uraniummolybdenum fuel would also permit cost reductions. (D.L.C.)

Corcoran, W.P.

1959-10-22T23:59:59.000Z

159

Selective Adsorption of Sodium Aluminum Fluoride Salts from Molten Aluminum  

SciTech Connect

Aluminum is produced in electrolytic reduction cells where alumina feedstock is dissolved in molten cryolite (sodium aluminum fluoride) along with aluminum and calcium fluorides. The dissolved alumina is then reduced by electrolysis and the molten aluminum separates to the bottom of the cell. The reduction cell is periodically tapped to remove the molten aluminum. During the tapping process, some of the molten electrolyte (commonly referred as “bath” in the aluminum industry) is carried over with the molten aluminum and into the transfer crucible. The carryover of molten bath into the holding furnace can create significant operational problems in aluminum cast houses. Bath carryover can result in several problems. The most troublesome problem is sodium and calcium pickup in magnesium-bearing alloys. Magnesium alloying additions can result in Mg-Na and Mg-Ca exchange reactions with the molten bath, which results in the undesirable pickup of elemental sodium and calcium. This final report presents the findings of a project to evaluate removal of molten bath using a new and novel micro-porous filter media. The theory of selective adsorption or removal is based on interfacial surface energy differences of molten aluminum and bath on the micro-porous filter structure. This report describes the theory of the selective adsorption-filtration process, the development of suitable micro-porous filter media, and the operational results obtained with a micro-porous bed filtration system. The micro-porous filter media was found to very effectively remove molten sodium aluminum fluoride bath by the selective adsorption-filtration mechanism.

Leonard S. Aubrey; Christine A. Boyle; Eddie M. Williams; David H. DeYoung; Dawid D. Smith; Feng Chi

2007-08-16T23:59:59.000Z

160

Sodium boiling in LMFBR fuel assemblies. Progress report  

Science Conference Proceedings (OSTI)

Objective is to improve current understanding of sodium voiding behavior under postulated LMFBR accident conditions. Multi-dimensional computer models are being developed under low flow and low power conditions. The following computer codes are being developed and assessed: NATOF-2D, THERMIT-S-6E, and THERMIT-S-4E. The effect of virtual mass on the characteristics and numerical stability in two-phase flows was studied. (DLC)

Not Available

1981-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "nasi sodium silicide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Chaotic Dynamos Generated by a Turbulent Flow of Liquid Sodium  

SciTech Connect

We report the observation of several dynamical regimes of the magnetic field generated by a turbulent flow of liquid sodium (VKS experiment). Stationary dynamos, transitions to relaxation cycles or to intermittent bursts, and random field reversals occur in a fairly small range of parameters. Large scale dynamics of the magnetic field result from the interactions of a few modes. The low dimensional nature of these dynamics is not smeared out by the very strong turbulent fluctuations of the flow.

Ravelet, F.; Monchaux, R.; Aumaitre, S.; Chiffaudel, A.; Daviaud, F.; Dubrulle, B. [Service de Physique de lEtat Condense, Direction des Sciences de la Matiere, CEA-Saclay, CNRS URA 2464, 91191 Gif-sur-Yvette cedex (France); Berhanu, M.; Fauve, S.; Mordant, N.; Petrelis, F. [Laboratoire de Physique Statistique de lEcole Normale Superieure, CNRS UMR 8550, 24 Rue Lhomond, 75231 Paris Cedex 05 (France); Bourgoin, M.; Odier, Ph.; Plihon, N.; Pinton, J.-F.; Volk, R. [Laboratoire de Physique de lEcole Normale Superieure de Lyon, CNRS UMR 5672, 46 allee dItalie, 69364 Lyon Cedex 07 (France)

2008-08-15T23:59:59.000Z

162

Sodium-Bearing Waste Treatment, Applied Technology Plan  

SciTech Connect

Settlement Agreement between the Department of Energy and the State of Idaho mandates treatment of sodium-bearing waste at the Idaho Nuclear Technology and Engineering Center within the Idaho National Engineering and Environmental Laboratory. One of the requirements of the Settlement Agreement is to complete treatment of sodium-bearing waste by December 31, 2012. Applied technology activities are required to provide the data necessary to complete conceptual design of four identified alternative processes and to select the preferred alternative. To provide a technically defensible path forward for the selection of a treatment process and for the collection of needed data, an applied technology plan is required. This document presents that plan, identifying key elements of the decision process and the steps necessary to obtain the required data in support of both the decision and the conceptual design. The Sodium-Bearing Waste Treatment Applied Technology Plan has been prepared to provide a description/roadmap of the treatment alternative selection process. The plan details the results of risk analyzes and the resulting prioritized uncertainties. It presents a high-level flow diagram governing the technology decision process, as well as detailed roadmaps for each technology. The roadmaps describe the technical steps necessary in obtaining data to quantify and reduce the technical uncertainties associated with each alternative treatment process. This plan also describes the final products that will be delivered to the Department of Energy Idaho Operations Office in support of the office's selection of the final treatment technology.

Lance Lauerhass; Vince C. Maio; S. Kenneth Merrill; Arlin L. Olson; Keith J. Perry

2003-06-01T23:59:59.000Z

163

Development of the sodium/sulfur technology for energy storage  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) has supported the development of the sodium-sulfur technology since 1973. The programs have focused on progressing core aspects of the technology and completing initial battery engineering for both mobile and stationary applications. An overview of the Office of Energy Management (OEM) activities is contained in this paper. Two major development programs have been active: the first with Ford Aerospace and Communications Corporation (1975 to 1985), and the second with Chloride Silent Power Limited (1985 to 1990). With the completion this year of the qualification of a cell suitable for initial Solar Energy Systems (SES) applications, the emphasis of future DOE/OEM sodium/sulfur programs will shift to SES-battery engineering and development. The initial effort will resolve a number of issues related to the feasibility of utilizing the sodium/sulfur technology in these large-scale applications. This multi-year activity will represent the initial phase of an integrated long-term DOE-supported program to produce a commercially viable battery system.

Landgrebe, A. (USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (USA). Office of Energy Management); Magnani, N.J. (Sandia National Labs., Albuquerque, NM (USA))

1990-01-01T23:59:59.000Z

164

Compact intermediate heat transport system for sodium cooled reactor  

SciTech Connect

This patent describes a combination with a sodium cooled reactor having an intermediate heat exchanger for extracting heat in a nonradioactive secondary sodium loop from the sodium rector. It comprises: first and second upstanding closed cylindrical vessels, one of the cylindrical vessels being exterior of the other of the cylindrical vessels; the other of the cylindrical vessels being interior, smaller, and concentric of the larger cylindrical vessel so as to define between the inside of the larger vessel and the outside of the smaller vessel an interstitial annular volume; at least one feedwater inlet plenums at the bottom of the larger vessel communicated to the interstitial annular volume; at least one feedwater outlet plenums at the top of the larger and outer vessel communicated to the interstitial annular volume; tubes communicated to the feedwater inlet plenum at the bottom of the vessels and to the steam outlet plenum at the top of the vessel; a first conduit; a large submersible electromagnetic pump; and a jet pump having an inlet, a venturi, and a diffusing outlet.

Boardman, C.E.; Maurer, J.P.

1990-03-06T23:59:59.000Z

165

Sodium Dichromate Barrel Landfill expedited response action proposal  

SciTech Connect

The US Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology) recommended that the US Department of Energy (DOE) prepare an expedited response action (ERA) for the Sodium Dichromate Barrel Landfill. The Sodium Dichromate Barrel Disposal Site was used in 1945 for disposal of crushed barrels. The site location is the sole waste site within the 100-IU-4 Operable Unit. The Waste Information Data System (WIDS 1992) assumes that the crushed barrels contained 1% residual sodium dichromate at burial time and that only buried crushed barrels are at the site. Burial depth is shallow since visual inspection finds numerous barrel debris on the surface. A non-time-critical ERA proposal includes preparation of an engineering evaluation and cost analysis (EE/CA) section. The EE/CA is a rapid, focused evaluation of available technologies using specific screening factors to assess feasibility, appropriateness, and cost. The ERA goal is to reduce the potential for any contaminant migration from the landfill to the soil column, groundwater, and Columbia River. Since the landfill is the only waste site within the operable unit, the ERA will present a final remediation of the 100-IU-4 operable unit.

Not Available

1993-09-01T23:59:59.000Z

166

Sodium meta-autunite colloids: Synthesis, characterization,stability  

Science Conference Proceedings (OSTI)

Waste forms of U such as those in the United States Department of Energy's Hanford Site often contain high concentrations of Na and P. Low solubility sodium uranyl phosphates such as sodium meta-autunite have the potential to form mobile colloids that can facilitate transport of this radionuclide. In order to understand the geochemical behavior of uranyl phosphate colloids, we synthesized sodiummeta-autunite colloids, and characterized their morphology, chemical composition, structure, dehydration, and surface charge. The stability of these synthetic plate-shaped colloids was tested with respect to time and pH. The highest aggregation rate was observed at pH 3, and the rate decreases as pH increases, indicating that higher stability of colloid dispersion under neutral and alkaline pH conditions. The synthetic colloids are all negatively charged and no isoelectric points were found over a pH range of 3 to 9. The zeta-potentials of the colloids in the phosphate solution show a strong pH-dependence in the more acidic range over time, but are relatively constant in the neutral and alkaline pH range. The geochemical behavior of the synthetic colloids can be interpreted using DLVO theory. The results suggest that formation of mobile sodium meta-autunite colloids can enhance the transport of U in some contaminated sediments.

zzuoping@lbl.gov

2004-04-10T23:59:59.000Z

167

EIS-0306: Treatment and Management of Sodium-Bonded Spent Nuclear Fuel |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

306: Treatment and Management of Sodium-Bonded Spent Nuclear 306: Treatment and Management of Sodium-Bonded Spent Nuclear Fuel EIS-0306: Treatment and Management of Sodium-Bonded Spent Nuclear Fuel Summary This EIS evaluates the potential environmental impacts of the proposed electrometallurgical treatment of DOE-owned sodium bonded spent nuclear fuel in the Fuel Conditioning Facility at Argonne National Laboratory-West (ANL-W). Public Comment Opportunities None available at this time. Documents Available for Download September 19, 2000 EIS-0306: Record of Decision Treatment and Management of Sodium-Bonded Spent Nuclear Fuel July 1, 2000 EIS-0306: Final Environmental Impact Statement Treatment and Management of Sodium-Bonded Spent Nuclear Fuel July 1, 1999 EIS-0306: Draft Environmental Impact Statement Treatment of Sodium-Bonded Spent Nuclear Fuel

168

HIGH SODIUM SIMULANT TESTING TO SUPPORT SB8 SLUDGE PREPARATION  

Science Conference Proceedings (OSTI)

Scoping studies were completed for high sodium simulant SRAT/SME cycles to determine any impact to CPC processing. Two SRAT/SME cycles were performed with simulant having sodium supernate concentration of 1.9M at 130% and 100% of the Koopman Minimum Acid requirement. Both of these failed to meet DWPF processing objectives related to nitrite destruction and hydrogen generation. Another set of SRAT/SME cycles were performed with simulant having a sodium supernate concentration of 1.6M at 130%, 125%, 110%, and 100% of the Koopman Minimum Acid requirement. Only the run at 110% met DWPF processing objectives. Neither simulant had a stoichiometric factor window of 30% between nitrite destruction and excessive hydrogen generation. Based on the 2M-110 results it was anticipated that the 2.5M stoichiometric window for processing would likely be smaller than from 110-130%, since it appeared that it would be necessary to increase the KMA factor by at least 10% above the minimum calculated requirement to achieve nitrite destruction due to the high oxalate content. The 2.5M-130 run exceeded the DWPF hydrogen limits in both the SRAT and SME cycle. Therefore, testing of this wash endpoint was halted. This wash endpoint with this minimum acid requirement and mercury-noble metal concentration profile appears to be something DWPF should not process due to an overly narrow window of stoichiometry. The 2M case was potentially processable in DWPF, but modifications would likely be needed in DWPF such as occasionally accepting SRAT batches with undestroyed nitrite for further acid addition and reprocessing, running near the bottom of the as yet ill-defined window of allowable stoichiometric factors, potentially extending the SRAT cycle to burn off unreacted formic acid before transferring to the SME cycle, and eliminating formic acid additions in the frit slurry.

Newell, J.

2012-09-19T23:59:59.000Z

169

Self-welding evaluation of reactor materials in flowing sodium  

SciTech Connect

An experimental study was made of the self-welding of various combinations of FBR materials (304 ss, Inconel 718, A286, Stellite 156, and Stellite 6) in sodium at 800 to 1100$sup 0$F for time periods up to 6 months and contact stresses of 2 to 148 ksi. Stresses required to separate the surfaces were determined. Self-welding was observed only at temperatures of 1050$sup 0$F and above, with the breakaway force being less than 5 ksi. (DLC)

Chang, J.Y.; Flagella, P.N.; Schrock, S.L.

1975-01-01T23:59:59.000Z

170

Electrolytic Treatment of ICPP Sodium-Bearing Waste Simulant  

SciTech Connect

Two proof-of-principle tests were conducted to determine if nitrate can be destroyed electrochemically in a simulated Idaho Chemical Processing Plant (ICPP) Sodium-Bearing waste. Both tests demonstrated the destruction of nitrate as well as the removal of other metals in the simulant. Metals removal is believed to be due to precipitation as a result of a change in the pH of the waste solution from strongly acidic to highly alkaline and reduction to a metal or metal oxide. Although gas evolution at the cathode was visible during each test, there were no visible signs of NO{sub x} formation in either test.

Hobbs, D.T.

1995-02-02T23:59:59.000Z

171

Feed Composition for Sodium-Bearing Waste Treatment Process  

SciTech Connect

Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by a Settlement Agreement between the Department of Energy and the State of Idaho. One of the requirements of the Settlement Agreement is to complete treatment of SBW by December 31, 2012. To support both design and development studies for the SBW treatment process, detailed feed compositions are needed. This report contains the expected compositions of these feed streams and the sources and methods used in obtaining these compositions.

Barnes, C.M.

2000-10-30T23:59:59.000Z

172

STATIC SODIUM TEST OF WESTINGHOUSE FLOW CONTROLLER BEARING  

SciTech Connect

Tests were carried out to determine the action of a static sodium environment on a special high-temperature ball bearing while operating at the specified speed and loading. The test bearing was operated at 85 rpm and 870 pounds axial load for 385 hr at 1000 deg F. Visual inspection of the test bearing showed a very marked increase in roughness of both the balls and the ball races. Details of the measurements and a photograph of the bearing parts after test are given. On the basis of this test it did not appear that this bearing will be satisfactory for the service intended. (M.C.G.)

Cygan, R.

1960-12-01T23:59:59.000Z

173

United States, France and Japan Increase Cooperation on Sodium-Cooled Fast  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States, France and Japan Increase Cooperation on United States, France and Japan Increase Cooperation on Sodium-Cooled Fast Reactor Prototypes United States, France and Japan Increase Cooperation on Sodium-Cooled Fast Reactor Prototypes February 1, 2008 - 11:13am Addthis WASHINGTON, DC -The U.S Department of Energy (DOE), the French Atomic Energy Commission (CEA) and Japan Atomic Energy Agency (JAEA) today expanded cooperation to coordinate Sodium-Cooled Fast Reactor Prototype development through a Memorandum of Understanding (MOU) signed by DOE Assistant Secretary for Nuclear Energy Dennis R. Spurgeon, CEA Chairman Alain Bugat and JAEA President Toshio Okazaki. The MOU establishes a collaborative framework with the ultimate goal of deploying sodium-cooled fast reactor prototypes. A sodium-cooled fast reactor uses liquid sodium

174

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts  

SciTech Connect

The purpose of this research involving collaboration between Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) is to explore new approaches to the separation of sodium hydroxide, sodium nitrate, and other sodium salts from high-level alkaline tank waste. The principal potential benefit is a major reduction in disposed waste volume, obviating the building of expensive new waste tanks and reducing the costs of low-activity waste immobilization. Principles of ion recognition are being researched toward discovery of liquid extraction systems that selectively separate sodium hydroxide and sodium nitrate from other waste components. The successful concept of pseudohydroxide extraction using fluorinated alcohols and phenols is being developed at ORNL and PNNL toward a greater understanding of the controlling equilibria, role of solvation, and of synergistic effects involving crown ethers. Studies at PNNL are directed toward new solvent formulation for the practical sodium pseudohydroxide extraction systems.

Levitskaia, Tatiana G.; Lumetta, Gregg J.; Moyer, Bruce A.; Bonnesen, Peter V.

2006-06-01T23:59:59.000Z

175

OPERATING EXPERIENCE WITH THE SODIUM REACTOR EXPERIMENT AND ITS APPLICATION TO THE HALLAM NUCLEAR POWER FACILITY  

SciTech Connect

The Sodium Reactor Experiment (SRE) was constructed to demonstrate the feasibility of sodium-oooled graphitemoderated reactors for central station power. The operating experience of SRE has provided valuable data for the design of the Hallam Nuclear Power Facillty (HNPF) now under construction. Some of the difficulties found in the SRE, which HNPF will be designed to avoid, are the sodium-sodium intermediate heat exchanger (horizontal position in SRE gave trouble; a vertical position will be used in HNPF), sodium pumps, handling of broken fuel elements, and excessive thermal stresses due to inadequate coolant flow. Other features of HNPF include the addition of an activity monitoring system for the core cover gas, elimination of tetralin for auxiliary cooling of plant equipment, instrumentation of fuel elements, and addition of carbon traps in the primary sodium system. SRE operation has demonstrated unusual reactor stability and capability for rapid power changes. (D.L.C.)

Beeley, R.J.; Mahlmeister, J.E.

1960-01-01T23:59:59.000Z

176

AN ADVANCED SODIUM-GRAPHITE REACTOR NUCLEAR POWER PLANT  

SciTech Connect

An advanced sodium-cooled, graphite-moderated nuclear power plant is described which utilizes high-pressure, high-temperature steam to generate electricity at a high thermal efficiency. Steam is generated at 2400 psig, superheated to 1050 deg F and, after partial expansion in the turbine, reheated to 1000 deg F. Net thermal efficiency of the plant is 42.3%. In a plant sized to produce a net electrical output of 256 Mw, the estimated cost is 8232/kw. Estimated cost of power generation is 6.7 mills/kwh. In a similar plant with a net electrical output of 530 Mw, the estimated power generating cost is 5.4 mills/ kwh. Most of the components of the plant are within the capability of current technology. The major exception is the fuel material, uranium carbide. Preliminary results of the development work now in progress indicate that uranium carbide would be an excellent fuel for high-temperature reactors, but temperature and burnup limitation have yet to be firmly established. Additional development work is also required on the steam generators. These are the single-barrier type similar to those which will be used in the Enrico Fernri Fast Breeder Reactor plant but produce steam at higher pressure and temperature. Questions also remain regarding the use of nitrogen as a cover gas over sodium at 1200 deg F and compatibility of the materials used in the primary neutron shield. All of these questions are currently under investigation. (auth)

Churchill, J.R.; Renard, J.

1960-03-15T23:59:59.000Z

177

Synaptosomal calcium influx is activated by sodium fluoride  

Science Conference Proceedings (OSTI)

Neuronal calcium channels can be modulated by changes in membrane potential or by activation of channel-associated receptors. The latter may be modulated by guanine nucleotide binding proteins. NaF, which activates guanine nucleotide binding proteins, caused a large stimulation of /sup 45/Ca/sup 2 +/ uptake by synaptosomes prepared from rat brain. Stimulation of /sup 45/Ca/sup 2 +/ influx by NaF (i) was apparent in media containing either 5 mM-K+ or 50 mM-K+, (ii) was slower than the fast-phase of voltage-dependent /sup 45/Ca/sup 2 +/ influx but continued for a longer period of time than did depolarization-induced /sup 45/Ca/sup 2 +/ influx, and (iii) was not mimicked or modified by a number of drugs, including ouabain, dinitrophenol, sodium azide or sodium vanadate. These results are consistent with the hypothesis that NaF activates a guanine nucleotide binding protein associated with receptor-coupled calcium channels, resulting in stimulation of calcium influx.

Jope, R.S.; Lally, K.M.

1988-03-15T23:59:59.000Z

178

TRUEX partitioning studies applied to ICPP sodium-bearing waste  

SciTech Connect

The Idaho Chemical Processing Plant (ICPP), located in southeast Idaho at the USDOE Idaho National Engineering Laboratory, formerly reprocessed highly enriched spent nuclear fuel to recover fissionable uranium. The HLW raffinates from the combined PUREX/REDOX type uranium recovery process were converted to solid oxides (calcine) in a high temperature fluidized bed. Liquid effluents from the calcination process were combined with liquid sodium bearing waste (SBW) generated primarily in conjunction with decontamination activities. Due to the high sodium content in the SBW, this secondary waste stream is not directly amenable to solidification via calcination. Currently, approximately 1.5 millon gallons of liquid SBW are stored at the ICPP in large tanks. Several treatment options for the SBW are currently being considered, including the TRansUranic EXtraction (TRUEX) process developed by Horwitz and co-workers at Argonne National Laboratory (ANL), in preparation for the final disposition of SBW. Herein described are experimental results of radionuclide tracer studies with simulated SBW using the TRUEX process solvent.

Herbst, R.S.; Brewer, K.N.; Law, J.D.; Tranter, T.J.; Todd, T.A.

1994-05-01T23:59:59.000Z

179

REACTIONS OF SODIUM PEROXIDE WITH COMPONENTS OF LEGACY PLUTONIUM MATERIALS  

Science Conference Proceedings (OSTI)

Plutonium oxide (PuO{sub 2}) calcined at >900 C resists dissolution in nitric acid (HNO{sub 3})-potassium fluoride (KF) solutions, a common method for their dissolution. The Savannah River National Laboratory (SRNL) has developed an alternate method for large samples of PuO{sub 2}-bearing materials using sodium peroxide (Na{sub 2}O{sub 2}) fusion as a pretreatment. The products of the reaction between Na{sub 2}O{sub 2} and PuO{sub 2} have been reported in the literature. As part of the SRNL development effort, additional data about the reaction between Na{sub 2}O{sub 2} and PuO{sub 2} were required. Also needed were data concerning the reaction of Na{sub 2}O{sub 2} with other components that may be present in the feed materials. Sodium peroxide was reacted with aluminum metal (Al), beryllium metal (Be), graphite, potassium chloride (KCl), magnesium chloride (MgCl{sub 2}), and calcium chloride (CaCl{sub 2}). The paper reports and discusses the reaction products of these and related compounds with Na{sub 2}O{sub 2}.

Pierce, R.; Missimer, D.; Crowder, M.

2011-10-04T23:59:59.000Z

180

Sodium fast reactor safety and licensing research plan. Volume I.  

SciTech Connect

This report proposes potential research priorities for the Department of Energy (DOE) with the intent of improving the licensability of the Sodium Fast Reactor (SFR). In support of this project, five panels were tasked with identifying potential safety-related gaps in available information, data, and models needed to support the licensing of a SFR. The areas examined were sodium technology, accident sequences and initiators, source term characterization, codes and methods, and fuels and materials. It is the intent of this report to utilize a structured and transparent process that incorporates feedback from all interested stakeholders to suggest future funding priorities for the SFR research and development. While numerous gaps were identified, two cross-cutting gaps related to knowledge preservation were agreed upon by all panels and should be addressed in the near future. The first gap is a need to re-evaluate the current procedures for removing the Applied Technology designation from old documents. The second cross-cutting gap is the need for a robust Knowledge Management and Preservation system in all SFR research areas. Closure of these and the other identified gaps will require both a reprioritization of funding within DOE as well as a re-evaluation of existing bureaucratic procedures within the DOE associated with Applied Technology and Knowledge Management.

Sofu, Tanju (Argonne National Laboratory, Argonne, IL); LaChance, Jeffrey L.; Bari, R. (Brokhaven National Laboratory Upton, NY); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Denman, Matthew R.; Flanagan, George F. (Oak Ridge National Laboratory, Oak Ridge, TN)

2012-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "nasi sodium silicide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Preliminary engineering design of sodium-cooled CANDLE core  

Science Conference Proceedings (OSTI)

The CANDLE burning process is characterized by the autonomous shifting of burning region with constant reactivity and constant spacial power distribution. Evaluations of such critical burning process by using widely used neutron diffusion and burning codes under some realistic engineering constraints are valuable to confirm the technical feasibility of the CANDLE concept and to put the idea into concrete core design. In the first part of this paper, it is discussed that whether the sustainable and stable CANDLE burning process can be reproduced even by using conventional core analysis tools such as SLAROM and CITATION-FBR. As a result, it is certainly possible to demonstrate it if the proper core configuration and initial fuel composition required as CANDLE core are applied to the analysis. In the latter part, an example of a concrete image of sodium cooled, metal fuel, 2000MWt rating CANDLE core has been presented by assuming an emerging inevitable technology of recladding. The core satisfies engineering design criteria including cladding temperature, pressure drop, linear heat rate, and cumulative damage fraction (CDF) of cladding, fast neutron fluence and sodium void reactivity which are defined in the Japanese FBR design project. It can be concluded that it is feasible to design CANDLE core by using conventional codes while satisfying some realistic engineering design constraints assuming that recladding at certain time interval is technically feasible.

Takaki, Naoyuki; Namekawa, Azuma; Yoda, Tomoyuki; Mizutani, Akihiko; Sekimoto, Hiroshi [Department of Nuclear Engineering, Tokai University, Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); AISA, Fuchu, Ishioka, Ibaraki 315-0013 (Japan); Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, 152-8550 (Japan)

2012-06-06T23:59:59.000Z

182

Safety evaluation for packaging for 1720-DR sodium-filled tank  

SciTech Connect

Preparations are under way to sell the sodium stored in the 1720-DR tank in the 1720-DR building. This will require that the tank, as well as the 1720-DR facility, be moved to the 300 Area, so that the sodium may be melted and transferred into a railroad tanker car. Because the sodium is a hazardous material and is being shipped in a nonspecification packaging, a safety evaluation for packaging (SEP) is required. This SEP approves the sodium-filled tank for a single shipment from the 105-DR area to the 300 Area.

Mercado, M.S.

1996-03-09T23:59:59.000Z

183

Sodium compatibility studies of low friction carbide coatings for reactor application  

SciTech Connect

Design requirements for low friction materials in FFTF have led to an experimental sodium compatibility program, the objective of which is to select and qualify a low friction coating for the fuel assembly duct load pad. Results are given for chromium carbide and titanium carbide-based coatings on stainless steel exposed to 1160 deg F sodium for several thousand hours. A chromium carbide coating (with a nichrome binder) having an average corrosion rate of approximately 0.25 mpy exhibits optimum sodium compatibility behavior of the materials examined. Both plasma-sprayed chromium carbide and titanium carbide based coatings were found to be unstable when exposed to sodium. (auth)

Whitlow, G.A.; Miller, R.L.; Schrock, S.L.; Wu, P.C.S.

1973-09-01T23:59:59.000Z

184

Sodium-Lithium Ratio In Water Applied To Geothermometry Of Geothermal...  

Open Energy Info (EERE)

Sign Up Search Page Edit with form History Facebook icon Twitter icon Sodium-Lithium Ratio In Water Applied To Geothermometry Of Geothermal Reservoirs Jump to: navigation,...

185

Study of Trona (Sodium Sesquicarbonate) Reactivity with Sulfur Dioxide in a Simulated Flue Gas.  

E-Print Network (OSTI)

??Dry injection of sodium-based sorbents has gained a lot of attention in the last few years. With Dry injection, it is possible to achieve almost… (more)

Srinivasn, Rangesh

2004-01-01T23:59:59.000Z

186

Application of the technology neutral framework to sodium cooled fast reactors.  

E-Print Network (OSTI)

??Sodium cooled fast reactors (SFRs) are considered as a novel example to exercise the Technology Neutral Framework (TNF) proposed in NUREG- 1860. One reason for… (more)

Johnson, Brian C. (Brian Carl)

2010-01-01T23:59:59.000Z

187

Excess consumption of sugar-sweetened beverages and sodium in children and adolescents  

E-Print Network (OSTI)

with 100% juice or water intake Milk intake inverselyOnce water is included with dietary intake, the differenceswater based on heath risks of excessive sodium intake and

Banerjee, Victoria; Dankiewicz, Cheryl

2013-01-01T23:59:59.000Z

188

Sodium Sulfur (NaS) Battery Research in Korea: Part II ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The activities of sodium sulfur (NaS) battery research in Korea ... The presentation was focused on the development of tubular NaS batteries ...

189

Remedial Action Certification Docket - Sodium Reactor Experiment (SRE)  

Office of Legacy Management (LM)

c~-?i-- c~-?i-- I ,3-l Remedial Action Certification Docket - Sodium Reactor Experiment (SRE) .Complex and the Hot Cave Facility (Bldg. 003), Santa Susana ,Fie!d Laboratory, Chatsworth, California ..:'..~::Yerlette Gatl in, MA-232 I am attaching for entry into the Public Document Room, one copy of the N -23 subject documentat ion. These documents are the backup data for the certification that the facilfties are radiologically acceptable for b- unrestricted use as noted in the certification statement published in the &aney Federal Register. Inasmuch as the certification for unrestricted use is 9/2(/85 being published in the Federal Register, it is prudent that the attached documentation also be available to the public. These documents should be retained In accordance with DOE Order 1324.2--disposal schedule 25.

190

Feasibility Study for Vitrification of Sodium-Bearing Waste  

Science Conference Proceedings (OSTI)

Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated under a Settlement Agreement between the Department of Energy and the State of Idaho. One of the requirements of the Settlement Agreement is the complete calcination (i.e., treatment) of all SBW by December 31, 2012. One of the proposed options for treatment of SBW is vitrification. This study will examine the viability of SBW vitrification. This study describes the process and facilities to treat the SBW, from beginning waste input from INTEC Tank Farm to the final waste forms. Schedules and cost estimates for construction and operation of a Vitrification Facility are included. The study includes a facility layout with drawings, process description and flow diagrams, and preliminary equipment requirements and layouts.

J. J. Quigley; B. D. Raivo; S. O. Bates; S. M. Berry; D. N. Nishioka; P. J. Bunnell

2000-09-01T23:59:59.000Z

191

THE SODIUM GRAPHITE REACTOR POWER PLANT FOR CPPD  

SciTech Connect

The plant arrangement, component design, and the functions of various systems are described and illustrated. Relative estimated costs of the systems and major components are indicated. The reactor core is designed around requiremouts for 254 thermal megawatts, 950 deg F maximum sodium temperature, stainless steel clad graphite moderator blocks, and low enrichment (0.015 to 0.04 U/sup 235/) uranium fuel elements. The fuel cycle is described for the possible fuel elements. The fuel cost factors are discussed. Burn-up limitations encountered for metallic fuel in the SGR temperature range indicate UO/sub 2/ the more desirable choice. The estimated cost of electrical energy associated with the UO/sub 2/ fuel is given. (auth)

Olson, R.L.; Gerber, R.C.; Gordon, R.B.; Ross-Clunis, H.A.; Stolz, J.F.

1958-10-31T23:59:59.000Z

192

Sodium-Bearing Waste Treatment Alternatives Implementation Study  

SciTech Connect

The purpose of this document is to discuss issues related to the implementation of each of the five down-selected INEEL/INTEC radioactive liquid waste (sodium-bearing waste - SBW) treatment alternatives and summarize information in three main areas of concern: process/technical, environmental permitting, and schedule. Major implementation options for each treatment alternative are also identified and briefly discussed. This report may touch upon, but purposely does not address in detail, issues that are programmatic in nature. Examples of these include how the SBW will be classified with respect to the Nuclear Waste Policy Act (NWPA), status of Waste Isolation Pilot Plant (WIPP) permits and waste storage availability, available funding for implementation, stakeholder issues, and State of Idaho Settlement Agreement milestones. It is assumed in this report that the SBW would be classified as a transuranic (TRU) waste suitable for disposal at WIPP, located in New Mexico, after appropriate treatment to meet transportation requirements and waste acceptance criteria (WAC).

Charles M. Barnes; James B. Bosley; Clifford W. Olsen

2004-07-01T23:59:59.000Z

193

Sodium fast reactor fuels and materials : research needs.  

SciTech Connect

An expert panel was assembled to identify gaps in fuels and materials research prior to licensing sodium cooled fast reactor (SFR) design. The expert panel considered both metal and oxide fuels, various cladding and duct materials, structural materials, fuel performance codes, fabrication capability and records, and transient behavior of fuel types. A methodology was developed to rate the relative importance of phenomena and properties both as to importance to a regulatory body and the maturity of the technology base. The technology base for fuels and cladding was divided into three regimes: information of high maturity under conservative operating conditions, information of low maturity under more aggressive operating conditions, and future design expectations where meager data exist.

Denman, Matthew R.; Porter, Douglas (Idaho National Laboratory, Idaho Falls, ID); Wright, Art (Argonne National Laboratory Argonne, IL); Lambert, John (Argonne National Laboratory Argonne, IL); Hayes, Steven (Idaho National Laboratory, Idaho Falls, ID); Natesan, Ken (Argonne National Laboratory Argonne, IL); Ott, Larry J. (Oak Ridge National Laboratory, Oak Ridge, TN); Garner, Frank (Radiation Effects Consulting. Richland, WA); Walters, Leon (Advanced Reactor Concepts, Idaho Falls, ID); Yacout, Abdellatif (Argonne National Laboratory Argonne, IL)

2011-09-01T23:59:59.000Z

194

Sodium sulfur battery design for the ETX-II  

Science Conference Proceedings (OSTI)

Chloride Silent Power Limited (CSPL) has developed a number of laboratory and field test batteries in support of its sodium sulfur development program. The most demanding of these test batteries is being developed for the Ford ETX-II electric vehicle, under a three year contract from the US Department of Energy. A major milestone of this program is to build and test an Intermediate Deliverable (ID) battery which is a fully representative section of the final battery. This will allow the performance predictions to be evaluated using an operational battery before the final battery is built and delivered. The performance predictions for the battery have been made and are described in this paper. The Intermediate Deliverable Battery, representing one third of the full battery both electrically and thermally, has now been built and preliminary test results are available.

Mangan, M.F.; Leadbetter, A.

1989-01-01T23:59:59.000Z

195

THE SODIUM GRAPHITE REACTOR: TOMMORROW'S POWER PLANT  

SciTech Connect

A description is given of the Advanced Sodium Graphite Reactor Power Plant, including the reactor, heat transfer systems, generatirg plant, control systems, and the economics of producing 256 Mw(e). The safety of this design is due to its unusually low operating pressure, absence of chemically incompatible materials in the core, and excellent stability under atatic and dynamic conditions. The reactor is being constructed at Hallam, Nebraska, at a probable cost of 0 to 0/kw, exclusive of the first core costs. The 151 fuel elements of uranium carbide are enriched to 2.75 at.% U/sup 235/ and clad in stainless steel. The average thermal neutron flux in the fuel is 8 x 10/sup 13/ n/cm/sup 2/sec. (B.O.G.)

Beeley, R.J.; Lowell, E.G.; Polak, H.; Renard, J.

1960-04-25T23:59:59.000Z

196

Diffusion bonding resistant valve development for sodium service  

SciTech Connect

Unanticipated functional failures occurred in valves undergoing containment integrity testing for liquid sodium service. The failures resulted from diffusion bonding of the Stellite 6B valve plug to the Type 316 stainless steel (SS) seat. As a result of these failures, a valve development program was undertaken. A modified valve incorporating a Tribaloy 800 plug showed significant improvement in resistance to diffusion bonding but still failed after long term exposure in a closed position. A second modified valve using Tribaloy 800 in both the valve plug and seat successfully resisted diffusion bonding failure. This paper reports the details of the testing and posttest valve examinations. The results of scanning electron microscopy, dispersive x-ray spectrometry, and metallography provide the characteristics of the valve failures. Limitations of the various valve designs are also discussed.

Crandall, D.L.; Low, J.O.; Chung, D.T.; Loop, R.B.

1984-04-16T23:59:59.000Z

197

Design Considerations for Economically Competitive Sodium Cooled Fast Reactors  

SciTech Connect

The technological viability of sodium cooled fast reactors (SFR) has been established by various experimental and prototype (demonstration) reactors such as EBR-II, FFTF, Phénix, JOYO, BN-600 etc. However, the economic competitiveness of SFR has not been proven yet. The perceived high cost premium of SFRs over LWRs has been the primary impediment to the commercial expansion of SFR technologies. In this paper, cost reduction options are discussed for advanced SFR designs. These include a hybrid loop-pool design to optimize the primary system, multiple reheat and intercooling helium Brayton cycle for the power conversion system and the potential for suppression of intermediate heat transport system. The design options for the fully passive decay heat removal systems are also thoroughly examined. These include direct reactor auxiliary cooling system (DRACS), reactor vessel auxiliary cooling system (RVACS) and the newly proposed pool reactor auxiliary cooling system (PRACS) in the context of the hybrid loop-pool design.

Hongbin Zhang; Haihua Zhao

2009-05-01T23:59:59.000Z

198

Sodium Heat Engine Development Program. Phase 1, Final report  

DOE Green Energy (OSTI)

The Sodium Heat Engine (SHE) is an efficient thermoelectric conversion device which directly generates electricity from a thermally regenerative electrochemical cell that relies on the unique conduction properties of {beta}{double_prime}-alumina solid electrolyte (BASE). Laboratory models of a variety of SHE devices have demonstrated the feasibility and efficiency of the system, engineering development of large prototype devices has been slowed by a series of materials and fabrication problems. Failure of the electrolyte tubes has been a recurring problem and a number of possible causes have been postulated. To address these issues, a two-phase engineering development program was undertaken. This report summarizes the final results of the first phase of the program, which included extensive materials characterization activities, a study of applicable nondestructive evaluation methods, an investigation of possible stress states that would contribute to fracture, and certain operational issues associated with the electromagnetic pumps used in the SHE prototype. Mechanical and microstructural evaluation of commercially obtained BASE tubes revealed that they should be adequate for SHE applications and that sodium exposure produced no appreciable deleterious strength effects. Processing activities to produce a more uniform and smaller grain size for the BASE tubes were completed using isostatic pressing, extrusion, and slip casting. Green tubes were sintered by conventional and microwave plasma methods. Of particular interest is the residual stress state in the BASE tubes, and both analysis and nondestructive evaluation methods were employed to evaluate these stresses. X-ray and neutron diffraction experiments were performed to determine the bulk residual stresses in commercially fabricated BASE tubes; however, tube-to-tube variations and variations among the various methods employed did not allow formulation of a definitive definition of the as-fabricated stress state.

Singh, J.P.; Kupperman, D.S.; Majumdar, S.; Dorris, S.; Gopalsami, N.; Dieckman, S.L.; Jaross, R.A.; Johnson, D.L.; Gregar, J.S.; Poeppel, R.B.; Raptis, A.C.; Valentin, R.A.

1992-01-01T23:59:59.000Z

199

105-DR Large Sodium Fire Facility closure plan. Revision 1  

SciTech Connect

The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, and activities associated with nuclear energy development. The 105-DR Large Sodium Fire Facility (LSFF), which was in operation from about 1972 to 1986, was a research laboratory that occupied the former ventilation supply room on the southwest side of the 105-DR Reactor facility. The LSFF was established to provide a means of investigating fire and safety aspects associated with large sodium or other metal alkali fires in the liquid metal fast breeder reactor (LMFBR) facilities. The 105-DR Reactor facility was designed and built in the 1950`s and is located in the 100-D Area of the Hanford Site. The building housed the 105-DR defense reactor, which was shut down in 1964. The LSFF was initially used only for engineering-scale alkali metal reaction studies. In addition, the Fusion Safety Support Studies program sponsored intermediate-size safety reaction tests in the LSFF with lithium and lithium lead compounds. The facility has also been used to store and treat alkali metal waste, therefore the LSFF is subject to the regulatory requirements for the storage and treatment of dangerous waste. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610. This closure plan presents a description of the facility, the history of waste managed, and the procedures that will be followed to close the LSFF as an Alkali Metal Treatment Facility. No future use of the LSFF is expected.

Not Available

1993-05-01T23:59:59.000Z

200

Quantitative measurement of atomic sodium in the plume of a single burning coal particle  

Science Conference Proceedings (OSTI)

The release of volatile sodium during coal combustion is a significant factor in the fouling and corrosion of heat transfer surfaces within industrial coal-fired boilers. A method for measuring the temporal release of atomic sodium from a single coal particle is described. Laser absorption was used to calibrate laser-induced fluorescence measurements of atomic sodium utilising the sodium D1 line (589.59 nm) in a purpose-designed flat flame environment. The calibration was then applied to planar laser-induced fluorescence measurements of sodium atoms in the plume from a single Victorian brown coal particle (53 mg) suspended within the flat flame. The peak concentration of atomic sodium was approximately 64.1 ppb after 1080.5 s, which appears to correspond to the end of char combustion. To our knowledge this is the first in situ quantitative measurement of the concentration field of atomic sodium in the plume above a burning particle. A simple kinetic model has been used to estimate the rate of sodium decay in the post-flame gases. Comparison of the estimated and measured decay rates showed reasonable agreement. (author)

van Eyk, P.J.; Ashman, P.J.; Alwahabi, Z.T. [Cooperative Research Centre for Clean Power from Lignite, School of Chemical Engineering, The University of Adelaide, South Australia 5005 (Australia); Nathan, G.J. [School of Mechanical Engineering, The University of Adelaide, South Australia 5005 (Australia)

2008-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "nasi sodium silicide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Sodium Chloride Hideout In a Simulated Steam Generator Tube and Tube Support Place Crevice  

Science Conference Proceedings (OSTI)

Localized corrosion of steam generator (SG) tubing in PWRs has been a serious problem that limits the life of this component. Preliminary measurements of sodium chloride hideout in simulated PWR SG crevices have shown that hideout rate increases with heat flux and concentration of sodium chloride in the bulk water.

1998-06-30T23:59:59.000Z

202

TRUEX partitioning from radioactive ICPP sodium bearing waste  

SciTech Connect

The Idaho Chemical Processing Plant (ICPP) located at the Idaho National Engineering Laboratory in Southeast Idaho is currently evaluating several treatment technologies applicable to waste streams generated over several decades of-nuclear fuel reprocessing. Liquid sodium bearing waste (SBW), generated primarily during decontamination activities, is one of the waste streams of interest. The TRansUranic EXtraction (TRUEX) process developed at Argonne National Laboratory is currently being evaluated to separate the actinides from SBW. On a mass basis, the amount of the radioactive species in SBW are low relative to inert matrix components. Thus, the advantage of separations is a dramatic decrease in resulting volumes of high activity waste (HAW) which must be dispositioned. Numerous studies conducted at the ICPP indicate the applicability of the TRUEX process has been demonstrated; however, these studies relied on a simulated SBW surrogate for the real waste. Consequently, a series of batch contacts were performed on samples of radioactive ICPP SBW taken from tank WM-185 to verify that actual waste would behave similarly to the simulated waste. The test results with SBW from tank WM-185 indicate the TRUEX solvent effectively extracts the actinides from the samples of actual waste. Gross alpha radioactivity, attributed predominantly to Pu and Am, was reduced from 3.14E+04 dps/mL to 1.46 dps/mL in three successive batch contacts with fresh TRUEX solvent. This reduction corresponds to a decontamination factor of DF = 20,000 or 99.995% removal of the gross a activity in the feed. The TRUEX solvent also extracted the matrix components Zr, Fe, and Hg to an appreciable extent (D{sub Zr} > 10, D{sub Fe} {approx} 2, D{sub Hg} {approx}6). Iron co-extracted with the actinides can be successfully scrubbed from the organic with 0.2 M HNO{sub 3}. Mercury can be selectively partitioned from the actinides with either sodium carbonate or nitric acid ({ge} 5 M HNO{sub 3}) solutions.

Herbst, R.S.; Brewer, K.N.; Tranter, T.J.; Todd, T.A.

1995-03-01T23:59:59.000Z

203

Research on Active Power Factor Correction of the Electronic Ballast for High-Pressure Sodium Lamps Based on L6563  

Science Conference Proceedings (OSTI)

In the recent years, there has been a growing interest in the design of high-pressure sodium lamp electronic ballast. Two measures are proposed to improve the power factor of high-pressure sodium lamp electronic ballasts from the definition of harmonic ... Keywords: high-pressure sodium lamps, electronic ballast, active power factor correction, L6563

Sun Jing

2010-06-01T23:59:59.000Z

204

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles  

DOE Green Energy (OSTI)

This report examines the shipping regulations that govern the shipment of dangerous goods. Since the elemental sodium contained in both sodium-sulfur and sodium-metal-chloride batteries is classified as a dangerous good, and is listed on both the national and international hazardous materials listings, both national and international regulatory processes are considered in this report The interrelationships as well as the differences between the two processes are highlighted. It is important to note that the transport regulatory processes examined in this report are reviewed within the context of assessing the necessary steps needed to provide for the domestic and international transport of sodium-beta batteries. The need for such an assessment was determined by the Shipping Sub-Working Group (SSWG) of the EV Battery Readiness Working Group (Working Group), created in 1990. The Working Group was created to examine the regulatory issues pertaining to in-vehicle safety, shipping, and recycling of sodium-sulfur batteries, each of which is addressed by a sub-working group. The mission of the SSWG is to establish basic provisions that will ensure the safe and efficient transport of sodium-beta batteries. To support that end, a proposal to the UN Committee of Experts was prepared by the SSWG, with the goal of obtaining a proper shipping name and UN number for sodium-beta batteries and to establish the basic transport requirements for such batteries (see the appendix for the proposal as submitted). It is emphasized that because batteries are large articles containing elemental sodium and, in some cases, sulfur, there is no existing UN entry under which they can be classified and for which modal transport requirements, such as the use of packaging appropriate for such large articles, are provided for. It is for this reason that a specific UN entry for sodium-beta batteries is considered essential.

Hammel, C.J.

1992-09-01T23:59:59.000Z

205

Sodium-bearing Waste Treatment Technology Evaluation Report  

SciTech Connect

Sodium-bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Office’s (NE-ID) and State of Idaho’s top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL has been working over the past several years to identify a treatment technology that meets NE-ID and regulatory treatment requirements, including consideration of stakeholder input. Many studies, including the High-Level Waste and Facilities Disposition Environmental Impact Statement (EIS), have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. This report presents a summary of the applied technology and process design activities performed through February 2004. The SBW issue and the five alternatives are described in Sections 2 and 3, respectively. Details of preliminary process design activities for three of the alternatives (steam reforming, CsIX, and direct evaporation) are presented in three appendices. A recent feasibility study provides the details for calcination. There have been no recent activities performed with regard to vitrification; that section summarizes and references previous work.

Charles M. Barnes; Arlin L. Olson; Dean D. Taylor

2004-05-01T23:59:59.000Z

206

High-temperature sodium nickel chloride battery for electric vehicles  

DOE Green Energy (OSTI)

Although the sodium-nickel chloride cell couple has a high voltage (2.59 V) and a high specific energy (790 Wh/kg), the performance of present incarnations of this battery tend to be limited by their power. Because the nickel chloride electrode dominates the resistance and weight of the cell, research on this cell couple at Argonne National Laboratory (ANL) has been primarily directed toward improving both the specific power and energy of the NiCl{sub 2} electrodes. During the course of these investigations a major breakthrough was achieved in lowering the impedance and increasing the usable capacity through the use of chemical additives and a tailored electrode morphology. This improved Ni/NiCl{sub 2} electrode has excellent performance characteristics, wide-temperature operation and fast recharge capability. Modeling studies done on this electrode indicate that a fully developed Na/NiCl{sub 2} battery based on ANL-single tube and bipolar designs would surpass the mid-term and approach the long-term goals of the US Advanced Battery Consortium.

Prakash, J.; Redey, L.; Nelson, P.A.; Vissers, D.R. [Argonne National Lab., IL (United States). Electrotechnical Technology Program

1996-07-01T23:59:59.000Z

207

EXTENDING SODIUM FAST REACTOR DRIVER FUEL USE TO HIGHER TEMPERATURES  

Science Conference Proceedings (OSTI)

Calculations of potential sodium-cooled fast reactor fuel temperatures were performed to estimate the effects of increasing the outlet temperature of a given fast reactor design by increasing pin power, decreasing assembly flow, or increasing inlet temperature. Based upon experience in the U.S., both metal and mixed oxide (MOX) fuel types are discussed in terms of potential performance effects created by the increased operating temperatures. Assembly outlet temperatures of 600, 650 and 700 °C were used as goal temperatures. Fuel/cladding chemical interaction (FCCI) and fuel melting, as well as challenges to the mechanical integrity of the cladding material, were identified as the limiting phenomena. For example, starting with a recent 1000 MWth fast reactor design, raising the outlet temperature to 650 °C through pin power increase increased the MOX centerline temperature to more than 3300 °C and the metal fuel peak cladding temperature to more than 700 °C. These exceeded limitations to fuel performance; fuel melting was limiting for MOX and FCCI for metal fuel. Both could be alleviated by design ‘fixes’, such as using a barrier inside the cladding to minimize FCCI in the metal fuel, or using annular fuel in the case of MOX. Both would also require an advanced cladding material with improved stress rupture properties. While some of these are costly, the benefits of having a high-temperature reactor which can support hydrogen production, or other missions requiring high process heat may make the extra costs justified.

Douglas L. Porter

2011-02-01T23:59:59.000Z

208

Process Flow Chart for Immobilizing of Radioactive High Concentration Sodium Hydroxide Product from the Sodium Processing Facility at the BN-350 Nuclear power plant in Aktau, Kazakhstan  

Science Conference Proceedings (OSTI)

This paper describes the results of a joint research investigations carried out by the group of Kazakhstan, British and American specialists in development of a new material for immobilization of radioactive 35% sodium hydroxide solutions from the sodium coolant processing facility of the BN-350 nuclear power plant. The resulting solid matrix product, termed geo-cement stone, is capable of isolating long lived radionuclides from the environment. The physico-mechanical properties of geo-cement stone have been investigated and the flow chart for its production verified in a full scale experiments. (author)

Burkitbayev, M.; Omarova, K.; Tolebayev, T. [Ai-Farabi Kazakh National University, Chemical Faculty, Republic of Kazakhstan (Kazakhstan); Galkin, A. [KATEP Ltd., Republic of Kazakhstan (Kazakhstan); Bachilova, N. [NIISTROMPROEKT Ltd., Republic of Kazakhstan (Kazakhstan); Blynskiy, A. [Nuclear Technology Safety Centre, Republic of Kazakhstan (Kazakhstan); Maev, V. [MAEK-Kazatomprom Ltd., Republic of Kazakhstan (Kazakhstan); Wells, D. [NUKEM Limited- a member of the Freyssinet Group, Winfrith Technology Centre, Dorchester, Dorset (United Kingdom); Herrick, A. [NUKEM Limited- a member of the Freyssinet Group, Caithness (United Kingdom); Michelbacher, J. [Idaho National Laboratory, Idaho Falls (United States)

2008-07-01T23:59:59.000Z

209

Sodium/Phosphorus-Sulfur Cells I. Cell Performance Paul L. Ridgway,  

NLE Websites -- All DOE Office Websites (Extended Search)

Sodium/Phosphorus-Sulfur Cells Sodium/Phosphorus-Sulfur Cells I. Cell Performance Paul L. Ridgway, Frank R. McLarnon, and Elton J. Cairns* Energy and Environment Division, Lawrence Berkeley National Laboratory, and Department of Chemical Engineering, University of California, Berkeley, California 94720, USA ABSTRACT Sodium/°-alumina/phosphorus-sulfur cells utilizing P/S ratios of 0, 0.143, 0.332, and 1.17 at temperatures from 350 to 500°C were studied by measurement of the equilibrium cell voltages at open circuit, and the steady-state cell voltages at current densities up to 70 mA/cm2. States of charge, represented by sodium atom fraction in the P-S electrode, ranged from 0 to 0.4. Open-circuit voltages up to 2.65 V were measured. Theoretical specific energies up to 825 Wh/kg were cal-

210

Process for sodium sulfide/ferrous sulfate treatment of hexavalent chromium and other heavy metals  

SciTech Connect

433 of 9384 ) United States Patent 5,000,859 Suciu ,   et al. March 19, 1991 Process for sodium sulfide/ferrous sulfate treatment of hexavalent chromium and other heavy metals

Suciu, Dan F. (Idaho Falls, ID); Wikoff, Penny M. (Idaho Falls, ID); Beller, John M. (Idaho Falls, ID); Carpenter, Charles J. (Lynn Haven, FL)

1991-01-01T23:59:59.000Z

211

Applying risk informed methodologies to improve the economics of sodium-cooled fast reactors  

E-Print Network (OSTI)

In order to support the increasing demand for clean sustainable electricity production and for nuclear waste management, the Sodium-Cooled Fast Reactor (SFR) is being developed. The main drawback has been its high capital ...

Nitta, Christopher C

2010-01-01T23:59:59.000Z

212

Development of a model to predict flow oscillations in low-flow sodium boiling  

E-Print Network (OSTI)

An experimental and analytical program has been carried out in order to better understand the cause and effect of flow oscillations in boiling sodium systems. These oscillations have been noted in previous experiments with ...

Levin, Alan Edward

1980-01-01T23:59:59.000Z

213

Metal corrosion in a supercritical carbon dioxide - liquid sodium power cycle.  

Science Conference Proceedings (OSTI)

A liquid sodium cooled fast reactor coupled to a supercritical carbon dioxide Brayton power cycle is a promising combination for the next generation nuclear power production process. For optimum efficiency, a microchannel heat exchanger, constructed by diffusion bonding, can be used for heat transfer from the liquid sodium reactor coolant to the supercritical carbon dioxide. In this work, we have reviewed the literature on corrosion of metals in liquid sodium and carbon dioxide. The main conclusions are (1) pure, dry CO{sub 2} is virtually inert but can be highly corrosive in the presence of even ppm concentrations of water, (2) carburization and decarburization are very significant mechanism for corrosion in liquid sodium especially at high temperature and the mechanism is not well understood, and (3) very little information could be located on corrosion of diffusion bonded metals. Significantly more research is needed in all of these areas.

Moore, Robert Charles; Conboy, Thomas M.

2012-02-01T23:59:59.000Z

214

Ultracold molecules from ultracold atoms : interactions in sodium and lithium gas  

E-Print Network (OSTI)

The thesis presents results from experiments in which ultracold Sodium-6 and Lithium-23 atomic gases were studied near a Feshbach resonance at high magnetic fields. The enhanced interactions between atoms in the presence ...

Christensen, Caleb A

2011-01-01T23:59:59.000Z

215

An Evaluation of the Annular Fuel and Bottle-Shaped Fuel Concepts for Sodium Fast Reactors  

E-Print Network (OSTI)

Two innovative fuel concepts, the internally and externally cooled annular fuel and the bottle-shaped fuel, were investigated with the goal of increasing the power density and reduce the pressure drop in the sodium-cooled ...

Memmott, Matthew

216

Thermal-hydraulic analysis of innovative fuel configurations for the sodium fast reactor  

E-Print Network (OSTI)

The sodium fast reactor (SFR) is currently being reconsidered as an instrument for actinide management throughout the world, thanks in part to international programs such as the Generation-IV and especially the Global ...

Memmott, Matthew J

2009-01-01T23:59:59.000Z

217

Tools for supercritical carbon dioxide cycle analysis and the cycle's applicability to sodium fast reactors  

E-Print Network (OSTI)

The Sodium-Cooled Fast Reactor (SFR) and the Supercritical Carbon Dioxide (S-C0?) Recompression cycle are two technologies that have the potential to impact the power generation landscape of the future. In order for their ...

Ludington, Alexander R. (Alexander Rockwell)

2009-01-01T23:59:59.000Z

218

Materials Issues in High Temperature Ultrasonic Transducers for Under-Sodium Viewing  

Science Conference Proceedings (OSTI)

Liquid sodium is used as the coolant in some fast spectrum nuclear reactors. This material is optically opaque. To facilitate operations and maintenance activities, an ultrasonic under-sodium viewing system has been developed. In the USA, the technology was successfully demonstrated in the 1970's, and, over the intervening 30+ years the capability was lost. This paper reports materials challenges encountered in developing both single-element and linear phased array 2 MHz transducers that must operate at temperatures up to 260C. The critical issues are fundamentally material selection: the ability of a transducer to be immersed into liquid sodium and function at 260C, to achieve wetting and transmission of ultrasound into the sodium, and to be able to be removed and re-used.

Bond, Leonard J.; Griffin, Jeffrey W.; Posakony, Gerald J.; Harris, Robert V.; Baldwin, David L.

2012-06-12T23:59:59.000Z

219

Sol-Gel Synthesis of Bio-Active Nanoporous Sodium Zirconate ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Bio-active sodium substituted zirconium was coated by sol-gel method ... Templates Facilitates Neural Stem Cell Adhesion, Proliferation and Differentiation ... Improving the Resistance of Ceramic Surfaces to Biofilm Formation.

220

Solar test of an integrated sodium reflux heat pipe receiver/reactor for thermochemical energy transport  

DOE Green Energy (OSTI)

A chemical reactor for carbon dioxide reforming of methane was integrated into a sodium reflux heat pipe receiver and tested in the solar furnace of the Weizmann Institute of Science, Rehovot, Israel. The receiver/reactor was a heat pipe with seven tubes inside an evacuated metal box containing sodium. The catalyst, 0.5 wt% Rh on alumina, filled two of the tubes with the front surface of the box serving as the solar absorber. In operation, concentrated sunlight heated the front plate and vaporized sodium from a wire mesh wick attached to other side. Sodium vapor condensed on the reactor tubes, releasing latent heat and returning to the wick by gravity. The receiver system performed satisfactorily in many tests under varying flow conditions. The maximum power absorbed was 7.5 kW at temperatures above 800C. The feasibility of operating a heat pipe receiver/reactor under solar conditions was proven, and the advantages of reflux devices confirmed.

Diver, R.B.; Fish, J.D. (Sandia National Labs., Albuquerque, NM (United States)); Levitan, R.; Levy, M.; Meirovitch, E.; Rosin, H. (Weizmann Inst. of Science, Rehovot (Israel)); Paripatyadar, S.A.; Richardson, J.T. (Univ. of Houston, TX (United States))

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nasi sodium silicide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Application of the Technology Neutral Framework to Sodium-­Cooled Fast Reactors  

E-Print Network (OSTI)

Sodium cooled fast reactors (SFRs) are considered as a novel example to exercise the Technology Neutral Framework (TNF) proposed in NUREG-1860. One reason for considering SFRs is that they have historically had a licensing ...

Johnson, Brian C.

222

Application of the technology neutral framework to sodium cooled fast reactors  

E-Print Network (OSTI)

Sodium cooled fast reactors (SFRs) are considered as a novel example to exercise the Technology Neutral Framework (TNF) proposed in NUREG- 1860. One reason for considering SFRs is that they have historically had a licensing ...

Johnson, Brian C. (Brian Carl)

2010-01-01T23:59:59.000Z

223

Glass Formulation Development for INEEL Sodium-Bearing Waste  

SciTech Connect

For about four decades, radioactive wastes have been collected and calcined from nuclear fuels reprocessing at the Idaho Nuclear Technology and Engineering Center (INTEC), formerly Idaho Chemical Processing Plant (ICPP). Over this time span, secondary radioactive wastes have also been collected and stored as liquid from decontamination, laboratory activities, and fuel-storage activities. These liquid wastes are collectively called sodium-bearing wastes (SBW). About 5.7 million liters of these wastes are temporarily stored in stainless steel tanks at the Idaho National Engineering and Environmental Laboratory (INEEL). Vitrification is being considered as an immobilization step for SBW with a number of treatment and disposal options. A systematic study was undertaken to develop a glass composition to demonstrate direct vitrification of INEEL's SBW. The objectives of this study were to show the feasibility of SBW vitrification, not a development of an optimum formulation. The waste composition is relatively high in sodium, aluminum, and sulfur. A specific composition and glass property restrictions, discussed in Section 2, were used as a basis for the development. Calculations based on first-order expansions of selected glass properties in composition and some general tenets of glass chemistry led to an additive (fit) composition (68.69 mass % SiO{sub 2}, 14.26 mass% B{sub 2}O{sub 3}, 11.31 mass% Fe{sub 2}O{sub 3}, 3.08 mass% TiO{sub 2}, and 2.67 mass % Li{sub 2}O) that meets all property restrictions when melted with 35 mass % of SBW on an oxide basis, The glass was prepared using oxides, carbonates, and boric acid and tested to confirm the acceptability of its properties. Glass was then made using waste simulant at three facilities, and limited testing was performed to test and optimize processing-related properties and confirm results of glass property testing. The measured glass properties are given in Section 4. The viscosity at 1150 C, 5 Pa{center_dot}s, is nearly ideal for waste-glass processing in a standard liquid-fed joule-heated melter. The normalized elemental releases by 7-day PCT are all well below 1 g/m{sup 2}, which is a very conservative set point used in this study. The T{sub L}, ignoring sulfate formation, is less than the 1050 C limit. Based on these observations and the reasonable waste loading of 35 mass 0/0, the SBW glass was a prime candidate for further testing. Sulfate salt segregation was observed in all test melts formed from oxidized carbonate precursors. Melts fabricated using SBW simulants suggest that the sulfate-salt segregation seen in oxide and carbonate melts was much less of a problem. The cause for the difference is likely H{sub 2}SO{sub 4} fuming during the boil-down stage of wet-slurry processing. Additionally, some crucible tests with SBW simulant were conducted at higher temperatures (1250 C), which could increase the volatility of sulfate salts. The fate of sulfate during the melting process is still uncertain and should be the topic of future studies. The properties of the simulant glass confirmed those of the oxide and carbonate glass. Corrosion tests on Inconel 690 electrodes and K-3 refractory blocks conducted at INEEL suggest that the glass is not excessively corrosive. Based on the results of this study, the authors recommend that a glass made of 35% SBW simulant (on a mass oxide and halide basis) and 65% of the additive mix (either filled or raw chemical) be used in demonstrating the direct vitrification of INEEL SBW. It is further recommended that a study be conducted to determine the fate of sulfate during glass processing and the tolerance of the chosen melter technology to sulfate salt segregation and corrosivity of the melt.

J.D. Vienna; M.J. Schweiger; D.E. Smith; H.D. Smith; J.V. Crum; D.K. Peeler; I.A. Reamer; C.A. Musick; R.D. Tillotson

1999-08-03T23:59:59.000Z

224

Glass Formulation Development for INEEL Sodium-Bearing Waste  

SciTech Connect

For about four decades, radioactive wastes have been collected and calcined from nuclear fuels reprocessing at the Idaho Nuclear Technology and Engineering Center (INTEC), formerly Idaho Chemical Processing Plant (ICPP). Over this time span, secondary radioactive wastes have also been collected and stored as liquid from decontamination, laboratory activities, and fuel-storage activities. These liquid wastes are collectively called sodium-bearing wastes (SBW). About 5.7 million liters of these wastes are temporarily stored in stainless steel tanks at the Idaho National Engineering and Environmental Laboratory (INEEL). Vitrification is being considered as an immobilization step for SBW with a number of treatment and disposal options. A systematic study was undertaken to develop a glass composition to demonstrate direct vitrification of INEEL's SBW. The objectives of this study were to show the feasibility of SBW vitrification, not a development of an optimum formulation. The waste composition is relatively high in sodium, aluminum, and sulfur. A specific composition and glass property restrictions, discussed in Section 2, were used as a basis for the development. Calculations based on first-order expansions of selected glass properties in composition and some general tenets of glass chemistry led to an additive (fit) composition (68.69 mass % SiO{sub 2}, 14.26 mass% B{sub 2}O{sub 3}, 11.31 mass% Fe{sub 2}O{sub 3}, 3.08 mass% TiO{sub 2}, and 2.67 mass % Li{sub 2}O) that meets all property restrictions when melted with 35 mass % of SBW on an oxide basis, The glass was prepared using oxides, carbonates, and boric acid and tested to confirm the acceptability of its properties. Glass was then made using waste simulant at three facilities, and limited testing was performed to test and optimize processing-related properties and confirm results of glass property testing. The measured glass properties are given in Section 4. The viscosity at 1150 C, 5 Pa{center_dot}s, is nearly ideal for waste-glass processing in a standard liquid-fed joule-heated melter. The normalized elemental releases by 7-day PCT are all well below 1 g/m{sup 2}, which is a very conservative set point used in this study. The T{sub L}, ignoring sulfate formation, is less than the 1050 C limit. Based on these observations and the reasonable waste loading of 35 mass 0/0, the SBW glass was a prime candidate for further testing. Sulfate salt segregation was observed in all test melts formed from oxidized carbonate precursors. Melts fabricated using SBW simulants suggest that the sulfate-salt segregation seen in oxide and carbonate melts was much less of a problem. The cause for the difference is likely H{sub 2}SO{sub 4} fuming during the boil-down stage of wet-slurry processing. Additionally, some crucible tests with SBW simulant were conducted at higher temperatures (1250 C), which could increase the volatility of sulfate salts. The fate of sulfate during the melting process is still uncertain and should be the topic of future studies. The properties of the simulant glass confirmed those of the oxide and carbonate glass. Corrosion tests on Inconel 690 electrodes and K-3 refractory blocks conducted at INEEL suggest that the glass is not excessively corrosive. Based on the results of this study, the authors recommend that a glass made of 35% SBW simulant (on a mass oxide and halide basis) and 65% of the additive mix (either filled or raw chemical) be used in demonstrating the direct vitrification of INEEL SBW. It is further recommended that a study be conducted to determine the fate of sulfate during glass processing and the tolerance of the chosen melter technology to sulfate salt segregation and corrosivity of the melt.

J.D. Vienna; M.J. Schweiger; D.E. Smith; H.D. Smith; J.V. Crum; D.K. Peeler; I.A. Reamer; C.A. Musick; R.D. Tillotson

1999-08-03T23:59:59.000Z

225

A Novel Low-Cost Sodium-Zinc Chloride Battery  

Science Conference Proceedings (OSTI)

The sodium-metal halide (ZEBRA) battery has been considered as one of the most attractive energy storage systems for stationary and transportation applications. Even though Na-NiCl2 battery has been widely investigated, there is still a need to develop a more economical system to make this technology more attractive for commercialization. In the present work, a novel low-cost Na-ZnCl2 battery with a thin planar ??-Al2O3 solid electrolyte (BASE) was proposed, and its electrochemical reactions and battery performance were investigated. Compared to the Na-NiCl2 chemistry, the ZnCl2-based chemistry was more complicated, in which multiple electrochemical reactions including liquid-phase formation occurred at temperatures above 253°C. During the first stage of charge, NaCl reacted with Zn to form Na in the anode and Na2ZnCl4 in the cathode. Once all the residual NaCl was consumed, further charging led to the formation of a NaCl-ZnCl2 liquid phase. At the end of charge, the liquid phase reacted with Zn to produce solid ZnCl2. To identify the effects of liquid-phase formation on electrochemical performance, button cells were assembled and tested at 280°C and 240°C. At 280°C where the liquid phase formed during cycling, cells revealed quite stable cyclability. On the other hand, more rapid increase in polarization was observed at 240°C where only solid-state electrochemical reactions occurred. SEM analysis indicated that the stable performance at 280°C was due to the suppressed growth of Zn and NaCl particles, which were generated from the liquid phase during discharge of each cycle.

Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

2013-02-28T23:59:59.000Z

226

Oxygen-hydrogen meter assembly for use in remote sodium sampling systems  

SciTech Connect

An assembly of an electrolytic oxygen meter and a diffusion type hydrogen meter was designed to fit into the Multipurpose Sampler hardware already installed and operating on the four FFTF sodium systems. One of the key elements in this assembly is a ceramic-metal sealed oxygen sensor which allows use of a metal tube to extend the 51 cm (20 in.) between the sampler top and the flowing sodium region.

Barton, G.B.; Bohringer, A.P.; Yount, J.A.

1980-02-01T23:59:59.000Z

227

REDUCTION OF PLUTONIUM TO Pu$sup +3$ BY SODIUM DITHIONITE IN POTASSIUM CARBONATE  

DOE Patents (OSTI)

Plutonium values are reduced in an alkaline aqueous medlum to the trlvalent state by means of sodium dlthionite. Plutonlum values are also separated from normally assoclated contaminants by metathesizing a lanthanum fluoride carrier precipitate containing plutonium with a hydroxide solution, performing the metathesis in the presence of about 0.2 M sodium dithionite at a temperature of between 40 and 90 icient laborato C.

Miller, D.R.; Hoekstra, H.R.

1958-12-16T23:59:59.000Z

228

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts  

SciTech Connect

The purpose of this research involving collaboration between Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) is to explore new approaches to the separation of sodium hydroxide, sodium nitrate, and other sodium salts from high-level alkaline tank waste. The principal potential benefit is a major reduction in disposed waste volume, obviating the building of expensive new waste tanks and reducing the costs of vitrification. Principles of ion recognition are being researched toward discovery of liquid-liquid extraction systems that selectively separate sodium hydroxide and sodium nitrate from other waste components. The successful concept of pseudo hydroxide extraction using fluorinated alcohols and phenols is being developed at ORNL and PNNL toward a greater understanding of the controlling equilibria, role of solvation, and of synergistic effects involving crown ethers. Synthesis efforts are being directed toward enhanced sodium binding by crown ethers, both neutral and proton-ionizable. Studies with real tank waste at PNNL will provide feedback toward solvent compositions that have promising properties.

Moyer, Bruce A.; Bonnesen, Peter V.; Custelcean, Radu; Delmau, Laetitia H.; Engle, Nancy L.; Kang, Hyun-Ah; Keever, Tamara J.; Marchand, Alan P.; Gadthula, Srinivas; Gore, Vinayak K.; Huang, Zilin; Sivappa, Rasapalli; Tirunahari, Pavan K.; Levitskaia, Tatiana G.; Lumetta, Gregg J.

2005-09-26T23:59:59.000Z

229

Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts  

SciTech Connect

The purpose of this research involving collaboration between Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) is to explore new approaches to the separation of sodium hydroxide, sodium nitrate, and other sodium salts from high-level alkaline tank waste. The principal potential benefit is a major reduction in disposed waste volume, obviating the building of expensive new waste tanks and reducing the costs of low-activity waste immobilization. Principles of ion recognition are being researched toward discovery of liquid-liquid extraction systems that selectively separate sodium hydroxide and sodium nitrate from other waste components. The successful concept of pseudohydroxide extraction using fluorinated alcohols and phenols is being developed at ORNL and PNNL toward a greater understanding of the controlling equilibria, role of solvation, and of synergistic effects involving crown ethers. Synthesis efforts are being directed toward enhanced sodium binding by crown ethers, both neutral and proton-ionizable. Studies with real tank waste at PNNL will provide feedback toward solvent compositions that have promising properties.

Levitskaia, Tatiana G.; Lumetta, Gregg J.; Moyer, Bruce A.; Bonnesen, Peter V.

2005-06-01T23:59:59.000Z

230

An evaluation of neutralization for processing sodium-bearing liquid waste  

SciTech Connect

This report addresses an alternative concept for potentially managing the sodium-bearing liquid waste generated at the Idaho Chemical Processing Plant from the current method of calcining a blend of sodium waste and high-level liquid waste. The concept is based on removing the radioactive components from sodium-bearing waste by neutralization and grouting the resulting low-level waste for on-site near-surface disposal. Solidifying the sodium waste as a remote-handled transuranic waste is not considered to be practical because of excessive costs and inability to dispose of the waste in a timely fashion. Although neutralization can remove most radioactive components to provide feed for a solidified low-level waste, and can reduce liquid inventories four to nine years more rapidly than the current practice of blending sodium-bearing liquid waste with first-cycle raffinite, the alternative will require major new facilities and will generate large volumes of low-level waste. Additional facility and operating costs are estimated to be at least $500 million above the current practice of blending and calcining. On-site, low-level waste disposal may be technically difficult and conflict which national and state policies. Therefore, it is recommended that the current practice of calcining a blend of sodium-bearing liquid waste and high-level liquid waste be continued to minimize overall cost and process complexities. 17 refs., 4 figs., 16 tabs.

Chipman, N.A.; Engelgau, G.O.; Berreth, J.R.

1989-01-01T23:59:59.000Z

231

An Innovative Hybrid Loop-Pool Design for Sodium Cooled Fast Reactor  

SciTech Connect

The existing sodium cooled fast reactors (SFR) have two types of designs – loop type and pool type. In the loop type design, such as JOYO (Japan) [1] and MONJU (Japan), the primary coolant is circulated through intermediate heat exchangers (IHX) external to the reactor tank. The major advantages of loop design include compactness and easy maintenance. The disadvantage is higher possibility of sodium leakage. In the pool type design such as EBR-II (USA), BN-600M(Russia), Superphénix (France) and European Fast Reactor [2], the reactor core, primary pumps, IHXs and direct reactor auxiliary cooling system (DRACS) heat exchangers (DHX) all are immersed in a pool of sodium coolant within the reactor vessel, making a loss of primary coolant extremely unlikely. However, the pool type design makes primary system large. In the latest ANL’s Advanced Burner Test Reactor (ABTR) design [3], the primary system is configured in a pool-type arrangement. The hot sodium at core outlet temperature in hot pool is separated from the cold sodium at core inlet temperature in cold pool by a single integrated structure called Redan. Redan provides the exchange of the hot sodium from hot pool to cold pool through IHXs. The IHXs were chosen as the traditional tube-shell design. This type of IHXs is large in size and hence large reactor vessel is needed.

Haihua Zhao; Hongbin Zhang

2007-11-01T23:59:59.000Z

232

Solar-thermal Water Splitting Using the Sodium Manganese Oxide Process & Preliminary H2A Analysis  

DOE Green Energy (OSTI)

There are three primary reactions in the sodium manganese oxide high temperature water splitting cycle. In the first reaction, Mn2O3 is decomposed to MnO at 1,500°C and 50 psig. This reaction occurs in a high temperature solar reactor and has a heat of reaction of 173,212 J/mol. Hydrogen is produced in the next step of this cycle. This step occurs at 700°C and 1 atm in the presence of sodium hydroxide. Finally, water is added in the hydrolysis step, which removes NaOH and regenerates the original reactant, Mn2O3. The high temperature solar�driven step for decomposing Mn2O3 to MnO can be carried out to high conversion without major complication in an inert environment. The second step to produce H2 in the presence of sodium hydroxide is also straightforward and can be completed. The third step, the low temperature step to recover the sodium hydroxide is the most difficult. The amount of energy required to essentially distill water to recover sodium hydroxide is prohibitive and too costly. Methods must be found for lower cost recovery. This report provides information on the use of ZnO as an additive to improve the recovery of sodium hydroxide.

Todd M. Francis, Paul R. Lichty, Christopher Perkins, Melinda Tucker, Peter B. Kreider, Hans H. Funke, Allan Lewandowski, and Alan W. Weimer

2012-10-24T23:59:59.000Z

233

Sustained Recycle in Light Water and Sodium-Cooled Reactors  

Science Conference Proceedings (OSTI)

From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

Steven J. Piet; Samuel E. Bays; Michael A. Pope; Gilles J. Youinou

2010-11-01T23:59:59.000Z

234

SNAKE Sodium S-CO2 Interactions Experiment - Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

SNAKE Sodium S-CO2 Interactions Experiment SNAKE Sodium S-CO2 Interactions Experiment Capabilities Engineering Experimentation Reactor Safety Testing and Analysis Overview Nuclear Reactor Severe Accident Experiments MAX NSTF SNAKE Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr SNAKE Sodium S-CO2 Interactions Experiment 1 2 The supercritical carbon dioxide (S-CO2) Brayton cycle, coupled with a Sodium-Cooled Fast Reactor (SFR), has been identified as a new and innovative energy conversion technology that could contribute to improving the economics of advanced nuclear energy. For these reactors, a new generation of compact, highly-efficient heat exchangers (HXs) will be employed that show great promise in improving the safety and cost of SFRs; however, small HX leaks could still occur. SNAKE is designed to study S-CO2 leakage into sodium.

235

Aerosol behavior during sodium spray fires and comparison with computer codes. [LMFBR  

SciTech Connect

The results of sodium spray fires in air in the 850-m/sup 3/ CSTF vessel are discussed. During these tests, sodium at 600/sup 0/C was sprayed downward through commercial nozzles located 16 m above the floor. Test AB3 released 48 kg of sodium spray in 140 seconds with 670-..mu..m MMD drop size and produced a maximum pressure increase of 0.041 MPa and 30 g/m/sup 3/ of airborne sodium compounds. Test NT-1 sprayed 82 kg of sodium at 320 ..mu..m MMD drop size over 4.7 hours. In both tests, large stable temperature gradients, not predicated by pre-test SPRAY computer code calculations, were observed. Also, post-test estimations of pressure and aerosol concentration made using SPRAY and HAA-3B codes exceeded actual values measured. Thus, the codes conservatively over-predicted the aerosol leakage potential. The experimental data and the SPRAY and HAA-3B code calculations are compared and discussed.

McCormack, J.D.; Hilliard, R.K.; Postma, A.K.; Owen, R.K.

1979-07-01T23:59:59.000Z

236

Development of the sodium/sulfur battery technology for utility applications  

SciTech Connect

The US Department of Energy is sponsoring the development of battery energy storage systems for electric utilities. An important part of this DOE program is the engineering of the battery subsystem. Because lower costs are possible and less space is required compared with conventional battery technologies, two advanced battery systems are being developed: sodium/sulfur and zinc/bromine. A brief description of the development approach being followed along with the current status of the sodium/sulfur technology is described in this paper. Of immediate relevance, a factory integrated modular sodium/sulfur system has been designed that incorporates many of the advantages of this technology. Each module (designated as NAS-P{sub AC}) combines a 600-kWh sodium/sulfur battery, a 300 kW power converter and a control system. In addition to the potential for low life-cycle cost, other specific benefits include excellent portability and an installed system-level footprint that is about 20% of an equivalent system using lead-acid batteries. The sodium/sulfur battery is designed to deliver its rated energy for 1500 cycles or 5 years of maintenance-free operation.

Braithwaite, J.W. [Sandia National Labs., Albuquerque, NM (United States); Koenig, A.A. [Silent Power, Inc., Wayne, PA (United States)

1993-08-01T23:59:59.000Z

237

The Effects of Temperature on the Electrochemical Performance of Sodium-Nickel Chloride Batteries  

Science Conference Proceedings (OSTI)

The sodium-nickel chloride (ZEBRA) battery is typically fabricated with a thick tubular ?"-alumina solid electrolyte (BASE) and operated at relatively high temperatures (? 300ºC) to achieve adequate electrochemical performance. In the present work, a planar-type sodium-nickel chloride battery possessing a thin BASE (~600 ?m thick) was tested in order to evaluate the feasibility of the battery operation at low temperatures (?200°C). Electrochemical test results revealed that the battery was able to be cycled at C/3 rate at as low as 175°C despite the higher cell polarization at the reduced temperature. Overall, low operating temperature resulted in a considerable improvement in the stability of cell performance. Cell degradation was negligible at 175°C, while 55% increase in end-of-charge polarization was observed at 280°C after 60 cycles. SEM analysis indicated that the performance degradation at higher temperatures was related to the particle growth of both nickel and sodium chloride in the cathode. The cells tested at lower temperatures (e.g., 175 and 200°C), however, exhibited a sharp drop in cell voltage at the end of discharge due to the diffusion limitation, possibly caused by the limited ionic conductivity of NaAlCl4 melt or the poor wettability of sodium on the BASE. Therefore, improvements in the ionic conductivity of a secondary electrolyte and sodium wetting are desirable to further enhance the battery performance at low temperatures.

Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

2012-10-01T23:59:59.000Z

238

Experimental and Analytical Simulation of MFCI (Molten Fuel Coolant Interaction) during CDA (Core Disruptive Accident) in Sodium Cooled Fast Reactor.  

E-Print Network (OSTI)

??With increasing demand for understanding Severe Accident Scenario in Sodium Cooled Fast Reactors, there is an urgent need of enhancing numerical and experimental simulation techniques.… (more)

Natarajan, Venkataraman

2011-01-01T23:59:59.000Z

239

Quantitative in-situ measurements of sodium release during the combustion of single coal particles using planar laser induced fluorescence.  

E-Print Network (OSTI)

??The release of sodium from low rank coal during combustion is known to be an important factor in the phenomena of fouling and corrosion in… (more)

van Eyk, Philip Joseph

2011-01-01T23:59:59.000Z

240

ESS 2012 Peer Review - Sodium Intercalation Battery for Stationary Storage - David Ofer, Tiax  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sodium Intercalation Battery for Sodium Intercalation Battery for Stationary Storage Energy Storage Systems Program (ESS) Peer Review and Update Meeting 2012 David Ofer Ofer.david@tiaxllc.com Washington DC, September 27, 2012 Sodium Intercalation Battery for Stationary Storage Background and Purpose 2 Large-scale stationary energy storage for integration with renewables and for off-peak energy capture is a new application requiring new rechargeable batteries. * New combination of requirements - Long cycle life under deep cycling use profile - High cycling efficiency - Moderate rate capability - Very low cost - No requirement for particularly high specific energy or energy density * TIAX is developing a novel Na-ion battery - Leverages teachings of Li-ion technology - Targets novel low-cost chemistry and cell design

Note: This page contains sample records for the topic "nasi sodium silicide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Cost Transfers at the Department's Sodium Bearing Waste Treatment Facility Construction Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Audit Report Cost Transfers at the Department's Sodium Bearing Waste Treatment Facility Construction Project OAS-M-13-03 August 2013 Department of Energy Washington, DC 20585 August 8, 2013 MEMORANDUM FOR THE SENIOR ADVISOR FOR ENVIRONMENTAL MANAGEMENT FROM: Rickey R. Hass Deputy Inspector General for Audits and Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Cost Transfers at the Department's Sodium Bearing Waste Treatment Facility Construction Project" BACKGROUND In 2005, the Department of Energy (Department) awarded the Idaho Cleanup Project contract to CH2M ♦ WG Idaho, LLC (CWI) to remediate the Idaho National Laboratory. The Sodium

242

Fact Sheet: Sodium-Beta Batteries (October 2012) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Beta Batteries (October 2012) Beta Batteries (October 2012) Fact Sheet: Sodium-Beta Batteries (October 2012) DOE's Energy Storage Program is funding research to further develop a novel planar design for sodium-beta batteries (Na-beta batteries or NBBs) that will improve energy and power densities and simplify manufacturing. This project will demonstrate a planar prototype that operates at <300 degrees Celsius and will scale up the storage capacity to 5 kW, improving on the performance levels being pursued in related battery research projects. Fact Sheet: Sodium-Beta Batteries (October 2012) More Documents & Publications Energy Storage Systems 2012 Peer Review Presentations - Poster Session 1 (Day 1): ARPA-E Projects Energy Storage Systems 2012 Peer Review and Update Meeting Advanced Materials and Devices for Stationary Electrical Energy Storage

243

Sodium arsenite impairs insulin secretion and transcription in pancreatic {beta}-cells  

Science Conference Proceedings (OSTI)

Human studies have shown that chronic inorganic arsenic (iAs) exposure is associated with a high prevalence and incidence of type 2 diabetes. However, the mechanism(s) underlying this effect are not well understood, and practically, there is no information available on the effects of arsenic on pancreatic {beta}-cells functions. Thus, since insulin secreted by the pancreas plays a crucial role in maintaining glucose homeostasis, our aim was to determine if sodium arsenite impairs insulin secretion and mRNA expression in single adult rat pancreatic {beta}-cells. Cells were treated with 0.5, 1, 2, 5 and 10 {mu}M sodium arsenite and incubated for 72 and 144 h. The highest dose tested (10 {mu}M) decreased {beta}-cell viability, by 33% and 83%, respectively. Insulin secretion and mRNA expression were evaluated in the presence of 1 and 5 {mu}M sodium arsenite. Basal insulin secretion, in 5.6 mM glucose, was not significantly affected by 1 or 5 {mu}M treatment for 72 h, but basal secretion was reduced when cells were exposed to 5 {mu}M sodium arsenite for 144 h. On the other hand, insulin secretion in response to 15.6 mM glucose decreased with sodium arsenite in a dose-dependent manner in such a way that cells were no longer able to distinguish between different glucose concentrations. We also showed a significant decrease in insulin mRNA expression of cells exposed to 5 {mu}M sodium arsenite during 72 h. Our data suggest that arsenic may contribute to the development of diabetes mellitus by impairing pancreatic {beta}-cell functions, particularly insulin synthesis and secretion.

Diaz-Villasenor, Andrea [Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (Mexico); Sanchez-Soto, M. Carmen [Department of Biophysics, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, A.P. 70-253 Coyoacan, Mexico D.F. 04510 (Mexico); Cebrian, Mariano E. [Section of Environmental Toxicology, CINVESTAV, IPN, Mexico City (Mexico); Ostrosky-Wegman, Patricia [Department of Genomic Medicine and Environmental Toxicology, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de Mexico (Mexico); Hiriart, Marcia [Department of Biophysics, Instituto de Fisiologia Celular, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, A.P. 70-253 Coyoacan, Mexico D.F. 04510 (Mexico)]. E-mail: mhiriart@ifc.unam.mx

2006-07-01T23:59:59.000Z

244

Repassivation Potential of Alloy 22 in Sodium and Calcium Chloride Brines  

SciTech Connect

A comprehensive matrix of 60 tests was designed to explore the effect of calcium chloride vs. sodium chloride and the ratio R of nitrate concentration over chloride concentration on the repassivation potential of Alloy 22. Tests were conducted using the cyclic potentiodynamic polarization (CPP) technique at 75 C and at 90 C. Results show that at a ratio R of 0.18 and higher nitrate was able to inhibit the crevice corrosion in Alloy 22 induced by chloride. Current results fail to show in a consistent way a different effect on the repassivation potential of Alloy 22 for calcium chloride solutions than for sodium chloride solutions.

Rebak, R B; Ilevbare, G O; Carranza, R M

2007-08-11T23:59:59.000Z

245

Generation of a Magnetic Field by Dynamo Action in a Turbulent Flow of Liquid Sodium  

SciTech Connect

We report the observation of dynamo action in the von Karman sodium experiment, i.e., the generation of a magnetic field by a strongly turbulent swirling flow of liquid sodium. Both mean and fluctuating parts of the field are studied. The dynamo threshold corresponds to a magnetic Reynolds number R{sub m}{approx}30. A mean magnetic field of the order of 40 G is observed 30% above threshold at the flow lateral boundary. The rms fluctuations are larger than the corresponding mean value for two of the components. The scaling of the mean square magnetic field is compared to a prediction previously made for high Reynolds number flows.

Monchaux, R.; Chiffaudel, A.; Daviaud, F.; Dubrulle, B.; Gasquet, C.; Marie, L.; Ravelet, F. [Service de Physique de l'Etat Condense, Direction des Sciences de la Matiere, CEA-Saclay, CNRS URA 2464, 91191 Gif-sur-Yvette cedex (France); Berhanu, M.; Fauve, S.; Mordant, N.; Petrelis, F. [Laboratoire de Physique Statistique de l'Ecole Normale Superieure, CNRS UMR 8550, 24 Rue Lhomond, 75231 Paris Cedex 05 (France); Bourgoin, M.; Moulin, M.; Odier, Ph.; Pinton, J.-F.; Volk, R. [Laboratoire de Physique de l'Ecole Normale Superieure de Lyon, CNRS UMR 5672, 46 allee d'Italie, 69364 Lyon Cedex 07 (France)

2007-01-26T23:59:59.000Z

246

Method of making a current collector for a sodium/sulfur battery  

DOE Patents (OSTI)

This specification is directed to a method of making a current collector for a sodium/sulfur battery. The current collector so-made is electronically conductive and resistant to corrosive attack by sulfur/polysulfide melts. The method includes the step of forming the current collector for the sodium/sulfur battery from a composite material formed of aluminum filled with electronically conductive fibers selected from the group of fibers consisting essentially of graphite fibers having a diameter up to 10 microns and silicon carbide fibers having a diameter in a range of 500--1,000 angstroms. 2 figs.

Tischer, R.P.; Winterbottom, W.L.; Wroblowa, H.S.

1987-03-10T23:59:59.000Z

247

Method of making a current collector for a sodium/sulfur battery  

DOE Patents (OSTI)

This specification is directed to a method of making a current collector (14) for a sodium/sulfur battery (10). The current collector so-made is electronically conductive and resistant to corrosive attack by sulfur/polysulfide melts. The method includes the step of forming the current collector for the sodium/sulfur battery from a composite material (16) formed of aluminum filled with electronically conductive fibers selected from the group of fibers consisting essentially of graphite fibers having a diameter up to 10 microns and silicon carbide fibers having a diameter in a range of 500-1000 angstroms.

Tischer, Ragnar P. (Birmingham, MI); Winterbottom, Walter L. (Farmington Hills, MI); Wroblowa, Halina S. (West Bloomfield, MI)

1987-01-01T23:59:59.000Z

248

Preliminary analysis of patent trends for sodium/sulfur battery technology  

SciTech Connect

This document summarizes development trends in sodium/sulfur battery technology based on data from US patents. Purpose of the study was to use the activity, timing and ownership of 285 US patents to identify and describe broad patterns of change in sodium/sulfur battery technology. The analysis was conducted using newly developed statistical and computer graphic techniques for describing technology development trends from patent data. This analysis suggests that for some technologies trends in patent data provide useful information for public and private R and D planning.

Triplett, M.B.; Winter, C.; Ashton, W.B.

1985-07-01T23:59:59.000Z

249

100-MW NUCLEAR POWER PLANT UTILIZING A SODIUM COOLED, GRAPHITE MODERATED REACTOR  

SciTech Connect

The conceptual design of a 100 Mw(e) nuclear power plant is described. The plant utilized a sodium-cooled graphite-moderated reactor with stainless- steel clad. slightiy enriched UO/sub 2/ fuel. The reactor is provided with three main coolant circuits, and the steam cycle has three stages of regenerative heating. The plant control system allows automatic operation over the range of 20 to 100% load, or manual operation at all loads. The site, reactor, sodium systems, reactor auxiliaries, fuel handling, instrumentation, turbine-generator, buildings. and safety measures are described. Engineering drawings are included. (W.D.M.)

1958-02-28T23:59:59.000Z

250

Partitioning of gadolinium and its induced phase separation in sodium-aluminoborosilicate glasses  

SciTech Connect

Phase separation in sodium-aluminoborosilicate glasses was systematically studied as a function of Gd2O3 concentration with transmission electronic microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and electronic energy loss spectroscopy (EELS) methods. Dissolving Gd2O3 in sodium-aluminoborosilicate glasses causes phase separation when the Na2O/(Na2O + Al2O3) is between 0.4 and 0.6. Samples of these glasses were examined in the TEM with ELFS. The results are reported.

Qian, Maoxu; Li, Liyu; Li, Hong; Strachan, Denis M.

2003-01-01T23:59:59.000Z

251

Current Status of Health and Safety Issues of Sodium/Metal Chloride (Zebra) Batteries  

DOE Green Energy (OSTI)

This report addresses environmental, health, and safety (EH&S) issues associated with sodium/ metal chloride batteries, in general, although most references to specific cell or battery types refer to units developed or being developed under the Zebra trademark. The report focuses on issues pertinent to sodium/metal chloride batteries and their constituent components; however, the fact that some ''issues'' arise from interaction between electric vehicle (EV) and battery design compels occasional discussion amid the context of EV vehicle design and operation. This approach has been chosen to provide a reasonably comprehensive account of the topic from a cell technology perspective and an applications perspective.

Trickett, D.

1998-12-15T23:59:59.000Z

252

EVALUATION OF CALANDRIA, THIMBLE, AND CANNED-MODERATOR CONCEPTS FOR SODIUM GRAPHITE REACTORS  

SciTech Connect

In efforts to improve the neutron economy and lower the capital costs of sodium graphite reactors, several methods of separating the sodium and graphite were investigated including the calandria, the thimble, and the canned moderator reactors. An analysis including nuclear, heat transfer, and economic comparisons was made of these SGR concepts. Based upon neutron economy and feasibility of core fabrication, the calandria concept appears to offer the greatest potential for improvement in 8GR design. The thimble concept provides some improvement in neutron economy but introduced numerous problems requiring developmental work. (auth)

Reed, G.L.

1960-06-10T23:59:59.000Z

253

F POWER MEASUREMENT FOR GENERATION IV SODIUM FAST R. COULON, S. NORMAND, M. MICHEL, L. BARBOT, T. DOMENECH,  

E-Print Network (OSTI)

.F-84500 Bollène, France. ABSTRACT The Phénix nuclear power plant has been a French Sodium Fast Reactor20 F POWER MEASUREMENT FOR GENERATION IV SODIUM FAST REACTORS R. COULON, S. NORMAND, M. MICHEL, L at the Phénix reactor shows that the use of 20 F as power tagging agent gives a fast and accurate power

254

HPS replacement project drives garage costs down. [High-pressure sodium luminaires  

SciTech Connect

The high cost of energy had forced a four-story New York airport parking garage to turn off almost half its low bay lights, leaving it gloomy and vandal-prone. By replacing the original lamps with high-pressure sodium (HPS) luminaires, the garage brightened its image with 2400 fewer fixtures and netted an annual energy savings of $60,000.

Not Available

1985-09-01T23:59:59.000Z

255

Formation and prevention of agglomerated deposits during the gasification of high-sodium lignite  

Science Conference Proceedings (OSTI)

A high-sodium lignite from the Freedom mine in North Dakota was tested in the transport gasifier at the Power Systems Development Facility (PSDF). During the first use of the high-sodium lignite in October 2003, agglomerated deposits formed at various locations in the transport gasifier system. An extensive laboratory testing program was carried out to characterize the deposits, understand the mechanism of the deposit formation, and test various methods of preventing or minimizing the agglomeration. The results of the deposit analysis and initial lab studies suggested that sodium released from the lignite was deposited on the surface of the sand bed material, resulting in the formation of sticky sodium silicates. Additional laboratory tests indicated that the agglomeration could be avoided or minimized by replacing the sand with a nonreactive bed material (e.g., coarse coal ash), operating at slightly reduced temperatures and using certain types of additives. By using these procedures, we completely eliminated the deposition problems in a subsequent gasification run in August 2004. 10 refs., 10 figs.

Robert S. Dahlin; WanWang Peng; Matt Nelson; Pannalal Vimalchand; Guohai Liu [Southern Research Institute and Southern Company Services, Wilsonville, AL (United States). Power Systems Development Facility

2006-12-15T23:59:59.000Z

256

Review of FY 2001 Development Work for Vitrification of Sodium Bearing Waste  

SciTech Connect

Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by the Settlement Agreement between the Department of Energy and the State of Idaho. This report discusses significant findings from vitrification technology development during 2001 and their impacts on the design basis for SBW vitrification.

Taylor, Dean Dalton; Barnes, Charles Marshall

2002-09-01T23:59:59.000Z

257

Review of FY2001 Development Work for Vitrification of Sodium Bearing Waste  

SciTech Connect

Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by the Settlement Agreement between the Department of Energy and the State of Idaho. This report discusses significant findings from vitrification technology development during 2001 and their impacts on the design basis for SBW vitrification.

Barnes, C.M.; Taylor, D.D.

2002-09-09T23:59:59.000Z

258

Advanced Materials for Sodium-Beta Alumina Batteries: Status, Challenges and Perspectives  

SciTech Connect

The increasing penetration of renewable energy and the trend toward clean, efficient transportation have spurred growing interests in sodium-beta alumina batteries that store electrical energy via sodium ion transport across a ?"-Al2O3 solid electrolyte at elevated temperatures (typically 300~350°C). Currently, the negative electrode or anode is metallic sodium in molten state during battery operation; the positive electrode or cathode can be molten sulfur (Na-S battery) or solid transition metal halides plus a liquid phase secondary electrolyte (e.g., ZEBRA battery). Since the groundbreaking works in the sodium-beta alumina batteries a few decades ago, encouraging progress has been achieved in improving battery performance, along with cost reduction. However there remain issues that hinder broad applications and market penetration of the technologies. To better the Na-beta alumina technologies require further advancement in materials along with component and system design and engineering. This paper offers a comprehensive review on materials of electrodes and electrolytes for the Na-beta alumina batteries and discusses the challenges ahead for further technology improvement.

Lu, Xiaochuan; Xia, Guanguang; Lemmon, John P.; Yang, Zhenguo

2010-05-01T23:59:59.000Z

259

Statistical Analysis of Sodium Doppler Wind–Temperature Lidar Measurements of Vertical Heat Flux  

Science Conference Proceedings (OSTI)

A statistical study is presented of the errors in sodium Doppler lidar measurements of wind and temperature in the mesosphere that arise from the statistics of the photon-counting process that is inherent in the technique. The authors use data ...

Liguo Su; Richard L. Collins; David A. Krueger; Chiao-Yao She

2008-03-01T23:59:59.000Z

260

Review of sodium effects on candidate materials for central receiver solar-thermal power systems  

DOE Green Energy (OSTI)

Available information on the corrosion behavior and mechanical properties of structural materials in a high-temperature sodium environment has been reviewed to compile a data base for selection of materials for advanced central-receiver solar-power systems, for which sodium is being considered as a heat-transfer fluid and thermal-storage medium. Candidate materials for this application (e.g., Types 304, 316, and 321 stainless steel, Alloy 800, and Fe-2 1/4 Cr-1Mo and Fe-9Cr-1Mo ferritic steels) have been used in the construction of various components for liquid-metal fast-breeder reactors in this country and abroad with considerable success. Requirements for additional information on material properties in a sodium environment are identified. The additional data coupled with more quantitative deformation models, failure criteria, and component design rules will further reduce uncertainties in the assessment of performance limits and component reliability in large sodium heat-transport systems. 120 references.

Chopra, O.K.; Wang, J.Y.N.; Natesan, K.

1979-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "nasi sodium silicide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Process for making boron nitride using sodium cyanide and boron phosphate  

DOE Patents (OSTI)

This is a very simple process for making boron nitride by mixing sodium cyanide and boron phosphate and heating the mixture in an inert atmosphere until a reaction takes place. The product is a white powder of boron nitride that can be used in applications that require compounds that are stable at high temperatures and that exhibit high electrical resistance.

Bamberger, C.E.

1987-02-27T23:59:59.000Z

262

Conceptual Design of a MEDE Treatment System for Sodium Bonded Fuel  

SciTech Connect

Unirradiated sodium bonded metal fuel and casting scrap material containing highly enriched uranium (HEU) is stored at the Materials and Fuels Complex (MFC) on the Idaho National Laboratory (INL). This material, which includes intact fuel assemblies and elements from the Fast Flux Test Facility (FFTF) and Experimental Breeder Reactor-II (EBR-II) reactors as well as scrap material from the casting of these fuels, has no current use under the terminated reactor programs for both facilities. The Department of Energy (DOE), under the Sodium-Bonded Spent Nuclear Fuel Treatment Record of Decision (ROD), has determined that this material could be prepared and transferred to an off-site facility for processing and eventual fabrication of fuel for commercial nuclear reactors. A plan is being developed to prepare, package and transfer this material to the DOE High Enriched Uranium Disposition Program Office (HDPO), located at the Y-12 National Security Complex in Oak Ridge, Tennessee. Disposition of the sodium bonded material will require separating the elemental sodium from the metallic uranium fuel. A sodium distillation process known as MEDE (Melt-Drain-Evaporate), will be used for the separation process. The casting scrap material needs to be sorted to remove any foreign material or fines that are not acceptable to the HDPO program. Once all elements have been cut and loaded into baskets, they are then loaded into an evaporation chamber as the first step in the MEDE process. The chamber will be sealed and the pressure reduced to approximately 200 mtorr. The chamber will then be heated as high as 650 ºC, causing the sodium to melt and then vaporize. The vapor phase sodium will be driven into an outlet line where it is condensed and drained into a receiver vessel. Once the evaporation operation is complete, the system is de-energized and returned to atmospheric pressure. This paper describes the MEDE process as well as a general overview of the furnace systems, as necessary, to complete the MEDE process.

Carl E. Baily; Karen A. Moore; Collin J. Knight; Peter B. Wells; Paul J. Petersen; Ali S. Siahpush; Matthew T. Weseman

2008-05-01T23:59:59.000Z

263

Effect of Oxygen on Ni-Silicided FUSI Metal Gate  

E-Print Network (OSTI)

Continual evolution of the CMOS technology requires thinner gate dielectric to maintain high performance. However, when moving into the sub-65 nm CMOS generation, the traditional poly-Si gate approach cannot effectively ...

Yu, H.P.

264

Polaronic Transport and Current Blockades in Epitaxial Silicide...  

NLE Websites -- All DOE Office Websites (Extended Search)

of density functional theory calculations, the impurity density of states D imp 1 eV -1 (see Supporting Information for further details). From these values we find ...

265

Effect of Sodium Carboxymethyl Celluloses on Water-catalyzed Self-degradation of 200-degree C-heated Alkali-Activated Cement  

SciTech Connect

We investigated the usefulness of sodium carboxymethyl celluloses (CMC) in promoting self-degradation of 200°C-heated sodium silicate-activated slag/Class C fly ash cementitious material after contact with water. CMC emitted two major volatile compounds, CO2 and acetic acid, creating a porous structure in cement. CMC also reacted with NaOH from sodium silicate to form three water-insensitive solid reaction products, disodium glycolate salt, sodium glucosidic salt, and sodium bicarbonate. Other water-sensitive solid reaction products, such as sodium polysilicate and sodium carbonate, were derived from hydrolysates of sodium silicate. Dissolution of these products upon contact with water generated heat that promoted cement’s self-degradation. Thus, CMC of high molecular weight rendered two important features to the water-catalyzed self-degradation of heated cement: One was the high heat energy generated in exothermic reactions in cement; the other was the introduction of extensive porosity into cement.

Sugama T.; Pyatina, T.

2012-05-01T23:59:59.000Z

266

Idaho Nuclear Technology and Engineering Center Sodium-Bearing Waste Treatment Research and Development FY-2002 Status Report  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL) is considering several optional processes for disposal of liquid sodium-bearing waste. During fiscal year 2002, immobilization-related research included of grout formulation development for sodium-bearing waste, absorption of the waste on silica gel, and off-gas system mercury collection and breakthrough using activated carbon. Experimental results indicate that sodium-bearing waste can be immobilized in grout at 70 weight percent and onto silica gel at 74 weight percent. Furthermore, a loading of 11 weight percent mercury in sulfur-impregnated activated carbon was achieved with 99.8% off-gas mercury removal efficiency.

Herbst, Alan Keith; Deldebbio, John Anthony; Mc Cray, John Alan; Kirkham, Robert John; Olson, Lonnie Gene; Scholes, Bradley Adams

2002-09-01T23:59:59.000Z

267

Fact Sheet: Sodium-Ion Batteries for Grid-Level Applications (October 2012)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Aquion Energy, Inc. Aquion Energy, Inc. American Recovery and Reinvestment Act (ARRA) Sodium-Ion Batteries for Grid-Level Applications Demonstrating low-cost, grid-scale, ambient temperature sodium-ion batteries In June 2012, Aquion Energy, Inc. completed the testing and demonstration requirements for the U.S. Department of Energy's program with its low-cost, grid-scale, ambient temperature Aqueous Hybrid Ion (AHI) energy storage device. During the three-year project, Aquion manufactured hundreds of batteries and assemble them into high-voltage, grid-scale systems. This project helped them move their aqueous electrochemical energy storage device from bench-scale testing to pilot-scale manufacturing. The testing successfully demonstrated a grid-connected, high voltage (>1,000 V), 13.5 kWh system with a 4-hour discharge.

268

ESS 2012 Peer Review - Advanced Sodium Battery - Joonho Koh, Materials & Systems Research  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sodium Battery Sodium Battery Joonho Koh (jkoh@msrihome.com), Greg Tao (gtao@msrihome.com), Neill Weber, and Anil V. Virkar Materials & Systems Research, Inc., 5395 W 700 S, Salt Lake City, UT 84104 Company Introduction History  Founded in 1990 by Dr. Dinesh K. Shetty and Dr. Anil V. Virkar  Currently 11 employees including 5 PhDs  10,000 ft² research facility in Salt Lake City, Utah MSRI's Experience of Na Batteries Status of the Na Batteries Overall Project Description Goal Develop advanced Na battery technology for enhanced safety, reduced fabrication cost, and high-power performance Approach  Innovative cell design using stronger structural materials  Reduction of the fabrication cost using a simple and reliable processing technique

269

Calcination of Fluorinel-sodium waste blends using sugar as a feed additive (formerly WINCO-11879)  

SciTech Connect

Methods were studied for using sugar as a feed additive for converting the sodium-bearing wastes stored at the Idaho Chemical Processing Plant into granular, free flowing solids by fluidized-bed calcination at 500{degrees}C. All methods studied blended sodium-bearing wastes with Fluorinel wastes but differed in the types of sugar (sucrose or dextrose) that were added to the blend. The most promising sugar additive was determined to be sucrose, since it is converted more completely to inorganic carbon than is dextrose. The effect of the feed aluminum-to-alkali metal mole ratio on calcination of these blends with sugar was also investigated. Increasing the aluminum-to-alkali metal ratio from 0.6 to 1.0 decreased the calcine product-to-fines ratio from 3.0 to 1.0 and the attrition index from 80 to 15%. Further increasing the ratio to 1.25 had no effect.

Newby, B.J.; Thomson, T.D.; O`Brien, B.H.

1992-06-01T23:59:59.000Z

270

Idaho Nuclear Technology and Engineering Center (INTEC) Sodium Bearing Waste - Waste Incidental to Reprocessing Determination  

SciTech Connect

U.S. Department of Energy Manual 435.1-1, Radioactive Waste Management, Section I.1.C, requires that all radioactive waste subject to Department of Energy Order 435.1 be managed as high-level radioactive waste, transuranic waste, or low-level radioactive waste. Determining the radiological classification of the sodium-bearing waste currently in the Idaho Nuclear Technology and Engineering Center Tank Farm Facility inventory is important to its proper treatment and disposition. This report presents the technical basis for making the determination that the sodium-bearing waste is waste incidental to spent fuel reprocessing and should be managed as mixed transuranic waste. This report focuses on the radiological characteristics of the sodiumbearing waste. The report does not address characterization of the nonradiological, hazardous constituents of the waste in accordance with Resource Conservation and Recovery Act requirements.

Jacobson, Victor Levon

2002-08-01T23:59:59.000Z

271

A sodium-sulfur battery for the ETX-II propulsion system  

DOE Green Energy (OSTI)

A Canadian built 52 kWh sodium-sulphur battery is being integrated with the ETX-II powertrain. The propulsion system thus formed is being installed in a Ford Aerostar compact-size van for test and development purposes. The selection and design of the traction battery, as an integral part of the propulsion system, will be outlined in this paper along with the projected performance of the test bed vehicle under both highway and urban driving conditions. The results of a battery optimization study will also be discussed. Braking energy recovery (regeneration) is an important part of the ETX-II system capability and needs to be carefully managed when used with sodium-sulphur batteries. This will be discussed to show its effect on the system performance.

Altmejd, M. (Powerplex Technologies, Inc., Downsview, ON (Canada)); Dzieciuch, M. (Ford Motor Co., Dearborn, MI (United States))

1988-01-01T23:59:59.000Z

272

A sodium-sulfur battery for the ETX-II propulsion system  

Science Conference Proceedings (OSTI)

A Canadian built 52 kWh sodium-sulphur battery is being integrated with the ETX-II powertrain. The propulsion system thus formed is being installed in a Ford Aerostar compact-size van for test and development purposes. The selection and design of the traction battery, as an integral part of the propulsion system, will be outlined in this paper along with the projected performance of the test bed vehicle under both highway and urban driving conditions. The results of a battery optimization study will also be discussed. Braking energy recovery (regeneration) is an important part of the ETX-II system capability and needs to be carefully managed when used with sodium-sulphur batteries. This will be discussed to show its effect on the system performance.

Altmejd, M. [Powerplex Technologies, Inc., Downsview, ON (Canada); Dzieciuch, M. [Ford Motor Co., Dearborn, MI (United States)

1988-12-31T23:59:59.000Z

273

Sodium sulfur electric vehicle battery engineering program final report, September 2, 1986--June 15, 1993  

DOE Green Energy (OSTI)

In September 1986 a contract was signed between Chloride Silent Power Limited (CSPL) and Sandia National Laboratories (SNL) entitled ``Sodium Sulfur Electric Vehicle Battery Engineering Program``. The aim of the cost shared program was to advance the state of the art of sodium sulfur batteries for electric vehicle propulsion. Initially, the work statement was non-specific in regard to the vehicle to be used as the design and test platform. Under a separate contract with the DOE, Ford Motor Company was designing an advanced electric vehicle drive system. This program, called the ETX II, used a modified Aerostar van for its platform. In 1987, the ETX II vehicle was adopted for the purposes of this contract. This report details the development and testing of a series of battery designs and concepts which led to the testing, in the US, of three substantial battery deliverables.

NONE

1993-06-01T23:59:59.000Z

274

Two dimensional, two fluid model for sodium boiling in LMFBR fuel assemblies  

Science Conference Proceedings (OSTI)

A two dimensional numerical model for the simulation of sodium boiling transient was developed using the two fluid set of conservation equations. A semiimplicit numerical differencing scheme capable of handling the problems associated with the ill-posedness implied by the complex characteristic roots of the two fluid problems was used, which took advantage of the dumping effect of the exchange terms. Of particular interest in the development of the model was the identification of the numerical problems caused by the strong disparity between the axial and radial dimensions of fuel assemblies. A solution to this problem was found which uses the particular geometry of fuel assemblies to accelerate the convergence of the iterative technique used in the model. Three sodium boiling experiments were simulated with the model, with good agreement between the experimental results and the model predictions.

Granziera, M.R.; Kazimi, M.S.

1980-05-01T23:59:59.000Z

275

Sodium/sulfur battery engineering for stationary energy storage. Final report  

DOE Green Energy (OSTI)

The use of modular systems to distribute power using batteries to store off-peak energy and a state of the art power inverter is envisioned to offer important national benefits. A 4-year, cost- shared contract was performed to design and develop a modular, 300kVA/300-kWh system for utility and customer applications. Called Nas-P{sub AC}, this system uses advanced sodium/sulfur batteries and requires only about 20% of the space of a lead-acid-based system with a smaller energy content. Ten, 300-VDC, 40-kWh sodium/sulfur battery packs are accommodated behind a power conversion system envelope with integrated digital control. The resulting design facilities transportation, site selection, and deployment because the system is quiet and non-polluting, and can be located in proximity to the load. This report contains a detailed description of the design and supporting hardware development performed under this contract.

Koenig, A.; Rasmussen, J. [Silent Power, Inc., Salt Lake City, UT (United States)

1996-04-01T23:59:59.000Z

276

A SODIUM COOLED, GRAPHITE MODERATED, LOW ENRICHMENT URANIUM REACTOR FOR THE PRODUCTION OF USEFUL POWER  

SciTech Connect

A design study is presented for a sodium cooled, graphite moderated power reactor utilizing low enrichment uranium fuel. The design is characterized by dependence on existing technology and the use of standard, or nearly standard, components. The reactor has a nominal rating of 167 thermal megawatts, and a plant comprising three such reactors for a total output of 500 thermal megawatts is described. Sodium in a secondary, non-radioactive, circulation system carries the heat to a steam generator at 910 deg F and is returned at 420 deg F. Steam conditions at the turbine throttle are 600 psig and 825 deg F. Cost of the complete reactor power plant, consisting of the three reactors and one 150- megawatt turbogenerator, is estimated to be approximately ,165,000. (auth)

Weisner, E.F. ed.

1954-09-15T23:59:59.000Z

277

ANALYSIS OF THE HEAT GENERATION IN THE PRIMARY SODIUM PIPE TUNNELS, INTERMEDIATE HEAT EXCHANGER CELLS, AND THE PRIMARY SODIUM FILL TANK VAULT FOR THE HALLAM NUCLEAR POWER FACILITY (HNPF)  

SciTech Connect

I. An adequate and conservative calculational method for evaluation of the heat generation distribution in the primary sodium system substructural areas was developed. The method was programed for the IBM 704 and the IBM 709. The results obtained from analysis of the gamma heat generation in the primary sodium pipe tunnels and in the intermediate heat exchanger cells are presented. Calculations are outlined, and gamma attenuation coefficients for concrete, sodium, and steel are given. II. Results obtained from analysis of the gamma heat generation in areas where the primary sodium system piping layout was changed from that of the previous analysis are presented. Major changes in magnitude of the hot spot heat generation due to the changes are pointed out. (auth)

Legendre, P.J.

1959-03-27T23:59:59.000Z

278

EVALUATION OF KANIGEN, ELECTROLESS NICKEL PLATING FOR STEAM SIDE OF A SODIUM COMPONENT STEAM GENERATOR  

SciTech Connect

The evaluation of Kanigen electroless nickel plating for surfaces in contact with water and steam in a sodium-heated Type 316 stainless steel steam generator is reported. The purpose of the coating is to afford protection from stress corrosion cracking originating on the water-steam side of the unit. It is concluded that the Kanigen coating does not afford adequate protection for the service conditions. (D.L.C.)

1961-02-15T23:59:59.000Z

279

Alternative TRUEX-Based Pretreatment Processing of INEEL Sodium Bearing Waste  

SciTech Connect

The goals of this study were to demonstrate a selective complexant for separating mercury from the transuranic (TRU) elements in the transuranic extraction (TRUEX) process and to demonstrate alternative stripping methods to eliminate phosphorus-containing, actinide stripping agents during TRUEX processing. The work described in this report provides the basis for implementing an improved TRUEX-based flowsheet for processing INEEL sodium-bearing waste using only minor modifications to the current Idaho National Engineering and Environmental Laboratory (INEEL) flowsheet design.

Rapko, Brian M.; Fiskum, Sandra K.; Lumetta, Gregg J.

2000-09-27T23:59:59.000Z

280

A Heterogeneous Sodium Fast Reactor Designed to Transmute Minor Actinide Actinide Waste Isotopes into Plutonium Fuel  

Science Conference Proceedings (OSTI)

An axial heterogeneous sodium fast reactor design is developed for converting minor actinide waste isotopes into plutonium fuel. The reactor design incorporates zirconium hydride moderating rods in an axial blanket above the active core. The blanket design traps the active core’s axial leakage for the purpose of transmuting Am-241 into Pu-238. This Pu-238 is then co-recycled with the spent driver fuel to make new driver fuel. Because Pu-238 is significantly more fissile than Am-241 in a fast neutron spectrum, the fissile worth of the initial minor actinide material is upgraded by its preconditioning via transmutation in the axial targets. Because, the Am-241 neutron capture worth is significantly stronger in a moderated epithermal spectrum than the fast spectrum, the axial targets serve as a neutron trap which recovers the axial leakage lost by the active core. The sodium fast reactor proposed by this work is designed as an overall transuranic burner. Therefore, a low transuranic conversion ratio is achieved by a degree of core flattening which increases axial leakage. Unlike a traditional “pancake” design, neutron leakage is recovered by the axial target/blanket system. This heterogeneous core design is constrained to have sodium void and Doppler reactivity worth similar to that of an equivalent homogeneous design. Because minor actinides are irradiated only once in the axial target region; elemental partitioning is not required. This fact enables the use of metal targets with electrochemical reprocessing. Therefore, the irradiation environment of both drivers and targets was constrained to ensure applicability of the established experience database for metal alloy sodium fast reactor fuels.

Samuel E. Bays

2011-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "nasi sodium silicide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Photoelectron emission from island metallic sodium films during the excitation of localized plasmon resonances  

SciTech Connect

The photoelectron emission from island sodium films is studied under the action of radiation that is resonant to the collective electron excitations in the nanoparticles forming a film. Noticeable deviations from the Fowler law and an increase in the photoelectron yield are detected. The dependences of the photoeffect efficiency from these films on their structural parameters, the polarization vector, and the angle of radiation incidence are obtained.

Vartanyan, T. A.; Vashchenko, E. V., E-mail: vashenko.elena@mail.ru; Leonov, N. B.; Przhibel'skii, S. G.; Khromov, V. V. [St. Petersburg State University of Information Technologies, Mechanics, and Optics (Russian Federation)

2009-07-15T23:59:59.000Z

282

PRELIMINARY DESIGN STUDY FOR A SODIUM-GRAPHITE-REACTOR IRRADIATION FACILITY  

SciTech Connect

The results of an investigation to integrate a Na/sup 24/ irradiation processing facility with an operating sodium graphite reactor are presented. An irradiation facility incorporated into a reference SGR (Hallam Nuclear Power Facility, Hallam, Nebraska) is described. Development of the facility application, preliminary design criteria and capital and operating costs are discussed. Recommendations for further development of the technology and economics of this type of irradiation facility are included. (auth)

Thompson, D.S.; Benaroya, V.

1959-01-31T23:59:59.000Z

283

Technical Information on the Carbonation of the EBR-II Reactor, Summary Report Part 1: Laboratory Experiments and Application to EBR-II Secondary Sodium System  

DOE Green Energy (OSTI)

Residual sodium is defined as sodium metal that remains behind in pipes, vessels, and tanks after the bulk sodium metal has been melted and drained from such components. The residual sodium has the same chemical properties as bulk sodium, and differs from bulk sodium only in the thickness of the sodium deposit. Typically, sodium is considered residual when the thickness of the deposit is less than 5-6 cm. This residual sodium must be removed or deactivated when a pipe, vessel, system, or entire reactor is permanently taken out of service, in order to make the component or system safer and/or to comply with decommissioning regulations. As an alternative to the established residual sodium deactivation techniques (steam-and-nitrogen, wet vapor nitrogen, etc.), a technique involving the use of moisture and carbon dioxide has been developed. With this technique, sodium metal is converted into sodium bicarbonate by reacting it with humid carbon dioxide. Hydrogen is emitted as a by-product. This technique was first developed in the laboratory by exposing sodium samples to humidified carbon dioxide under controlled conditions, and then demonstrated on a larger scale by treating residual sodium within the Experimental Breeder Reactor II (EBR-II) secondary cooling system, followed by the primary cooling system, respectively. The EBR-II facility is located at the Idaho National Laboratory (INL) in southeastern Idaho, U.S.A. This report is Part 1 of a two-part report. It is divided into three sections. The first section describes the chemistry of carbon dioxide-water-sodium reactions. The second section covers the laboratory experiments that were conducted in order to develop the residual sodium deactivation process. The third section discusses the application of the deactivation process to the treatment of residual sodium within the EBR-II secondary sodium cooling system. Part 2 of the report, under separate cover, describes the application of the technique to residual sodium treatment within the EBR-II primary sodium cooling system and related systems.

Steven R. Sherman

2005-04-01T23:59:59.000Z

284

FINAL PERFORMANCE TESTS OF TWO-COOLANT-REGION SODIUM PUMP SHAFT FREEZE- SELAS  

SciTech Connect

A prototype of the two-coolant-region pump shaft freezeseals intended for application to the Hallam Power Reactor sodium pumps was fabricated. Tests under simulated reactor service conditions revealed satisfactory operation only when the lower of the two regions received heat from the circulating fluid (tetralin in the tests). With the inlet temperature of tetralin to the upper region of the seal maintained at 95 deg F and that to the lower region held in the range 240 to 285 deg F the sealfunctioned satisfactorily for 1100 hr. When 95 deg F coolant was circulated through both sections of the seal excessive cooling occurred, resulting in either improper formation of the seal or in seizure of the shaft when rotative speed was low. In this case, the cooling load on the seal varied directly with both shaft speed and bulk sodium temperature. A maximum cooling load of 2.56 kw occurred at a shaft speed of 840 rpm and with a bulk sodium temperature of 1000 deg F. (C.J.G.)

Streck, F.O.

1960-02-10T23:59:59.000Z

285

Preliminary evaluation of regulatory and safety issues for sodium-sulfur batteries in electric vehicle applications  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) Electric and Hybrid Vehicle Program is involved in the development and evaluation of sodium-sulfur energy storage batteries for electric vehicle (EV) applications. Laboratory testing of complete battery systems, to be followed by controlled in-vehicle testing and on-road usage, are expected to occur as components of the DOE program during the 1988--1990 time frame. Testing and operation of sodium-sulfur batteries at other DOE contractor facilities may also take place during this time frame. A number of regulatory and safety issues can affect the technical scope, schedule, and cost of the expected programmatic activities. This document describes these issues and requirements, provides a preliminary evaluation of their significance, and lists those critical items that may result from them. The actions needed to permit the conduct of a successful program at DOE contractor facilities are identified, and concerns that could affect the eventual commercialization potential of sodium-sulfur batteries are noted to the extent they are known.

Evans, D.R.; Henriksen, G.L.; Hunt, G.L.

1987-05-01T23:59:59.000Z

286

Phase 2 THOR Steam Reforming Tests for Sodium Bearing Waste Treatment  

Science Conference Proceedings (OSTI)

About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste is stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Steam reforming is a candidate technology being investigated for converting the waste into a road ready waste form that can be shipped to the Waste Isolation Pilot Plant in New Mexico for interment. A steam reforming technology patented by Studsvik, Inc., and licensed to THOR Treatment Technologies has been tested in two phases using a Department of Energy-owned fluidized bed test system located at the Science Applications International Corporation (SAIC) Science and Technology Applications Research Center located in Idaho Falls, Idaho. The Phase 1 tests were reported earlier in 2003. The Phase 2 tests are reported here. For Phase 2, the process feed rate, stoichiometry, and chemistry were varied to identify and demonstrate process operation and product characteristics under different operating conditions. Two test series were performed. During the first series, the process chemistry was designed to produce a sodium carbonate product. The second series was designed to produce a more leach-resistant, mineralized sodium aluminosilicate product. The tests also demonstrated the performance of a MACT-compliant off-gas system.

Nicholas R. Soelberg

2004-01-01T23:59:59.000Z

287

LMR design concepts for transuranic management in low sodium void worth cores  

Science Conference Proceedings (OSTI)

The fuel cycle processing techniques and hard neuron spectrum of the Integral Fast Reactor (IFR) metal fuel cycle have favorable characteristics for the management of transuranics; and the wide range of breeding characteristics available in metal fuelled cores provides for flexibility in transuranic management strategy. Previous studies indicate that most design options which decrease the breeding ratio also show a decrease in sodium void worth; therefore, low void worths are achievable in transuranic burning (low breeding ratio) core designs. This paper describes numerous trade studies assessing various design options for a low void worth transuranic burner core. A flat annular core design appears to be a promising concept; the high leakage geometry yields a low breeding ratio and small sodium void worth. To allow flexibility in breeding characteristics, alternate design options which achieve fissile self-sufficiency are also evaluated. A self-sufficient core design which is interchangeable with the burner core and maintains a low sodium void worth is developed. 13 refs., 1 fig., 4 tabs.

Hill, R.N.

1991-01-01T23:59:59.000Z

288

Integrated fuel performance and thermal-hydraulic sub-channel models for analysis of sodium fast reactors  

E-Print Network (OSTI)

Sodium Fast Reactors (SFR) show promise as an effective way to produce clean safe nuclear power while properly managing the fuel cycle. Accurate computer modeling is an important step in the design and eventual licensing ...

Fricano, Joseph William

2012-01-01T23:59:59.000Z

289

Applications of carbon-13 and sodium-23 NMR in the study of plants, animal, and human cells  

SciTech Connect

Carbon-13 and sodium-23 NMR have been applied to the study of a variety of plant, animal and human cell types. Sodium NMR, in combination with dysprosium shift reagents, has been used to monitor sodium transport kinetics in salt-adapted, and non-adapted cells of P. milliaceum and whole D. spicata plants. The sodium content of human erythrocytes and leukemic macrophages was measured. Carbon-13 NMR was used to determine the structure and metabolism of rat epididymal fat pad adipocytes in real time. Insulin and isoproterenol-stimulated triacylglycerol turnover could be monitored in fat cell suspensions. (1-/sup 13/C) glucose was used as a substrate to demonstrate futile metabolic cycling from glucose to glycerol during lypolysis. Cell wall polysaccharide synthesis was followed in suspensions of P. milliaceum cells using (1-/sup 13/C) glucose as a precursor. These results illustrate the wide range of living systems which are amenable to study with NMR. 14 refs., 21 figs.

Sillerud, L.O.; Heyser, J.W.; Han, C.H.; Bitensky, M.W.

1984-01-01T23:59:59.000Z

290

A four-equation two-phase flow model for sodium boiling simulation of LMFBR fuel assemblies  

E-Print Network (OSTI)

A three-dimensional numerical model for the simulation of sodium boiling transients has been developed. The model uses mixture mass and energy equations, while employing a separate momentum equation for each phase. Thermal ...

Schor, Andrei L.

1982-01-01T23:59:59.000Z

291

Modelling of thermo-mechanical and irradiation behavior of metallic and oxide fuels for sodium fast reactors  

E-Print Network (OSTI)

A robust and reliable code to model the irradiation behavior of metal and oxide fuels in sodium cooled fast reactors is developed. Modeling capability was enhanced by adopting a non-empirical mechanistic approach to the ...

Karahan, Aydin

2009-01-01T23:59:59.000Z

292

Technology gap analysis on sodium-cooled reactor fuel handling system supporting advanced burner reactor development.  

Science Conference Proceedings (OSTI)

The goals of the Global Nuclear Energy Partnership (GNEP) are to expand the use of nuclear energy to meet increasing global energy demand in an environmentally sustainable manner, to address nuclear waste management issues without making separated plutonium, and to address nonproliferation concerns. The advanced burner reactor (ABR) is a fast reactor concept which supports the GNEP fuel cycle system. Since the integral fast reactor (IFR) and advanced liquid-metal reactor (ALMR) projects were terminated in 1994, there has been no major development on sodium-cooled fast reactors in the United States. Therefore, in support of the GNEP fast reactor program, the history of sodium-cooled reactor development was reviewed to support the initiation of this technology within the United States and to gain an understanding of the technology gaps that may still remain for sodium fast reactor technology. The fuel-handling system is a key element of any fast reactor design. The major functions of this system are to receive, test, store, and then load fresh fuel into the core; unload from the core; then clean, test, store, and ship spent fuel. Major requirements are that the system must be reliable and relatively easy to maintain. In addition, the system should be designed so that it does not adversely impact plant economics from the viewpoints of capital investment or plant operations. In this gap analysis, information on fuel-handling operating experiences in the following reactor plants was carefully reviewed: EBR-I, SRE, HNPF, Fermi, SEFOR, FFTF, CRBR, EBR-II, DFR, PFR, Rapsodie, Phenix, Superphenix, KNK, SNR-300, Joyo, and Monju. The results of this evaluation indicate that a standardized fuel-handling system for a commercial fast reactor is yet to be established. However, in the past sodium-cooled reactor plants, most major fuel-handling components-such as the rotatable plug, in-vessel fuel-handling machine, ex-vessel fuel transportation cask, ex-vessel sodium-cooled storage, and cleaning stations-have accumulated satisfactory construction and operation experiences. In addition, two special issues for future development are described in this report: large capacity interim storage and transuranic-bearing fuel handling.

Chikazawa, Y.; Farmer, M.; Grandy, C.; Nuclear Engineering Division

2009-03-01T23:59:59.000Z

293

Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project, November 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Cleanup Project Idaho Cleanup Project Sodium Bearing Waste Treatment Project May 2011 November 2012 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Independent Oversight Assessment of Nuclear Safety Culture at the Idaho Cleanup Project Sodium Bearing Waste Treatment Project Table of Contents 1.0 Introduction........................................................................................................................................... 1 2.0 Scope and Methodology ....................................................................................................................... 2

294

Laboratory Characterization of Advanced SO2 Control By-Products: Dry Sodium and Calcium In-Duct Injection Wastes  

Science Conference Proceedings (OSTI)

Extensive laboratory investigation indicates that the physical and chemical characterization and engineering properties of dry sodium and calcium in-duct injection wastes differ, as do the refuse and by-product management options associated with them. Utilities can use this report on the chemical, physical, engineering, and leachate properties of dry sodium and calcium in-duct injection wastes to better plan for and manage future waste disposal and/or use.

1990-01-08T23:59:59.000Z

295

Technical Information on the Carbonation of the EBR-II Reactor, Summary Report Part 2: Application to EBR-II Primary Sodium System and Related Systems  

DOE Green Energy (OSTI)

Residual sodium is defined as sodium metal that remains behind in pipes, vessels, and tanks after the bulk sodium metal has been melted and drained from such components. The residual sodium has the same chemical properties as bulk sodium, and differs from bulk sodium only in the thickness of the sodium deposit. Typically, sodium is considered residual when the thickness of the deposit is less than 5-6 cm. This residual sodium must be removed or deactivated when a pipe, vessel, system, or entire reactor is permanently taken out of service, in order to make the component or system safer and/or to comply with decontamination and decomissioning regulations. As an alternative to the established residual sodium deactivation techniques (steam-and-nitrogen, wet vapor nitrogen, etc.), a technique involving the use of moisture and carbon dioxide has been developed. With this technique, sodium metal is converted into sodium bicarbonate by reacting it with humid carbon dioxide. Hydrogen is emitted as a by-product. This technique was first developed in the laboratory by exposing sodium samples to humidifed carbon dioxide under controlled conditions, and then demonstrated on a larger scale by treating residual sodium within the Experimental Breeder Reactor II (EBR-II) secondary cooling system, followed by the primary cooling system, respectively. The EBR-II facility is located at the Idaho National Laboratory (INL) in southeastern Idaho, USA. This report is Part 2 of a two-part report. This second report provides a supplement to the first report and describes the application of the humdidified carbon dioxide technique ("carbonation") to the EBR-II primary tank, primary cover gas systems, and the intermediate heat exchanger. Future treatment plans are also provided.

Steven R. Sherman; Collin J. Knight

2006-03-01T23:59:59.000Z

296

Sodium (Na)  

Science Conference Proceedings (OSTI)

...Ionization state Potential, eV I 5.139 II 47.286 III 71.64 IV 98.91 V 138.39 VI 172.15 VII 208.47 VIII 264.18 IX 299.87 X 1465.091 XI 1648.659...

297

Sodium Batteries  

Science Conference Proceedings (OSTI)

Oct 28, 2013 ... Program Organizers: Xingbo Liu, West Virginia University; Terry ... Cheng, University of Kentucky; Keeyoung Jung, Research Institute of ...

298

Thermochemical cyclic system for decomposing H.sub.2 O and/or CO.sub.2 by means of cerium-titanium-sodium-oxygen compounds  

DOE Patents (OSTI)

A thermochemical closed cyclic process for the decomposition of water and/or carbon dioxide to hydrogen and/or carbon monoxide begins with the reaction of ceric oxide (CeO.sub.2), titanium dioxide (TiO.sub.2) and sodium titanate (Na.sub.2 TiO.sub.3) to form sodium cerous titanate (NaCeTi.sub.2 O.sub.6) and oxygen. Sodium cerous titanate (NaCeTi.sub.2 O.sub.6) reacted with sodium carbonate (Na.sub.2 CO.sub.3) in the presence of steam, produces hydrogen. The same reaction, in the absence of steam, produces carbon monoxide. The products, ceric oxide and sodium titanate, obtained in either case, are treated with carbon dioxide and water to produce ceric oxide, titanium dioxide, sodium titanate, and sodium bicarbonate. After dissolving sodium bicarbonate from the mixture in water, the remaining insoluble compounds are used as starting materials for a subsequent cycle. The sodium bicarbonate can be converted to sodium carbonate by heating and returned to the cycle.

Bamberger, Carlos E. (Oak Ridge, TN)

1982-01-01T23:59:59.000Z

299

Thermochemical cyclic system for decomposing H/sub 2/O and/or CO/sub 2/ by means of cerium-titanium-sodium-oxygen compounds  

DOE Patents (OSTI)

A thermochemical closed cyclic process for the decomposition of water and/or carbon dioxide to hydrogen and/or carbon monoxide begins with the reaction of ceric oxide (CeO/sub 2/), titanium dioxide (TiO/sub 2/) and sodium titanate (Na/sub 2/TiO/sub 3/) to form sodium cerous titanate (NaCeTi/sub 2/O/sub 6/) and oxygen. Sodium cerous titanate (NaCeTi/sub 2/O/sub 6/) reacted with sodium carbonate (Na/sub 2/CO/sub 3/) in the presence of steam, produces hydrogen. The same reaction, in the absence of steam, produces carbon monoxide. The products, ceric oxide and sodium titanate, obtained in either case, are treated with carbon dioxide and water to produce ceric oxide, titanium dioxide, sodium titanate, and sodium bicarbonate. After dissolving sodium bicarbonate from the mixture in water, the remaining insoluble compounds are used as starting materials for a subsequent cycle. The sodium bicarbonate can be converted to sodium carbonate by heating and returned to the cycle.

Bamberger, C.E.

1980-04-24T23:59:59.000Z

300

Probing the Failure Mechanism of SnO2 Nanowires for Sodium-ion Batteries  

SciTech Connect

Non-lithium metals such as sodium have attracted wide attention as a potential charge carrying ion for rechargeable batteries, performing the same role as lithium in lithium- ion batteries. As sodium and lithium have the same +1 charge, it is assumed that what has been learnt about the operation of lithium ion batteries can be transferred directly to sodium batteries. Using in-situ TEM, in combination with DFT calculations, we probed the structural and chemical evolution of SnO2 nanowire anodes in Na-ion batteries and compared them quantitatively with results from Li-ion batteries [Science 330 (2010) 1515]. Upon Na insertion into SnO2, a displacement reaction occurs, leading to the formation of amorphous NaxSn nanoparticles covered by crystalline Na2O shell. With further Na insertion, the NaxSn core crystallized into Na15Sn4 (x=3.75). Upon extraction of Na (desodiation), the NaxSn core transforms to Sn nanoparticles. Associated with a volume shrinkage, nanopores appear and metallic Sn particles are confined in hollow shells of Na2O, mimicking a peapod structure. These pores greatly increase electrical impedance, therefore naturally accounting for the poor cyclability of SnO2. DFT calculations indicate that Na+ diffuses 30 times slower than Li+ in SnO2, in agreement with in-situ TEM measurement. Insertion of Na can chemo-mechanically soften the reaction product to greater extent than in lithiation. Therefore, in contrast to the lithiation of SnO2, no dislocation plasticity was seen ahead of the sodiation front. This direct comparison of the results from Na and Li highlights the critical role of ionic size and electronic structure of different ionic species on the charge/discharge rate and failure mechanisms in these batteries.

Gu, Meng; Kushima, Akihiro; Shao, Yuyan; Zhang, Jiguang; Liu, Jun; Browning, Nigel D.; Li, Ju; Wang, Chong M.

2013-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "nasi sodium silicide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Production of high brightness H- beam by charge exchange of hydrogen atom beam in sodium jet  

DOE Green Energy (OSTI)

Production of H{sup -} beam for accelerators applications by charge exchange of high brightness hydrogen neutral beam in a sodium jet cell is experimentally studied in joint BNL-BINP experiment. In the experiment, a hydrogen-neutral beam with 3-6 keV energy, equivalent current up to 5 A and 200 microsecond pulse duration is used. The atomic beam is produced by charge exchange of a proton beam in a pulsed hydrogen target. Formation of the proton beam is performed in an ion source by four-electrode multiaperture ion-optical system. To achieve small beam emittance, the apertures in the ion-optical system have small enough size, and the extraction of ions is carried out from the surface of plasma emitter with a low transverse ion temperature of {approx}0.2 eV formed as a result of plasma jet expansion from the arc plasma generator. Developed for the BNL optically pumped polarized ion source, the sodium jet target with recirculation and aperture diameter of 2 cm is used in the experiment. At the first stage of the experiment H{sup -} beam with 36 mA current, 5 keV energy and {approx}0.15 cm {center_dot} mrad normalized emittance was obtained. To increase H{sup -} beam current ballistically focused hydrogen neutral beam will be applied. The effects of H{sup -} beam space-charge and sodium-jet stability will be studied to determine the basic limitations of this approach.

Davydenko, V.; Zelenski, A.; Ivanov, A.; Kolmogorov, A.

2010-11-16T23:59:59.000Z

302

Theoretical study of sodium and potassium resonance lines pressure broadened by helium atoms  

SciTech Connect

We perform fully quantum mechanical calculations in the binary approximation of the emission and absorption profiles of the sodium 3s-3p and potassium 4s-4p resonance lines under the influence of a helium perturbing gas. We use carefully constructed potential energy surfaces and transition dipole moments to compute the emission and absorption coefficients at temperatures from 158 to 3000 K. Contributions from quasibound states are included. The resulting red and blue wing profiles agree well with previous theoretical calculations and with experimental measurements.

Zhu, Cheng; Babb, James F.; Dalgarno, Alex [ITAMP, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 (United States)

2006-01-15T23:59:59.000Z

303

Process for converting sodium nitrate-containing, caustic liquid radioactive wastes to solid insoluble products  

DOE Patents (OSTI)

A method for converting sodium nitrate-containing, caustic, radioactive wastes to a solid, relatively insoluble, thermally stable form is provided and comprises the steps of reacting powdered aluminum silicate clay, e.g., kaolin, bentonite, dickite, halloysite, pyrophyllite, etc., with the sodium nitrate-containing radioactive wastes which have a caustic concentration of about 3 to 7 M at a temperature of 30.degree. C to 100.degree. C to thereby entrap the dissolved radioactive salts in the aluminosilicate matrix. In one embodiment the sodium nitrate-containing, caustic, radioactive liquid waste, such as neutralized Purex-type waste, or salts or oxide produced by evaporation or calcination of these liquid wastes (e.g., anhydrous salt cake) is converted at a temperature within the range of 30.degree. C to 100.degree. C to the solid mineral form-cancrinite having an approximate chemical formula 2(NaAlSiO.sub.4) .sup.. xSalt.sup.. y H.sub.2 O with x = 0.52 and y = 0.68 when the entrapped salt is NaNO.sub.3. In another embodiment the sodium nitrate-containing, caustic, radioactive liquid is reacted with the powdered aluminum silicate clay at a temperature within the range of 30.degree. C to 100.degree. C, the resulting reaction product is air dried eitheras loose powder or molded shapes (e.g., bricks) and then fired at a temperature of at least 600.degree. C to form the solid mineral form-nepheline which has the approximate chemical formula of NaAlSiO.sub.4. The leach rate of the entrapped radioactive salts with distilled water is reduced essentially to that of the aluminosilicate lattice which is very low, e.g., in the range of 10.sup.-.sup.2 to 10.sup.-.sup.4 g/cm.sup.2 -- day for cancrinite and 10.sup.-.sup.3 to 10.sup.-.sup.5 g/cm.sup.2 -- day for nepheline.

Barney, Gary S. (Richland, WA); Brownell, Lloyd E. (Richland, WA)

1977-01-01T23:59:59.000Z

304

Feed Composition for Sodium-Bearing Waste Treatment Process, Rev. 3  

SciTech Connect

Treatment of sodium-bearing waste (SBW) at the Idaho Nuclear Technology and Engineering Center (INTEC) within the Idaho National Engineering and Environmental Laboratory is mandated by a Settlement Agreement between the Department of Energy and the State of Idaho. One of the requirements of the Settlement Agreement is to complete treatment of SBW by December 31, 2012. To support both design and development studies for the SBW treatment process, detailed feed compositions are needed. This report contains the expected compositions of these feed streams and the sources and methods used in obtaining these compositions.

Barnes, Charles Marshall

2003-09-01T23:59:59.000Z

305

Pre-Decisional Sodium Bearing Waste Technology Development Roadmap FY-01 Update  

SciTech Connect

This report provides an update to the Sodium Bearing Waste (SBW) Technology Development Roadmap generated a year ago. It outlines progress made to date and near-term plans for the technology development work necessary to support processing SBW. In addition, it serves as a transition document to the Risk Management Plan (RMP) required by the Project per DOE Order 413.3, “Program and Project Management for the Acquisition of Capital Assets.” Technical uncertainties have been identified as design basis elements (DBEs) and captured in a technical baseline database. As the risks are discovered, assessed, and mitigated, the status of the DBEs in the database will be updated and tracked to closure.

Mc Dannel, Gary Eidson

2001-09-01T23:59:59.000Z

306

Transport of Magnetic Field by a Turbulent Flow of Liquid Sodium  

SciTech Connect

We study the effect of a turbulent flow of liquid sodium generated in the von Karman geometry, on the localized field of a magnet placed close to the frontier of the flow. We observe that the field can be transported by the flow on distances larger than its integral length scale. In the most turbulent configurations, the mean value of the field advected at large distance vanishes. However, the rms value of the fluctuations increases linearly with the magnetic Reynolds number. The advected field is strongly intermittent.

Volk, R.; Odier, Ph.; Pinton, J.-F. [Laboratoire de Physique de l'Ecole Normale Superieure de Lyon, CNRS UMR 5672, 47 allee d'Italie, 69364 Lyon Cedex 07 (France); Ravelet, F.; Monchaux, R.; Chiffaudel, A.; Daviaud, F. [Service de Physique de l'Etat Condense, Direction des Sciences de la Matiere, CEA-Saclay, CNRS URA 2464, 91191 Gif-sur-Yvette cedex (France); Berhanu, M.; Fauve, S.; Mordant, N.; Petrelis, F. [Laboratoire de Physique Statistique de l'Ecole Normale Superieure, CNRS UMR 8550, 24 Rue Lhomond, 75231 Paris Cedex 05 (France)

2006-08-18T23:59:59.000Z

307

Nutrition Guide Station Menu Items Portion Size Calories Protein Total Fat Carbohydrates Sodium Cholesterol Total Fiber  

E-Print Network (OSTI)

Nutrition Guide #12;Station Menu Items Portion Size Calories Protein Total Fat Carbohydrates Sodium.00 43 70.0 0.0 Turkey Breast 4 oz 172 20 7.00 0.00 520 47.0 0.0 Grilled White Meat Chicken 4 oz 125 28 1.40 0.00 74 66.0 0.0 Fried Boneless Chicken 4 oz 212 38 5.00 0.58 90 103.0 0.0 Ham 4 oz 120 20 4.00 0

Aronov, Boris

308

Sodium-sulfur battery development. Phase VB final report, October 1, 1981--February 28, 1985  

SciTech Connect

This report describes the technical progress made under Contract No. DE-AM04-79CH10012 between the U.S. Department of Energy, Ford Aerospace & Communications Corporations and Ford Motor Company, for the period 1 October 1981 through 28 February 1985, which is designated as Phase VB of the Sodium-Sulfur Battery Development Program. During this period, Ford Aerospace held prime technical responsibility and Ford Motor Company carried out supporting research. Ceramatec, Inc., was a major subcontractor to Ford Aerospace for electrolyte development and production.

1985-04-01T23:59:59.000Z

309

High intensity discharge 400-watt sodium ballast. Phase I. Final report  

SciTech Connect

The results of a research and development program directed toward design, test, and evaluation of energy efficient High Intensity Discharge (HID) Solid State 400-Watt Ballast lighting system are reported. Phase I of the project which was designed to modify the existing Datapower ballast to LBL configuration, measure performance characteristics, and compare efficiency with a core/coil ballast including energy loss analysis is covered. In addition, Datapower was tasked to build six (6) prototype 400-Watt High Pressure Sodium Ballasts for verification tests by an independent test facility and follow-on performance and life tests at LBL.

Felper, G.

1980-06-01T23:59:59.000Z

310

Experimental Development and Demonstration of Ultrasonic Measurement Diagnostics for Sodium Fast Reactor Thermal-hydraulics  

Science Conference Proceedings (OSTI)

This research project will address some of the principal technology issues related to sodium-cooled fast reactors (SFR), primarily the development and demonstration of ultrasonic measurement diagnostics linked to effective thermal convective sensing under normatl and off-normal conditions. Sodium is well-suited as a heat transfer medium for the SFR. However, because it is chemically reactive and optically opaque, it presents engineering accessibility constraints relative to operations and maintenance (O&M) and in-service inspection (ISI) technologies that are currently used for light water reactors. Thus, there are limited sensing options for conducting thermohydraulic measurements under normal conditions and off-normal events (maintenance, unanticipated events). Acoustic methods, primarily ultrasonics, are a key measurement technology with applications in non-destructive testing, component imaging, thermometry, and velocimetry. THis project would have yielded a better quantitative and qualitative understanding of the thermohydraulic condition of solium under varied flow conditions. THe scope of work will evaluate and demonstrate ultrasonic technologies and define instrumentation options for the SFR.

Tokuhiro, Akira; Jones, Byron

2013-09-13T23:59:59.000Z

311

State Environmental Policy Act (SEPA) Checklist for the 105-DR Large Sodium Fire Facility Closure Plan  

Science Conference Proceedings (OSTI)

The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 105-DR Large Sodium Fire Facility (LSFF), which was in operation from about 1972 to 1986, was a research laboratory that occupied the former ventilation supply room on the southwest side of the 105-DR Reactor facility. The LSFF was established to provide means of investigating fire and safety aspects associated with large sodium or other metal alkali fires in the liquid metal fast breeder reactor (LMFBR) facilities. The 105-DR Reactor facility was designed and built in the 1950's and is located in the 100-D Area of the Hanford Site. The building housed the DR defense reactor, which was shut down in 1964. The LSFF is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Clean closure is the proposed method of closure for the LSFF. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989). This closure plan presents a description of the facility, the history of wastes managed, and the procedures that will be followed to close the LSFF as an Alkali Metal Treatment Facility. No future use of the LSFF is expected.

Not Available

1990-09-01T23:59:59.000Z

312

R and D Trends For The Future Sodium Fast Reactors In France  

SciTech Connect

The sodium fast reactors are the natural Generation IV candidate, thanks to their strong potential for incineration and/or breeding that allow drastic fissile materials economy and fission waste products recycling or transmutation. The question is now to make evolve the existing or past projects of reactors to systems fully compatible with Generation IV objectives, in particular with regard to the economy, durability and safety. This work must be achieved in an international frame which requires a sharing of the objectives and will allow, in the long term, the sharing of the activities. However, in order to ensure the overall coherence of the various development programs defined within the Gen-IV framework, it is necessary to define a new SFR development plan based on the experience gained in France (Phenix, Superphenix) and Europe, in the EFR project. The commonly agreed SFR system issues to be improved or further investigated are its capital cost, safety issues (sodium risks, core criticality accidents), and in-service inspection and maintenance technology. (authors)

Dufour, Ph. [CEA-Cadarache, DEN/DER/SESI/LESA, bat. 212, 13108 Saint Paul Lez Durance (France); Anzieu, P. [CEA-Saclay, 91191 Gif-sur-Yvette Cedex (France); Lecarpentier, D. [EDF-R and D, Departement SINETICS, 1 av du General De Gaulle, 92140 Clamart (France); Serpantie, JP. [AREVA-Framatome ANP (France)

2006-07-01T23:59:59.000Z

313

Inherent Prevention and Mitigation of Severe Accident Consequences in Sodium-Cooled Fast Reactors  

SciTech Connect

Safety challenges for sodium-cooled fast reactors include maintaining core temperatures within design limits and assuring the geometry and integrity of the reactor core. Due to the high power density in the reactor core, heat removal requirements encourage the use of high-heat-transfer coolants such as liquid sodium. The variation of power across the core requires ducted assemblies to control fuel and coolant temperatures, which are also used to constrain core geometry. In a fast reactor, the fuel is not in the most neutronically reactive configuration during normal operation. Accidents leading to fuel melting, fuel pin failure, and fuel relocation can result in positive reactivity, increasing power, and possibly resulting in severe accident consequences including recriticalities that could threaten reactor and containment integrity. Inherent safety concepts, including favorable reactivity feedback, natural circulation cooling, and design choices resulting in favorable dispersive characteristics for failed fuel, can be used to increase the level of safety to the point where it is highly unlikely, or perhaps even not credible, for such severe accident consequences to occur.

Roald A. Wigeland; James E. Cahalan

2011-04-01T23:59:59.000Z

314

Selecting the suitable dopants: electronic structures of transition metal and rare earth doped thermoelectric sodium cobaltate  

E-Print Network (OSTI)

Engineered Na0.75CoO2 is considered a prime candidate to achieve high efficiency thermoelectric systems to regenerate electricity from waste heat. In this work, three elements with outmost electronic configurations, (1) an open d shell (Ni), (2) a closed d shell (Zn), and (3) an half fill f shell (Eu) with a maximum unpaired electrons, were selected to outline the dopants' effects on electronic and crystallographic structures of Na0.75CoO2. Systematic ab initio density functional calculations showed that the formation energy of these dopants was found to be lowest when residing on sodium layer and ranked as -1.1 eV, 0.44 eV and 3.44 eV for Eu, Ni and Zn respectively. Furthermore Ni was also found to be stable when substituting Co ion. As these results show great harmony with existing experimental data, they provide new insights into the fundamental principle of dopant selection for manipulating the physical properties in the development of high performance sodium cobaltate based thermoelectric materials.

Assadi, M H N; Yu, A B

2012-01-01T23:59:59.000Z

315

Final report-passive safety optimization in liquid sodium-cooled reactors.  

Science Conference Proceedings (OSTI)

This report summarizes the results of a three-year collaboration between Argonne National Laboratory (ANL) and the Korea Atomic Energy Research Institute (KAERI) to identify and quantify the performance of innovative design features in metallic-fueled, sodium-cooled fast reactor designs. The objective of the work was to establish the reliability and safety margin enhancements provided by design innovations offering significant potential for construction, maintenance, and operating cost reductions. The project goal was accomplished with a combination of advanced model development (Task 1), analysis of innovative design and safety features (Tasks 2 and 3), and planning of key safety experiments (Task 4). Task 1--Computational Methods for Analysis of Passive Safety Design Features: An advanced three-dimensional subassembly thermal-hydraulic model was developed jointly and implemented in ANL and KAERI computer codes. The objective of the model development effort was to provide a high-accuracy capability to predict fuel, cladding, coolant, and structural temperatures in reactor fuel subassemblies, and thereby reduce the uncertainties associated with lower fidelity models previously used for safety and design analysis. The project included model formulation, implementation, and verification by application to available reactor tests performed at EBR-II. Task 2--Comparative Analysis and Evaluation of Innovative Design Features: Integrated safety assessments of innovative liquid metal reactor designs were performed to quantify the performance of inherent safety features. The objective of the analysis effort was to identify the potential safety margin enhancements possible in a sodium-cooled, metal-fueled reactor design by use of passive safety mechanisms to mitigate low-probability accident consequences. The project included baseline analyses using state-of-the-art computational models and advanced analyses using the new model developed in Task 1. Task 3--Safety Implications of Advanced Technology Power Conversion and Design Innovations and Simplifications: Investigations of supercritical CO{sub 2} gas turbine Brayton cycles coupled to the sodium-cooled reactors and innovative concepts for sodium-to-CO{sub 2} heat exchangers were performed to discover new designs for high efficiency electricity production. The objective of the analyses was to characterize the design and safety performance of equipment needed to implement the new power cycle. The project included considerations of heat transfer and power conversion systems arrangements and evaluations of systems performance. Task 4--Post Accident Heat Removal and In-Vessel Retention: Test plans were developed to evaluate (1) freezing and plugging of molten metallic fuel in subassembly geometry, (2) retention of metallic fuel core melt debris within reactor vessel structures, and (3) consequences of intermixing of high pressure CO{sub 2} and sodium. The objective of the test plan development was to provide planning for measurements of data needed to characterize the consequences of very low probability accident sequences unique to metallic fuel and CO{sub 2} Brayton power cycles. The project produced three test plans ready for execution.

Cahalana, J. E.; Hahn, D.; Nuclear Engineering Division; Korea Atomic Energy Research Inst.

2007-08-13T23:59:59.000Z

316

A literature review of radiolytic gas generation as a result of the decomposition of sodium nitrate wastes  

DOE Green Energy (OSTI)

The objective of this literature review is to determine expected chemical reactions and the gas generation associated with radiolytic decomposition of radioactive sodium nitrate wastes such as the wastes stored in the Melton Valley Storage Tanks (MVST) at Oak Ridge National Laboratory (ORNL). The literature survey summarizes expected chemical reactions and identifies the gases expected to be generated as a result of the radiolytic decomposition. The literature survey also identifies G values, which are the expression for radiation chemical yields as molecules of gas formed per 100 eV of absorbed energy, obtained from experimental studies of the radiolytic decomposition of water and sodium nitrate. 2 tabs., 32 refs.

Kasten, J.L.

1991-01-01T23:59:59.000Z

317

Analytical and experimental simulation of boiling oscillations in sodium with a low-pressure water system. [LMFBR  

SciTech Connect

An experimental and analytical program designed to simulate sodium boiling under low-power, low-flow conditions has been completed. Experiments were performed using atmospheric- pressure water as a simulant fluid and a simple one-dimensional model was developed for the system. Results indicate that water is a suitable simulant for liquid sodium under certain conditions and that the model does a fair job of modeling the system. In addition, oscillations that occur during the boiling process appear to augment substantially the heat transfer between liquid and vapor in condensation.

Levin, A.E.; Griffith, P.

1981-01-01T23:59:59.000Z

318

Calcium-Mediated Regulation of Proton-Coupled Sodium Transport - Final Report  

SciTech Connect

The long-term goal of our experiments was to understand mechanisms that regulate energy coupling by ion currents in plants. Activities of living organisms require chemical, mechanical, osmotic or electrical work, the energy for which is supplied by metabolism. Adenosine triphosphate (ATP) has long been recognized as the universal energy currency, with metabolism supporting the synthesis of ATP and the hydrolysis of ATP being used for the subsequent work. However, ATP is not the only energy currency in living organisms. A second and very different energy currency links metabolism to work by the movement of ions passing from one side of a membrane to the other. These ion currents play a major role in energy capture and they support a range of physiological processes from the active transport of nutrients to the spatial control of growth and development. In Arabidopsis thaliana (Arabidopsis), the activity of a plasma membrane Na+/H+ exchanger, SALT OVERLY SENSITIVE1 (SOS1), is essential for regulation of sodium ion homeostasis during plant growth in saline conditions. Mutations in SOS1 result in severely reduced seedling growth in the presence of salt compared to the growth of wild type. SOS1 is a secondary active transporter coupling movement of sodium ions out of the cell using energy stored in the transplasma membrane proton gradient, thereby preventing the build-up of toxic levels of sodium in the cytosol. SOS1 is regulated by complexes containing the SOS2 and CALCINEURIN B-LIKE10 (CBL10) or SOS3 proteins. CBL10 and SOS3 (also identified as CBL4) encode EF-hand calcium sensors that interact physically with and activate SOS2, a serine/threonine protein kinase. The CBL10/SOS2 or SOS3/SOS2 complexes then activate SOS1 Na+/H+ exchange activity. We completed our studies to understand how SOS1 activity is regulated. Specifically, we asked: (1) how does CBL10 regulate SOS1 activity? (2) What role do two putative CBL10-interacting proteins play in SOS1 regulation? (3) Are there differences in the regulation and/or activity of SOS1 in plants differing in their adaptation to salinity?

Schumaker, Karen S [Professor] [Professor

2013-10-24T23:59:59.000Z

319

Go/No-Go Recommendation for Sodium Borohydride for On-Board Vehicular Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

MP-150-42220 MP-150-42220 U. S. Department of Energy Hydrogen Program Go/No-Go Recommendation for Sodium Borohydride for On-Board Vehicular Hydrogen Storage National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov NREL is a U. S. Department of Energy Laboratory operated by Midwest Research Institute and Battelle Contract No. DE-AC36-98-GO10337 I I n n d d e e p p e e n n d d e e n n t t R R e e v v i i e e w w November 2007 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

320

Measurement of sodium-argon cluster ion recombination by coherent microwave scattering  

SciTech Connect

This present work demonstrates a non-intrusive measurement of the rate constant for sodium-argon cluster ions (Na{sup +}{center_dot}Ar) recombining with electrons. The measurements begin with resonance enhanced multi-photon ionization of the Na followed by coherent microwave scattering (radar) to monitor the plasma density. The Na{sup +}{center_dot}Ar adduct was formed in a three-body reaction. The plasma decay due to recombination reactions was monitored as a function of time and modeled to determine the rate constant. At 473 K, the rate constant is 1.8{sub -0.5}{sup +0.7}x10{sup -6}cm{sup 3}/s in an argon buffer at 100 Torr and initial Na number density of 5.5 x 10{sup 10} cm{sup -3}.

Wu Yue; Sawyer, Jordan; Zhang Zhili [Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville Tennessee 37996 (United States); Shneider, Mikhail N. [Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544 (United States); Viggiano, Albert A. [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States)

2012-03-12T23:59:59.000Z

Note: This page contains sample records for the topic "nasi sodium silicide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Process Options Description for Vitrification Flowsheet Model of INEEL Sodium Bearing Waste  

SciTech Connect

The purpose of this document is to provide the technical information to Savannah River Site (SRS) personnel that is required for the development of a basic steady-state process simulation of the vitrification treatment train of sodium bearing waste (SBW) at Idaho National Engineering and nvironmental Laboratory (INEEL). INEEL considers simulation to have an important role in the integration/optimization of treatment process trains for the High Level Waste (HLW) Program. This project involves a joint Technical Task Plan (TTP ID77WT31, Subtask C) between SRS and INEEL. The work scope of simulation is different at the two sites. This document addresses only the treatment of SBW at INEEL. The simulation model(s) is to be built by SRS for INEEL in FY-2001.

Nichols, Todd Travis; Taylor, Dean Dalton; Lauerhass, Lance; Barnes, Charles Marshall

2001-02-01T23:59:59.000Z

322

Modeling of NOx Destruction Options for INEEL Sodium-Bearing Waste Vitrification  

SciTech Connect

Off-gas NOx concentrations in the range of 1-5 mol% are expected as a result of the proposed vitrification of sodium-bearing waste at the Idaho National Engineering and Environmental Laboratory. An existing kinetic model for staged combustion (originally developed for NOx abatement from the calcination process) was updated for application to vitrification offgas. In addition, two new kinetic models were developed to assess the feasibility of using selective non-catalytic reduction (SNCR) or high-temperature alone for NOx abatement. Each of the models was developed using the Chemkin code. Results indicate that SNCR is a viable option, reducing NOx levels to below 1000 ppmv. In addition, SNCR may be capable of simultaneously reducing CO emissions to below 100 ppmv. Results for using high-temperature alone were not as promising, indicating that a minimum NOx concentration of 3950 ppmv is achievable at 3344°F.

Wood, Richard Arthur

2001-09-01T23:59:59.000Z

323

Glass Formulation Development for INEEL Sodium -Bearing Waste (FY2001 WM-180)  

SciTech Connect

A systematic study was undertaken to develop a glass composition to demonstrate the vitrification flowsheet of the Idaho National Engineering and Environmental Laboratory's sodium bearing waste (SBW) using the latest WM-180 tank composition. Although the previous study did not restrict waste loadings (WLs) based on the potential to form a segregated salt layer, avoiding its development in a melter is beneficial and was the primary focus from the glass-formulation perspective. The testing results described in this report were aimed at providing a candidate glass composition for use in a scaled melter demonstration of direct vitrification of WM-180 in the Research Scale Melter (RSM) at Pacific Northwest National Laboratory and the EV-16 melter at the Clemson Environmental Technology Laboratory.

Peeler, D.K.

2001-09-21T23:59:59.000Z

324

Suitability of Silica Gel to Process INEEL Sodium Bearing Waste - Letter Report  

SciTech Connect

The suitability of using the silica gel process for Idaho National Engineering and Environmental Laboratory (INEEL) sodium bearing waste was investigated during fiscal year 2000. The study was co-funded by the Tanks Focus Area as part of TTP No. ID-77WT-31 and the High Level Waste Program. The task also included the investigation of possible other absorbents. Scoping tests and examination of past work showed that the silica gel absorption/adsorption and drying method was the most promising; thus only silica gel was studied and not other absorbents. The documentation on the Russian silica gel process provided much of the needed information but did not provide some of the processing detail so these facts had to be inferred or gleaned from the literature.

Kirkham, Robert John; Herbst, Alan Keith

2000-09-01T23:59:59.000Z

325

RELY: A reliability modeling system for analysis of sodium-sulfur battery configurations  

DOE Green Energy (OSTI)

In support of the Office of Energy Storage and Distribution of the US Department of Energy (DOE), Pacific Northwest Laboratory has produced a microcomputer-based software package, called RELY, to assess the impact of sodium-sulfur cell reliability on constant current discharge battery performance. The Fortran-based software operates on IBM microcomputers and IBM-compatibles that have a minimum of 512K of internal memory. The software package has three models that provide the following: (1) a description of the failure distribution parameters used to model cell failure, (2) a Monte Carlo simulation of battery life, and (3) a detailed discharge model for a user-specified battery discharge cycle. 6 refs., 31 figs., 4 tabs.

Hostick, C.J.; Huber, H.D.; Doggett, W.H.; Dirks, J.A.; Dovey, J.F.; Grinde, R.B.; Littlefield, J.S.; Cuta, F.M.

1987-06-01T23:59:59.000Z

326

R and D program for core instrumentation improvements devoted for French sodium fast reactors  

Science Conference Proceedings (OSTI)

Under the framework of French R and D studies for Generation IV reactors and more specifically for sodium-cooled fast reactors (SFR); the CEA, EDF and AREVA have launched a joint coordinated research programme. This paper deals with the R and D sets out to achieve better inspection, maintenance, availability and decommissioning. In particular the instrumentation requirements for core monitoring and detection in the case of accidental events. Requirements mainly involve diversifying the means of protection and improving instrumentation performance in terms of responsiveness and sensitivity. Operation feedback from the Phenix and Superphenix prototype reactors and studies, carried out within the scope of the EFR projects, has been used to define the needs for instrumentation enhancement. (authors)

Jeannot, J. P.; Rodriguez, G.; Jammes, C.; Bernardin, B.; Portier, J. L.; Jadot, F. [Commissariat a l'Energie Atomique, Saint-Paul-lez-Durance, 13108 (France); Maire, S.; Verrier, D. [Advanced Projects and Decommissioning Div. Plant Sector AREVA NP - NEPL-FT, Lyon, 69000 (France); Loisy, F. [EDF - EDF R and D STEP Dept., 6 Quai Watier, Chatou, 78401 (France); Prele, G. [EDF, Generation/Nuclear Engineering, Basic Design Dept., Villeurbanne, 69628 (France)

2011-07-01T23:59:59.000Z

327

Crystalline, liquid crystalline, and isotropic phases of sodium deoxycholate in water  

SciTech Connect

Sodium deoxycholate (NaDC) is an important example of bile salts, representing systems with complex phase behavior involving both crystalline and mesophase structures. In this study, properties of NaDC-water mixtures were evaluated as a function of composition and temperature via X-ray diffraction with synchrotron (sXRD) and laboratory radiation sources, water sorption, polarized light, hot-stage microscopy, and freezing-point osmometry. Several phases were detected depending on the composition and temperature, including isotropic solution phase, liquid crystalline (LC) phase, crystalline hydrate, and ice. The LC phase was identified as hexagonal structure by sXRD, with up to 14 high-order reflections detected. The crystalline phase was found to be nonstoichiometric hydrate, based on XRD and water sorption data. The phase diagram of NaDC-water system has been refined based on both results of this study and other reports in literature.

Su, Ziyang; Luthra, Suman; Krzyzaniak, Joseph F.; Agra-Kooijman, Dena M.; Kumar, Satyendra; Byrn, Stephen R.; Shalaev, Evgenyi Y. (Pfizer); (Purdue); (Kent)

2012-09-06T23:59:59.000Z

328

Fiber-optic, anti-cycling, high pressure sodium street light control. Final technical progress report  

Science Conference Proceedings (OSTI)

This is the Final Technical Progress Report on a project to develop and market a Fiber-Optic Anti-Cycling High Pressure Sodium Street Light Control. The field test units are now being made with a single vertical PC board design and contains a computer-on-a-chip or PROM IC to take the place of the majority of the components previously contained on the upper logic board. This will reduce the final costs of the unit when it is in production and increase the control`s flexibility. The authors have finished the soft tooling and have made the 400 plastic cases for the field test units. The new configuration of the cases entails a simplified design of the control shell which will have the lenses cast in place. The shell and base plastics are now finished and in final assembly awaiting the completion of the PC boards.

NONE

1995-05-01T23:59:59.000Z

329

A High Temperature Electrochemical Energy Storage System Based on Sodium Beta-Alumina Solid Electrolyte (Base)  

DOE Green Energy (OSTI)

This report summarizes the work done during the period September 1, 2005 and March 31, 2008. Work was conducted in the following areas: (1) Fabrication of sodium beta{double_prime} alumina solid electrolyte (BASE) using a vapor phase process. (2) Mechanistic studies on the conversion of {alpha}-alumina + zirconia into beta{double_prime}-alumina + zirconia by the vapor phase process. (3) Characterization of BASE by X-ray diffraction, SEM, and conductivity measurements. (4) Design, construction and electrochemical testing of a symmetric cell containing BASE as the electrolyte and NaCl + ZnCl{sub 2} as the electrodes. (5) Design, construction, and electrochemical evaluation of Na/BASE/ZnCl{sub 2} electrochemical cells. (6) Stability studies in ZnCl{sub 2}, SnCl{sub 2}, and SnI{sub 4} (7) Design, assembly and testing of planar stacks. (8) Investigation of the effect of porous surface layers on BASE on cell resistance. The conventional process for the fabrication of sodium ion conducting beta{double_prime}-alumina involves calcination of {alpha}-alumina + Na{sub 2}CO{sub 3} + LiNO{sub 3} at 1250 C, followed by sintering powder compacts in sealed containers (platinum or MgO) at {approx}1600 C. The novel vapor phase process involves first sintering a mixture of {alpha}-alumina + yttria-stabilized zirconia (YSZ) into a dense ceramic followed by exposure to soda vapor at {approx}1450 C to convert {alpha}-alumina into beta{double_prime}-alumina. The vapor phase process leads to a high strength BASE, which is also resistant to moisture attack, unlike BASE made by the conventional process. The PI is the lead inventor of the process. Discs and tubes of BASE were fabricated in the present work. In the conventional process, sintering of BASE is accomplished by a transient liquid phase mechanism wherein the liquid phase contains NaAlO{sub 2}. Some NaAlO{sub 2} continues to remain at grain boundaries; and is the root cause of its water sensitivity. In the vapor phase process, NaAlO{sub 2} is never formed. Conversion occurs by a coupled transport of Na{sup +} through BASE formed and of O{sup 2-} through YSZ to the reaction front. Transport to the reaction front is described in terms of a chemical diffusion coefficient of Na{sub 2}O. The conversion kinetics as a function of microstructure is under investigation. The mechanism of conversion is described in this report. A number of discs and tubes of BASE have been fabricated by the vapor phase process. The material was investigated by X-ray diffraction (XRD), optical microscopy and scanning electron microscopy (SEM), before and after conversion. Conductivity (which is almost exclusively due to sodium ion transport at the temperatures of interest) was measured. Conductivity was measured using sodium-sodium tests as well as by impedance spectroscopy. Various types of both planar and tubular electrochemical cells were assembled and tested. In some cases the objective was to determine if there was any interaction between the salt and BASE. The interaction of interest was mainly ion exchange (possible replacement of sodium ion by the salt cation). It was noted that Zn{sup 2+} did not replace Na+ over the conditions of interest. For this reason much of the work was conducted with ZnCl{sub 2} as the cathode salt. In the case of Sn-based, Sn{sup 2+} did ion exchange, but Sn{sup 4+} did not. This suggests that Sn{sup 4+} salts are viable candidates. These results and implications are discussed in the report. Cells made with Na as the anode and ZnCl{sub 2} as the cathode were successfully charged/discharged numerous times. The key advantages of the batteries under investigation here over the Na-S batteries are: (1) Steel wool can be used in the cathode compartment unlike Na-S batteries which require expensive graphite. (2) Planar cells can be constructed in addition to tubular, allowing for greater design flexibility and integration with other devices such as planar SOFC. (3) Comparable or higher open circuit voltage (OCV) than the Na-S battery. (4) Wider operating temperature range and higher temper

Anil Virkar

2008-03-31T23:59:59.000Z

330

Facile fabrication of sodium Titanate nanostructures using metatitanic acid (TiO2 ? H2O) and its adsorption property  

Science Conference Proceedings (OSTI)

Fluffy sodium titanate nanostructures have been fabricated by a simple hydrothermal method with metatitanic acid as precursor. The obtained nanostructures exhibit as the aggregation of nanosheets, and the surface area of the nanostructure is about 110.59m2/g. ...

Gang Li; Lide Zhang; Ming Fang

2012-01-01T23:59:59.000Z

331

Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium vapor lamps, ultraviolet and  

E-Print Network (OSTI)

Mercury Lamps Recycling Fluorescent light-tubes, compact fluorescent bulbs, mercury and sodium light tubes are recycled. They are made from aluminum and metal. Aluminum is a silver-white metal and is very light in weight and strong. Because aluminum is ductile, it can be drawn into wires or pressed

Ungerleider, Leslie G.

332

Development of a model to predict flow oscillations in low-flow sodium boiling. [Loss-of-Piping Integrity accidents  

Science Conference Proceedings (OSTI)

Tests performed in a small scale water loop showed that voiding oscillations, similar to those observed in sodium, were present in water, as well. An analytical model, appropriate for either sodium or water, was developed and used to describe the water flow behavior. The experimental results indicate that water can be successfully employed as a sodium simulant, and further, that the condensation heat transfer coefficient varies significantly during the growth and collapse of vapor slugs during oscillations. It is this variation, combined with the temperature profile of the unheated zone above the heat source, which determines the oscillatory behavior of the system. The analytical program has produced a model which qualitatively does a good job in predicting the flow behavior in the wake experiment. The amplitude discrepancies are attributable to experimental uncertainties and model inadequacies. Several parameters (heat transfer coefficient, unheated zone temperature profile, mixing between hot and cold fluids during oscillations) are set by the user. Criteria for the comparison of water and sodium experiments have been developed.

Levin, A.E.; Griffith, P.

1980-04-01T23:59:59.000Z

333

Operational safety report for the cleaning of non-radioactive, sodium-wetted reactor components with ethyl alcohol  

DOE Green Energy (OSTI)

The safety aspects of the removal of sodium from nonradioactive reactor components by the alcohol process are described in detail. Pertinent properties of alcohol and hydrogen are presented. Relevant excerpts from the Occupational Safety and Health Act safety codes are presented, and a conceptual system is shown illustrating the application of these safety measures.

Humphrey, L.; Felton, L.; Goodman, L.; Pilicy, G.; Welch, F.

1974-01-01T23:59:59.000Z

334

Program on Technology Innovation: Advanced Sodium Sulfur (NaS) Battery Energy Storage System - 2006 Annual Report  

Science Conference Proceedings (OSTI)

Although sodium sulfur (NaS) batteries have begun to be commercialized in Japan, market development of NaS batteries in the United States has lacked a full-scale commercial demonstration. This report describes one of the first U.S. commercial NaS application efforts and details its technical aspects.

2007-12-21T23:59:59.000Z

335

Solar test of an integrated sodium reflux heat-pipe receiver/reactor for thermochemical energy transport  

DOE Green Energy (OSTI)

In October 1987, a chemical reactor integrated into a sodium reflux heat-pipe receiver was tested in the solar furnace at the Weizmann Institute of Science, Rehovot, Israel. The reaction carried out was the carbon dioxide reforming of methane. This reaction is one of the leading candidates for thermochemical energy transport either within a distributed solar receiver system or over long distances. The Schaeffer Solar Furnace consists of a 96 square meter heliostat and a 7.3 meter diameter dish concentrator with a 65-degree rim angle and a 3.5 meter focal length. Measurements have shown a peak concentration ratio of over 10,000 and a total power of 15 kW at an insolation of 800 w/square meter. The receiver/reactor contains seven catalyst-filled tubes inside an evacuated metal box containing sodium. The front surface of this box serves as the solar absorber of the receiver. In operation, concentrated sunlight heats the 1/8-inch Inconel plate and vaporizes sodium from the wire-mesh wick attached to the back of it. The sodium vapor condenses on the reactor tubes, releases its latent heat, and returns by gravity to the wick. Test results and areas for future development are discussed.

Diver, R.B.; Fish, J.D.; Levitan, R.; Levy, M.; Rosin, H.; Richardson, J.T.

1988-01-01T23:59:59.000Z

336

In vitro adsorption of sodium pentobarbital by SuperChar, USP and Darco G-60 activated charcoals  

SciTech Connect

This study was designed to examine the in vitro adsorption of sodium pentobarbital by three activated charcoals. Solutions of sodium pentobarbital (20 mM) were prepared in distilled water and in 70% sorbitol (w/v). Radiolabeled (/sup 14/C) sodium pentobarbital was added to each solution to serve as a concentration marker. Two ml of each drug solution was added to test tubes containing 40 mg of either Darco G-60, USP, or SuperChar activated charcoal. The drug-charcoal mixtures were incubated at 37 degrees C for O, 2.5, 5, 7.5 or 10 min. Equilibrium, indicated by a constant percentage of drug bound for two consecutive time periods, was established immediately for the aqueous mixtures and for Darco G-60 in sorbitol. The time to equilibrium was prolonged for USP (2.5 min) and SuperChar (5 min) in the presence of sorbitol. In the second series of experiments, solutions of sodium pentobarbital (1.25 to 160 mM) were prepared in either distilled water or sorbitol. Amount of drug bound by 10 to 320 mg of activated charcoal within a 10 min incubation period was determined. Scatchard analysis determined maximum binding capacity (Bmax) and dissociation constants (Kd) for each activated charcoal. In water, Bmax (mumoles/gm) was greatest for SuperChar (1141), followed by USP (580) and Darco G-60 (381), while the Kd's did not differ. Sorbitol did not change the Bmax or Kd of USP or Darco G-60, but the additive significantly decreased the Bmax (717) and increased the Kd for SuperChar (3.3 to 10.1 mM). The results suggest that relative binding capacity of activated charcoal is directly proportional to surface area, and that sorbitol significantly reduces sodium pentobarbital binding to SuperChar.

Curd-Sneed, C.D.; Parks, K.S.; Bordelon, J.G.; Stewart, J.J.

1987-01-01T23:59:59.000Z

337

SODIUM GRAPHITE REACTOR QUARTERLY PROGRESS REPORT FOR OCTOBER-DECEMBER 1955. SECTION A. SECTION B  

DOE Green Energy (OSTI)

An analysis was made of the nuclear parameters for sodium graphite reactor lattices. These parameters include thermal utilization, macroscopic cross sections, thermal diffusion length, and neutron absorption. Results of all calculations are given in graphical form. Test fuel slugs for the SRE were cycled up to 500 times between 100 and 500 deg C at the rate of 2 cycles/hr. Results are tabulated. The centrifugal casting of U alloy fuel slugs is briefly evaluated. Results of the microscopic examination of the extruded ThU breeder fuels are shown. The percent elongation of graphite due to the presence of Na is shown for various temperatures. Results of wear tests on graphite are also tabulated. The behavior of Zr in liquid Na was studied, and weight gains in Zr are summarized. Analog computer studies were continued, and data are included on the temperature effects of the response time of coolant channel Na outlet temperature thermocouples, the effects of continuous rod motion and pump speed changes on the outlet Na temperature and power, and the outlet temperature as a function of scram time. The critical evaluation of B--Ni rods is tabulated. The fuel rod assembly apparatus is described. Fuel rod development is discussed. Cyclograph traces of rods bonded with various Na--K alloys were recorded for rods at room temperature and heated to 450 and 600 deg F. The traces are indicative of uniform bonding. The moderator can fabrication and testing is also discussed. Tests were completed on Freeze Seal No. 2 for the 6-in. oval port Wedgeplug test valve at 450, 850, and 1250 deg F. The temperature gradients from the hot flange face to the end of the seal mechanism for various valve temperature conditions are shown. Sodium leak rates through the valve are tabulated. Progress in the development of a liquid Na level gage is briefly reported. The tubular heater experiment was completed, and the times to raise pipe temperatures from ambient to 350 deg F are tabulated. Designs for a 6-in. Na pump loop are described briefly. A one to 3.5 scale model of a SRE fuel element was constructed to study the effect of side drag on the element during insertion operations at those fuel channels located near the outlet of the upper plenum chamber. The calibration of the SRE fuel element orifices was studied. Control rod lead screw development is discussed. Development of the safety rod system is described. Core tank galling tests are summarized. Experiments to determine the effects of radiation on MoS/ sub 2/ are described. Dose buildup factors for the concretes to be used in the reactor top shield are tabulated. Constants for the quadratic representation of the dose buildup factor and the capture gamma rays from heavy concrete are also tabulated. The sodium pumps and service system are described. The rated cooling capacity of the SRE tetralin evaporative cooler was checked. Results of a study on the effects of NaK temperature on the H content of He are tabulated. (D.E.B.)

Martin, A.B.; Cochran, J.C. ed.

1956-04-15T23:59:59.000Z

338

Progress reports for Gen IV sodium fast reactor activities FY 2007.  

SciTech Connect

An important goal of the US DOE Sodium Fast Reactor (SFR) program is to develop the technology necessary to increase safety margins in future fast reactor systems. Although no decision has been made yet about who will build the next demonstration fast reactor, it seems likely that the construction team will include a combination of international companies, and the safety design philosophy for the reactor will reflect a consensus of the participating countries. A significant amount of experience in the design and safety analysis of Sodium Fast Reactors (SFR) using oxide fuel has been developed in both Japan and France during last few decades. In the US, the traditional approach to reactor safety is based on the principle of defense-in-depth, which is usually expressed in physical terms as multiple barriers to release of radioactive material (e.g. cladding, reactor vessel, containment building), but it is understood that the 'barriers' may consist of active systems or even procedures. As implemented in a reactor design, defense-in-depth is classed in levels of safety. Level 1 includes measures to specify and build a reliable design with significant safety margins that will perform according to the intentions of the designers. Level 2 consists of additional design measures, usually active systems, to protect against unlikely accidental events that may occur during the life of the plant. Level 3 design measures are intended to protect the public in the event of an extremely unlikely accident not foreseen to occur during the plant's life. All of the design measures that make up the first three levels of safety are within the design basis of the plant. Beyond Level 3, and beyond the normal design basis, there are accidents that are not expected to occur in a whole generation of plants, and it is in this class that severe accidents, i.e. accidents involving core melting, are included. Beyond design basis measures to address severe accidents are usually identified as being for prevention of progression into severe accident conditions (prevention of core melting) or for mitigation of severe accident consequences (mitigation of the impact of core melting to protect public health and safety). Because design measures for severe accident prevention and mitigation are beyond the normal design basis, established regulatory guidelines and codes do not provide explicit identification of the design performance requirements for severe accident accommodation. The treatment of severe accidents is one of the key issues of R&D plans for the Gen IV systems in general, and for the Sodium Fast Reactor (SFR) in particular. Despite the lack of an unambiguous definition of safety approach applicable for severe accidents, there is an emerging consensus on the need for their consideration for the design. The US SFR program and Argonne National Laboratory (ANL) in particular have actively studied the potential scenarios and consequences of Hypothetical Core Disruptive Accidents (HCDA) for SFRs with oxide fuel during the Fast Flux Test Facility (FFTF) and Clinch River Breeder Reactor Plant (CRBRP) programs in the 70s and 80s. Later, the focus of the US SFR safety R&D activities shifted to the prevention of all HCDAs through passive safety features of the SFRs with metal fuel in the Integral Fast Reactor (IFR) program, and the study of severe accident consequences was de-emphasized. The goal of this paper is to provide an overview of the current SFR safety approach and the role of severe accidents in Japan and France, in preparation for an expected and more active collaboration in this area between the US, Japan, and France.

Cahalan, J. E.; Tentner, A. M.; Nuclear Engineering Division

2007-10-04T23:59:59.000Z

339

Investigation of a Sodium Vapor Compressor Jet for Nuclear Propulsion of Aircraft  

SciTech Connect

?Analysis indicates that, in order to achieve supersonic flight with nuclear powered aircraft, a reactor -power plant combination capable of operating at temperatures considerably in excess of current practice must be developed. It is pointed out that there exist two general avenues of approach toward the goal of attaining high temperature reactors and power plants. The first approach involves the continuation and augmentation of research along the lines pursued by the conventional turbo-jet engine manufacturer, namely a search for material coatings or materials that will retain structural strength in high temperature oxidizing atmospheres. The second approach seeks to take advantage of the peculiar characteristics of the compressor-jet engine that permit the operation of the high temperature components in a non-oxidizing atmosphere. The results of a preliminary design study of a supersonic aircraft powered by a high temperature sodium, liquid vapor compressor -jet engine are summarized. The analysis considered, in as much detail as was warranted by the limited experimental information available, the characteristics of the reactor, power plant and airframe involved in determining performance. This study has been conducted for the purpose of guiding future, long -t e r rn , research work along the lines of high temperature reactors and power plants for aircraft propulsion. The sodium vapor compressor -jet is not presented as an engine that is presently considered feasible nor is any attempt made to establish a time table for its development. ?The present status of reactor -power plant combinations of the type discussed in this report is such that the configurations presented and the thermodynamic requirements set forth are highly c onj ectural. However, in light of the promising results thus far obtained from very limited experimentation in the field of high temperature materials not subject to oxidizing atmospheres, it appears worthwhile to continue a research effort along these lines in the expectation of making high temperature, high performance aircraft a reality. This report is based upon studies conducted for the Atomic Energy Commission under Contract AT-40-l-GEN-1064. These studies were concluded on September 1, 1951, and were informally made available to the Aircraft Nuclear Propulsion Group at ORNL at that time.

Schwartz, H.

1953-06-25T23:59:59.000Z

340

Novel passive approach to protecting the primary containment barrier formed by the intermediate heat exchanger from the effects of an uncontrolled sodium water reaction  

SciTech Connect

This patent describes, in a steam generator utilized with a liquid sodium cooled nuclear reactor, provision is made to vent the violent sodium water reaction emanating from a tube rupture casualty. The steam generator includes a sodium plenum at the bottom thereof containing a conventional rupture disk for venting sodium, steam, and reaction products including hydrogen immediately upon a tube rupture casualty. The invention includes providing an alternative concentric flow path interior to the steam generator and parallel to the tube bundle. This alternative concentric flow path extends from the upper portion of the steam generator down into the lower head or plenum adjacent to the pressure relief diaphragm. This alternate path is partially filled with sodium during normal reactor operation. In the event of a tube bundle break, the alternative flow path dumps its sodium through the conventional rupture disk and then provides an immediate alternate pressure release path in parallel with the tube bundle for steam and water flow from the tube rupture site to the rupture disk. This parallel flow path reduces the pressure differential from the water/steam flow through the tube bundle such that water/steam does not flow back through the intermediate heat transport system to the intermediate heat exchanger (IHX) where it would react with residual sodium and potentially damage the IHX tube bundle which is part of the reactor primary containment barrier.

Boardman, C.E.; Maurer, J.P.

1991-01-08T23:59:59.000Z

Note: This page contains sample records for the topic "nasi sodium silicide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Conceptual design of advanced central receiver power systems sodium-cooled receiver concept. Volume 2, Book 1. Commercial plant conceptual design. Final report  

DOE Green Energy (OSTI)

The conceptual design of the 100-MW solar tower focus commercial power plant is described in detail. Sodium is pumped up to the top of a tall tower where the receiver is located. The sodium is heated in the receiver and then flows down the tower, through a pressure reducing device, and thence into a large, hot storage tank which is located at ground level and whose size is made to meet a specific thermal energy storage capacity requirement. From this tank, the sodium is pumped by a separate pump, through a system of sodium-to-water steam generators. The steam generator system consists of a separate superheater and reheater operating in parallel and an evaporator unit operating in series with the other two units. The sodium flowing from the evaporator unit is piped to a cold storage tank. From the cold storage tank, sodium is then pumped up to the tip of the tower to complete the cycle. The steam generated in the steam generators is fed to a conventional off-the-shelf, high-efficiency turbine. The steam loop operates in a conventional rankine cycle with the steam generators serving the same purpose as a conventional boiler and water being fed to the evaporator with conventional feedwater pumps. The pressure reducing device (a standard drag valve, for example) serves to mitigate the pressure caused by the static head of sodium and thus allows the large tanks to operate at ambient pressure conditions. (WHK)

Not Available

1979-03-01T23:59:59.000Z

342

Roderick MacKinnon and Ion Channels - Potassium Channels and Sodium  

NLE Websites -- All DOE Office Websites (Extended Search)

Roderick MacKinnon and Ion Channels Roderick MacKinnon and Ion Channels Resources with Additional Information · Patents Roderick MacKinnon Courtesy of The Rockefeller University Roderick MacKinnon, M.D., a visiting researcher at the U.S. Department of Energy's Brookhaven National Laboratory, is a recipient of the 2003 Nobel Prize in Chemistry 'for structural and mechanistic studies of ion channels.' His research explains "how a class of proteins helps to generate nerve impulses - the electrical activity that underlies all movement, sensation, and perhaps even thought. The work leading to the prize was done primarily at the Cornell High Energy Synchrotron Source [CHESS] and the National Synchrotron Light Source [NSLS] at Brookhaven. The proteins, called ion channels, are tiny pores that stud the surface of all of our cells. These channels allow the passage of potassium, calcium, sodium, and chloride molecules called ions. Rapid-fire opening and closing of these channels releases ions, moving electrical impulses from the brain in a wave to their destination in the body."1

343

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles  

DOE Green Energy (OSTI)

This report is the last of four volumes that identify and assess the environmental, health, and safety issues that may affect the commercial-scale use of sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles. The reports are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD D) program for Na/S battery technology. The reports review the status of Na/S battery RD D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers the in-vehicle safety issues of electric vehicles powered by Na/S batteries. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, and private industry. It has three major goals: (1) to identify the unique hazards associated with electric vehicle (EV) use; (2) to describe the existing standards, regulations, and guidelines that are or could be applicable to these hazards; and (3) to discuss the adequacy of the existing requirements in addressing the safety concerns of EVs.

Mark, J

1992-11-01T23:59:59.000Z

344

Fate of Uranium during Sodium Aluminosilicate Formation under Waste Tank Conditions  

SciTech Connect

Experiments have been conducted to examine the fate of uranium during the formation of sodium aluminosilicate (NAS) when wastes containing high aluminate concentrations are mixed with wastes of high silicate concentration. Testing was conducted at varying degrees of uranium saturation. Testing examined typical tank conditions, e.g., stagnant, slightly elevated temperature (50 C). The results showed that under sub-saturated conditions uranium is not removed from solution to any large extent in both simulant testing and actual tank waste testing. There are data supporting a small removal due to sorption of uranium on sites in the NAS. Above the solubility limit the data are clear that a reduction in uranium concentration occurs with the formation of aluminosilicate. This uranium precipitation is fairly rapid and ceases when uranium reaches its solubility limit. At the solubility limit, it appears that uranium is not affected, but further testing might be warranted. Lastly, analysis of the uranium speciation in a Tank 49H set of samples showed the uranium to be soluble. Analysis of the solution composition and subsequent use of the Hobb's uranium solubility model indicated a uranium solubility limit of 32 mg/L. The measured value of uranium in the Tank 49H matched the model prediction.

Wilmarth, B

2005-06-22T23:59:59.000Z

345

Sodium spray and jet fire model development within the CONTAIN-LMR code  

Science Conference Proceedings (OSTI)

An assessment was made of the sodium spray fire model implemented in the CONTAIN code. The original droplet burn model, which was based on the NACOM code, was improved in several aspects, especially concerning evaluation of the droplet burning rate, reaction chemistry and heat balance, spray geometry and droplet motion, and consistency with CONTAIN standards of gas property evaluation. An additional droplet burning model based on a proposal by Krolikowski was made available to include the effect of the chemical equilibrium conditions at the flame temperature. The models were validated against single-droplet burn experiments as well as spray and jet fire experiments. Reasonable agreement was found between the two burn models and experimental data. When the gas temperature in the burning compartment reaches high values, the Krolikowski model seems to be preferable. Critical parameters for spray fire evaluation were found to be the spray characterization, especially the droplet size, which largely determines the burning efficiency, and heat transfer conditions at the interface between the atmosphere and structures, which controls the thermal hydraulic behavior in the burn compartment.

Scholtyssek, W. [Kernforschungszentrum Karlsruhe GmbH (Germany). Inst. fuer Neutronenphysik und Reaktortechnik; Murata, K.K. [Sandia National Labs., Albuquerque, NM (United States)

1993-12-31T23:59:59.000Z

346

Sulfur Partitioning During Vitrification of INEEL Sodium Bearing Waste: Status Report  

SciTech Connect

The sodium bearing tank waste (SBW) at Idaho National Engineering and Environmental Laboratory (INEEL) contains high concentrations of sulfur (roughly 5 mass% of SO3 on a nonvolatile oxide basis). The amount of sulfur that can be feed to the melter will ultimately determine the loading of SBW in glass produced by the baseline (low-temperature, joule-heated, liquid-fed, ceramic-lined) melter. The amount of sulfur which can be fed to the melter is determined by several major factors including: the tolerance of the melter for an immiscible salt layer accumulation, the solubility of sulfur in the glass melt, the fraction of sulfur removed to the off-gas, and the incorporation of sulfur into the glass up to it?s solubility limit. This report summarizes the current status of testing aimed at determining the impacts of key chemical and physical parameters on the partitioning of sulfur between the glass, a molten salt, and the off-gas.

Darab, John G.; Graham, Dennis D.; Macisaac, Brett D.; Russell, Renee L.; Smith, Harry D.; Vienna, John D.; Peeler, David K.

2001-07-31T23:59:59.000Z

347

Test Summary Report INEEL Sodium-Bearing Waste Vitrification Demonstration RSM-01-1  

SciTech Connect

The U.S. Department of Energy's Idaho National Engineering and Environmental Laboratory is storing large amounts of radioactive and mixed wastes. Most of the sodium-bearing wastes have been calcined, but about a million gallons remain uncalcined, and this waste does not meet current regulatory requirements for long-term storage and/or disposal. As a part of the Settlement Agreement between DOE and the State of Idaho, the tanks currently containing SBW are to be taken out of service by December 31, 2012, which requires removing and treatment the remaining SBW. Vitrification is the option for waste disposal that received the highest weighted score against the criteria used. Beginning in FY 2000, the INEEL high-level waste program embarked on a program for technology demonstration and development that would lead to conceptual design of a vitrification facility in the event that vitrification is the preferred alternative for SBW disposal. The Pacific Northwest National Laborator's Research-Scale Melter was used to conduct these initial melter-flowsheet evaluations. Efforts are underway to reduce the volume of waste vitrified, and during the current test, an overall SBW waste volume-reduction factor of 7.6 was achieved.

Goles, Ronald W.; Perez, Joseph M.; Macisaac, Brett D.; Siemer, Darryl D.; Mccray, John A.

2001-05-21T23:59:59.000Z

348

Composition and Simulation of Tank WM-180 Sodium Bearing Waste at INTEC  

SciTech Connect

The 1-million liters of sodium-bearing waste in the WM-180 tank at the Idaho Nuclear Technology and Engineering Center has been concentrated and will be the first to be processed, at its current composition, by vitrification to prepare the radioactive waste for disposition. The waste has been sampled and analyzed for cations, anions, and radionuclides in the liquid and in the small amount of solids that were entrained with the liquid during sampling. The analytical results have been evaluated and a non-radioactive simulant composition and preparation procedure developed and demonstrated to result in a clear solution. The evaluation and results are reported here. This simulant is suitable for performing laboratory and pilot-scale tests in order to develop the vitrification technology. The solids entrained from the tank with the liquid sample amount to 0.06% of the dissolved solids in the liquid. While their elemental and radionuclide composition was determined, qualitative characterization using x-ray diffraction was not possible. Because of the interest in the properties of solids that may be in the bottom of the WM-180 tank, for tank closure activities, thermodynamic modeling was performed of potential precipitates that may be in equilibrium with the solution. The results were used to derive a possible chemical composition of the solids.

Christian, Jerry Dale

2001-04-01T23:59:59.000Z

349

Steam Reforming Application for Treatment of DOE Sodium Bearing Tank Wastes at INL for ICP  

SciTech Connect

The patented THOR® steam reforming waste treatment technology has been selected as the technology of choice for treatment of Sodium Bearing Waste (SBW) at the Idaho National Laboratory (INL) for the Idaho Cleanup Project (ICP). SBW is an acidic tank waste at the Idaho Nuclear Technology and Engineering Center (INTEC) at INL. It consists primarily of waste from decontamination activities and laboratory wastes. SBW contains high concentrations of nitric acid, alkali and aluminum nitrates, with minor amounts of many inorganic compounds including radionuclides, mainly cesium and strontium. The THOR® steam reforming process will convert the SBW tank waste feed into a dry, solid, granular product. The THOR® technology was selected to treat SBW, in part, because it can provide flexible disposal options to accommodate the final disposition path selected for SBW. THOR® can produce a final end-product that will meet anticipated requirements for disposal as Remote-Handled TRU (RH-TRU) waste; and, with modifications, THOR® can also produce a final endproduct that could be qualified for disposal as High Level Waste (HLW). SBW treatment will be take place within the Integrated Waste Treatment Unit (IWTU), a new facility that will be located at the INTEC. This paper provides an overview of the THOR® process chemistry and process equipment being designed for the IWTU.

J. Bradley Mason; Kevin Ryan; Scott Roesener; Michael Cowen; Duane Schmoker; Pat Bacala; Bill Landman

2006-03-01T23:59:59.000Z

350

Phase 2 TWR Steam Reforming Test for Sodium-Bearing Waste Treatment  

SciTech Connect

About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste (SBW) is stored in stainless steel tanks a the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory (INEEL). Steam reforming is a candidate technology being investigated for converting the SBW into a road ready waste form that can be shipped to the Waste Isolation Pilot Plant in New Mexico for interment. Fluidized bed steam reforming technology, licensed to ThermoChem Waste Remediation, LLC (TWR) by Manufacturing Technology Conversion International, was tested in two phases using an INEEL (Department of Energy) fluidized bed test system located at the Science Applications International Corporation (SAIC) Science and Technology Applications Research Center in Idaho Falls, Idaho. The Phase 1 tests were reported earlier. The Phase 2 tests are reported here. For Phase 2, the process feed rate, reductant stoichiometry, and process temperature were varied to identify and demonstrate how the process might be optimized to improve operation and product characteristics. The first week of testing was devoted primarily to process chemistry and the second week was devoted more toward bed stability and particle size control.

Nicholas R. Soelberg; Doug Marshall; Dean Taylor; Steven Bates

2004-01-01T23:59:59.000Z

351

A SODIUM-GRAPHITE REACTOR STEAM-ELECTRIC STATION FOR 75 MEGAWATTS NET GENERATION  

SciTech Connect

The major design features, nuclear characteristics and performance data for a nuclear fueled central station power plant of 75,000 kw net capacity are presented. The heat source is a Na cooled graphite moderated reactor. The design of the reactor takes full advantage of the experience gained to date on the Sodium Reactor Experiment (SRE); the plant described here is a straightforward extension of the smaller experimental SRE, which is now under construction. The fuel elements are made up of rod clusters and the moderator is in the form of Zr canned graphite elements. The performance of the reactor has been based on conservative temperatures and coolant flow velocities which result in a plant with "built-in reserve." Thus, as experience is gained and anticipated improvements in reactor fuel elements and construction materials are proven, the performance of the plant can be increased accordingly. Two reactor designs are described, one for operation with slightly enriched U fuel elements and the other for operation with Th--U fuel elements. The associated heat exchangers, pumps, steam, and electrical generating equipment are identical for either reactor design. An analysis of turbine cycles describes the particular cycle chosen for initial operation and discusses a method by which modern central station performance can be initially obtained. The design and performance data which are required to enable reliable estimates of the plant construction and operating costs to be made are established. (auth)

Weisner, E.F.; Sybert, W.M.

1955-03-22T23:59:59.000Z

352

On the Criticality Safety of Transuranic Sodium Fast Reactor Fuel Transport Casks  

SciTech Connect

This work addresses the neutronic performance and criticality safety issues of transport casks for fuel pertaining to low conversion ratio sodium cooled fast reactors, conventionally known as Advanced Burner Reactors. The criticality of a one, three, seven and 19-assembly cask capacity is presented. Both dry “helium” and flooded “water” filled casks are considered. No credit for fuel burnup or fission products was assumed. As many as possible of the conservatisms used in licensing light water reactor universal transport casks were incorporated into this SFR cask criticality design and analysis. It was found that at 7-assemblies or more, adding moderator to the SFR cask increases criticality margin. Also, removal of MAs from the fuel increases criticality margin of dry casks and takes a slight amount of margin away for wet casks. Assuming credit for borated fuel tube liners, this design analysis suggests that as many as 19 assemblies can be loaded in a cask if limited purely by criticality safety. If no credit for boron is assumed, the cask could possibly hold seven assemblies if low conversion ratio fast reactor grade fuel and not breeder reactor grade fuel is assumed. The analysis showed that there is a need for new cask designs for fast reactors spent fuel transportation. There is a potential of modifying existing transportation cask design as the starting point for fast reactor spent fuel transportation.

Samuel Bays; Ayodeji Alajo

2010-05-01T23:59:59.000Z

353

Conceptual design of a sodium sulfur cell for US electric-van batteries  

DOE Green Energy (OSTI)

A conceptual design of an advanced sodium/sulfur cell for US electric-van applications has been completed. The important design factors included specific physical and electrical requirements, service life, manufacturability, thermal management, and safety. The capacity of this cell is approximately the same as that for the ``PB`` cell being developed by Silent Power Limited (10 Ah). The new cell offers a 50% improvement in energy capacity and nearly a 100% improvement in peak power over the existing PB cells. A battery constructed with such cells would significantly exceed the USABC`s mid-term performance specifications. In addition, a similar cell and battery design effort was completed for an advanced passenger car application. A battery using the van cell would have nearly 3 times the energy compared to lead-acid batteries, yet weigh 40% less; a present-day battery using a cell specifically designed for this car would provide 50% more energy in a package 60% smaller and 50% lighter.

Binden, P.J. [Beta Power, Inc., Wayne, PA (United States)

1993-05-01T23:59:59.000Z

354

Raman spectroscopic study of gadolinium (III) in sodium-aluminoborosilicate glasses  

SciTech Connect

Raman spectroscopic study was performed on a series of sodium-aluminoborosilicate glasses with Gd2O3 from 0 up to its solubility (13.58 mol% or 47 mass%). Experimentally measured spectra were fitted using a Gaussian function for each individual band without any restrictions of the band position, width, and intensity. The evolution of the bands derived from the curve fitting was discussed within a contest of rare earth element partitioning, as its dissolution mechanism, in the borosilicate glasses. The evolution of the Raman bands was shown to well correlate with Gd cations partitioning in the borate-rich environment at low Gd2O3 concentration, Gd2O3/[1/3B2O3] < 1, and in the silicate-rich environment at high Gd2O3 concentration, Gd2O3/[1/3B2O3] > 1. Raman bands near 1420 and 710 cm-1 suggest the presence of a local Gd-metaborate environment, which appeared to remain over an entire Gd2O3 concentration region. The bands near 300 and 910 cm-1 indicates formation of Gd-O-Gd clusters in the silicate-rich environment at high Gd2O3 concentrations.

Li, Hong (Pittsburgh Plate Glass); Su, Yali (BATTELLE (PACIFIC NW LAB)); Li, Liyu (BATTELLE (PACIFIC NW LAB)); Strachan, Denis M. (BATTELLE (PACIFIC NW LAB))

2000-11-01T23:59:59.000Z

355

Coupled hydrodynamic-structural analysis of an integral flowing sodium test loop in the TREAT reactor  

SciTech Connect

A hydrodynamic-structural response analysis of the Mark-IICB loop was performed for the TREAT (Transient Reactor Test Facility) test AX-1. Test AX-1 is intended to provide information concerning the potential for a vapor explosion in an advanced-fueled LMFBR. The test will be conducted in TREAT with unirradiated uranium-carbide fuel pins in the Mark-IICB integral flowing sodium loop. Our analysis addressed the ability of the experimental hardware to maintain its containment integrity during the reference accident postulated for the test. Based on a thermal-hydraulics analysis and assumptions for fuel-coolant interaction in the test section, a pressure pulse of 144 MPa maximum pressure and pulse width of 1.32 ms has been calculated as the reference accident. The response of the test loop to the pressure transient was obtained with the ICEPEL and STRAW codes. Modelling of the test section was completed with STRAW and the remainder of the loop was modelled by ICEPEL.

Zeuch, W.R.; A-Moneim, M.T.

1979-01-01T23:59:59.000Z

356

Novel Ternary Molten Salt Electrolytes for intermediate-temperature sodium/nickel chloride batteries  

SciTech Connect

The sodium-nickel chloride (ZEBRA) battery is typically operated at relatively high temperature (250~350°C) to achieve adequate electrochemical performance. Reducing the operating temperature in the range of 150 to 200°C can lead to enhanced cycle life by suppressing temperature related degradation mechanisms. The reduced temperature range also allows for lower cost materials of construction such as elastomeric sealants and gaskets. To achieve adequate electrochemical performance at lower operating temperatures requires an overall reduction in ohmic losses associated with temperature. This includes reducing the ohmic resistance of ?”-alumina solid electrolyte (BASE) and the incorporation of low melting point molten salt as the secondary electrolyte. In present work, planar-type Na/NiCl2 cells with a thin flat plate BASE (600 ?m) and low melting point secondary electrolyte were evaluated at reduced temperatures. Molten salt formulation for use as secondary electrolytes were fabricated by the partial replace of NaCl in the standard secondary electrolyte (NaAlCl4) with other lower melting point alkali metal salts such as NaBr, LiCl, and LiBr. Electrochemical characterization of the ternary molten salts demonstrated , improved ionic conductivity, and sufficient electrochemical window at reduced temperatures. Furthermore, Na/NiCl2 cells with 50 mol% NaBr-containing secondary electrolyte exhibited reduced polarizations at 175°C compared to the cell with the standard NaAlCl4 catholyte. The cells also exhibited stable cycling performance even at 150oC.

Li, Guosheng; Lu, Xiaochuan; Coyle, Christopher A.; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

2012-12-15T23:59:59.000Z

357

High-intensity-discharger 400-W sodium ballast. Phase II. Final report  

SciTech Connect

A research and development program directed toward design, test, and evaluation of an energy efficient High Intensity Discharge (HID) Solid-State 400 Watt Ballast lighting system was undertaken. Under Phase I of the project, the existing ballast was modified, performance characteristics were measured, efficiency was compared with a core/coil ballast including energy loss analysis. Six (6) prototype 400 W High Pressure Sodium Ballasts were built, for verification tests by an independent test facility prior to follow-on performance and life tests. This report covers Phase II of the project which was designed to make test data comparisons on results received from the independent test laboratory, determine methods to increase ballast efficiency, determine the importance of power factors, conduct bulb life tests, perform specification review, performance versus cost analysis, investigate the ballast to determine compliance with new FCC requirement, and determine a line transient specification in respect to solid state ballasting. In addition, Phase II required reliability testing, a manufacturing test plan, a marketing study for solid-state ballast, and the manufacture and delivery of fifteen (15) demonstration ballast units to LBL. These requirements are discussed.

Felper, G.

1981-10-01T23:59:59.000Z

358

High magnetic shear gain in a liquid sodium stable couette flow experiment A prelude to an alpha - omega dynamo  

Science Conference Proceedings (OSTI)

The {Omega}-phase of the liquid sodium {alpha}-{Omega} dynamo experiment at NMIMT in cooperation with LANL has successfully demonstrated the production of a high toroidal field, B{sub {phi}} {approx_equal} 8 x B{sub r} from the radial component of an applied poloidal magnetic field, B{sub r}. This enhanced toroidal field is produced by rotational shear in stable Couette Row within liquid sodium at Rm {approx_equal} 120. The small turbulence in stable Taylor-Couette Row is caused by Ekman Row where ({delta}v/v){sup 2} {approx} 10{sup -3}. This high {Omega}-gain in low turbulence flow contrasts with a smaller {Omega}-gain in higher turbulence, Helmholtz-unstable shear flows. This result supports the ansatz that large scale astrophysical magnetic fields are created within semi-coherent large scale motions in which turbulence plays a diffusive role that enables magnetic flux linkage.

Colgate, Stirling [Los Alamos National Laboratory; Li, Jui [Los Alamos National Laboratory; Finn, John [Los Alamos National Laboratory; Pariev, Vladimir [Los Alamos National Laboratory; Beckley, Howard [NM INSTIT. OF MINING AND TECH; Si, Jiahe [NM INSTIT. OF MINING AND TECH.; Martinic, Joe [NM INSTIT. OF MINING AND TECH.; Westpfahl, David [NM INSTIT. OF TECH.; Slutz, James [NM INSTIT. OF MINING AND TECH.; Westrom, Zeb [NM INSTIT. OF TECH.; Klein, Brianna [NM INSTIT. OF MINING AND TECH.

2010-11-08T23:59:59.000Z

359

Development of models for the sodium version of the two-phase three-dimensional thermal hydraulics code THERMIT. [LMFBR  

SciTech Connect

Several different models and correlations were developed and incorporated in the sodium version of THERMIT, a thermal-hydraulics code written at MIT for the purpose of analyzing transients under LMFBR conditions. This includes: a mechanism for the inclusion of radial heat conduction in the sodium coolant as well as radial heat loss to the structure surrounding the test section. The fuel rod conduction scheme was modified to allow for more flexibility in modelling the gas plenum regions and fuel restructuring. The formulas for mass and momentum exchange between the liquid and vapor phases were improved. The single phase and two phase friction factors were replaced by correlations more appropriate to LMFBR assembly geometry.

Wilson, G.J.; Kazimi, M.S.

1980-05-01T23:59:59.000Z

360

Factors determining the consumption of ruthenium during electrosynthesis of sodium hypochlorite with the use of ruthenium oxide-titanium anodes  

Science Conference Proceedings (OSTI)

The authors studied the rate of destruction of the active coating as a function of the electrolysis conditions during electrochemical production of sodium hypochlorite. Corrosion tests were carried out on specimens made by the thermochemical method, in an electrochemical cell without a diaphragm; the method used was based on neutron activation analysis. It was shown that losses of ruthenium can be lowered by conducting the electrolysis at low temperatures, higher current densities, and moderately low hypochlorite concentrations. However, the increase of current density may raise the ROTA potential above the critical value, when rapid anode failure is possible. It was also shown that under conditions such that the critical ROTA potential is not reached sodium hypochlorite solutions of fairly high concentrations can be obtained with a low comsumption of ruthenium, which is not possible with the use of many other anode materials.

Klement'eva, V.S.; Kubasov, V.L.; Lambrev, V.G.; Uzbekov, A.A.

1985-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nasi sodium silicide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Design, fabrication, and testing of a sodium evaporator for the STM4-120 kinematic Stirling engine  

DOE Green Energy (OSTI)

This report describes the development and testing of a compact heat-pipe heat exchanger kW(e) designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW(e) Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases. The liquid metal then condenses on the heater tubes of a Stirling engine, where energy is transferred to the engine`s helium working fluid. Tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15 kW(t) of energy at an operating vapor temperature of 760 C. Four of these prototype units were eventually used to power a 25-kW(e) Stirling engine system. Design details and test results from the prototype unit are presented in this report.

Rawlinson, K.S.; Adkins, D.R.

1995-05-01T23:59:59.000Z

362

Scintigraphic detection of occult hemorrhage using RBCs labeled in vitro with technetium Tc 99m sodium pertechnetate  

SciTech Connect

Scintigraphy with RBCs labeled with technetium Tc 99m sodium pertechnetate effectively located the source of hemorrhage in a patient receiving long-term anticoagulant therapy. (The patient was initially seen with a large hematoma on the flank.) More important, the procedure was used to monitor activity in this otherwise-occult bleeding site. Scintigraphic studies may be useful in the management of these difficult clinical problems.

Bunker, S.R.; Kolina, J.S.; Kaplan, K.A.; McAuley, R.J.; Lull, R.J.

1983-05-01T23:59:59.000Z

363

Energy-efficient H. I. D. solid-state ballast: Phase II final report. [150 watt high pressure sodium lamp  

SciTech Connect

The following report presents the results of Phase II, Development of Solid State 150 watt High Pressure Sodium Ballasts. Basically, the objectives of the development program were accomplished, i.e., greater than 90% efficiency, greater than 90% power factor, regulation equivalent to ferro-magnetic ballasts, and energy savings sufficient to warrant the further development of the solid-state HPS ballast for commercial production and marketing. 8 figs., 5 tabs.

1983-06-01T23:59:59.000Z

364

Ferrocyanide Safety Project Dynamic X-Ray Diffraction studies of sodium nickel ferrocyanide reactions with equimolar nitrate/nitrite salts  

Science Conference Proceedings (OSTI)

Dynamic X-ray Diffraction (DXRD) has been to used to identify and quantify the solid state reactions that take place between sodium nickel ferrocyanide, Na{sub 2}NiFe(CN){sub 6}, and equimolar concentrations of sodium nitrate/nitrite, reactions of interest to the continued environmental safety of several large underground waste storage tanks at the Hanford site in eastern Washington. The results are supportive of previous work, which indicated that endothermic dehydration and melting of the nitrates take place before the occurrence of exothermic reactions that being about 300{degrees}C. The DXRD results show that a major reaction set at these temperatures is the occurrence of a series reaction that produces sodium cyanate, NaCNO, as an intermediate in a mildly exothermic first step. In the presence of gaseous oxygen, NaCNO subsequently reacts exothermally and at a faster rate to form metal oxides. Measurements of the rate of this reaction are used to estimate the heat release. Comparisons of this estimated heat release rate with heat transfer rates from a hypothetical ``hot spot`` show that, even in a worst-case scenario, the heat transfer rates are approximately eight times higher than the rate of energy release from the exothermic reactions.

Dodds, J.N. [Washington State Univ., Pullman, WA (United States). Dept. of Chemical Engineering]|[UNOCAL, Brea, CA (United States). Hartley Research Center

1994-07-01T23:59:59.000Z

365

Disposition of Unirradiated Sodium Bonded EBR-II Driver Fuel Elements and HEU Scrap: Work Performed for FY 2007  

SciTech Connect

Specific surplus high enriched uranium (HEU) materials at the Idaho National Laboratory (INL) Materials and Fuels Complex (MFC) will be transferred to a designated off-site receiving facility. The DOE High Enriched Uranium Disposition Program Office (HDPO) will determine which materials, if any, will be prepared and transferred to an off-site facility for processing and eventual fabrication of fuel for nuclear reactors. These surplus HEU materials include approximately 7200 kg unirradiated sodium-bonded EBR-II driver fuel elements, and nearly 800 kg of HEU casting scrap from the process which formed various sodium-bonded fuels (including the EBR-II driver elements). Before the driver fuel can be packaged for shipment, the fuel elements will require removal of the sodium bond. The HEU scrap will also require repackaging in preparation for off-site transport. Preliminary work on this task was authorized by BWXT Y-12 on Nov 6, 2006 and performed in three areas: • Facility Modifications • Safety Documentation • Project Management

Karen A Moore

2007-04-01T23:59:59.000Z

366

Thermal Interaction Between Molten Metal Jet and Sodium Pool: Effect of Principal Factors Governing Fragmentation of the Jet  

SciTech Connect

To clarify the effects of the principal factors that govern the thermal fragmentation of a molten metallic fuel jet in the course of fuel-coolant interaction, which is important in evaluating the sequence of core disruptive accidents (CDAs) for metallic fuel fast reactors, basic experiments were carried out using molten metallic fuel simulants (copper and silver) and a sodium pool.Fragmentation of a molten metal jet with a solid crust was caused by internal pressure produced by the boiling of sodium, which is locally entrapped inside the jet due to hydrodynamic motion between the jet and the coolant. The superheating and the latent heat of fusion of the jet are the principal factors governing this type of thermal fragmentation. On the other hand, the effect of the initial sodium temperature is regarded as negligible in the case of thermal conditions expected to result in CDAs for practical metallic fuel cores. Based on the fragmentation data for several kinds of jets (Cu, Ag, SUS, U, and U-5 wt% Zr alloy), an empirical correlation is proposed that is applicable to the calculation of a mass median diameter of fragments produced by the thermal fragmentation of the jet with a solid crust under low ambient Weber number conditions.

Nishimura, Satoshi [Central Research Institute of Electric Power Industry (CRIEPI) (Japan); Kinoshita, Izumi [Central Research Institute of Electric Power Industry (CRIEPI) (Japan); Sugiyama, Ken-Ichiro [Hokkaido University (Japan); Ueda, Nobuyuki [Central Research Institute of Electric Power Industry (CRIEPI) (Japan)

2005-02-15T23:59:59.000Z

367

Transport Pathways and Enhancement Mechanisms within Localized and Non-Localized Transport Regions in Skin Treated with Low-Frequency Sonophoresis and Sodium Lauryl Sulfate  

E-Print Network (OSTI)

Recent advances in transdermal drug delivery utilizing low-frequency sonophoresis (LFS) and sodium lauryl sulfate (SLS) have revealed that skin permeability enhancement is not homogenous across the skin surface. Instead, ...

Polat, Baris E.

368

Application of the Aqueous Porous Pathway Model to Quantify the Effect of Sodium Lauryl Sulfate on Ultrasound-Induced Skin Structural Perturbation  

E-Print Network (OSTI)

This study investigated the effect of sodium lauryl sulfate (SLS) on skin structural perturbation when utilized simultaneously with low-frequency sonophoresis (LFS). Pig full-thickness skin (FTS) and pig split-thickness ...

Polat, Baris E.

369

An investigation of the physical and numerical foundations of two-fluid representation of sodium boiling with applications to LMFBR experiments  

E-Print Network (OSTI)

This work involves the development of physical models for the constitutive relations of a two-fuid, three-dimensional sodium boiling code, THERMIT-6S. The code is equipped with a fluid conduction model, a fuel pin model, ...

No, Hee Cheon

1983-01-01T23:59:59.000Z

370

Near-Real-Time Measurement of Sea-Salt Aerosol during the SEAS Campaign: Comparison of Emission-Based Sodium Detection with an Aerosol Volatility Technique  

Science Conference Proceedings (OSTI)

The first deployment of an emission-based aerosol sodium detector (ASD), designed to chemically characterize marine aerosols on a near-real-time basis, is reported. Deployment occurred as part of the Shoreline Environment Aerosol Study (SEAS) ...

P. Campuzano-Jost; C. D. Clark; H. Maring; D. S. Covert; S. Howell; V. Kapustin; K. A. Clarke; E. S. Saltzman; A. J. Hynes

2003-10-01T23:59:59.000Z

371

Bench-scale screening tests for a boiling sodium-potassium alloy solar receiver  

DOE Green Energy (OSTI)

Bench-scale tests were carried out in support of the design of a second-generation 75-kW{sub t} reflux pool-boiler solar receiver. The receiver will be made from Haynes Alloy 230 and will contain the sodium-potassium alloy NaK-78. The bench-scale tests used quartz-lamp-heated boilers to screen candidate boiling-stabilization materials and methods at temperatures up to 750{degree}C. Candidates that provided stable boiling were tested for hot-restart behavior. Poor stability was obtained with single 1/4-inch diameter patches of powdered metal hot-press-sintered onto the wetted side of the heat-input area. Laser-drilled and electric-discharge-machined cavities in the heated surface also performed poorly. Small additions of xenon, and heated-surface tilt out of the vertical dramatically improved poor boiling stability; additions of helium or oxygen did not. The most stable boiling was obtained when the entire heat-input area was covered by a powdered-metal coating. The effect of heated-area size was assessed for one coating: at low incident fluxes, when even this coating performed poorly, increasing the heated-area size markedly improved boiling stability. Good hot-restart behavior was not observed with any candidate, although results were significantly better with added xenon in a boiler shortened from 3 to 2 feet. In addition to the screening tests, flash-radiography imaging of metal-vapor bubbles during boiling was attempted. Contrary to the Cole-Rohsenow correlation, these bubble-size estimates did not vary with pressure; instead they were constant, consistent with the only other alkali metal measurements, but about 1/2 their size.

Moreno, J.B.; Moss, T.A.

1993-06-01T23:59:59.000Z

372

THE SUITABILITY OF SODIUM PEROXIDE FUSION FOR PRODUCTION-SCALE PLUTONIUM PROCESSING OPERATIONS  

Science Conference Proceedings (OSTI)

Sodium peroxide (Na{sub 2}O{sub 2}) fusion is a method that offers significant benefits to the processing of high-fired plutonium oxide (PuO{sub 2}) materials. Those benefits include reduction in dissolution cycle time, decrease in residual solids, and reduction of the potential for generation of a flammable gas mixture during dissolution. Implementation of Na{sub 2}O{sub 2} fusion may also increase the PuO{sub 2} throughput in the HB-Line dissolving lines. To fuse a material, Na{sub 2}O{sub 2} is mixed with the feed material in a crucible and heated to 600-700 C. For low-fired and high-fired PuO{sub 2}, Na{sub 2}O{sub 2} reacts with PuO{sub 2} to form a compound that readily dissolves in ambient-temperature nitric acid without the use of potassium fluoride. The Savannah River National Laboratory (SRNL) demonstrated the feasibility of Na{sub 2}O{sub 2} fusion and subsequent dissolution for the processing of high-fired PuO{sub 2} materials in HB-Line. Testing evaluated critical dissolution characteristics and defined preliminary process parameters. Based on experimental measurements, a dissolution cycle can be complete in less than one hour, compared to the current processing time of 6-10 hours for solution heating and dissolution. Final Pu concentrations of 30-35 g/L were produced without the formation of precipitates in the final solution.

Pierce, R.; Edwards, T.

2010-10-26T23:59:59.000Z

373

TRUEX flowsheet development as applied to ICPP sodium-bearing waste using centrifugal contactors  

SciTech Connect

Previous lab-scale work using batch contacts with sodium- bearing waste (SEW) simulant and samples of radioactive SEW from tank WM-185 suggested a potential flowsheet for partitioning actinides using solvent extraction (the TRUEX process). The suggested baseline flowsheet includes: an extraction section to remove actinides from liquid SEW into the TRUEX solvent (0.2 M CMP01 1.4 M TBP in Isopar-L); a dilute nitric acid scrub (0.07- 0.2 M HNO{sub 3}) to back extract co-extracted matrix materials (primarily Fe, Zr, and HNO{sub 3}) from the loaded solvent; thermally unstable complexants (TUCS) to back extract actinides; and a carbonate wash section for solvent cleanup. The purpose of the flowsheet development studies was to test and develop the baseline TRUEX flowsheet for ICPP SEW under continuous, countercurrent conditions using centrifugal contactors. All testing was performed using non-radioactive SEW simulant. Potential flowsheets were evaluated with regards to the behavior of the non-radioactive components known to be extracted by the TRUEX solvent. In general, the behavior of the individual components closely paralleled that anticipated from batch testing. The results indicate that eight extraction stages are more than sufficient to reduce the actinide content in the SEW to levels well below the NRC Class A LLW criteria of 10 nCi/g. Iron was effectively scrubbed from the organic and 5% ended up in the high-activity waste (HAW) fraction. Zirconium scrubbing was not as effective and as much as 60% of the Zr in the feed could end up in the HAW fraction. The TUCS strip was effective at quantitatively stripping all metals except mercury from the TRUEX solvent. Carbonate washing effectively back extracted mercury from the stripped solvent, resulting in 99.4% of the mercury selectively partitioned from the SEW.

Law, J.D.; Herbst, R.S.

1995-02-01T23:59:59.000Z

374

Characterization of Tank WM-189 Sodium-bearing Waste at INTEC, Rev. 1  

SciTech Connect

Idaho Nuclear Technology and Engineering Center 300,000-gallon vessel WM-189 was filled in late 2001 with concentrated sodium bearing waste (SBW). Three airlifted liquid samples and a steam jetted slurry sample were obtained for quantitative analysis and characterization of WM-189 liquid phase SBW and tank heel sludge. Estimates were provided for most of the reported data values, based on the greater of (a) analytical uncertainty, and (b) variation of analytical results between nominally similar samples. A consistency check on the data was performed by comparing the total mass of dissolved solids in the liquid, as measured gravimetrically from a dried sample, with the corresponding value obtained by summing the masses of cations and anions in the liquid, based on the reported analytical data. After reasonable adjustments to the nitrate and oxygen concentrations, satisfactory consistency between the two results was obtained. A similar consistency check was performed on the reported compositional data for sludge solids from the steam jetted sample. In addition to the compositional data, various other analyses were performed: particle size distribution was measured for the sludge solids, sludge settling tests were performed, and viscosity measurements were made. WM-189 characterization results were compared with those for WM-180, and other Tank Farm Facility tank characterization data. A 2-liter batch of WM-189 simulant was prepared and a clear, stable solution was obtained, based on a general procedure for mixing SBW simulant that was develop by Dr. Jerry Christian. This WM-189 SBW simulant is considered suitable for laboratory testing for process development.

Batcheller, Thomas Aquinas; Taylor, Dean Dalton

2003-07-01T23:59:59.000Z

375

Sodium fast reactor gaps analysis of computer codes and models for accident analysis and reactor safety.  

SciTech Connect

This report summarizes the results of an expert-opinion elicitation activity designed to qualitatively assess the status and capabilities of currently available computer codes and models for accident analysis and reactor safety calculations of advanced sodium fast reactors, and identify important gaps. The twelve-member panel consisted of representatives from five U.S. National Laboratories (SNL, ANL, INL, ORNL, and BNL), the University of Wisconsin, the KAERI, the JAEA, and the CEA. The major portion of this elicitation activity occurred during a two-day meeting held on Aug. 10-11, 2010 at Argonne National Laboratory. There were two primary objectives of this work: (1) Identify computer codes currently available for SFR accident analysis and reactor safety calculations; and (2) Assess the status and capability of current US computer codes to adequately model the required accident scenarios and associated phenomena, and identify important gaps. During the review, panel members identified over 60 computer codes that are currently available in the international community to perform different aspects of SFR safety analysis for various event scenarios and accident categories. A brief description of each of these codes together with references (when available) is provided. An adaptation of the Predictive Capability Maturity Model (PCMM) for computational modeling and simulation is described for use in this work. The panel's assessment of the available US codes is presented in the form of nine tables, organized into groups of three for each of three risk categories considered: anticipated operational occurrences (AOOs), design basis accidents (DBA), and beyond design basis accidents (BDBA). A set of summary conclusions are drawn from the results obtained. At the highest level, the panel judged that current US code capabilities are adequate for licensing given reasonable margins, but expressed concern that US code development activities had stagnated and that the experienced user-base and the experimental validation base was decaying away quickly.

Carbajo, Juan (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin, Madison, WI); Schmidt, Rodney Cannon; Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Ludewig, Hans (Brookhaven National Laboratory, Upton, NY); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Serre, Frederic (Centre d'%C3%94etudes nucl%C3%94eaires de Cadarache %3CU%2B2013%3E CEA, France)

2011-06-01T23:59:59.000Z

376

Exchangeable sodium accumulation and replacement in Southeast Texas soils under turfgrass  

E-Print Network (OSTI)

Many municipal water supplies in Southeast Texas have a relatively high level of Na+ and low total dissolved solids. Most soils of this area are dominated by smectitic clays that respond to wetting by swelling, especially when wetted with high Na waters of low salinity. This study assessed the degree of Na accumulation in Southeast Texas soils under irrigated turfgrass, tested models predicting Na accumulation, and evaluated response of sodic soil to amendments. The Ap, E, and Bt horizons of 18 turf soils in 10 municipal water districts were studied. Irrigation water sodicity (SARiw) and salinity (ECiw) were strongly correlated with soil sodicity (SARE) and salinity (ECe). The SAR,W was found to be the best single variable to model soil Na accumulation but exchangeable Na also increased as a function of years of irrigation. The multiple regression equation: SARE =-5.16 + 0.53 SARiw + 4.04 In (yr) (R2 = 0.86) best predicted SARE to a depth of 30 cm. This study also compared gypsum, a common amendment for sodic soil reclamation, to langbeinite. A column leaching experiment using sodic water was conducted on a sodic, non-saline Boonville soil (fine, montmorillonitic, thermic Ruptic Vertic Albaqualf) amended with gypsum and langbeinite at rates equivalent to exchangeable Na in soil depths of 15 and 30 cm. The soil water at depths of 7.5, 15 and 22.5 cm and the effluent from each column were collected at intervals of 12 h and analyzed for sodium adsorption ratio (SAR) and soluble bases. Saturated hydraulic conductivity (Ksat) was calculated. At the end of the experiment, soil samples were removed from each column in four depth increments. Significantly less exchangeable Na and lower SAR of the soil waters were found in the lower sections of the soil columns, and Ksat was greater for the amended treatments than for the control.

Najjar, Namir Fouad

1995-01-01T23:59:59.000Z

377

SODIUM POLYPHOSPHATE-MODIFIED CLASS C/CLASS F FLY ASH BLEND CEMENTS FOR GEOTHERMAL WELLS.  

DOE Green Energy (OSTI)

The authors investigated the usefulness of the coal combustion by-products, Class C fly ash (C) and Class F fly ash (F), in developing cost-effective acid-resistant phosphate-based cements for geothermal wells. In the temperature range of 20-100 C, sodium polyphosphate (NaP) as the acidic cement-forming solution preferentially reacted with calcium sulfate and lime in the C as the base solid reactant through the exothermic acid-base reaction route, rather than with the tricalcium aluminate in C. This reaction led to the formation of hydroxyapatite (HOAp). In contrast, there was no acid-base reaction between the F as the acidic solid reactant and NaP. After autoclaving the cements at 250 C, a well-crystallized HOAp phase was formed in the NaP-modified C cement that was responsible for densifying the cement's structure, thereby conferring low water permeability and good compressive strength on the cement. however, the HOAp was susceptible to hot CO{sub 2}-laden H{sub 2}SO{sub 4} solution (pH 1.1), allowing some acid erosion of the cement. On the other hand, the mullite in F hydrothermally reacted with the Na from NaP to form the analcime phase. Although this phase played a pivotal role in abating acid erosion, its generation created an undesirable porous structure in the cement. They demonstrated that blending fly ash with a C/F ratio of 70/30 resulted in the most suitable properties for acid-resistant phosphate-based cement systems.

SUGAMA, T.; BROTHERS, L.E.; KASPEREIT, D.

2006-02-01T23:59:59.000Z

378

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles  

SciTech Connect

Recycling and disposal of spent sodium-sulfur (Na/S) batteries are important issues that must be addressed as part of the commercialization process of Na/S battery-powered electric vehicles. The use of Na/S batteries in electric vehicles will result in significant environmental benefits, and the disposal of spent batteries should not detract from those benefits. In the United States, waste disposal is regulated under the Resource Conservation and Recovery Act (RCRA). Understanding these regulations will help in selecting recycling and disposal processes for Na/S batteries that are environmentally acceptable and cost effective. Treatment processes for spent Na/S battery wastes are in the beginning stages of development, so a final evaluation of the impact of RCRA regulations on these treatment processes is not possible. The objectives of tills report on battery recycling and disposal are as follows: Provide an overview of RCRA regulations and requirements as they apply to Na/S battery recycling and disposal so that battery developers can understand what is required of them to comply with these regulations; Analyze existing RCRA regulations for recycling and disposal and anticipated trends in these regulations and perform a preliminary regulatory analysis for potential battery disposal and recycling processes. This report assumes that long-term Na/S battery disposal processes will be capable of handling large quantities of spent batteries. The term disposal includes treatment processes that may incorporate recycling of battery constituents. The environmental regulations analyzed in this report are limited to US regulations. This report gives an overview of RCRA and discusses RCRA regulations governing Na/S battery disposal and a preliminary regulatory analysis for Na/S battery disposal.

Corbus, D.

1992-09-01T23:59:59.000Z

379

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles  

SciTech Connect

This report is the first of four volumes that identify and assess the environmental, health, and safety issues involved in using sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles that may affect the commercialization of Na/S batteries. This and the other reports on recycling, shipping, and vehicle safety are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD D) program for Na/S battery technology. The reports review the status of Na/S battery RD D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers cell design and engineering as the basis of safety for Na/S batteries and describes and assesses the potential chemical, electrical, and thermal hazards and risks of Na/S cells and batteries as well as the RD D performed, under way, or to address these hazards and risks. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, universities, and private industry. Subsequent volumes will address environmental, health, and safety issues involved in shipping cells and batteries, using batteries to propel electric vehicles, and recycling and disposing of spent batteries. The remainder of this volume is divided into two major sections on safety at the cell and battery levels. The section on Na/S cells describes major component and potential failure modes, design, life testing and failure testing, thermal cycling, and the safety status of Na/S cells. The section on batteries describes battery design, testing, and safety status. Additional EH S information on Na/S batteries is provided in the appendices.

Ohi, J.M.

1992-09-01T23:59:59.000Z

380

Growth Rate of Marine Microalgal Species using Sodium Bicarbonate for Biofuels  

E-Print Network (OSTI)

With additional research on species characteristics and continued work towards cost effective production methods, algae are viewed as a possible alternative biofuel crop to current feedstocks such as corn. Current open pond production methods involve bubbling carbon dioxide (CO_(2)) gas into the media to provide a carbon source for photosynthesis, but this can be very inefficient releasing most CO_(2) back into the atmosphere. This research began by investigating the effect of sodium bicarbonate (NaHCO_(3)) in the growth media as an alternative carbon source to bubbling CO_(2) into the cultures. The second part examined if NaHCO_(3) could act as a lipid trigger in higher (10.0 g/L) concentrations. The microalgae species Dunaliella tertiolecta (Chlorophyta), Mayamaea spp. (Baciallariophyta) and Synechoccocus sp. (Cyanophyta) were grown with 0.0 g/L, 0.5g/L, 1.0 g/L, 2.0 g/L and 5.0 g/L dissolved NaHCO_(3) in modified seawater (f/2) media. To investigate effects of NaHCO_(3) on lipid accumulation, growth media cultures were divided into two ?lipid phase? medias containing either 0.0g/L (non-boosted) or 10.0 g/L (boosted) NaHCO_(3) treatments. Culture densities were determined using spectrophotometry, which showed both all three species are able to successfully grow in media ameliorated with these high NaHCO_(3) concentrations. Highest growth phase culture densities occurred in NaHCO_(3) concentrations of 2.0 g/L for D. tertiolecta and Mayamaea spp., and the 5.0 g/L treatment for Synechoccocus sp. Highest growth rates occurred in the 5.0 g/L NaHCO_(3) concentration treatments for D. tertiolecta, Mayamaea spp., and Synechoccocus sp. (0.205 d-1 ±0.010, 0.119 d-1 ±0.004, and 0.372 d-1 ±0.003 respectively). As a lipid accumulation trigger two of the three species (D. tertiolecta and Mayamaea spp) had their highest end day oil indices in a 10.0 g/L treatment. Highest oil indices occurred in boosted 5.0 g/L Dunaliella tertiolecta and 2.0 g/L Mayamaea spp. (13136 ± 895 and 62844 ± 8080 respectively (relative units)). The results obtained indicate NaHCO3 could be used as a photosynthetic carbon source for growth in all three species and a lipid trigger for D. tertiolecta and Mayamaea spp.

Gore, Matthew

2013-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "nasi sodium silicide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

TRIPLICATE SODIUM IODIDE GAMMA RAY MONITORS FOR THE SMALL COLUMN ION EXCHANGE PROGRAM  

SciTech Connect

This technical report contains recommendations from the Analytical Development (AD) organization of the Savannah River National Laboratory (SRNL) for a system of triplicate Sodium Iodide (NaI) detectors to be used to monitor Cesium-137 ({sup 137}Cs) content of the Decontaminated Salt Solution (DSS) output of the Small Column Ion Exchange (SCIX) process. These detectors need to be gain stabilized with respect to temperature shifts since they will be installed on top of Tank 41 at the Savannah River Site (SRS). This will be accomplished using NaI crystals doped with the alpha-emitting isotope, Americium-241({sup 241}Am). Two energy regions of the detector output will be monitored using single-channel analyzers (SCAs), the {sup 137}Cs full-energy {gamma}-ray peak and the {sup 241}Am alpha peak. The count rate in the gamma peak region will be proportional to the {sup 137}Cs content in the DSS output. The constant rate of alpha decay in the NaI crystal will be monitored and used as feedback to adjust the high voltage supply to the detector in response to temperature variation. An analysis of theoretical {sup 137}Cs breakthrough curves was used to estimate the gamma activity expected in the DSS output during a single iteration of the process. Count rates arising from the DSS and background sources were predicted using Microshield modeling software. The current plan for shielding the detectors within an enclosure with four-inch thick steel walls should allow the detectors to operate with the sensitivity required to perform these measurements. Calibration, testing, and maintenance requirements for the detector system are outlined as well. The purpose of SCIX is to remove and concentrate high-level radioisotopes from SRS salt waste resulting in two waste streams. The concentrated high-level waste containing {sup 137}Cs will be sent to the Defense Waste Processing Facility (DWPF) for vitrification and the low-level DSS will be sent to the Saltstone Production Facility (SPF) to be incorporated into grout.

Couture, A.

2011-09-20T23:59:59.000Z

382

Investigation of the physical and numerical foundations of two-fluid representation of sodium boiling with applications to LMFBR experiments  

Science Conference Proceedings (OSTI)

This work involves the development of physical models for the constitutive relations of a two-fluid, three-dimensional sodium boiling code, THERMIT-6S. The code is equipped with a fluid conduction model, a fuel pin model, and a subassembly wall model suitable for stimulating LMFBR transient events. Mathematically rigorous derivations of time-volume averaged conservation equations are used to establish the differential equations of THERMIT-6S. These equations are then discretized in a manner identical to the original THERMIT code. A virtual mass term is incorporated in THERMIT-6S to solve the ill-posed problem. Based on a simplified flow regime, namely cocurrent annular flow, constitutive relations for two-phase flow of sodium are derived. The wall heat transfer coefficient is based on momentum-heat transfer analogy and a logarithmic law for liquid film velocity distribution. A broad literature review is given for two-phase friction factors. It is concluded that entrainment can account for some of the discrepancies in the literature. Mass and energy exchanges are modelled by generalization of the turbulent flux concept. Interfacial drag coefficients are derived for annular flows with entrainment. Code assessment is performed by simulating three experiments for low flow-high power accidents and one experiment for low flow/low power accidents in the LMFBR. While the numerical results for pre-dryout are in good agreement with the data, those for post-dryout reveal the need for improvement of the physical models. The benefits of two-dimensional non-equilibrium representation of sodium boiling are studied.

No, H.C.; Kazimi, M.S.

1983-03-01T23:59:59.000Z

383

Plan for support of large-plant (post-CRBR) needs in large-leak sodium-water reaction area  

SciTech Connect

Work in the large leak test and analysis area of steam generator development has been carried out at GE-ARSD under 189a SG037 since 1973. The currently planned master schedule for the SG037 program is shown. Principal activities are the large leak testing program being carried out at the Large Leak Test Rig and the analysis methods development. The plan for supporting the large plant (post-CRBR) needs in the large leak sodium-water reaction area is outlined. Most of the needs will be answered in the current SG037 large leak program. (DLC)

Whipple, J.C.

1980-03-01T23:59:59.000Z

384

Field Trial of AEP Sodium-Sulfur (NAS) Battery Demonstration Project: Interim Report - Plant Design and Expected Performance  

Science Conference Proceedings (OSTI)

The first stationary power demonstration of sodium-sulfur (NAS) batteries in the United States has been hosted by the American Electric Power Company. The battery system was co-developed by the Tokyo Electric Power Company (TEPCO) and NGK Insulators, Ltd. (NGK). This report defines the NAS technology, as well as the associated power conversion system (PCS) parameters and requirements that were necessary to convert the DC power from the NAS battery modules to AC power for connection to the utility grid sy...

2003-03-27T23:59:59.000Z

385

Recovery Act - Demonstration of Sodium Ion Battery for Grid Level Applications  

SciTech Connect

Aquion Energy received a $5.179 million cooperative research agreement under the Department of Energyâ??s Smart Grid Demonstration Program â?? Demonstration of Promising Energy Storage Technologies (Program Area 2.5) of FOA DE-FOE-0000036. The main objective of this project was to demonstrate Aquionâ??s low cost, grid-scale, ambient temperature sodium ion energy storage device. The centerpiece of the technology is a novel hybrid energy storage chemistry that has been proven in a laboratory environment. The objective was to translate these groundbreaking results from the small-batch, small-cell test environment to the pilot scale to enable significant numbers of multiple ampere-hour cells to be manufactured and assembled into test batteries. Aquion developed a proof of concept demonstration unit that showed similar performance and major cost improvement over existing technologies. Beyond minimizing cell and system cost, Aquion built a technology that is safe, environmentally benign and durable over many thousands of cycles as used in a variety of grid support roles. As outlined in the Program documents, the original goals of the project were to demonstrate a unit that: 1. Has a projected capital cost of less than $250/kWh at the pack level 2. A deep discharge cycle life of > 10,000 cycles 3. A volumetric energy density of >20 kWh/m3 4. Projected calendar life of over 10 years 5. A device that contains no hazardous materials and retains best in class safety characteristics. Through the course of this project Aquion developed its aqueous electrolyte electrochemical energy storage device to the point where large demonstration units (> 10 kWh) were able to function in grid-supporting functions detailed by their collaborators. Aquionâ??s final deliverable was an ~15 kWh system that has the ability to perform medium to long duration (> 2 hours) charge and discharge functions approaching 95% DC-DC efficiency. The system has functioned, and continues to function as predicted with no indication that it will not tolerate well beyond 10 calendar years and 10,000 cycles. It has been in continuous operation for more than 1 year with 1,000 cycles (of varying depth of discharge, including 100% depth of discharge) and no identifiable degradation to the system. The final thick electrode cell structure has shown an energy density of 25 kWh/m3 at a five hour (or greater) discharge time. The primary chemistry has remained non-toxic, containing no acids or other corrosive chemicals, and the battery units have passed numerous safety tests, including flame resistance testing. These tests have verified the claim that the device is safe to use and contains no hazardous materials. Current projections show costs at the pack level to offer best in class value and are competitive with lead-acid batteries, factoring in LCOE.

Wiley, Ted; Whitacre, Jay; Eshoo, Michael; Noland, James; Campbell, Williams; Spears, Christopher

2012-08-31T23:59:59.000Z

386

Effect of test conditions and sample configuration on the AMTEC electrode/electrolyte characteristics measurements in the Sodium Exposure Test Cell experiment  

E-Print Network (OSTI)

An experimental investigation was conducted to determine the effect of test conditions and sample configuration on the AMTEC electrode/electrolyte characteristic measurements in a Sodium Exposure Test Cell (SETC). The effect of test conditions was determined by identifying the accurate correlation between sodium temperature and vapor pressure in the correct temperature range for the SETC. In addition, temperature distribution in the sodium source in SETC was determined. A correlation was identified that accurately predicted the relationship between the sodium vapor source temperature and the vapor pressure. A means to maintain the uniformity of the temperature across the electrode/electrolyte sample and in the sodium vapor source was determined. Two electrode/electrolyte configurations (tube and disk) were tested to determine if there was a difference in the characteristics determined from the measurements. It was demonstrated that the configuration of the sample had little effect (about 15%) on the measurements at typical AMTEC operating temperatures. Electrochemical Impedance Spectroscopy (EIS) and controlled potential current-voltage curves (iV curves) techniques were used to determine these characteristics.

Azimov, Ulughbek Bakhadirovich

2001-01-01T23:59:59.000Z

387

Ford/DOE sodium-sulfur battery electric vehicle development and demonstration. Phase I-1. Final report  

DOE Green Energy (OSTI)

The results of Phase I-A analyses and design studies are presented. The objective of the Phase I-A effort was to evaluate the sodium-sulfur battery, in an existing conventional production automobile, as a potential power source for an electric vehicle. The Phase I-A work was divided into five (5) major sub-tasks as follows: vehicle specification sub-task; NaS battery packaging study sub-task; vehicle packaging layout sub-task; electrical system study sub-task; and system study sub-tasks covering performance and economy projections, powertrain and vehicle safety issues and thermal studies. The major results of the sodium-sulfur battery powered electric vehicle study program are: the Fiesta was chosen to be the production vehicle which would be modified into a 2-passenger, electric test bed vehicle powered by a NaS battery; the vehicle mission was defined to be a 2-passenger urban/suburban commuter vehicle capable of at least 100 miles range over the CVS driving cycle and a wide open throttle capability of 0 to 50 mph in 14 seconds, or less; powertrain component specifications were defined; powertrain control strategy has been selected; and a suitable test bed vehicle package scheme has been developed.

Not Available

1979-01-01T23:59:59.000Z

388

The development of a realistic source term for sodium-cooled fast reactors : assessment of current status and future needs.  

Science Conference Proceedings (OSTI)

Sodium-cooled fast reactors (SFRs) continue to be proposed and designed throughout the United States and the world. Although the number of SFRs actually operating has declined substantially since the 1980s, a significant interest in advancing these types of reactor systems remains. Of the many issues associated with the development and deployment of SFRs, one of high regulatory importance is the source term to be used in the siting of the reactor. A substantial amount of modeling and experimental work has been performed over the past four decades on accident analysis, sodium coolant behavior, and radionuclide release for SFRs. The objective of this report is to aid in determining the gaps and issues related to the development of a realistic, mechanistically derived source term for SFRs. This report will allow the reader to become familiar with the severe accident source term concept and gain a broad understanding of the current status of the models and experimental work. Further, this report will allow insight into future work, in terms of both model development and experimental validation, which is necessary in order to develop a realistic source term for SFRs.

LaChance, Jeffrey L.; Phillips, Jesse; Parma, Edward J., Jr.; Olivier, Tara Jean; Middleton, Bobby D.

2011-06-01T23:59:59.000Z

389

Converting Simulated Sodium-bearing Waste into a Single Solid Waste Form by Evaporation: Laboratory- and Pilot-Scale Test Results on Recycling Evaporator Overheads  

SciTech Connect

Conversion of Idaho National Engineering and Environmental Laboratory radioactive sodium-bearing waste into a single solid waste form by evaporation was demonstrated in both flask-scale and pilot-scale agitated thin film evaporator tests. A sodium-bearing waste simulant was adjusted to represent an evaporator feed in which the acid from the distillate is concentrated, neutralized, and recycled back through the evaporator. The advantage to this flowsheet is that a single remote-handled transuranic waste form is produced in the evaporator bottoms without the generation of any low-level mixed secondary waste. However, use of a recycle flowsheet in sodium-bearing waste evaporation results in a 50% increase in remote-handled transuranic volume in comparison to a non-recycle flowsheet.

Griffith, D.; D. L. Griffith; R. J. Kirkham; L. G. Olson; S. J. Losinski

2004-01-01T23:59:59.000Z

390

Benchmark Gamma Spectroscopy Measurements of Uranium Hexafluoride in Aluminmum Pipe with a Sodium Iodide Detector  

SciTech Connect

The expected increased demand in fuel for nuclear power plants, combined with the fact that a significant portion of the current supply from the blend down of weapons-source material will soon be coming to an end, has led to the need for new sources of enriched uranium for nuclear fuel. As a result, a number of countries have announced plans, or are currently building, gaseous centrifuge enrichment plants (GCEPs) to supply this material. GCEPs have the potential to produce uranium at enrichments above the level necessary for nuclear fuel purposes-enrichments that make the uranium potentially usable for nuclear weapons. As a result, there is a critical need to monitor these facilities to ensure that nuclear material is not inappropriately enriched or diverted for unintended use. Significant advances have been made in instrument capability since the current International Atomic Energy Agency (IAEA) monitoring methods were developed. In numerous cases, advances have been made in other fields that have the potential, with modest development, to be applied in safeguards applications at enrichment facilities. A particular example of one of these advances is the flow and enrichment monitor (FEMO). (See Gunning, J. E. et al., 'FEMO: A Flow and Enrichment Monitor for Verifying Compliance with International Safeguards Requirements at a Gas Centrifuge Enrichment Facility,' Proceedings of the 8th International Conference on Facility Operations - Safeguards Interface. Portland, Oregon, March 30-April 4th, 2008.) The FEMO is a conceptual instrument capable of continuously measuring, unattended, the enrichment and mass flow of {sup 235}U in pipes at a GCEP, and consequently increase the probability that the potential production of HEU and/or diversion of fissile material will be detected. The FEMO requires no piping penetrations and can be installed on pipes containing the flow of uranium hexafluoride (UF{sub 6}) at a GCEP. This FEMO consists of separate parts, a flow monitor (FM) and an enrichment monitor (EM). Development of the FM is primarily the responsibility of Oak Ridge National Laboratory, and development of the EM is primarily the responsibility of Los Alamos National Laboratory. The FM will measure {sup 235}U mass flow rate by combining information from measuring the UF{sub 6} volumetric flow rate and the {sup 235}U density. The UF{sub 6} flow rate will be measured using characteristics of the process pumps used in product and tail UF{sub 6} header process lines of many GCEPs, and the {sup 235}U density will be measured using commercially available sodium iodide (NaI) gamma ray scintillation detectors. This report describes the calibration of the portion of the FM that measures the {sup 235}U density. Research has been performed to define a methodology and collect data necessary to perform this calibration without the need for plant declarations. The {sup 235}U density detector is a commercially available system (GammaRad made by Amptek, www.amptek.com) that contains the NaI crystal, photomultiplier tube, signal conditioning electronics, and a multichannel analyzer (MCA). Measurements were made with the detector system installed near four {sup 235}U sources. Two of the sources were made of solid uranium, and the other two were in the form of UF{sub 6} gas in aluminum piping. One of the UF{sub 6} gas sources was located at ORNL and the other at LANL. The ORNL source consisted of two pipe sections (schedule 40 aluminum pipe of 4-inch and 8-inch outside diameter) with 5.36% {sup 235}U enrichment, and the LANL source was a 4-inch schedule 40 aluminum pipe with 3.3% {sup 235}U enrichment. The configurations of the detector on these test sources, as well as on long straight pipe configurations expected to exist at GCEPs, were modeled using the computer code MCNP. The results of the MCNP calculations were used to define geometric correction factors between the test source and the GCEP application. Using these geometric correction factors, the experimental 186 keV counts in the test geometry were extrapolated to the expected GCEP ge

March-Leuba, Jose A [ORNL; Uckan, Taner [ORNL; Gunning, John E [ORNL; Brukiewa, Patrick D [ORNL; Upadhyaya, Belle R [ORNL; Revis, Stephen M [ORNL

2010-01-01T23:59:59.000Z

391

A Qualitative Assessment of Diversion Scenarios for an Example Sodium Fast Reactor Using the GEN IV PR&PP Methodology  

Science Conference Proceedings (OSTI)

FAST REACTORS;NUCLEAR ENERGY;NUCLEAR MATERIALS MANAGEMENT;PROLIFERATION;SAFEGUARDS;THEFT; A working group was created in 2002 by the Generation IV International Forum (GIF) for the purpose of developing an internationally accepted methodology for assessing the Proliferation Resistance of a nuclear energy system (NES) and its individual elements. A two year case study is being performed by the experts group using this methodology to assess the proliferation resistance of a hypothetical NES called the Example Sodium Fast Reactor (ESFR). This work demonstrates how the PR and PP methodology can be used to provide important information at various levels of details to NES designers, safeguard administrators and decision makers. The study analyzes the response of the complete ESFR nuclear energy system to different proliferation and theft strategies. The challenges considered include concealed diversion, concealed misuse and 'break out' strategies. This paper describes the work done in performing a qualitative assessment of concealed diversion scenarios from the ESFR.

Zentner, Michael D.; Coles, Garill A.; Therios, Ike

2012-01-20T23:59:59.000Z

392

ALUMINUM READINESS EVALUATION FOR ALUMINUM REMOVAL AND SODIUM HYDROXIDE REGENRATION FROM HANFORD TANK WASTE BY LITHIUM HYDROTALCITE PRECIPITATION  

SciTech Connect

A Technology Readiness Evaluation (TRE) performed by AREV A Federal Services, LLC (AFS) for Washington River Protection Solutions, LLC (WRPS) shows the lithium hydrotalcite (LiHT) process invented and patented (pending) by AFS has reached an overall Technology Readiness Level (TRL) of 3. The LiHT process removes aluminum and regenerates sodium hydroxide. The evaluation used test results obtained with a 2-L laboratory-scale system to validate the process and its critical technology elements (CTEs) on Hanford tank waste simulants. The testing included detailed definition and evaluation for parameters of interest and validation by comparison to analytical predictions and data quality objectives for critical subsystems. The results of the TRE would support the development of strategies to further mature the design and implementation of the LiHT process as a supplemental pretreatment option for Hanford tank waste.

SAMS TL; MASSIE HL

2011-01-27T23:59:59.000Z

393

CMP flowsheet development for the separation of actinides from ICPP sodium-bearing waste using centrifugal contactors  

Science Conference Proceedings (OSTI)

Previous results of lab-scale batch contacts with sodium-bearing waste (SBW) simulant suggested a potential flowsheet for partitioning actinides using solvent extraction with dihexyl-N,N-diethylcarbamoylmethyl phosphonate (DHDECMP or simply CMP) as the extractant. The suggested baseline flowsheet includes: an extraction section to remove actinides from liquid SBW into the CMP solvent (0.75 M CMP, 1.0 M TBP in Isopar-L{reg_sign}); a thermally unstable complexant (TUCS) strip section to back-extract actinides; a sodium carbonate wash section for solvent cleanup; and a dilute HNO{sub 3} rinse section to re-acidify the solvent. The purpose of these studies was to test and develop a baseline CMP flowsheet for Idaho Chemical Processing Plant (ICPP) SBW under continuous, countercurrent conditions using centrifugal contactors. This flowsheet was tested in two experiments using the Centrifugal Contactor Mockup which consists of sixteen stages of 5.5 cm diameter centrifugal contactors (procured from Oak Ridge National Laboratory). All testing was performed using non-radioactive SBW simulant. Potential flowsheets were evaluated with regard to the behavior of the non-radioactive components potentially extracted by the CMP solvent. Specifically, the behavior of the matrix components, including Fe, Hg, and Zr, was studied. In addition, Nd was added to the SBW simulant as a surrogate for {sup 241}Am. In general, the behavior of the individual components closely paralleled that anticipated from batch testing. Based on the assumption that the behavior of Am will be very similar to the behavior of the Nd surrogate, eight extraction stages are more than sufficient to reduce the actinide content in the SBW to levels well below the NRC Class A LLW criteria of 10 nCi/g. Very little Fe or Zr were extracted from the SBW simulant, resulting in only 1% of the Fe and 4% of the Zr exiting in the high-activity waste (HAW) fraction.

Law, J.D.; Herbst, R.S.; Rodriguez, A.M.

1995-08-01T23:59:59.000Z

394

Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at Idaho Nuclear Technology and Engineering Center  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

Herbst, Alan K.

2002-01-02T23:59:59.000Z

395

Out-Of-Drum Grout Mixer Testing With Simulated Liquid Effluents Originating From Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL) is considering several optional processes for disposal of liquid sodium-bearing waste. During fiscal year 2003, alternatives were evaluated for grout formulation development and associated mixing for the Sodium-Bearing Waste cesium ion exchange process. The neutralization agents calcium or sodium hydroxide and the solidification agents Portland cement, with or without blast furnace slag were evaluated. A desired uniform formulation was pursued to develop a grout waste form without any bleed liquid and solidify within a reasonable period of about twenty-eight days. This testing evaluates the out-of-drum alternative of mixing the effluent with solidification agents prior to being poured into drums versus the in-drum alternative of mixing them all together after being poured into the drums. Experimental results indicate that sodium-bearing waste can be immobilized in grout using the Autocon continuous mixer within the range of 66 to 72 weight percent. Furthermore, a loading of 30 weight percent NWCF scrubber simulant also produced an acceptable grout waste form.

B. A. Scholes; A. K. Herbst; S. V. Raman; S. H. Hinckley

2003-09-01T23:59:59.000Z

396

Testing and Disposal Strategy for Secondary Wastes from Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect

The Idaho National Engineering and Environmental Laboratory (INEEL) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

Herbst, Alan Keith

2002-01-01T23:59:59.000Z

397

Evaluation of Heterogeneous Options: Effects of MgO versus UO2 Matrix Selection for Minor Actinide Targets in a Sodium Fast Reactor  

Science Conference Proceedings (OSTI)

The primary focus of this work was to compare MgO with UO2 as target matrix material options for burning minor actinides in a transmutation target within a sodium fast reactor. This analysis compared the transmutation performance of target assemblies having UO2 matrix to those having specifically MgO inert matrix.

M. Pope; S. Bays; R. Ferrer

2008-03-01T23:59:59.000Z

398

Exploration of illumination concepts for underground coal mines. Appendix E. Electronic ballast for the Lucalox high pressure sodium lamp. Final report  

SciTech Connect

The report documents the results of an investigation to develop solid-state ballasts for Lucalox high-pressure sodium lamps. The ballasts were to be used in the modified and new portable and machine-mounted lighting systems designed by the Crouse-Hinds Co., per tasks I through IV of Contract No. H022065.

1976-07-20T23:59:59.000Z

399

MoSi2 and Other Silicides as High Temperature Structural Materials  

Science Conference Proceedings (OSTI)

... R.W. Stusrud, R.A. MacKay,. D.L. Anton, T. Khan, R.D. Kissinger, D.L. Klarstmm ..... 'I. 3 10-S d. 5. Q. H. 3 10= g. 5. E a. E m-7. 'E 5, .- z. 10-8 '. 5 c:3si MoSi2. //II.

400

Thermal evaluation of uranium silicide miniplates irradiated at high heat flux  

Science Conference Proceedings (OSTI)

The Gas Test Loop (GTL)-1 irradiation experiment was conducted in the Advanced Test Reactor (ATR) to assess corrosion performance of proposed booster fuel at heat flux levels ~30% above the design operating condition. Sixteen miniplates fabricated from 25% enriched, high-density (4.8 g U/cm3) U3Si2/Al dispersion fuel with 6061 aluminum cladding were subjected to peak beginning of cycle (BOC) heat fluxes ranging from 411 to 593 W/cm2. No adverse impacts to the miniplates were observed at these high heat flux levels. A detailed finite element model was constructed to calculate temperatures and heat flux for an as-run cycle average effective ATR south lobe power of 25.4 MW(t). Miniplate heat flux levels and fuel, cladding, hydroxide, and coolant–hydroxide interface temperatures were calculated using the average hydroxide thickness on each miniplate measured during post-irradiation examination. The purpose of this study was to obtain a best estimate of the as-run experiment temperatures to aid in establishing acceptable heat flux levels and designing fuel qualification experiments for this fuel type.

Donna P. Guillen

2012-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nasi sodium silicide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The magnesium silicide germanide stannide alloy: A new concept in ocean thermal energy conversion  

Science Conference Proceedings (OSTI)

In devices hitherto used for the direct conversion of heat into electricity, commonly known as ''thermoelectric energy converters'', the efficiency of conversion is appreciably lower than that of conventional reciprocating or rotary heat engines. This low efficiency is brought about by the physical properties of the materials selected for the manufacture of these devices. The materials that are currently being used for this purpose are either simple elements and alloys thereof, such as silicon and germanium, or intermetallic compounds, either simple or alloys and solid solutions thereof. Of the latter, mention may be made of bismuth telluride, antimony telluride, lead telluride, antimony silver telluride, lead selenide, bismuth selenide, antimony selenide, etc., as well as mixtures and solid solutions of these and other compounds. A search in respect of these materials carried out in the U.S. Patent literature indicates indeed a quite substantial and impressive record.

Nicolaou, M.C.

1983-12-01T23:59:59.000Z

402

Workfunction Tuning of n-Channel MOSFETs Using Interfacial Yttrium Layer in Fully Silicided Nickel Gate  

E-Print Network (OSTI)

Continual scaling of the CMOS technology requires thinner gate dielectric to maintain high performance. However, when moving into the sub-45 nm CMOS generation, the traditional poly-Si gate approach cannot effectively ...

Yu, Hongpeng

403

Degradation of yttria-stabilized zirconia thermal barrier coatings by vanadium pentoxide, phosphorous pentoxide, and sodium sulfate  

Science Conference Proceedings (OSTI)

The presence of vanadium, phosphorus, and sodium impurities in petcoke and coal/petcoke blends used in integrated gasification combined cycle (IGCC) plants warrants a clear understanding of high-temperature material degradation for the development of fuel-flexible gas turbines. In this study, degradation reactions of free-standing air plasma-sprayed (APS) yttria-stabilized zirconia (YSZ) in contact with V{sub 2}O{sub 5}, P{sub 2}O{sub 5}, and Na{sub 2}SO{sub 4} were investigated at temperatures up to 1200{sup o}C. Phase transformations and microstructural development were examined using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Molten V{sub 2}O{sub 5} reacted with solid YSZ to form ZrV{sub 2}O{sub 7} at temperatures below 747{sup o}C. However, at temperatures above 747{sup o}C, molten V{sub 2}O{sub 5} reacted with YSZ to form yttrium vanadate (YVO{sub 4}). The formation of YVO{sub 4} led to the depletion of the Y2O{sub 3} stabilizer and deleterious transformation to the monoclinic ZrO{sub 2} phase. In addition, studies on YSZ degradation by Na{sub 2}SO{sub 4} and a Na{sub 2}SO{sub 4}+V{sub 2}O{sub 5} mixture (50-50 mol%) showed that Na{sub 2}SO{sub 4} itself had no effect on the degradation of YSZ. However, in the presence of V{sub 2}O{sub 5} at high temperatures, Na{sub 2}SO{sub 4} forms vanadate compounds having a lower melting point such as sodium metavanadate (610{sup o}C), which was found to degrade YSZ by the formation of YVO{sub 4} at a relatively lower temperature of 700{sup o}C. P{sub 2}O{sub 5} was found to react with APS YSZ by the formation of ZrP{sub 2}O{sub 7} at all the temperatures studied. At temperatures as low as 200{sup o}C and as high as 1200{sup o}C, molten P{sub 2}O{sub 5} was observed to react with solid YSZ to yield ZrP{sub 2}O{sub 7}, which led to the depletion of ZrO{sub 2} in YSZ that promoted the formation of the fluorite-cubic ZrO{sub 2} phase.

Mohan, P.; Yuan, B.; Patterson, T.; Desai, V.H.; Sohn, Y.H. [University of Central Florida, Orlando, FL (United States)

2007-11-15T23:59:59.000Z

404

Steam Reforming Application for Treatment of DOE Sodium Bearing Tank Wastes at Idaho National Laboratory for Idaho Cleanup Project  

SciTech Connect

The patented THOR{sup R} steam reforming waste treatment technology has been selected by the Department of Energy (DOE) as the technology of choice for treatment of about one million gallons of Sodium Bearing Waste (SBW) at the Idaho National Laboratory (INL). SBW is an acidic waste created primarily from cleanup of the fuel reprocessing equipment at the Idaho Nuclear Technology and Engineering Center (INTEC) at the INL. SBW contains high concentrations of nitric acid and alkali and aluminum nitrates with minor amounts of many inorganic compounds including radionuclides, mainly cesium. The steam reforming process will convert the SBW into dry, solid, carbonate and aluminate minerals supporting a preferred path for disposal as remote handled transuranic (RH-TRU) waste at the Waste Isolation Pilot Project (WIPP). The Idaho Cleanup Project (ICP) will design, build, and operate an Integrated Waste Treatment Unit (IWTU) that will comprise an integrated THOR{sup R} process system that will utilize dual fluidized bed steam reformers (FBSR) for treatment of the SBW. Design of the IWTU is nearing completion. The IWTU will be constructed at INTEC, immediately east of the New Waste Calcine Facility (NWCF), with planned fabrication and construction to start in early 2007 upon receipt of needed permits and completion of design and engineering. This paper provides a project and process overview of the IWTU and discusses the design and construction status. IWTU equipment and facility designs and bases will be presented. (authors)

Landman, W.; Roesener, S. [CH2M WG Idaho, LLC, Idaho Falls, ID (United States); Mason, B.; Wolf, K.; Amaria, N. [THOR Treatment Technologies, LLC, Aiken, SC (United States)

2007-07-01T23:59:59.000Z

405

Steam Reforming Application for Treatment of DOE Sodium Bearing Tank Wastes at Idaho National Laboratory for Idaho Cleanup Project  

SciTech Connect

The patented THOR{sup R} steam reforming waste treatment technology has been selected as the technology of choice for treatment of Sodium Bearing Waste (SBW) at the Idaho National Laboratory (INL) for the Idaho Cleanup Project (ICP). SBW is an acidic tank waste at the Idaho Nuclear Technology and Engineering Center (INTEC) at INL. It consists primarily of waste from decontamination activities and laboratory wastes. SBW contains high concentrations of nitric acid, alkali and aluminum nitrates, with minor amounts of many inorganic compounds including radionuclides, mainly cesium and strontium. The THOR{sup R} steam reforming process will convert the SBW tank waste feed into a dry, solid, granular product. The THOR{sup R} technology was selected to treat SBW, in part, because it can provide flexible disposal options to accommodate the final disposition path selected for SBW. THOR{sup R} can produce a final end-product that will meet anticipated requirements for disposal as Remote-Handled TRU (RH-TRU) waste; and, with modifications, THOR{sup R} can also produce a final end-product that could be qualified for disposal as High Level Waste (HLW). SBW treatment will be take place within the Integrated Waste Treatment Unit (IWTU), a new facility that will be located at the INTEC. This paper provides an overview of the THOR{sup R} process chemistry and process equipment being designed for the IWTU. (authors)

Mason, J.B.; Wolf, K.; Ryan, K.; Roesener, S.; Cowen, M.; Schmoker, D.; Bacala, P. [THOR Treatment Technologies, LLC, 106 Newberry St. SW, Aiken, SC 29801 (United States); Landman, B. [CH2M WG Idaho, LLC, P. O. Box 1625, Idaho Falls, ID 83415 (United States)

2006-07-01T23:59:59.000Z

406

CHARACTERIZATION OF THE LOCAL TITANIUM ENVIRONMENT IN DOPED SODIUM ALUMINUM HYDRIDE USING X-RAY ADSORPTION SPECTROSCOPY.  

DOE Green Energy (OSTI)

Ti K-edge x-ray absorption spectroscopy was used to explore the local titanium environment and valence in 2-4 mol% Ti-doped sodium alanate. An estimate of the oxidation state of the dopant, based upon known standards, revealed a zero-valent titanium atom. An analysis of the near-edge and extended fine structures indicates that the Ti does not enter substitutional or interstitial sites in the NaAlH{sub 4} lattice. Rather, the Ti is located on/near the surface and is coordinated by 10.2 {+-} 1 aluminum atoms with an interatomic distance of 2.82 {+-} 0.01 {angstrom}, similar to that of TiAl{sub 3}. The Fourier transformed EXAFS spectra reveals a lack of long-range order around the Ti dopant indicating that the Ti forms nano-clusters of TiAl{sub 3}. The similarity of the spectra in the hydrided and dehydrided samples suggests that the local Ti environment is nearly invariant during hydrogen cycling.

GRAETZ, J.; IGNATOV, A. YU; TYSON, T.A.; REILLY, J.J.; JOHNSON, J.

2004-11-30T23:59:59.000Z

407

Baseline Flowsheet Generation for the Treatment and Disposal of Idaho National Engineering and Environmental Laboratory Sodium Bearing Waste  

Science Conference Proceedings (OSTI)

The High-Level Waste (HLW) Program at the Idaho National Engineering and Environmental Laboratory (INEEL) must implement technologies and processes to treat and qualify radioactive wastes located at the Idaho Nuclear Technology and Engineering Center (INTEC) for permanent disposal. This paper describes the approach and accomplishments to date for completing development of a baseline vitrification treatment flowsheet for sodium-bearing waste (SBW), including development of a relational database used to manage the associated process assumptions. A process baseline has been developed that includes process requirements, basis and assumptions, process flow diagrams, a process description, and a mass balance. In the absence of actual process or experimental results, mass and energy balance data for certain process steps are based on assumptions. Identification, documentation, validation, and overall management of the flowsheet assumptions are critical to ensuring an integrated, focused program. The INEEL HLW Program initially used a roadmapping methodology, developed through the INEEL Environmental Management Integration Program, to identify, document, and assess the uncertainty and risk associated with the SBW flowsheet process assumptions. However, the mass balance assumptions, process configuration and requirements should be accessible to all program participants. This need resulted in the creation of a relational database that provides formal documentation and tracking of the programmatic uncertainties related to the SBW flowsheet.

Barnes, Charles Marshall; Lauerhass, Lance; Olson, Arlin Leland; Taylor, Dean Dalton; Valentine, James Henry; Lockie, Keith Andrew

2002-02-01T23:59:59.000Z

408

Baseline Flowsheet Generation for the Treatment and Disposal of Idaho National Engineering and Environmental Laboratory Sodium Bearing Waste  

Science Conference Proceedings (OSTI)

The High-Level Waste (HLW) Program at the Idaho National Engineering and Environmental Laboratory (INEEL) must implement technologies and processes to treat and qualify radioactive wastes located at the Idaho Nuclear Technology and Engineering Center (INTEC) for permanent disposal. This paper describes the approach and accomplishments to date for completing development of a baseline vitrification treatment flowsheet for sodium-bearing waste (SBW), including development of a relational database used to manage the associated process assumptions. A process baseline has been developed that includes process requirements, basis and assumptions, process flow diagrams, a process description, and a mass balance. In the absence of actual process or experimental results, mass and energy balance data for certain process steps are based on assumptions. Identification, documentation, validation, and overall management of the flowsheet assumptions are critical to ensuring an integrated, focused program. The INEEL HLW Program initially used a roadmapping methodology, developed through the INEEL Environmental Management Integration Program, to identify, document, and assess the uncertainty and risk associated with the SBW flowsheet process assumptions. However, the mass balance assumptions, process configuration and requirements should be accessible to all program participants. This need resulted in the creation of a relational database that provides formal documentation and tracking of the programmatic uncertainties related to the SBW flowsheet.

Barnes, C.M.; Lauerhass, L.; Olson, A.L.; Taylor, D.D.; Valentine, J.H.; Lockie, K.A. (DOE- ID)

2002-01-16T23:59:59.000Z

409

FY-97 operations of the pilot-scale glass melter to vitrify simulated ICPP high activity sodium-bearing waste  

SciTech Connect

A 3.5 liter refractory-lined joule-heated glass melter was built to test the applicability of electric melting to vitrify simulated high activity waste (HAW). The HAW streams result from dissolution and separation of Idaho Chemical Processing Plant (ICPP) calcines and/or radioactive liquid waste. Pilot scale melter operations will establish selection criteria needed to evaluate the application of joule heating to immobilize ICPP high activity waste streams. The melter was fabricated with K-3 refractory walls and Inconel 690 electrodes. It is designed to be continuously operated at 1,150 C with a maximum glass output rate of 10 lbs/hr. The first set of tests were completed using surrogate HAW-sodium bearing waste (SBW). The melter operated for 57 hours and was shut down due to excessive melt temperatures resulting in low glass viscosity (< 30 Poise). Due to the high melt temperature and low viscosity the molten glass breached the melt chamber. The melter has been dismantled and examined to identify required process improvement areas and successes of the first melter run. The melter has been redesigned and is currently being fabricated for the second run, which is scheduled to begin in December 1997.

Musick, C.A.

1997-11-01T23:59:59.000Z

410

Summary of advanced LMR (Liquid Metal Reactor) evaluations: PRISM (Power Reactor Inherently Safe Module) and SAFR (Sodium Advanced Fast Reactor)  

Science Conference Proceedings (OSTI)

In support of the US Nuclear Regulatory Commission (NRC), Brookhaven National Laboratory (BNL) has performed independent analyses of two advanced Liquid Metal Reactor (LMR) concepts. The designs, sponsored by the US Department of Energy (DOE), the Power Reactor Inherently Safe Module (PRISM) (Berglund, 1987) and the Sodium Advanced Fast Reactor (SAFR) (Baumeister, 1987), were developed primarily by General Electric (GE) and Rockwell International (RI), respectively. Technical support was provided to DOE, RI, and GE, by the Argonne National Laboratory (ANL), particularly with respect to the characteristics of the metal fuels. There are several examples in both PRISM and SAFR where inherent or passive systems provide for a safe response to off-normal conditions. This is in contrast to the engineered safety systems utilized on current US Light Water Reactor (LWR) designs. One important design inherency in the LMRs is the inherent shutdown'', which refers to the tendency of the reactor to transition to a much lower power level whenever temperatures rise significantly. This type of behavior was demonstrated in a series of unscrammed tests at EBR-II (NED, 1986). The second key design feature is the passive air cooling of the vessel to remove decay heat. These systems, designated RVACS in PRISM and RACS in SAFR, always operate and are believed to be able to prevent core damage in the event that no other means of heat removal is available. 27 refs., 78 figs., 3 tabs.

Van Tuyle, G.J.; Slovik, G.C.; Chan, B.C.; Kennett, R.J.; Cheng, H.S.; Kroeger, P.G. (Brookhaven National Lab., Upton, NY (USA))

1989-10-01T23:59:59.000Z

411

Impact of Fission Products Impurity on the Plutonium Content of Metal- and Oxide- Fuels in Sodium Cooled Fast Reactors  

Science Conference Proceedings (OSTI)

This short report presents the neutronic analysis to evaluate the impact of fission product impurity on the Pu content of Sodium-cooled Fast Reactor (SFR) metal- and oxide- fuel fabrication. The similar work has been previously done for PWR MOX fuel [1]. The analysis will be performed based on the assumption that the separation of the fission products (FP) during the reprocessing of UOX spent nuclear fuel assemblies is not perfect and that, consequently, a certain amount of FP goes into the Pu stream used to fabricate SFR fuels. Only non-gaseous FPs have been considered (see the list of 176 isotopes considered in the calculations in Appendix 1 of Reference 1). Throughout of this report, we define the mixture of Pu and FPs as PuFP. The main objective of this analysis is to quantify the increase of the Pu content of SFR fuels necessary to maintain the same average burnup at discharge independently of the amount of FP in the Pu stream, i.e. independently of the PuFP composition. The FP losses are considered element-independent, i.e., for example, 1% of FP losses mean that 1% of all non-gaseous FP leak into the Pu stream.

Hikaru Hiruta; Gilles Youinou

2013-09-01T23:59:59.000Z

412

Sodium--sulphur battery system. Annual report, May 19, 1975--May 19, 1976. [Dow Chemical U. S. A  

DOE Green Energy (OSTI)

The development of the hollow-glass-fiber sodium--sulfur battery progressed significantly. Glass fiber quality improved greatly, and the fiber spinning and assembly machinery was made capable of more uniform operation. Impurities in the sulfur, including H, C, Zn/sup + +/, and Al/sup + + +/, do not appear to affect cell lifetime, while impurities in the Na are important. The Ca and ''oxide'' contents of the Na must be held to low levels. Corrosion products of a 316 stainless steel case are harmless to at least 75-day lifetimes. The Mg content of aluminum alloys can leach out in the catholyte and cause cell resistance to increase. Lifetime does not seem to be a function of total current passed or current density across the fibers. On 1000-fiber, 0.5-Ah cells, over 1400 deep charge--discharge cycles were achieved in 75 days of operating life. A larger 5-Ah cell went through 130 cycles at over 80 percent depth. Cell resistance and capacity remained constant, even at the /sup 1///sub 2/ hour rate. At lesser depths of discharge, the cells lasted longer. Failure was usually in the fibers when ''dirty'' Na was used, and usually just below the tube sheet when ''clean'' Na was used. An updated estimate of ''cost for sale'' of the bare cell is approximately $23.15 per kWh, based on 0.8-kWh cells. 21 figures, 3 tables.

Levine, C.A.

1976-11-01T23:59:59.000Z

413

Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Technology and Engineering Center FY-2001 Status Report  

SciTech Connect

The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

Herbst, A.K.; Kirkham, R.J.; Losinski, S.J.

2002-09-26T23:59:59.000Z

414

Secondary Waste Considerations for Vitrification of Sodium-Bearing Waste at the Idaho Nuclear Techology and Engineering Center FY-2001 Status Report  

SciTech Connect

The Idaho Nuclear Technology and Engineering Center (INTEC) is considering vitrification to process liquid sodium-bearing waste. Preliminary studies were completed to evaluate the potential secondary wastes from the melter off-gas clean up systems. Projected secondary wastes comprise acidic and caustic scrubber solutions, HEPA filters, activated carbon, and ion exchange media. Possible treatment methods, waste forms, and disposal sites are evaluated from radiological and mercury contamination estimates.

Herbst, Alan Keith; Kirkham, Robert John; Losinski, Sylvester John

2001-09-01T23:59:59.000Z

415

DESIGN AND OPERATION OF A 10.000 GPM D.C. ELECTROMAGNETIC SODIUM PUMP AND 250.000 AMPERE HOMOPOLAR GENERATOR  

SciTech Connect

single unit with the abililty to pump highly radioactive sodium (10/sup 8/ Mev/(cm/sup 3/) (sec) at high temperature (800 deg C) is described. The unit components are aligned vertically to reduce the electrical conductor length between homopolar generator and pump. The entire structure, including the 1250- hp drive motor is 30 ft high and weighs 35 tons. The pump is designed to develop a head of 75 psi at a pumping rate of 10,000 gpm. At this rate the generator must deliver 250,000 amp at 2.5 v. The low-voltage requirement of the pump permits the use of flat sheet insulation of pure mica or ceramic. The pump is limited in temperature by the curie point of iron (763 deg C). The homopolar generator is of the liquid brush type: eutectic NaK serves as the current- conductor between the rotating and stationary members. There are no windings in the machine other per strap. The essence of the pump-power supply unit lies in its ability to convert 2300-volt, 3-phase electrical power to controllable sodium pumping. Tests on the unit have revealed many interesting results which will aid greatly in the design of advanced models. (auth) Performacne tests are being conducted on two prootype 5000-gpm sodium pumps for application in the primary and secondary heat transfer systems of the EBR-II. Both pumps, one electromagnetic and one mechanical, have operated more than 5500 hr in sodium at temperatures whcih chave exceeded 800 deg F. The pump designs and test facilities are descrbied. (auth)

Jaross, R.A.; Barnes, A.H.

1958-10-31T23:59:59.000Z

416

ALUMINUM REMOVAL AND SODIUM HYDROXIDE REGENERATION FROM HANFORD TANK WASTE BY LITHIUM HYDROTALCITE PRECIPITATION SUMMARY OF PRIOR LAB-SCALE TESTING  

Science Conference Proceedings (OSTI)

Scoping laboratory scale tests were performed at the Chemical Engineering Department of the Georgia Institute of Technology (Georgia Tech), and the Hanford 222-S Laboratory, involving double-shell tank (DST) and single-shell tank (SST) Hanford waste simulants. These tests established the viability of the Lithium Hydrotalcite precipitation process as a solution to remove aluminum and recycle sodium hydroxide from the Hanford tank waste, and set the basis of a validation test campaign to demonstrate a Technology Readiness Level of 3.

SAMS TL; GUILLOT S

2011-01-27T23:59:59.000Z

417

Physical, Chemical and Structural Evolution of Zeolite-Containing Waste Forms Produced from Metakaolinite and Calcined Sodium Bearing Waste (HLW and/or LLW)  

SciTech Connect

Zeolites are extremely versatile. They can adsorb liquids and gases and serve as cation exchange media. They occur in nature as well cemented deposits. The ancient Romans used blocks of zeolitized tuff as a building material. Using zeolites for the management of radioactive waste is not a new idea, but a process by which the zeolites can be made to act as a cementing agent is. Zeolitic materials are relatively easy to synthesize from a wide range of both natural and man-made substances. The process under study is derived from a well known method in which metakaolin (an impure thermally dehydroxylated kaolinite heated to {approx}700 C containing traces of quartz and mica) is mixed with sodium hydroxide (NaOH) and reacted in slurry form (for a day or two) at mildly elevated temperatures. The zeolites form as finely divided powders containing micrometer ({micro}m) sized crystals. However, if the process is changed slightly and only just enough concentrated sodium hydroxide solution is added to the metakaolinite to make a thick crumbly paste and then the paste is compacted and cured under mild hydrothermal conditions (60-200 C), the mixture will form a hard ceramic-like material containing distinct crystalline tectosilicate minerals (zeolites and feldspathoids) imbedded in an X-ray amorphous hydrated sodium aluminosilicate matrix. Due to its lack of porosity and vitreous appearance we have chosen to call this composite a ''hydroceramic''.

Grutzeck, Michael W.

2005-06-27T23:59:59.000Z

418

Actinide extraction from ICPP sodium bearing waste with 0.75 M DHDECMP/TBP in Isopar L{reg_sign}  

SciTech Connect

Recent process development efforts at the Idaho Chemical Processing Plant include examination of solvent extraction technologies for actinide partitioning from sodium bearing waste (SBW) solutions. The use of 0.75 {und M} dihexyl-N, N-diethylcarbamoylmethylphosphonate (DHDECMP or simply CMP) and 1.0 {und M} tri-n-butyl phosphate (TBP) diluted in Isopar L{reg_sign} was explored for actinide removal from simulated SBW solutions. Experimental evaluations included batch contacts in radiotracer tests with simulated sodium bearing waste solution to measure the extraction and recovery efficiency of the organic solvent. The radioactive isotopes utilized for this study included Pu-238, Pu-239, Am-241, U-233, Np-239, Zr-95, Tc-99m, and Hg-203. Extraction contacts of the organic solvent with the traced SBW stimulant, strip (back-extraction) contacts of the loaded organic solvent with either a 1-hydroxyethane-1, 1-diphosphonic acid (HEDPA) in nitric acid solution or an oxalic acid in nitric acid solution, and solvent wash contacts with sodium carbonate were performed.

Herbst, R.S.; Brewer, K.N.; Garn, T.G.; Law, J.D.; Rodriguez, A.M.; Tillotson, R.T.

1996-01-01T23:59:59.000Z

419

DURABILITY TESTING OF FLUIDIZED BED STEAM REFORMER WASTE FORMS FOR SODIUM BEARING WASTE AT IDAHO NATIONAL LABORATORY  

SciTech Connect

Fluidized Bed Steam Reforming (FBSR) processing of Sodium Bearing Waste simulants was performed in December 2006 by THOR{sup sm} Treatment Technologies LLC (TTT) The testing was performed at the Hazen Research Inc. (HRI) pilot plant facilities in Golden, CO. FBSR products from these pilot tests on simulated waste representative of the SBW at the Idaho Nuclear Technology and Engineering Center (INTEC) were subsequently transferred to the Savannah River National Laboratory (SRNL) for characterization and leach testing. Four as-received Denitration and Mineralization Reformer (DMR) granular/powder samples and four High Temperature Filter (HTF) powder samples were received by SRNL. FBSR DMR samples had been taken from the ''active'' bed, while the HTF samples were the fines collected as carryover from the DMR. The process operated at high fluidizing velocities during the mineralization test such that nearly all of the product collected was from the HTF. Active bed samples were collected from the DMR to monitor bed particle size distribution. Characterization of these crystalline powder samples shows that they are primarily Al, Na and Si, with > 1 wt% Ca, Fe and K. The DMR samples contained less than 1 wt% carbon and the HTF samples ranged from 13 to 26 wt% carbon. X-ray diffraction analyses show that the DMR samples contained significant quantities of the Al{sub 2}O{sub 3} startup bed. The DMR samples became progressively lower in starting bed alumina with major Na/Al/Si crystalline phases (nepheline and sodium aluminosilicate) present as cumulative bed turnover occurred but 100% bed turnover was not achieved. The HTF samples also contained these major crystalline phases. Durability testing of the DMR and HTF samples using the ASTM C1285 Product Consistency Test (PCT) 7-day leach test at 90 C was performed along with several reference glass samples. Comparison of the normalized leach rates for the various DMR and HTF components was made with the reference glasses and the Low Activity Waste (LAW) specification for the Hanford Waste Treatment and Vitrification Plant (WTP). Normalized releases from the DMR and HTF samples were all less than 1 g/m{sup 2}. For comparison, normalized release from the High-Level Waste (HLW) benchmark Environmental Assessment (EA) glass for Si, Li, Na and B ranges from 2 to 8 g/m{sup 2}. The normalized release specification for LAW glass for the Hanford WTP is 2 g/m{sup 2}. The Toxicity Characteristic Leach Test (TCLP) was performed on DMR and HTF as received samples and the tests showed that these products meet the criteria for the EPA RCRA Universal Treatment Standards for all of the constituents contained in the starting simulants such as Cr, Pb and Hg (RCRA characteristically hazardous metals) and Ni and Zn (RCRA metals required for listed wastes).

Crawford, C; Carol Jantzen, C

2007-08-27T23:59:59.000Z

420

A High Temperature (400 to 650oC) Secondary Storage Battery Based on Liquid Sodium and Potassium Anodes  

DOE Green Energy (OSTI)

This STTR Phase I research program was on the development of high temperature (400 to 650 C), secondary batteries with roundtrip efficiency > 90% for integration with a 3 to 10 kW solid oxide fuel cell (SOFC) system. In fulfillment of this objective, advanced planar high temperature rechargeable batteries, comprised of an alkali metal ion conducting, highly refractory, beta'' alumina solid electrolyte (BASE) sandwiched between liquid sodium (or potassium) anode and liquid metal salt cathode, were developed at MSRI. The batteries have been successfully demonstrated at a working temperature as high as 600 C. To our knowledge, so far no work has been reported in the literature on planar rechargeable batteries based on BASE, and results obtained in Phase I for the very first time demonstrated the viability of planar batteries, though relatively low temperature tubular-based sodium-sulfur batteries and ZEBRA batteries have been actively developed by very limited non U.S. companies. The results of this Phase I work have fulfilled all the goals and stated objectives, and the achievements showed much promise for further, substantial improvements in battery design and performance. The important results of Phase I are briefly described in what follows: (1) Both Na-BASE and K-BASE discs and tubes have been successfully fabricated using MSRI's patented vapor phase process. Ionic conductivity measurements showed that Na-BASE had higher ionic conductivity than K-BASE, consistence with the literature. At 500 C, Na-BASE conductivity is 0.36 S/cm, which is more than 20 times higher than 8YSZ electrolyte used for SOFC at 800 C. The activation energy is 22.58 kJ/mol. (2) CuCl{sub 2}, FeCl{sub 2}, ZnCl{sub 2}, and AgCl were identified as suitable salts for Na/metal salt or K/metal salt electrochemical couples based on thermochemical data. Further open circuit voltage measurements matched those deduced from the thermochemical data. (3) Tubular cells with CuCl{sub 2} as the cathode and Na as the anode were constructed. However, it was discovered that CuCl{sub 2} was somewhat corrosive and dissolved iron, an element of the cathode compartment. Since protective coating technology was beyond this Phase I work scope, no further work on the CuCl{sub 2} cathode was pursued in Phase I. Notwithstanding, due to its very high OCV and high specific energy, CuCl{sub 2} cathode is a very attractive possibility for a battery capable of delivering higher specific energy with higher voltage. Further investigation of the Na-CuCl{sub 2} battery can be done by using suitable metal coating technologies developed at MSRI for high temperature applications. (4) In Phase I, FeCl{sub 2} and ZnCl{sub 2} were finalized as the potential cathodes for Na-metal salt batteries for delivering high specific energies. Planar Na-FeCl{sub 2} and Na-ZnCl{sub 2} cells were designed, constructed, and tested between 350 and 600 C. Investigation of charge/discharge characteristics showed they were the most promising batteries. Charge/discharge cycles were performed as many as 27 times, and charge/discharge current was as high as 500 mA. No failure was detected after 50 hours testing. (5) Three-cell planar stacks were designed, constructed, and evaluated. Preliminary tests showed further investigation was needed for optimization. (6) Freeze-thaw survival was remarkably good for planar BASE discs fabricated by MSRI's patented vapor phase process.

Tao, Greg; Weber, Neill

2007-06-08T23:59:59.000Z

Note: This page contains sample records for the topic "nasi sodium silicide" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Steam Reforming Application for Treatment of DOE Sodium-Bearing Tank Wastes at Idaho National Laboratory for Idaho Cleanup Project  

SciTech Connect

The patented THOR{sup R} steam reforming waste treatment technology has been selected by the U.S. Department of Energy (DOE) as the technology of choice for treatment of about one million gallons of sodium-bearing waste (SBW) at the Idaho National Laboratory (INL) Site 1. SBW is an acidic waste created primarily from cleanup of the fuel reprocessing equipment at the Idaho Nuclear Technology and Engineering Center (INTEC) at the INL. SBW contains high concentrations of nitric acid and alkali and aluminum nitrates with minor amounts of many inorganic compounds including radionuclides, mainly cesium. The steam reforming process will convert the SBW into dry, solid, carbonate and aluminate minerals supporting a preferred path for disposal as remote handled transuranic (RH-TRU) waste at the Waste Isolation Pilot Project (WIPP). The Idaho Cleanup Project (ICP) will design, build, and operate an Integrated Waste Treatment Unit (IWTU) that will comprise an integrated THOR{sup R} process system that will utilize dual fluidized bed steam reformers (FBSR) for treatment of the SBW. The IWTU is being constructed at INTEC, immediately east of the New Waste Calcine Facility (NWCF). Detailed design of the IWTU has been completed and DOE has approved the CD-3 detailed design. The State of Idaho has approved the RCRA and construction air permits. Construction of the IWTU started in April 2007 with civil and foundation work. This paper provides a project and process overview of the IWTU and discusses the design and construction status. IWTU equipment and facility designs and bases will be presented. (authors)

Landman, W.; Roesener, S. [CH2M-WG Idaho, LLC, Idaho Falls, ID (United States); Bradley Mason, J.; Bourgeois, T.; Amaria, N. [THOR Treatment Technologies, LLC, Aiken, SC (United States)

2008-07-01T23:59:59.000Z

422

Demonstration of a SREX flowsheet for the partitioning of strontium and lead from actual ICPP sodium-bearing waste  

SciTech Connect

Laboratory experimentation has indicated that the SREX process is effective for partitioning {sup 90}Sr and Pb from acidic radioactive waste solutions located at the Idaho Chemical Processing Plant. Previous countercurrent flowsheet testing of the SREX process with simulated waste resulted in 99.98% removal of Sr and 99.9% removal of Pb. Based on the results of these studies, a demonstration of the SREX flowsheet was performed. The demonstration consisted of (1) countercurrent flowsheet testing of the SREX process using simulated sodium-bearing waste spiked with {sup 85}Sr and (2) countercurrent flowsheet testing of the SREX process using actual waste from tank WM-183. All testing was performed using 24 stages of 2-cm diameter centrifugal contactors which are installed in the Remote Analytical Laboratory hot cell. The flowsheet tested consisted of an extraction section (0. 15 M 4`,4`(5)-di-(tert-butyldicyclohexo)-18-crown-6 and 1.5 M TBP in Isopar-L{reg_sign}), a 2.0 MHNO{sub 3} scrub section to remove extracted K from the SREX solvent, a 0.05 M HNO{sub 3} strip section for the removal of Sr from the SREX solvent, a 0.1 M ammonium citrate strip section for the removal of Pb from the SREX solvent, and a 3.0 M HNO{sub 3} equilibration section. The behavior of {sup 90}Sr, Pb, Na, K, Hg, H{sup +}, the actinides, and numerous other non-radioactive elements was evaluated. The described flowsheet successfully extracted and selectively stripped Sr and Ph from the SBW simulant and the actual tank waste. For the testing with actual tank waste (WM - 183), removal efficiencies of 99.995 % and >94% were obtained for {sup 90}Sr and Pb, respectively.

Law, J.D.; Wood, D.J.; Olson, L.G.; Todd, T.A.

1997-08-01T23:59:59.000Z

423

Extended electron energy loss fine structure simulation of the local boron environment in sodium aluminoborosilicate glasses containing gadolinium  

SciTech Connect

Phase separation in sodium-aluminoborosilicate glasses was systematically studied as a function of Gd2O3 concentration with transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS), and electron energy loss spectroscopy (EELS) methods. Gadolinium-induced phase separation in the three systems can be consistently explained by proposing that Gd cations partition to the borate-rich environments and subsequent agglomeration of the Gd-borate moieties, or short-range ordered structural groups, in the glass. Agglomeration of the Gd-borate rich environments is further discussed within the context of excess metal oxides,[Na2O]ex or[Al2O3]ex=|Na2O - Al2O3|, and excess B2O3,[B2O3]ex, available for incorporating Gd cations. Results showed that agglomeration of the Gd-borate rich environments occurred at a much lower Gd2O3 concentration in the glass without[Na2O]ex or[Al2O3]ex and at a significantly higher Gd2O3 concentration in the glass with either[Na2O]ex or[Al2O3]ex. Assuming 1BO4 : 1Gd : 2BO3 (based on literature-reported Gd-metaborate structure) as a local Gd-borate environment in glass, we introduced the saturation index of boron, SI[B]= Gd2O3/(1/3[B2O3]ex), to examine the glass susceptibility to Gd-induced phase separation for all three alkali-aluminoborosilicate systems. While our results have provided some insight to the glass structure, they also provide insight to the mechanism by which the metal oxide is dissolved into the melt. This appears to occur predominantly through boron complexation of the metal oxide.

Qian, Morris (Charles Evans and Associates) [Charles Evans and Associates; Li, Hong (PPG Industries, Inc) [PPG Industries, Inc; Li, Liyu (BATTELLE (PACIFIC NW LAB)) [BATTELLE (PACIFIC NW LAB); Strachan, Denis M.(BATTELLE (PACIFIC NW LAB)) [BATTELLE (PACIFIC NW LAB)

2003-12-01T23:59:59.000Z

424

Reliability Engineering Approach to Probabilistic Proliferation Resistance Analysis of the Example Sodium Fast Reactor Fuel Cycle Facility  

E-Print Network (OSTI)

International Atomic Energy Agency (IAEA) safeguards are one method of proliferation resistance which is applied at most nuclear facilities worldwide. IAEA safeguards act to prevent the diversion of nuclear materials from a facility through the deterrence of detection. However, even with IAEA safeguards present at a facility, the country where the facility is located may still attempt to proliferate nuclear material by exploiting weaknesses in the safeguards system. The IAEA's mission is to detect the diversion of nuclear materials as soon as possible and ideally before it can be weaponized. Modern IAEA safeguards utilize unattended monitoring systems (UMS) to perform nuclear material accountancy and maintain the continuity of knowledge with regards to the position of nuclear material at a facility. This research focuses on evaluating the reliability of unattended monitoring systems and integrating the probabilistic failure of these systems into the comprehensive probabilistic proliferation resistance model of a facility. To accomplish this, this research applies reliability engineering analysis methods to probabilistic proliferation resistance modeling. This approach is demonstrated through the analysis of a safeguards design for the Example Sodium Fast Reactor Fuel Cycle Facility (ESFR FCF). The ESFR FCF UMS were analyzed to demonstrate the analysis and design processes that an analyst or designer would go through when evaluating/designing the proliferation resistance component of a safeguards system. When comparing the mean time to failure (MTTF) for the system without redundancies versus one with redundancies, it is apparent that redundancies are necessary to achieve a design without routine failures. A reliability engineering approach to probabilistic safeguards system analysis and design can be used to reach meaningful conclusions regarding the proliferation resistance of a UMS. The methods developed in this research provide analysts and designers alike a process to follow to evaluate the reliability of a UMS.

Cronholm, Lillian Marie

2011-08-01T23:59:59.000Z

425

SOLIDIFICATION OF THE HANFORD LAW WASTE STREAM PRODUCED AS A RESULT OF NEAR-TANK CONTINUOUS SLUDGE LEACHING AND SODIUM HYDROXIDE RECOVERY  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE), Office of River Protection (ORP), is responsible for the remediation and stabilization of the Hanford Site tank farms, including 53 million gallons of highly radioactive mixed wasted waste contained in 177 underground tanks. The plan calls for all waste retrieved from the tanks to be transferred to the Waste Treatment Plant (WTP). The WTP will consist of three primary facilities including pretreatment facilities for Low Activity Waste (LAW) to remove aluminum, chromium and other solids and radioisotopes that are undesirable in the High Level Waste (HLW) stream. Removal of aluminum from HLW sludge can be accomplished through continuous sludge leaching of the aluminum from the HLW sludge as sodium aluminate; however, this process will introduce a significant amount of sodium hydroxide into the waste stream and consequently will increase the volume of waste to be dispositioned. A sodium recovery process is needed to remove the sodium hydroxide and recycle it back to the aluminum dissolution process. The resulting LAW waste stream has a high concentration of aluminum and sodium and will require alternative immobilization methods. Five waste forms were evaluated for immobilization of LAW at Hanford after the sodium recovery process. The waste forms considered for these two waste streams include low temperature processes (Saltstone/Cast stone and geopolymers), intermediate temperature processes (steam reforming and phosphate glasses) and high temperature processes (vitrification). These immobilization methods and the waste forms produced were evaluated for (1) compliance with the Performance Assessment (PA) requirements for disposal at the IDF, (2) waste form volume (waste loading), and (3) compatibility with the tank farms and systems. The iron phosphate glasses tested using the product consistency test had normalized release rates lower than the waste form requirements although the CCC glasses had higher release rates than the quenched glasses. However, the waste form failed to meet the vapor hydration test criteria listed in the WTP contract. In addition, the waste loading in the phosphate glasses were not as high as other candidate waste forms. Vitrification of HLW waste as borosilicate glass is a proven process; however the HLW and LAW streams at Hanford can vary significantly from waste currently being immobilized. The ccc glasses show lower release rates for B and Na than the quenched glasses and all glasses meet the acceptance criterion of < 4 g/L. Glass samples spiked with Re{sub 2}O{sub 7} also passed the PCT test. However, further vapor hydration testing must be performed since all the samples cracked and the test could not be performed. The waste loading of the iron phosphate and borosilicate glasses are approximately 20 and 25% respectively. The steam reforming process produced the predicted waste form for both the high and low aluminate waste streams. The predicted waste loadings for the monolithic samples is approximately 39%, which is higher than the glass waste forms; however, at the time of this report, no monolithic samples were made and therefore compliance with the PA cannot be determined. The waste loading in the geopolymer is approximately 40% but can vary with the sodium hydroxide content in the waste stream. Initial geopolymer mixes revealed compressive strengths that are greater than 500 psi for the low aluminate mixes and less than 500 psi for the high aluminate mixes. Further work testing needs to be performed to formulate a geopolymer waste form made using a high aluminate salt solution. A cementitious waste form has the advantage that the process is performed at ambient conditions and is a proven process currently in use for LAW disposal. The Saltstone/Cast Stone formulated using low and high aluminate salt solutions retained at least 97% of the Re that was added to the mix as a dopant. While this data is promising, additional leaching testing must be performed to show compliance with the PA. Compressive strength tests must also be performed on the Cast Ston

Reigel, M.; Johnson, F.; Crawford, C.; Jantzen, C.

2011-09-20T23:59:59.000Z

426

Modeling Study of Proposed Field Calibration Source Using K-40 Source and High-Z Targets for Sodium Iodide Detector  

E-Print Network (OSTI)

The Department of Energy (DOE) has ruled that all sealed radioactive sources, even those considered exempt under Nuclear Regulatory Commission regulations, are subject to radioactive material controls. However, sources based on the primordial isotope potassium-40 (40K) are not subject to these restrictions. Potassium-40’s beta spectrum and 1460.8 keV gamma ray can be used to induce K-shell fluorescence x rays in high-Z metals between 60 and 80 keV. A gamma ray calibration source is thus proposed that uses potassium chloride salt and a high-Z metal to create a two-point calibration for a sodium iodide field gamma spectroscopy instrument. The calibration source was designed in collaboration with Sandia National Laboratory using the Monte Carlo N-Particle eXtended (MCNPX) transport code. The x ray production was maximized while attempting to preserve the detector system’s sensitivity to external sources by minimizing the count rate and shielding effect of the calibration source. Since the source is intended to be semi-permanently fix