Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nasa jet propulsion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Advanced Propulsion Concepts at the Jet Propulsion Laboratory  

E-Print Network (OSTI)

Current interest in advanced propulsion within NASA and research activities in advanced propulsion concepts at the Jet Propulsion Laboratory are reviewed. The include high power plasma thrusters such as propulsion systems, in-situ propellant utilization techniques, fusion propulsion systems and methods of using antimatter, offer the potential for either significantly enhancing space transportation capability as compared with that of traditional chemical propulsion, or enabling ambitious new missions.

Stephanie D. Leifer; Robert H. Frisbee; John R. Brophy

1997-01-01T23:59:59.000Z

2

The NASA-JPL Advanced Propulsion Program  

E-Print Network (OSTI)

this paper was performed the Jet Propulsion Laboratory California Institute of Technology, under contract with the Aeronautics and Space Administration. Mid-Term Far-Term 5. 7.

Robert Frisbee

1996-01-01T23:59:59.000Z

3

Controlled Antihydrogen Propulsion for NASA's Future in Very Deep Space  

E-Print Network (OSTI)

To world-wide notice, in 2002 the ATHENA collaboration at CERN (in Geneva, Switzerland) announced the creation of order 100,000 low energy antihydrogen atoms. Thus, the concept of using condensed antihydrogen as a low-weight, powerful fuel (i.e., it produces a thousand times more energy per unit weight of fuel than fission/fusion) for very deep space missions (the Oort cloud and beyond) had reached the realm of conceivability. We briefly discuss the history of antimatter research and focus on the technologies that must be developed to allow a future use of controlled, condensed antihydrogen for propulsion purposes. We emphasize that a dedicated antiproton source (the main barrier to copious antihydrogen production) must be built in the US, perhaps as a joint NASA/DOE/NIH project. This is because the only practical sources in the world are at CERN and the proposed facility at GSI in Germany. We outline the scope and magnitude of such a dedicated national facility and identify critical project milestones. We estimate that, starting with the present level of knowledge and multi-agency support, the goal of using antihydrogen for propulsion purposes may be accomplished in ~50 years.

Michael Martin Nieto; Michael H. Holzscheiter; Slava G. Turyshev

2004-10-21T23:59:59.000Z

4

Exhaust-gas measurements from NASAs HYMETS arc jet.  

Science Conference Proceedings (OSTI)

Arc-jet wind tunnels produce conditions simulating high-altitude hypersonic flight such as occurs upon entry of space craft into planetary atmospheres. They have traditionally been used to study flight in Earth's atmosphere, which consists mostly of nitrogen and oxygen. NASA is presently using arc jets to study entry into Mars' atmosphere, which consists of carbon dioxide and nitrogen. In both cases, a wide variety of chemical reactions take place among the gas constituents and with test articles placed in the flow. In support of those studies, we made measurements using a residual gas analyzer (RGA) that sampled the exhaust stream of a NASA arc jet. The experiments were conducted at the HYMETS arc jet (Hypersonic Materials Environmental Test System) located at the NASA Langley Research Center, Hampton, VA. This report describes our RGA measurements, which are intended to be used for model validation in combination with similar measurements on other systems.

Miller, Paul Albert

2010-11-01T23:59:59.000Z

5

Research in Hypersonic Airbreathing Propulsion at NASA Langley Research Center  

Science Conference Proceedings (OSTI)

The NASA Langley Research Center has been conducting research for over 4 decades to develop technology for an airbreathing-propelled vehicle. Several other organizations within the United States have also been involved in this endeavor. Even though significant ...

Kumar Ajay; Drummond J. Philip; McClinton Charles R.; Hunt James L.

2001-09-01T23:59:59.000Z

6

Exhaust-gas measurements from NASAs HYMETS arc jet.  

SciTech Connect

Arc-jet wind tunnels produce conditions simulating high-altitude hypersonic flight such as occurs upon entry of space craft into planetary atmospheres. They have traditionally been used to study flight in Earth's atmosphere, which consists mostly of nitrogen and oxygen. NASA is presently using arc jets to study entry into Mars' atmosphere, which consists of carbon dioxide and nitrogen. In both cases, a wide variety of chemical reactions take place among the gas constituents and with test articles placed in the flow. In support of those studies, we made measurements using a residual gas analyzer (RGA) that sampled the exhaust stream of a NASA arc jet. The experiments were conducted at the HYMETS arc jet (Hypersonic Materials Environmental Test System) located at the NASA Langley Research Center, Hampton, VA. This report describes our RGA measurements, which are intended to be used for model validation in combination with similar measurements on other systems.

Miller, Paul Albert

2010-11-01T23:59:59.000Z

7

Considerations for Steady-State FRC-Based Fusion Space Propulsion (A23579)  

E-Print Network (OSTI)

Proc. Of NASA Advanced Propulsion Workshop On Fusion Propulsion, Huntsville, Alabama, 2000, To Be PublishedNASA Advanced Propulsion Workshop on Fusion Propulsion Huntsville AL, US, 2000978449582

Schaffer, M.J.

2000-11-01T23:59:59.000Z

8

Investigation of a Sodium Vapor Compressor Jet for Nuclear Propulsion of Aircraft  

SciTech Connect

?Analysis indicates that, in order to achieve supersonic flight with nuclear powered aircraft, a reactor -power plant combination capable of operating at temperatures considerably in excess of current practice must be developed. It is pointed out that there exist two general avenues of approach toward the goal of attaining high temperature reactors and power plants. The first approach involves the continuation and augmentation of research along the lines pursued by the conventional turbo-jet engine manufacturer, namely a search for material coatings or materials that will retain structural strength in high temperature oxidizing atmospheres. The second approach seeks to take advantage of the peculiar characteristics of the compressor-jet engine that permit the operation of the high temperature components in a non-oxidizing atmosphere. The results of a preliminary design study of a supersonic aircraft powered by a high temperature sodium, liquid vapor compressor -jet engine are summarized. The analysis considered, in as much detail as was warranted by the limited experimental information available, the characteristics of the reactor, power plant and airframe involved in determining performance. This study has been conducted for the purpose of guiding future, long -t e r rn , research work along the lines of high temperature reactors and power plants for aircraft propulsion. The sodium vapor compressor -jet is not presented as an engine that is presently considered feasible nor is any attempt made to establish a time table for its development. ?The present status of reactor -power plant combinations of the type discussed in this report is such that the configurations presented and the thermodynamic requirements set forth are highly c onj ectural. However, in light of the promising results thus far obtained from very limited experimentation in the field of high temperature materials not subject to oxidizing atmospheres, it appears worthwhile to continue a research effort along these lines in the expectation of making high temperature, high performance aircraft a reality. This report is based upon studies conducted for the Atomic Energy Commission under Contract AT-40-l-GEN-1064. These studies were concluded on September 1, 1951, and were informally made available to the Aircraft Nuclear Propulsion Group at ORNL at that time.

Schwartz, H.

1953-06-25T23:59:59.000Z

9

Nuclear electric propulsion : assessing the design of Project Prometheus.  

E-Print Network (OSTI)

The high fuel efficiency of electric propulsion makes it a viable alternative for long-distance space travel. Project Prometheus was a NASA-led project that sought to demonstrate that distant electric propulsion missions ...

Goycoolea, Martin

2013-01-01T23:59:59.000Z

10

Jet Jet Jet Jet  

NLE Websites -- All DOE Office Websites (Extended Search)

protons protons top quark bottom quark muon top quark antiprotons bottom quark low energy muon quark quark - W boson + Jet Jet Jet Jet neutrino W boson particles antiparticles A Top Antitop Quark Event from the D-Zero Detector at Fermilab muon low energy muon Jet Jet Jet Jet particles antiparticles Particles Seen by the D-Zero Detector at Fermilab in a Top Antitop Quark Event. DST LEGO 16-JUL-1996 15:32 Run 92704 Event 14022 9-JUL-1995 13:17 MUON MUON Miss ET ET DST ETA-PHI 4 MUON 1 MISS ET 4 JET (HAD) (EM) D-Zero Detector at Fermi National Accelerator Laboratory Lego Plot CAL+TKS END VIEW 16-JUL-1996 15:33 Run 92704 Event 14022 9-JUL-1995 13:17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

ARM - Field Campaign - NASA Coordinated Airborne CO2 Lidar Flight Test  

NLE Websites -- All DOE Office Websites (Extended Search)

govCampaignsNASA Coordinated Airborne CO2 Lidar Flight Test Campaign govCampaignsNASA Coordinated Airborne CO2 Lidar Flight Test Campaign Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : NASA Coordinated Airborne CO2 Lidar Flight Test Campaign 2009.07.27 - 2009.08.07 Lead Scientist : Edward Browell For data sets, see below. Description This airborne field test campaign was designed to obtain a coordinated set of remote CO2 Laser Absorption Spectrometer (LAS) measurements using the NASA Langley/ITT 1.57-micron Continuous-Wave (CW) LAS operating from the NASA Langley UC-12 aircraft; the NASA Goddard 1.57-micron pulsed LAS operating from the NASA Glenn Lear-25 aircraft; and the NASA Jet Propulsion Laboratory 2.0-micron CW-coherent LAS operating from a contracted Twin Otter aircraft. These remote LAS CO2 column measurements were compared with

12

August 23, 2010 David McKinney/University Relations  

E-Print Network (OSTI)

and Government partners NINSA, Honeywell, Kansas City Plant NASA Goddard Space Flight Center NASA Jet Propulsion

Peterson, Blake R.

13

On the uses of hyperspectral data analysis and watershed analytical methods to evaluate the extent of riparian vegetation and habitat in the Navarro River, California  

E-Print Network (OSTI)

and Space Administration; Jet Propulsion Laboratory. Viers,and Space Administration; Jet Propulsion Laboratory.and Space Administration - Jet Propulsion Laboratory (NASA

Viers, Joshua H.; Ramirez, Carlos; Quinn, James F.

2003-01-01T23:59:59.000Z

14

Solar discrepancies : Mars exploration and the curious problem of inter-planetary time  

E-Print Network (OSTI)

by the Jet Propulsion Laboratory, for NASA's Office of Spaceclocks for the space age. New York: Atheneum. Jet Propulsion

Mirmalek, Zara Lenora

2008-01-01T23:59:59.000Z

15

Berkeley Lab Team Receives NASA Public Service Group Achievement...  

NLE Websites -- All DOE Office Websites (Extended Search)

members Sara Ricciardi, Federico Stivoli and Radek Stomporon on June 15, 2010 at the Jet Propulsion Laboratory in Pasadena, Calif. All three researchers are also members of the...

16

JET PROPULSION LABORATORY COVER: FROM  

E-Print Network (OSTI)

identified induction and RF linac candidate drivers. Later, storage rings were also considered at GSI + Storage Ring/ Synchrotron ·Induction Recirculator ·Dielectric Wall Accelerator Target ·Indirect Drive of gas by vacuum pumping. Eg:, Turner, 2006, J. Vac. Sci. Technol. A 14(4). 20 m We can modify

17

Workshop Attendees  

Science Conference Proceedings (OSTI)

... Jerry Simmons Sandia National Laboratories ... Niki Werkheiser NASA Ames Research Center ... Debora Wolfenbarger Jet Propulsion Laboratory ...

2012-10-12T23:59:59.000Z

18

A Review of Laser Ablation Propulsion  

SciTech Connect

Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.

Phipps, Claude [Photonic Associates, LLC, 200A Ojo de la Vaca Road, Santa Fe NM 87508 (United States); Bohn, Willy [Bohn Laser Consult, Weinberg Weg 43, Stuttgart (Germany); Lippert, Thomas [Paul Scherrer Institut, CH5232 Villigen PSI (Switzerland); Sasoh, Akihiro [Department of Aerospace Engineering, Nagoya University, Chikusa-ku, Nagoya (Japan); Schall, Wolfgang [DLR Institute of Technical Physics, Stuttgart (Germany); Sinko, John [Micro-Nano GCOE, Nagoya University, Furo-cho, Nagoya, Aichi (Japan)

2010-10-08T23:59:59.000Z

19

Nuclear Electric Propulsion: A “Better, Safer, Cheaper” Transportation System for Human Exploration of Mars  

Science Conference Proceedings (OSTI)

NASA has completed a preliminary mission and systems study of nuclear electric propulsion (NEP) systems for “split?sprint” human exploration and related robotic cargo missions to Mars. This paper describes the study

John S. Clark; Jeffrey A. George; Leon P. Gefert; Michael P. Doherty; Robert J. Sefcik

1994-01-01T23:59:59.000Z

20

NASA's satellite orbit anomaly problem can be solved precisely in the frame of Einstein's special theory of relativity. Anomaly confirms that gravity fields propagate with velocity of light as Einstein predicted  

E-Print Network (OSTI)

NASA's Jet Propulsion Laboratory put on You Tube a problem that has been baffling the scientists for sometime. It involves an unexpected force acting on the space probes. The author proves that NASA'S satellite orbit anomaly problem can be solved in the frame of Einstein's Special Theory of Relativity. The anomaly confirms that gravity fields propagate with velocity of light as Einstein predicted. The proof is based on the authors discovery of the relativistic version of Newton's gravity field. The author provides formulas for relativistic equation of motion for a spacecraft in the joint gravitational field of the Earth and the Sun in a Lorentzian frame attached to the Earth. The formulas are suitable for digital computers and can be easily implemented. He also shows how to find solutions of the relativistic equations of motion for the spacecraft.

Victor M. Bogdan

2009-10-17T23:59:59.000Z

Note: This page contains sample records for the topic "nasa jet propulsion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Editor: Richard Doyle Jet Propulsion Lab  

E-Print Network (OSTI)

in a grid node. We developed both clus- tering and classification mapping techniques, with each approach transmission, storage, and distribution challenges. Less publicized is the scien- tific community's challenge landforms, such as impact craters and valley net- works, and automatic generation of geomorphic maps

Stepinski, Tomasz F.

22

PUBLIC INFORMATION OFFICE JET PROPULSION LABORATORY  

E-Print Network (OSTI)

, and which become ionized, or charged, in the solar wind. Eventually, they reach energies at which the solar wind is speeding at double the rate normally found at lower latitudes. Measurements from Ulysses' solar wind plasma experiment, presented today at the 1993 fall meeting of the American Geophysical Union

Christian, Eric

23

Cover: Mariner 9 spacecraft. JET PROPULSION  

E-Print Network (OSTI)

Applied to Bridge Decks...................67 Taconite Enhanced Pothole Repair Using Portable Microwave as a baseline for potential combustion and/or gasification testing at CMRL. Other research may arise from. Plasma Stone from Taconite By-Products Progress was made on casting three-dimensional shapes from molten

24

JET PROPULSION LABORATORY 1979 Annual Report  

E-Print Network (OSTI)

research, designed to produce, control, and sustain a burning plasma, where fusion processes generate sufficient energy to maintain the temperature of the plasma. Through investments in high-energy physics Goals 3.1 and 3.2 by advancing the theoretical and experimental understanding of plasma and fusion

25

Laser Propulsion - Quo Vadis  

SciTech Connect

First, an introductory overview of the different types of laser propulsion techniques will be given and illustrated by some historical examples. Second, laser devices available for basic experiments will be reviewed ranging from low power lasers sources to inertial confinement laser facilities. Subsequently, a status of work will show the impasse in which the laser propulsion community is currently engaged. Revisiting the basic relations leads to new avenues in ablative and direct laser propulsion for ground based and space based applications. Hereby, special attention will be devoted to the impact of emerging ultra-short pulse lasers on the coupling coefficient and specific impulse. In particular, laser sources and laser propulsion techniques will be tested in microgravity environment. A novel approach to debris removal will be discussed with respect to the Satellite Laser Ranging (SRL) facilities. Finally, some non technical issues will be raised aimed at the future prospects of laser propulsion in the international community.

Bohn, Willy L. [Institute of Technical Physics, German Aerospace Center (DLR) D-70569 Pfaffenwaldring 38-40, Stuttgart (Germany)

2008-04-28T23:59:59.000Z

26

IEC Thrusters for Space Probe Applications and Propulsion  

SciTech Connect

Earlier conceptual design studies (Bussard, 1990; Miley et al., 1998; Burton et al., 2003) have described Inertial Electrostatic Confinement (IEC) fusion propulsion to provide a high-power density fusion propulsion system capable of aggressive deep space missions. However, this requires large multi-GW thrusters and a long term development program. As a first step towards this goal, a progression of near-term IEC thrusters, stating with a 1-10 kWe electrically-driven IEC jet thruster for satellites are considered here. The initial electrically-powered unit uses a novel multi-jet plasma thruster based on spherical IEC technology with electrical input power from a solar panel. In this spherical configuration, Xe ions are generated and accelerated towards the center of double concentric spherical grids. An electrostatic potential well structure is created in the central region, providing ion trapping. Several enlarged grid opening extract intense quasi-neutral plasma jets. A variable specific impulse in the range of 1000-4000 seconds is achieved by adjusting the grid potential. This design provides high maneuverability for satellite and small space probe operations. The multiple jets, combined with gimbaled auxiliary equipment, provide precision changes in thrust direction. The IEC electrical efficiency can match or exceed efficiencies of conventional Hall Current Thrusters (HCTs) while offering advantages such as reduced grid erosion (long life time), reduced propellant leakage losses (reduced fuel storage), and a very high power-to-weight ratio. The unit is ideally suited for probing missions. The primary propulsive jet enables delicate maneuvering close to an object. Then simply opening a second jet offset 180 degrees from the propulsion one provides a 'plasma analytic probe' for interrogation of the object.

Miley, George H.; Momota, Hiromu; Wu Linchun; Reilly, Michael P. [Dept. of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana, IL (United States); Teofilo, Vince L. [Lockheed Martin Space Systems Co., Advanced Technology Center, Palo Alto, CA (United States); Burton, Rodney [Dept. of Aerospace Engineering, University of Illinois, Urbana, IL (United States); Dell, Richard; Dell, Dick [Advanced Aerospace Resource Center (AARC), Raleigh, NC (United States); Hargus, William A. [Air Force Research Laboratory, Edwards AFB, CA 217-333-3772 (United States)

2009-03-16T23:59:59.000Z

27

An Exploration Perspective of Beamed Energy Propulsion  

SciTech Connect

The Vision for Exploration is currently focused on flying the Space Shuttle safely to complete our Space Station obligations, retiring the Shuttle in 2010, then returning humans to the Moon and learning how to proceed to Mars and beyond. The NASA budget still includes funds for science and aeronautics but the primary focus is on human exploration. Fiscal constraints have led to pursuing exploration vehicles that use heritage hardware, particularly existing boosters and engines, with the minimum modifications necessary to satisfy mission requirements. So, pursuit of immature technologies is not currently affordable by NASA. Beamed energy is one example of an immature technology, from a human exploration perspective, that may eventually provide significant benefits for human exploration of space, but likely not in the near future. Looking to the more distant future, this paper will examine some of the criteria that must be achieved by beamed energy propulsion to eventually contribute to human exploration of the solar system. The analysis focuses on some of the implications of increasing the payload fraction of a launch vehicle, with a quick look at trans-lunar injection. As one would expect, there is potential for benefit, and there are concerns. The analysis concludes with an assessment of the Technology Readiness Level (TRL) for some beamed energy propulsion components, indicating that TRL 2 is close to being completed.

Cole, John [NASA Marshall Space Flight Center Marshall Space Flight Center, AL 35812 (United States)

2008-04-28T23:59:59.000Z

28

nasa-award  

Science Conference Proceedings (OSTI)

... hours on the Columbia supercomputer at NASA Ames Research Center. ... Nicos Martys and Edward Garboczi of The NIST Engineering Laboratory. ...

2010-12-10T23:59:59.000Z

29

Plasma Structure and Behavior of Miniature Ring-Cusp Discharges  

E-Print Network (OSTI)

UCLA NASA Space Grant - Jet Propulsion Laboratory (JPL),of electric propulsion: ion and Hall thrusters. JPL Spacepropulsion, or EP, is an attractive option for many space

Mao, Hann-Shin

2013-01-01T23:59:59.000Z

30

ECR-GDM Thruster for Fusion Propulsion  

SciTech Connect

The concept of the Gasdynamic Mirror (GDM) device for fusion propulsion was proposed by and Lee (1995) over a decade ago and several theoretical papers has supported the feasibility of the concept. A new ECR plasma source has been built to supply power to the GDM experimental thruster previously tested at the Marshall Space Flight Center (MSFC). The new plasma generator, powered by microwaves at 2.45 or 10 GHz. is currently being tested. This ECR plasma source operates in a number of distinct plasma modes, depending upon the strength and shape of the local magnetic field. Of particular interest is the compact plasma jet issuing form the plasma generator when operated in a mirror configuration. The measured velocity profile in the jet plume is bimodal, possibly as a result of the GDM effect in the ECR chamber of the thruster.

Brainerd, Jerome J.; Reisz, Al [Reisz Engineers 2909 Johnson Rd. Huntsville, Alabama 35805 256-325-2531 (United States)

2009-03-16T23:59:59.000Z

31

Contributions Regarding the Aircraft Nuclear Propulsion  

Science Conference Proceedings (OSTI)

The possibility to use a nuclear reactor for airplanes propulsion was investigated taking in to account 2 possible solutions: the direct cycle (where the fluid pass through the reactor's core) and the indirect cycle (where the fluid is passing through a heat exchanger). Taking in to account the radioprotection problems, the only realistic solution seems to be the indirect cycle, where the energy transfer should be performed by a heat exchanger that must work at very high speed of the fluid. The heat exchanger will replace the classical burning room. We had performed a more precise theoretical study for the nuclear jet engine regarding the performances of the nuclear reactor, of the heat exchanger and of the jet engine. It was taken in to account that in the moment when the burning room is replaced by a heat exchanger, a new model for gasodynamic process from the engine must be performed. Studies regarding the high flow speed heat transfer were performed.

Mitrica, Bogdan; Petre, Marian; Dima, Mihai Octavian [Horia Hulubei National Institute of Physics and Nuclear Engineering-IFIN HH, Magurele, 077125 (Romania); Stanciu, Virgil [POLITEHNICA University of Bucharest, Bucharest, 060042 (Romania); Petre, Carmelia; Precup, Irinel [University of Bucharest, Bucharest, 050107 (Romania)

2010-01-21T23:59:59.000Z

32

REIMR - A Process for Utilizing Liquid Rocket Propulsion-Oriented 'Lessons Learned' to Mitigate Development Risk in Nuclear Thermal Propulsion  

SciTech Connect

This paper is a summary overview of a study conducted at the NASA Marshall Space Flight Center (NASA-MSFC) during the initial phases of the Space Launch Initiative (SLI) program to evaluate a large number of technical problems associated with the design, development, test, evaluation and operation of several major liquid propellant rocket engine systems (i.e., SSME, Fastrac, J-2, F-1). One of the primary results of this study was the identification of the 'Fundamental Root Causes' that enabled the technical problems to manifest, and practices that can be implemented to prevent them from recurring in future propulsion system development efforts, such as that which is currently envisioned in the field of nuclear thermal propulsion (NTP). This paper will discus the Fundamental Root Causes, cite some examples of how the technical problems arose from them, and provide a discussion of how they can be mitigated or avoided in the development of an NTP system.

Ballard, Richard O. [Nuclear and Advanced Propulsion Systems Engineering Branch, NASA Marshall Space Flight Center, AL 35812 (United States)

2006-01-20T23:59:59.000Z

33

Laser Propulsion Standardization Issues  

SciTech Connect

It is a relevant issue in the research on laser propulsion that experimental results are treated seriously and that meaningful scientific comparison is possible between groups using different equipment and measurement techniques. However, critical aspects of experimental measurements are sparsely addressed in the literature. In addition, few studies so far have the benefit of independent confirmation by other laser propulsion groups. In this paper, we recommend several approaches towards standardization of published laser propulsion experiments. Such standards are particularly important for the measurement of laser ablation pulse energy, laser spot area, imparted impulse or thrust, and mass removal during ablation. Related examples are presented from experiences of an actual scientific cooperation between NU and DLR. On the basis of a given standardization, researchers may better understand and contribute their findings more clearly in the future, and compare those findings confidently with those already published in the laser propulsion literature. Relevant ISO standards are analyzed, and revised formats are recommended for application to laser propulsion studies.

Scharring, Stefan; Eckel, Hans-Albert [Institute of Technical Physics, German Aerospace Center (DLR), D-70569 Stuttgart, Pfaffenwaldring 38-40 (Germany); Roeser, Hans-Peter [Institute of Space Systems, University of Stuttgart, D-70569 Stuttgart, Pfaffenwaldring 31 (Germany); Sinko, John E. [Micro-Nano Global Center of Excellence, Nagoya University (Niue), Nagoya, Aichi, 464-8603 (Japan); Sasoh, Akihiro [Department of Aerospace Engineering, Nagoya University, Nagoya, Aichi, 464-8603 (Japan)

2010-10-08T23:59:59.000Z

34

Propulsion engineering study for small-scale Mars missions  

DOE Green Energy (OSTI)

Rocket propulsion options for small-scale Mars missions are presented and compared, particularly for the terminal landing maneuver and for sample return. Mars landing has a low propulsive {Delta}v requirement on a {approximately}1-minute time scale, but at a high acceleration. High thrust/weight liquid rocket technologies, or advanced pulse-capable solids, developed during the past decade for missile defense, are therefore more appropriate for small Mars landers than are conventional space propulsion technologies. The advanced liquid systems are characterize by compact lightweight thrusters having high chamber pressures and short lifetimes. Blowdown or regulated pressure-fed operation can satisfy the Mars landing requirement, but hardware mass can be reduced by using pumps. Aggressive terminal landing propulsion designs can enable post-landing hop maneuvers for some surface mobility. The Mars sample return mission requires a small high performance launcher having either solid motors or miniature pump-fed engines. Terminal propulsion for 100 kg Mars landers is within the realm of flight-proven thruster designs, but custom tankage is desirable. Landers on a 10 kg scale also are feasible, using technology that has been demonstrated but not previously flown in space. The number of sources and the selection of components are extremely limited on this smallest scale, so some customized hardware is required. A key characteristic of kilogram-scale propulsion is that gas jets are much lighter than liquid thrusters for reaction control. The mass and volume of tanks for inert gas can be eliminated by systems which generate gas as needed from a liquid or a solid, but these have virtually no space flight history. Mars return propulsion is a major engineering challenge; earth launch is the only previously-solved propulsion problem requiring similar or greater performance.

Whitehead, J.

1995-09-12T23:59:59.000Z

35

Progress in colloid propulsion  

E-Print Network (OSTI)

In the early decades of the Space Age, a great deal of work was put into the development of the Colloid Thruster as an electric propulsion system for spacecraft. In spite of the effort by the end of the 70s the programs ...

López Urdiales, Jóse Mariano, 1977-

2004-01-01T23:59:59.000Z

36

NASA Customer Satisfaction Survey  

NLE Websites -- All DOE Office Websites (Extended Search)

Customer Satisfaction Survey Customer Satisfaction Survey NASA's Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC) would like to encourage you to participate in the NASA ESDIS 2013 American Customer Satisfaction Survey. The ORNL DAAC is one of twelve data centers sponsored by NASA's Earth Science Data and Information System (ESDIS) project. The ESDIS project uses the results of this survey to evaluate our success and to determine where improvements are needed. Invitations will be sent to you, our users, from CFI Group [CFI Group on behalf of NASA (NASA@jangomail.com)] during the week of August 20, 2013. Each invitation will reference us as "ORNL DAAC / FLUXNET", and contain a unique secure link to this Web-based anonymous survey. We encourage you to participate!

37

Deuterium microbomb rocket propulsion  

E-Print Network (OSTI)

Large scale manned space flight within the solar system is still confronted with the solution of two problems: 1. A propulsion system to transport large payloads with short transit times between different planetary orbits. 2. A cost effective lifting of large payloads into earth orbit. For the solution of the first problem a deuterium fusion bomb propulsion system is proposed where a thermonuclear detonation wave is ignited in a small cylindrical assembly of deuterium with a gigavolt-multimegampere proton beam, drawn from the magnetically insulated spacecraft acting in the ultrahigh vacuum of space as a gigavolt capacitor. For the solution of the second problem, the ignition is done by argon ion lasers driven by high explosives, with the lasers destroyed in the fusion explosion and becoming part of the exhaust.

Friedwardt Winterberg

2008-12-02T23:59:59.000Z

38

Hypersonic missile propulsion system  

Science Conference Proceedings (OSTI)

Pratt and Whitney is developing the technology for hypersonic components and engines. A supersonic combustion ramjet (scramjet) database was developed using hydrogen fueled propulsion systems for space access vehicles and serves as a point of departure for the current development of hydrocarbon scramjets. The Air Force Hypersonic Technology (HyTech) Program has put programs in place to develop the technologies necessary to demonstrate the operability, performance and structural durability of an expendable, liquid hydrocarbon fueled scramjet system that operates from Mach 4 to 8. This program will culminate in a flight type engine test at representative flight conditions. The hypersonic technology base that will be developed and demonstrated under HyTech will establish the foundation to enable hypersonic propulsion systems for a broad range of air vehicle applications from missiles to space access vehicles. A hypersonic missile flight demonstration is planned in the DARPA Affordable Rapid Response Missile Demonstrator (ARRMD) program in 2001.

Kazmar, R.R.

1998-11-01T23:59:59.000Z

39

Vehicle Technologies Office: Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in components such as the engine, transmission, fuel system, and exhaust after-treatment systems. Electric drive vehicles use propulsion materials in their electric motors and power electronics. Developing advanced propulsion materials is essential to commercializing new, highly efficient automotive technologies that have technical requirements that existing powertrain materials cannot meet. The Vehicle Technology Office's (VTO) research in propulsion materials focuses on four areas: Materials for hybrid and electric drive systems Materials for high efficiency combustion engines Materials to enable energy recovery systems and control exhaust gases

40

Vehicle Technologies Office: Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Manufacturers use propulsion (or powertrain) materials in the components that move vehicles of every size and shape. Conventional vehicles use these materials in...

Note: This page contains sample records for the topic "nasa jet propulsion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

AC Propulsion | Open Energy Information  

Open Energy Info (EERE)

founded in 1992 to develop, manufacture, and license system and component technology for electric vehicle drive systems. References AC Propulsion1 LinkedIn Connections...

42

Reactors for nuclear electric propulsion  

SciTech Connect

Propulsion is the key to space exploitation and power is the key to propulsion. This paper examines the role of nuclear fission reactors as the primary power source for high specific impulse electric propulsion systems for space missions of the 1980s and 1990s. Particular mission applications include transfer to and a reusable orbital transfer vehicle from low-Earth orbit to geosynchronous orbit, outer planet exploration and reconnaissance missions, and as a versatile space tug supporting lunar resource development. Nuclear electric propulsion is examined as an indispensable component in space activities of the next two decades.

Buden, D.; Angelo, J.A. Jr.

1981-01-01T23:59:59.000Z

43

Dynamics of quasi-two-dimensional turbulent jets  

E-Print Network (OSTI)

they can provide, jets have been used in various indus- trial applications, such as waste water disposal (Yannopoulos, 2006), chemical reactors (Jirka & Harleman, 1979), or as a means of propulsion (Stanley, Sarkar & Mellado, 2002). In geophysical flows... .1 Introduction The study of turbulent plane jets is relevant to a wide variety of problems where both qualitative and quantitative knowledge of the concentration in time and space of tracers transported by the jet is needed (Kotsovinos, 1975). In many industrial...

Landel, Julien Rémy Dominique Gérard

2012-11-13T23:59:59.000Z

44

Future Direction of Supersonic Combustion Research: Air Force/NASA Workshop on Supersonic Combustion  

Science Conference Proceedings (OSTI)

The Air Force Office of Scientific Research, the Air Force Wright Laboratory Aero Propulsion and Power Directorate, and the NASA Langley Research Center held a joint supersonic combustion workshop on 14-16 May 1996. The intent of this meeting was to: ...

Tishkoff Julian M.; Drummond J. Philip; Edwards T.; Nejad A. S.

1997-01-01T23:59:59.000Z

45

NASA PLDS Project  

NLE Websites -- All DOE Office Websites (Extended Search)

NASA's land-science community. The functions of PLDS have now been transferred to the ORNL DAAC, the U.S. Geological Survey's Earth Resources Observation System (EROS) Data...

46

Development of NERVA reactor for space nuclear propulsion  

Science Conference Proceedings (OSTI)

The general technology development and demonstration of a Nuclear Engine for Rocket Vehicle Application (NERVA), a joint AEC-NASA program, was undertaken successfully in the 1960's and terminated in 1971 for lack of a specific mission. Detailed flight engine specifications were defined and several candidate designs which would satisfy these specifications were completed just prior to termination of these efforts. However, the technology interest continued and efforts were extended during the early 1970's to consider space power applications including a manned Mars mission and dual mode (propulsion power and electrical power) operation. Subsequent efforts have continued in developing electric power applications. Light-weight solid core reactor nuclear power sources have been conceptually studied based upon this technology. This paper provides a short summary of the technology that evolved in this very complex and frequently changing program with some specific references to the Mars mission propulsion application as it evolved from the NERVA development program.

Holman, R.R.; Pierce, B.L.

1986-01-01T23:59:59.000Z

47

Lagrangian simulation of transverse jets with a distribution-based diffusion scheme  

E-Print Network (OSTI)

Transverse jets form a dominant group of flow fields arising in many applications of modern energy utilization, including propulsion and effluent dispersion. Furthermore, they form canonical examples where the flow field ...

Wee, Daehyun, 1974-

2007-01-01T23:59:59.000Z

48

Jet Observables Without Jet Algorithms  

E-Print Network (OSTI)

We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables---jet multiplicity, summed scalar transverse momentum, and missing transverse momentum---have event shape counterparts that are closely correlated with their jet-based cousins. Due to their "local" computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applications do require knowledge about the jet constituents, we also build a hybrid event shape that incorporates (local) jet clustering information. As a straightforward application of our general technique, we derive an event-shape version of jet trimming, allowing event-wide jet grooming without explicit jet identification. Finally, we briefly mention possible applications of our method for jet substructure studies.

Daniele Bertolini; Tucker Chan; Jesse Thaler

2013-10-28T23:59:59.000Z

49

Recapturing NERVA-Derived Fuels for Nuclear Thermal Propulsion  

DOE Green Energy (OSTI)

The Department of Energy is working with NASA to examine fuel options for Nuclear Thermal Propulsion applications. Extensive development and testing was performed on graphite-based fuels during the Nuclear Engineer Rocket Vehicle Application (NERVA) and Rover programs through the early 1970s. This paper explores the possibility of recapturing the technology and the issues associated with using it for the next generation of nuclear thermal rockets. The issues discussed include a comparison of today's testing capabilities, analysis techniques and methods, and knowledge to that of previous development programs and presents a plan to recapture the technology for a flight program.

Qualls, A L [ORNL; Hancock, Emily F [ORNL

2011-01-01T23:59:59.000Z

50

NASA Enhanced Use Lease  

NLE Websites -- All DOE Office Websites (Extended Search)

KCA-4204 KCA-4204 NASA JOHN F. KENNEDY SPACE CENTER ENHANCED USE LEASE This Enhanced Use Lease (the "Lease") is made as of the date set forth below by the signatories, by and between the NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, an Agency of the United States, John F. Kennedy Space Center, Florida, as the lessor (hereinafter "NASA-KSC"), and Florida Power & Light Company, a corporation organized and existing under the laws of the State of Florida, as the lessee (hereinafter "FPL"). This Lease is made under the authority of section 315 of the National Aeronautics and Space Act of 1958, as amended (42 U.S.C. §2459j) with reference to the following facts: R E C I T A L S A. NASA-KSC is committed to using its real property assets to efficiently

51

NASA Enhanced Use Lease  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

KCA-4204 KCA-4204 NASA JOHN F. KENNEDY SPACE CENTER ENHANCED USE LEASE This Enhanced Use Lease (the "Lease") is made as of the date set forth below by the signatories, by and between the NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, an Agency of the United States, John F. Kennedy Space Center, Florida, as the lessor (hereinafter "NASA-KSC"), and Florida Power & Light Company, a corporation organized and existing under the laws of the State of Florida, as the lessee (hereinafter "FPL"). This Lease is made under the authority of section 315 of the National Aeronautics and Space Act of 1958, as amended (42 U.S.C. §2459j) with reference to the following facts: R E C I T A L S A. NASA-KSC is committed to using its real property assets to efficiently

52

2013 Annual Planning Summary for the Naval Nuclear Propulsion...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Naval Nuclear Propulsion Program 2013 Annual Planning Summary for the Naval Nuclear Propulsion Program 2013 Annual Planning Summary for the Naval Nuclear Propulsion Program The...

53

Magnetohydrodynamic sea water propulsion  

DOE Green Energy (OSTI)

An experimental and theoretical investigation of a large scale MHD propulsor has been undertaken whose objectives are to (1) investigate the transient and steady state performance of the thruster over operating parameter ranges that are compatible with achievement of high efficiency, (2) to quantify the principal loss mechanisms within the thruster and (3) to obtain preliminary hydroacoustic data. The performance of the thruster was first investigated theoretically with a 3-D code to quantify the loss mechanisms and identify experimental parameter ranges of interest. The loss mechanisms of interest are ohmic losses within the channel and those resulting from electrical currents at the entrance and exit of the thruster, and enhanced frictional losses. The analysis indicated that the relative importance of the loss mechanisms was a function of the thruster design and operating parameters. The experimental investigation of the large scale propulsor is being conducted on a sea water test facility that was designed to match the capabilities of a large 6-T superconducting magnet. The facility design was such that {approximately}90{degrees} of all losses occurred within the propulsion test train (inlet nozzle, propulsor and diffuser) thus facilitating isolation of the loss mechanisms. The test thruster itself is heavily instrumented to provide local measurements of velocity, pressure, and electric fields. The predicted overall thruster performance and value of the loss mechanisms will be compared with measured values. Comparisons will also be presented of the voltage gradients between electrodes, overall thruster efficiency, axial pressure gradients across the propulsor, change in velocity profiles, axial and vertical current distributions and exit distribution of the electrolytic gases.

Petrick, M.; Thomas, A.; Genens, L.; Libera, J.; Nietert, R.; Bouillard, J.; Pierson, E.; Hill, D.; Picologlou, B.; Ohlsson, O.; Kasprzyk, T.; Berry, G.

1991-12-31T23:59:59.000Z

54

Magnetohydrodynamic sea water propulsion  

DOE Green Energy (OSTI)

An experimental and theoretical investigation of a large scale MHD propulsor has been undertaken whose objectives are to (1) investigate the transient and steady state performance of the thruster over operating parameter ranges that are compatible with achievement of high efficiency, (2) to quantify the principal loss mechanisms within the thruster and (3) to obtain preliminary hydroacoustic data. The performance of the thruster was first investigated theoretically with a 3-D code to quantify the loss mechanisms and identify experimental parameter ranges of interest. The loss mechanisms of interest are ohmic losses within the channel and those resulting from electrical currents at the entrance and exit of the thruster, and enhanced frictional losses. The analysis indicated that the relative importance of the loss mechanisms was a function of the thruster design and operating parameters. The experimental investigation of the large scale propulsor is being conducted on a sea water test facility that was designed to match the capabilities of a large 6-T superconducting magnet. The facility design was such that {approximately}90{degrees} of all losses occurred within the propulsion test train (inlet nozzle, propulsor and diffuser) thus facilitating isolation of the loss mechanisms. The test thruster itself is heavily instrumented to provide local measurements of velocity, pressure, and electric fields. The predicted overall thruster performance and value of the loss mechanisms will be compared with measured values. Comparisons will also be presented of the voltage gradients between electrodes, overall thruster efficiency, axial pressure gradients across the propulsor, change in velocity profiles, axial and vertical current distributions and exit distribution of the electrolytic gases.

Petrick, M.; Thomas, A.; Genens, L.; Libera, J.; Nietert, R.; Bouillard, J.; Pierson, E.; Hill, D.; Picologlou, B.; Ohlsson, O.; Kasprzyk, T.; Berry, G.

1991-01-01T23:59:59.000Z

55

Naval Nuclear Propulsion Program Directorate, Washington ...  

Science Conference Proceedings (OSTI)

Naval Nuclear Propulsion Program Directorate, Washington, DC. NVLAP Lab Code: 100565-10. Address and Contact Information: Naval Reactors ...

2013-07-26T23:59:59.000Z

56

Naval Nuclear Propulsion Program Directorate, Washington ...  

Science Conference Proceedings (OSTI)

Naval Nuclear Propulsion Program Directorate, Washington, DC. NVLAP Lab Code: 100565-0. Address and Contact Information: ...

2013-08-23T23:59:59.000Z

57

Naval Nuclear Propulsion Program Directorate, Washington ...  

Science Conference Proceedings (OSTI)

Naval Nuclear Propulsion Program Directorate, Washington, DC. NVLAP Lab Code: 100565-2. Address and Contact Information: Point Loma, Bldg. ...

2013-08-23T23:59:59.000Z

58

LASL nuclear rocket propulsion program  

SciTech Connect

The immediate objective of the LASL nuclear propulsion (Rover) program is the development of a heat exchanger reactor system utilizing uranium-graphite fuel elements and ammonia propellant. This program is regarded as the first step in the development of nuclear propulsion systems for missiles. The major tasks of the program include the investigation of materials at high temperatures, development of fuel elements, investigation of basic reactor characteristics, investigation of engine control problems, detailed engine design and ground testing. The organization and scheduling of the initial development program have been worked out in some detail. Only rather general ideas exist concerning the projection of this work beyond 1958.

Schreiber, R.E.

1956-04-01T23:59:59.000Z

59

Urgency, uncertainty, and innovation: Building jet engines in postwar America  

Science Conference Proceedings (OSTI)

Organizational history and theory have in recent years begun to integrate the non rational dimensions of action, relationships, and problem-solving with foundational under-standings of rationality.This study demonstrates that when insufficient knowledge ... Keywords: Cold war, innovation, jet propulsion, military, non-linearity, technology, uncertainty

Philip Scranton

2006-05-01T23:59:59.000Z

60

Propulsion research on the hybrid plume rocket  

DOE Green Energy (OSTI)

This report discusses the construction of a tandem mirror plasma propulsion facility, the numerical modelling of the hybrid plume exhaust, and rf heating of the plasma. A preliminary experiment of the ICRH (Ion Cyclotron Resonance Heating) heating of plasma ions was carried out. For 2.0 kW ECRH (Electron Cyclotron Resonance Heating) power injected into the central cell and 10 kW ICRH power into the end cell, the results obtained from the probe in the central cell are: n{sub e} = 2.5 {times} 10{sup 16} m{sup {minus}3} and T{sub e} = 80 eV (928,000 K) in the central cell. The estimated values in the end cell are: n{sub I} = 1.25 {times} 10{sup 17} m{sup {minus}3} and T{sub I} = 500 eV (5,797,000 K). The power conversion efficiency was about 80%. The results from time dependent 3-D three fluid numerical modeling indicate that a boundary layer can be formed. The formation of this layer is strongly dependent on neutral jet geometry and injection angle. The ICRH heating of plasma was modeled numerically and power absorption efficiency is about 50%. Analytical analyses was done on slab geometry. 12 refs., 20 figs., 3 tabs.

Chang-Diaz, F.R. (National Aeronautics and Space Administration, Houston, TX (USA). Lyndon B. Johnson Space Center); Yang, T.F. (Massachusetts Inst. of Tech., Cambridge, MA (USA). Plasma Fusion Center)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nasa jet propulsion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NASA Land Validation Campaign Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Products > Validation NASA Land Validation Campaign Data Land Validation Campaigns The goal of the EOS Validation Program is the comprehensive assessment of all EOS science data...

62

Jet Propulsion Laboratory 1972-1973 Annual Report  

E-Print Network (OSTI)

- ments of radar backscatter and passive microwave emissions. In the Amundsen Sea, the Oden cruise between for sequester- ing CO2 emitted from new power cycles, including integrated gasification com- bined cycle (IGCC. His current research focuses on spaceborne imagery to understand the turbulent, dynamic plasma

63

An assessment of testing requirement impacts on nuclear thermal propulsion ground test facility design  

SciTech Connect

Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed.

Shipers, L.R.; Ottinger, C.A.; Sanchez, L.C.

1993-10-25T23:59:59.000Z

64

NASA | OpenEI  

Open Energy Info (EERE)

NASA NASA Dataset Summary Description (Abstract): Raster GIS ASCII data files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikSCAT SeaWinds scatterometer. (Purpose): To provide information on the wind resource potential of offshore areas. Source NREL Date Released December 31st, 2005 (8 years ago) Date Updated November 01st, 2007 (7 years ago) Keywords GEF GIS NASA NREL SWERA UNEP wind Data application/zip icon Download Maps (zip, 36.3 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period 2000 - 2004 License License Other or unspecified, see optional comment below Comment (Use Constraints): This GIS data was developed by the National Renewable Energy Laboratory ("NREL"), which is operated by the Midwest Research Institute for the U.S. Department of Energy ("DOE"). The user is granted the right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this data for any purpose whatsoever, provided that this entire notice appears in all copies of the data. Further, the user of this data agrees to credit NREL in any publications or software that incorporate or use the data. Access to and use of the GIS data shall further impose the following obligations on the User. The names DOE/NREL may not be used in any advertising or publicity to endorse or promote any product or commercial entity using or incorporating the GIS data unless specific written authorization is obtained from DOE/NREL. The User also understands that DOE/NREL shall not be obligated to provide updates, support, consulting, training or assistance of any kind whatsoever with regard to the use of the GIS data. THE GIS DATA IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL DOE/NREL BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER, INCLUDING BUT NOT LIMITED TO CLAIMS ASSOCIATED WITH THE LOSS OF DATA OR PROFITS, WHICH MAY RESULT FROM AN ACTION IN CONTRACT, NEGLIGENCE OR OTHER TORTIOUS CLAIM THAT ARISES OUT OF OR IN CONNECTION WITH THE ACCESS OR USE OF THE GIS DATA. The User acknowledges that access to the GIS data is subject to U.S. Export laws and regulations and any use or transfer of the GIS data must be authorized under those regulations. The User shall not use, distribute, transfer, or transmit GIS data or any products incorporating the GIS data except in compliance with U.S. export regulations. If requested by DOE/NREL, the User agrees to sign written assurances and other export-related documentation as may be required to comply with U.S. export regulations.

65

Introduction3 Lead authors: Ralph A. Kahn, NASA GSFC; Hongbin Yu, NASA GSFC/UMBC4  

E-Print Network (OSTI)

Remer, NASA GSFC; David Rind, NASA6 GISS; Rangasayi Halthore, NASA HQ/NRL; Philip DeCola, NASA HQ7 8 with sulfur-containing gases29 produced by ocean biology and the decomposition of organic matter, as well

66

MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications  

Science Conference Proceedings (OSTI)

The Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA’s Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA’s Earth Observing System satellites into a ...

Michele M. Rienecker; Max J. Suarez; Ronald Gelaro; Ricardo Todling; Julio Bacmeister; Emily Liu; Michael G. Bosilovich; Siegfried D. Schubert; Lawrence Takacs; Gi-Kong Kim; Stephen Bloom; Junye Chen; Douglas Collins; Austin Conaty; Arlindo da Silva; Wei Gu; Joanna Joiner; Randal D. Koster; Robert Lucchesi; Andrea Molod; Tommy Owens; Steven Pawson; Philip Pegion; Christopher R. Redder; Rolf Reichle; Franklin R. Robertson; Albert G. Ruddick; Meta Sienkiewicz; Jack Woollen

2011-07-01T23:59:59.000Z

67

Amino acid biosignatures : implications for the detection of extinct or extant microbial communities on Mars  

E-Print Network (OSTI)

Space Agency gas chromatography mass spectrometry gamma-amino-n-butyric acid water hydrochloric acid isobutylamine isopropylamine NASA/CalTech Jet Propulsion

Aubrey, Andrew D.

2008-01-01T23:59:59.000Z

68

Alloy Development and Application I  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... This work, funded by NASA and the Jet Propulsion Laboratory, focuses on ... new tools for analyzing phase selection in complex “phase space”.

69

Roaming Mars and Space: 3D Technology Exploration from Home ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rocket Science: EM Employee Eagerly Examines Curiosity, Continuing Decades-Long Role in Space Missions across Solar System Curiosity, left, at NASA's Jet Propulsion Laboratory in...

70

Building Public Trust - Actions to Respond to the Report of the...  

NLE Websites -- All DOE Office Websites (Extended Search)

protection is required every 5 years, from all nine NASA Field Installations and the Jet Propulsion Laboratory, if the Center is conducting human subjects research. Centers not...

71

Building Public Trust: Appendix C  

NLE Websites -- All DOE Office Websites (Extended Search)

protection is required every 5 years, from all nine NASA Field Installations and the Jet Propulsion Laboratory, if the Center is conducting human subjects research. Centers not...

72

BNL | MAGIC  

NLE Websites -- All DOE Office Websites (Extended Search)

National Laboratory) A. Pier Siebesma (KNMI, The Netherlands) Joao Teixeira (Jet Propulsion Laboratory, California Institute of Technology) Warren J. Wiscombe (NASA...

73

Amino Acid Biosignatures - Implications for the Detection of Extinct or Extant Microbial Communities on Mars  

E-Print Network (OSTI)

Space Agency gas chromatography mass spectrometry gamma-amino-n-butyric acid water hydrochloric acid isobutylamine isopropylamine NASA/CalTech Jet Propulsion

Aubrey, Andrew D

2008-01-01T23:59:59.000Z

74

LLNL wins four tech transfer regional awards  

NLE Websites -- All DOE Office Websites (Extended Search)

include Oak Ridge, Argonne and Lawrence Berkeley national laboratories, NASA's Jet Propulsion Laboratory, the Pacific Marine Environmental Laboratory, the German Climate...

75

JOM: The Member Journal of TMS - JOM Monthly  

Science Conference Proceedings (OSTI)

Dec 2, 2010 ... Completed SiGe Technology Project Launches New Era of Space Vehicle ... IBM Corp., Lynguent Inc. and NASA's Jet Propulsion Laboratory.

76

SAGE mission to Venus  

NLE Websites -- All DOE Office Websites (Extended Search)

The overall SAGE team is led by University of Colorado's Laboratory for Atmospheric and Space Physics (LASP), and is partnered with NASA's Jet Propulsion Laboratory (JPL), and...

77

Bradbury Science Museum gets martian fever  

NLE Websites -- All DOE Office Websites (Extended Search)

payload on Curiosity. The museum's TechLab will have a dozen videos and animations about the Curiosity rover from NASA and the Jet Propulsion Laboratory. Visitors can...

78

Fracture Toughness Variations for Alloy 718 Base Metal and Welds  

Science Conference Proceedings (OSTI)

in the aerospace, nuclear, cryogenic and ...... Johnson Space Center, Houston, TX, 1974. Lorenz, P. M. ... Aluminum," NASA Report CR-100208, Jet Propulsion.

79

Progress in revolutionary propulsion physics  

E-Print Network (OSTI)

Prior to 1988, traversable wormholes were just science fiction. Prior to 1994, warp drives were just fiction. Since then, these notions matured into published scientific discourse, where key issues and unknowns continue to be raised and investigated. In 2009, the American Institute of Aeronautics and Astronautics published a peer-reviewed, expansive technical volume on these and other investigations toward breakthrough propulsion. This paper summarizes the key assertions from that 739-page volume, describing the collective state-of-the-art and candidate research steps that will lead to discovering if, or how, such breakthroughs might finally be achieved. Coverage includes: prerequisites for space drive physics, manipulating gravity or inertia for propulsion, lessons from superconductor experiments, null results with "lifters", implications of photon momentum in media, quantum vacuum physics, and the faster-than-light implications of general relativity and quantum non-locality.

Marc G. Millis

2011-01-05T23:59:59.000Z

80

HybriDrive Propulsion System  

NLE Websites -- All DOE Office Websites (Extended Search)

HybriDrive HybriDrive ® Propulsion System Cleaner, smarter power for transit DOE/FTA Fuel Cell Research Priorities Workshop Washington, DC 7 June 2010 Bart W. Mancini Sr. Principal Systems Engineer BAE Systems Ph: 607-770-4103 bart.mancini@baesystems.com 2 Overview 3 * BAE Systems FC Experience / Deployments * Technology gaps/barriers to full commercialization of fuel cell buses * Well-to-wheels energy efficiency and emissions * Cost metrics * Bus integration issues * Fuel cell bus R&D needs * Future plans BAE Systems FC Experience / Deployments 4 * 1998 - Georgetown/FTA/DOE Fuel Cell Bus #1 (still serviceable) * UTC 100 kW Phosphoric Acid FC using on-board Methanol Reformate, Hybrid propulsion & Electric accessories * 2000 - Georgetown/FTA/DOE Fuel Cell Bus #2 (retired) *

Note: This page contains sample records for the topic "nasa jet propulsion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Heavy Vehicle Propulsion Materials Program  

DOE Green Energy (OSTI)

The objective of the Heavy Vehicle Propulsion Materials Program is to develop the enabling materials technology for the clean, high-efficiency diesel truck engines of the future. The development of cleaner, higher-efficiency diesel engines imposes greater mechanical, thermal, and tribological demands on materials of construction. Often the enabling technology for a new engine component is the material from which the part can be made. The Heavy Vehicle Propulsion Materials Program is a partnership between the Department of Energy (DOE), and the diesel engine companies in the United States, materials suppliers, national laboratories, and universities. A comprehensive research and development program has been developed to meet the enabling materials requirements for the diesel engines of the future. Advanced materials, including high-temperature metal alloys, intermetallics, cermets, ceramics, amorphous materials, metal- and ceramic-matrix composites, and coatings, are investigated for critical engine applications.

Sidney Diamond; D. Ray Johnson

1999-04-26T23:59:59.000Z

82

Innovation Approaches to Development and Ground Testing of Advanced Bimodal Space Power and Propulsion Systems  

DOE Green Energy (OSTI)

The last major development effort for nuclear power and propulsion systems ended in 1993. Currently, there is not an initiative at either the National Aeronautical and Space Administration (NASA) or the U.S. Department of Energy (DOE) that requires the development of new nuclear power and propulsion systems. Studies continue to show nuclear technology as a strong technical candidate to lead the way toward human exploration of adjacent planets or provide power for deep space missions, particularly a 15,000 lbf bimodal nuclear system with 115 kW power capability. The development of nuclear technology for space applications would require technology development in some areas and a major flight qualification program. The last major ground test facility considered for nuclear propulsion qualification was the U.S. Air Force/DOE Space Nuclear Thermal Propulsion Project. Seven years have passed since that effort, and the questions remain the same, how to qualify nuclear power and propulsion systems for future space flight. It can be reasonably assumed that much of the nuclear testing required to qualify a nuclear system for space application will be performed at DOE facilities as demonstrated by the Nuclear Rocket Engine Reactor Experiment (NERVA) and Space Nuclear Thermal Propulsion (SNTP) programs. The nuclear infrastructure to support testing in this country is aging and getting smaller, though facilities still exist to support many of the technology development needs. By renewing efforts, an innovative approach to qualifying these systems through the use of existing facilities either in the U.S. (DOE's Advance Test Reactor, High Flux Irradiation Facility and the Contained Test Facility) or overseas should be possible.

Hill, T.; Noble, C.; Martinell, J. (INEEL); Borowski, S. (NASA Glenn Research Center)

2000-07-14T23:59:59.000Z

83

BNL/NASA Radiobiology Program  

NLE Websites -- All DOE Office Websites (Extended Search)

General General Radiobiology Home AGS Description NSRL Description NSRL Images NASA Space Radiation Summer School NSRL Beam Info NSRL Users Beamline Requests Steps to Complete Prior to Your Experiment First Time Users Guide Related Links Biosciences Dept. Collider-Accelerator Dept. RHIC/AGS User Center NASA Space Research NASA-USRA Space Radiation Program Space Radiobiology A Collaborative Project sponsored by the NASA Space Radiation Program Manned space exploration in the 21st century holds exciting prospects for the advancement of science and the expansion of the human experience. Plans include the Alpha space station, an outpost on the Moon, exploration of near asteroids, and a piloted mission to Mars. However, for space exploration to go on, human crew members must be protected against the harsh environment of space, in particular, against the hazards of ionizing radiation. The radiation environment in space consists of high energy protons and high energy heavy ions (HZE).

84

Preliminary design of a solar thermal propulsion technology demonstration experiment.  

E-Print Network (OSTI)

??Solar thermal propulsion (STP) is an advanced space propulsion technology wherein solar power is used to directly heat the propellant. It potentially allows for achieving… (more)

GAETANO, ANTONIO

2009-01-01T23:59:59.000Z

85

Power balance in a helicon plasma source for space propulsion.  

E-Print Network (OSTI)

??Electric propulsion systems provide an attractive option for various spacecraft propulsion applications due to their high specific impulse. The power balance of an electric thruster… (more)

White, Daniel B., Jr

2008-01-01T23:59:59.000Z

86

Naval Nuclear Propulsion Plants | National Nuclear Security Administra...  

National Nuclear Security Administration (NNSA)

Naval Nuclear Propulsion Plants In naval nuclear propulsion plants, fissioning of uranium atoms in the reactor core produces heat. Because the fission process also produces...

87

Enabling Green Energy and Propulsion Systems via Direct Noise...  

NLE Websites -- All DOE Office Websites (Extended Search)

GE propulsion systems Enabling Green Energy and Propulsion Systems via Direct Noise Computation PI Name: Umesh Paliath PI Email: paliath@ge.com Institution: GE Global Research...

88

CRC handbook of NASA future missions and payloads  

Science Conference Proceedings (OSTI)

The author presents a detailed and quantitative description of all of the programs, systems, sensors and experiments associated with the next 30 years of space endeavors by the National Aeronautics and Space Administration. Derived from the fifth issue of the NASA Space Systems Technology Model, the missions and payloads are categorized by applications area: solar system exploration, astrophysics, earth sciences, communications, space transportation and utilization of the space environment. Far-term missions are described as opportunity missions and landmark missions, for the distant future. Technology requirements are collected by discipline: power, propulsion, materials, structures, information systems, navigation, guidance and control. Payload technology requirements are organized by instrument sensing range. This information defines in quantitative terms, the opportunities and limits for future civilian space system capabilities.

Hord, M.

1986-01-01T23:59:59.000Z

89

Page | 1 NASA Retrospective Plan Progress  

E-Print Network (OSTI)

's NEPA Library at http://www.nasa.gov/green/nepa. Since the previous major update) Progress updates and anticipated accomplishments Notes 1. NASA/Procurement AD60 NASA and Operations AD72 Tracking and Data Relay Satellite System NASA is revising appendix

Waliser, Duane E.

90

NASA Retrospective Plan Progress PENDING ACTIONS  

E-Print Network (OSTI)

be updated to provide current data. It explains the authority for the creation of the National Aeronautics Library at http://www.nasa.gov/green/nepa. Since the previous major update of NASA's NEPA regulation) Progress updates and anticipated accomplishments Notes 1. NASA/Procurement AD60 NASA Grant and Cooperative

91

Pure Nuclear Fusion Bomb Propulsion  

E-Print Network (OSTI)

Recent progress towards the non-fission ignition of thermonuclear micro-explosions raises the prospect for a revival of the nuclear bomb propulsion idea, both for the fast transport of large payloads within the solar system and the launch into earth orbit without the release of fission products into the atmosphere. To reach this goal three areas of research are of importance: 1)Compact thermonuclear ignition drivers. 2)Fast ignition and deuterium burn. 3)Space-craft architecture involving magnetic insulation and GeV electrostatic potentials

Winterberg, F

2008-01-01T23:59:59.000Z

92

Ablative Laser Propulsion: An Update, Part II  

Science Conference Proceedings (OSTI)

This paper presents an updated review of studies on Ablative Laser Propulsion conducted by the Laser Propulsion Group (LPG) at the University of Alabama in Huntsville. In particular, we describe the experimental technique developed for determination of specific impulses from plasma plume imaging with an intensified CCD camera.

Pakhomov, Andrew V.; Lin Jun; Thompson, M. Shane [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Information Systems Laboratories, Inc., Brownsboro, Alabama, 35741 (United States)

2004-03-30T23:59:59.000Z

93

Ablative Laser Propulsion: An Update, Part I  

Science Conference Proceedings (OSTI)

This paper presents an updated review of studies on Ablative Laser Propulsion conducted by the Laser Propulsion Group (LPG) at the University of Alabama in Huntsville. In particular, we describe the newest results of our experimental study of specific impulses and coupling coefficients achieved by double-pulsed ablation of graphite, aluminum, copper and lead targets.

Pakhomov, Andrew V.; Cohen, Timothy; Lin Jun; Thompson, M. Shane; Herren, Kenneth A. [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Information Systems Laboratories, Inc., Brownsboro, Alabama, 35741 (United States); National Space Science and Technology Center, NASA Marshall Space Flight Center, Huntsville, AL 35812 (United States)

2004-03-30T23:59:59.000Z

94

Feasibility of MHD submarine propulsion  

DOE Green Energy (OSTI)

This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

Doss, E.D. (ed.) (Argonne National Lab., IL (United States)); Sikes, W.C. (ed.) (Newport News Shipbuilding and Dry Dock Co., VA (United States))

1992-09-01T23:59:59.000Z

95

Small Reactor Designs Suitable for Direct Nuclear Thermal Propulsion: Interim Report  

DOE Green Energy (OSTI)

Advancement of U.S. scientific, security, and economic interests requires high performance propulsion systems to support missions beyond low Earth orbit. A robust space exploration program will include robotic outer planet and crewed missions to a variety of destinations including the moon, near Earth objects, and eventually Mars. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and the Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. In NASA's recent Mars Design Reference Architecture (DRA) 5.0 study, nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option for the human exploration of Mars because of its high thrust and high specific impulse ({approx}900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. The recently announced national space policy2 supports the development and use of space nuclear power systems where such systems safely enable or significantly enhance space exploration or operational capabilities. An extensive nuclear thermal rocket technology development effort was conducted under the Rover/NERVA, GE-710 and ANL nuclear rocket programs (1955-1973). Both graphite and refractory metal alloy fuel types were pursued. The primary and significantly larger Rover/NERVA program focused on graphite type fuels. Research, development, and testing of high temperature graphite fuels was conducted. Reactors and engines employing these fuels were designed, built, and ground tested. The GE-710 and ANL programs focused on an alternative ceramic-metallic 'cermet' fuel type consisting of UO2 (or UN) fuel embedded in a refractory metal matrix such as tungsten. The General Electric program examined closed loop concepts for space or terrestrial applications as well as open loop systems for direct nuclear thermal propulsion. Although a number of fast spectrum reactor and engine designs suitable for direct nuclear thermal propulsion were proposed and designed, none were built. This report summarizes status results of evaluations of small nuclear reactor designs suitable for direct nuclear thermal propulsion.

Bruce G. Schnitzler

2012-01-01T23:59:59.000Z

96

Multimedia from NASA's GLAST Mission  

DOE Data Explorer (OSTI)

GLAST is short for Gamma-ray Large Area Space Telescope, but its name is Fermi. Launched in June, 2008, Fermi is a powerful space observatory that will open a wide window on the universe. Gamma rays are the highest-energy form of light, and the gamma-ray sky is spectacularly different from the one we perceive with our own eyes. With a huge leap in all key capabilities, Fermi data will enable scientists to answer persistent questions across a broad range of topics, including supermassive black-hole systems, pulsars, the origin of cosmic rays, and searches for signals of new physics. The mission is an astrophysics and particle physics partnership, developed by NASA in collaboration with the U.S. Department of Energy, along with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden, and the United States. [Copied, edited from http://www.nasa.gov/mission_pages/GLAST/main/index.html] GLAST has two main components, the Large Area Telescope (LAT) and the Gamma Burst Monitor(GBM). The LAT is managed at SLAC National Accelerator Laboratory, and data feeds from Fermi flow to both DOE and NASA. NASA is responsible for maintaining and distributing the data. The multimedia offerings at NASA's GLAST web page are plentiful. Both videos and image collections are available, along with scientific and technical information packaged in a variety of attractive and educational forms.

97

Photo of the Week: Not Your Typical Jet Engine | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Not Your Typical Jet Engine Not Your Typical Jet Engine Photo of the Week: Not Your Typical Jet Engine November 23, 2012 - 11:57am Addthis As part of the Aircraft Nuclear Propulsion Program, the U.S. conducted extensive research showing that nuclear fission could power an aircraft. The research involved a series of Heat Transfer Reactor Experiments (HTREs), which tested if different types of jet engines could be run by nuclear power. In 1955, however, the project was cancelled, and a safe, operational prototype aircraft was never developed. In this 1988 photo, the two HTRE reactors are shown in transport to Idaho National Laboratory's EBR-1 visitor center, where they remain today. | Photo courtesy of Idaho National Laboratory. As part of the Aircraft Nuclear Propulsion Program, the U.S. conducted

98

Satellite Observations of the Wind Jets off the Pacific Coast of Central America. Part I: Case Studies and Statistical Characteristics  

Science Conference Proceedings (OSTI)

Measurements of near-surface winds by the NASA scatterometer (NSCAT) from October 1996 through June 1997 are analyzed to investigate the three major wind jets along the Pacific coast of Central America that blow over the Gulfs of Tehuantepec, ...

Dudley B. Chelton; Michael H. Freilich; Steven K. Esbensen

2000-07-01T23:59:59.000Z

99

Effect of Microstructural Variations on the Tensile and Fracture ...  

Science Conference Proceedings (OSTI)

... this alloy is used in the welded construction of components in the nuclear ..... Temperatures, ” Report NASA TN-D7665, Lyndon B. Johnson Space Center, ... Report NASA CR-100208, Jet Propulsion Laboratory EG-479375 and University of.

100

NUCLEAR PROPULSION--AN EMERGING TECHNOLOGY  

SciTech Connect

The use of nuclear energy in the space programs is discussed. Nuclear rocket development is reviewed, and the Nevada rocket development station, nuclear electric propulsion and power generation, and advanced research projects are discussed. (J.R.D.)

Finger, H.B.

1963-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nasa jet propulsion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

NASA Research Areas of Interest Released by NASA HQ April 2013  

E-Print Network (OSTI)

NASA Research Areas of Interest Released by NASA HQ April 2013 NASA EPSCoR research priorities - studies and comparisons of responses of whole organisms and their systems; and · Developmental Biology-cellular organisms, as described in NASA's > Fundamental Space Biology Science Plan (PDF, 7.4 MB). Further details

Maxwell, Bruce D.

102

NASA Procedural Requirements NPR 8020.12D  

E-Print Network (OSTI)

on Space Research (COSPAR) Planetary Protection Policy, as amended. e. NASA HDBK 6022, NASA Standard. Assay Methods (1) Utilization of NASA HDBK 6022 , NASA Standard Procedures for the Microbiological

Rhoads, James

103

Assessing Hypothetical Gravity Control Propulsion  

E-Print Network (OSTI)

Gauging the benefits of hypothetical gravity control propulsion is difficult, but addressable. The major challenge is that such breakthroughs are still only notional concepts rather than being specific methods from which performance can be rigorously quantified. A recent assessment by Tajmar and Bertolami used the rocket equation to correct naive misconceptions, but a more fundamental analysis requires the use of energy as the basis for comparison. The energy of a rocket is compared to an idealized space drive for the following cases: Earth-to-orbit, interstellar transit, and levitation. The space drive uses 3.6 times less energy for Earth to orbit. For deep space travel, space drive energy scales as the square of delta-v, while rocket energy scales exponentially. This has the effect of rendering a space drive 150-orders-of-magnitude better than a 17,000-sec Specific Impulse rocket for sending a modest 5000 kg probe to traverse 5 light-years in 50 years. Indefinite levitation, which is impossible for a rocket, could conceivably require 62 MJ/kg for a space drive. Assumption sensitivities and further analysis options are listed to guide further inquires.

Marc G. Millis

2006-03-14T23:59:59.000Z

104

National Aeronautics and Space Administration www.nasa.gov  

E-Print Network (OSTI)

: http://techtransfer.gsfc.nasa.gov n GoddardUpdates NASA Enters Agreement with NIST By Nicole Quinelle

105

Presentation Title Page with no NASA imagery  

NLE Websites -- All DOE Office Websites (Extended Search)

NASA Goddard Space Flight Center(GSFC) NASA Goddard Space Flight Center(GSFC) Data and Information Services Center(GES DISC) National Aeronautics and Space Administration www.nasa.gov Presentation Topics: 1)Quick overview of types of Data, Services and Tools at the GES DISC 2) Tour of GES DISC website http://disc.sci.gsfc.nasa.gov 3)Giovanni Demo: http://disc.sci.gsfc.nasa.gov/giovanni Presented by: Jennifer Brennan, NASA EOSDIS Outreach Lead, NASA GSFC, Adnet Systems Inc. 2 About GES DISC * Located within the Goddard Space Flight Center(GSFC) in Greenbelt, Maryland * Provides access to wide range of global climate data, concentrated primarily in areas of atmospheric composition, atmospheric dynamics, global precipitation, and solar irradiance. * The data center supports data from many heritage and EOS missions including Aqua,

106

Power balance in a helicon plasma source for space propulsion  

E-Print Network (OSTI)

Electric propulsion systems provide an attractive option for various spacecraft propulsion applications due to their high specific impulse. The power balance of an electric thruster based on a helicon plasma source is ...

White, Daniel B., Jr

2008-01-01T23:59:59.000Z

107

A Microwave Thruster for Spacecraft Propulsion  

DOE Green Energy (OSTI)

This presentation describes how a microwave thruster can be used for spacecraft propulsion. A microwave thruster is part of a larger class of electric propulsion devices that have higher specific impulse and lower thrust than conventional chemical rocket engines. Examples of electric propulsion devices are given in this presentation and it is shown how these devices have been used to accomplish two recent space missions. The microwave thruster is then described and it is explained how the thrust and specific impulse of the thruster can be measured. Calculations of the gas temperature and plasma properties in the microwave thruster are discussed. In addition a potential mission for the microwave thruster involving the orbit raising of a space station is explored.

Chiravalle, Vincent P [Los Alamos National Laboratory

2012-07-23T23:59:59.000Z

108

Laser Propulsion - Is it another myth or a real potential?  

SciTech Connect

This paper discusses different principles of inducing propulsive power using lasers and examines the performance limits along with pros and cons with respect to different space propulsion applications: satellite launching, orbital transfer, space debris clearing, satellite propulsion, and space travels. It concludes that a use of electrical propulsion, in conjunction with laser power beaming, is the most feasible application with technological and economic advantages for commercial use within the next decades.

Cook, Joung R. [J. Cook and Associates, McLean, Virginia 22101 (United States)

2008-04-28T23:59:59.000Z

109

UESC Project Overview: NASA Ames Research Center  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NASA Ames Research Center NASA Ames Research Center Utility Energy Services Contract Project Overview Federal Utilities Partnership Working Group Philadelphia, PA October 2011 NASA Ames Research Center Utility Energy Services Contract 2 Today's Discussion * NASA Ames Research Center (ARC) Energy Challenges * UESC Project Goals * Energy and Water Conservation Projects * Project Benefits and Results * Q&A NASA Ames Research Center Utility Energy Services Contract 3 NASA's Energy Challenges * Compliance with federal mandates - EISA, EPAct, Executive Orders (prior to UESC ARC was behind all of its goals) * Very low electric cost (<$0.05/kWh) * Not eligible for electric incentives through local utility (ARC purchases power from WAPA) * Aging mechanical and electrical infrastructure requiring significant

110

BNL NASA Space Radiation Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Illumination Levels in NASA Support Rooms in Medical and NSRL Facilities Illumination Levels in NASA Support Rooms in Medical and NSRL Facilities A. Readings in Medical Room Macro-Environment Micro-Environment Macro-Environment Micro-Environment (in Foot Candles) (in Foot Candles) (in Lux) (in Lux) 9-274 21.5 3.5 231 37.7 11-143 58 3.8 624 40.9 11-211 58 4.2 624 45.2 11-212 35 4.5 377 48.4 11-213 44 4.3 474 46.3 11-214 36.5 5.5 393 59.2 11-221 51 6.2 549 66.7 11-231 24.5 2.9 264 31.2 11-232 37.5 3.5 404 37.7 11-244 35.5 2.8 382 30.1 B. Readings in NSRL Room Macro-Environment Micro-Environment Macro-Environment Micro-Environment (in Foot Candles) (in Foot Candles) (in Lux) (in Lux) A-1 57 24 613 258 A-2 81.5 32 877 344 A-3 51 11.8 549 127 Top of Page Last Modified: July 15, 2008

111

NASA på Nya äventyr i rymden.  

E-Print Network (OSTI)

?? The purpose of this thesis is to bring forward and discuss the American vision for space exploration found at NASA's homepage, how the vision… (more)

Nord, Johan

2008-01-01T23:59:59.000Z

112

NASA GISS Surface Temperature (GISTEMP) Analysis: Graphics  

NLE Websites -- All DOE Office Websites (Extended Search)

Temperature Analysis Graphs NASA GISS Surface Temperature (GISTEMP) Analysis: Graphics Time Series Graphs of Global, Hemispheric, and Zonal Temperature Anomalies Graphics...

113

MHD (magnetohydrodynamic) undersea propulsion: A novel concept with renewed interest  

DOE Green Energy (OSTI)

This paper discusses the reasons for the national and international renewed interest in the concept of MHD seawater propulsion. The main advantages of this concept are presented, together with some of the technical challenges that need to be overcome to achieve reliability, performance, and stealth. The paper discusses in more detail some of the technical issues and loss mechanisms influencing the thruster performance in terms of its electrical efficiency. Among the issues discussed are the jet losses and nozzle efficiency. Ohmic losses and frictional losses inside the thruster. Also discussed are the electrical end losses caused by the fringing magnetic field near the end of the electrodes. It has been shown that the frictional and end losses can have strong adverse effects on the thruster performance. Furthermore, a parametric study has been performed to investigate the effects of several parameters on the performance of the MHD thrusters. Those parameters include the magnetic field, thruster diameter, all roughness, flow velocity, and electrical load factor. The results of the parametric study indicate that the thruster efficiency increases with the strength of the magnetic field and thruster diameter, and decreases with the wall roughness and the flow velocity. 8 refs., 8 figs.

Doss, E.D.; Geyer, H.K. (Argonne National Lab., IL (USA)); Roy, G.D. (Office of Naval Research, Arlington, VA (USA))

1990-01-01T23:59:59.000Z

114

Large-Scale Testing and High-Fidelity Simulation Capabilities at Sandia National Laboratories to Support Space Power and Propulsion  

SciTech Connect

Sandia National Laboratories, as a Department of Energy, National Nuclear Security Agency, has major responsibility to ensure the safety and security needs of nuclear weapons. As such, with an experienced research staff, Sandia maintains a spectrum of modeling and simulation capabilities integrated with experimental and large-scale test capabilities. This expertise and these capabilities offer considerable resources for addressing issues of interest to the space power and propulsion communities. This paper presents Sandia's capability to perform thermal qualification (analysis, test, modeling and simulation) using a representative weapon system as an example demonstrating the potential to support NASA's Lunar Reactor System.

Dobranich, Dean [Thermal and Reactive Processes Department, Sandia National Laboratories Albuquerque, NM 87185 (United States); Blanchat, Thomas K. [Fire Science and Technology Department, Sandia National Laboratories Albuquerque, NM 87185 (United States)

2008-01-21T23:59:59.000Z

115

Measurement Issues In Pulsed Laser Propulsion  

SciTech Connect

Various measurement techniques have been used throughout the over 40-year history of laser propulsion. Often, these approaches suffered from inconsistencies in definitions of the key parameters that define the physics of laser ablation impulse generation. Such parameters include, but are not limited to the pulse energy, spot area, imparted impulse, and ablated mass. The limits and characteristics of common measurement techniques in each of these areas will be explored as they relate to laser propulsion. The idea of establishing some standardization system for laser propulsion data is introduced in this paper, so that reported results may be considered and studied by the general community with more certain understanding of particular merits and limitations. In particular, it is the intention to propose a minimum set of requirements a literature study should meet. Some international standards for measurements are already published, but modifications or revisions of such standards may be necessary for application to laser ablation propulsion. Issues relating to development of standards will be discussed, as well as some examples of specific experimental circumstances in which standardization would have prevented misinterpretation or misuse of past data.

Sinko, John E. [Micro-Nano Global Center of Excellence, Nagoya University (Niue), Nagoya, Aichi (Japan); Scharring, Stefan; Eckel, Hans-Albert [Institute of Technical Physics, German Aerospace Center (DLR), D-70569 Stuttgart, Pfaffenwaldring 38-40 (Germany); Roeser, Hans-Peter [Institute of Space Systems, University of Stuttgart, D-70569 Stuttgart, Pfaffenwaldring 31 (Germany); Sasoh, Akihiro [Department of Aerospace Engineering, Nagoya University, Nagoya, Aichi (Japan)

2010-05-06T23:59:59.000Z

116

Research on Micro-Propulsion Thruster Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Turbine Technology C.V. Ramana (PI) Ahsan R. Choudhuri (Co-PI) NASA Center for Space Exploration Technology Research (cSETR), University of Texas at El Paso Program...

117

BNL NASA Space Radiation Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Purpose: To use beams of heavy ions provided by the Booster accelerator at Brookhaven to study the effects of simulated space radiation on biological and physical systems, with the goal of developing methods and materials to reduce the risk to human beings on prolonged space missions of the effects of ionizing radiation Sponsor: National Aeronautics and Space Administration (NASA) Project cost $34 million over 4 years Operating costs Nearly $8 million per year in 2007 Features * beams of heavy ions extracted from the Booster accelerator with masses and energies similar to the cosmic rays encountered in space: * 1-billion electron volt (GeV)/nucleon iron-56 * 0.3-GeV/nucleon gold-97 * 0.6-GeV/nucleon silicon-28 * 1-GeV/nucleon protons * 1-GeV/nucleon titanium

118

www.nasa.gov Fiscal Year  

E-Print Network (OSTI)

representatives. As Administrator, one of my key responsibilities defined in the Space Act of 1958 (as amended Act (Recovery Act). NASA received $1,050 million of Recovery Act funding in fiscal year 2009 ($1 an additional $4 million in Recovery Act Reimbursable Authority in FY 2010. Although NASA was unable to achieve

119

NASA Perspectives on Cryo H2 Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Perspectives on Cryo H2 Perspectives on Cryo H2 Storage DOE Hydrogen Storage Workshop Marriott Crystal Gateway Arlington, VA February 15, 2011 David J. Chato NASA Glenn Research Center Michael P. Doherty NASA Glenn Research Center 2 Objectives Purposes of this Presentation * To show the role of Cryogenics in NASA prior missions * To show recent NASA accomplishments in cryogenic fluid management technology * To highlight the importance of long term cryogenic storage to future NASA missions (especially Human Space flight) 3 What is Cryogenic Fluid Management? 3 The Cartoon Guide to Cryogenic Fluid Management Illustrating Key Concepts in Iconic Form 4 GRC Cryogenic Fluid Management Accomplishments Pioneering cryogenic propellant properties, behavior, and instrumentation studies 1960s-70s 1962-> Centaur

120

NASA Web Site Privacy and Important Notices  

NLE Websites -- All DOE Office Websites (Extended Search)

NASA Web Privacy Policy NASA Web Privacy Policy Thank you for visiting NASA and reviewing our policy notices. We have integrated these statements into a single posting for ease of use. The following links will help you navigate to a specific section: Privacy Policy Security Notice Accessibility Statement Linking Policy and Disclaimer of Endorsement Privacy Policy This notice provides NASA's policy regarding the nature, purpose, use and sharing of any information collected via this Web site. The information you provide on a NASA Web site will be used only for its intended purpose. We will protect your information consistent with the principles of the Privacy Act, the e-Government act of 2002, the Federal Records Act, and as applicable, the Freedom of Information Act. Submitting information is strictly voluntary. By doing so, you are giving

Note: This page contains sample records for the topic "nasa jet propulsion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Baroclinic Development in Observations and NASA GSFC General Circulation Models  

Science Conference Proceedings (OSTI)

Comparative diagnostic analyses of developing synoptic-scale baroclinic disturbances in NCEP–NCAR reanalyses and the NASA–NCAR (NASCAR) and Aries [NASA’s Seasonal-to-Interannual Prediction Project (NSIPP)] general circulation model simulations ...

Dennis P. Robinson; Robert X. Black

2006-04-01T23:59:59.000Z

122

Fluidic electrodynamics: Approach to electromagnetic propulsion  

Science Conference Proceedings (OSTI)

We report on a new methodological approach to electrodynamics based on a fluidic viewpoint. We develop a systematic approach establishing analogies between physical magnitudes and isomorphism (structure-preserving mappings) between systems of equations. This methodological approach allows us to give a general expression for the hydromotive force, thus re-obtaining the Navier-Stokes equation departing from the appropriate electromotive force. From this ground we offer a fluidic approach to different kinds of issues with interest in propulsion, e.g., the force exerted by a charged particle on a body carrying current; the magnetic force between two parallel currents; the Magnus's force. It is shown how the intermingle between the fluid vector fields and electromagnetic fields leads to new insights on their dynamics. The new concepts introduced in this work suggest possible applications to electromagnetic (EM) propulsion devices and the mastery of the principles of producing electric fields of required configuration in plasma medium.

Martins, Alexandre A.; Pinheiro, Mario J. [Institute for Plasmas and Nuclear Fusion and Instituto Superior Tecnico Lisboa, Portugal 351.1.21.841.92.43 (Portugal); Department of Physics and Institute for Plasmas and Nuclear Fusion and Instituto Superior Tecnico Lisboa, Portugal 351.1.21.841.93.22 (Portugal)

2009-03-16T23:59:59.000Z

123

National Aeronautics and Space Administration www.nasa.gov  

E-Print Network (OSTI)

.286.5810, techtransfer@gsfc.nasa.gov. n #12;NASA announced Thursday, February 7, that members of the general pub- lic

124

National Aeronautics and Space Administration www.nasa.gov  

E-Print Network (OSTI)

is available by visiting http://ipp.gsfc.nasa.gov, e-mailing techtransfer@gsfc.nasa.gov, or calling 6

125

SLAC National Accelerator Laboratory - NASA's WISE Mission Sees...  

NLE Websites -- All DOE Office Websites (Extended Search)

from NASA Pasadena, Calif. - Astronomers are actively hunting a class of supermassive black holes throughout the universe called blazars, thanks to data collected by NASA's...

126

SERAPHIM: A propulsion technology for fast trains  

Science Conference Proceedings (OSTI)

The Segmented Rail Phased Induction Motor (SERAPHIM) is a compact, pulsed linear induction motor (LIM) offering a unique capability for very high speed train propulsion. It uses technology developed for the Sandia coilgun, an electromagnetic launcher designed to accelerate projectiles to several kilometers per second. Both aluminum cylinders and plates were accelerated to a kilometer per second (Mach 3) by passing through a sequence of coils which were energized at the appropriate time. Although this technology was developed for ultra-high velocity, it can be readily adapted to train propulsion for which, at sea level, the power required to overcome air resistance limits the operational speed to a more modest 300 mph. Here, the geometry is reversed. The coils are on the vehicle and the ``projectiles`` are fixed along the roadbed. SERAPHIM operates not by embedding flux in a conductor, but by excluding it. In this propulsion scheme, pairs of closely spaced coils on the vehicle straddle a segmented aluminum reaction rail. A high frequency current is switched on as a coil pair crosses an edge and remains off as they overtake the next segment. This induces surface currents which repel the coil. In essence, the pulsed coils push off segment edges because at the high frequency of operation, the flux has insufficient time to penetrate. In contrast to conventional LIMs, the performance actually improves with velocity, even for a minimal motor consisting of a single coil pair reacting with a single plate. This paper will present results of proof-of-principle tests, electromagnetic computer simulations, and systems analysis. It is concluded that this new linear induction motor can be implemented using existing technology and is a promising alternative propulsion method for very high speed rail transportation.

Kelly, B.; Turman, B.; Marder, B.; Rohwein, G.; Aeschliman, D.; Cowan, B.

1995-06-01T23:59:59.000Z

127

Hypervelocity impact jet formation  

SciTech Connect

The hypervelocity impact of a particle on a surface generates a jet of shocked material which is thrown from the impact site. A simple analytic model has been developed to obtain expressions for the evolution of this jet of ejecta. The analysis is based on applying the conservation equations of mass and momentum to the problem of a normal impact of a sphere against a semi-infinite flat target. Expressions are developed for the evolution of the jet velocity, jet release point and the locus of points which describe the ejecta envelope. These analytical ejecta profiles are compared with high speed photographs of impact jet formation. 6 refs., 7 figs.

Ang, J.A.

1991-01-01T23:59:59.000Z

128

The Chameleon Solid Rocket Propulsion Model  

SciTech Connect

The Khoury and Weltman (2004a and 2004b) Chameleon Model presents an addition to the gravitation force and was shown by the author (Robertson, 2009a and 2009b) to present a new means by which one can view other forces in the Universe. The Chameleon Model is basically a density-dependent model and while the idea is not new, this model is novel in that densities in the Universe to include the vacuum of space are viewed as scalar fields. Such an analogy gives the Chameleon scalar field, dark energy/dark matter like characteristics; fitting well within cosmological expansion theories. In respect to this forum, in this paper, it is shown how the Chameleon Model can be used to derive the thrust of a solid rocket motor. This presents a first step toward the development of new propulsion models using density variations verse mass ejection as the mechanism for thrust. Further, through the Chameleon Model connection, these new propulsion models can be tied to dark energy/dark matter toward new space propulsion systems utilizing the vacuum scalar field in a way understandable by engineers, the key toward the development of such systems. This paper provides corrections to the Chameleon rocket model in Robertson (2009b).

Robertson, Glen A. [Institute for Advanced Studies in the Space, Propulsion and Energy Sciences, 265 Ita Ann, Madison, AL 35757 (United States)

2010-01-28T23:59:59.000Z

129

Magnetized target fusion and fusion propulsion.  

DOE Green Energy (OSTI)

Magnetized target fusion (MTF) is a thermonuclear fusion concept that is intermediate between the two mainline approaches, magnetic confinement and inertial confinement fusion (MCF and ICF). MTF incorporates some aspects of each and offers advantages over each of the mainline approaches. First, it provides a means of reducing the driver power requirements, thereby admitting a wider range of drivers than ICF. Second, the magnetic field is only used for insulation, not confinement, and the plasma is wall confined, so that plasma instabilities are traded in for hydrodynamic instabilities. However, the degree of compression required to reach fusion conditions is lower than for ICF, so that hydrodynamic instabilities are much less threatening. The standoff driver innovation proposes to dynamically form the target plasma and a gaseous shell that compresses and confines the target plasma. Therefore, fusion target fabrication is traded in for a multiplicity of plasma guns, which must work in synchrony. The standoff driver embodiment of MTF leads to a fusion propulsion system concept that is potentially compact and lightweight. We will discuss the underlying physics of MTF and some of the details of the fusion propulsion concept using the standoff driver approach. We discuss here the optimization of an MTF target design for space propulsion.

Kirkpatrick, R. C. (Ronald C.)

2001-01-01T23:59:59.000Z

130

Engineering Challenges in Antiproton Triggered Fusion Propulsion  

SciTech Connect

During the last decade antiproton triggered fusion propulsion has been investigated as a method for achieving high specific impulse, high thrust in a nuclear pulse propulsion system. In general the antiprotons are injected into a pellet containing fusion fuel with a small amount of fissionable material (i.e., an amount less than the critical mass) where the products from the fission are then used to trigger a fusion reaction. Initial calculations and simulations indicate that if magnetically insulated inertial confinement fusion is used that the pellets should result in a specific impulse of between 100,000 and 300,000 seconds at high thrust. The engineering challenges associated with this propulsion system are significant. For example, the antiprotons must be precisely focused. The pellet must be designed to contain the fission and initial fusion products and this will require strong magnetic fields. The fusion fuel must be contained for a sufficiently long time to effectively release the fusion energy, and the payload must be shielded from the radiation, especially the excess neutrons emitted, in addition to many other particles. We will review the recent progress, possible engineering solutions and the potential performance of these systems.

Cassenti, Brice [Department. of Engineering and Science, Rensselaer Polytechnic Institute, 275 Windsor Avenue, Hattford, CT 06120 (United States); Kammash, Terry [Nuclear Engineering Department, University of Michigan, Ann Arbor, MI 48109 (United States)

2008-01-21T23:59:59.000Z

131

NERVA derivative reactors for thermal and electric propulsion  

Science Conference Proceedings (OSTI)

NERVA derivative reactors (NDRs) have significant flexibility for diverse space power applications that include direct thermal propulsion, steady state power for electric propulsion, and nuclear hybrid propulsion. For illustrations, three NDR designs were developed: one for a 50 kN thrust nuclear propulsion engine, a 6 MWe steady state electric power source, and a dual mode system that produces 50 kN of direct thrust plus 300 kWe of power for electric propulsion. The NDRs are based on demonstrated reactor technologies and state-of-the-art fuel and materials' technologies. The propulsion power systems can be designed for near-term applications (mid-1990 IOC). With additional developments in high temperature fuels, higher performance NDRs can be made available by the turn of the century. 11 refs.

Chi, J.W.H.; Holman, R.R.; Pierce, B.L.

1989-01-01T23:59:59.000Z

132

Simplest AB-Thermonuclear Space Propulsion and Electric Generator  

E-Print Network (OSTI)

The author applies, develops and researches mini-sized Micro- AB Thermonuclear Reactors for space propulsion and space power systems. These small engines directly convert the high speed charged particles produced in the thermonuclear reactor into vehicle thrust or vehicle electricity with maximum efficiency. The simplest AB-thermonuclear propulsion offered allows spaceships to reach speeds of 20,000 50,000 km/s (1/6 of light speed) for fuel ratio 0.1 and produces a huge amount of useful electric energy. Offered propulsion system permits flight to any planet of our Solar system in short time and to the nearest non-Sun stars by E-being or intellectual robots during a single human life period. Key words: AB-propulsion, thermonuclear propulsion, space propulsion, thermonuclear power system.

Bolonkin, A

2007-01-01T23:59:59.000Z

133

Simplest AB-Thermonuclear Space Propulsion and Electric Generator  

E-Print Network (OSTI)

The author applies, develops and researches mini-sized Micro- AB Thermonuclear Reactors for space propulsion and space power systems. These small engines directly convert the high speed charged particles produced in the thermonuclear reactor into vehicle thrust or vehicle electricity with maximum efficiency. The simplest AB-thermonuclear propulsion offered allows spaceships to reach speeds of 20,000 50,000 km/s (1/6 of light speed) for fuel ratio 0.1 and produces a huge amount of useful electric energy. Offered propulsion system permits flight to any planet of our Solar system in short time and to the nearest non-Sun stars by E-being or intellectual robots during a single human life period. Key words: AB-propulsion, thermonuclear propulsion, space propulsion, thermonuclear power system.

Alexander Bolonkin

2007-01-19T23:59:59.000Z

134

Propulsion Materials R&D | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Propulsion Materials Propulsion Materials SHARE Propulsion Materials Improve Powertrains Oak Ridge National Laboratory's transportation research and development in the area of Propulsion Materials is designed to identify and develop advanced materials and processes that improve powertrain system efficiency and reduce emissions. Cutting-edge materials research is crucial to enabling new vehicle technologies that are reliable, fuel efficient, and clean. ORNL researchers, in close collaboration with US industry, are focusing on materials for advanced engines, hybrid and electric drive systems, and vehicle exhaust systems. These materials promote a variety of performance benefits, including lightweighting, higher temperature capabilities, emissions reduction, thermal management, and corrosion mitigation.

135

Enabling Green Energy and Propulsion Systems via Direct Noise...  

NLE Websites -- All DOE Office Websites (Extended Search)

Umesh Paliath, GE Global Research; Joe Insley, Argonne National Laboratory Enabling Green Energy and Propulsion Systems via Direct Noise Computation PI Name: Umesh Paliath PI...

136

Large-Eddy Simulation for Green Energy and Propulsion Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

Large-Eddy Simulation for Green Energy and Propulsion Systems PI Name: Umesh Paliath PI Email: paliath@ge.com Institution: General Electric Allocation Program: INCITE Allocation...

137

NASA GISS Surface Temperature (GISTEMP) Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

NASA GISS Surface Temperature (GISTEMP) Analysis NASA GISS Surface Temperature (GISTEMP) Analysis DOI: 10.3334/CDIAC/cli.001 Graphics Graphics data Data Contributors Hansen, J.E.,1 R. Ruedy,2 M. Sato,3 and K. Lo2 1National Aeronautics and Space Administration, 2SGT, Inc., 3Columbia University, Center for Climate Systems Research, NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 USA Period of Record 1880-2012 (Anomalies are relative to the 1951-80 base period means.) Methods The NASA GISS Surface Temperature (GISTEMP) analysis provides a measure of the changing global surface temperature with monthly resolution for the period since 1880, when a reasonably global distribution of meteorological stations was established. The input data Hansen et al. use for the analysis, collected by many national meteorological services around the

138

ORNL NASA DAAC Announces Advanced Search  

NLE Websites -- All DOE Office Websites (Extended Search)

New Release of Mercury Advanced Search Tool The ORNL NASA DAAC is pleased to announce the public release of the new version of our Mercury Advanced Search tool. Mercury is a...

139

Small Fast Spectrum Reactor Designs Suitable for Direct Nuclear Thermal Propulsion  

SciTech Connect

Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. Past studies, in particular those in support of both the Strategic Defense Initiative (SDI) and Space Exploration Initiative (SEI), have shown nuclear thermal propulsion systems provide superior performance for high mass high propulsive delta-V missions. The recent NASA Design Reference Architecture (DRA) 5.0 Study re-examined mission, payload, and transportation system requirements for a human Mars landing mission in the post-2030 timeframe. Nuclear thermal propulsion was again identified as the preferred in-space transportation system. A common nuclear thermal propulsion stage with three 25,000-lbf thrust engines was used for all primary mission maneuvers. Moderately lower thrust engines may also have important roles. In particular, lower thrust engine designs demonstrating the critical technologies that are directly extensible to other thrust levels are attractive from a ground testing perspective. An extensive nuclear thermal rocket technology development effort was conducted from 1955-1973 under the Rover/NERVA Program. Both graphite and refractory metal alloy fuel types were pursued. Reactors and engines employing graphite based fuels were designed, built and ground tested. A number of fast spectrum reactor and engine designs employing refractory metal alloy fuel types were proposed and designed, but none were built. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art graphite based fuel design incorporating lessons learned from the very successful technology development program. The SNRE was a nominal 16,000-lbf thrust engine originally intended for unmanned applications with relatively short engine operations and the engine and stage design were constrained to fit within the payload volume of the then planned space shuttle. The SNRE core design utilized hexagonal fuel elements and hexagonal structural support elements. The total number of elements can be varied to achieve engine designs of higher or lower thrust levels. Some variation in the ratio of fuel elements to structural elements is also possible. Options for SNRE-based engine designs in the 25,000-lbf thrust range were described in a recent (2010) Joint Propulsion Conference paper. The reported designs met or exceeded the performance characteristics baselined in the DRA 5.0 Study. Lower thrust SNRE-based designs were also described in a recent (2011) Joint Propulsion Conference paper. Recent activities have included parallel evaluation and design efforts on fast spectrum engines employing refractory metal alloy fuels. These efforts include evaluation of both heritage designs from the Argonne National Laboratory (ANL) and General Electric Company GE-710 Programs as well as more recent designs. Results are presented for a number of not-yet optimized fast spectrum engine options.

Bruce G. Schnitzler; Stanley K. Borowski

2012-07-01T23:59:59.000Z

140

Recent Development in Hydrogen Peroxide Pumped Propulsion  

DOE Green Energy (OSTI)

This paper describes the development of a lightweight high performance pump-fed divert and attitude control system (DACS). Increased kinetic Kill Vehicles (KV) capabilities (higher .v and acceleration capability) will especially be needed for boost phase engagements where a lower mass KV DACS enables smaller overall interceptors. To increase KV performance while reducing the total DACS dry mass (<10 kg), requires a design approach that more closely emulates those found in large launch vehicles, where pump-fed propulsion enables high propellant-mass-fraction systems. Miniaturized reciprocating pumps, on a scale compatible with KV applications, offer the potential of a lightweight DACS with both high {Delta}v and acceleration capability, while still enabling the rapid pulsing of the divert thrusters needed in the end-game fly-in. Pumped propulsion uses lightweight low-pressure propellant tanks, as the main vehicle structure and eliminates the need for high-pressure gas bottles, reducing mass and increasing the relative propellant load. Prior work used hydrazine and demonstrated a propellant mass fraction >0.8 and a vehicle propulsion dry mass of {approx}3 kg. Our current approach uses the non-toxic propellants 90% hydrogen peroxide and kerosene. This approach enables faster development at lower costs due to the ease of handling. In operational systems these non-toxic propellants can simplify the logistics for manned environments including shipboard applications. This DACS design configuration is expected to achieve sufficient mass flows to support divert thrusters in the 1200 N to 1330 N (270 lbf to 300 lbf) range. The DACS design incorporates two pairs of reciprocating differential piston pumps (oxidizer and fuel), a warm-gas drive system, compatible bi-propellant thrusters, lightweight valves, and lightweight low-pressure propellant tanks. This paper summarizes the current development status and plans.

Ledebuhr, A G; Antelman, D R; Dobie, D W; Gorman, T S; Jones, M S; Kordas, J F; McMahon, D H; Ng, L C; Nielsen, D P; Ormsby, A E; Pittenger, L C; Robinson, J A; Skulina, K M; Taylor, W G; Urone, D A; Wilson, B A

2004-03-22T23:59:59.000Z

Note: This page contains sample records for the topic "nasa jet propulsion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The ATLAS jet trigger  

E-Print Network (OSTI)

The ATLAS jet trigger system has a 3-level structure, and was designed based on the concept of Regions Of Interest, where only regions of the detector around interesting Level-1 objects are reconstructed at the higher levels. This philosophy has changed during 2011, and there now exists the possibility to unpacking the full calorimeter at Event Filter. In 2012, full calorimeter unpacking is also available at Level-2, in addition jet energies are now calibrated to jet energy scale, and cleaning cuts are applied to reduce rate spikes. This paper presents the performance of the jet trigger in 2011 and an overview of the new features available for 2012.

Tamsett, M; The ATLAS collaboration

2012-01-01T23:59:59.000Z

142

ELECTRIC PROPULSION APPLICATIONS FOR SNAP SYSTEMS  

SciTech Connect

The application of SNAP systems to electric propulsion was investigated. A review is given of the basic analysis involved in establishing optimum power levels and payload capabilities for electric spacecraft, and several typical missions are analyzed to determine the usefulness of the SNAP systems which are under development or systems which are based on the current SNAP technology. In general, it is found that SNAP power units in the range of 60 to 180 kw offer significant mission capability when used in conjunction with initial spacecraft weights of about 10,000 lb in a low-level orbit. (auth)

Morse, C.J.

1962-04-01T23:59:59.000Z

143

Jet Mass Spectra in Higgs + One Jet at NNLL  

E-Print Network (OSTI)

The invariant mass of a jet is a benchmark variable describing the structure of jets at the LHC. We calculate the jet mass spectrum for Higgs plus one jet at the LHC at next-to-next-to-leading logarithmic (NNLL) order using a factorization formula. At this order, the cross section becomes sensitive to perturbation theory at the soft m_jet^2/p_T^jet scale. Our calculation is exclusive and uses the 1-jettiness global event shape to implement a veto on additional jets. The dominant dependence on the jet veto is removed by normalizing the spectrum, leaving residual dependence from non-global logarithms depending on the ratio of the jet mass and jet veto variables. For our exclusive jet cross section these non-global logarithms are parametrically smaller than in the inclusive case, allowing us to obtain a complete NNLL result. Results for the dependence of the jet mass spectrum on the kinematics, jet algorithm, and jet size R are given. Using individual partonic channels we illustrate the difference between the jet mass spectra for quark and gluon jets. We also study the effect of hadronization and underlying event on the jet mass in PYTHIA. To highlight the similarity of inclusive and exclusive jet mass spectra, a comparison to LHC data is presented.

Teppo T. Jouttenus; Iain W. Stewart; Frank J. Tackmann; Wouter J. Waalewijn

2013-02-04T23:59:59.000Z

144

Propulsion and stabilization system for magnetically levitated vehicles  

DOE Patents (OSTI)

A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and stabilized by a system which includes propulsion windings mounted above and parallel to vehicle-borne suspension magnets. A linear synchronous motor is part of the vehicle guideway and is mounted above and parallel to superconducting magnets attached to the magnetically levitated vehicle.

Coffey, Howard T. (Darien, IL)

1993-06-29T23:59:59.000Z

145

Design and Optimization of Future Hybrid and Electric Propulsion Systems  

E-Print Network (OSTI)

Design and Optimization of Future Hybrid and Electric Propulsion Systems: An Advanced Tool and Optimization of Future Hybrid and Electric Propulsion Systems: An Advanced Tool Integrated in a Complete Hybrid Electric Vehicle ICE Internal Combustion Engine IM Induction Machine IPM Internal Permanent Magnet

Paris-Sud XI, Université de

146

Propulsion and stabilization system for magnetically levitated vehicles  

DOE Patents (OSTI)

A propulsion and stabilization system for an inductive repulsion type magnetically levitated vehicle which is propelled and stabilized by a system which includes propulsion windings mounted above and parallel to vehicle-borne suspension magnets. A linear synchronous motor is part of the vehicle guideway and is mounted above and parallel to superconducting magnets attached to the magnetically levitated vehicle.

Coffey, H.T.

1992-12-31T23:59:59.000Z

147

New Technology and Lunar Power Option for Power Beaming Propulsion  

DOE Green Energy (OSTI)

Orbit raising missions (LEO to GEO or beyond) are the only missions with enough current traffic to be seriously considered for near-term power beaming propulsion. Even these missions cannot justify the development expenditures required to deploy the required new laser, optical and propulsion technologies or the programmatic risks. To be deployed, the laser and optics technologies must be spin-offs of other funded programs. The manned lunar base nighttime power requirements may justify a major power beaming program with 2MW lasers and large optical systems. New laser and optical technologies may now make this mission plausible. If deployed these systems could be diverted for power beaming propulsion applications. Propulsion options include a thermal system with an Isp near 1000 sec., a new optical coupled thermal system with an Isp over 2000 sec. photovoltaic-ion propulsion systems with an Isp near 3000 sec., and a possible new optical coupled thermal system with an Isp over 2000 sec.

Kare, J; Early, J; Krupke, W; Beach, R

2004-10-11T23:59:59.000Z

148

FastJet user manual  

E-Print Network (OSTI)

FastJet is a C++ package that provides a broad range of jet finding and analysis tools. It includes efficient native implementations of all widely used 2-to-1 sequential recombination jet algorithms for pp and e+e- collisions, as well as access to 3rd party jet algorithms through a plugin mechanism, including all currently used cone algorithms. FastJet also provides means to facilitate the manipulation of jet substructure, including some common boosted heavy-object taggers, as well as tools for estimation of pileup and underlying-event noise levels, determination of jet areas and subtraction or suppression of noise in jets.

Matteo Cacciari; Gavin P. Salam; Gregory Soyez

2011-11-25T23:59:59.000Z

149

Ultrahigh Specific Impulse Nuclear Thermal Propulsion  

DOE Green Energy (OSTI)

Research on nuclear thermal propulsion systems (NTP) have been in forefront of the space nuclear power and propulsion due to their design simplicity and their promise for providing very high thrust at reasonably high specific impulse. During NERVA-ROVER program in late 1950's till early 1970's, the United States developed and ground tested about 18 NTP systems without ever deploying them into space. The NERVA-ROVER program included development and testing of NTP systems with very high thrust (~250,000 lbf) and relatively high specific impulse (~850 s). High thrust to weight ratio in NTP systems is an indicator of high acceleration that could be achieved with these systems. The specific impulse in the lowest mass propellant, hydrogen, is a function of square root of absolute temperature in the NTP thrust chamber. Therefor optimizing design performance of NTP systems would require achieving the highest possible hydrogen temperature at reasonably high thrust to weight ratio. High hydrogen exit temperature produces high specific impulse that is a diret measure of propellant usage efficiency.

Anne Charmeau; Brandon Cunningham; Samim Anghaie

2009-02-09T23:59:59.000Z

150

National Aeronautics and Space Administration www.nasa.gov  

E-Print Network (OSTI)

Program · Heavy Lift Propulsion Technology Program · Human Research Program ­ 1 team assessing transition, Boeing, Pratt & Whitney Rocketdyne, & Oceaneering, have been awarded contracts to design, manufacture

151

Jet production at HERA  

E-Print Network (OSTI)

Recent results from jet production in deep inelastic ep scattering to investigate parton dynamics at low x are reviewed. The results on jet production in deep inelastic scattering and photoproduction used to test perturbative QCD are discussed and the values of alphas(Mz) extracted from a QCD analysis of the data are presented

C. Glasman

2004-10-07T23:59:59.000Z

152

Beamed Energy Propulsion: Research Status And Needs--Part 1  

SciTech Connect

One promising solution to the operationally responsive space is the application of remote electromagnetic energy to propel a launch vehicle into orbit. With beamed energy propulsion, one can leave the power source stationary on the ground or space, and direct heat propellant on the spacecraft with a beam from a fixed station. This permits the spacecraft to leave its power source at home, saving significant amounts of mass, greatly improving performance. This concept, which removes the mass penalty of carrying the propulsion energy source on board the vehicle, was first proposed by Arthur Kantrowitz in 1972; he invoked an extremely powerful ground based laser. The same year Michael Minovich suggested a conceptually similar 'in-space' laser rocket system utilizing a remote laser power station. In the late 1980's, Air Force Office of Scientific Research (AFOSR) funded continuous, double pulse laser and microwave propulsion while Strategic Defense Initiative Office (SDIO) funded ablative laser rocket propulsion. Currently AFOSR has been funding the concept initiated by Leik Myrabo, repetitively pulsed laser propulsion, which has been universally perceived, arguably, to be the closest for mid-term applications. This 2-part paper examines the investment strategies in beamed energy propulsion and technical challenges to be overcome. Part 1 presents a world-wide review of beamed energy propulsion research, including both laser and microwave arenas.

Birkan, Mitat [Air Force Office of Scientific Research, Arlington, Virginia, 22203 (United States)

2008-04-28T23:59:59.000Z

153

NALCAL  

NLE Websites -- All DOE Office Websites (Extended Search)

BREAK 2nd Flr X-Over 4:00 Fermilab Colloquium 1 West Speaker: Slava Turyshev, NASA Jet Propulsion Laboratory Title: Testing Fundamental Gravitation in Space and the Nature of...

154

Lifelong Learning  

NLE Websites -- All DOE Office Websites (Extended Search)

with our life-size image of the rover The museum's TechLab has a dozen videos and animations about the Curiosity rover from NASA and the Jet Propulsion Laboratory. Follow the...

155

NASA Glenn Research Center | Open Energy Information  

Open Energy Info (EERE)

NASA Glenn Research Center NASA Glenn Research Center Jump to: navigation, search Name NASA Glenn Research Center Address 21000 Brookpark Rd. Place Cleveland, Ohio Zip 44135 Sector Biofuels, Carbon, Efficiency, Renewable Energy, Solar, Wind energy Product Research and development Phone number 216-977-7135 Website http://www.nasa.gov/centers/gl Coordinates 41.418747°, -81.854496° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.418747,"lon":-81.854496,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

156

www.nasa.gov Fiscal Year  

E-Print Network (OSTI)

reporting requirements including the Government Performance and Results Act of 1993, the Chief Financial Officers Act of 1990, and the Federal Financial Management Improvement Act of 1996. NASA's FY 2010 PAR-up actions on the Inspector General's audits, an Improper Payments Information Act assessment, a summary

157

NASA Launches New Earth Observation Satellite  

E-Print Network (OSTI)

Wind Pg 9 Goddard Celebrates Martin Luther King, Jr. Pg 10 National Aeronautics and Space Administration www.nasa.gov Volume 9 Issue 2 March 2013 #12;N ASA's Landsat Data Continuity Mission (LDCM) roared into space at 1:02 p.m. EST on Monday, February 11 aboard an Atlas V rocket from Vandenberg Air Force Base

Christian, Eric

158

Remarks by Charles Bolden NASA Administrator  

E-Print Network (OSTI)

's Vision states in part: "To understand and protect our home planet, to explore the Universe and search for life, and to inspire the next generation of explorers... as only NASA can". Our Mission Statement robotic rovers on the distant planet, Mars, as a precursor to some day delivering humans to our

159

2007 Propulsion Materials Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle t echnologies Progra M Less dependence on foreign oil today, and transition to a petroleum-free, emissions-free vehicle tomorrow. 2 0 0 7 a n n u a l p r o g r e s s r e p o r t U.S. Department of Energy Office of Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2007 Progress Report for Propulsion Materials Energy Efficiency and Renewable Energy Office of Vehicle Technologies Advanced Materials Technologies Edward J. Wall Program Manager, OVT Rogelio A. Sullivan Advanced Materials Technologies Team Leader Jerry L. Gibbs Technology Manager January 2008 CONTENTS INTRODUCTION..................................................................................................................................... 1 PROJECT 18518 - MATERIALS FOR HIGH EFFICIENCY ENGINES......................................... 9

160

Nuclear propulsion apparatus with alternate reactor segments  

DOE Patents (OSTI)

1. Nuclear propulsion apparatus comprising: A. means for compressing incoming air; B. nuclear fission reactor means for heating said air; C. means for expanding a portion of the heated air to drive said compressing means; D. said nuclear fission reactor means being divided into a plurality of radially extending segments; E. means for directing a portion of the compressed air for heating through alternate segments of said reactor means and another portion of the compressed air for heating through the remaining segments of said reactor means; and F. means for further expanding the heated air from said drive means and the remaining heated air from said reactor means through nozzle means to effect reactive thrust on said apparatus.

Szekely, Thomas (Santa Monica, CA)

1979-04-03T23:59:59.000Z

Note: This page contains sample records for the topic "nasa jet propulsion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nuclear modules for space electric propulsion  

Science Conference Proceedings (OSTI)

Analysis of interplanetary cargo and piloted missions requires calculations of the performances and masses of subsystems to be integrated in a final design. In a preliminary and scoping stage the designer needs to evaluate options iteratively by using fast computer simulations. The Oak Ridge National Laboratory (ORNL) has been involved in the development of models and calculational procedures for the analysis (neutronic and thermal hydraulic) of power sources for nuclear electric propulsion. The nuclear modules will be integrated into the whole simulation of the nuclear electric propulsion system. The vehicles use either a Brayton direct-conversion cycle, using the heated helium from a NERVA-type reactor, or a potassium Rankine cycle, with the working fluid heated on the secondary side of a heat exchanger and lithium on the primary side coming from a fast reactor. Given a set of input conditions, the codes calculate composition. dimensions, volumes, and masses of the core, reflector, control system, pressure vessel, neutron and gamma shields, as well as the thermal hydraulic conditions of the coolant, clad and fuel. Input conditions are power, core life, pressure and temperature of the coolant at the inlet of the core, either the temperature of the coolant at the outlet of the core or the coolant mass flow and the fluences and integrated doses at the cargo area. Using state-of-the-art neutron cross sections and transport codes, a database was created for the neutronic performance of both reactor designs. The free parameters of the models are the moderator/fuel mass ratio for the NERVA reactor and the enrichment and the pitch of the lattice for the fast reactor. Reactivity and energy balance equations are simultaneously solved to find the reactor design. Thermalhydraulic conditions are calculated by solving the one-dimensional versions of the equations of conservation of mass, energy, and momentum with compressible flow. 10 refs., 1 tab.

Difilippo, F.C.

1998-12-31T23:59:59.000Z

162

Jet Quenching at LHC  

E-Print Network (OSTI)

We review up-to-date results on high-pt particles and jets in heavy ion collisions by three major LHC experiments, ALICE, ATLAS, and CMS. Results of analyses of 2010 and 2011 Pb+Pb data at $\\sqrt{s_{NN}} = 2.76$ TeV are discussed. We concentrate mainly on results by fully reconstructed jets and discuss similarities and important differences in measurements among experiments. We point to the importance of understanding the results in a view of difference between quark-initiated and gluon-initiated jets

Martin Spousta

2013-05-28T23:59:59.000Z

163

Angular Scaling In Jets  

SciTech Connect

We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.

Jankowiak, Martin; Larkoski, Andrew J.; /SLAC

2012-02-17T23:59:59.000Z

164

Jets with Variable R  

E-Print Network (OSTI)

We introduce a new class of jet algorithms designed to return conical jets with a variable Delta R radius. A specific example, in which Delta R scales as 1/pT, proves particularly useful in capturing the kinematic features of a wide variety of hard scattering processes. We implement this Delta R scaling in a sequential recombination algorithm and test it by reconstructing resonance masses and kinematic endpoints. These test cases show 10-20% improvements in signal efficiency compared to fixed Delta R algorithms. We also comment on cuts useful in reducing continuum jet backgrounds.

David Krohn; Jesse Thaler; Lian-Tao Wang

2009-03-02T23:59:59.000Z

165

NASA's Genesis and Rapid Intensification Processes (GRIP) Field Experiment  

Science Conference Proceedings (OSTI)

In August–September 2010, NASA, NOAA, and the National Science Foundation (NSF) conducted separate but closely coordinated hurricane field campaigns, bringing to bear a combined seven aircraft with both new and mature observing technologies. NASA's ...

Scott A. Braun; Ramesh Kakar; Edward Zipser; Gerald Heymsfield; Cerese Albers; Shannon Brown; Stephen L. Durden; Stephen Guimond; Jeffery Halverson; Andrew Heymsfield; Syed Ismail; Bjorn Lambrigtsen; Timothy Miller; Simone Tanelli; Janel Thomas; Jon Zawislak

2013-03-01T23:59:59.000Z

166

Propulsion System Materials Program semiannual progress report for April 1995 through September 1995  

DOE Green Energy (OSTI)

Significant accomplishments in fabricating ceramic components for the DOE, NASA, and DOD advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. These programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a 5-year program plan was developed with extensive input from private industry. During the course of the Propulsion System Materials Program, remarkable progress has been made in the development of reliable structural ceramics. However, further work is needed to reduce the cost of ceramics to facilitate their commercial introduction, especially in the highly cost-sensitive automotive market. To this end, the direction of the Propulsion System Materials Program is now shifting toward reducing the cost of ceramics to facilitate commercial introduction of ceramic components for near-term engine applications. In response to extensive input from industry, the plan is to extend the engine types which were previously supported to include near-term (5--10 years) applications in conventional automobile and diesel truck engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. A systematic approach to reducing the cost of components is envisioned. The work elements are as follows: economic cost modeling, ceramic machining, powder synthesis, alternative forming and densification processes, yield improvement, system design studies, standards development, low-expansion ceramics, and testing and data base development.

NONE

1996-04-01T23:59:59.000Z

167

NASA BENCHMARKS COMMUNICATIONS Assessment Plan NNSA/Nevada Site...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment Plan NNSANevada Site Office Facility Representative Division NASA BENCHMARKS COMMUNICATIONS Assessment Plan NNSANevada Site Office Facility Representative...

168

NIST, NASA Launch Joint Effort to Develop New Climate ...  

Science Conference Proceedings (OSTI)

NIST, NASA Launch Joint Effort to Develop New Climate Satellites. For ... space. The balance between them affects the climate. ...

2010-10-05T23:59:59.000Z

169

National Aeronautics and Space Administration www.nasa.gov  

E-Print Network (OSTI)

transfer success stories. For more successes and other OTT news, go to http://techtransfer.gsfc.nasa.gov. n

170

National Aeronautics and Space Administration www.nasa.gov  

E-Print Network (OSTI)

's Holographic Circle-to-Point Converter, visit: http://techtransfer.gsfc.nasa.gov Did You Know? Disposable

171

NASA Glenn Research Center Acoustical Testing Laboratory: Five year retrospective  

Science Conference Proceedings (OSTI)

In the five years since the NASA Glenn Research Center Acoustical Testing Laboratory (ATL) opened its doors in September

2005-01-01T23:59:59.000Z

172

DOE Scientist Earns Chairman's Award from Propulsion and Power Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Scientist Earns Chairman's Award from Propulsion and Power Scientist Earns Chairman's Award from Propulsion and Power Systems Alliance DOE Scientist Earns Chairman's Award from Propulsion and Power Systems Alliance October 2, 2009 - 1:00pm Addthis Washington, DC - A researcher at the Office of Fossil Energy's National Energy Technology Laboratory (NETL) has been presented with the Chairman's Award by the Propulsion and Power Systems Alliance (PPSA). Mary Anne Alvin, a physical scientist in NETL's Office of Research and Development, was recognized for her lead role in revitalizing the PPSA Materials Technical Area Team. This prestigious award is only given during a year when outstanding service is observed. The PPSA was formed in 1999 with the mission of improving coordination and collaboration among government agencies to better leverage existing federal

173

Emission spectroscopy for the study of electric propulsion plasmas  

E-Print Network (OSTI)

Typical electric propulsion devices rely on the acceleration of highly ionized plasmas to produce thrust at specific impulses unattainable with state-of-the-art chemical systems. This thesis examines the use of a miniaturized ...

Matlock, Taylor Scott

2009-01-01T23:59:59.000Z

174

Assessment of propfan propulsion systems for reduced environmental impact  

E-Print Network (OSTI)

Current aircraft engine designs tend towards higher bypass ratio, low-speed fan designs for improved fuel burn, reduced emissions and noise. Alternative propulsion concepts include counter-rotating propfans (CRPs) which ...

Peters, Andreas, S.M. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

175

Diffusion driven object propulsion in density stratified fluids  

E-Print Network (OSTI)

An experimental study was conducted in order to verify the appropriateness of a two dimensional model of the flow creating diffusion driven object propulsion in density stratified fluids. Initial flow field experiments ...

Lenahan, Conor (Conor P.)

2009-01-01T23:59:59.000Z

176

Novel turbomachinery concepts for highly integrated airframe/propulsion systems  

E-Print Network (OSTI)

Two novel turbomachinery concepts are presented as enablers to advanced flight missions requiring integrated airframe/propulsion systems. The first concept is motivated by thermal management challenges in low-to-high Mach ...

Shah, Parthiv N

2007-01-01T23:59:59.000Z

177

Molecular dynamics modeling of ionic liquids in electrospray propulsion  

E-Print Network (OSTI)

Micro-propulsion has been studied for many years due to its applications in small-to-medium sized spacecraft for precise satellite attitude control. Electrospray thrusters are promising thrusters built upon the state of ...

Takahashi, Nanako

2010-01-01T23:59:59.000Z

178

RESULTS FROM PANEL DISCUSSION SESSION 4: OUTER PLANETS FUTURE MISSION CONCEPTS AND TECHNOLOGY NEEDS.  

E-Print Network (OSTI)

) Boeing, USA (4) Observatory of Nice, France (5) NASA / Jet Propulsion Laboratory, USA (6) NASA / AMES (Boeing, USA) · Thomas Spilker (JPL, USA) · Ethiraj Venkatapathy (NASA/Ames, USA). The session to be the most abundant of the heavy elements in the giant planets (the term heavy element includes all elements

Atreya, Sushil

179

Hypothetical Gravity Control and Implications for Spacecraft Propulsion  

E-Print Network (OSTI)

A scientific analysis of the conditions under which gravity could be controlled and the implications that an hypothetical manipulation of gravity would have for known schemes of space propulsion have been the scope of a recent study carried out for the European Space Agency. The underlying fundamental physical principles of known theories of gravity were analysed and shown that even if gravity could be modified it would bring somewhat modest gains in terms of launching of spacecraft and no breakthrough for space propulsion.

O. Bertolami; M. Tajmar

2002-07-31T23:59:59.000Z

180

Beamed Energy Propulsion: Research Status And Needs--Part 2  

SciTech Connect

One promising solution to the operationally responsive space is the application of remote electromagnetic energy to propel a launch vehicle into orbit. With beamed energy propulsion, one can leave the power source stationary on the ground or space, and direct heat propellant on the spacecraft with a beam from a fixed station. This permits the spacecraft to leave its power source at home, saving significant amounts of mass, greatly improving performance. This concept, which removes the mass penalty of carrying the propulsion energy source on board the vehicle, was first proposed by Arthur Kantrowitz in 1972; he invoked an extremely powerful ground based laser. The same year Michael Minovich suggested a conceptually similar 'in-space' laser rocket system utilizing a remote laser power station. In the late 1980's, Air Force Office of Scientific Research (AFOSR) funded continuous, double pulse laser and microwave propulsion while Strategic Defense Initiative Office (SDIO) funded ablative laser rocket propulsion. Currently AFOSR has been funding the concept initiated by Leik Myrabo, repetitively pulsed laser propulsion, which has been universally perceived, arguably, to be the closest for mid-term applications. This 2-part paper examines the investment strategies in beamed energy propulsion and technical challenges to be covers Part 2 covers the present research status and needs.

Birkan, Mitat [Air Force Office of Scientific Research, Arlington, Virginia, 22203 (United States)

2008-04-28T23:59:59.000Z

Note: This page contains sample records for the topic "nasa jet propulsion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Presentation Title Page with no NASA imagery  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop Wrap Up Workshop Wrap Up * ORNL DAAC, MODIS Land Products Subsets Tools (MLPST) and Spatial Data Access Tool (SDAT) * SEDAC, Data Products and Terra Viva Data Viewer * GES DISC, GIOVANNI * LPDAAC, Products & Services * Affiliated Workshop: WK 13- How to Prepare Ecological Data Sets for Effective Analysis and Sharing http://eco.confex.com/eco/techprogram/S5744.HTM * Twelve EOSDIS Data Centers Jennifer Brennan, NASA EOSDIS Outreach Lead, Jennifer.L.Brennan@nasa.gov , Phone: 301-352-4628 National Aeronautics and Space Administration Tammy Walker Beaty 3 ORNL DAAC - MLPST and SDAT * ORNL DAAC for biogeochemical dynamics, http://daac.ornl.gov Mission: assemble, distribute, and provide data services for a comprehensive archive of terrestrial biogeochemistry and ecological dynamics observations and models to facilitate

182

30 JULY 2010 VOL 329 SCIENCE www.sciencemag.org508 CREDITS:(MAIN)NASA/JPL-CALTECH;NASA/JPL  

E-Print Network (OSTI)

:(MAIN)NASA/JPL-CALTECH;NASA/JPL On 18 July 2009, the Mars rover Opportunity was scooting toward a distant martian crater when it spied their meteorite. But the near miss--and the frustrating delay-- underscored a defect of current exploration of scientists, mostly at NASA and at universities, are working on improving robot explorers. But only a few

Arizona, University of

183

SAMICS validation. SAMICS support study: Phase III. Final report, Jet Propulsion Laboratory  

DOE Green Energy (OSTI)

The purpose of SAMICS is to provide a consistent basis for estimating solar cell array costs and comparing production technology costs. The user of SAMICS provides detailed process information for calculating direct costs. To these are added indirect and overhead expenses. Although thorough documentation of direct processes requires a significant initial effort, the process gives SAMICS its primary strength. A complete accounting of direct process resource requirements establishes an audit trail that will help to monitor the realism of assumptions before production and to later identify variations from forecasted operating parameters after production begins. The purpose for this review were the following: (a) to test the computational validity of the computer model by comparison with preliminary hand calculations based on conventional cost estimating techniques; (b) to review and improve the accuracy of the cost relationships being used by the model; and (c) to provide an independent verification to users of the model's value in decision making for allocation of research and development funds and for investment in manufacturing capacity. The conclusion is that the SAMICS model is a flexible, accurate, and useful tool for managerial decision making. The comparison of model results with calculations shows close correlation. This report provides the basis for conclusions. It also contains recommendations for increasing the usefulness of SAMICS. (WHK)

Not Available

1979-03-01T23:59:59.000Z

184

Form, function and flow in the plankton : jet propulsion and filtration by pelagic tunicates  

E-Print Network (OSTI)

Trade-offs between filtration rate and swimming performance among several salp species with distinct morphologies and swimming styles were compared. Small-scale particle encounter at the salp filtering apparatus was also ...

Sutherland, Kelly Rakow

2010-01-01T23:59:59.000Z

185

Feasibility of MHD submarine propulsion. Phase II, MHD propulsion: Testing in a two Tesla test facility  

DOE Green Energy (OSTI)

This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Tesla test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.

Doss, E.D. [ed.] [Argonne National Lab., IL (United States); Sikes, W.C. [ed.] [Newport News Shipbuilding and Dry Dock Co., VA (United States)

1992-09-01T23:59:59.000Z

186

Jet Fuel from Microalgal Lipids  

DOE Green Energy (OSTI)

A fact sheet on production of jet fuel or multi-purpose military fuel from lipids produced by microalgae.

Not Available

2006-07-01T23:59:59.000Z

187

Organic vapor jet printing system  

DOE Patents (OSTI)

An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

Forrest, Stephen R

2012-10-23T23:59:59.000Z

188

Heat pipe radiation cooling (HPRC) for high-speed aircraft propulsion. Phase 2 (feasibility) final report  

DOE Green Energy (OSTI)

The National Aeronautics and Space Administration (NASA), Los Alamos National Laboratory (Los Alamos), and CCS Associates are conducting the Heat Pipe Radiation Cooling (HPRC) for High-Speed Aircraft Propulsion program to determine the advantages and demonstrate the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This innovative approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from adjacent external surfaces. HPRC is viewed as an alternative (or complementary) cooling technique to the use of pumped cryogenic or endothermic fuels to provide regenerative fuel or air cooling of the hot surfaces. The HPRC program has been conducted through two phases, an applications phase and a feasibility phase. The applications program (Phase 1) included concept and assessment analyses using hypersonic engine data obtained from US engine company contacts. The applications phase culminated with planning for experimental verification of the HPRC concept to be pursued in a feasibility program. The feasibility program (Phase 2), recently completed and summarized in this report, involved both analytical and experimental studies.

Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S. [Los Alamos National Lab., NM (United States); Silverstein, C.C. [CCS Associates, Bethel Park, PA (United States)

1994-03-25T23:59:59.000Z

189

Water rocket - Electrolysis propulsion and fuel cell power  

DOE Green Energy (OSTI)

Water Rocket is the collective name for an integrated set of technologies that offer new options for spacecraft propulsion, power, energy storage, and structure. Low pressure water stored on the spacecraft is electrolyzed to generate, separate, and pressurize gaseous hydrogen and oxygen. These gases, stored in lightweight pressure tanks, can be burned to generate thrust or recombined to produce electric power. As a rocket propulsion system, Water Rocket provides the highest feasible chemical specific impulse (-400 seconds). Even higher specific impulse propulsion can be achieved by combining Water Rocket with other advanced propulsion technologies, such as arcjet or electric thrusters. With innovative pressure tank technology, Water Rocket's specific energy [Wh/kg] can exceed that of the best foreseeable batteries by an order of magnitude, and the tanks can often serve as vehicle structural elements. For pulsed power applications, Water Rocket propellants can be used to drive very high power density generators, such as MHD devices or detonation-driven pulse generators. A space vehicle using Water Rocket propulsion can be totally inert and non-hazardous during assembly and launch. These features are particularly important for the timely development and flight qualification of new classes of spacecraft, such as microsats, nanosats, and refuelable spacecraft.

Carter, P H; Dittman, M D; Kare, J T; Militsky, F; Myers, B; Weisberg, A H

1999-07-24T23:59:59.000Z

190

Technology survey and performance scaling for the design of high power nuclear electric power and propulsion systems.  

E-Print Network (OSTI)

??High power nuclear electric propulsion systems have the capability to enable many next-generation space exploration applications. To date, use of electric primary propulsion in flight… (more)

White, Daniel B., Jr

2011-01-01T23:59:59.000Z

191

The 1990 NASA Aerospace Battery Workshop  

SciTech Connect

This document contains the proceedings of the 21st annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on December 4-6, 1990. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers as well as participation in like kind from the European Space Agency member nations. The subjects covered included nickel-cadmium, nickel-hydrogen, silver-zinc, lithium based chemistries, and advanced technologies as they relate to high reliability operations in aerospace applications.

Kennedy, L.M.

1991-05-01T23:59:59.000Z

192

A survey of processes for producing hydrogen fuel from different sources for automotive-propulsion fuel cells  

SciTech Connect

Seven common fuels are compared for their utility as hydrogen sources for proton-exchange-membrane fuel cells used in automotive propulsion. Methanol, natural gas, gasoline, diesel fuel, aviation jet fuel, ethanol, and hydrogen are the fuels considered. Except for the steam reforming of methanol and using pure hydrogen, all processes for generating hydrogen from these fuels require temperatures over 1000 K at some point. With the same two exceptions, all processes require water-gas shift reactors of significant size. All processes require low-sulfur or zero-sulfur fuels, and this may add cost to some of them. Fuels produced by steam reforming contain {approximately}70-80% hydrogen, those by partial oxidation {approximately}35-45%. The lower percentages may adversely affect cell performance. Theoretical input energies do not differ markedly among the various processes for generating hydrogen from organic-chemical fuels. Pure hydrogen has severe distribution and storage problems. As a result, the steam reforming of methanol is the leading candidate process for on-board generation of hydrogen for automotive propulsion. If methanol unavailability or a high price demands an alternative process, steam reforming appears preferable to partial oxidation for this purpose.

Brown, L.F.

1996-03-01T23:59:59.000Z

193

Photon Tools for Fuel Spray Studies in Aerospace Propulsion Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Tools for Fuel Spray Studies in Aerospace Tools for Fuel Spray Studies in Aerospace Propulsion Systems Kuo-Cheng Lin, 1 Campbell D. Carter, 2 and Stephen A. Schumaker 3 1 Taitech, Inc., 1430 Oak Court, Suite 301, Beavercreek, OH 45430, USA; 2 Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, USA; 3 Air Force Research Laboratory, Edwards Air Force Base, CA 93524, USA Fuel injection plays an important role in establishing stable and efficient combustion inside the combustor of a liquid-fueled aerospace propulsion system. Depending on the application of interest, fuel injection conditions range from high-speed crossflows in the air-breathing propulsion systems to quiescent environments with extremely high pressures in the rocket engines. In addition to the typical liquid

194

FY2001 Progress Report for Automotive Propulsion Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

AUTOMOTIVE PROPULSION AUTOMOTIVE PROPULSION MATERIALS 2 0 0 1 A N N U A L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory, Computer Systems Management, Inc., and Oak Ridge National Laboratory, for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Advanced Automotive Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2001 Progress Report for Propulsion Materials

195

Fission-Based Electric Propulsion for Interstellar Precursor Missions  

DOE Green Energy (OSTI)

This paper reviews the technology options for a fission-based electric propulsion system for interstellar precursor missions. To achieve a total {Delta}V of more than 100 km/s in less than a decade of thrusting with an electric propulsion system of 10,000s Isp requires a specific mass for the power system of less than 35 kg/kWe. Three possible configurations are described: (1) a UZrH-fueled,NaK-cooled reactor with a steam Rankine conversion system,(2) a UN-fueled gas-cooled reactor with a recuperated Brayton conversion system, and (3) a UN-fueled heat pipe-cooled reactor with a recuperated Brayton conversion system. All three of these systems have the potential to meet the specific mass requirements for interstellar precursor missions in the near term. Advanced versions of a fission-based electric propulsion system might travel as much as several light years in 200 years.

HOUTS,MICHAEL G.; LENARD,ROGER X.; LIPINSKI,RONALD J.; PATTON,BRUCE; POSTON,DAVID; WRIGHT,STEVEN A.

1999-11-03T23:59:59.000Z

196

Programmatic status of NASA`s CSTI high capacity power Stirling Space Power Converter Program  

DOE Green Energy (OSTI)

An overview is presented of the NASA Lewis Research Center Free-Piston Stirling Space Power Converter Technology Development Program. This work is being conducted under NASA`s Civil Space Technology Initiative (CSTI). The goal of the CSTI High Capacity Power element is to develop the technology base needed to meet the long duration, high capacity power requirements for future NASA space initiatives. Efforts are focused upon increasing system thermal and electric energy conversion efficiency at least fivefold over current SP-100 technology, and on achieving systems that are compatible with space nuclear reactors. This paper will discuss the status of test activities with the Space Power Research Engine (SPRE). Design deficiencies are gradually being corrected and the power converter is now outputting 11.5 kWe at a temperature ratio of 2 (design output is 12.5 kWe). Detail designs have been completed for the 1050 K Component Test Power Converter (CTPC). The success of these and future designs is dependent upon supporting research and technology efforts including heat pipes, gas bearings, superalloy joining technologies and high efficiency alternators. This paper also provides an update of progress in these technologies.

Dudenhoefer, J.E.

1994-09-01T23:59:59.000Z

197

Low Dose Radiation Research Program: DOE / NASA Joint Funded Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE/NASA Joint Funded Projects DOE/NASA Joint Funded Projects NASA Source Photo Space explorers are subject to exposure to low dose ionizing radiation. Research that helps determine health risks from this exposure is funded by NASA and DOE. Source: NASA DOE's Low Dose Program and the National Aeronautics and Space Administration (NASA) jointly fund new research to develop a better scientific basis for understanding risks to humans from exposures to low doses or low fluences of ionizing radiation. Research must focus on elucidating molecular mechanisms and pathways involved in normal radiobiological responses to low dose exposure, and must have the potential to ultimately increase understanding of health outcomes from radiation exposures that are at or near current workplace exposure

198

Fresh Equatorial Jets  

Science Conference Proceedings (OSTI)

A vertically sheared eastward jet in the equatorial Pacific in late 1991 and early 1992 carried relatively fresh water from the western Pacific overriding the saltier surface layer of the central region. Salinity anomalies of about ?1.0 psu were ...

Dean Roemmich; Michele Morris; W. R. Young; J. R. Donguy

1994-03-01T23:59:59.000Z

199

Biofuels – Jet fuel  

This is a process for producing jet fuel from biological feed stock, including animal fats and oils, vegetable oils, and crop seed oils. The aviation and fuel-producing communities would have the option of leveraging available renewable and/or ...

200

The NASA CSTI High Capacity Power Project  

SciTech Connect

The SP-100 Space Nuclear Power Program was established in 1983 by DOD, DOE, and NASA as a joint program to develop technology for military and civil applications. Starting in 1986, NASA has funded a technology program to maintain the momentum of promising aerospace technology advancement started during Phase I of SP-100 and to strengthen, in key areas, the changes for successful development and growth capability of space nuclear reactor power systems for a wide range of future space applications. The elements of the CSTI High Capacity Power Project include Systems Analysis, Stirling Power Conversion, Thermoelectric Power Conversion, Thermal Management, Power Management, Systems Diagnostics, Environmental Interactions, and Material/Structural Development. Technology advancement in all elements is required to provide the growth capability, high reliability and 7 to 10 year lifetime demanded for future space nuclear power systems. The overall project with develop and demonstrate the technology base required to provide a wide range of modular power systems compatible with the SP-100 reactor which facilitates operation during lunar and planetary day/night cycles as well as allowing spacecraft operation at any attitude or distance from the sun. Significant accomplishments in all of the project elements will be presented, along with revised goals and project timelines recently developed.

Winter, J.; Dudenhoefer, J.; Juhasz, A.; Schwarze, G.; Patterson, R.; Ferguson, D.; Titran, R. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Schmitz, P. [Sverdrup Technology, Inc., Brook Park, OH (United States). Lewis Research Center Group; Vandersande, J. [Jet Propulsion Lab., Pasadena, CA (United States)

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "nasa jet propulsion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

FY2003 Progress Report for Automotive Propulsion Materials Program  

NLE Websites -- All DOE Office Websites (Extended Search)

FreedomCAR and Vehicle Technologies FreedomCAR and Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2003 Progress Report for Automotive Propulsion Materials Program Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Edward Wall Program Manager December 2003 U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies 1000 Independence Avenue S.W. Washington, DC 20585-0121 FY 2003 Progress Report for Automotive Propulsion Materials Program Energy Efficiency and Renewable Energy Office of FreedomCAR and Vehicle Technologies Edward Wall Program Manager December 2003 CONTENTS 1. INTRODUCTION ........................................................................................................... 1

202

Handling effluent from nuclear thermal propulsion system ground tests  

SciTech Connect

A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests.

Shipers, L.R.; Allen, G.C.

1992-09-09T23:59:59.000Z

203

Heavy Vehicle Propulsion Materials Program: Progress and Highlights  

DOE Green Energy (OSTI)

The Heavy Vehicle Propulsion Materials Program was begun in 1997 to support the enabling materials needs of the DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program grew out of the technology roadmap for the OHVT and includes efforts in materials for: fuel systems, exhaust aftertreatment, valve train, air handling, structural components, electrochemical propulsion, natural gas storage, and thermal management. A five-year program plan was written in early 2000, following a stakeholders workshop. The technical issues and planned and ongoing projects are discussed. Brief summaries of several technical highlights are given.

D. Ray Johnson; Sidney Diamond

2000-06-19T23:59:59.000Z

204

Effluent treatment options for nuclear thermal propulsion system ground tests  

DOE Green Energy (OSTI)

A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the strengths and weaknesses of different methods to handle effluent from nuclear thermal propulsion system ground tests.

Shipers, L.R.; Brockmann, J.E.

1992-10-16T23:59:59.000Z

205

Tutorial on nuclear thermal propulsion safety for Mars  

DOE Green Energy (OSTI)

Safety is the prime design requirement for nuclear thermal propulsion (NTP). It must be built in at the initiation of the design process. An understanding of safety concerns is fundamental to the development of nuclear rockets for manned missions to Mars and many other applications that will be enabled or greatly enhanced by the use of nuclear propulsion. To provide an understanding of the basic issues, a tutorial has been prepared. This tutorial covers a range of topics including safety requirements and approaches to meet these requirements, risk and safety analysis methodology, NERVA reliability and safety approach, and life cycle risk assessments.

Buden, D.

1992-01-01T23:59:59.000Z

206

Tutorial on nuclear thermal propulsion safety for Mars  

DOE Green Energy (OSTI)

Safety is the prime design requirement for nuclear thermal propulsion (NTP). It must be built in at the initiation of the design process. An understanding of safety concerns is fundamental to the development of nuclear rockets for manned missions to Mars and many other applications that will be enabled or greatly enhanced by the use of nuclear propulsion. To provide an understanding of the basic issues, a tutorial has been prepared. This tutorial covers a range of topics including safety requirements and approaches to meet these requirements, risk and safety analysis methodology, NERVA reliability and safety approach, and life cycle risk assessments.

Buden, D.

1992-08-01T23:59:59.000Z

207

Flow cytometer jet monitor system  

DOE Patents (OSTI)

A direct jet monitor illuminates the jet of a flow cytometer in a monitor wavelength band which is substantially separate from the substance wavelength band. When a laser is used to cause fluorescence of the substance, it may be appropriate to use an infrared source to illuminate the jet and thus optically monitor the conditions within the jet through a CCD camera or the like. This optical monitoring may be provided to some type of controller or feedback system which automatically changes either the horizontal location of the jet, the point at which droplet separation occurs, or some other condition within the jet in order to maintain optimum conditions. The direct jet monitor may be operated simultaneously with the substance property sensing and analysis system so that continuous monitoring may be achieved without interfering with the substance data gathering and may be configured so as to allow the front of the analysis or free fall area to be unobstructed during processing.

Van den Engh, Ger (Seattle, WA)

1997-01-01T23:59:59.000Z

208

M. Meyyappan and Cattien V. Nguyen NASA Ames Research ...  

Science Conference Proceedings (OSTI)

Page 1. M. Meyyappan and Cattien V. Nguyen NASA Ames Research Center ... Si3N4 on Silicon substrate Nguyen et al., Nanotechnology, 2001, Vol. ...

209

New NASA Visualizations Show Two Futures of Climate Change  

NLE Websites -- All DOE Office Websites (Extended Search)

News International News Health News New NASA Visualizations Show Two Futures of Climate Change Print E-mail Thursday, July 25, 2013 By Tara Failey Climate Scenarios...

210

NIST Ultraviolet Source Helps NASA Spacecraft Measure the ...  

Science Conference Proceedings (OSTI)

... space weather can originate. NIST's unique 'sliding spark source' (inside the glass tubing) feeds ultraviolet (UV) light into NASA's Solar Ultraviolet ...

2010-09-28T23:59:59.000Z

211

Advanced ignition and propulsion technology program  

DOE Green Energy (OSTI)

This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Reliable engine re-ignition plays a crucial role in enabling commercial and military aircraft to fly safely at high altitudes. This project addressed research elements critical to the optimization of laser-based igniter. The effort initially involved a collaborative research and development agreement with B.F. Goodrich Aerospace and Laser Fare, Inc. The work involved integrated experiments with theoretical modeling to provide a basic understanding of the chemistry and physics controlling the laser-induced ignition of fuel aerosols produced by turbojet engine injectors. In addition, the authors defined advanced laser igniter configurations that minimize laser packaging size, weight, complexity and power consumption. These innovative ignition concepts were shown to reliably ignite jet fuel aerosols over a broad range of fuel/air mixture and a t fuel temperatures as low as -40 deg F. The demonstrated fuel ignition performance was highly superior to that obtained by the state-of-the-art, laser-spark ignition method utilizing comparable laser energy. The authors also developed a laser-based method that effectively removes optically opaque deposits of fuel hydrocarbon combustion residues from laser window surfaces. Seven patents have been either issued or are pending that resulted from the technology developments within this project.

Oldenborg, R.; Early, J.; Lester, C.

1998-11-01T23:59:59.000Z

212

Presentation Title Page with no NASA imagery  

NLE Websites -- All DOE Office Websites (Extended Search)

SPATIAL DATA ACCESS TOOL SPATIAL DATA ACCESS TOOL Open Geospatial Consortium (OGC) Services Bruce E. Wilson Suresh K. Santhana Vannan Yaxing Wei Tammy W. Beaty National Aeronautics and Space Administration www.nasa.gov National Aeronautics and Space Administration 2 Outline: * Introduction to SDAT * Introduction to OGC * OGC services at ORNL DAAC * Demo * OGC Service registration in metadata catalogues * Demo * Next steps ESA, August 2010 OGC Spatial Data Access Tool National Aeronautics and Space Administration 3 Introduction to SDAT SDAT - Spatial Data Access Tool ORNL DAAC has been charged with making spatial data readily available to users Spatial Data: remote sensing, map layers, and model output SDAT Features: * ORNL DAAC Web client to visualize and Download Geospatial data * Based on Open Geospatial Consortium (OGC) standards

213

NASA Remote Sensing Validation Data: Saudi Arabia  

DOE Data Explorer (OSTI)

Since 1995, the King Abdulaziz City for Science and Technology (KACST) and the National Renewable Energy Laboratory (NREL) have co-operated to establish a 12 station network of high quality solar radiation monitoring installations across the Kingdom of Saudi Arabia. NREL and KACST realized the value of accurate surface solar radiation flux measurements for validation of satellite derived surface and atmospheric solar radiation flux measurements, and is making this data available to support validation of satellite data products related to the NASA Mission to Planet Earth component of the Earth Science Enterprise Earth Observing System (EOS) project to evaluate long term climate trends based on measuements from EOS Terra Platforms. A CIMEL 8 channel sunphotometer for measuring aerosol optical depth at 6 wavelengths and total column water has been deployed at the Solar Village station since February 24, 1999. [Taken from http://rredc.nrel.gov/solar/new_data/Saudi_Arabia/

Myers, Daryl R. (NREL); Al-Abbadi,Naif (King Abdulaziz City for Science and Technology, Energy Research Institite); Wilcox, Steve (NREL)

214

Combining Electric and Sail Propulsion for Interplanetary Sample Return  

DOE Green Energy (OSTI)

Fast sample return from the outer Solar System would open an entirely new avenue for space science, but the vast distances make this a daunting task. The achievable transit velocity and the need for extra propellant on the return trip limit the feasibility of returning extraterrestrial samples to Earth. To keep the mission duration short enough to be of interest, sample return from objects farther out in the Solar System requires increasingly higher velocities. High specific impulse, electric propulsion reduces the propellant required for the outbound and return trips, but decelerating the spacecraft at the inner Solar System from high velocity still involves a long, inward spiral trajectory. The use of solar sails to rapidly decelerate incoming sample capsules and eliminate propellant is explored in this paper. The sail is essentially a ''solar parachute'' used for braking at the end of the interplanetary return flight, permitting a higher transit speed and truncating the deceleration spiral. In this application the sail is relatively small and manageable since only the sample capsule and its sail are decelerated. A comparison is made between using all-electric propulsion versus combining electric propulsive acceleration with sail deceleration for sample return from the distances of Saturn, Uranus, and Pluto. Solar-sail braking dramatically reduces the return flight time by one-third or more compared to using electric rocket deceleration. To elucidate the technology requirements, wide ranges for both the loaded sail density and electric propulsion specific mass are considered in this initial parametric study.

Noble, Robert

2003-02-04T23:59:59.000Z

215

THE NUCLEAR ROCKET: NEW POWERPLANT FOR SPACE VEHICLE PROPULSION  

SciTech Connect

A fundamental and practical survey is made of nuclear rocket application to space vehicle propulsion. The engine is described and propellant and radiation effects are discussed. Project Rover is summarized and performance requirements for a space vehicle are discussed. It is concluded that nuclear rockets can provide substantial performance, reliability, and economic advantages for difficult space missions. (T.R.H.)

Schmidt, H.R.; Decker, R.S.

1960-03-01T23:59:59.000Z

216

Variable-reluctance motors for electric vehicle propulsion  

SciTech Connect

This paper discusses the design, operation, and expected performance of a 60-kW variable-reluctance motor and inverter-designed for electric vehicle propulsion. To substantiate the performance of this system, experimental data obtained with a prototype 3.8-kW motor and inverter are provided.

Vallese, F.J.; Lang, J.H.

1985-01-01T23:59:59.000Z

217

NASA Advisory Council October 6-7, 2010  

E-Print Network (OSTI)

-Earth Object Observations Program HQ NASA Thomas D. Jones Visiting Senior Research Scientist Institute Siegel Exploration Systems Mission Directorate HQ NASA Version 13 #12;Version 13 April 15-16, 2010. Organize for Effective Action on Planetary Defense 2. Acquire Essential Search, Track, and Warning

218

Gas Turbine Engine Collaborative Research - NASA Glenn Research Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Turbine Engine Collaborative Gas Turbine Engine Collaborative Research-NASA Glenn Research Center Background Advancing the efficiency and performance levels of gas turbine technology requires high levels of fundamental understanding of the actual turbine component level technology systems. The National Aeronautics and Space Administration Glenn Research Center (NASA Glenn), with support from the Ohio State University, is planning research to compile

219

Lfm2000 - Fifth NASA Langley Formal Methods Workshop  

Science Conference Proceedings (OSTI)

This is the proceedings of Lfm2000: Fifth NASA Langley Formal Methods Workshop. The workshop was held June 13-15, 2000, in Williamsburg, Virginia. See the web site http://shemesh.larc.nasa.gov/lfm2000/ for complete information about the event.

Holloway C. M.

2000-06-01T23:59:59.000Z

220

The Meteorological Measurement System on the NASA ER-2 Aircraft  

Science Conference Proceedings (OSTI)

A Meteorological Measurement System (MMS) was designed and installed on one of the NASA high-altitude ER-2 aircraft (NASA 706). The MMS provides in situ measurements of free-stream pressure (±0.3 mb), temperature (±0.3°C), and wind vector (±1 m s?...

Stan G. Scott; T. Paul Bui; K. Roland Chan; Stuart W. Bowen

1990-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "nasa jet propulsion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NASA FOIA Public Liaison Officers Miriam Brown-Lam  

E-Print Network (OSTI)

government officials in an ill-fated attempt to stop the NASA Office of the Inspector General from continuing of Inspector General and prosecutive work of the U.S. Attorneys Office in the Southern District of Mississippi University ("MSU") on a remote sensing study, United States Attorney Donald R. Burkhalter and NASA Inspector

222

NASA-Surface Meteorology and Solar Energy | Open Energy Information  

Open Energy Info (EERE)

NASA-Surface Meteorology and Solar Energy NASA-Surface Meteorology and Solar Energy Jump to: navigation, search Tool Summary Name: NASA-Surface Meteorology and Solar Energy Agency/Company /Organization: National Aeronautics and Space Administration Sector: Energy, Land Focus Area: Renewable Energy, Solar Topics: Resource assessment Resource Type: Dataset, Maps Website: eosweb.larc.nasa.gov/sse/ NASA-Surface Meteorology and Solar Energy Screenshot References: Surface Meteorology and Solar Energy[1] Main Points Over 200 satellite-derived meteorology and solar energy parameters Monthly averaged from 22 years of data Data tables for a particular location Color plots on both global and regional scales Global solar energy data for 1195 ground sites References ↑ "Surface Meteorology and Solar Energy"

223

ARM - Field Campaign - ISDAC - NASA ARCTAS Coordination with ARM  

NLE Websites -- All DOE Office Websites (Extended Search)

- NASA ARCTAS Coordination with ARM - NASA ARCTAS Coordination with ARM Related Campaigns Indirect and Semi-Direct Aerosol Campaign (ISDAC) 2008.04.01, Ghan, AAF Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ISDAC - NASA ARCTAS Coordination with ARM 2008.04.01 - 2008.04.21 Lead Scientist : Richard Ferrare For data sets, see below. Description The NASA Langley Airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA King Air B200 for the ARCTAS mission in 2008. The HSRL measurements acquired during this mission were used to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties, infer aerosol type, and partitioning aerosol optical depth by type. The focus of the spring (April) deployment was measurements of Arctic

224

Comprehensive Technical Report, General Electric Direct-Air-Cycle Aircraft Nuclear Propulsion Program; Aircraft Nuclear Propulsion Application Studies  

SciTech Connect

This volume is one of twenty-one summarizing the Aircraft Nuclear Propulsion Program of the General Electric Company. This portion describes the studies of advanced applications of nuclear reactors that were performed, including various types of aircraft, missiles, space vehicles, ships, and portable power plants.

Comassar, S.

1962-04-30T23:59:59.000Z

225

Jet initiation of PBX 9502  

SciTech Connect

This report details the progress of an effort to determine the quantitative aspects of the initiation of PBX 9502 (95% TATB, 5% Kel-F 800) by copper jets. The particular jet used was that produced by the LAW warhead (66-mm diameter, 42/sup 0/ angle cone, copper-lined, conical shaped charge). Fifteen experiments, in various configurations, have been fired to define the essential parameters for quantitatively measuring the jet performance and initiation of bare PBX 9502. 7 refs., 8 figs.

McAfee, J.M.

1987-07-01T23:59:59.000Z

226

Photon + jets at D0  

E-Print Network (OSTI)

Photon plus jet production has been studied by the D0 experiment in Run II of the Fermilab Tevatron Collider at a centre of mass energy of sqrt{s}=1.96 TeV. Measurements of the inclusive photon, inclusive photon plus jet, photon plus heavy flavour jet cross sections and double parton interactions in photon plus three jet events are presented. They are based on integrated luminosities between 0.4 fb$^-1 and 1.0 fb^-1. The results are compared to perturbative QCD calculations in various approximations.

Lars Sonnenschein

2009-06-15T23:59:59.000Z

227

Variability of Southern Ocean Jets Near Topography  

Science Conference Proceedings (OSTI)

The interaction of jets with topography in the Southern Ocean is investigated using 19 years of altimetry data. In particular, the “jet jumping” mode of variability, by which two or more jets passing close to the same topographic feature show ...

Christopher C. Chapman; Rosemary Morrow

228

TransForum v9n1 - NASA's Energy Storage Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

for NASA's Lunar Electric Rover is a plug-in electric vehicle with a 125 W-hrKg lithium-ion battery. NASA researchers are working to meet NASA requirements that the rover...

229

Shroud for a submerged jet cutting nozzle  

DOE Patents (OSTI)

A shroud for a submerged jet cutting nozzle is described which separates the jet from surrounding fluid environment and enhances the cutting effect.

Schwab, Thomas L. (1369 Windsor Way, Livermore, CA 94550)

1978-01-01T23:59:59.000Z

230

NASA Lewis Stirling engine computer code evaluation  

SciTech Connect

In support of the US Department of Energy's Stirling Engine Highway Vehicle Systems program, the NASA Lewis Stirling engine performance code was evaluated by comparing code predictions without engine-specific calibration factors to GPU-3, P-40, and RE-1000 Stirling engine test data. The error in predicting power output was /minus/11 percent for the P-40 and 12 percent for the RE-1000 at design conditions and 16 percent for the GPU-3 at near-design conditions (2000 rpm engine speed versus 3000 rpm at design). The efficiency and heat input predictions showed better agreement with engine test data than did the power predictions. Concerning all data points, the error in predicting the GPU-3 brake power was significantly larger than for the other engines and was mainly a result of inaccuracy in predicting the pressure phase angle. Analysis into this pressure phase angle prediction error suggested that improvement to the cylinder hysteresis loss model could have a significant effect on overall Stirling engine performance predictions. 13 refs., 26 figs., 3 tabs.

Sullivan, T.J.

1989-01-01T23:59:59.000Z

231

Interferometric Visualization of Jet Flames  

Science Conference Proceedings (OSTI)

This paper presents visualizations of reacting, round jets of the premixed and nonpremixed type realized by using interferometry and, complementarily, direct photography. The available interferometer, proposed by Carlomagno (1986), employs low-cost components ... Keywords: coherent structures, combustion, destabilization, interferometry, jet flames

A. Stella; G. Guj; A. Mataloni

2000-01-01T23:59:59.000Z

232

An Airbreathing Launch Vehicle Design with Turbine-Based Low-Speed Propulsion and Dual Mode Scramjet High-Speed Propulsion  

E-Print Network (OSTI)

Airbreathing launch vehicles continue to be a subject of great interest in the space access community. In particular, horizontal takeoff and horizontal landing vehicles are attractive with their airplane-like benefits and flexibility for future space launch requirements. The most promising of these concepts involve airframe integrated propulsion systems, in which the external undersurface of the vehicle forms part of the propulsion flowpath. Combining of airframe and engine functions in this manner involves all of the design disciplines interacting at once. Design and optimization of these configurations is a most difficult activity, requiring a multi-discipline process to analytically resolve the numerous interactions among the design variables. This paper describes the design and optimization of one configuration in this vehicle class, a lifting body with turbine-based low-speed propulsion. The integration of propulsion and airframe, both from an aero-propulsive and mechanical perspe...

Moses Bouchard Vause; L. W. Taylor Lll; P. L. Moses; P. L. Moses; K. A. Bouchard; K. A. Bouchard; R. F. Vause; R. F. Vause; S. Z. Pinckney; S. Z. Pinckney; L. W. Taylor Iii; S. M. Ferlemann; S. M. Ferlemann; C. P. Leonard; C. P. Leonard; J. S. Robinson; J. S. Robinson; J. G. Martin; J. G. Martin; D. H. Petley; D. H. Petley; J. L. Hunt; J. L. Hunt

1999-01-01T23:59:59.000Z

233

Enabling Green Energy and Propulsion Systems via Direct Noise Computation |  

NLE Websites -- All DOE Office Websites (Extended Search)

High-fidelity simulation of exhaust nozzle under installed configuration High-fidelity simulation of exhaust nozzle under installed configuration Umesh Paliath, GE Global Research; Joe Insley, Argonne National Laboratory Enabling Green Energy and Propulsion Systems via Direct Noise Computation PI Name: Umesh Paliath PI Email: paliath@ge.com Institution: GE Global Research Allocation Program: INCITE Allocation Hours at ALCF: 105 Million Year: 2013 Research Domain: Engineering GE Global Research is using the Argonne Leadership Computing Facility (ALCF) to deliver significant improvements in efficiency, (renewable's) yield and lower emissions (noise) for advanced energy and propulsion systems. Understanding the fundamental physics of turbulent mixing has the potential to transform product design for components such as airfoils and

234

MHK Technologies/Wave Energy Propulsion | Open Energy Information  

Open Energy Info (EERE)

< MHK Technologies < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Wave Energy Propulsion.jpg Technology Profile Primary Organization Kneider Innovations Technology Resource Click here Wave Technology Type Click here Attenuator Technology Description The device concept is a converter of the vertical potential energy moving wave to push the boat on horizontal kinetic motion Optimum Marine/Riverline Conditions The device is compliant for boat navigating on sea and oceans or lakes when water levels are changing cyclicly waves Technology Dimensions Device Testing Date Submitted 18:32.0 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Wave_Energy_Propulsion&oldid=681483"

235

Jet quenching and heavy quarks  

E-Print Network (OSTI)

Jet quenching and more generally physics at high transverse momentum P_T scales is a cornerstone of the heavy-ion physics program at the LHC. In this work, the current understanding of jet quenching in terms of a QCD shower evolution being modified by the surrounding medium is reviewed along with the evidence for this picture from light parton high P_T observables. Conceptually, the same QCD shower description should also be relevant for heavy quarks, but with several important modifications introduced by the quark masses. Thus especially in the limit of small jet energy over quark mass E_jet/m_q, the relevant physics may be rather different from light quark jets, and several attempts to explain the observed phenomenology of heavy quarks at high P_T are discussed here.

Thorsten Renk

2013-09-12T23:59:59.000Z

236

ARMAR: An Airborne Rain-Mapping Radar  

Science Conference Proceedings (OSTI)

A new airborne rain-mapping radar (ARMAR) has been developed by NASA and the Jet Propulsion Laboratory for operation on the NASA Ames DC-8 aircraft. The radar operates at 13.8 GHz, the frequency to be used by the radar on the Tropical Rainfall ...

S. L. Durden; E. Im; F. K. Li; W. Ricketts; A. Tanner; W. Wilson

1994-06-01T23:59:59.000Z

237

Using Nanotechnology in Agriculture Kent Pinkerton, Ph.D.  

E-Print Network (OSTI)

& fuel cells Composites Semiconductor Remediation Consumer Appliances Food and beverage Textiles Laser only 17 mm 20 mm Untreated No Residual MWCN T + Laser #12;Aerogels (Frozen Smoke) for Increased Insulation and Energy Storage Image Source: NASA Jet Propulsion Lab (http://stardust.jpl.nasa.gov/photo/aerogel

Nguyen, Danh

238

REFRIGERANT-BASED PROPULSION SYSTEM FOR SMALL SPACECRAFT  

E-Print Network (OSTI)

The MR SAT spacecraft under development at UMR requires a propulsion system that can be utilized to perform orbital maneuvers and three-axis attitude control to complete its mission objective of conducting spacecraft formation flight. This thesis documents the research, analysis design and development of the cold gas propulsion system that was integrated in the MR SAT spacecraft. The basis of design and safety requirements stemmed from the AFRL University Nanosat Program competition, in which the UMR SAT project placed third out of eleven schools from across the nation. The MR SAT propulsion system was a primary feature as it implements a refrigerant (R-134a) propellant that has never been flown in space. As detailed in this thesis, through engineering modeling and laboratory testing R-134a is demonstrated to be a feasible propellant for small spacecraft. As the R-134a is stored as a saturated liquid in the tank, it was necessary to analyze the thermodynamic properties of the refrigerant and investigate phase changes for its use as a propellant. Also documented is the hardware selected and the integration into the MR SAT spacecraft, along with the laboratory testing

Carl Reiner Seubert; Dr. Kelly; O. Homan

2007-01-01T23:59:59.000Z

239

Performance testing of the AC propulsion ELX electric vehicle  

DOE Green Energy (OSTI)

Performance testing of the AC Propulsion ELX electric vehicle is described. Test data are presented and analyzed. The ELX vehicle is the first of a series of electric vehicles of interest to the California Air Resources Board. The test series is being conducted under a Cooperative Research and Development Agreement (CRADA) between the US Department of energy and the California Air Resources Board. The tests which were conducted showed that the AC Propulsion ELX electric vehicle has exceptional acceleration and range performance. when the vehicle`s battery was fully charged, the vehicle can accelerate from 0 to 96 km/h in about 10 seconds. Energy consumption and range tests using consecutive FUDS and HWFET Driving cycles (the all-electric cycle) indicate that the energy economy of the AC Propulsion ELX electric vehicle with regenerative braking is 97 W{center_dot}h/km, with a range of 153 km (95 miles). Computer simulations performed using the SIMPLEV Program indicate that the vehicle would have a range of 327 km (203 miles) on the all-electric cycle if the lead acid batteries were replaced with NiMH batteries having an energy density of 67 W{center_dot}h/kg. Comparisons of FUDS test data with and without regenerative braking indicated that regenerative braking reduced the energy consumption of the ELX vehicle by approximately 25%.

Kramer, W.E.; MacDowall, R.D.; Burke, A.F.

1994-06-01T23:59:59.000Z

240

Full fuel-cycle comparison of forklift propulsion systems.  

DOE Green Energy (OSTI)

Hydrogen has received considerable attention as an alternative to fossil fuels. The U.S. Department of Energy (DOE) investigates the technical and economic feasibility of promising new technologies, such as hydrogen fuel cells. A recent report for DOE identified three near-term markets for fuel cells: (1) Emergency power for state and local emergency response agencies, (2) Forklifts in warehousing and distribution centers, and (3) Airport ground support equipment markets. This report examines forklift propulsion systems and addresses the potential energy and environmental implications of substituting fuel-cell propulsion for existing technologies based on batteries and fossil fuels. Industry data and the Argonne Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model are used to estimate full fuel-cycle emissions and use of primary energy sources, back to the primary feedstocks for fuel production. Also considered are other environmental concerns at work locations. The benefits derived from using fuel-cell propulsion are determined by the sources of electricity and hydrogen. In particular, fuel-cell forklifts using hydrogen made from the reforming of natural gas had lower impacts than those using hydrogen from electrolysis.

Gaines, L. L.; Elgowainy, A.; Wang, M. Q.; Energy Systems

2008-11-05T23:59:59.000Z

Note: This page contains sample records for the topic "nasa jet propulsion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

New NASA Visualizations Show Two Futures of Climate Change  

NLE Websites -- All DOE Office Websites (Extended Search)

NASA Visualizations Show Two Futures of Climate Change Print E-mail NASA Visualizations Show Two Futures of Climate Change Print E-mail Thursday, July 25, 2013 By Tara Failey Climate Scenarios Project Temperature and Precipitation in the U.S. through 2100 Curious to 'see' how different greenhouse gas emission scenarios are expected to impact the United States? Two recently released animated NASA visualizations developed to support the forthcoming third US National Climate Assessment show projections of Earth's temperature and precipitation patterns from today through the year 2100-revealing how "low" versus "high" emission scenarios would impact the planet's climate. "These visualizations communicate a picture of the impacts of climate change in a way that words do not," said Allison Leidner, Ph.D., a scientist who coordinates NASA's involvement in the National Climate Assessment. "When I look at the scenarios for future temperature and precipitation, I really see how dramatically our Nation's climate could change."

242

The NASA Soil Moisture Active Passive (SMAP) mission: Overview  

E-Print Network (OSTI)

The Soil Moisture Active Passive (SMAP) mission is one of the first Earth observation satellites being developed by NASA in response to the National Research Council's Decadal Survey. Its mission design consists of L-band ...

O'Neill, Peggy

243

Accidents, engineering and history at NASA: 1967-2003  

E-Print Network (OSTI)

The manned spaceflight program of the National Aeronautics and Space Administration (NASA) has suffered three fatal accidents: one in the Apollo program and two in the Space Transportation System (the Shuttle). These were ...

Brown, Alexander F. G. (Alexander Frederic Garder), 1970-

2009-01-01T23:59:59.000Z

244

ORNL NASA DAAAC WEB Site Downtime, January 31 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

Hardware Failure Causes ORNL DAAC Web Site Crash The ORNL DAAC wishes to apologize for the recent multiple day outage of the ORNL NASA DAAC website. On the afternoon of Thursday,...

245

NNSA Supports NASA MARS Scientific Laboratory Launch | National...  

National Nuclear Security Administration (NNSA)

Florida. NASA's newest Mars rover is powered by a Multi-Mission Radioisotope Thermal Generator made up of just more than 10 pounds of plutionium-238, and NNSA personnel...

246

NASA Research Strategy for Earth System Science: Climate Component  

Science Conference Proceedings (OSTI)

This paper describes the principles adopted by the NASA Earth Science Enterprise in formulating a comprehensive 2002–2010 research strategy for earth system science, and outlines one component of this broad interdisciplinary program, focused on ...

Ghassem Asrar; Jack A. Kaye; Pierre Morel

2001-07-01T23:59:59.000Z

247

Application and management of commonality within NASA systems  

E-Print Network (OSTI)

Commonality can be defined as the sharing of assets such as components, designs, processes, technologies, interfaces, and/or infrastructure across systems. Through commonality, NASA has the opportunity to develop, produce, ...

Rhodes, Richard Alexander

2010-01-01T23:59:59.000Z

248

View Point: Millennial Fever, Extremophiles, NASA, Astroenvironmentalism, and Planetary Protection  

E-Print Network (OSTI)

concerned about the use of plutonium in space missions, andthe moon and then Mars using plutonium for space missions.argue that the use of plutonium for NASA space missions is

Miller, Ryder W.

2005-01-01T23:59:59.000Z

249

ORNL NASA DAAC Announces Beta Test Version for Advanced Search  

NLE Websites -- All DOE Office Websites (Extended Search)

Test Version for Advanced Search The ORNL NASA DAAC is pleased to announce the public beta test release of the new version of our Mercury Advanced Search tool. Mercury is a...

250

NASA Advisory Council Space Operations Committee July 2010  

E-Print Network (OSTI)

to solar panels Hubble spectrometer · · · Corrosion Lab · Coatings with microcapsules ­ self healing to minimize boil-off Aerogels Wire insulation ­ detection and healing layer · · Collaboration between NASA

251

Results of a Joint NOAA/NASA Sounder Simulation Study  

Science Conference Proceedings (OSTI)

NOAA and NASA have conducted a joint simulation study to compare the retrieval accuracy of atmospheric temperature profiles and surface skin temperature retrieved from HIRS2, the current operational infrared temperature sounder, and AMTS, a ...

N. Phillips; J. Susskind; L. McMillin

1988-02-01T23:59:59.000Z

252

Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles  

DOE Patents (OSTI)

A propulsion and stabilization system are described comprising a series of coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance, and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension. 8 figures.

Rote, D.M.; He, J.; Johnson, L.R.

1994-01-04T23:59:59.000Z

253

Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles  

DOE Patents (OSTI)

This report discusses a propulsion and stabilization system comprising a series of figure 8 coils mounted vertically on the walls of the guideway to provide suspension, lateral guidance and propulsion of a magnetically levitated vehicle. This system further allows for altering the magnetic field effects by changing the relative position of the loops comprising the figure 8 coils either longitudinally and/or vertically with resulting changes in the propulsion, the vertical stability, and the suspension.

Rote, D.M.; He, Jianliang; Johnson, L.R.

1992-01-01T23:59:59.000Z

254

Analysis of Advanced Actinide-Fueled Energy Systems for Deep Space Propulsion Applications.  

E-Print Network (OSTI)

??The present study is focused on evaluating higher actinides beyond uranium that are capable of supporting power and propulsion requirements in robotic deep space and… (more)

Guy, Troy Lamar

2011-01-01T23:59:59.000Z

255

A Computational Magnetohydrodynamic Model of a Gasdynamic Fusion Space Propulsion System.  

E-Print Network (OSTI)

??This work advances the gasdynamic mirror (GDM) fusion space propulsion system concept by testing the potential of an advanced aneutronic fusion fuel combination of proton?11boron… (more)

Ohlandt, Chad J. R.

2011-01-01T23:59:59.000Z

256

The design and feasibility of a 10 mN chemical space propulsion thruster.  

E-Print Network (OSTI)

??This thesis discusses the design of a ten milli Newton chemical propulsion system for providing approximately 200 m/s delta velocity to a five kg satellite.… (more)

Bruccoleri, Alexander Robert

2009-01-01T23:59:59.000Z

257

DOE Scientist Earns Chairman's Award from Propulsion and Power Systems Alliance  

Energy.gov (U.S. Department of Energy (DOE))

A researcher at the Office of Fossil Energy's National Energy Technology Laboratory has been presented with the Chairman's Award by the Propulsion and Power Systems Alliance.

258

Highlights of NASA''s Role in Developing State-of-the-Art Nondestructive Evaluation for Composites  

Science Conference Proceedings (OSTI)

Since the 1970''s, when the promise of composites was being pursued for aeronautics applications, NASA has had programs that addressed the development of NDE methods for composites. These efforts included both microscopic and macroscopic NDE. At the ...

Madaras Eric I.

2001-10-01T23:59:59.000Z

259

Water cooled steam jet  

DOE Patents (OSTI)

A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

Wagner, Jr., Edward P. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

260

Jet fuel from LPG  

SciTech Connect

Explains how jet fuel can be manufactured from propane and/or butane with attractive rates of return. This scheme is advantageous where large reserves of LPG-bearing gas is available or LPG is in excess. The following sequence of processes in involved: dehydrogenation of propane (and/or butane) to propylene (and/or butylene); polymerization of this monomer to a substantial yield of the desired polymer by recycling undesired polymer; and hydrotreating the polymer to saturate double bonds. An attribute of this process scheme is that each of the individual processes has been practiced commercially. The process should have appeal in those parts of the world which have large reserves of LPG-bearing natural gas but little or no crude oil, or where large excesses of LPG are available. Concludes that economic analysis shows attractive rates of return in a range of reasonable propane costs and product selling prices.

Maples, R.E.; Jones, J.R.

1983-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "nasa jet propulsion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Sensitivity of Perturbation Variance and Fluxes in Turbulent Jets to Changes in the Mean Jet  

Science Conference Proceedings (OSTI)

Synoptic-scale eddy variance and fluxes of heat and momentum in midlatitude jets are sensitive to small changes in mean jet velocity, dissipation, and static stability. In this work the change in the jet producing the greatest increase in ...

Brian F. Farrell; Petros J. Ioannou

2004-11-01T23:59:59.000Z

262

Technology survey and performance scaling for the design of high power nuclear electric power and propulsion systems  

E-Print Network (OSTI)

High power nuclear electric propulsion systems have the capability to enable many next-generation space exploration applications. To date, use of electric primary propulsion in flight systems has been limited to low-power, ...

White, Daniel B., Jr

2011-01-01T23:59:59.000Z

263

Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies  

DOE Green Energy (OSTI)

A critical element to the success of new propulsion technologies that enable reductions in fuel use is the integration of component thermal management technologies within a viable vehicle package. Vehicle operation requires vehicle thermal management systems capable of balancing the needs of multiple vehicle systems that may require heat for operation, require cooling to reject heat, or require operation within specified temperature ranges. As vehicle propulsion transitions away from a single form of vehicle propulsion based solely on conventional internal combustion engines (ICEs) toward a wider array of choices including more electrically dominant systems such as plug-in hybrid electric vehicles (PHEVs), new challenges arise associated with vehicle thermal management. As the number of components that require active thermal management increase, so do the costs in terms of dollars, weight, and size. Integrated vehicle thermal management is one pathway to address the cost, weight, and size challenges. The integration of the power electronics and electric machine (PEEM) thermal management with other existing vehicle systems is one path for reducing the cost of electric drive systems. This work demonstrates techniques for evaluating and quantifying the integrated transient and continuous heat loads of combined systems incorporating electric drive systems that operate primarily under transient duty cycles, but the approach can be extended to include additional steady-state duty cycles typical for designing vehicle thermal management systems of conventional vehicles. The work compares opportunities to create an integrated low temperature coolant loop combining the power electronics and electric machine with the air conditioning system in contrast to a high temperature system integrated with the ICE cooling system.

Bennion, K.; Thornton, M.

2010-04-01T23:59:59.000Z

264

ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION  

Science Conference Proceedings (OSTI)

The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.

R. C. O'Brien; S. D. Howe; J. E. Werner

2010-09-01T23:59:59.000Z

265

Hydrogen peroxide-based propulsion and power systems.  

DOE Green Energy (OSTI)

Less toxic, storable, hypergolic propellants are desired to replace nitrogen tetroxide (NTO) and hydrazine in certain applications. Hydrogen peroxide is a very attractive replacement oxidizer, but finding acceptable replacement fuels is more challenging. The focus of this investigation is to find fuels that have short hypergolic ignition delays, high specific impulse, and desirable storage properties. The resulting hypergolic fuel/oxidizer combination would be highly desirable for virtually any high energy-density applications such as small but powerful gas generating systems, attitude control motors, or main propulsion. These systems would be implemented on platforms ranging from guided bombs to replacement of environmentally unfriendly existing systems to manned space vehicles.

Melof, Brian Matthew; Keese, David L.; Ingram, Brian V.; Grubelich, Mark Charles; Ruffner, Judith Alison; Escapule, William Rusty

2004-04-01T23:59:59.000Z

266

Plasma jet ignition device  

DOE Patents (OSTI)

An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.

McIlwain, Michael E. (Franklin, MA); Grant, Jonathan F. (Wayland, MA); Golenko, Zsolt (North Reading, MA); Wittstein, Alan D. (Fairfield, CT)

1985-01-15T23:59:59.000Z

267

Overview of NASA supported Stirling thermodynamic loss research  

DOE Green Energy (OSTI)

The National Aeronautics and Space Administration (NASA) is funding research to characterize Stirling machine thermodynamic losses. NASA`s primary goal is to improve Stirling design codes to support engine development for space and terrestrial power. However, much of the fundamental data is applicable to Stirling cooler and heat pump applications. The research results are reviewed. Much has been learned about oscillating-flow hydrodynamics, including laminar/turbulent transition, and tabulated data has been documented for further analysis. Now, with a better understanding of the oscillator-flow field, it is time to begin measuring the effects of oscillating flow and oscillating pressure level on heat transfer in heat exchanger flow passages and in cylinders. This critical phase of the work is just beginning.

Tew, R.C.; Geng, S.M.

1994-09-01T23:59:59.000Z

268

Jet Performance and Jet Energy Scale Determination at CMS  

Science Conference Proceedings (OSTI)

We describe the jet response of the CMS calorimeter which will be used to study pp collisions at Large Hadron Collider at CERN, Geneva, Switzerland at {radical}(s) = 14 TeV. The electromagnetic section of calorimeter consists of lead tungstate crystals which gives an excellent resolution for electrons. The hadron section is brass-scintillator sampling calorimeter read by wavelength shifting fibers in the central region (vertical bar {eta} vertical bar < 3.0) and steel/quartz-fibers in the forward (3.0 < vertical bar {eta} vertical bar < 5.0) region. Extensive test beam calibration data has been collected. A GEANT-based calorimeter simulation has been tuned to reproduce the test beam measurements. The calorimeter response to jets has been determined using this tuned simulation. We describe the calorimeter response to jets, the jet energy resolution, and the procedure we plan to use to establish the jet energy scale from a combination of test beam and pp data when we start taking data in September 2007.

Bhatti, Anwar A. [Experimental Physics Laboratory, The Rockefeller University, 1230 York Ave, New York NY 10021 (United States)

2006-10-27T23:59:59.000Z

269

Nuclear rockets: High-performance propulsion for Mars  

Science Conference Proceedings (OSTI)

A new impetus to manned Mars exploration was introduced by President Bush in his Space Exploration Initiative. This has led, in turn, to a renewed interest in high-thrust nuclear thermal rocket propulsion (NTP). The purpose of this report is to give a brief tutorial introduction to NTP and provide a basic understanding of some of the technical issues in the realization of an operational NTP engine. Fundamental physical principles are outlined from which a variety of qualitative advantages of NTP over chemical propulsion systems derive, and quantitative performance comparisons are presented for illustrative Mars missions. Key technologies are described for a representative solid-core heat-exchanger class of engine, based on the extensive development work in the Rover and NERVA nuclear rocket programs (1955 to 1973). The most driving technology, fuel development, is discussed in some detail for these systems. Essential highlights are presented for the 19 full-scale reactor and engine tests performed in these programs. On the basis of these tests, the practicality of graphite-based nuclear rocket engines was established. Finally, several higher-performance advanced concepts are discussed. These have received considerable attention, but have not, as yet, developed enough credibility to receive large-scale development.

Watson, C.W.

1994-05-01T23:59:59.000Z

270

Tailoring Laser Propulsion for Future Applications in Space  

SciTech Connect

Pulsed laser propulsion may turn out as a low cost alternative for the transportation of small payloads in future. In recent years DLR investigated this technology with the goal of cheaply launching small satellites into low earth orbit (LEO) with payload masses on the order of 5 to 10 kg. Since the required high power pulsed laser sources are yet not at the horizon, DLR focused on new applications based on available laser technology. Space-borne, i.e. in weightlessness, there exist a wide range of missions requiring small thrusters that can be propelled by laser power. This covers space logistic and sample return missions as well as position keeping and attitude control of satellites.First, a report on the proof of concept of a remote controlled laser rocket with a thrust vector steering device integrated in a parabolic nozzle will be given. Second, the road from the previous ground-based flight experiments in earth's gravity using a 100-J class laser to flight experiments with a parabolic thruster in an artificial 2D-zero gravity on an air cushion table employing a 1-J class laser and, with even less energy, new investigations in the field of laser micro propulsion will be reviewed.

Eckel, Hans-Albert; Scharring, Stefan [German Aerospace Center (DLR)-Institute of Technical Physics, Pfaffenwaldring 38-40, 70569 Stuttgart (Germany)

2010-10-08T23:59:59.000Z

271

Radioisotope Electric Propulsion for Deep Space Sample Return  

DOE Green Energy (OSTI)

The need to answer basic questions regarding the origin of the Solar System will motivate robotic sample return missions to destinations like Pluto, its satellite Charon, and objects in the Kuiper belt. To keep the mission duration short enough to be of interest, sample return from objects farther out in the Solar System requires increasingly higher return velocities. A sample return mission involves several complicated steps to reach an object and obtain a sample, but only the interplanetary return phase of the mission is addressed in this paper. Radioisotope electric propulsion is explored in this parametric study as a means to propel small, dedicated return vehicles for transferring kilogram-size samples from deep space to Earth. Return times for both Earth orbital rendezvous and faster, direct atmospheric re-entry trajectories are calculated for objects as far away as 100 AU. Chemical retro-rocket braking at Earth is compared to radioisotope electric propulsion but the limited deceleration capability of chemical rockets forces the return trajectories to be much slower.

Noble, Robert J.; /SLAC

2009-07-14T23:59:59.000Z

272

Near-Earth Object Interception Using Nuclear Thermal Rock Propulsion  

DOE Green Energy (OSTI)

Planetary defense has drawn wide study: despite the low probability of a large-scale impact, its consequences would be disastrous. The study presented here evaluates available protection strategies to identify bottlenecks limiting the scale of near-Earth object that could be deflected, using cutting-edge and near-future technologies. It discusses the use of a nuclear thermal rocket (NTR) as a propulsion device for delivery of thermonuclear payloads to deflect or destroy a long-period comet on a collision course with Earth. A ‘worst plausible scenario’ for the available warning time (10 months) and comet approach trajectory are determined, and empirical data are used to make an estimate of the payload necessary to deflect such a comet. Optimizing the tradeoff between early interception and large deflection payload establishes the ideal trajectory for an interception mission to follow. The study also examines the potential for multiple rocket launch dates. Comparison of propulsion technologies for this mission shows that NTR outperforms other options substantially. The discussion concludes with an estimate of the comet size (5 km) that could be deflected usingNTRpropulsion, given current launch capabilities.

X-L. Zhang; E. Ball; L. Kochmanski; S. D. Howe

2011-02-01T23:59:59.000Z

273

NASA/CR-2004-212805 Survey of Software Assurance Techniques for Highly Reliable Systems  

E-Print Network (OSTI)

NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role. The NASA STI Program Office is operated by Langley Research Center, the Lead Center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types: • TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations. • TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

Stacy Nelson

2004-01-01T23:59:59.000Z

274

Calculations of slurry pump jet impingement loads  

SciTech Connect

This paper presents a methodology to calculate the impingement load in the region of a submerged turbulent jet where a potential core exits and the jet is not fully developed. The profile of the jet flow velocities is represented by a piece-wise linear function which satisfies the conservation of momentum flux of the jet flow. The adequacy of the of the predicted jet expansion is further verified by considering the continuity of the jet flow from the region of potential core to the fully developed region. The jet impingement load can be calculated either as a direct impingement force or a drag force using the jet velocity field determined by the methodology presented.

Wu, T.T.

1996-03-04T23:59:59.000Z

275

African Easterly Jet: Structure and Maintenance  

Science Conference Proceedings (OSTI)

This article investigates the African easterly jet (AEJ), its structure, and the forcings contributing to its maintenance, critically revisiting previous work that attributed the maintenance of the jet to soil moisture gradients over tropical ...

Man-Li C. Wu; Oreste Reale; Siegfried D. Schubert; Max J. Suarez; Randy D. Koster; Philip J. Pegion

2009-09-01T23:59:59.000Z

276

Eddy Formation in 2½-Layer, Quasigeostrophic Jets  

Science Conference Proceedings (OSTI)

The formation of nonlinear eddies in unstable 2½-layer, quasigeostrophic jets is investigated using a piecewise constant potential vorticity, “contour dynamical” model. Both infinite and semi-infinite jet dynamics are explored, considering a ...

Ilson C. A. da Silveira; Glenn R. Flierl

2002-03-01T23:59:59.000Z

277

Dynamics of the Southern Hemisphere Spiral Jet  

Science Conference Proceedings (OSTI)

The formation of the Southern Hemisphere spiral jet is investigated using observations over a 40-yr period. It is found that between late March and early April, the upper-tropospheric westerly jet in the Southern Hemisphere undergoes a transition ...

Lindsey N. Williams; Sukyoung Lee; Seok-Woo Son

2007-02-01T23:59:59.000Z

278

BioJet Corporation | Open Energy Information  

Open Energy Info (EERE)

93940 Sector Carbon Product Monterey-based carbon credit developer and producer of bio-jet fuel derived from jatropha. References BioJet Corporation1 LinkedIn Connections...

279

Jet physics at HERA, Tevatron and LHC  

E-Print Network (OSTI)

In this short report, we discuss the Jet Physics results and perspectives at HERA, Tevatron and LHC.

C. Royon

2008-11-10T23:59:59.000Z

280

Inclusive jet production at the Tevatron  

SciTech Connect

Preliminary results on inclusive jet production in proton-antiproton collisions at {radical}s = 1.96 TeV based on 1 fb{sup -1} of CDF Run II data are presented. Measurements are preformed using different jet algorithms in a wide range of jet transverse momentum and jet rapidity. The measured cross sections are compared to next-to-leading order perturbative QCD calculations

Norniella, Olga; /Barcelona, IFAE

2006-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "nasa jet propulsion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

NASA Space Radiobiology Research Takes Off at New Brookhaven Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

NASA Space Radiobiology Research Takes Off NASA Space Radiobiology Research Takes Off at New Brookhaven Facility Because astronauts are spending more and more time in space, the National Aeronautics and Space Administration is working with Brookhaven and others here on Earth to learn about the possible risks to human beings exposed to space radiation. To study the radiobiological effects using proton and ion beams that simulate the cosmic rays found in space, a new $34-million NASA Space Radiation Laboratory was commissioned at Brookhaven this summer. --by Karen McNulty Walsh and Marsha Belford "TO BOLDLY GO WHERE NO ONE HAS GONE BEFORE"- the motto of the science-fiction saga Star Trek - could just as easily be the motto of America's real-life space explorers. Despite the recent Columbia shuttle tragedy, officials of the National Aeronautics and Space Administration (NASA) have a bold vision for future manned space exploration, which includes the completion of the International Space Station now under construction, and possible future missions to build a Moon outpost, explore near-Earth asteroids, and send astronauts to Mars.

282

Comparison Between Field Data and NASA Ames Wind Tunnel Data  

DOE Green Energy (OSTI)

The objective of this analysis is to compare the measured data from the NASA Ames wind tunnel experiment to those collected in the field at the National Wind Technology Center (NWTC) with the same turbine configuration. The results of this analysis provide insight into what measurements can be made in the field as opposed to wind tunnel testing.

Corbus, D.

2005-11-01T23:59:59.000Z

283

Renewable Energy Microgrid Testbed at NASA Ames Research  

E-Print Network (OSTI)

Renewable Energy Microgrid Testbed at NASA Ames Research Center Joel Kubby, Dan O'Leary, Zachary #12;Goals · Set-up a unique microgrid test-bed for renewable energy generation, monitoring and storage · Use the facility for testing systems integration, optimization and control of new renewable energy

Lee, Herbie

284

User evaluation of the NASA technical report server recommendation service  

Science Conference Proceedings (OSTI)

We present the user evaluation of two recommendation server methodologies implemented for the NASA Technical Report Server (NTRS). One methodology for generating recommendations uses log analysis to identify co-retrieval events on full-text documents. ... Keywords: digital libraries, recommendation servers, user evaluation

Michael L. Nelson; Johan Bollen; JoAnne R. Calhoun; Calvin E. Mackey

2004-11-01T23:59:59.000Z

285

In the Vehicle Assembly Building at NASA's Kennedy Space  

E-Print Network (OSTI)

was tested March 26, 2004. The engines will burn for eight and one-half minutes as Atlantis roars into spaceIn the Vehicle Assembly Building at NASA's Kennedy Space Center, the external fuel tank for space. The external tank carries the fuel that will be used by a trio of space shuttle main engines to lift Atlantis

286

National Aeronautics and Space Administration www.nasa.gov  

E-Print Network (OSTI)

National Aeronautics and Space Administration www.nasa.gov Volume 4, Issue 9 May 2008 GoddardViewThe Mouse That Roared: Pipsqueak Star Unleashes Monster Flare Pg 8 Goddard Employees Get an Introduction That Roared: Pipsqueak Star Unleashes Monster Flare ­ 8 Goddard Employees Get an Introduction to GLAST ­ 9

Christian, Eric

287

NASA's New Horizons Mission to the Planet Pluto  

E-Print Network (OSTI)

of a distant star. Its light slowly dims, revealing Pluto's radius and its atmosphere. Time[sec] Fluxfrom exploration requires a close-up visit #12;Why go to Pluto? · It's ancient: Exploring Pluto tells us what of bodies in the outer Solar System, and distant Solar Systems. #12;A Spacecraft to Pluto In 2001, NASA

Throop, Henry

288

National Aeronautics and Space Administration www.nasa.gov  

E-Print Network (OSTI)

systems during the 2010 and 2011 deployments to Greenland. The CReSIS team perform measurements in conjunction with laser surface elevation measurements being performed by NASA Centers. Scien- tists around structure and describes the Agency's performance management system and management controls (i.e., values

289

Radiations from nuclear weapons - signal detectors - NASA program information  

SciTech Connect

This letter is for the purpose of supplying the information that you requested at the meeting of the sub-committee on Project Vela. It is divided into three parts: (1) Radiations from nuclear weapons; (2) Backgrounds for Vela Signal Detectors; (3) Discussion of the NASA program.

White, R. S.

1960-02-10T23:59:59.000Z

290

Advanced thermally stable jet fuels  

Science Conference Proceedings (OSTI)

The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume (Sections 1 through 5).

Schobert, H.H.

1999-01-31T23:59:59.000Z

291

Performance enhancement using power beaming for electric propulsion earth orbital transporters  

DOE Green Energy (OSTI)

An electric propulsion Earth orbital transport vehicle (EOTV) can effectively deliver large payloads using much less propellant than chemical transfer methods. By using an EOTV instead of a chemical upper stage, either a smaller launch vehicle can be used for the same satellite mass or larger satellite can be deployed using the same launch vehicle. However, the propellant mass savings from using the higher specific impulse of electric propulsion may not be enough to overcome the disadvantage of the added mass and cost of the electric propulsion power source. Power system limitations have been a major factor delaying the acceptance and use of electric propulsion. This paper outlines the power requirements of electric propulsion technology being developed today, including arcjets, magnetoplasmadynamic (MPD) thrusters, and ion engines. Power supply characteristics are discussed for nuclear, solar, and power-beaming systems. Operational characteristics are given for each, as are the impacts of the power supply alternative on the overall craft performance. Because of its modular nature, the power-beaming approach is able to meet the power requirements of all three electric propulsion types. Also, commonality of approach allows different electric propulsion approaches to be powered by a single power supply approach. Power beaming exhibits better flexibility and performance than on-board nuclear or solar power systems.

Dagle, J.E.

1991-08-01T23:59:59.000Z

292

Shaping Planetary Nebulae by Jets  

E-Print Network (OSTI)

We conduct 2D axisymmetrical hydrodynamical simulations to investigate the interaction of a collimated fast wind (CFW; wide jets) with a spherical AGB wind. The code includes radiative cooling. We find that the shape of the planetary nebula (PN) is sensitive to the exact mass loss history of the AGB wind, and the opening angle of the CFW. Some typical PN morphologies are obtained, but many other observed morphologies seem to require more ingredients than what we assume in our present simulations, e.g., equatorial AGB wind, and ionization and fast wind during the PN phase. The hot bipolar bubble formed by the jets is an X-ray source.

Muhammad Akashi

2007-09-06T23:59:59.000Z

293

Inclusive jet production at Tevatron  

Science Conference Proceedings (OSTI)

The CDF and D0 Collaborations have measured the inclusive jet cross section using 1992--93 collider data at {radical}s = 1,800 GeV. The D0 measurement is higher than NLO QCD predictions, though within systematic uncertainties. The CDF measurement is in very good agreement with NLO QCD predictions for transverse energies (E{sub T}) below 200 GeV. However it is systemically higher than NLO QCD predictions for E{sub T} above 200 GeV. The CDF measurement of two-jet mass and total transverse energy spectra also show a similar excess above QCD predictions at higher E{sub T}.

Bhatti, A.A.; CDF Collaboration; D0 Collaboration

1995-07-01T23:59:59.000Z

294

Production of biocomponent containing jet fuels  

Science Conference Proceedings (OSTI)

Recent demands for low aromatic content jet fuels have shown significant increase in the last 20 years. This was generated by the growing of aviation. Further than quality requirements were more aggravated in front of jet fuels. This was generated by ... Keywords: aromatic content, biocomponent, crystallization point, jet fuel, kerosene, vegetable oil

Z. Eller; P. Solymosi; T. Kasza; Z. Varga; J. Hancsók

2011-12-01T23:59:59.000Z

295

MOA: Magnetic Field Oscillating Amplified Thruster and its Application for Nuclear Electric and Thermal Propulsion  

Science Conference Proceedings (OSTI)

More than 60 years after the later Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA - Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. Based on computer simulations, which were conducted to get a first estimate on the performance of the system, MOA is a highly flexible propulsion system, whose performance parameters might easily be adapted, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. (authors)

Frischauf, Norbert [QASAR Technologie(s) GmbH, Johann Gottekgasse 39, A-1230, Vienna (Austria); Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias [QASAR Technologie(s) GmbH, Johann Gottekgasse 39, A-1230, Vienna (Austria); Koudelka, Otto [Institute of Communication Networks and Satellite Communication, Graz University of Technology, Inffeldgasse 12/I, A-8010 Graz (Austria)

2006-07-01T23:59:59.000Z

296

Radioisotope electric propulsion of sciencecraft to the outer solar system and near-interstellar space  

Science Conference Proceedings (OSTI)

Recent results are presented in the study of radioisotope electric propulsion as a near-term technology for sending small robotic sciencecraft to the outer Solar System and near-interstellar space. Radioisotope electric propulsion (REP) systems are low-thrust, ion propulsion units based on radioisotope electric generators and ion thrusters. Powerplant specific masses are expected to be in the range of 100 to 200 kg/kW of thrust power. Planetary rendezvous missions to Pluto, fast missions to the heliopause (100 AU) with the capability to decelerate an orbiter for an extended science program and prestellar missions to the first gravitational lens focus of the Sun (550 AU) are investigated.

Noble, R.J.

1998-08-01T23:59:59.000Z

297

Full Fuel-Cycle Comparison of Forklift Propulsion Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Full Fuel-Cycle Comparison Full Fuel-Cycle Comparison of Forklift Propulsion Systems ANL/ESD/08-3 Energy Systems Division Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401 fax (865) 576-5728 reports@adonis.osti.gov Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express

298

Full Fuel-Cycle Comparison of Forklift Propulsion Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 Full Fuel-Cycle Comparison of Forklift Propulsion Systems Energy Systems Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone (865) 576-8401

299

Application of Energy Storage To Solar Electric Propulsion Orbital Transfer  

E-Print Network (OSTI)

Solar electric propulsion uses solar panels to generate power for electric thrusters. Using stored energy makes it possible to thrust through eclipses, but requires that some of the solar power collected during the sunlit portion of the trajectory be used to recharge the storage system. Previous researchers have reported that the required energy storage mass can be prohibitive. However, the use of high-speed flywheels for energy storage can provide advantages. In this paper, we compare the effectiveness of orbit transfers using and without using energy storage. The orbit transfers are developed as sequences of time-optimal circle-to-circle planar transfers from low-Earth orbit to geostationary orbit. We develop techniques for solving the appropriate boundary value problems, and illustrate tradeoffs between solar array and flywheel-battery masses for transfers

Mark W. Marasch; Christopher D. Hall

1999-01-01T23:59:59.000Z

300

Heavy Vehicle Propulsion Materials: Recent Progress and Future Plans  

DOE Green Energy (OSTI)

The Heavy Vehicle Propulsion Materials Program provides enabling materials technology for the U.S. DOE Office of Heavy Vehicle Technologies (OHVT). The technical agenda for the program is based on an industry assessment and the technology roadmap for the OHVT. A five-year program plan was published in 2000. Major efforts in the program are materials for diesel engine fuel systems, exhaust aftertreatment, and air handling. Additional efforts include diesel engine valve-train materials, structural components, and thermal management. Advanced materials, including high-temperature metal alloys, intermetallics, cermets, ceramics, amorphous materials, metal- and ceramic-matrix composites, and coatings, are investigated for critical engine applications. Selected technical issues and planned and ongoing projects as well as brief summaries of several technical highlights are given.

D. Ray Johnson; Sidney Diamond

2001-05-14T23:59:59.000Z

Note: This page contains sample records for the topic "nasa jet propulsion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Space propulsion by fusion in a magnetic dipole  

DOE Green Energy (OSTI)

The unique advantages of fusion rocket propulsion systems for distant missions are explored using the magnetic dipole configurations as an example. The dipole is found to have features well suited to space applications. Parameters are presented for a system producing a specific power of kW/kg, capable of interplanetary flights to Mars in 90 days and to Jupiter in a year, and of extra-solar-system flights to 1000 astronomical units (the Tau mission) in 20 years. This is about 10 times better specific power performance than nuclear electric fission systems. Possibilities to further increase the specific power toward 10 kW/kg are discussed, as is an approach to implementing the concept through proof-testing on the moon. 20 refs., 14 figs., 2 tabs.

Teller, E.; Glass, A.J.; Fowler, T.K. (Lawrence Livermore National Lab., CA (United States)); Hasegawa, A. (AT and T Bell Labs., Murray Hill, NJ (United States)); Santarius, J.F. (Wisconsin Univ., Madison, WI (United States). Fusion Technology Inst.)

1991-07-15T23:59:59.000Z

302

Space propulsion by fusion in a magnetic dipole  

DOE Green Energy (OSTI)

A conceptual design is discussed for a fusion rocket propulsion system based on the magnetic dipole configuration. The dipole is found to have features well suited to space applications. Example parameters are presented for a system producing a specific power of 1 kW/kg, capable of interplanetary flights to Mars in 90 days and to Jupiter in a year, and of extra-solar-system flights to 1000 astronomical units (the Tau mission) in 20 years. This is about 10 times better specific power toward 10 kW/kg are discussed, as in an approach to implementing the concept through proof-testing on the moon. 21 refs., 14 figs., 2 tabs.

Teller, E.; Glass, A.J.; Fowler, T.K. (Lawrence Livermore National Lab., CA (USA)); Hasegawa, A. (AT and T Bell Labs., Murray Hill, NJ (USA)); Santarius, J.F. (Wisconsin Univ., Madison, WI (USA). Fusion Technology Inst.)

1991-04-12T23:59:59.000Z

303

Evolution of Risk Management at NASA in the Context of Achieving Adequate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Evolution of Risk Management at NASA in the Context of Achieving Evolution of Risk Management at NASA in the Context of Achieving Adequate Safety Evolution of Risk Management at NASA in the Context of Achieving Adequate Safety September 20, 2012 Presenter: Homayoon Dezfuli, Ph.D. NASA Technical Fellow for System Safety Office of Safety and Mission Assurance NASA Headquarters Topics Covered: Historical Perspective on NASA Risk Management (RM) * RM Approach After 2008 * Future Direction of RM at NASA - The Concept of "Adequate Safety" - The Issue of Risk Analysis Completeness (Rationale for Future Trends in RM) Summary 2 Acknowledgment Evolution of Risk Management at NASA in the Context of Achieving Adequate Safety More Documents & Publications DOE Standard on Development and Use of Probabilistic Risk Assessment in DOE

304

NASA/Ames Global Emissions Data Set (GLEMIS) | Open Energy Information  

Open Energy Info (EERE)

NASA/Ames Global Emissions Data Set (GLEMIS) NASA/Ames Global Emissions Data Set (GLEMIS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NASA/Ames Global Emissions Data Set (GLEMIS) Agency/Company /Organization: National Aeronautics and Space Administration Sector: Land Focus Area: Forestry, Agriculture Topics: GHG inventory Resource Type: Dataset, Maps Website: gcmd.nasa.gov/records/GCMD_NASA_AMES_GLEMIS.html NASA/Ames Global Emissions Data Set (GLEMIS) Screenshot References: NASA/Ames Global Emissions Data Set (GLEMIS)[1] "NASA-CASA data sets include global maps for predicted fluxes of soil nitrogen gases (N2O and NO), methane (CH4), and carbon monoxide (CO), plus predictions of net primary production (NPP) and carbon storage in leaf, wood, root, litter, and surface soil pools. Others data sets will follow.

305

NASA LAW 2006 LABORATORY ASTROPHYSICS WHITE PAPER 1 LABORATORY ASTROPHYSICS WHITE PAPER  

E-Print Network (OSTI)

NASA LAW 2006 LABORATORY ASTROPHYSICS WHITE PAPER 1 LABORATORY ASTROPHYSICS WHITE PAPER (BASED ASTROPHYSICS WHITE PAPER NASA LAW 2006 The NASA Universe Working Group (UWG) within the SMD requested a White are addressed in the subsequent sections of this requested White Paper, which also contains a set

Savin, Daniel Wolf

306

Institutional Contradictions and Loose Coupling: Postimplementation of NASA's Enterprise Information System  

Science Conference Proceedings (OSTI)

Through a grounded analysis of the National Aeronautics and Space Administration (NASA's) enterprise information system (IS) implementation in the months immediately following the go-live, we show how NASA can be characterized as an institutionally ... Keywords: ERP, NASA, enterprise systems, institutional contradiction, institutional logic, institutional pluralism, institutional theory, loose coupling, loosely coupled

Nicholas Berente; Youngjin Yoo

2012-06-01T23:59:59.000Z

307

Electric vehicle battery R D in the context of a propulsion system  

SciTech Connect

A battery system for an electric vehicle should be designed and developed in concert with the other components of the propulsion system. Technology development efforts sponsored by the US Department of Energy are addressing all the constituent electric vehicle component technologies, including the battery subsystem technologies, from the perspective of the complete propulsion system. This approach is considered to be essential for three reasons. First, the ultimate viability of a given battery technology can only be assured in the context of a complete propulsion system. Second, many required battery subsystem technology advancements can only be addressed in concert with the other propulsion system components. Third, development and testing of battery subsystem technologies in conjunction with powertrain subsystem technology development is necessary in order to provide essential information to the battery developer and to the vehicle developer that can not be obtained when battery development is performed as a discrete activity. 7 refs., 6 figs.

Patil, P.G. (USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (USA). Office of Transportation Systems); Christianson, C.C.; Miller, J.F. (Argonne National Lab., IL (USA))

1989-01-01T23:59:59.000Z

308

Research on simulation of ship electric propulsion system with flywheel energy storage system  

Science Conference Proceedings (OSTI)

Flywheel energy storage has been widely used to improve the ground electric power quality. This paper designed a flywheel energy storage device to improve ship electric propulsion system power grid quality. The practical mathematical models of flywheel ...

Chunling Xie; Conghui Zhang; Jen-Yuan James Chang

2011-06-01T23:59:59.000Z

309

An object-oriented framework for distributed computational simulation of aerospace propulsion systems  

Science Conference Proceedings (OSTI)

Designing and developing new aerospace propulsion systems is time-consuming and expensive. Computational simulation is a promising means for alleviating this cost, but requires a flexible software simulation system capable of integrating advanced multidisciplinary ...

John A. Reed; Abdollah A. Afjeh

1998-04-01T23:59:59.000Z

310

An impulse framework for hydrodynamic force analysis : fish propulsion, water entry of spheres, and marine propellers  

E-Print Network (OSTI)

This thesis presents an impulse framework for analyzing the hydrodynamic forces on bodies in flow. This general theoretical framework is widely applicable, and it is used to address the hydrodynamics of fish propulsion, ...

Epps, Brenden P

2010-01-01T23:59:59.000Z

311

The design and feasibility of a 10 mN chemical space propulsion thruster  

E-Print Network (OSTI)

This thesis discusses the design of a ten milli Newton chemical propulsion system for providing approximately 200 m/s delta velocity to a five kg satellite. The nozzle is the focus of the experimental work, which involves ...

Bruccoleri, Alexander Robert

2009-01-01T23:59:59.000Z

312

A fully microfabricated two-dimensional electrospray array with applications to space propulsion  

E-Print Network (OSTI)

This thesis presents the design, fabrication and testing of a fully-integrated planar electrospray thruster array, which could lead to more efficient and precise thrusters for space propulsion applications. The same ...

Gassend, Blaise L. P. (Blaise Laurent Patrick), 1978-

2007-01-01T23:59:59.000Z

313

Design and testing of a biomimetic tuna using shape memory alloy induced propulsion  

Science Conference Proceedings (OSTI)

Current unmanned undersea vehicles (UUVs) are almost exclusively propeller driven designs, which must inherently be optimized for a particular speed, sacrificing low speed manoeuvrability for cruising efficiency. Recently, biomimetic approaches to underwater ... Keywords: Shape memory alloys, Shape propulsion, Smart structures

Afzal Suleman; Curran Crawford

2008-02-01T23:59:59.000Z

314

Heavy vehicle hybrid propulsion systems R and D program plan, FY 2000-2005  

DOE Green Energy (OSTI)

This report contains the program plan and background information for the Heavy Vehicle Hybrid Propulsion R and D Program sponsored by the Department of Energy's Office of Heavy Vehicle Technologies. The program is a collaboration between industry and government established for the development of advanced hybrid-electric propulsion technology for urban cycle trucks and buses. It targets specific applications to enhance potential market success. Potential end-users are also involved.

None

2000-07-01T23:59:59.000Z

315

Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System  

SciTech Connect

Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

Robert C. O'Brien; Andrew C. Klein; William T. Taitano; Justice Gibson; Brian Myers; Steven D. Howe

2011-02-01T23:59:59.000Z

316

Propulsion Utilizing Laser-Driven Ponderomotive Fields for Deep-Space Missions  

SciTech Connect

The generation of large amplitude electric fields in plasmas by high-power lasers has been studied for several years in the context of high-energy particle acceleration. Fields on the order of GeV/m are generated in the plasma wake of the laser by non-linear ponderomotive forces. The laser fields generate longitudinal and translational electron plasma waves with phase velocities close to the speed of light. These fields and velocities offer the potential to revolutionize spacecraft propulsion, leading to extended deep space robotic probes. Based on these initial calculations, plasma acceleration by means of laser-induced ponderomotive forces appears to offer significant potential for spacecraft propulsion. Relatively high-efficiencies appear possible with proper beam conditioning, resulting in an order of magnitude more thrust than alternative concepts for high I{sub SP} (>10{sup 5} s) and elimination of the primary life-limiting erosion phenomena associated with conventional electric propulsion systems. Ponderomotive propulsion readily lends itself to beamed power which might overcome some of the constraints of power-limited propulsion concepts. A preliminary assessment of the impact of these propulsion systems for several promising configurations on mission architectures has been conducted. Emphasizing interstellar and interstellar-precursor applications, performance and technical requirements are identified for a number of missions. The use of in-situ plasma and gas for propellant is evaluated as well.

Williams, George J.; Gilland, James H. [Ohio Aerospace Institute, NASA GRCMS 16-1 Cleveland, OH 44135 216-433-9622 (United States)

2009-03-16T23:59:59.000Z

317

Radioisotope electric propulsion for robotic science missions to near-interstellar space  

SciTech Connect

The use of radioisotope electric propulsion for sending small robotic probes on fast science missions several hundred astronomical units (AU) from the Sun is investigated. Such missions would address a large variety of solar, interstellar, galactic and cosmological science themes from unique vantage points at 100 to 600 AU, including parallax distance measurements for the entire Milky Way Galaxy, sampling of the interstellar medium and imaging of cosmological objects at the gravitational lens foci of the Sun ({ge} 550 AU). Radioisotope electric propulsion (REP) systems are low-thrust, ion propulsion units based on multi-hundred watt, radioisotope electric generators and ion thrusters. In a previous work, the flight times for rendezvous missions to the outer planets (< 30 AU) using REP were found to be less than fifteen years. However fast prestellar missions to several hundred AU are not possible unless the probe`s energy can be substantially increased in the inner Solar System so as to boost the final hyperbolic excess velocity. In this paper an economical hybrid propulsion scheme combining chemical propulsion and gravity assist in the inner Solar System and radioisotope electric propulsion in the outer Solar System is studied which enables fast prestellar missions. Total hyperbolic excess velocities of 15 AU/year and flight times to 550 AU of about 40 years are possible using REP technology that may be available in the next decade.

Noble, R.J.

1994-10-01T23:59:59.000Z

318

Effects of inclined jets on turbulent oxy-flame characteristics in a triple jet burner  

Science Conference Proceedings (OSTI)

The reactants are generally injected into the industrial furnaces by jets. An effective method to act on combustion in such systems is to control the way injection jets. The present study concerns the control of turbulent flames by the jets deflection in a natural gas-oxygen burner with separated jets. The burner of 25 kW power is constituted with three aligned jets, one central natural gas jet surrounded by two oxygen jets. The principal idea is to confine the fuel jet by oxygen jets to favour the mixing in order to improve the flame stability and consequently to reduce the pollutant emissions like NO{sub x}. The flame stability and its structural properties are analyzed by the OH chemiluminescence. The Particle Image Velocimetry technique has been used to characterize the dynamic field. Results show that the control by inclined jets has a considerable effect on the dynamic behaviour and flame topology. Indeed, the control by incline of oxygen jets towards fuel jet showed a double interest: a better stabilization of flame and a significant reduction of nitrogen oxides. Measurements showed that the deflection favours the mixing and accelerates the fusion of jets allowing the flame stabilization. (author)

Boushaki, T.; Mergheni, M.A.; Sautet, J.C. [CORIA UMR 6614 CNRS-Universite et INSA de ROUEN, Avenue de l'Universite, 76 801 Saint Etienne du Rouvray, Cedex (France); Labegorre, B. [Air Liquide CRCD, Les Loges en Josas, BP 126, 78350 Jouy en Josas (France)

2008-07-15T23:59:59.000Z

319

Beaming and Jets in GRBs  

E-Print Network (OSTI)

The origin of GRBs have been a mystery for almost 30 years. The afterglowobserved in the last few years enabled redshift determination for a handful ofbursts, and the cosmological origin is now firmly established. Though thedistance scale is settled, there still remains orders of magnitude uncertaintyin their rate and in the total energy that is released in the explosion due tothe possibility that the emission is not spherical but jet-like. Contrary tothe GRB itself, the afterglow can be measured up to months and even years afterthe burst, and it can provide crucial information on the geometry of theejecta. We review the theory of afterglow from jets and discuss the evidencethat at least some of the bursts are not spherical. We discuss the prospects ofpolarization measurements, and show that this is a powerful tool inconstraining the geometry of the explosion.

Sari, R

2000-01-01T23:59:59.000Z

320

Turbulent fluid jet excavation in cohesive soil : with particular application to jet grouting  

E-Print Network (OSTI)

This thesis reviews the jet grouting methodology, and the current state of practice and research. Current methods of prediction of jet grout diameters are highly empirical and site specific, and do not take into account ...

Ho, Chu Eu

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nasa jet propulsion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Double row loop-coil configuration for high-speed electrodynamic maglev suspension, guidance, propulsion and guideway directional switching  

DOE Green Energy (OSTI)

A stabilization and propulsion system comprising a series of loop-coils arranged in parallel rows wherein two rows form a magnetic rail. Levitation and lateral stability is provided when the induced field in the magnetic rails interacts with the superconducting magnets (SCM) mounted on the magnetic levitation vehicle. A multiphase propulsion system interconnects specific coils in a given magnetic rail and interacts with the SCM to produce a propulsion force to the vehicle.

He, J.; Rote, D.M.

1994-12-31T23:59:59.000Z

322

The ATLAS b-Jet Trigger  

E-Print Network (OSTI)

The online event selection is crucial to reject most of the events containing uninteresting background collisions while preserving as much as possible the interesting physical signals. The b-jet selection is part of the trigger strategy of the ATLAS experiment and a set of dedicated triggers was contributing to the event selection for the 2011 running. The b-jets acceptance is increased and the background reduced by lowering jet transverse energy thresholds at the first trigger level and applying b-tagging techniques at the subsequent levels. Different physics channels, especially topologies containing more than one b-jet where higher rejection factors are achieved, benefit from using the b-jet trigger. An overview of the b-jet trigger menu and performance on data is presented.

Per Hansson

2011-11-17T23:59:59.000Z

323

CO{sub 2} Laser Ablation Propulsion Tractor Beams  

SciTech Connect

Manipulation of objects at a distance has already been achieved with no small measure of success in the realm of microscopic objects on the scale size of nanometers to micrometers in applications including laser trapping and laser tweezers. However, there has been relatively little effort to apply such remote control to macroscopic systems. A space tractor beam could be applied to a wide range of applications, including removal of orbital debris, facilitation of spacecraft docking, adjustment of satellite attitude or orbital position, etc. In this paper, an ablative laser propulsion tractor beam is demonstrated based on radiation from a CO{sub 2} laser. Cooperative, layered polymer targets were used for remote impulse generation using a CO{sub 2} laser. The use of a structured ablatant enabling switching between thrust directional parity (i.e., forward or reverse) and imparting torque to a remote target. Fluence-dependent results are presented in the context of polymer ablation modeling work and with consideration of confined ablation effects.

Sinko, John E. [Micro-Nano Global Center of Excellence, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan); Schlecht, Clifford A. [Institute for Materials and Complexity, Saint Louis, MO 63112 (United States)

2010-05-06T23:59:59.000Z

324

Assessment of a hot hydrogen nuclear propulsion fuel test facility  

DOE Green Energy (OSTI)

Subsequent to the announcement of the Space Exploration Initiative (SEI), several studies and review groups have identified nuclear thermal propulsion as a high priority technology for development. To achieve the goals of SEI to place man on Mars, a nuclear rocket will operate at near 2700K and in a hydrogen environment at near 60 atmospheres. Under these conditions, the operational lifetime of the rocket will be limited by the corrosion rate at the hydrogen/fuel interface. Consequently, the Los Alamos National Laboratory has been evaluating requirements and design issues for a test facility. The facility will be able to directly heat fuel samples by electrical resistance, microwave deposition, or radio frequency induction heating to temperatures near 3000K. Hydrogen gas at variable pressure and temperatures will flow through the samples. The thermal gradients, power density, and operating times envisioned for nuclear rockets will be duplicated as close as reasonable. The post-sample flow stream will then be scrubbed and cooled before reprocessing. The baseline design and timetable for the facility will be discussed. 7 refs.

Watanabe, H.H.; Howe, S.D.; Wantuck, P.J.

1991-01-01T23:59:59.000Z

325

Evaluation of pulse power devices in electric vehicle propulsion systems  

DOE Green Energy (OSTI)

The application of pulse power devices in electric vehicle propulsion systems to load level the main energy storage battery has been studied. Both high energy density capacitors (ultracapacitors) and high power density, bipolar batteries are considered. Computer simulations of vehicle operation with hybrid (two power source) powertrains indicated the energy storage capacities of the pulse power devices required to load level the main battery are 300 to 500 Wh for the capacitors and 5 to 10 Ah for the bipolar batteries can be reduced from 79 W/kg to about 40 W/kg depending on the vehicle gradeability (speed, percent grade, and length of grade) desired. Evaluation of the status of the technology for the pulse power devices indicated that for both devices, improvements in technology are needed before the devices can be used in EV applications. In the case of the ultracapacitor, the energy density of present devices are 1 to 2 Wh/kg. A minimum energy density of about 5 Wh/kg is needed for electric vehicle applications. Progress in increasing the energy density of ultracapacitors has been rapid in recent years and the prospects for meeting the 5 Wh/kg requirement for EVs appear to be good. For bipolar batteries, a minimum power density of 500 W/kg is needed and the internal resistance must be reduced by about a factor of ten from that found in present designs.

Burke, A.F. (EG and G Idaho, Inc., Idaho Falls, ID (USA)); Dowgiallo, E.J. (USDOE, Washington, DC (USA))

1990-01-01T23:59:59.000Z

326

SERAPHIM: A magnetic propulsion scheme for fast trains  

DOE Green Energy (OSTI)

We are attempting to develop and demonstrate a new type of linear synchronous induction motor capable of propelling a vehicle at high speed. The technology, based on a passive guideway containing sequential aluminum plates, was developed in Sandia`s electromagnetic launch program. As such, it was called a ``re-connection gun`` and launched an aluminum plate from between pairs of pancake coils. In the proposed propulsion scheme, the plates are fixed and the coils move. Pairs of closely spaced pancake coils on the vehicle straddle vertically mounted aluminum plates in the roadbed. The current in the coils is turned on when the plate is fully covered, peaks at some optimal time, and decreases to zero before separation. This induces currents in the plate which interact with the coil current to produce repulsive forces. In essence, the pulsed coils push off the edge of the plate because at the high frequency of operation, the current has insufficient time to fully penetrate. Since no embedded flux is required, the efficiency actually increases with speed. This concept has been named SERAPHIM, for SEgmented RAil PHased Induction Motor.

Marder, B.M.; Frost, C.A.; Lipinski, R.J.; Cowan, M.

1994-04-01T23:59:59.000Z

327

Advanced Fusion Reactors for Space Propulsion and Power Systems  

SciTech Connect

In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.

Chapman, John J.

2011-06-15T23:59:59.000Z

328

NASA's Marshall Space Flight Center Saves Water With High-Efficiency Toilet and Urinal Program: Best Management Practice Case Study #6 „ Toilets and Urinals (Fact Sheet), Federal Energy Management Program (FEMP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the National Aeronautics and Space the National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) has a longstanding, successful sustainability program that focuses on energy and water efficiency as well as environmental protection. MSFC's key operations include propulsion and transportation systems for the space shuttle and Ares rockets. MSFC also provides advanced engineering and operations for International Space Station systems. Located in Huntsville, Alabama, adjacent to Redstone Arsenal, MSFC has more than 4.5 million square feet of building space occupied by 7,000 personnel. MSFC consumes approximately 240 million gallons of potable water annually, supplied through the City of Huntsville. MSFC is known for breaking new ground and pushing the

329

NASA's Marshall Space Flight Center Saves Water With High-Efficiency Toilet and Urinal Program: Best Management Practice Case Study #6 „ Toilets and Urinals (Fact Sheet), Federal Energy Management Program (FEMP)  

NLE Websites -- All DOE Office Websites (Extended Search)

the National Aeronautics and Space the National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) has a longstanding, successful sustainability program that focuses on energy and water efficiency as well as environmental protection. MSFC's key operations include propulsion and transportation systems for the space shuttle and Ares rockets. MSFC also provides advanced engineering and operations for International Space Station systems. Located in Huntsville, Alabama, adjacent to Redstone Arsenal, MSFC has more than 4.5 million square feet of building space occupied by 7,000 personnel. MSFC consumes approximately 240 million gallons of potable water annually, supplied through the City of Huntsville. MSFC is known for breaking new ground and pushing the

330

Solar sail propulsion: enabling new capabilities for heliophysics  

E-Print Network (OSTI)

Solar sails can play a critical role in enabling solar and heliophysics missions. Solar sail technology within NASA is currently at 80% of TRL-6, suitable for an in-flight technology demonstration. It is conceivable that an initial demonstration could carry scientific payloads that, depending on the type of mission, are commensurate with the goals of the three study panels of the 2010 Heliophysics Survey. Follow-on solar sail missions, leveraging advances in solar sail technology to support Heliophysics Survey goals, would then be feasible. This white paper reports on a sampling of missions enabled by solar sails, the current state of the technology, and what funding is required to advance the current state of technology such that solar sails can enable these missions.

Johnson, L; Alhorn, D; Heaton, A; Vansant, T; Campbell, B; Pappa, R; Keats, W; Liewer, P C; Alexander, D; Ayon, J; Wawrzyniak, G; Burton, R; Carroll, D; Matloff, G; Kezerashvili, R Ya

2010-01-01T23:59:59.000Z

331

Increasing jet entrainment, mixing and spreading  

DOE Patents (OSTI)

A free jet of air is disturbed at a frequency that substantially matches natural turbulences in the free jet to increase the entrainment, mixing, and spreading of air by the free jet, for example in a room or other enclosure. The disturbances are created by pulsing the flow of air that creates the free jet at the desired frequency. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct. 11 figs.

Farrington, R.B.

1994-08-16T23:59:59.000Z

332

Increasing jet entrainment, mixing and spreading  

DOE Patents (OSTI)

A free jet of air is disturbed at a frequency that substantially matches natural turbulences in the free jet to increase the entrainment, mixing, and spreading of air by the free jet, for example in a room or other enclosure. The disturbances are created by pulsing the flow of air that creates the free jet at the desired frequency. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct.

Farrington, Robert B. (Wheatridge, CO)

1994-01-01T23:59:59.000Z

333

Safe Fluids for Jet Engine Texts  

Science Conference Proceedings (OSTI)

... industry and DoD use NIST calibration services for hydrocarbon liquid flow to ensure agreement and quality of measurements of jet fuel flow and ...

2012-08-29T23:59:59.000Z

334

Mechanisms of Jet Formation on the Giant Planets  

Science Conference Proceedings (OSTI)

The giant planet atmospheres exhibit alternating prograde (eastward) and retrograde (westward) jets of different speeds and widths, with an equatorial jet that is prograde on Jupiter and Saturn and retrograde on Uranus and Neptune. The jets are ...

Junjun Liu; Tapio Schneider

2010-11-01T23:59:59.000Z

335

SpartyJet 4.0 User's Manual  

E-Print Network (OSTI)

SpartyJet is a set of software tools for jet finding and analysis, built around the FastJet library of jet algorithms. SpartyJet provides four key extensions to FastJet: a simple Python interface to most FastJet features, a powerful framework for building up modular analyses, extensive input file handling capabilities, and a graphical browser for viewing analysis output and creating new on-the-fly analyses. Many of these capabilities rely on a ROOT-based backend. Beyond finding jets, many jet tools in SpartyJet perform measurement of jet or event variables, available to subsequent tools and stored in the final output. SpartyJet can be downloaded from HepForge at http://projects.hepforge.org/spartyjet.

Pierre-Antoine Delsart; Kurtis L. Geerlings; Joey Huston; Brian T. Martin; Christopher K. Vermilion

2012-01-17T23:59:59.000Z

336

Angular Energy Distribution of Collapsar-Jets  

E-Print Network (OSTI)

Collapsars are fast-spinning, massive stars, whose core collapse liberates an energy, that can be channeled in the form of ultrarelativistic jets. These jets transport the energy from the collapsed core to large distances, where it is dissipated in the form of long-duration gamma-ray bursts. In this paper we study the dynamics of ultrarelativistic jets produced in collapsars. Also we extrapolate our results to infer the angular energy distribution of the produced outflows in the afterglow phase. Our main focus is to look for global energetical properties which can be imprinted by the different structure of different progenitor stars. Thus, we employ a number of pre-supernova, stellar models (with distinct masses and metallicities), and inject in all of them jets with fixed initial conditions. We assume that at the injection nozzle, the jet is mildly relativistic (Lorentz factor $\\sim 5$), has a finite half-opening angle ($5^\\circ$), and carries a power of $10^{51} $erg s$^{-1}$. These jets arrive intact to the stellar surface and break out of it. A large Lorentz factor region $\\Gamma\\simmore 100$ develops well before the jet reaches the surface of the star, in the unshocked part of the beam, located between the injection nozzle and the first recollimation shock. These high values of $\\Gamma$ are possible because the finite opening angle of the jet allows for free expansion towards the radial direction. We find a strong correlation between the angular energy distribution of the jet, after its eruption from the progenitor surface, and the mass of the progenitors. The angular energy distribution of the jets from light progenitor models is steeper than that of the jets injected in more massive progenitor stars. This trend is also imprinted in the angular distribution of isotropic equivalent energy.

Akira Mizuta; Miguel A. Aloy

2008-12-28T23:59:59.000Z

337

HEFA and F-T jet fuel cost analyses  

E-Print Network (OSTI)

Aviation and the Environment 2. HEFA jet fuel from vegetable oil bottom-up cost study 3. HEFA jet fuel from microalgae bottom-up cost

Nick Carter; Michael Bredehoeft; Christoph Wollersheim; Hakan Olcay; James Hileman; Steven Barrett; Website Lae. Mit. Edu

2012-01-01T23:59:59.000Z

338

Jet Fuel Supply/Price Outlook - Fueling the Recovery  

U.S. Energy Information Administration (EIA)

Jet Fuel Supply/Price Outlook: Fueling the Recovery Energy Information Administration Presentation to 4th International Jet Fuel Conference February ...

339

Enhanced boiling heat transfer by submerged, vibration induced jets .  

E-Print Network (OSTI)

??In this analysis, the efficacy of cavitation jets for heat transfer enhancement was demonstrated. The cavitation jet was formed from a cluster of cavitation bubbles… (more)

Tillery, Steven W.

2005-01-01T23:59:59.000Z

340

Aerosol Jet® Material Deposition for High Resolution Printed ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Aerosol Jet printing, is finding wide use in a number of ... The Aerosol Jet systems deposit a wide variety of functional materials onto a wide ...

Note: This page contains sample records for the topic "nasa jet propulsion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Electro jet drilling using hybrid NNGA approach  

Science Conference Proceedings (OSTI)

This paper presents a hybrid neural network and genetic algorithm (NNGA) approach for the multi-response optimization of the electro jet drilling (EJD) process. The approach first uses a neural network model to predict the response parameters of the ... Keywords: Electro jet drilling, Electrochemical machining, Genetic algorithm, Multi-response, Neural network, Optimization

Mohan Sen; H. S. Shan

2007-02-01T23:59:59.000Z

342

Formation of Jets by Baroclinic Turbulence  

Science Conference Proceedings (OSTI)

Turbulent fluids are frequently observed to spontaneously self-organize into large spatial-scale jets; geophysical examples of this phenomenon include the Jovian banded winds and the earth’s polar-front jet. These relatively steady large-scale ...

Brian F. Farrell; Petros J. Ioannou

2008-11-01T23:59:59.000Z

343

Dynamics of the West African Westerly Jet  

Science Conference Proceedings (OSTI)

The West African westerly jet (WAWJ) is a low-level westerly jet located at 8°–11°N over the eastern Atlantic and the West African coast. It is clearly distinguished from the monsoon westerly flow by its structure and dynamics, and plays an ...

Bing Pu; Kerry H. Cook

2010-12-01T23:59:59.000Z

344

Inertial Resonance Induced by an Oceanic Jet  

Science Conference Proceedings (OSTI)

The dynamics of the mixed layer in the presence of an embedded geostrophic jet has been investigated using a simple 1½-layer model and a two-dimensional primitive equation model. The jet vorticity induces a spatial variability of the wind-driven ...

P. Klein; A. M. Treguier

1993-09-01T23:59:59.000Z

345

Comparison of heat transfer characteristics of axisymmetric and two dimensional reattachment jet nozzles to conventional jet impingement nozzles.  

E-Print Network (OSTI)

??The Radial Jet Reattachment (RJR) nozzle was developed over the past decade as a modification of the In-Line Jet (ILJ) nozzle in order to enhance… (more)

Narayanan, Vinod

2012-01-01T23:59:59.000Z

346

Hypervelocity jets from conical hollow-charges  

Science Conference Proceedings (OSTI)

In this article the formation of jets by means of the implosion of conical targets is analyzed. This implosion might be induced by high intensity lasers or X rays. It is known of experiments with explosive and numeric simulations that the formation of jets depends critically on the aperture of the cone. It is found in these simulations that for a given collapsing speed an angle of the cone exists below which jet doesn't take place. This critical angle grows with the collapsing speed. The numerical simulations seem to indicate that the production of jets is related to the separation of the shock wave that takes place in the collapsing region. We will also analyze the mass and kinetic energy of the jets taken place as a function of the initial opening of the cone.

Velarde, P. M.; Martinez-Val, J. M.; Eliezer, S.; Piera, M.; Guillen, J.; Cobo, M. D.; Ogando, F.; Crisol, A.; Gonzalez, L.; Prieto, J.; Velarde, G. [Instituto de Fusion Nuclear Universidad Politecnico de Madrid Jose Gutierrez Abascal 2, 28006 Madrid (Spain)

1997-04-15T23:59:59.000Z

347

A dichotomy in radio jet orientations  

E-Print Network (OSTI)

We examine the relative orientations of radio jets, central dust and stars in low-power (i.e., FR I and FR I/II) radio galaxies. We use the position angles of jet and dust to constrain the three-dimensional angle $\\theta_{\\rm DJ}$ between jet and dust. For galaxies with filamentary dust 'lanes' (which tend to be misaligned with the galaxy major axis) the jet is approximately perpendicular to the dust structure, while for galaxies with elliptical dust distributions (typically aligned with the galaxy major axis) there is a much wider distribution of $\\theta_{\\rm DJ}$. nThe dust ellipses are consistent with being nearly circular thin disks viewed at random viewing angles. The lanes are likely warped, unsettled dust structures. We consider two scenarios to explain the dust/jet orientation dichotomy.

Gijs Verdoes Kleijn; Tim de Zeeuw

2005-11-30T23:59:59.000Z

348

FY2001 Annual Progress Report for the Vehicle Propulsion & Ancillary Subsystems Program  

NLE Websites -- All DOE Office Websites (Extended Search)

PROPULSION & PROPULSION & ANCILLARY SUBSYSTEMS 2 0 0 1 A N N UA L P R O G R E S S R E P O R T U.S. Department of Energy Energy Efficiency and Renewable Energy Office of Transportation Technologies A C K N O W L E D G E M E N T We would like to express our sincere appreciation to Argonne National Laboratory and Computer Systems Management, Inc., for their artistic and technical contributions in preparing and publishing this report. In addition, we would like to thank all our program participants for their contributions to the programs and all the authors who prepared the project abstracts that comprise this report. U.S. Department of Energy Office of Advanced Automotive Technologies 1000 Independence Avenue, S.W. Washington, D.C. 20585-0121 FY 2001 Annual Progress Report for the Vehicle Propulsion & Ancillary Subsystems Program

349

Performance comparison between thrusters PPS1350 and the Phall 1 in optimal trajectories using flybies and solar electric propulsion  

Science Conference Proceedings (OSTI)

The spacecraft propulsion system has passed for diverse evolutions, leaving combustion engines and arriving at ion propulsion. The future interplanetary missions will probably use the conventional chemical rockets to leave the sphere of influence of ... Keywords: applied mathematics, astrodynamics, celestial mechanics, flyby, space trajectories

Denilson Paulo Souza Dos Santos; Antonio Fernando Bertachini De Almeida Prado

2010-07-01T23:59:59.000Z

350

Ditau jets in Higgs searches  

SciTech Connect

Understanding and identifying ditau jets--jets consisting of pairs of tau particles--can be of crucial importance and may even turn out to be a necessity if the Higgs boson decays dominantly to new light scalars which, on the other hand, decay to tau pairs. As often seen in various models beyond the standard model such as in the next-to-minimal supersymmetric standard model, Higgs portals, etc., the lightness of these new states ensures their large transverse momenta and, as a consequence, the collinearity of their decay products. We show that the nonstandard signatures of these objects, which can easily be missed by standard analysis techniques, can be superbly exploited in an analysis based on subjet observables. When combined with additional selection strategies, this analysis can even facilitate an early discovery of the Higgs boson. To be specific, a light Higgs can be found with S/{radical}(B) > or approx. 5 from L{approx_equal}12 fb{sup -1} of data. We combine all these observables into a single discriminating likelihood that can be employed toward the construction of a realistic and standalone ditau tagger.

Englert, Christoph; Roy, Tuhin S.; Spannowsky, Michael [Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg (Germany); Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Institute of Theoretical Science, University of Oregon, Eugene, Oregon 97403 (United States)

2011-10-01T23:59:59.000Z

351

Production of jet fuels from coal-derived liquids. Volume 7. GPGP jet-fuels production program. Evaluation of technical uncertainties for producing jet fuels from liquid by-products of the Great Plains gasification plant. Interim report, 2 October 1987-30 September 1988  

Science Conference Proceedings (OSTI)

In September 1986, the Fuels Branch of the Aero Propulsion Laboratory at Wright-Patterson Air Force Base, Ohio, began an investigation of the potential of jet-fuel production from the liquid by-product streams produced by the gasification of lignite at the Great Plains Gasification Plant (GPGP) in Beulah, North Dakota. Funding was provided by the Department of Energy (DOE) Pittsburgh Energy Technology Center (PETC) to administer the experimental portion of this effort. This document reports the results of the effort by Burns and Roe Services Corporation/Science Applications International Corporation (BRSC/SAIC) to analyze GPGP operations and develop correlations for the liquid by-products and plant operating factors such as coal feed rate and coal characteristics.

Fraser, M.D.; Rossi, R.J.; Wan, E.I.

1989-01-01T23:59:59.000Z

352

Numerical Simulations of Boiling Jet Impingement Cooling in Power Electronics  

DOE Green Energy (OSTI)

This paper explores turbulent boiling jet impingement for cooling power electronic components in hybrid electric vehicles.

Narumanchi, S.; Troshko, A.; Hassani, V.; Bharathan, D.

2006-12-01T23:59:59.000Z

353

Composite Octet Searches with Jet Substructure  

Science Conference Proceedings (OSTI)

Many new physics models with strongly interacting sectors predict a mass hierarchy between the lightest vector meson and the lightest pseudoscalar mesons. We examine the power of jet substructure tools to extend the 7 TeV LHC sensitivity to these new states for the case of QCD octet mesons, considering both two gluon and two b-jet decay modes for the pseudoscalar mesons. We develop both a simple dijet search using only the jet mass and a more sophisticated jet substructure analysis, both of which can discover the composite octets in a dijet-like signature. The reach depends on the mass hierarchy between the vector and pseudoscalar mesons. We find that for the pseudoscalar-to-vector meson mass ratio below approximately 0.2 the simple jet mass analysis provides the best discovery limit; for a ratio between 0.2 and the QCD-like value of 0.3, the sophisticated jet substructure analysis has the best discovery potential; for a ratio above approximately 0.3, the standard four-jet analysis is more suitable.

Bai, Yang; /SLAC; Shelton, Jessie; /Yale U.

2012-02-14T23:59:59.000Z

354

THE RHIC HYDROGEN JET LUMINESCENCE MONITOR.  

DOE Green Energy (OSTI)

A hydrogen jet polarimeter was developed for the RHIC accelerator to improve the process of measuring polarization. Particle beams intersecting with gas molecules can produce light by the process known as luminescence. This light can then be focused, collected, and processed giving important information such as size, position, emittance, motion, and other parameters. The RHIC hydrogen jet polarimeter was modified in 2005 with specialized optics, vacuum windows, light transport, and a new camera system making it possible to monitor the luminescence produced by polarized protons intersecting the hydrogen beam. This paper describes the configuration and preliminary measurements taken using the RHIC hydrogen jet polarimeter as a luminescence monitor.

RUSSO,T.; BELLAVIA, S.; GASSNER, D.; THIEBERGER, P.; TRBOJEVIC, D.; TSANG, T.

2007-06-25T23:59:59.000Z

355

Jet spoiler arrangement for wind turbine  

DOE Patents (OSTI)

An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the ends thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby inducing stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

Cyrus, Jack D. (Corrales, NM); Kadlec, Emil G. (Albuquerque, NM); Klimas, Paul C. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

356

Jet spoiler arrangement for wind turbine  

DOE Patents (OSTI)

An air jet spoiler arrangement is provided for a Darrieus-type vertical axis wind-powered turbine. Air is drawn into hollow turbine blades through air inlets at the end thereof and is ejected in the form of air jets through small holes or openings provided along the lengths of the blades. The air jets create flow separation at the surfaces of the turbine blades, thereby including stall conditions and reducing the output power. A feedback control unit senses the power output of the turbine and controls the amount of air drawn into the air inlets accordingly.

Cyrus, J.D.; Kadlec, E.G.; Klimas, P.C.

1983-09-15T23:59:59.000Z

357

Study of falling-jet flash evaporators  

DOE Green Energy (OSTI)

Experimental results of flash evaporation from sheets of water, 3.2 mm and 6.3 mm thick and 27.9 cm wide, falling freely in the presence of their own vapor, are reported. With no flashing the jets fall in coherent sheets, but with flashing the jets were observed to spread and break up into droplets. Flashing was characterized by an effectiveness parameter, which was found to increase with increasing water temperature and jet length. Variations in water flow rate and heat flux did not influence the effectiveness appreciably.

Kreith, F.; Olson, D.A.; Bharathan, D.; Green, H.J.

1982-11-01T23:59:59.000Z

358

NASA EG-2000-03-002-GSFC Exploring Magnetic Storms 1 Educational Product  

E-Print Network (OSTI)

the location of the station on the map. See the Teacher's Answer Key. 3) Discuss and work the following Time (in hours) Teacher's Answer Key Note: Times given to 1/2 hour accuracy are adequate_________________ #12;NASA EG-2000-03-002-GSFC Exploring Magnetic Storms 14 Teacher's Answer Key #12;NASA EG-2000

359

John C. Stennis Space Center www.nasa.gov/centers/stennis SPRING 2005  

E-Print Network (OSTI)

on the history and transformation of the Space Shuttle Main Engines that roared to life at SSC in 1975. HoweverJohn C. Stennis Space Center www.nasa.gov/centers/stennis SPRING 2005 Inside: New NASA S T R Y S I T E Explore. Discover. Understand. VOLUME 1, ISSUE 4 30 years of Space Shuttle Main Engine

360

Jet production in muon scattering at Fermilab E665  

SciTech Connect

Measurements of multi-jet production rates from Muon-Nucleon and Muon-Nuclei scattering at Fermilab-E665 are presented. Jet rates are defined by the JADE clustering algorithm. Rates in Muon-Nucleon deep-inelastic scattering are compared to Monte Carlo model predictions. Preliminary results from jet production on heavy targets, in the shadowing region, show a higher suppression of two-forward jets as compared to one-forward jet production.

Salgado, C.W.; E665 Collaboration

1993-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "nasa jet propulsion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Regional Super ESPC Saves Energy and Dollars at NASA Johnson Space Center |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regional Super ESPC Saves Energy and Dollars at NASA Johnson Space Regional Super ESPC Saves Energy and Dollars at NASA Johnson Space Center Regional Super ESPC Saves Energy and Dollars at NASA Johnson Space Center October 7, 2013 - 1:57pm Addthis Space Shuttle Endeavour, 2002 The NASA Johnson Space Flight Center in Houston is well known for its achievements in the U.S. space program (this 2002 photo shows the Space Shuttle Endeavour on its way to the International Space Station). Overview NASA will save approximately $43 million in facility operations costs over the next 23 years at the Johnson Space Flight Center (JSC) in Houston, Texas, thanks to the largest delivery order signed to date under a Regional Super Energy Savings Performance Contract (Super ESPC). The U. S. Department of Energy's Federal Energy Management Program (FEMP) instituted

362

Optimization of direct drive induction motors for electric ship propulsion with high speed propellers  

Science Conference Proceedings (OSTI)

Direct drive electric ship propulsion can offer increased flexibility and reduced overall fuel consumption compared to geared mechanical systems [Davis 1987, Doerry 2007]. As a well-established technology, induction motors are a dependable and economical ... Keywords: AC motors, induction motor drives, induction motors, thermal analysis

S. C. Englebretson; J. L. Kirtley, Jr; C. Chryssostomidis

2009-07-01T23:59:59.000Z

363

Exact solution of a Brownian inchworm model for self-propulsion  

E-Print Network (OSTI)

We present the exact solution of a Brownian inchworm model of a self-propelled elastic dimer which has recently been proposed in [K. V. Kumar \\textit{et al}, Phys. Rev. E \\textbf{77}, 020102(R) (2008)] as a unifying model for the propulsion mechanisms of DNA helicase, polar rods on a vibrated surface, crawling keratocytes, and Myosin VI.

A. Baule; K. Vijay Kumar; Sriram Ramaswamy

2009-03-09T23:59:59.000Z

364

A review of the Los Alamos effort in the development of nuclear rocket propulsion  

Science Conference Proceedings (OSTI)

This paper reviews the achievements of the Los Alamos nuclear rocket propulsion program and describes some specific reactor design and testing problems encountered during the development program along with the progress made in solving these problems. The relevance of these problems to a renewed nuclear thermal rocket development program for the Space Exploration Initiative (SEI) is discussed. 11 figs.

Durham, F.P.; Kirk, W.L.; Bohl, R.J.

1991-01-01T23:59:59.000Z

365

Performance analysis of the combined EDS maglev propulsion, levitation, and guidance system  

DOE Green Energy (OSTI)

An analysis of the Japanese maglev system which uses only one set of coils in the guideway for combined levitation, propulsion, and guidance functions is presented in this paper. This preliminary study, using the dynamic circuit approach, indicates that the system is very promising.

He, J.L.; Coffey, H.T.; Rote, D.M.

1993-10-01T23:59:59.000Z

366

Design Methodology of a Hybrid Propulsion Driven Electric Powered Miniature Tailsitter Unmanned Aerial Vehicle  

Science Conference Proceedings (OSTI)

Contrary to the manned tailsitter aircraft concepts, which have been shelved and forgotten after mid 1960's, the unmanned versions of these concepts have become popular. Since, tailsitter type UAVs combine both vertical takeoff and landing (VTOL) operation ... Keywords: Electric propulsion, Tailsitter, UAV, VTOL

Mirac Aksugur; Gokhan Inalhan

2010-01-01T23:59:59.000Z

367

Fourth international symposium on automotive propulsion systems. Volume I. [Eighteen papers  

DOE Green Energy (OSTI)

A pre-conference draft is given (in five volumes) of the proceedings of the 4th International Symposium on Automotive Propulsion Systems, held April 18-22, 1977, in Washington, D.C. Volume I contains eighteen papers; a separate abstract was prepared for each for ERDA Energy Research Abstracts (ERA).

Not Available

1977-01-01T23:59:59.000Z

368

Stochastic Dynamics of the Midlatitude Atmospheric Jet  

Science Conference Proceedings (OSTI)

The innate tendency of the background straining field of the midlatitude atmospheric jet to preferentially amplify a subset of disturbances produces a characteristic response to stochastic perturbation whether the perturbations are internally ...

Brian F. Farrell; Peteros J. Ioannou

1995-05-01T23:59:59.000Z

369

Jets (relativistic and non) in astrophysics  

E-Print Network (OSTI)

Let's take stock of the situation on one of the most studied astrophysical phenomena during the latest years: the jets escaping from protostars, stellar singularities, GRB and active galactic nuclei.

Foschini, Luigi

2010-01-01T23:59:59.000Z

370

String model for spinning quark jets  

Science Conference Proceedings (OSTI)

A string model of quark hadronization, taking the quark spin degree of freedom into account, is proposed. The method for using the model in a Monte-Carlo code for jet generation is given.

Artru, X.; Belghobsi, Z. [Universite de Lyon, CNRS/IN2P3 and Universite Lyon 1, Institut de Physique Nucleaire de Lyon, Laboratoire de Physique Theorique, Universite de Jijel (Algeria)

2012-06-27T23:59:59.000Z

371

Mixing Processes within the Polar Night Jet  

Science Conference Proceedings (OSTI)

Lagrangian material line simulations are performed using U.K. Meteorological Office assimilated winds and temperatures to examine mixing processes in the middle- and lower-stratospheric polar night jet during the 1992 Southern Hemisphere spring ...

R. Bradley Pierce; T. Duncan Fairlie; William L. Grose; Richard Swinbank; Alan O'Neill

1994-10-01T23:59:59.000Z

372

Internal shocks model for microquasar jets  

E-Print Network (OSTI)

We present an internal shocks model to investigate particle acceleration and radiation production in microquasar jets. The jet is modelled with discrete ejecta at various time intervals. These ejecta (or 'shells') may have different properties including the bulk velocity. Faster shells can catch up and collide with the slower ones, thus giving rise to shocks. The particles are accelerated inside the shocked plasma. Each collision results in a new shell, which may take part in any subsequent collisions as well as radiate due to synchrotron radiation. Almost continuous energy dissipation along the jet can be obtained with a large number of shell collisions. We investigate the spectral energy distribution of such jets as well as the physical significance of various parameters (e.g. the time interval between ejections and the shell size).

Omar Jamil; Rob Fender; Christian Kaiser

2008-11-20T23:59:59.000Z

373

Jet Fuel from Bio-Diesel  

NLE Websites -- All DOE Office Websites (Extended Search)

Jet Fuel from Bio-Diesel Background Due to concerns with limited resources of petroleum-based fuels, the demand for using renewable feedstocks, such as vegetable oils and animal...

374

Current-driven instability of magnetic jets  

E-Print Network (OSTI)

MHD instabilities can be responsible for the complex morphology of astrophysical jets. We consider the stability properties of jets containing both the azimuthal and axial field of subthermal strength. The presence of the magnetic field with complex topology in jets is suggested by theoretical models and it is consistent with recent observations. Stability is discussed by means of a linear analysis of the ideal MHD equations.We argue that, in the presence of azimuthal and axial magnetic fields, the jet is always unstable to non-axisymmetric perturbations. Stabilization does not occur even if the strengths of these field components are comparable. If the axial field is weaker than the azimuthal one, instability occurs for perturbations with any azimuthal wave number $m$, and the growth rate reach a saturation value for small values of $m$. If the axial field is stronger than the toroidal one, the instability shows off for perturbations with relatively large $m$.

Bonanno, Alfio

2010-01-01T23:59:59.000Z

375

The Initial Composition of Jet Condensation Trails  

Science Conference Proceedings (OSTI)

Physicochemical processes that generate and transform aerosols in jet aircraft plumes are discussed on the basis of theoretical models and recent observations of young contrails in the upper troposphere. The initial evolution of optical depth and ...

B. Kärcher; Th Peter; U. M. Biermann; U. Schumann

1996-11-01T23:59:59.000Z

376

Persistent Multiple Jets and PV Staircase  

Science Conference Proceedings (OSTI)

The persistence of multiple jets is investigated with a quasigeostrophic, two-layer, ?-plane channel model. Linearly unstable normal modes are found to be capable of qualitatively describing the eddy fluxes of the nonlinear model. For a ...

Changhyun Yoo; Sukyoung Lee

2010-07-01T23:59:59.000Z

377

Developments of the ATLAS Jet Trigger  

E-Print Network (OSTI)

There have been a lot of recent changes in the ATLAS jet trigger. The standard strategy, based on Regions Of Interest, is not well-suited for multi-jet events since it leads to pathologies and efficiency losses. This philosophy has been changed for the jet trigger, and we now have the possibility of unpacking the full calorimeter at Event Filter and (even for a small subset of the events) at an intermediate level between Level-1 and Level-2. We also moved to the use of calibrated scale at trigger level, and to the application of noise cuts to reduce rate spikes. We will present the performance of the jet trigger in 2011, when most of these changes were operational

Lopes, L; The ATLAS collaboration

2012-01-01T23:59:59.000Z

378

Performance of the ATLAS Jet Trigger  

E-Print Network (OSTI)

There have been a lot of recent changes in the ATLAS jet trigger. The standard strategy, based on Regions Of Interest, is not well-suited for multi-jet events since it leads to pathologies and efficiency losses. This philosophy has been changed for the jet trigger, and we now have the possibility of unpacking the full calorimeter at Event Filter and (even for a small subset of the events) at an intermediate level between Level-1 and Level-2. We also moved to the use of calibrated scale at trigger level, and to the application of noise cuts to reduce rate spikes. We will present the performance of the jet trigger in 2011, when most of these changes were operational

Lopes, L; The ATLAS collaboration

2012-01-01T23:59:59.000Z

379

U.S. Exports of Kerosene-Type Jet Fuel (Thousand Barrels per Day)  

U.S. Energy Information Administration (EIA)

Kerosene-Type Jet Fuel Exports; Kerosene-Type Jet Fuel Exports by Destination; Kerosene-Type Jet Fuel Supply and Disposition ...

380

New results on jet fragmentation at CDF  

SciTech Connect

Presented are the latest results of jet fragmentation studies at the Tevatron using the CDF Run II detector. Studies include the distribution of transverse momenta (Kt) of particles jets, two-particle momentum correlations, and indirectly global event shapes in p{bar p} collisions. Results are discussed within the context of recent Next-to-Leading Log calculations as well as earlier experimental results from the Tevatron and e{sup +}e{sup -} colliders.

Jindariani, Sergo; /Florida U.

2006-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "nasa jet propulsion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Dark Matter Jets at the LHC  

SciTech Connect

We argue that dark matter particles which have strong interactions with the Standard Model particles are not excluded by current astrophysical constraints. These dark matter particles have unique signatures at colliders; instead of missing energy, the dark matter particles produce jets. We propose a new search strategy for such strongly interacting particles by looking for a signal of two trackless jets. We show that suitable cuts can plausibly allow us to find these signals at the LHC even in early data.

Bai, Yang; /SLAC; Rajaraman, Arvind; /UC, Irvine

2012-03-28T23:59:59.000Z

382

NASA Cold Land Processes Experiment (CLPX 2002/03): Field Measurements of Snowpack Properties and Soil Moisture  

Science Conference Proceedings (OSTI)

A field measurement program was undertaken as part NASA’s Cold Land Processes Experiment (CLPX). Extensive snowpack and soil measurements were taken at field sites in Colorado over four study periods during the two study years (2002 and 2003). ...

Kelly Elder; Don Cline; Glen E. Liston; Richard Armstrong

2009-02-01T23:59:59.000Z

383

Supersonic Jet Excitation using Flapping Injection  

E-Print Network (OSTI)

Supersonic jet noise reduction is important for high speed military aircraft. Lower acoustic levels would reduce structural fatigue leading to longer lifetime of the jet aircraft. It is not solely structural aspects which are of importance, health issues of the pilot and the airfield per- sonnel are also very important, as high acoustic levels may result in severe hearing damage. It remains a major challenge to reduce the overall noise levels of the aircraft, where the supersonic exhaust is the main noise source for near ground operation. Fluidic injection into the supersonic jet at the nozzle exhaust has been shown as a promising method for noise reduction. It has been shown to speed up the mix- ing process of the main jet, hence reducing the kinetic energy level of the jet and the power of the total acoustic radiation. Furthermore, the interaction mechanism between the fluidic injection and the shock structure in the jet exhaust plays a crucial role in the total noise radia- tion. In this study, LES is used...

Hafsteinsson, Haukur; Andersson, Niklas; Cuppoletti, Daniel; Gutmark, Ephraim; Prisell, Erik

2013-01-01T23:59:59.000Z

384

Jet energy scale determination in the D0 experiment  

E-Print Network (OSTI)

The calibration of jet energy measured in the \\DZero detector is presented, based on ppbar collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. Jet energies are measured using a sampling calorimeter composed of uranium and liquid argon as the passive and active media, respectively. This paper describes the energy calibration of jets performed with photon+jet, Z+jet and dijet{} events, with jet transverse momentum pT > 6 GeV and pseudorapidity range |eta| energy in simulation and in particular of the effects due to the flavor of the parton originating the jet, correcting biases up to 3%-4% in jets with low pT originating from gluons and up to 6%-8% in jets from b quarks.

D0 Collaboration

2013-12-24T23:59:59.000Z

385

Comparison of Water Vapor Measurements by Airborne Sun Photometer and Diode Laser Hygrometer on the NASA DC-8  

Science Conference Proceedings (OSTI)

In January–February 2003, the 14-channel NASA Ames airborne tracking sun photometer (AATS) and the NASA Langley/Ames diode laser hygrometer (DLH) were flown on the NASA DC-8 aircraft. The AATS measured column water vapor on the aircraft-to-sun ...

J. M. Livingston; B. Schmid; P. B. Russell; J. R. Podolske; J. Redemann; G. S. Diskin

2008-10-01T23:59:59.000Z

386

AIAA Paper 2006-0102 Analysis of Jet Effects on Co-Flow Jet Airfoil  

E-Print Network (OSTI)

.-C. Zha, C. Paxton, A. Conley, A. Wells, and B. Carroll, "Effect of Injection Slot Size on High in this paper to analyze the jet effect on co-flow jet airfoil with injection and suction and the airfoil with injection only. The ducts reaction forces formulations to be included for lift and drag calculation

Zha, Gecheng

387

NASA Lewis steady-state heat pipe code users manual  

SciTech Connect

The NASA Lewis heat pipe code has been developed to predict the performance of heat pipes in the steady state. The code can be used as a design tool on a personal computer or, with a suitable calling routine, as a subroutine for a mainframe radiator code. A variety of wick structures, including a user input option, can be used. Heat pipes with multiple evaporators, condensers, and adiabatic sections in series and with wick structures that differ among sections can be modeled. Several working fluids can be chosen, including potassium, sodium, and lithium, for which the monomer-dimer equilibrium is considered. The code incorporates a vapor flow algorithm that treats compressibility and axially varying heat input. This code facilitates the determination of heat pipe operating temperatures and heat pipe limits that may be encountered at the specified heat input and environment temperature. Data are input to the computer through a user-interactive input subroutine. Output, such as liquid and vapor pressures and temperatures, is printed at equally spaced axial positions along the pipe as determined by the user.

Tower, L.K. [Sverdrup Technology, Inc., Brook Park, OH (United States). Lewis Research Center Group; Baker, K.W. [National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center; Marks, T.S. [Oregon State Univ., Corvallis, OR (United States)

1992-06-01T23:59:59.000Z

388

Aerothermodynamics, Comprehensive Technical Report, Direct Air Cycle, General Electric's Air Craft Nuclear Propulsion Program  

SciTech Connect

This is one of twenty-one volumes summarizing the Aircraft Nuclear Propulsion Program of the General Electric Company. This volume summarizes the methods and techquies developed for use in the thermal design of nuclear reactors associated with that program.

Noyes, R.N.

1961-12-06T23:59:59.000Z

389

REACTOR AND SHIELD PHYSICS. Comprehensive Technical Report, General Electric Direct-Air-Cycle, Aircraft Nuclear Propulsion Program.  

SciTech Connect

This volume is one of twenty-one summarizing the Aircraft Nuclear Propulsion Program of the General Electric Company. This volume describes the experimental and theoretical work accomplished in the areas of reactor and shield physics.

Edwards, W.E.; Simpson, J.D.

1962-01-01T23:59:59.000Z

390

FRPC User Guidance -for FY2006  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research Center Dryden Flight Research Center 80 04 Goddard Space Flight Cen Goddard Space Flight Center 80 05 Jet Propulsion Laborator Jet Propulsion Laboratory 80 06 Johnson...

391

ON THE STRUCTURE AND STABILITY OF MAGNETIC TOWER JETS  

SciTech Connect

Modern theoretical models of astrophysical jets combine accretion, rotation, and magnetic fields to launch and collimate supersonic flows from a central source. Near the source, magnetic field strengths must be large enough to collimate the jet requiring that the Poynting flux exceeds the kinetic energy flux. The extent to which the Poynting flux dominates kinetic energy flux at large distances from the engine distinguishes two classes of models. In magneto-centrifugal launch models, magnetic fields dominate only at scales {approx}< 100 engine radii, after which the jets become hydrodynamically dominated (HD). By contrast, in Poynting flux dominated (PFD) magnetic tower models, the field dominates even out to much larger scales. To compare the large distance propagation differences of these two paradigms, we perform three-dimensional ideal magnetohydrodynamic adaptive mesh refinement simulations of both HD and PFD stellar jets formed via the same energy flux. We also compare how thermal energy losses and rotation of the jet base affects the stability in these jets. For the conditions described, we show that PFD and HD exhibit observationally distinguishable features: PFD jets are lighter, slower, and less stable than HD jets. Unlike HD jets, PFD jets develop current-driven instabilities that are exacerbated as cooling and rotation increase, resulting in jets that are clumpier than those in the HD limit. Our PFD jet simulations also resemble the magnetic towers that have been recently created in laboratory astrophysical jet experiments.

Huarte-Espinosa, M.; Frank, A.; Blackman, E. G. [Department of Physics and Astronomy, University of Rochester, 600 Wilson Boulevard, Rochester, NY 14627-0171 (United States); Ciardi, A. [LERMA, Universite Pierre et Marie Curie, Observatoire de Paris, F-92195 Meudon (France); Hartigan, P. [Department of Physics and Astronomy, Rice University, 6100 S. Main, Houston, TX 77521-1892 (United States); Lebedev, S. V.; Chittenden, J. P. [Blackett Laboratory, Imperial College London, SW7 2BW London (United Kingdom)

2012-09-20T23:59:59.000Z

392

A sodium-sulfur battery for the ETX-II propulsion system  

DOE Green Energy (OSTI)

A Canadian built 52 kWh sodium-sulphur battery is being integrated with the ETX-II powertrain. The propulsion system thus formed is being installed in a Ford Aerostar compact-size van for test and development purposes. The selection and design of the traction battery, as an integral part of the propulsion system, will be outlined in this paper along with the projected performance of the test bed vehicle under both highway and urban driving conditions. The results of a battery optimization study will also be discussed. Braking energy recovery (regeneration) is an important part of the ETX-II system capability and needs to be carefully managed when used with sodium-sulphur batteries. This will be discussed to show its effect on the system performance.

Altmejd, M. (Powerplex Technologies, Inc., Downsview, ON (Canada)); Dzieciuch, M. (Ford Motor Co., Dearborn, MI (United States))

1988-01-01T23:59:59.000Z

393

A sodium-sulfur battery for the ETX-II propulsion system  

Science Conference Proceedings (OSTI)

A Canadian built 52 kWh sodium-sulphur battery is being integrated with the ETX-II powertrain. The propulsion system thus formed is being installed in a Ford Aerostar compact-size van for test and development purposes. The selection and design of the traction battery, as an integral part of the propulsion system, will be outlined in this paper along with the projected performance of the test bed vehicle under both highway and urban driving conditions. The results of a battery optimization study will also be discussed. Braking energy recovery (regeneration) is an important part of the ETX-II system capability and needs to be carefully managed when used with sodium-sulphur batteries. This will be discussed to show its effect on the system performance.

Altmejd, M. [Powerplex Technologies, Inc., Downsview, ON (Canada); Dzieciuch, M. [Ford Motor Co., Dearborn, MI (United States)

1988-12-31T23:59:59.000Z

394

Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research  

SciTech Connect

Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

2012-09-01T23:59:59.000Z

395

Research, development, and demonstration of nickel-iron batteries for electric vehicle propulsion. Annual report, 1980  

DOE Green Energy (OSTI)

The objective of the Eagle-Picher nickel-iron battery program is to develop a nickel-iron battery for use in the propulsion of electric and electric-hybrid vehicles. To date, the program has concentrated on the characterization, fabrication and testing of the required electrodes, the fabrication and testing of full-scale cells, and finally, the fabrication and testing of full-scale (270 AH) six (6) volt modules. Electrodes of the final configuration have now exceeded 1880 cycles and are showing minimal capacity decline. Full-scale cells have presently exceeded 600 cycles and are tracking the individual electrode tests almost identically. Six volt module tests have exceeded 500 cycles, with a specific energy of 48 Wh/kg. Results to date indicate the nickel-iron battery is beginning to demonstrate the performance required for electric vehicle propulsion.

Not Available

1981-03-01T23:59:59.000Z

396

Comparisons of the NASA ER-2 Meteorological Measurement System with Radar Tracking and Radiosonde Data  

Science Conference Proceedings (OSTI)

Measurements of aircraft longitude, latitude, and velocity, and measurements of atmospheric pressure, temperature, and horizontal wind from the meteorological measurement system (MMS) on board the NASA ER-2 aircraft were compared with independent ...

Steven E. Gaines; Stuart W. Bowen; R. Stephen Hipskind; T. Paul Bui; K. Roland Chan

1992-06-01T23:59:59.000Z

397

NASA and DOE Collaborate on Dark Energy Research | U.S. DOE Office of  

Office of Science (SC) Website

8 » NASA and DOE 8 » NASA and DOE Collaborate on Dark Energy Research News Featured Articles 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Presentations & Testimony News Archives Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 11.19.08 NASA and DOE Collaborate on Dark Energy Research Print Text Size: A A A Subscribe FeedbackShare Page WASHINGTON, DC -- NASA and the U.S. Department of Energy (DOE) have signed a memorandum of understanding for the implementation of the Joint Dark Energy Mission, or JDEM. The mission will feature the first space-based observatory designed specifically to understand the nature of dark energy. Dark energy is a form of energy that pervades and dominates the universe.

398

Using NASA Remote Sensing Data to Reduce Uncertainty of Land-Use Transitions in  

NLE Websites -- All DOE Office Websites (Extended Search)

NASA Remote Sensing Data to Reduce Uncertainty of Land-Use Transitions in NASA Remote Sensing Data to Reduce Uncertainty of Land-Use Transitions in Global Carbon-Climate Models: Data Management Plan L. Chini, G.C. Hurtt, M. Hansen, and P. Potapov Department of Geography University of Maryland The following Data Management Plan was part of the NASA ROSES 2012 Proposal Using NASA Remote Sensing Data to Reduce Uncertainty of Land-Use Transitions in Global Carbon- Climate Models (summary) submitted to the Terrestrial Ecology Program. It is presented as an example plan. Data Management Plan The proposed project will generate important new datasets of remote-sensing-based land-use transitions and their inherent uncertainty. Our plan for managing these datasets includes quality assessment, long-term archiving, and data sharing and dissemination (along with documentation

399

NASA and DOE Collaborate on Dark Energy Research | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NASA and DOE Collaborate on Dark Energy Research NASA and DOE Collaborate on Dark Energy Research NASA and DOE Collaborate on Dark Energy Research November 19, 2008 - 4:58pm Addthis WASHINGTON, DC -- NASA and the U.S. Department of Energy (DOE) have signed a memorandum of understanding for the implementation of the Joint Dark Energy Mission, or JDEM. The mission will feature the first space-based observatory designed specifically to understand the nature of dark energy. Dark energy is a form of energy that pervades and dominates the universe. The mission will measure with high precision the universe's expansion rate and growth structure. Data from the mission could help scientists determine the properties of dark energy, fundamentally advancing physics and astronomy. "Understanding the nature of dark energy is the biggest challenge in

400

February 20, 2008: Navy shoots down NASA satellite | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2008: Navy shoots down NASA satellite 0, 2008: Navy shoots down NASA satellite February 20, 2008: Navy shoots down NASA satellite February 20, 2008: Navy shoots down NASA satellite February 20, 2008 The Navy successfully shoots down with a missile an errant satellite 133 miles above the earth. DOE's National Nuclear Security Administration (NNSA) assists the Navy using its Red Storm supercomputer, located at its Sandia National Laboratories. For about two months, NNSA diverted Red Storm and its technical experts and codes to the secret project to simulate, assess, and plan the complex mission. All 26,569 processors were used on Red Storm to perform complex simulations that allowed NNSA's technical experts to predict various details and possibilities. The work helped answer many questions, such as at what altitude to hit the satellite, how

Note: This page contains sample records for the topic "nasa jet propulsion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nasa Space Radiation Laboratory (NSRL) | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Nasa Space Radiation Laboratory (NSRL) Nasa Space Radiation Laboratory (NSRL) Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Spinoff Applications Spinoff Archives SBIR/STTR Applications of Nuclear Science and Technology Funding Opportunities Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: sc.np@science.doe.gov More Information » Spinoff Archives Nasa Space Radiation Laboratory (NSRL) Print Text Size: A A A RSS Feeds FeedbackShare Page Application/Instrumentation: NASA Space Radiation Laboratory (NSRL) Developed at: Brookhaven National Laboratory, Collider-Accelerator Department (C-AD)

402

DOE and NASA Reach Cleanup Agreements with the State of California for the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NASA Reach Cleanup Agreements with the State of California NASA Reach Cleanup Agreements with the State of California for the Santa Susana Field Laboratory DOE and NASA Reach Cleanup Agreements with the State of California for the Santa Susana Field Laboratory December 6, 2010 - 12:00am Addthis Washington, D.C. - The Department of Energy and NASA both signed Administrative Orders on Consent (AOC) with the California Environmental Protection Agency (Cal EPA) today that define the process for characterization and the cleanup end-state for portions of the Santa Susana Field Laboratory (SSFL). The agreements come after more than 10 months of negotiations and extensive public comment on the conceptual framework for cleanup outlined in the Agreement in Principle and additional public comment on the legally enforceable process and procedures in the draft Administrative Order on

403

Nasa Space Radiation Laboratory (NSRL) | U.S. DOE Office of Science...  

Office of Science (SC) Website

with heavy ions was carried out at the AGS accelerator. To simulate the less than 1-GeV energy spectrum of galactic cosmic rays and solar radiation better, NASA and Brookhaven...

404

Nasa Space Radiation Laboratory (NSRL) | U.S. DOE Office of Science...  

Office of Science (SC) Website

To simulate the less than 1-GeV energy spectrum of galactic cosmic rays and solar radiation better, NASA and Brookhaven have worked together to build the NSRL based at...

405

Introduction of grid computing application projects at the NASA earth science technology office  

Science Conference Proceedings (OSTI)

In 2003, NASA Earth Science Technology Office (ESTO) awarded funding for 20 new investigations in information systems technology development under the Advanced Information Systems Technology (AIST) Program. Two of the selected proposals specifically ...

Kai-Dee Chu; Liping Di; Peter Thornton

2006-05-01T23:59:59.000Z

406

NASA and DOE Collaborate on Dark Energy Research | U.S. DOE Office...  

Office of Science (SC) Website

8 NASA and DOE Collaborate on Dark Energy Research News In the News In Focus 2013 2012 2011 2010 2009 2008 2007 2006 2005 Presentations & Testimony Recovery Act Contact...

407

NASA investments in in situ technologies and instruments for sample return missions  

Science Conference Proceedings (OSTI)

Instrument technologies for the in situ exploration of planets are of particular interest for future NASA planetary science missions.12 In situ analysis is complicated because answering specific science questions requires technologies suited to specific ...

Janice L. Buckner; Lisa May

2011-03-01T23:59:59.000Z

408

The Statistics and Structure of Subseasonal Midlatitude Variability in NASA GSFC GCMs  

Science Conference Proceedings (OSTI)

A comprehensive analysis of midlatitude intraseasonal variability in extended integrations of NASA GSFC general circulation models (GCMs) is conducted. This is approached by performing detailed intercomparisons of the representation of the storm ...

Dennis P. Robinson; Robert X. Black

2005-08-01T23:59:59.000Z

409

Intense Convection Observed by NASA ER-2 in Hurricane Emily (2005)  

Science Conference Proceedings (OSTI)

On 17 July, intense convection in the eyewall of Hurricane Emily (2005) was observed by the high-altitude (20 km) NASA ER-2 aircraft. Analysis of this convection is undertaken using downward-looking radar, passive microwave radiometer, electric ...

Daniel J. Cecil; Kevin R. Quinlan; Douglas M. Mach

2010-03-01T23:59:59.000Z

410

Joint NOAA, Navy, NASA Hurricane Test Bed Terms of Reference  

E-Print Network (OSTI)

(JHT) to advance the transfer of new research and technology into operational hurricane prediction. The JHT will routinely serve as a conduit between the operational, academic, and research communities. This facility will be located at the National Hurricane Center (NHC) in Miami, FL. Whereas the operational center and associated personnel could be the NHC, the Joint Typhoon Warning Center (JTWC, Navy), or the Central Pacific Hurricane Center (CPHC), and NHC will be specified in this document, both for brevity and to acknowledge the current focus of the JHT on that organization. Use of other facilities is possible depending on requirements, workload, and opportunity. II. Mission Statement The mission of the Joint (NOAA, Navy, and NASA) Hurricane Test Bed is to transfer more rapidly and smoothly new technology, research results, and observational advances of the USWRP, its sponsoring agencies, the academic community and other groups into improved tropical cyclone analysis and prediction at operational centers. III. Concept of Operations The JHT is the initial test bed activity funded by the USWRP and is established to accelerate the technology infusion focused on hurricane analysis and prediction. Until all test beds are organized under a national test bed activity, the USWRP Interagency Program Office (IPO) provides coordination and oversight. The USWRP/IPO will facilitate outreach, the proposal process, and interaction with the oversight board, funding, and other tasks common to the test beds. The JHT will work with the USWRP/IPO to accomplish those tasks appropriate for administration of the hurricane test bed. The JHT mission will be accomplished by the following: • assessing scientific breakthroughs and new techniques to identify advanced, realtime, data-analysis techniques, forecast models, and observational systems that have potential for significantly improving the forecast guidance provided to hurricane forecasters; completing tests of the codes, products, and observations in a quasi-operational information technology (IT) environment subject to metrics that mandate good scientific performance while meeting ease-of use criteria and time constraints;

unknown authors

2012-01-01T23:59:59.000Z

411

Jet physics from static charges in AdS space  

E-Print Network (OSTI)

Soft interactions with high-energy jets are explored in radial coordinates which exploit the approximately conformal behavior of perturbative gauge theories. In these coordinates, the jets, approximated by Wilson lines, ...

Stewart, Iain

412

The Dynamical Relationship between Subtropical and Eddy-Driven Jets  

Science Conference Proceedings (OSTI)

This study examines the impact of a subtropical jet on the development of baroclinic waves and polar-front jets with an idealized multilevel primitive equation model. Linear stability analysis and initial-value approaches suggest that baroclinic ...

Sukyoung Lee; Hyun-kyung Kim

2003-06-01T23:59:59.000Z

413

Recirculation Gyres Forced by a Beta-Plane Jet  

Science Conference Proceedings (OSTI)

A numerical model, with quasigeostrophic and barotropic dynamics, is used to study the forcing of mean flows by an unstable jet. The initially zonal jet has specified shape and transport at the western inflow boundary and is sufficiently intense ...

Steven R. Jayne; Nelson G. Hogg; Paola Malanotte-Rizzoli

1996-04-01T23:59:59.000Z

414

Jet Jumping: Low-Frequency Variability in the Southern Ocean  

Science Conference Proceedings (OSTI)

The authors study intrinsic variability in the position of jets in a ?-plane channel ocean with simple topography using a quasigeostrophic numerical model. This study links the variability in jet position with abyssal anticyclones that form as a ...

Christopher C. Chapman; Andrew McC. Hogg

2013-05-01T23:59:59.000Z

415

Formation of Jets and Equatorial Superrotation on Jupiter  

Science Conference Proceedings (OSTI)

The zonal flow in Jupiter’s upper troposphere is organized into alternating retrograde and prograde jets, with a prograde (superrotating) jet at the equator. Existing models posit as the driver of the flow either differential radiative heating of ...

Tapio Schneider; Junjun Liu

2009-03-01T23:59:59.000Z

416

Recapturing Graphite-Based Fuel Element Technology for Nuclear Thermal Propulsion  

SciTech Connect

ORNL is currently recapturing graphite based fuel forms for Nuclear Thermal Propulsion (NTP). This effort involves research and development on materials selection, extrusion, and coating processes to produce fuel elements representative of historical ROVER and NERVA fuel. Initially, lab scale specimens were fabricated using surrogate oxides to develop processing parameters that could be applied to full length NTP fuel elements. Progress toward understanding the effect of these processing parameters on surrogate fuel microstructure is presented.

Trammell, Michael P [ORNL; Jolly, Brian C [ORNL; Miller, James Henry [ORNL; Qualls, A L [ORNL; Harrison, Thomas J [ORNL

2013-01-01T23:59:59.000Z

417

Heavy vehicle propulsion system materials program semiannual progress report for April 1999 through September 1999  

DOE Green Energy (OSTI)

The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1-3 trucks to realize a 35% fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7-8 trucks.

Johnson, D.R.

2000-01-01T23:59:59.000Z

418

Space Math http://spacemath.gsfc.nasa.gov A supplementary collection  

E-Print Network (OSTI)

. The problems were designed to be `one-pagers' with a Teacher's Guide and Answer Key as a second page Math http://spacemath.gsfc.nasa.gov #12;Answer Key 1.1.1 Problem 1 ­ 11.3 x (12 inches/foot)x(12 inches://spacemath.gsfc.nasa.gov #12;1.1.2 Answer Key: Conversion Table: 4 Gallons = 1 Bucket 142.065 cubic centimeters = 1 Noggin 9

419

Agency Datasets | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Surface Meterorology and Solar Energy Surface Meterorology and Solar Energy Renewable energy resource website NASA Geography and Environment MY NASA DATA data access, lessons plans, computer tools, science focus NASA Geography and Environment Earth Observations -Astronaut Photography The Gateway to Astronaut Photography of Earth database of images hosts the best and most complete online collection of astronaut photographs of the Earth. NASA Geography and Environment Global Climate Change NASA's Eyes on the Earth: Global Climate Change and Global Warming. Current news and data streams about global warming and climate change from NASA's Jet Propulsion Laboratory. NASA Science and Technology JPL Tropical Cyclone Information System The JPL Tropical Cyclone Information System (TCIS) brings together satellite and in situ data sets from various sources to help you find information for a particular tropical cyclone over the world's oceans.

420

High energy emission from galactic jets  

E-Print Network (OSTI)

In this chapter we review some aspects of X-ray binaries, particularly those presenting steady jets, i.e. microquasars. Because of their proximity and similarities with active galactic nuclei (AGN), galactic jet sources are unique laboratories to test astrophysical theories of a universal scope. Due to recent observational progress made with the new generation of gamma-ray imaging atmospheric Cherenkov telescopes and in view of the upcoming km3-size neutrino detectors, we focus especially on the possible high-energy gamma radiation and neutrino emission. In connection with this, we also comment about astrophysical jets present in young stellar objects, and we briefly discuss similarities and differences with extragalactic AGN and gamma-ray bursters.

H. R. Christiansen

2013-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "nasa jet propulsion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Experimental Investigation of the Reflection Mode Micro Laser Propulsion under Highly Frequent and Multi Pulse Laser  

SciTech Connect

Micro laser propulsion used for some space tasks of micro-satellites are preferred to providing small thrust and high specific impulse while keeping power consumption low. Most previous work on micro laser propulsion are about transmission mode (T-mode) using a CW laser. In this article, a pulsed fiber laser is used to study the micro laser propulsion performance under reflection mode. Multi pulse (ranged from 100 to 2000) tests are conducted on a double base propellant with the vacuum less than 10 Pa. The laser frequency is 20 kHz and two kinds of instantaneous power density 4.77x10{sup 6} W/cm{sup 2} and 2.39x10{sup 7} W/cm{sup 2} are used. It is found that the momentum coupling coefficient C{sub m} and the mean thrust F increases with the increasing pulse numbers, which is different to the previous work. By adjusting the irradiation time T, it is easy to get a large mean thrust, up to mN. When the energy density is the same, C{sub m}, I{sub sp}, F and {eta} increase with the increasing power density. Also I{sub sp} and {eta} are very low, laser ablation is insufficiently under the current condition. 3D Morphology of the ablation hole is obtained by confocal microscope for the first time.

Zhang Xinghua; Cai Jian [Microelectronic Equipment Technology Department, Institute of Microelectronics of the Chinese Academy of Sciences, Beijing, 100029 (China); Li Long [Department of Modern Mechanics, University of Science and Technology of China, Hefei, 230027 (China)

2011-11-10T23:59:59.000Z

422

CO{sub 2} Laser Ablation Propulsion Area Scaling With Polyoxymethylene Propellant  

SciTech Connect

The topic of area scaling is of great importance in the laser propulsion field, including applications to removal of space debris and to selection of size ranges for laser propulsion craft in air or vacuum conditions. To address this issue experimentally, a CO{sub 2} laser operating at up to 10 J was used to irradiate targets. Experiments were conducted in air and vacuum conditions over a range of areas from about 0.05-5 cm{sup 2} to ablate flat polyoxymethylene targets at several fluences. Theoretical effects affecting area scaling, such as rarefaction waves, thermal diffusion, and diffraction, are discussed in terms of the experimental results. Surface profilometry was used to characterize the ablation samples. A CFD model is used to facilitate analysis, and key results are compared between experimental and model considerations. The dependence of key laser propulsion parameters, including the momentum coupling coefficient and specific impulse, are calculated based on experimental data, and results are compared to existing literature data.

Sinko, John E. [Micro-Nano Global Center of Excellence, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603 (Japan); Ichihashi, Katsuhiro; Ogita, Naoya; Sakai, Takeharu; Sasoh, Akihiro [Department of Aerospace Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603 (Japan); Tsukiyama, Yosuke [Micro-Nano Global Center of Excellence, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603 (Japan); Department of Mechanical Science and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603 (Japan); Umehara, Noritsugu [Department of Mechanical Science and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603 (Japan)

2010-05-06T23:59:59.000Z

423

An Overview of Facilities and Capabilities to Support the Development of Nuclear Thermal Propulsion  

DOE Green Energy (OSTI)

Abstract. The future of American space exploration depends on the ability to rapidly and economically access locations of interest throughout the solar system. There is a large body of work (both in the US and the Former Soviet Union) that show that Nuclear Thermal Propulsion (NTP) is the most technically mature, advanced propulsion system that can enable this rapid and economical access by its ability to provide a step increase above what is a feasible using a traditional chemical rocket system. For an NTP system to be deployed, the earlier measurements and recent predictions of the performance of the fuel and the reactor system need to be confirmed experimentally prior to launch. Major fuel and reactor system issues to be addressed include fuel performance at temperature, hydrogen compatibility, fission product retention, and restart capability. The prime issue to be addressed for reactor system performance testing involves finding an affordable and environmentally acceptable method to test a range of engine sizes using a combination of nuclear and non-nuclear test facilities. This paper provides an assessment of some of the capabilities and facilities that are available or will be needed to develop and test the nuclear fuel, and reactor components. It will also address briefly options to take advantage of the greatly improvement in computation/simulation and materials processing capabilities that would contribute to making the development of an NTP system more affordable. Keywords: Nuclear Thermal Propulsion (NTP), Fuel fabrication, nuclear testing, test facilities.

James Werner; Sam Bhattacharyya; Mike Houts

2011-02-01T23:59:59.000Z

424

Jets and the hadronic final state at HERA  

E-Print Network (OSTI)

Recent results on jets and the hadronic final state from the HERA collaborations H1 and ZEUS are reviewed.

T. Schoerner-Sadenius

2004-10-07T23:59:59.000Z

425

Photon - Jet Correlations and Constraints on Fragmentation Functions  

E-Print Network (OSTI)

We study the production of a large-pT photon in association with a jet in proton-proton collisions. We examine the sensitivity of the jet rapidity distribution to the gluon distribution function in the proton. We then assess the sensitivity of various photon + jet correlation observables to the photon fragmentation functions. We argue that RHIC data on photon-jet correlations can be used to constrain the photon fragmentation functions in a region which was barely accessible in LEP experiments.

Z. Belghobsi; M. Fontannaz; J. -Ph. Guillet; G. Heinrich; E. Pilon; M. Werlen

2009-03-27T23:59:59.000Z

426

On the Counter-jet Emission in GRB Afterglows  

Science Conference Proceedings (OSTI)

We investigate the dynamical evolution of double-sided jets and present detailed numerical studies on the emission from the receding jet of gamma-ray bursts. It is found that the receding jet emission is generally very weak and only manifests as a plateau in the late time radio afterglow light curves. Additionally, we find that the effect of synchrotron self-absorption can influence the peak time of the receding jet emission significantly.

Wang Xin; Huang, Y. F. [Department of Astronomy, Nanjing University, Nanjing 210093 (China)

2010-10-15T23:59:59.000Z

427

Gauge/gravity duality and jets in strongly coupled plasma  

E-Print Network (OSTI)

We discuss jets in strongly coupled N = 4 supersymmetric Yang-Mills plasma and their dual gravitational description.

Chesler, Paul M

2009-01-01T23:59:59.000Z

428

Gauge/gravity duality and jets in strongly coupled plasma  

E-Print Network (OSTI)

We discuss jets in strongly coupled N = 4 supersymmetric Yang-Mills plasma and their dual gravitational description.

Paul M. Chesler

2009-07-26T23:59:59.000Z

429

Puerto Rico Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

430

Michigan Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro.. Kerosene/Jet Fuel Downstream Charge Capacity (B/SD) Michigan Downstream Charge Capacity of Operable Petroleum Refineries ...

431

Optimized Parameters for a Mercury Jet Target  

Science Conference Proceedings (OSTI)

A study of target parameters for a high-power, liquid mercury jet target system for a neutrino factory or muon collider is presented. Using the MARS code, we simulate particle production initiated by incoming protons with kinetic energies between 2 and 100 GeV. For each proton beam energy, we maximize production by varying the geometric parameters of the target: the mercury jet radius, the incoming proton beam angle, and the crossing angle between the mercury jet and the proton beam. The number of muons surviving through an ionization cooling channel is determined as a function of the proton beam energy. We optimize the mercury jet target parameters: the mercury jet radius, the incoming proton beam angle and the crossing angle between the mercury jet and the proton beam for each proton beam energy. The optimized target radius varies from about 0.4 cm to 0.6 cm as the proton beam energy increases. The optimized beam angle varies from 75 mrad to 120 mrad. The optimized crossing angle is near 20 mrad for energies above 5 GeV. These values differ from earlier choices of 67 mrad for the beam angle and 33 mrad for the crossing angle. These new choices for the beam parameters increase the meson production by about 20% compared to the earlier parameters. Our study demonstrates that the maximum meson production efficiency per unit proton beam power occurs when the proton kinetic energy is in the range of 5-15 GeV. Finally, the dependence on energy of the number of muons at the end of the cooling channel is nearly identical to the dependence on energy of the meson production 50 m from the target. This demonstrates that the target parameters can be optimized without the additional step of running the distribution through a code such as ICOOL that simulates the bunching, phase rotation, and cooling.

Ding, X.; Kirk, H.

2010-12-01T23:59:59.000Z

432

Centrifugally driven electrostatic instability in extragalactic jets  

SciTech Connect

The stability problem of the rotation-induced electrostatic wave in extragalactic jets is presented. Solving a set of equations describing dynamics of a relativistic plasma flow of active galactic nuclei (AGN) jets, an expression of the instability rate has been derived and analyzed for typical values of AGNs. The growth rate was studied versus the wavelength and the inclination angle and it has been found that the instability process is very efficient with respect to the accretion disk evolution, indicating high efficiency of the instability.

Osmanov, Z. [Georgian National Astrophysical Observatory, Kazbegi ave. 2a, Tbilisi 0160 (Georgia)

2008-03-15T23:59:59.000Z

433

Gamma-Ray Bursts: Jets and Energetics  

E-Print Network (OSTI)

The relativistic outflows from gamma-ray bursts are now thought to be narrowly collimated into jets. After correcting for this jet geometry there is a remarkable constancy of both the energy radiated by the burst and the kinetic energy carried by the outflow. Gamma-ray bursts are still the most luminous explosions in the Universe, but they release energies that are comparable to supernovae. The diversity of cosmic explosions appears to be governed by the fraction of energy that is coupled to ultra-relativistic ejecta.

D. A. Frail

2003-11-12T23:59:59.000Z

434

Gravity waves from vortex dipoles and jets  

E-Print Network (OSTI)

The dissertation first investigates gravity wave generation and propagation from jets within idealized vortex dipoles using a nonhydrostatic mesoscale model. Several initially balanced and localized jets induced by vortex dipoles are examined here. Within these dipoles, inertia-gravity waves with intrinsic frequencies 1-2 times the Coriolis parameter are simulated in the jet exit region. The ray tracing analysis reveals strong variation of wave characteristics along ray paths. The dependence of wave amplitude on the Rossby number is examined through experiments in which the two vortices are initially separated by a large distance but subsequently approach each other and form a vortex dipole with an associated amplifying localized jet. The amplitude of stationary gravity waves in the simulations with a 90-km grid spacing increases nearly linearly with the square of the Rossby number but significantly more rapidly when smaller grid spacing is used. To further address the source mechanism of the gravity waves within the vortex dipole, a linear numerical framework is developed based on the framework proposed by Plougonven and Zhang (2007). Using the nonlinearly balanced fields as the basic state and driven by three types of large scale forcing, the vorticity, divergence and thermodynamic forcing, this linear model is utilized to obtain linear wave responses. The wave packets in the linear responses compare reasonably well with the MM5 simulated gravity waves. It is suggested that the vorticity forcing is the leading contribution to both gravity waves in the jet exit region and the ascent/descent feature in the jet core. This linear model is also adopted to study inertia-gravity waves in the vicinity of a baroclinic jet during the life cycle of an idealized baroclinic wave. It is found that the thermodynamic forcing and the vorticity forcing are equally important to the gravity waves in the low stratosphere, but the divergence forcing is again playing a lesser role. Two groups of wave packets are present in the linear responses; their sources appear to locate either near the surface front or near the middle/upper tropospheric jet.

Wang, Shuguang

2008-08-01T23:59:59.000Z

435

Enhancement of wall jet transport properties  

DOE Patents (OSTI)

By enhancing the natural instabilities in the boundary layer and in the free shear layer of a wall jet, the boundary is minimized thereby increasing the transport of heat and mass. Enhancing the natural instabilities is accomplished by pulsing the flow of air that creates the wall jet. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct.

Claunch, Scott D. (Broomfield, CO); Farrington, Robert B. (Golden, CO)

1997-01-01T23:59:59.000Z

436

High pressure water jet mining machine  

DOE Patents (OSTI)

A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

Barker, Clark R. (Rolla, MO)

1981-05-05T23:59:59.000Z

437

The Cambridge Jet algorithm: features and applications  

E-Print Network (OSTI)

Jet clustering algorithms are widely used to analyse hadronic events in high energy collisions. Recently a new clustering method, known as `Cambridge', has been introduced. In this article we present an algorithm to determine the transition values of y_cut for this clustering scheme, which allows to resolve any event to a definite number of jets in the final state. We discuss some particularities of the Cambridge clustering method and compare its performance to the Durham clustering scheme for Monte Carlo generated e+e- annihilation events.

Stan Bentvelsen; Irmtraud Meyer

1998-03-12T23:59:59.000Z

438

Jet impact on a soap film Geoffroy Kirstetter, Christophe Raufaste,  

E-Print Network (OSTI)

of the micro-jet or con- versely on its destabilization through the control of the liquid jet atomization, such as impacts, have recently raised some interest and uses for sound absorp- tion or bomb explosion safety [15 can be used to guide and control the jet direction. In the second one, a new class of flow is reported

Paris-Sud XI, Université de

439

Structure and Spacing of Jets in Barotropic Turbulence  

Science Conference Proceedings (OSTI)

Turbulent flows are often observed to be organized into large-spatial-scale jets such as the familiar zonal jets in the upper levels of the Jovian atmosphere. These relatively steady large-scale jets are not forced coherently but are maintained ...

Brian F. Farrell; Petros J. Ioannou

2007-10-01T23:59:59.000Z

440

Jet pump feeds corrosion inhibitor in Russian waterflood  

SciTech Connect

The Russian company Orenburgneft JSC tested a proportioning jet pump for injecting corrosion inhibitor into the water injection system at its Tananykskoye waterflood. The jet pump has no moving parts and, therefore, provides an hermetic system with zero emissions of pumped and working fluid. This pump reduces weight, dimensions, and costs compared to mechanical pumps. The paper describes jet pumping and the pump design.

Yuden, I.S. [JKX Oil and Gas, Guildford (United Kingdom); Sazanov, Y.A.; Yeliseev, V.N.; Malov, B.A. [Orenburgneft JSC, Moscow (Russian Federation)

1997-01-27T23:59:59.000Z

Note: This page contains sample records for the topic "nasa jet propulsion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Studying Z/gamma*+Jet Production  

SciTech Connect

The production of jets in association with a Z/{gamma}* boson is an example of an important class of processes at hadron colliders, namely vector boson + jet (V + jet) production. Comparisons of measurements of this class of processes with theory predictions constitute an important, fundamental test of the Standard Model of particle physics, and of the theory of QCD in particular. While having a smaller cross section than other V +jet processes, Z/{gamma}*({yields} e{sup +}e{sup -}) + jets production, with Z/{gamma}* {yields} e{sup +}e{sup -}/{mu}{sup +}{mu}{sup -}, has a distinct experimental signature allowing for measurements characterized by low backgrounds and a direct, precise measurement of the properties of the decay products of the Z/{gamma}* boson. In this thesis, several new measurements of the properties of jets produced in association with a Z/{gamma}* boson in p{bar p} collisions at {radical}s = 1.96 TeV are presented. The cross section for Z/{gamma}*({yields} e{sup +}e{sup -}) + N jet production (N {le} 3) is measured, differential in the transverse momentum of the Nth jet in the event, normalized to the inclusive Z/{gamma}* cross section. Also, the cross section for Z/{gamma}*({yields} e{sup +}e{sup -}) + N jets (N {ge} 1) is measured, differential in the difference in azimuthal angle between the di-electron system and any jet in the event, normalized to unity. The data used in the measurements were collected by the D0 experiment located at the Tevatron Collider of the Fermi National Accelerator Laboratory and correspond to an integrated luminosity of 1.04 fb{sup -1}. The measured jet transverse momentum spectra are compared with the predictions of perturbative calculations at the next-to-leading order in the strong coupling constant. Given the low sensitivity of the calculations to model parameters, these comparisons represent a stringent test of perturbative QCD. One of the main goals currently being pursued in particle physics is the discovery of the only particle predicted by the Standard Model which has so far no been detected experimentally, namely the Higgs boson. It is assumed that the ATLAS and CMS experiments located at the Large Hadron Collider (LHC), a proton-proton collider at {radical}s = 14 TeV, will be able to detect the Higgs boson, or rule out its existence, within the next few years. The collisions delivered by the LHC will also be used to perform a long range of searches for other new particles, for instance particles predicted by models based on the principle of supersymmetry. The associated production of vector bosons with jets has relatively large production rates at the LHC and can produce a long list of different final states which can include charged leptons, missing transverse energy, as well as light- and heavy-flavour jets. This makes V + jet production a major source of background events to many searches for new particles. Most techniques used for estimating the expected number of background events to searches rely on passing the stable final-state particles of simulated hadron collisions generated using a so-called event generator code, through a simulation of the experimental detector system. The development of event generators which are capable of reliably predicting the properties of jets produced in association with a core process, e.g. the production of a vector boson, has been the subject of a large amount of research activity during the last ten years. These efforts have led to the appearance of the CKKW and MLM algorithms which are implemented in several event generators, among them SHERPA and ALPGEN + PYTHIA. The large data sample collected by the D0 experiment during Run II offers an excellent opportunity for validating these new event generators against experimental measurements of V + jet production. As argued above, the Z/{gamma}*({yields} e{sup +}e{sup -}) + jets process offers the combination of a clean experimental signature and large production rates, making it the process of choice for these studies.

Nilsen, Henrik Wold; /Freiburg U.

2009-07-01T23:59:59.000Z

442

The JET2000 Project: Aircraft Observations of the African Easterly Jet and African Easterly Waves  

Science Conference Proceedings (OSTI)

Scientific background and motivation for the JET2000 aircraft observing campaign that took place in West Africa during the last week of August 2000 are presented. The Met Research Flight C130 aircraft made two flights along the African easterly ...

C. D. Thorncroft; D. J. Parker; R. R. Burton; M. Diop; J. H. Ayers; H. Barjat; S. Devereau; A. Diongue; R. Dumelow; D. R. Kindred; N. M. Price; M. Saloum; C. M. Tayor; A. M. Tompkins

2003-03-01T23:59:59.000Z

443

Internal Wave Interactions with Equatorial Deep Jets. Part II: Acceleration of the Jets  

Science Conference Proceedings (OSTI)

What drives the equatorial deep jets is a puzzle because of their isolation from surface forcing by the intervening main pycnocline and the Equatorial Undercurrent, and from lateral boundaries by distances of tens of thousands of kilometers. It ...

Joanna E. Muench; Eric Kunze

2000-08-01T23:59:59.000Z

444

Gluon Polarization and Jet Production at STAR  

Science Conference Proceedings (OSTI)

I will discuss the most recent measurements of the inclusive jet longitudinal spin asymmetry A LL in polarized proton?proton collisions. STAR collected its largest data sample thus far 4.7? pb ?1 of integrated luminosity at an average beam polarization of ?57%

Pibero Djawotho; the STAR Collaboration

2009-01-01T23:59:59.000Z

445

HOT ELECTROMAGNETIC OUTFLOWS. II. JET BREAKOUT  

Science Conference Proceedings (OSTI)

We consider the interaction between radiation, matter, and a magnetic field in a compact, relativistic jet. The entrained matter accelerates outward as the jet breaks out of a star or other confining medium. In some circumstances, such as gamma-ray bursts (GRBs), the magnetization of the jet is greatly reduced by an advected radiation field while the jet is optically thick to scattering. Where magnetic flux surfaces diverge rapidly, a strong outward Lorentz force develops and radiation and matter begin to decouple. The increase in magnetization is coupled to a rapid growth in Lorentz factor. We take two approaches to this problem. The first examines the flow outside the fast magnetosonic critical surface, and calculates the flow speed and the angular distribution of the radiation field over a range of scattering depths. The second considers the flow structure on both sides of the critical surface in the optically thin regime, using a relaxation method. In both approaches, we find how the terminal Lorentz factor and radial profile of the outflow depend on the radiation intensity and optical depth at breakout. The effect of bulk Compton scattering on the radiation spectrum is calculated by a Monte Carlo method, while neglecting the effects of internal dissipation. The peak of the scattered spectrum sits near the seed peak if radiation pressure dominates the acceleration, but is pushed to a higher frequency if the Lorentz force dominates. The unscattered seed radiation can form a distinct, low-frequency component of the spectrum, especially if the magnetic Poynting flux dominates.

Russo, Matthew [Department of Physics, University of Toronto, 60 St. George Street, Toronto, ON M5S 1A7 (Canada); Thompson, Christopher [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, Toronto, ON M5S 3H8 (Canada)

2013-08-20T23:59:59.000Z

446

Online b-jets tagging at CDF  

Science Conference Proceedings (OSTI)

We propose a method to identify b-quark jets at trigger level which exploits recently increased CDF trigger system capabilities. b-quark jets identification is of central interest for the CDF high-P{sub T} physics program, and the possibility to select online b-jets enriched samples can extend the physics reaches especially for light Higgs boson searches where the H {yields} b{bar b} decay mode is dominant. Exploiting new trigger primitives provided by two recent trigger upgrades, the Level2 XFT stereo tracking and the improved Level2 cluster-finder, in conjunction with the existing Silicon Vertex Tracker (SVT), we design an online trigger algorithm aimed at selecting good purity b-jets samples useful for many physics measurements, the most important being inclusive H {yields} b{bar b} searches. We discuss the performances of the proposed b-tagging algorithm which must guarantee reasonable trigger rates at luminosity greater than 2 x 10{sup 32} cm{sup -2}s{sup -1} and provide high efficiency on H {yields} b{bar b} events.

Casarsa, M.; /Fermilab; Ristori, L.; /INFN, Pisa; Amerio, S.; Lucchesi, D.; Pagan Griso, S.; /INFN, Padua; Torre, S.T.; /Frascati; Cortiana, G.; /Padua U., Astron. Dept.

2007-04-01T23:59:59.000Z

447

Magnetized and collimated millimeter scale plasma jets with astrophysical relevance  

Science Conference Proceedings (OSTI)

Magnetized collimated plasma jets are created in the laboratory to extend our understanding of plasma jet acceleration and collimation mechanisms with particular connection to astrophysical jets. In this study, plasma collimated jets are formed from supersonic unmagnetized flows, mimicking a stellar wind, subject to currents and magnetohydrodynamic forces. It is found that an external poloidal magnetic field, like the ones found anchored to accretion disks, is essential to stabilize the jets against current-driven instabilities. The maximum jet length before instabilities develop is proportional to the field strength and the length threshold agrees well with Kruskal-Shafranov theory. The plasma evolution is modeled qualitatively using MHD theory of current-carrying flux tubes showing that jet acceleration and collimation arise as a result of electromagnetic forces.

Brady, Parrish C.; Quevedo, Hernan J. [Texas Center for High Intensity Laser Science, University of Texas at Austin, Austin, Texas 78712 (United States); Valanju, Prashant M. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712-1060 (United States); Bengtson, Roger D.; Ditmire, Todd [Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

2012-01-15T23:59:59.000Z

448

Volume 4 Issue 5 www.nasa.gov/centers/stennis May 2009 Under a dry, hot Florida sky, space shuttle  

E-Print Network (OSTI)

Atlantis roars off Launch Pad 39A at NASA's Kennedy Space Center in Florida with its crew of sevenVolume 4 Issue 5 www.nasa.gov/centers/stennis May 2009 Under a dry, hot Florida sky, space shuttle for a rendezvous with NASA's Hubble Space Telescope. The launch was on time at 1:01 p.m. on May 11. With a perfect

449

Laboratory Astrophysics White Paper (based on the 2010 NASA Laboratory Astrophysics Workshop in Gatlinberg, Tennessee, 25-28 October 2010)  

E-Print Network (OSTI)

The purpose of the 2010 NASA Laboratory Astrophysics Workshop (LAW) was, as given in the Charter from NASA, "to provide a forum within which the scientific community can review the current state of knowledge in the field of Laboratory Astrophysics, assess the critical data needs of NASA's current and future Space Astrophysics missions, and identify the challenges and opportunities facing the field as we begin a new decade". LAW 2010 was the fourth in a roughly quadrennial series of such workshops sponsored by the Astrophysics Division of the NASA Science Mission Directorate. In this White Paper, we report the findings of the workshop.

Savin, Daniel Wolf; Federman, Steve; Goldsmith, Paul; Kilbourne, Caroline; Oberg, Karin; Schultz, David; Weaver, Susanna Widicus; Ji, Hantao; Remington, Bruce

2011-01-01T23:59:59.000Z

450

Single-shaft electric propulsion system technology development program -- ETX-II. Final technical report  

DOE Green Energy (OSTI)

In 1981, discussions between Ford and General Electric (GE) evolved a concept for an advanced electric vehicle powertrain, which was subsequently presented to the US Department of Energy (DOE) as an unsolicited proposal. The concept involved a combination of technology from Ford and GE that would result in a unique powertrain based on a motor and transmission concentric with the drive wheel axis. Initial work suggested that the entire motor/transaxle combination could be expected to be smaller and lighter than the direct current (dc) motors that were in use in electric vehicles at that time and that the powertrain could be expected to be more efficient than other available powertrains. This program (ETX-I) was awarded to Ford Motor Company and it was established that the most likely first introduction of an electric vehicle would be in the form of a fleet of small commercial vans. The ETX-II propulsion system concept was aimed at advancing the technology through improving the size, weight, efficiency, reliability, and cost characteristics of the ETX-I powertrain and by integrating advanced battery technologies compatible with the powertrain to form a complete propulsion system. Unique developments for the ETX-II program included the transaxle, a two-speed automatic transmission and three-phase interior permanent magnet alternating current (ac) motor on a common axis integrated with the rear axle of the test bed van; The traction battery selected for this propulsion system was the sodium-sulfur battery. This was the only advanced technology that had been developed to a point that would allow the test vehicle to have a range of over 160 kilometers (100 miles) without the battery exceeding 25% of the vehicle`s gross weight.

Not Available

1990-10-01T23:59:59.000Z

451

Single-shaft electric propulsion system technology development program -- ETX-II  

DOE Green Energy (OSTI)

In 1981, discussions between Ford and General Electric (GE) evolved a concept for an advanced electric vehicle powertrain, which was subsequently presented to the US Department of Energy (DOE) as an unsolicited proposal. The concept involved a combination of technology from Ford and GE that would result in a unique powertrain based on a motor and transmission concentric with the drive wheel axis. Initial work suggested that the entire motor/transaxle combination could be expected to be smaller and lighter than the direct current (dc) motors that were in use in electric vehicles at that time and that the powertrain could be expected to be more efficient than other available powertrains. This program (ETX-I) was awarded to Ford Motor Company and it was established that the most likely first introduction of an electric vehicle would be in the form of a fleet of small commercial vans. The ETX-II propulsion system concept was aimed at advancing the technology through improving the size, weight, efficiency, reliability, and cost characteristics of the ETX-I powertrain and by integrating advanced battery technologies compatible with the powertrain to form a complete propulsion system. Unique developments for the ETX-II program included the transaxle, a two-speed automatic transmission and three-phase interior permanent magnet alternating current (ac) motor on a common axis integrated with the rear axle of the test bed van; The traction battery selected for this propulsion system was the sodium-sulfur battery. This was the only advanced technology that had been developed to a point that would allow the test vehicle to have a range of over 160 kilometers (100 miles) without the battery exceeding 25% of the vehicle's gross weight.

Not Available

1990-10-01T23:59:59.000Z

452

NASA Ames Saves Energy and Reduces Project Costs with Non-Invasive Retrofit Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NASA Ames Saves Energy and Reduces Project Costs NASA Ames Saves Energy and Reduces Project Costs with Non-Invasive Retrofit Technologies The Wireless Pneumatic Thermostat Enables Energy Efficiency Strategies, Ongoing Commissioning and Improved Operational Control Harry Sim CEO Cypress Envirosystems harry.sim@cypressenvirosystems.com www.cypressenvirosystems.com NASA Ames Reduced Project Cost by Over 80% with Non-Invasive Retrofit Technologies * Legacy Pneumatic Thermostats  Waste energy  High maintenance costs  Uncomfortable occupants  No visibility * Project Scope  14 buildings  1,370 pneumatic thermostats  Integration with campus BAS  Diagnostics for ongoing commissioning * Traditional DDC Retrofit  Cost over $4.1 million  Asbestos exposure/abatement  Occupants significantly disrupted

453

NASA BENCHMARKS SAFETY FUNCTIONS Assessment Plan Developed By NNSA/Nevada  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NASA BENCHMARKS SAFETY FUNCTIONS Assessment Plan Developed By NASA BENCHMARKS SAFETY FUNCTIONS Assessment Plan Developed By NNSA/Nevada Site Office Facility Representative Division NASA BENCHMARKS SAFETY FUNCTIONS Assessment Plan Developed By NNSA/Nevada Site Office Facility Representative Division Management should be proactive in addressing safety-related issues. Management should have an established system to provide a ranking of safety considerations founded upon risk-based priorities. Criteria: A system is in place to provide a ranking of safety considerations founded upon risk-based priorities. (DOE/EH-0135) Procedures clearly define management's responsibility for safety-related decisions and provide for the escalation of matters in an appropriate time frame. (DOE/EH-0135)Management promotes safety programs and the organization's

454

DOE Technology Helps NASA Seek "New Horizons" | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Helps NASA Seek "New Horizons" Technology Helps NASA Seek "New Horizons" DOE Technology Helps NASA Seek "New Horizons" January 19, 2006 - 10:51am Addthis WASHINGTON, D.C.-The New Horizons spacecraft, powered by deep space battery technology developed by the Department of Energy's national laboratories, was successfully launched today from Florida's Kennedy Space Center on a 9-1/2 year journey to explore Pluto and its moons. The spacecraft will receive heat and electricity from a long-lasting plutonium-238 powered generator developed and assembled by scientists and engineers at the Idaho, Oak Ridge and Los Alamos National Laboratories. "This is an amazing mission when you think about the time, distance and harsh environment that the spacecraft will encounter," said Secretary of

455

SPRE I Free-Piston Stirling Engine Testing at NASA Lewis Research Center  

DOE Green Energy (OSTI)

As part of the NASA funded portion of the SP-100 Advanced Technology Program the Space Power Research Engine (SPRE I) was designed and built to serve as a research tool for evaluation and development of advanced Stirling engine concepts. The SPRE I is designed to produce 12.5 kW electrical power when operated with helium at 15 MPa and with an absolute temperature ratio of two. The engine is now under test in a new test facility which was designed and built at NASA LeRC specifically to test the SPRE I. This paper describes the SPRE I, the NASA test facility, the initial SPRE I test results, and future SPRE I test plans.

Cairelli, J.E.

1994-09-01T23:59:59.000Z

456

Flight Experiments On Energy Scaling For In-Space Laser Propulsion  

SciTech Connect

As a preparatory study on space-borne laser propulsion, flight experiments with a parabolic thruster were carried out on an air cushion table. The thruster was mounted like a sail on a puck, allowing for laser-driven motion in three degrees of freedom (3 DOF) in artificial weightlessness. Momentum coupling is derived from point explosion theory for various parabolic thruster geometries with respect to energy scaling issues. The experimental data are compared with theoretical predictions and with results from vertical free flights. Experimental results for the air-breakdown threshold and POM ablation inside the thruster are compared with fluence data from beam propagation modeling.

Scharring, Stefan; Eckel, Hans-Albert [Institute of Technical Physics, German Aerospace Center, D-70569 Stuttgart, Pfaffenwaldring 38-40 (Germany); Wollenhaupt, Eric; Roeser, Hans-Peter [Institute of Space Systems, University of Stuttgart, D-70569 Stuttgart, Pfaffenwaldring 31 (Germany)

2010-05-06T23:59:59.000Z

457

Nuclear propulsion systems for orbit transfer based on the particle bed reactor  

DOE Green Energy (OSTI)

The technology of nuclear direct propulsion orbit transfer systems based on the Particle Bed Reactor (PBR) is described. A 200 megawatt illustrative design is presented for LEO to GEO and other high ..delta..V missions. The PBR-NOTV can be used in a one-way mode with the shuttle or an expendable launch vehicle, e.g., the Titan 34D7, or as a two-way reusable space tug. In the one-way mode, payload capacity is almost three times greater than that of chemical OTV's. PBR technology status is described and development needs outlined.

Powell, J.R.; Ludewig, H.; Horn, F.L.; Araj, K.; Benenati, R.; Lazareth, O.; Slovik, G.; Solon, M.; Tappe, W.; Belisle, J.

1987-01-01T23:59:59.000Z

458

Integrated Modular Propulsion and Regenerative Electro-energy Storage System (IMPRESS) for small satellites  

DOE Green Energy (OSTI)

The IMPRESS is a significant advancement in space system technology as it is able to operate alternately as a fuel cell to produce electrical power from stored hydrogen and oxygen and as a water electrolyzer using electrical power to produce hydrogen and oxygen from stored water. The electrolysis of a controllable fraction of stored water can provide high Isp rocket propellants on demand. The heart of the IMPRESS is the Unitized Regenerative Fuel Cell (URFC), which produces power and electrolytically regenerates its reactants using a single stack of reversible cells. This integrated approach has several significant advantages over separate (battery) power and propulsion systems.

Mitlitsky, F. [Lawrence Livermore National Lab., CA (United States); de Groot, W. [Nyma, Inc., Brook Park, OH (United States); Butler, L.; McElroy, J. [United Technologies Corp., Windsor Locks, CT (United States). Hamilton Standard Div.

1996-09-01T23:59:59.000Z

459

Overview of nuclear MHD power conversion for multi-megawatt electric propulsion  

Science Conference Proceedings (OSTI)

An overview of recent research findings on space applications of nuclear magnetohydrodynamic (MHD) power for generation of multi klb f electric thrust at thousands of seconds of specific impulse is presented. The high operating temperatures of the nuclear MHD system and potential for direct coupling of the output power to the electric thruster system are characterizing features that allow for design of ultracompact and ultralight nuclear electric propulsion systems. Order of magnitude figures for some mission-critical parameters are collated from various engineering analyses. Specific mass and specific impulse values highlight the inherent benefits of further research and development investment in MHD power.

Blair M. Smith; Travis W. Knight; Samim Anghaie

2001-01-01T23:59:59.000Z

460

Solid oxide fuel cells for transportation: A clean, efficient alternative for propulsion  

DOE Green Energy (OSTI)

Fuel cells show great promise for providing clean and efficient transportation power. Of the fuel cell propulsion systems under investigation, the solid oxide fuel cell (SOFC) is particularly attractive for heavy duty transportation applications that have a relatively long duty cycle, such as locomotives, trucks, and barges. Advantages of the SOFC include a simple, compact system configuration; inherent fuel flexibility for hydrocarbon and alternative fuels; and minimal water management. The specific advantages of the SOFC for powering a railroad locomotive are examined. Feasibility, practicality, and safety concerns regarding SOFCs in transportation applications are discussed, as am the major R D issues.

Kumar, R.; Krumpelt, M.; Myles, K.M.

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nasa jet propulsion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Solid oxide fuel cells for transportation: A clean, efficient alternative for propulsion  

DOE Green Energy (OSTI)

Fuel cells show great promise for providing clean and efficient transportation power. Of the fuel cell propulsion systems under investigation, the solid oxide fuel cell (SOFC) is particularly attractive for heavy duty transportation applications that have a relatively long duty cycle, such as locomotives, trucks, and barges. Advantages of the SOFC include a simple, compact system configuration; inherent fuel flexibility for hydrocarbon and alternative fuels; and minimal water management. The specific advantages of the SOFC for powering a railroad locomotive are examined. Feasibility, practicality, and safety concerns regarding SOFCs in transportation applications are discussed, as am the major R&D issues.

Kumar, R.; Krumpelt, M.; Myles, K.M.

1993-04-01T23:59:59.000Z

462

Space nuclear power system and the design of the nuclear electric propulsion OTV  

SciTech Connect

Payload increases of three to five times that of the Shuttle/Centaur can be achieved using nuclear electric propulsion. Various nuclear power plant options being pursued by the SP-100 Program are described. These concepts can grow from 100 kW/sub e/ to 1MW/sub e/ output. Spacecraft design aspects are addressed, including thermal interactions, plume interactions, and radiation fluences. A baseline configuration is described accounting for these issues. Safety aspects of starting the OTV transfer from an altitude of 300 km indicate no significant additional risk to the biosphere.

Buden, D.; Garrison, P.W.

1984-01-01T23:59:59.000Z

463

Transmission Line Analogy for Relativistic Poynting-Flux Jets  

E-Print Network (OSTI)

Radio emission, polarization, and Faraday rotation maps of the radio jet of the galaxy 3C 303 have shown that one knot of this jet carries a {\\it galactic}-scale electric current and that it is magnetically dominated. We develop the theory of magnetically dominated or Poynting-flux jets by making an analogy of a Poynting jet with a transmission line or waveguide carrying a net current and having a potential drop across it (from the jet's axis to its radius) and a definite impedance which we derive. Time-dependent but not necessarily small perturbations of a Poynting-flux jet are described by the "telegrapher's equations." These predict the propagation speed of disturbances and the effective wave impedance for forward and backward propagating wave components. A localized disturbance of a Poynting jet gives rise to localized dissipation in the jet which may explain the enhanced synchrotron radiation in the knots of the 3C 303 jet, and also in the apparently stationary knot HST-1 in the jet near the nucleus of t...

Lovelace, R V E

2012-01-01T23:59:59.000Z

464

Cryogenic target formation using cold gas jets  

DOE Patents (OSTI)

A method and apparatus using cold gas jets for producing a substantially uniform layer of cryogenic materials on the inner surface of hollow spherical members having one or more layers, such as inertially imploded targets are disclosed. By vaporizing and quickly refreezing cryogenic materials contained within a hollow spherical member, a uniform layer of the materials is formed on an inner surface of the spherical member. Basically the method involves directing cold gas jets onto a spherical member having one or more layers or shells and containing the cryogenic material, such as a deuterium-tritium (DT) mixture, to freeze the contained material, momentarily heating the spherical member so as to vaporize the contained material, and quickly refreezing the thus vaporized material forming a uniform layer of cryogenic material on an inner surface of the spherical member. 4 figs.

Hendricks, C.D.

1980-02-26T23:59:59.000Z

465

Preliminary assessment of high power, NERVA-class dual-mode space nuclear propulsion and power systems  

Science Conference Proceedings (OSTI)

A preliminary assessment of the technical feasibility and mass competitiveness of a dual-mode nuclear propulsion and power system based on the NERVA rocket engine has been completed. Results indicate that the coupling of the ROVER reactor to a direct Brayton power conversion system can be accomplished through a number of design features. Furthermore, based on previously published and independently calculated component masses, the dual-mode system was found to have the potential to be mass competitive with propulsion/power systems that use separate reactors. The uncertainties of reactor design modification and shielding requirements were identified as important issues requiring future investigation.

Buksa, J.J.; Kirk, W.L.; Cappiello, M.W. (Nuclear Technology and Engineering Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (US))

1991-01-05T23:59:59.000Z

466

ON THE ORIGIN OF INTERGRANULAR JETS  

SciTech Connect

We observe that intergranular jets, originating in the intergranular space surrounding individual granules, tend to be associated with granular fragmentation, in particular, with the formation and evolution of a bright granular lane (BGL) within individual granules. The BGLs have recently been identified as vortex tubes by Steiner et al. We further discover the development of a well-defined bright grain located between the BGL and the dark intergranular lane to which it is connected. Signatures of a BGL may reach the lower chromosphere and can be detected in off-band H{alpha} images. Simulations also indicate that vortex tubes are frequently associated with small-scale magnetic fields. We speculate that the intergranular jets detected in the New Solar Telescope (NST) data may result from the interaction between the turbulent small-scale fields associated with the vortex tube and the larger-scale fields existing in the intergranular lanes. The intergranular jets are much smaller and weaker than all previously known jet-like events. At the same time, they appear much more numerous than the larger events, leading us to the speculation that the total energy release and mass transport by these tiny events may not be negligible in the energy and mass-flux balance near the temperature minimum atop the photosphere. The study is based on the photospheric TiO broadband (1.0 nm) filter data acquired with the 1.6 m NST operating at the Big Bear Solar Observatory. The data set also includes NST off-band H{alpha} images collected through a Zeiss Lyot filter with a passband of 0.025 nm.

Yurchyshyn, V. B.; Goode, P. R.; Abramenko, V. I. [Big Bear Solar Observatory, New Jersey Institute of Technology, Big Bear City, CA 92314 (United States); Steiner, O. [Kiepenheuer-Institut fuer Sonnenphysik, Schoeneckstrasse 6, D-79104 Freiburg (Germany)

2011-08-01T23:59:59.000Z

467

Event-by-event jet quenching  

SciTech Connect

High momentum jets and hadrons can be used as probes for the quark gluon plasma (QGP) formed in nuclear collisions at high energies. We investigate the influence of fluctuations in the fireball on jet quenching observables by comparing propagation of light quarks and gluons through averaged, smooth QGP fireballs with event-by-event jet quenching using realistic inhomogeneous fireballs. We find that the transverse momentum and impact parameter dependence of the nuclear modification factor R{sub AA} can be fit well in an event-by-event quenching scenario within experimental errors. However the transport coefficient {cflx q} extracted from fits to the measured nuclear modification factor R{sub AA} in averaged fireballs underestimates the value from event-by-event calculations by up to 50%. On the other hand, after adjusting {cflx q} to fit R{sub AA} in the event-by-event analysis we find residual deviations in the azimuthal asymmetry v{sub 2} and in two-particle correlations, that provide a possible faint signature for a spatial tomography of the fireball. We discuss a correlation function that is a measure for spatial inhomogeneities in a collision and can be constrained from data.

Fries, R.J.; Rodriguez, R.; Ramirez, E.

2010-08-14T23:59:59.000Z

468

Ejector device for direct injection fuel jet  

SciTech Connect

Disclosed is a device for increasing entrainment and mixing in an air/fuel zone of a direct fuel injection system. The device comprises an ejector nozzle in the form of an inverted funnel whose central axis is aligned along the central axis of a fuel injector jet and whose narrow end is placed just above the jet outlet. It is found that effective ejector performance is achieved when the ejector geometry is adjusted such that it comprises a funnel whose interior surface diverges about 7.degree. to about 9.degree. away from the funnel central axis, wherein the funnel inlet diameter is about 2 to about 3 times the diameter of the injected fuel plume as the fuel plume reaches the ejector inlet, and wherein the funnel length equal to about 1 to about 4 times the ejector inlet diameter. Moreover, the ejector is most effectively disposed at a separation distance away from the fuel jet equal to about 1 to about 2 time the ejector inlet diameter.

Upatnieks, Ansis (Livermore, CA)

2006-05-30T23:59:59.000Z

469

Composition, collimation, contamination: the jet of Cygnus X-1  

E-Print Network (OSTI)

We model the observed size and brightness of the VLBA radio core of the jet in Cygnus X-1 to derive an expression for the jet power as a function of basic jet parameters. We apply this expression to recent constraints on the jet power from observations of a large scale shocked shell around the source by Gallo et al. 2005, which leads us to a set of alternative conclusions: either (a) the jet contains large amounts of protons: more than 2000 protons per radio emitting electron, (b) it has a very low radio volume filling factor of f source of the kinetic energy powering the ISM shell, or (d) its asymptotic behavior differs fundamentally from a broad set of plausible analytic jet models.

Sebastian Heinz

2005-09-26T23:59:59.000Z

470

Heavy vehicle propulsion system materials program semiannual progress report for April 1998 thru September 1998  

DOE Green Energy (OSTI)

The purpose of the Heavy Vehicle Propulsion System Materials Program is the development of materials: ceramics, intermetallics, metal alloys, and metal and ceramic coatings, to support the dieselization of class 1--3 trucks to realize a 35{percent} fuel-economy improvement over current gasoline-fueled trucks and to support commercialization of fuel-flexible LE-55 low-emissions, high-efficiency diesel engines for class 7--8 trucks. The Office of Transportation Technologies, Office of Heavy Vehicle Technologies (OTT OHVT) has an active program to develop the technology for advanced LE-55 diesel engines with 55{percent} efficiency and low emissions levels of 2.0 g/bhp-h NO{sub x} and 0.05 g/bhp-h particulates. The goal is also for the LE-55 engine to run on natural gas with efficiency approaching that of diesel fuel. The LE-55 program is being completed in FY 1997 and, after approximately 10 years of effort, has largely met the program goals of 55{percent} efficiency and low emissions. However, the commercialization of the LE-55 technology requires more durable materials than those that have been used to demonstrate the goals. Heavy Vehicle Propulsion System Materials will, in concert with the heavy-duty diesel engine companies, develop the durable materials required to commercialize the LE-55 technologies.

Johnson, D.R.

1999-01-01T23:59:59.000Z

471

An Ansatz Regarding Relativistic Space Travel Part II-Propulsion Realities  

Science Conference Proceedings (OSTI)

Travel to the stars can involve a perilous journey in an unfriendly space-time continuum that can include singularities, nonlinear events, gravity as a function of both position and vehicle velocity, and extra dimensional effects discussed in Part I. Such a device may possibly use field propulsion technology. Although several field propulsion schemes exist, a proposed candidate is based upon using an electromagnetic drive that uses a rotating magnetic field superimposed on the spacecraft's stationary or static electric field. This is comparable to a Searl generator and the field interaction would generate an electromagnetic vortex to create nonlinear gravitational effects possibly due to an inverse Gertsenshtein relationship to push against the intrinsic gravitational field of a planet. Moreover, changing alignment of the magnetic field axis with the electric field will induce a margin of lateral controllability. Issues such as assessing this combined effect of using both electric and magnetic fields are discussed. Finally, the need for experimental data is stressed to validate these otherwise very speculative theoretical notions.

Murad, Paul A

2008-01-21T23:59:59.000Z

472

Distributed Energy Systems in California's Future: A Preliminary Report Volume 2  

E-Print Network (OSTI)

Space Conditioning Systems in Northern California: A Brief Survey, LBL-5229, August 1976. Jet Propulsion

Balderston, F.

2010-01-01T23:59:59.000Z

473

MEASURING THE JET POWER OF FLAT-SPECTRUM RADIO QUASARS  

SciTech Connect

We use frequency-dependent position shifts of flat-spectrum radio cores to estimate the kinetic power of active galactic nucleus (AGN) jets. We find a correlation between the derived jet powers and AGN narrow-line luminosity, consistent with the well-known relation for radio galaxies and steep spectrum quasars. This technique can be applied to intrinsically weak jets even at high redshift.

Shabala, S. S.; Santoso, J. S. [School of Mathematics and Physics, University of Tasmania, Private Bag 37, Hobart, TAS 7001 (Australia); Godfrey, L. E. H. [International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, Western Australia 6845 (Australia)

2012-09-10T23:59:59.000Z

474

A computational study of highly viscous impinging jets  

SciTech Connect

Two commercially-available computational fluid dynamics codes, FIDAP (Fluent, Inc., Lebanon, NH) and FLOW-3D (Flow Science, Inc., Los Alamos, NM), were used to simulate the landing region of jets of highly viscous fluids impinging on flat surfaces. The volume-of-fluid method was combined with finite difference and finite element approaches to predict the jet behavior. Several computational models with varying degrees of physical realism were developed, and the results were compared with experimental observations. In experiments, the jet exhibited several complex behaviors. As soon as it exited the nozzle, the jet began to neck down and become narrower. When it impacted the solid surface, the jet developed an instability near the impact point and buckled to the side. This buckling became a spiraling motion, and the jet spiraled about the impact point. As the jet spiraled around, a cone-shaped pile was build up which eventually became unstable and slumped to the side. While all of these behaviors were occurring, air bubbles, or voids, were being entrapped in the fluid pool. The results obtained from the FLOW-3D models more closely matched the behavior of real jets than the results obtained from /the FIDAP models. Most of the FLOW-3D models predicted all of the significant jet behaviors observed in experiments: necking, buckling, spiraling, slumping, and void entrapment. All of the FIDAP models predicted that the jet would buckle relatively far from the point of impact, whereas the experimentally observed jet behavior indicates that the jets buckle much nearer the impact point. Furthermore, it was shown that FIDAP is incapable of incorporating heat transfer effects into the model, making it unsuitable for this work.

Silva, M.W. [Univ. of Texas, Austin, TX (United States). Dept. of Mechanical Engineering

1998-11-01T23:59:59.000Z

475

Neutralization of H/sup -/ beams with gas jets  

DOE Green Energy (OSTI)

A test facility was constructed to create a compact curtain-shaped gas jet as a first-generation operational neutralizer for the 150 keV H/sup -/ beam. Different gases and vapors were considered, their optimum target thicknesses and neutralization efficiencies with respect to beam energies were explored. Two techniques of gas jet formation were compared. Multiparallel-channel effusive jets of CO/sub 2/ and H/sub 2/ were selected as test candidates.

Lam, C.K.

1977-01-01T23:59:59.000Z

476

1Electricity from Sunlight: The RBSP Spacecraft Solar Panels NASA's twin Radiation Belts Storm Probe (RBSP) spacecraft will be  

E-Print Network (OSTI)

satellite to the nearest hundred watts? Space Math http://spacemath.gsfc.nasa.gov #12;Answer Key 1 Problem 11Electricity from Sunlight: The RBSP Spacecraft Solar Panels NASA's twin Radiation Belts Storm of the 10 solar cells in square-meters? Problem 3 ­ The amount of electrical power generated by a solar

477

Injection Molding of Tungsten Powder Treated by Jet Mill  

Science Conference Proceedings (OSTI)

Tungsten powder was firstly treated by jet mill, resulting in the improvement of ... and Welding Conditions of Monopile and Transition for Offshore Wind Plant.

478

Thermal Behavior of a Hot Moving Steel Plate during Jet ...  

Science Conference Proceedings (OSTI)

Presentation Title, Thermal Behavior of a Hot Moving Steel Plate during Jet Impingement Cooling. Author(s), Amir Hossein Nobari, Vladan Prodanovic, ...

479

Simulations of Jets Driven by Black Hole Rotation  

E-Print Network (OSTI)

The origin of jets emitted from black holes is not well understood, however there are two possible energy sources, the accretion disk or the rotating black hole. Magnetohydrodynamic simulations show a well-defined jet that extracts energy from a black hole. If plasma near the black hole is threaded by large-scale magnetic flux, it will rotate with respect to asymptotic infinity creating large magnetic stresses. These stresses are released as a relativistic jet at the expense of black hole rotational energy. The physics of the jet initiation in the simulations is described by the theory of black hole gravitohydromagnetics.

Vladimir Semenov; Sergey Dyadechkin; Brian Punsly

2004-08-20T23:59:59.000Z

480

Idaho Kerosene-Type Jet Fuel Retail Sales by Refiners ...  

U.S. Energy Information Administration (EIA)

Referring Pages: Idaho Kerosene-Type Jet Fuel Refiner Sales Volumes; Idaho Sales to End Users Refiner Sales Volumes of Aviation Fuels, Kerosene, ...

Note: This page contains sample records for the topic "nasa jet propulsion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Shattering Kraft Recovery Boiler Smelt by a Steam Jet.  

E-Print Network (OSTI)

??Kraft recovery boiler smelt is shattered into small droplets by an impinging steam jet to prevent smelt-water explosions in the dissolving tank. Inadequate shattering increases… (more)

Taranenko, Anton

2013-01-01T23:59:59.000Z

482

Electronic spectroscopy of jet-cooled combustion radicals. Final report  

Science Conference Proceedings (OSTI)

Jet-cooled spectra of 1-methylvinoxy and 2-methylvinoxy are reported and analyzed with help from high-level electronic structure calculations.

Weisshaar, James C.

2002-03-11T23:59:59.000Z

483

Relativistic Poynting-Flux Jets as Transmission Lines  

E-Print Network (OSTI)

Recent radio emission, polarization, and Faraday rotation maps of the radio jet of the galaxy 3C 303 have shown that one knot of this jet has a {\\it galactic}-scale electric current of $\\sim 3\\times 10^{18}$ Amp\\`ere flowing along the jet axis (Kronberg et al. 2011). We develop the theory of relativistic Poynting-flux jets which are modeled as a transmission line carrying a DC current $I_0$, having a potential drop $V_0$, and a definite impedance ${\\cal Z}_0 =90(u_z/c)\\Omega$, where $u_z$ is the bulk velocity of the jet plasma. The electromagnetic energy flow in the jet is ${\\cal Z}_0 I_0^2$. The observed current in 3C 303 can be used to calculate the electromagnetic energy flow in this magnetically dominated jet. Time-dependent but not necessarily small perturbations of a Poynting-flux jet - possibly triggered by a gas cloud penetrating the jet - are described by "telegrapher's equations," which predict the propagation speed of disturbances and the effective wave impedance ${\\cal Z}$. The disturbance of a Po...

Lovelace, R V E; Kronberg, P P

2012-01-01T23:59:59.000Z

484

COLLIMATION AND CONFINEMENT OF MAGNETIC JETS BY EXTERNAL MEDIA  

Science Conference Proceedings (OSTI)

We study the collimation of a highly magnetized jet by a surrounding cocoon that forms as a result of the interaction of the jet with the external medium. We show that in regions where the jet is well confined by the cocoon, current-driven instabilities should develop over timescales shorter than the expansion time of the jet's head. We speculate that these instabilities would give rise to complete magnetic field destruction, whereby the jet undergoes a transition from high to low sigma above the collimation zone. Using this assumption, we construct a self-consistent model for the evolution of the jet-cocoon system in an ambient medium of arbitrary density profile. We apply the model to jet breakout in long gamma-ray bursts (GRBs) and show that the jet is highly collimated inside the envelope of the progenitor star and is likely to remain confined well after breakout. We speculate that this strong confinement may provide a channel for magnetic field conversion in GRB outflows, whereby the hot, low-sigma jet section thereby produced is the source of the photospheric emission observed in many bursts.

Levinson, Amir [School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel)] [School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Begelman, Mitchell C., E-mail: Levinson@wise.tau.ac.il, E-mail: mitch@jila.colorado.edu [JILA, University of Colorado and National Institute of Standards and Technology, 440 UCB, Boulder, CO 80309-0440 (United States)

2013-02-20T23:59:59.000Z

485

An alternative model of jet suppression at RHIC energies  

E-Print Network (OSTI)

We propose a simple Glauber-type mechanism for suppression of jet production up to transverse momenta of about 10 GeV/c at RHIC. For processes in this kinematic region, the formation time is smaller than the interval between two successive hard partonic collisions and the subsequent collision influences the jet production. Number of jets then roughly scales with the number of participants. Proportionality to the number of binary collisions is recovered for very high transverse momenta. The model predicts suppression of jet production in d+Au collisions at RHIC.

Roman Lietava; Jan Pisut; Neva Pisutova; Boris Tomasik

2003-01-16T23:59:59.000Z

486

Environmental and economic assessment of microalgae-derived jet fuel  

E-Print Network (OSTI)

Significant efforts must be undertaken to quantitatively assess various alternative jet fuel pathways when working towards achieving environmental and economic United States commercial and military alternative aviation ...

Carter, Nicholas Aaron

2012-01-01T23:59:59.000Z

487

U.S. Refinery Catalytic Hydrotreating, Kerosene/Jet Fuel ...  

U.S. Energy Information Administration (EIA)

Cat. Hydro.. Kerosene/Jet Fuel Downstream Charge Capacity (B/SD) U.S. Downstream Charge Capacity of Operable Petroleum Refineries ...

488

Measurement of b-quark Jet Shapes at CDF  

SciTech Connect

The main topic of this thesis is the measurement of b-quark jet shapes at CDF. CDF is an experiment located at Fermilab, in the United States, which studies proton-antiproton collisions at a center of mass energy of 1.96TeV. To reach this energy, the particles are accelerated using the Tevatron accelerator which is currently the highest energy collider in operation. The data used for this analysis were taken between February 2002 and September 2004 and represent an integrated luminosity of about 300 pb{sup -1}. This is the first time that b-quark jet shapes have been measured at hadron colliders. The basis of this measurement lies in the possibility of enhancing the b-quark jet content of jet samples by requiring the jets to be identified as having a displaced vertex inside the jet cone. Such jets are called tagged. This enhances the b-quark jet fraction from about 5% before tagging to 20-40% after tagging, depending on the transverse momentum of the jets. I verified that it is possible to apply this secondary vertex tagging algorithm to different cone jet algorithms (MidPoint and JetClu) and different cone sizes (0.4 and 0.7). I found that the performance of the algorithm does not change significantly, as long as the sub-cone inside which tracks are considered for the tagging is kept at the default value of 0.4. Because the b-quark purity of the jets is still relatively low, it is necessary to extract the shapes of b-quark jets in a statistical manner from the jet shapes both before and after tagging. The other parameters that enter into the unfolding equation used to extract the b-quark jet shapes are the b-jet purities, the biases due to the tagging requirement both for b- and nonbjets and the hadron level corrections. The last of these terms corrects the measured b-jet shapes back to the shapes expected at hadron level which makes comparisons with theoretical models and other experimental results possible. This measurement shows that, despite relatively large systematic uncertainties, the measured b-quark jet shapes are significantly different from those expected from the so-called Pythia Tune A Monte Carlo simulation, the most widely used Leading Order Monte Carlo model at CDF. This difference can be mostly attributed to the fact that the fraction of b-quark jets that originate from flavour creation (where a single b-quark is expected inside the same jet cone) over those that originate from gluon splitting (where two b-quarks are expected to be inside the same jet cone) is slightly different in the Pythia Tune A Monte Carlo predictions than in data. This measurement can help in the tuning of the fraction of gluon splitting to flavour creation b-quark jets in the Monte Carlo simulation. This tuning is particularly important for the extrapolation up to LHC energies where many searches will involve b-quark jets. During the first year of my thesis work, I worked on the implementation of a prototype detector control system for the electromagnetic calorimeter which is being built for the CMS experiment at CERN. The prototype which I implemented was used to monitor and control the high voltage, low voltage, cooling and precision temperature monitoring systems during the summer 2003 test-beam. This was one of the first, almost complete, systems implemented and used by an LHC experiment for test-beam monitoring.

Lister, Alison; /Zurich, ETH

2006-03-01T23:59:59.000Z

489

A 94-GHz Cloud Radar System on a NASA High-Altitude ER-2 Aircraft  

Science Conference Proceedings (OSTI)

The 94-GHz (W band) Cloud Radar System (CRS) has been developed and flown on a NASA ER-2 high-altitude (20 km) aircraft. The CRS is a fully coherent, polarimetric Doppler radar that is capable of detecting clouds and precipitation from the ...

Lihua Li; Gerald M. Heymsfield; Paul E. Racette; Lin Tian; Ed Zenker

2004-09-01T23:59:59.000Z

490

The EDOP Radar System on the High-Altitude NASA ER-2 Aircraft  

Science Conference Proceedings (OSTI)

The NASA ER-2 high-altitude (20 km) aircraft that emulates a satellite view of precipitation systems carries a variety of passive and active (lidar) remote sensing instruments. A new Doppler weather radar system at X band (9.6 GHz) called the ER-...

Gerald M. Heymsfield; Steven W. Bidwell; I. Jeff Caylor; Syed Ameen; Shaun Nicholson; Wayne Boncyk; Lee Miller; Doug Vandemark; Paul E. Racette; Louis R. Dod

1996-08-01T23:59:59.000Z

491

Performance of a Counterflow Virtual Impactor in the NASA Icing Research Tunnel  

Science Conference Proceedings (OSTI)

A counterflow virtual impactor (CVI) designed for aircraft use was evaluated at the NASA Icing Research Tunnel in Cleveland, Ohio. Tests were conducted for tunnel speeds of 67 and 100 m s?1, for liquid water contents of 0.23–1.4 g m?3, and for a ...

C. H. Twohy; J. W. Strapp; M. Wendisch

2003-06-01T23:59:59.000Z

492

Towards an ASSL specification model for NASA swarm-based exploration missions  

Science Conference Proceedings (OSTI)

NASA swarm-based exploration missions represent a new class of concept missions based on the cooperative nature of a hive culture. A mission of this class requires an autonomic system, comprising a set of autonomous mobile units. The design and implementation ... Keywords: autonomic computing, formal specification language, swarm missions

Emil Vassev; Mike Hinchey; Joey Paquet

2008-03-01T23:59:59.000Z

493

64The Mathematics of Ion Rocket Engines Believe it or not, NASA  

E-Print Network (OSTI)

, in watts, defined by Power = Voltage x Amperage? Space Math http://spacemath.gsfc.nasa.gov #12;64Answer Key speed in an electric field - The kinetic energy of a particle is given by K.E. = 1/2 mv 2 . The energy). Problem 4 - Charged particle flows produce electrical currents - If each particle carries exactly one unit

494

National Aeronautics and Space Administration Space Math http://spacemath.gsfc.nasa.gov  

E-Print Network (OSTI)

data. The problems were designed to be `one-pagers' with a Teacher's Guide and Answer Key as a second://spacemath.gsfc.nasa.gov #12;Answer Key The relative sizes of some popular stars is given below, with the diameter of the sun;2Answer Key: Images ordered from largest to smallest and to scale: The sunspot drawn by Richard Carrington

Christian, Eric

495

36.258 UE -Woods calibrates instru-ment on NASA's new solar observa-  

E-Print Network (OSTI)

the stored magnetic energy is converted and released into the heliosphere and geospace in the form of solar University, University of Puerto Rico, University of Wyoming, Virginia Tech, and College of Menominee Nation36.258 UE - Woods calibrates instru- ment on NASA's new solar observa- tory. Photosby

Christian, Eric

496

Design of a Motor Control Board for the NASA Lunabotics Mining Competition  

E-Print Network (OSTI)

Design of a Motor Control Board for the NASA Lunabotics Mining Competition Chris Farnell, Brett 72701 cfarnell@uark.edu, bsparkma@uark.edu, and smithsco@uark.edu Abstract--Motor controllers allow users to control motor speed. A custom motor controller was designed, implemented, and tested

Smith, Scott C.