National Library of Energy BETA

Sample records for nanostructured materials 3d

  1. 3D Printing of nanostructured catalytic materials | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONeApril351 Substation Demolition --3D Printed3D

  2. A facile route for 3D aerogels from nanostructured 1D and 2D materials

    E-Print Network [OSTI]

    Jung, Sung Mi

    Aerogels have numerous applications due to their high surface area and low densities. However, creating aerogels from a large variety of materials has remained an outstanding challenge. Here, we report a new methodology ...

  3. Final report: high resolution lensless 3D imaging of nanostructures with coherent x-rays

    SciTech Connect (OSTI)

    Jacobsen, Chris

    2014-12-07

    Final report on the project "High resolution lensless 3D imaging of nanostructures with coherent x-rays"

  4. Nanostructured composite reinforced material

    DOE Patents [OSTI]

    Seals, Roland D. (Oak Ridge, TN); Ripley, Edward B. (Knoxville, TN); Ludtka, Gerard M. (Oak Ridge, TN)

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  5. Nanostructured magnetic materials

    E-Print Network [OSTI]

    Chan, Keith T.

    2011-01-01

    Magnetism and Magnetic Materials Conference, Atlanta, GA (Nanostructured Magnetic Materials by Keith T. Chan Doctor ofinduced by a Si-based material occurs at a Si/Ni interface

  6. Nanostructured materials for hydrogen storage

    DOE Patents [OSTI]

    Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  7. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    xi Material CharacterizationThermoelectric Materials . . . . . . . . Graphene-Like5 Nanostructured Materials for Electrochemical Energy

  8. Engineering 3D Nanostructures for a Multitude of Applications

    E-Print Network [OSTI]

    Flores, Jose Fernando

    2015-01-01

    ZnO Nanostructures on Stainless Steel . . . . 32 v 3.1.2 ZnOControlled ZnO Growth on Stainless Steel . . 3.2.2 SurfaceIII Appendices A Stainless Steel Cleaning and Composition B

  9. Fab trees for designing complex 3D printable materials

    E-Print Network [OSTI]

    Wang, Ye, M. Eng. Massachusetts Institute of Technology

    2013-01-01

    With more 3D printable materials being invented, 3D printers nowadays could replicate not only geometries, but also appearance and physical properties. On the software side, the tight coupling between geometry and material ...

  10. You are here: Home / News / 3D view of 1D nanostructures More services

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    create tool to put the lid on solar power fluctuations Variability law for solar panels News 3D view of 1You are here: Home / News / 3D view of 1D nanostructures Share More services Related Links of nanogenerators based on GaN nanowires, for powering of self-powered nanodevices. This story is reprinted from

  11. 3D Printing of Functional and Biological Materials

    E-Print Network [OSTI]

    ! 3D Printing of Functional and Biological Materials Jennifer A. Lewis Wyss Professor)! Multimaterial 3D printing ! #12;3D antennas! Li ion microbatteries! Lightweight microlattices!Flexible sensors! 3D Printing of Integrated Electronic Devices ! #12;20 nm average , 5 ­ 50 nm

  12. Nanostructured Electrode Materials for Supercapacitors

    E-Print Network [OSTI]

    Wu, Shin-Tson

    and batteries/fuel cells. Nanostructured electrode materials have demonstrated superior electrochemical of polymethine dyes electronic spectra is crucial for successful design of the new molecules with optimized

  13. 3D Printing of Scintillating Materials

    E-Print Network [OSTI]

    Y. Mishnayot; M. Layani; I. Cooperstein; S. Magdassi; G. Ron

    2014-06-15

    We demonstrate, for the first time, the applicability of 3D printing technique to the manufacture of scintillation detectors. We report of a formulation, usable in stereolithographic printing, that exhibits scintillation efficiency on the order of 30\\% of that of commercial polystyrene based scintillators. We discuss the applicability of these techniques and propose future enhancements that will allow tailoring the printed scintillation detectors to various application.

  14. 3D Printing of Scintillating Materials

    E-Print Network [OSTI]

    Mishnayot, Y; Cooperstein, I; Magdassi, S; Ron, G

    2014-01-01

    We demonstrate, for the first time, the applicability of 3D printing technique to the manufacture of scintillation detectors. We report of a formulation, usable in stereolithographic printing, that exhibits scintillation efficiency on the order of 30\\% of that of commercial polystyrene based scintillators. We discuss the applicability of these techniques and propose future enhancements that will allow tailoring the printed scintillation detectors to various application.

  15. Engineering 3D Nanostructures for a Multitude of Applications

    E-Print Network [OSTI]

    Flores, Jose Fernando

    2015-01-01

    Advanced materials for energy storage. Adv. Mater. , 22(8):fibres for capacitive energy storage. Nat. Nan- otechnol. ,chemical capacitive energy storage. Angew. Chem. Int. Ed.

  16. Engineering 3D Nanostructures for a Multitude of Applications

    E-Print Network [OSTI]

    Flores, Jose Fernando

    2015-01-01

    Semiconductor nanowires for energy conversion. ChemicalCheng. Advanced materials for energy storage. Adv. Mater. ,useful in many renewable energy applications. It is my hope

  17. Polymer Solar Cells: New Materials, 3D Morphology, and Tandem...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polymer Solar Cells: New Materials, 3D Morphology, and Tandem Devices March 2, 2010 at 3pm36-428 Ren Janssen Molecular Materials and Nanosystems, Eindhoven University of...

  18. Vacuum Compatibility of 3D-Printed Materials

    E-Print Network [OSTI]

    Povilus, A P; Vendeiro, Z; Baquero-Ruiz, M; Fajans, J

    2013-01-01

    The fabrication fidelity and vacuum properties are tested for currently available 3D-printed materials including polyamide, glass, acrylic, and sterling silver. The silver was the only material found to be suitable to ultrahigh vacuum environments due to outgassing and sublimation observed in other materials.

  19. Predicting the Electronic Properties of 3D, Million-atom Semiconductor nanostructure Architectures

    SciTech Connect (OSTI)

    Jack Dongarra; Stanimire Tomov

    2012-03-15

    This final report describes the work done by Jack Dongarra (University Distinguished Professor) and Stanimire Tomov (Research Scientist) related to the DOE project entitled Predicting the Electronic Properties of 3D, Million-Atom Semiconductor Nanostructure Architectures. In this project we addressed the mathematical methodology required to calculate the electronic and transport properties of large nanostructures with comparable accuracy and reliability to that of current ab initio methods. This capability is critical for further developing the field, yet it is missing in all the existing computational methods. Additionally, quantitative comparisons with experiments are often needed for a qualitative understanding of the physics, and for guiding the design of new nanostructures. We focused on the mathematical challenges of the project, in particular on solvers and preconditioners for large scale eigenvalue problems that occur in the computation of electronic states of large nanosystems. Usually, the states of interest lie in the interior of the spectrum and their computation poses great difficulties for existing algorithms. The electronic properties of a semiconductor nanostructure architecture can be predicted/determined by computing its band structure. Of particular importance are the 'band edge states' (electronic states near the energy gap) which can be computed from a properly defined interior eigenvalue problem. Our primary mathematics and computational challenge here has been to develop an efficient solution methodology for finding these interior states for very large systems. Our work has produced excellent results in terms of developing both new and extending current state-of-the-art techniques.

  20. Method of fabrication of anchored nanostructure materials

    DOE Patents [OSTI]

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-11-26

    Methods for fabricating anchored nanostructure materials are described. The methods include heating a nano-catalyst under a protective atmosphere to a temperature ranging from about 450.degree. C. to about 1500.degree. C. and contacting the heated nano-catalysts with an organic vapor to affix carbon nanostructures to the nano-catalysts and form the anchored nanostructure material.

  1. Anchored nanostructure materials and method of fabrication

    DOE Patents [OSTI]

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2012-11-27

    Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

  2. Quantitative Characterization of Nanostructured Materials

    SciTech Connect (OSTI)

    Dr. Frank Bridges, University of California-Santa Cruz

    2010-08-05

    The two-and-a-half day symposium on the "Quantitative Characterization of Nanostructured Materials" will be the first comprehensive meeting on this topic held under the auspices of a major U.S. professional society. Spring MRS Meetings provide a natural venue for this symposium as they attract a broad audience of researchers that represents a cross-section of the state-of-the-art regarding synthesis, structure-property relations, and applications of nanostructured materials. Close interactions among the experts in local structure measurements and materials researchers will help both to identify measurement needs pertinent to â??real-worldâ?ť materials problems and to familiarize the materials research community with the state-of-the-art local structure measurement techniques. We have chosen invited speakers that reflect the multidisciplinary and international nature of this topic and the need to continually nurture productive interfaces among university, government and industrial laboratories. The intent of the symposium is to provide an interdisciplinary forum for discussion and exchange of ideas on the recent progress in quantitative characterization of structural order in nanomaterials using different experimental techniques and theory. The symposium is expected to facilitate discussions on optimal approaches for determining atomic structure at the nanoscale using combined inputs from multiple measurement techniques.

  3. Multifunctional Nanostructured Materials for Processing of Biomass...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemical commodities. The nanostructured materials will be composed of organic and inorganic species that will work cooperatively to effectively promote chemical conversions...

  4. Chemistry Controls Material's Nanostructure | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Controls Material's Nanostructure Tweaking the chemicals used to form nanorods can be used to control their shape.Controlling a nanorod's shape is a key to controlling...

  5. Nanostructured Thermoelectric Materials and High Efficiency Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanostructured Thermoelectric Materials and High Efficiency Power Generation Modules Home Author: T. Hogan, A. Downey, J. Short, S. D. Mahanti, H. Schock, E. Case Year: 2007...

  6. Towards manipulating relativistic laser pulses with 3D printed materials

    E-Print Network [OSTI]

    Ji, L L; Pukhov, A; Freeman, R R; Akli, K U

    2015-01-01

    Efficient coupling of intense laser pulses to solid-density matter is critical to many applications including ion acceleration for cancer therapy. At relativistic intensities, the focus has been mainly on investigating various laser beams irradiating initially flat interfaces with little or no control over the interaction. Here, we propose a novel approach that leverages recent advancements in 3D direct laser writing (DLW) of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. We demonstrate, via simulations, that usable intensities >10^23Wcm^(-2) could be achieved with current tabletop lasers coupled to 3D printed plasma lenses. We show that these plasma optical elements act not only as a lens to focus laser light, but also as an electromagnetic guide for secondary particle beams. These results open new paths to engineering light-matter interactions at ultra-relativistic intensities.

  7. Innovative Nano-structuring Routes for Novel ThermoelectricMaterials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nano-structuring Routes for Novel Thermoelectric Materials;Phonon Blocking & DOS Engineering Innovative Nano-structuring Routes for Novel Thermoelectric Materials;Phonon Blocking &...

  8. 3D deformation field throughout the interior of materials.

    SciTech Connect (OSTI)

    Jin, Huiqing; Lu, Wei-Yang

    2013-09-01

    This report contains the one-year feasibility study for our three-year LDRD proposal that is aimed to develop an experimental technique to measure the 3D deformation fields inside a material body. In this feasibility study, we first apply Digital Volume Correlation (DVC) algorithm to pre-existing in-situ Xray Computed Tomography (XCT) image sets with pure rigid body translation. The calculated displacement field has very large random errors and low precision that are unacceptable. Then we enhance these tomography images by setting threshold of the intensity of each slice. DVC algorithm is able to obtain accurate deformation fields from these enhanced image sets and the deformation fields are consistent with the global mechanical loading that is applied to the specimen. Through this study, we prove that the internal markers inside the pre-existing tomography images of aluminum alloy can be enhanced and are suitable for DVC to calculate the deformation field throughout the material body.

  9. Solution Phase Routes to Functional Nanostructured Materials for Energy Applications

    E-Print Network [OSTI]

    Rauda, Iris Ester

    2012-01-01

    nanostructured materials are excellent candidates for integrating into electronic and energy-storage devices,

  10. Design and fabrication of a modular multi-material 3D printer

    E-Print Network [OSTI]

    Lan, Justin (Justin T.)

    2013-01-01

    This thesis presents 3DP-0, a modular, multi-material 3D printer. Currently, 3D printers available on the market are typically expensive and difficult to develop. In addition, the simultaneous use of multiple materials in ...

  11. Supplementary Material The pumping lid: Investigating multi-material 3D printing for equipment-free, programmable

    E-Print Network [OSTI]

    Ismagilov, Rustem F.

    Supplementary Material The pumping lid: Investigating multi-material 3D printing for equipment. #12;Experimental section 3D printing Lids and cups described in this paper were produced by multi-material 3D printing. The geometry of each part was designed using CAD software and exported to STL

  12. Supplementary Material for Interdroplet bilayer arrays in millifluidic droplet traps from 3D printed moulds

    E-Print Network [OSTI]

    Southampton, University of

    on an Objet Connex350TM 3D printer. One block was baked for 24 hours at 80 °C, causing a colour change fromSupplementary Material for Interdroplet bilayer arrays in millifluidic droplet traps from 3D. Untreated 3D-printed moulds were found to inhibit the curing of PDMS; baking the moulds eliminates

  13. MAE SEMINAR Recent advances in Additive Manufacturing/3D Printing Technologies, Material Science and

    E-Print Network [OSTI]

    Mease, Kenneth D.

    MAE SEMINAR Recent advances in Additive Manufacturing/3D Printing Technologies, Material Science Samueli School of Engineering University of California Irvine 3D printing or Additive Manufacturing in different shapes. 3D printing is also considered distinct from traditional machining techniques, which

  14. MultiFab : a multi-material 3D printing platform

    E-Print Network [OSTI]

    Ramos-Maltés, Javier Eduardo

    2014-01-01

    This thesis presents the development of MultiFab, a multi-material 3D printing architecture that is high-resolution, scalable, and low-cost. MultiFab enables the 3D printing of parts with materials that interact optically ...

  15. Solution Phase Routes to Functional Nanostructured Materials for Energy Applications

    E-Print Network [OSTI]

    Rauda, Iris Ester

    2012-01-01

    synthesis of inorganic semiconductor-based nanostructured materials;inorganic materials. 16,35,62?72 In the synthesis, we begin

  16. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    for Electrochemical Energy Storage Nanostructured Electrodesof the batteries and their energy storage efficiency. viifor Nanostructure-Based Energy Storage and Generation Tech-

  17. Design of electronics for a high-resolution, multi-material, and modular 3D printer

    E-Print Network [OSTI]

    Kwan, Joyce G

    2013-01-01

    Electronics for a high-resolution, multi-material, and modular 3D printer were designed and implemented. The driver for a piezoelectric inkjet print head can fire its nozzles with one of three droplet sizes ranging from 6 ...

  18. Aerogel Derived Nanostructured Thermoelectric Materials

    SciTech Connect (OSTI)

    Wendell E Rhine, PI; Dong, Wenting; Greg Caggiano, PM

    2010-10-08

    America’s dependence on foreign sources for fuel represents a economic and security threat for the country. These non renewable resources are depleting, and the effects of pollutants from fuels such as oil are reaching a problematic that affects the global community. Solar concentration power (SCP) production systems offer the opportunity to harness one of the United States’ most under utilized natural resources; sunlight. While commercialization of this technology is increasing, in order to become a significant source of electricity production in the United States the costs of deploying and operating SCP plants must be further reduced. Parabolic Trough SCP technologies are close to meeting energy production cost levels that would raise interest in the technology and help accelerate its adoption as a method to produce a significant portion of the Country’s electric power needs. During this program, Aspen Aerogels will develop a transparent aerogel insulation that can replace the costly vacuum insulation systems that are currently used in parabolic trough designs. During the Phase I program, Aspen Aerogels will optimize the optical and thermal properties of aerogel to meet the needs of this application. These properties will be tested, and the results will be used to model the performance of a parabolic trough HCE system which uses this novel material in place of vacuum. During the Phase II program, Aspen Aerogels will scale up this technology. Together with industry partners, Aspen Aerogels will build and test a prototype Heat Collection Element that is insulated with the novel transparent aerogel material. This new device will find use in parabolic trough SCP applications.

  19. Final Technical Progress Report NANOSTRUCTURED MAGNETIC MATERIALS

    SciTech Connect (OSTI)

    Charles M. Falco

    2012-09-13

    This report describes progress made during the final phase of our DOE-funded program on Nanostructured Magnetic Materials. This period was quite productive, resulting in the submission of three papers and presentation of three talks at international conferences and three seminars at research institutions. Our DOE-funded research efforts were directed toward studies of magnetism at surfaces and interfaces in high-quality, well-characterized materials prepared by Molecular Beam Epitaxy (MBE) and sputtering. We have an exceptionally well-equipped laboratory for these studies, with: Thin film preparation equipment; Characterization equipment; Equipment to study magnetic properties of surfaces and ultra-thin magnetic films and interfaces in multi-layers and superlattices.

  20. Chemistry and Processing of Nanostructured Materials

    SciTech Connect (OSTI)

    Fox, G A; Baumann, T F; Hope-Weeks, L J; Vance, A L

    2002-01-18

    Nanostructured materials can be formed through the sol-gel polymerization of inorganic or organic monomer systems. For example, a two step polymerization of tetramethoxysilane (TMOS) was developed such that silica aerogels with densities as low as 3 kg/m{sup 3} ({approx} two times the density of air) could be achieved. Organic aerogels based upon resorcinol-formaldehyde and melamine-formaldehyde can also be prepared using the sol-gel process. Materials of this type have received significant attention at LLNL due to their ultrafine cell sizes, continuous porosity, high surface area and low mass density. For both types of aerogels, sol-gel polymerization depends upon the transformation of these monomers into nanometer-sized clusters followed by cross-linking into a 3-dimensional gel network. While sol-gel chemistry provides the opportunity to synthesize new material compositions, it suffers from the inability to separate the process of cluster formation from gelation. This limitation results in structural deficiencies in the gel that impact the physical properties of the aerogel, xerogel or nanocomposite. In order to control the properties of the resultant gel, one should be able to regulate the formation of the clusters and their subsequent cross-linking. Towards this goal, we are utilizing dendrimer chemistry to separate the cluster formation from the gelation so that new nanostructured materials can be produced. Dendrimers are three-dimensional, highly branched macromolecules that are prepared in such a way that their size, shape and surface functionality are readily controlled. The dendrimers will be used as pre-formed clusters of known size that can be cross-linked to form an ordered gel network.

  1. Rheological and morphological characterization of hierarchically nanostructured materials

    E-Print Network [OSTI]

    Wang, Benjamin Ning-Haw

    2007-01-01

    Hierarchically nanostructured materials exhibit order on multiple length scales, with at least one of a few nanometers. The expected enhancements for applications using these materials include improved mechanical, thermal ...

  2. Stochastic Simulation Model for the 3D Morphology of Composite Materials in Li-Ion Batteries

    E-Print Network [OSTI]

    Schmidt, Volker

    Stochastic Simulation Model for the 3D Morphology of Composite Materials in Li-Ion Batteries Ralf August 30, 2010 Abstract Battery technology plays an important role in energy storage. In particular, lithium­ ion (Li-ion) batteries are of great interest, because of their high capacity, long cycle life

  3. Preliminary Study for Dosimetric Characteristics of 3D-printed Materials with Megavoltage Photons

    E-Print Network [OSTI]

    Jeong, Seonghoon; Chung, Weon Kuu; Kim, Dong Wook

    2015-01-01

    In these days, 3D-printer is on the rise in various fields including radiation therapy. This preliminary study aimed to estimate the dose characteristics of the 3D-printer materials which could be used as the compensator or immobilizer in radiation treatment. The cubes which have 5cm length and different densities as 50%, 75% and 100% were printed by 3D-printer. A planning CT scans for cubes were performed using a CT simulator (Brilliance CT, Philips Medical System, Netherlands). Dose distributions behind the cube were calculated when 6MV photon beam passed through cube. The dose response for 3D-printed cube, air and water were measured by using EBT3 film and 2D array detector. When results of air case were normalized to 100, dose calculated by TPS and measured dose of 50% and 75% cube were 96~99. Measured and calculated doses of water and 100% cube were 82~84. HU values of 50%, 75% and 100% were -910, -860 and -10, respectively. From these results, 3D-printer in radiotherapy could be used for medical purpose...

  4. Cookoff Response of PBXN-109: Material Characterization and ALE3D Thermal Predictions

    SciTech Connect (OSTI)

    McClelland, M A; Tran, T D; Cunningham, B J; Weese, R K; Maienschein, J L

    2001-08-21

    Materials properties measurements are made for the RDX-based explosive, PBXN-109, and initial ALE3D model predictions are given for the cookoff temperature in a U.S. Navy test. This work is part of an effort in the U.S. Navy and Department of Energy (DOE) laboratories to understand the thermal explosion behavior of this material. Benchmark cookoff experiments are being performed by the U.S. Navy to validate DOE materials models and computer codes. The ALE3D computer code can model the coupled thermal, mechanical, and chemical behavior of heating, ignition, and explosion in cookoff tests. In our application, a standard three-step step model is selected for the chemical kinetics. The strength behavior of the solid constituents is represented by a Steinberg-Guinan model while polynomial and gamma-law expressions are used for the Equation Of State (EOS) for the solid and gas species, respectively. Materials characterization measurements are given for thermal expansion, heat capacity, shear modulus, bulk modulus, and One-Dimensional-Time-to-Explosion (ODTX). These measurements and those of the other project participants are used to determine parameters in the ALE3D chemical, mechanical, and thermal models. Time-dependent, two-dimensional results are given for the temperature and material expansion. The results show predicted cookoff temperatures slightly higher than the measured values.

  5. Cookoff Response of PBXN-109: Material Characterization and ALE3D Thermal Predictions

    SciTech Connect (OSTI)

    McClelland, M A; Tran, T D; Cunningham, B J; Weese, R K; Maienschein, J L

    2001-05-29

    Materials properties measurements are made for the RDX-based explosive, PBXN-109, and initial ALE3D model predictions are given for the cookoff temperature in a U.S. Navy test. This work is part of an effort in the U.S. Navy and Department of Energy (DOE) laboratories to understand the thermal explosion behavior of this material. Benchmark cookoff experiments are being performed by the U.S. Navy to validate DOE materials models and computer codes. The ALE3D computer code can model the coupled thermal, mechanical, and chemical behavior of heating, ignition, and explosion in cookoff tests. In our application, a standard three-step step model is selected for the chemical kinetics. The strength behavior of the solid constituents is represented by a Steinberg-Guinan model while polynomial and gamma-law expressions are used for the Equation Of State (EOS) for the solid and gas species, respectively. Materials characterization measurements are given for thermal expansion, heat capacity, shear modulus, bulk modulus, and One-Dimensional-Time-to-Explosion (ODTX). These measurements and those of the other project participants are used to determine parameters in the ALE3D chemical, mechanical, and thermal models. Time-dependent, two-dimensional results are given for the temperature and material expansion. The results show predicted cookoff temperatures slightly higher than the measured values.

  6. SU-E-T-455: Characterization of 3D Printed Materials for Proton Beam Therapy

    SciTech Connect (OSTI)

    Zou, W; Siderits, R; McKenna, M; Khan, A; Yue, N [Rutgers University, New Brunswick, NJ (United States); McDonough, J; Yin, L; Teo, B [University of Pennsylvania, Philadelphia, PA (United States); Fisher, T [Memorial Medical Center, Modesto, CA (United States)

    2014-06-01

    Purpose: The widespread availability of low cost 3D printing technologies provides an alternative fabrication method for customized proton range modifying accessories such as compensators and boluses. However the material properties of the printed object are dependent on the printing technology used. In order to facilitate the application of 3D printing in proton therapy, this study investigated the stopping power of several printed materials using both proton pencil beam measurements and Monte Carlo simulations. Methods: Five 3–4 cm cubes fabricated using three 3D printing technologies (selective laser sintering, fused-deposition modeling and stereolithography) from five printers were investigated. The cubes were scanned on a CT scanner and the depth dose curves for a mono-energetic pencil beam passing through the material were measured using a large parallel plate ion chamber in a water tank. Each cube was measured from two directions (perpendicular and parallel to printing plane) to evaluate the effects of the anisotropic material layout. The results were compared with GEANT4 Monte Carlo simulation using the manufacturer specified material density and chemical composition data. Results: Compared with water, the differences from the range pull back by the printed blocks varied and corresponded well with the material CT Hounsfield unit. The measurement results were in agreement with Monte Carlo simulation. However, depending on the technology, inhomogeneity existed in the printed cubes evidenced from CT images. The effect of such inhomogeneity on the proton beam is to be investigated. Conclusion: Printed blocks by three different 3D printing technologies were characterized for proton beam with measurements and Monte Carlo simulation. The effects of the printing technologies in proton range and stopping power were studied. The derived results can be applied when specific devices are used in proton radiotherapy.

  7. Materials that Power Our World Nanostructured Carbon

    E-Print Network [OSTI]

    Screens, Displays and Solar Electrodes Energy Storage Electrodes and Additives Fuel Cells Bipolar Plates application #12;Strong Earnings Potential · Positive outlook for energy and electronics · Proprietary C presentation) #12;Nanostructured Carbon Mission critical component in advanced energy & electronic devices 2

  8. Image-based stochastic modeling of the 3D morphology of energy materials on various length scales

    E-Print Network [OSTI]

    Schmidt, Volker

    Image-based stochastic modeling of the 3D morphology of energy materials on various length scales tomography image data O. Stenzel et al., Modelling and Simulation in Materials Science and Engineering microstructure of compressed graphite electrodes 3D morphology of hybrid organic solar cells Charge transport

  9. Master Thesis: 3-D Imaging of Locust Exoskeletons Department of New Materials and Biosystems / Perceiving Systems / Optics & Sensing Laboratory

    E-Print Network [OSTI]

    with the Department of New Materials and Biosystems. You will gain interdisciplinary interesting candidate for the design of new bio-inspired composite materials Master Thesis: 3-D Imaging of Locust Exoskeletons Department of New

  10. Improvement of 3D Printing Resolution by the Development of Shrinkable Materials

    E-Print Network [OSTI]

    Chia, Helena

    2014-01-01

    derived microstructures by 3D printing: bio-and structuralScaffold development using 3D printing with a starch-basedderived microstructures by 3D printing: bio-and structural

  11. Improvement of 3D Printing Resolution by the Development of Shrinkable Materials

    E-Print Network [OSTI]

    Chia, Helena

    2014-01-01

    learned a lot about 3D printing and myself in this processderived microstructures by 3D printing: bio-and structuralScaffold development using 3D printing with a starch-based

  12. ALE3D Model Predictions and Materials Characterization for the Cookoff Response of PBXN-109

    SciTech Connect (OSTI)

    McClelland, M A; Maienschein, J L; Nichols, A L; Wardell, J F; Atwood, A I; Curran, P O

    2002-03-19

    ALE3D simulations are presented for the thermal explosion of PBXN-109 (RDX, AI, HTPB, DOA) in support of an effort by the U. S. Navy and Department of Energy (DOE) to validate computational models. The U.S. Navy is performing benchmark tests for the slow cookoff of PBXN-109 in a sealed tube. Candidate models are being tested using the ALE3D code, which can simulate the coupled thermal, mechanical, and chemical behavior during heating, ignition, and explosion. The strength behavior of the solid constituents is represented by a Steinberg-Guinan model while polynomial and gamma-law expressions are used for the Equation Of State (EOS) for the solid and gas species, respectively. A void model is employed to represent the air in gaps. ALE3D model 'parameters are specified using measurements of thermal and mechanical properties including thermal expansion, heat capacity, shear modulus, and bulk modulus. A standard three-step chemical kinetics model is used during the thermal ramp, and a pressure-dependent burn front model is employed during the rapid expansion. Parameters for the three-step kinetics model are specified using measurements of the One-Dimensional-Time-to-Explosion (ODTX), while measurements for burn rate of pristine and thermally damaged material are employed to determine parameters in the burn front model. Results are given for calculations in which heating, ignition, and explosion are modeled in a single simulation. We compare model results to measurements for the cookoff temperature and tube wall strain.

  13. Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1

    E-Print Network [OSTI]

    Chen, Gang

    Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1 conductivity led to a large increase in the thermoelectric figure of merit in several superlattice systems. Materials with a large thermoelectric figure of merit can be used to develop efficient solid-state devices

  14. Preparation of nanostructured materials having improved ductility

    DOE Patents [OSTI]

    Zhao, Yonghao; Zhu, Yuntian T.

    2010-04-20

    A method for preparing a nanostructured aluminum alloy involves heating an aluminum alloy workpiece at temperature sufficient to produce a single phase coarse grained aluminum alloy, then refining the grain size of the workpiece at a temperature at or below room temperature, and then aging the workpiece to precipitate second phase particles in the nanosized grains of the workpiece that increase the ductility without decreasing the strength of the workpiece.

  15. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    Refrigeration Optimization of Thermoelectric Materialof specific material optimization. One should note, Goldsmidrebirth. Optimization of Thermoelectric Material Systems and

  16. Nanostructured Materials | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopmentEnergyApplicationsLaboratoryNanostructured

  17. Courtesy of Prof. Pamela Norris, UVA A Nanostructured Material with

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    Courtesy of Prof. Pamela Norris, UVA Aerogel: A Nanostructured Material with Fascinating of Mechanical and Aerospace Engineering Director of the Aerogel Research Lab #12;AEROGEL RESEARCH LAB-edge applications of aerogels. Diffusion on a Fractal Length Scale Biological Warfare Detection Basic Science

  18. Novel 3d-4f Magnetic Intermetallic Materials by Design | The...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    both itinerant 3d electrons of transition metals and localized 4f electrons of rare earth metals could yield large 3d-4f exchange interactions that are prospective for many...

  19. Bending response of 3-D woven and braided preform composite materials

    SciTech Connect (OSTI)

    Pochiraju, K.; Parvizi-Majidi, A.; Chou, T.W.; Shah, B.

    1994-12-31

    Three dimensional textile carbon-epoxy composites exhibit general anisotropy. Further, these materials may possess different modulus in uniaxial tension than that in compression. In an earlier material characterization effort, the tension, compression, and shear properties of these composites were determined. In this paper, theoretical modeling of flexure of the textile composites and experimental correlation are presented. Four point bending tests were conducted according to STM D709 standards to determine the load to mid-span deflection relationships for typical textile composites. The results of experimental analysis are compared with classical beam theory, theory of elasticity solutions considering material orthotropy and shear deflection, and finite element analysis considering material orthotropy and finite deformation/rotations. The derivation of a harmonic function, required for the theory of elasticity solution, is described in the paper. Homogeneous orthotropic elastic properties are assumed for the 3-D textile composites, which is a reasonable approximation for specimens considerably larger than the repeated geometric unit of the fiber preform. The so called ``flex modulus`` is determined from the experimental data.

  20. Thermoelectric energy conversion using nanostructured materials

    E-Print Network [OSTI]

    Chen, Gang

    High performance thermoelectric materials in a wide range of temperatures are essential to broaden the application spectrum of thermoelectric devices. This paper presents experiments on the power and efficiency characteristics ...

  1. Nanostructured Materials as Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOriginMaterials by Ultra-High-ResolutionMaterials as Anodes

  2. Arc Plasma Synthesis of Nanostructured Materials: Techniques and Innovations

    SciTech Connect (OSTI)

    Das, A. K.; Bhoraskar, S. V.; Kakati, M.; Karmakar, Soumen

    2008-10-23

    Arc plasma aided synthesis of nanostructured materials has the potential of producing complex nano phase structures in bulk quantities. Successful implementation of this potential capability to industrial scale nano generation needs establishment of a plasma parameter control regime in terms of plasma gas, flow pattern, pressure, local temperature and the plasma fields to obtain the desired nano phase structures. However, there is a need to design innovative in situ experiments for generation of an extensive database and subsequently to correlate plasma parameters to the size, shape and phase of the generated nanostructures. The present paper reviews the various approaches utilized in the field of arc plasma nanosynthesis in general and in the authors' laboratories in particular. Simple plasma diagnostics and monitoring schemes have been used in conjunction with nano materials characterization tools to explore the possibility of controlling the size, shape, yield and phase composition of the arc generated nanostructures through plasma control. Case studies related to synthesis of AlN, Al2O3, TiO2, ZrO2, ZnO), magnetic (e.g. {gamma}-Fe2O3, Fe3O4) and single elemental materials (e.g. carbon nanotubes) are presented.

  3. High volume production of nanostructured materials

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN); Morrell, Jonathan S. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Ludtka, Gerard M. (Oak Ridge, TN)

    2009-10-13

    A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

  4. Three dimensional nanoporous density graded materials formed by optical exposures through conformable phase masks

    E-Print Network [OSTI]

    Rogers, John A.

    enable additional important classes of 3D nano- structured materials to be formed with PnP. In particular to large areas, they can define three di- mensional 3D nanostructured materials in a single step, this simple method was used to form a variety of 3D nanostructured materials, using exposure light from lasers

  5. Nanomanufacturing : nano-structured materials made layer-by-layer.

    SciTech Connect (OSTI)

    Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen; Tjiptowidjojo, Kristianto; Reedy, Earl David, Jr.; Fan, Hongyou; Schunk, Peter Randall; Chandross, Michael Evan; Roberts, Scott A.

    2011-10-01

    Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

  6. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1995-05-09

    A high performance capacitor is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The notepad capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  7. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1996-01-23

    A high performance capacitor is described which is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200--300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The ``notepad`` capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  8. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, Jr., Troy W. (Palo Alto, CA); Johnson, Gary W. (Livermore, CA); O'Brien, Dennis W. (Livermore, CA)

    1995-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  9. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, Jr., Troy W. (Palo Alto, CA); Johnson, Gary W. (Livermore, CA); O'Brien, Dennis W. (Livermore, CA)

    1996-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  10. 3D Covalent Organic Framework Materials database (Dataset) | SciTech

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation4563 LLNL Small-scale Friction(TechnicalRandomConnect Dataset: 3D

  11. Chemical Functionalization of Nanostructured Materials Using Supercritical Reaction Media

    SciTech Connect (OSTI)

    Zemanian, Thomas S.; Fryxell, Glen E.; Liu, Jun; Mattigod, Shas V.; Shin, Yongsoon; Franz, James A.; Ustyugov, Oleksiy A.; Nie, Zimin

    2001-12-15

    There exists a need for durable and thin functional coatings to utilize the afforded surface area of highly porous ceramic materials. Deposition of silane-based Self Assembled Monolayers (SAMs) has thus far been limited to maximum coverages of 4-5 molecules/nm2 and long processing times (up to 2 weeks), due to the restricted internal geometry of the substrates. Results are presented for SAMs deposited on high surface area silica from supercritical fluids (SCFs). The SAMs so produced display unprecedented coverages, high monolayer integrity, and extremely low surface defect density. Moreover, the depositions and subsequent removal of reaction byproducts are complete in a matter of minutes rather than days. Nuclear Magnetic Resonance (NMR) spectra of the surface modified silica are presented, demonstrating the SAM integrity and evolution over time. Sorption of aqueous metal ions is demonstrated, and results are given demonstrating the broad pH stability of the deposited SAMs. A chemical explanation for the enhanced deposition is posited, and the kinetics of mass transport into and out of the nanostructured spaces are discussed.Related experiments using zeolite substrates show deposition of thiol-terminated silanes to internal surfaces of 6? microporous material. After oxidation of the thiol functional group size selective chemistry was demonstrated using the produced catalyst, proving the efficacy of the supercritical reaction medium for installing functional coatings inside pores of similar diameters to the chain length of the deposited molecule[]. Comparisons are made between the response of the different substrates to the supercritical fluid-based processing, and remarks on the utility of SCF based processing of nanostructured materials are presented.

  12. An Experimental Study of Deformation and Fracture of a Nanostructured Metallic Material 

    E-Print Network [OSTI]

    Abdel Al, Nisrin Rizek

    2011-02-22

    , the mechanical behavior of a nanostructured, nearly pure material is investigated in order to link processing conditions, microstructure, and fracture locus in stress space. With focus laid on BCC materials which can undergo a ductile-to-brittle transition...

  13. Three dimensional, bulk nanostructured materials and composites have matured into a new class of materials that is being considered in a variety of engineering applications. The successful synthesis of large-scale nanostructured materials is of

    E-Print Network [OSTI]

    Three dimensional, bulk nanostructured materials and composites have matured into a new class of materials that is being considered in a variety of engineering applications. The successful synthesis of large-scale nanostructured materials is of technological and scientific significance. From

  14. Stochastic 3D Modeling of Non-Woven Materials with Wet-Proofing Agent

    E-Print Network [OSTI]

    Schmidt, Volker

    Institute of Stochastics, Ulm University, Germany bInstitute of Energy and Climate Research (IEK-3: Electrochemical Process for Materials and Energy (HZB), Germany dFa. Freudenberg Fuel Cell Components Technology KG (FFCCT), Germany e Engineering), Forschungszentrum J¨ulich GmbH, Germany cInstitute of Applied Materials, Helmholtz Centre Berlin

  15. 3-D photo-patterning of refractive index structures in photosensitive thin film materials

    DOE Patents [OSTI]

    Potter, Jr., Barrett George (Albuquerque, NM); Potter, Kelly Simmons (Albuquerque, NM)

    2002-01-01

    A method of making a three-dimensional refractive index structure in a photosensitive material using photo-patterning. The wavelengths at which a photosensitive material exhibits a change in refractive index upon exposure to optical radiation is first determined and then a portion of the surface of the photosensitive material is optically irradiated at a wavelength at which the photosensitive material exhibits a change in refractive index using a designed illumination system to produce a three-dimensional refractive index structure. The illumination system can be a micro-lenslet array, a macroscopic refractive lens array, or a binary optic phase mask. The method is a single-step, direct-write procedure to produce a designed refractive index structure.

  16. Materials Chemistry in 3D Templates for Functional Photonics Paul V. Braun*

    E-Print Network [OSTI]

    Braun, Paul

    materials to minimize optical losses.11 Metamaterial devices which incor- porate electrically pumped gain optics. While this may be acceptable for some fields, e.g., energy storage,1,2 this is not acceptable between photons and electrons, significantly narrow thermal emission, enhance photocatalysis, enable

  17. Computation of Casimir Interactions between Arbitrary 3D Objects with Arbitrary Material Properties

    E-Print Network [OSTI]

    M. T. Homer Reid; Jacob White; Steven G. Johnson

    2011-10-20

    We extend a recently introduced method for computing Casimir forces between arbitrarily--shaped metallic objects [M. T. H. Reid et al., Phys. Rev. Lett._103_ 040401 (2009)] to allow treatment of objects with arbitrary material properties, including imperfect conductors, dielectrics, and magnetic materials. Our original method considered electric currents on the surfaces of the interacting objects; the extended method considers both electric and magnetic surface current distributions, and obtains the Casimir energy of a configuration of objects in terms of the interactions of these effective surface currents. Using this new technique, we present the first predictions of Casimir interactions in several experimentally relevant geometries that would be difficult to treat with any existing method. In particular, we investigate Casimir interactions between dielectric nanodisks embedded in a dielectric fluid; we identify the threshold surface--surface separation at which finite--size effects become relevant, and we map the rotational energy landscape of bound nanoparticle diclusters.

  18. A 3D Orthotropic Strain-Rate Dependent Elastic Damage Material Model.

    SciTech Connect (OSTI)

    English, Shawn Allen

    2014-09-01

    A three dimensional orthotropic elastic constitutive model with continuum damage and cohesive based fracture is implemented for a general polymer matrix composite lamina. The formulation assumes the possibility of distributed (continuum) damage followed b y localized damage. The current damage activation functions are simply partially interactive quadratic strain criteria . However, the code structure allows for changes in the functions without extraordinary effort. The material model formulation, implementation, characterization and use cases are presented.

  19. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01

    reactivity of vanadium oxide aerogels." Electrochimica Acta,B. Dunn. “Vanadium Oxide Aerogels: Nanostructured MaterialsE. & Dunn, B. V 2 O 5 aerogel as a versatile host for metal

  20. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    08:59 ALS researchers have discovered a material that is essentially a 3D version of graphene-the 2D sheets of carbon through which electrons race at many times the speed at which...

  1. Vacuum compatibility of 3D-printed materials Alexander P. Povilus, Caroline J. Wurden, Zak Vendeiro, Marcelo Baquero-Ruiz, and Joel Fajans

    E-Print Network [OSTI]

    Fajans, Joel

    .1116/1.4873556] I. INTRODUCTION Additive manufacturing, or 3D printing, of parts has many potential advantages over printing is additive, it is possible that there are small voids in the material that would trap gases

  2. Analytic Solutions to 3-D Finite Deformation Problems Governed by St Venant-Kirchhoff Material

    E-Print Network [OSTI]

    David Yang Gao; Eldar Hajilarov

    2015-04-11

    This paper presents a detailed study on analytical solutions to a general nonlinear boundary-value problem in finite deformation theory. Based on canonical duality theory and the associated pure complementary energy principle in nonlinear elasticity proposed by Gao in 1999, we show that the general nonlinear partial differential equation for deformation is actually equivalent to an algebraic (tensor) equation in stress space. For St Venant-Kirchhoff materials, this coupled cubic algebraic equation can be solved principally to obtain all possible solutions. Our results show that for any given external source field such that the statically admissible first Piola-Kirchhoff stress field has no-zero eigenvalues, the problem has a unique global minimal solution, which is corresponding to a positive-definite second Piola-Kirchhoff stress S, and at most eight local solutions corresponding to negative-definite S. Additionally, the problem could have 15 unstable solutions corresponding to indefinite S. This paper demonstrates that the canonical duality theory and the pure complementary energy principle play fundamental roles in nonconvex analysis and finite deformation theory.

  3. Tuning energy transport in solar thermal systems using nanostructured materials

    E-Print Network [OSTI]

    Lenert, Andrej

    2014-01-01

    Solar thermal energy conversion can harness the entire solar spectrum and theoretically achieve very high efficiencies while interfacing with thermal storage or back-up systems for dispatchable power generation. Nanostructured ...

  4. Electrochemical Synthesis and Characterization of Nanostructured Chalcogenide Materials

    E-Print Network [OSTI]

    Chang, Chong Hyun

    2011-01-01

    requirements of thin-film solar cell modules--a review.thin films. Figure A1.1 Schematic illustration of fabrication of CdTe NWs/CdS hybrid nanostructures based on solar cells

  5. Optical Properties of Nanostructured Optical Materials Russell J. Gehr* and Robert W. Boyd

    E-Print Network [OSTI]

    Boyd, Robert W.

    Optical Properties of Nanostructured Optical Materials Russell J. Gehr* and Robert W. Boyd Manuscript Received April 24, 1996X The optical properties of nanoscale composite materials are often quite different from the properties of the constituent materials from which the composite is constructed

  6. Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk

    E-Print Network [OSTI]

    Ryan, Dominic

    Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk ion cathode materials for high capacity lithium-ion batteries. Owing to their inherently low electronic in these materials is also to unravel the factors governing ion and electron transport within the lattice. Lithium de

  7. Characterization of 3D Photovoltaics

    E-Print Network [OSTI]

    Characterization of 3D Photovoltaics SEMICONDUCTORS Our goal is to provide industry with test structures and models of next-generation photovoltaics, with an initial focus on cadmium telluride (Cd (nanostructured) photovoltaic devices. Objective Impact and Customers · The U.S. Photovoltaic Industry Roadmap

  8. Quantum Simulations of Materials and Nanostructures (Q-SIMAN). Final Report

    SciTech Connect (OSTI)

    Galli, Giulia; Bai, Zhaojun; Ceperley, David; Cai, Wei; Gygi, Francois; Marzari, Nicola; Pickett, Warren; Spaldin, Nicola; Fattebert, Jean-Luc; Schwegler, Eric

    2015-09-16

    The focus of this SciDAC SAP (Scientific Application) is the development and use of quantum simulations techniques to understand materials and nanostructures at the microscopic level, predict their physical and chemical properties, and eventually design integrated materials with targeted properties. (Here the word ‘materials’ is used in a broad sense and it encompasses different thermodynamic states of matter, including solid, liquids and nanostructures.) Therefore our overarching goal is to enable scientific discoveries in the field of condensed matter and advanced materials through high performance computing.

  9. Solution Phase Routes to Functional Nanostructured Materials for Energy Applications

    E-Print Network [OSTI]

    Rauda, Iris Ester

    2012-01-01

    Networks: Ag 2 Se Gels and Aerogels by Cation ExchangeArea Vanadium Oxide Aerogels. Electrochem. Solid State Lett.of a 3D Graphene/Nanoparticle Aerogel. Adv. Mater. 2011, 23,

  10. Three-dimensional nanostructures fabricated by stacking pre-patterned monocrystalline silicon nanomembranes

    E-Print Network [OSTI]

    Fucetola, Corey Patrick

    2013-01-01

    This thesis considers the viability of nanomembrane handling and stacking approaches to enable the fabrication of three-dimensional (3D) nano-structured materials. Sequentially stacking previously-patterned membranes to ...

  11. PERFORMANCE OF CdSe TETRAPODS-GOLD AS NANOSTRUCTURE ELECTROCHEMICAL MATERIALS IN PHOTOVOLTAIC CELLS

    E-Print Network [OSTI]

    Natelson, Douglas

    PERFORMANCE OF CdSe TETRAPODS-GOLD AS NANOSTRUCTURE ELECTROCHEMICAL MATERIALS IN PHOTOVOLTAIC CELLS antenna arrays are assembled by coating on CdSe tetrapod templates; the rectifying barrier is formed and reduce the costs associated with conventional solar cells, including multi-bandgap materials [5

  12. Transformational, Large Area Fabrication of Nanostructured Materials Using Plasma Arc Lamps

    SciTech Connect (OSTI)

    2009-03-01

    This factsheet describes a study that will address critical additional steps over large areas of as-synthesized nanostructured materials, such as annealing, phase transformation, or activation of dopants, dramatically reducing the processing costs of the solid-state lighting and photovoltaic materials.

  13. Method of making nanopatterns and nanostructures and nanopatterned functional oxide materials

    DOE Patents [OSTI]

    Dravid, Vinayak P; Donthu, Suresh K; Pan, Zixiao

    2014-02-11

    Method for nanopatterning of inorganic materials, such as ceramic (e.g. metal oxide) materials, and organic materials, such as polymer materials, on a variety of substrates to form nanopatterns and/or nanostructures with control of dimensions and location, all without the need for etching the materials and without the need for re-alignment between multiple patterning steps in forming nanostructures, such as heterostructures comprising multiple materials. The method involves patterning a resist-coated substrate using electron beam lithography, removing a portion of the resist to provide a patterned resist-coated substrate, and spin coating the patterned resist-coated substrate with a liquid precursor, such as a sol precursor, of the inorganic or organic material. The remaining resist is removed and the spin coated substrate is heated at an elevated temperature to crystallize the deposited precursor material.

  14. 3D Tissue Scaffolds BIOMATERIALS

    E-Print Network [OSTI]

    3D Tissue Scaffolds BIOMATERIALS Our goal is to develop measurement tools and reference materials006497-01) in collaboration with the New Jersey Center for Biomaterials (RESBIO P41 EB 001046). · We have-material interactions have focused on planar (2D) surfaces or films. However, biomaterials are commonly used in 3D

  15. Chemically modified and nanostructured porous silicon as a drug delivery material and device

    E-Print Network [OSTI]

    Anglin, Emily Jessica

    2007-01-01

    Sailor, M. J. , Engineering the chemistry and nanostructureSailor, M. J. , Engineering the chemistry and nanostructureSailor, M.J. , Engineering the chemistry and nanostructure

  16. Electron Holography of Magnetic and Electric Fields in Nanostructured Materials Prepared for TEM Examination Using Focused Ion Beam Milling

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Electron Holography of Magnetic and Electric Fields in Nanostructured Materials Prepared for TEM local angle and spacing carry the desired information about magnetic and electric fields. Electron not be perturbed by stray (fringing) magnetic or electric fields. When examining magnetic nanostructures in cross

  17. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    the-art thin film solar cell design and processing becauseto incorporate into the solar cell design the materials withor conventional tandem solar cell designs. The physical

  18. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    E-Print Network [OSTI]

    Goyal, Vivek Kumar

    2011-01-01

    Layer Graphene and Graphene Devices,” Semiconductor ResearchMaterials: From Graphene to Diamond,” Semiconductor ResearchGraphene and Applications in Thermal Management,” Semiconductor

  19. High-capacity nanostructured germanium-containing materials and lithium alloys thereof

    DOE Patents [OSTI]

    Graetz, Jason A. (Upton, NY); Fultz, Brent T. (Pasadena, CA); Ahn, Channing (Pasadena, CA); Yazami, Rachid (Los Angeles, CA)

    2010-08-24

    Electrodes comprising an alkali metal, for example, lithium, alloyed with nanostructured materials of formula Si.sub.zGe.sub.(z-1), where 0

  20. Solution Phase Routes to Functional Nanostructured Materials for Energy Applications

    E-Print Network [OSTI]

    Rauda, Iris Ester

    2012-01-01

    for Rechargeable Lithium-Ion Batteries. Chem. Mater. 2008,Cathode Material for Lithium-Ion Batteries. J. Mater. Chem.of Electrodes in Lithium-Ion Batteries caused by Fast

  1. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    band impact ionization and solar cell efficiency,” J. Appl.Solar Energy Materials and Solar Cells 92, 273, (2008). [28]third generation solar cells Solar cells may be formed using

  2. CRYOGENIC ADSORPTION OF HYDROGEN ISOTOPES OVER NANO-STRUCTURED MATERIALS

    SciTech Connect (OSTI)

    Xiao, S.; Heung, L.

    2010-10-07

    Porous materials such as zeolites, activated carbon, silica gels, alumina and a number of industrial catalysts are compared and ranked for hydrogen and deuterium adsorption at liquid nitrogen temperature. All samples show higher D{sub 2} adsorption than that of H{sub 2}, in which a HY sample has the greatest isotopic effect while 13X has the highest hydrogen uptake capacity. Material's moisture content has significant impact to its hydrogen uptake. A material without adequate drying could result in complete loss of its adsorption capacity. Even though some materials present higher H{sub 2} adsorption capacity at full pressure, their adsorption at low vapor pressure may not be as good as others. Adsorption capacity in a dynamic system is much less than in a static system. A sharp desorption is also expected in case of temperature upset.

  3. MATERIALS, FABRICATION, AND MANUFACTURING OF MICRO/NANOSTRUCTURED SURFACES FOR PHASE-CHANGE HEAT TRANSFER ENHANCEMENT

    SciTech Connect (OSTI)

    McCarthy, M; Gerasopoulos, K; Maroo, SC; Hart, AJ

    2014-07-23

    This article describes the most prominent materials, fabrication methods, and manufacturing schemes for micro- and nanostructured surfaces that can be employed to enhance phase-change heat transfer phenomena. The numerous processes include traditional microfabrication techniques such as thin-film deposition, lithography, and etching, as well as template-assisted and template-free nanofabrication techniques. The creation of complex, hierarchical, and heterogeneous surface structures using advanced techniques is also reviewed. Additionally, research needs in the field and future directions necessary to translate these approaches from the laboratory to high-performance applications are identified. Particular focus is placed on the extension of these techniques to the design of micro/nanostructures for increased performance, manufacturability, and reliability. The current research needs and goals are detailed, and potential pathways forward are suggested.

  4. Methods for high volume production of nanostructured materials

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN); Morrell, Jonathan S. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Ludtka, Gerald M. (Oak Ridge, TN)

    2011-03-22

    A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

  5. Nanostructured material for advanced energy storage : magnesium battery cathode development.

    SciTech Connect (OSTI)

    Sigmund, Wolfgang M.; Woan, Karran V.; Bell, Nelson Simmons

    2010-11-01

    Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

  6. Nanostructure multilayer dielectric materials for capacitors and insulators

    DOE Patents [OSTI]

    Barbee, T.W. Jr.; Johnson, G.W.

    1998-04-21

    A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO{sub 2}) and alumina (Al{sub 2}O{sub 3}). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO{sub 2}) and alumina (Al{sub 2}O{sub 3}) in alternating layers to form a nano-laminate. 1 fig.

  7. Nanostructure multilayer dielectric materials for capacitors and insulators

    DOE Patents [OSTI]

    Barbee, Jr., Troy W. (Palo Alto, CA); Johnson, Gary W. (Livermore, CA)

    1998-04-21

    A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3) in alternating layers to form a nano-laminate.

  8. Nondestructive volumetric 3-D chemical mapping of nickel-sulfur compounds at the nanoscale

    SciTech Connect (OSTI)

    Harris W. M.; Chu Y.; Nelson, G.J.; Kiss, A.M.; Izzo Jr, J.R.; Liu, Y.; Liu, M.; Wang, S.; Chiu W.K.S.

    2012-04-04

    Nano-structures of nickel (Ni) and nickel subsulfide (Ni{sub 3}S{sub 2}) materials were studied and mapped in 3D with high-resolution x-ray nanotomography combined with full field XANES spectroscopy. This method for characterizing these phases in complex microstructures is an important new analytical imaging technique, applicable to a wide range of nanoscale and mesoscale electrochemical systems.

  9. Reactive Ballistic Deposition of Nanostructured Model Materials for Electrochemical Energy Conversion and Storage

    SciTech Connect (OSTI)

    Flaherty, David W.; Hahn, Nathan T.; May, Robert A.; Berglund, Sean P.; Lin, Yong-Mao; Stevenson, Keith J.; Dohnalek, Zdenek; Kay, Bruce D.; Mullins, C. Buddie

    2012-03-20

    Finely structured, supported thin films offer a host of opportunities for fundamental and applied research. Nanostructured materials often exhibit physical properties which differ from their bulk counterparts due to the increased importance of the surface in determining the thermodynamics and behavior of the system. Thus, control of the characteristic size, porosity, morphology, and surface area presents opportunities to tailor new materials which are useful platforms for elucidating the fundamental processes related to energy conversion and storage. The ability to produce high purity materials with direct control of relevant film parameters such as porosity, film thickness, and film morphology is of immediate interest in the fields of electrochemistry, photocatalysis, and thermal catalysis. Studies of various photoactive materials have introduced questions concerning the effects of film architecture and surface structure on the performance of the materials, while recent work has demonstrated that nanostructured, mesoporous, or disordered materials often deform plastically, making them robust in applications where volumetric expansion and phase transformations occur, such as in materials for lithium-ion batteries. Moreover, renewed emphasis has been placed on the formation of semi-conductive electrodes with controlled pore-size and large surface areas for the study and application of pseudo-capacitance and cation insertion processes for electrical energy storage. Understanding how the performance of such materials depends on morphology, porosity, and surface structure and area requires a synthesis technique which provides for incremental variations in structure and facilitates assessment of the performance with the appropriate analytical tools, preferably those that provide both structural information and kinetic insight into photoelectrochemical processes.

  10. Electrospray neutralization process and apparatus for generation of nano-aerosol and nano-structured materials

    DOE Patents [OSTI]

    Bailey, Charles L. (Cross Junction, VA); Morozov, Victor (Manassas, VA); Vsevolodov, Nikolai N. (Kensington, MD)

    2010-08-17

    The claimed invention describes methods and apparatuses for manufacturing nano-aerosols and nano-structured materials based on the neutralization of charged electrosprayed products with oppositely charged electrosprayed products. Electrosprayed products include molecular ions, nano-clusters and nano-fibers. Nano-aerosols can be generated when neutralization occurs in the gas phase. Neutralization of electrospan nano-fibers with molecular ions and charged nano-clusters may result in the formation of fibrous aerosols or free nano-mats. Nano-mats can also be produced on a suitable substrate, forming efficient nano-filters.

  11. 3D Printing Prof. Hank Dietz

    E-Print Network [OSTI]

    Dietz, Henry G. "Hank"

    #12;Our 3D Printer It's a MakerGear M2, cost about $1700 We extrude 1.75mm diameter PLA filament3D Printing Prof. Hank Dietz TCMS, March 14, 2014 University of Kentucky Electrical & Computer/Craft: paper moves in Y, knife in X EDM/Laser: X/Y bed, vaporizes material #12;Subtractive 3D CNC: Computer

  12. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Mechanical Behavior of Indium Nanostructures Print Wednesday, 26 May 2010 00:00 Indium is a key material in lead-free solder...

  13. 3D NUCLEAR SEGMENTAT

    Energy Science and Technology Software Center (OSTI)

    003029WKSTN00 Delineation of nuclear structures in 3D multicellular systems  https://vision.lbl.gov/Software/3DMorphometry/ 

  14. Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials. Final Technical Summary

    SciTech Connect (OSTI)

    Mullins, Michael; Rogers, Tony; King, Julia; Keith, Jason; Cornilsen, Bahne; Allen, Jeffrey; Gilbert, Ryan; Holles, Joseph

    2010-09-28

    The core projects for this DOE-sponsored Center at Michigan Tech have focused on several of the materials problems identified by the NAS. These include: new electrode materials, enhanced PEM materials, lighter and more effective bipolar plates, and improvement of the carbon used as a current carrier. This project involved fundamental and applied research in the development and testing of lightweight and nanostructured materials to be used in fuel cell applications and for chemical synthesis. The advent of new classes of materials engineered at the nanometer level can produce materials that are lightweight and have unique physical and chemical properties. The grant was used to obtain and improve the equipment infrastructure to support this research and also served to fund seven research projects. These included: 1. Development of lightweight, thermally conductive bipolar plates for improved thermal management in fuel cells; 2. Exploration of pseudomorphic nanoscale overlayer bimetallic catalysts for fuel cells; 3. Development of hybrid inorganic/organic polymer nanocomposites with improved ionic and electronic properties; 4. Development of oriented polymeric materials for membrane applications; 5. Preparation of a graphitic carbon foam current collectors; 6. The development of lightweight carbon electrodes using graphitic carbon foams for battery and fuel cell applications; and 7. Movement of water in fuel cell electrodes.

  15. F3D

    Energy Science and Technology Software Center (OSTI)

    003188MLTPL00 F3D Image Processing and Analysis for Many - and Multi-core Platforms  http://camera.lbl.gov/software 

  16. Kinematic and dynamic modeling of Nanostructured Origami

    E-Print Network [OSTI]

    Stellman, Paul Steven

    2006-01-01

    Nanostructured Origami is a manufacturing process that folds nanopatterned thin films into a desired 3D shape. This process extends the properties of 3D design and connectivity found in origami artwork to the bulk fabrication ...

  17. 3D Printing Electronics

    E-Print Network [OSTI]

    Stryk, Oskar von

    the top six were granted further funding by DARPA and were also given an ATLAS robot to continue is the connectivity. Here in the US everyone assumes high ... Boeing Utilizing Sigma Labs (SGLB) "PrintRite3D" System for 3D Printing · -- B6 Sigma Labs (ticker SGLB) is not the same company as Sigma Technologies

  18. Converting environmentally hazardous materials into clean energy using a novel nanostructured photoelectrochemical fuel cell

    SciTech Connect (OSTI)

    Gan, Yong X.; Gan, Bo J.; Clark, Evan; Su, Lusheng; Zhang, Lihua

    2012-09-15

    Highlights: ? A photoelectrochemical fuel cell has been made from TiO{sub 2} nanotubes. ? The fuel cell decomposes environmentally hazardous materials to produce electricity. ? Doping the anode with a transition metal oxide increases the visible light sensitivity. ? Loading the anode with a conducting polymer enhances the visible light absorption. -- Abstract: In this work, a novel photoelectrochemical fuel cell consisting of a titanium dioxide nanotube array photosensitive anode and a platinum cathode was made for decomposing environmentally hazardous materials to produce electricity and clean fuel. Titanium dioxide nanotubes (TiO{sub 2} NTs) were prepared via electrochemical oxidation of pure Ti in an ammonium fluoride and glycerol-containing solution. Scanning electron microscopy was used to analyze the morphology of the nanotubes. The average diameter, wall thickness and length of the as-prepared TiO{sub 2} NTs were determined. The photosensitive anode made from the highly ordered TiO{sub 2} NTs has good photo-catalytic property, as proven by the decomposition tests on urea, ammonia, sodium sulfide and automobile engine coolant under ultraviolet (UV) radiation. To improve the efficiency of the fuel cell, doping the TiO{sub 2} NTs with a transition metal oxide, NiO, was performed and the photosensitivity of the doped anode was tested under visible light irradiation. It is found that the NiO-doped anode is sensitive to visible light. Also found is that polyaniline-doped photosensitive anode can harvest photon energy in the visible light spectrum range much more efficiently than the NiO-doped one. It is concluded that the nanostructured photoelectrochemical fuel cell can generate electricity and clean fuel by decomposing hazardous materials under sunlight.

  19. Nanostructure, Chemistry and Crystallography of Iron Nitride...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanostructure, Chemistry and Crystallography of Iron Nitride Magnetic Materials by Ultra-High-Resolution Electron Microscopy and Related Methods Nanostructure, Chemistry and...

  20. 3D Printing Prof. Hank Dietz & Paul Eberhart

    E-Print Network [OSTI]

    Dietz, Henry G. "Hank"

    3D Printing Prof. Hank Dietz & Paul Eberhart September 28, 2013 University of Kentucky Electrical/Craft: paper moves in Y, knife in X EDM/Laser: X/Y bed, vaporizes material #12;Subtractive 3D CNC: Computer "The whole is greater than the sum of its parts." ­ Aristotle #12;Additive 3D Building Material

  1. Ames Lab 101: 3D Metals Printer

    SciTech Connect (OSTI)

    Ott, Ryan

    2014-02-13

    To meet one of the biggest energy challenges of the 21st century - finding alternatives to rare-earth elements and other critical materials - scientists will need new and advanced tools. The Critical Materials Institute at the U.S. Department of Energy's Ames Laboratory has a new one: a 3D printer for metals research. 3D printing technology, which has captured the imagination of both industry and consumers, enables ideas to move quickly from the initial design phase to final form using materials including polymers, ceramics, paper and even food. But the Critical Materials Institute (CMI) will apply the advantages of the 3D printing process in a unique way: for materials discovery.

  2. Ames Lab 101: 3D Metals Printer

    ScienceCinema (OSTI)

    Ott, Ryan

    2014-06-04

    To meet one of the biggest energy challenges of the 21st century - finding alternatives to rare-earth elements and other critical materials - scientists will need new and advanced tools. The Critical Materials Institute at the U.S. Department of Energy's Ames Laboratory has a new one: a 3D printer for metals research. 3D printing technology, which has captured the imagination of both industry and consumers, enables ideas to move quickly from the initial design phase to final form using materials including polymers, ceramics, paper and even food. But the Critical Materials Institute (CMI) will apply the advantages of the 3D printing process in a unique way: for materials discovery.

  3. Evaluation of PC-ISO for customized, 3D printed, gynecologic 192Ir HDR brachytherapy applicators

    E-Print Network [OSTI]

    2015-01-01

    biocompatible, thermoplastic, 3D printing material, for useterpolymers family of thermoplastics that are made of three

  4. Development of a lab-scale, high-resolution, tube-generated X-ray computed-tomography system for three-dimensional (3D) materials characterization

    SciTech Connect (OSTI)

    Mertens, J.C.E. Williams, J.J. Chawla, Nikhilesh

    2014-06-01

    The design and construction of a modular high resolution X-ray computed tomography (XCT) system is highlighted in this paper. The design approach is detailed for meeting a specified set of instrument performance goals tailored towards experimental versatility and high resolution imaging. The XCT tool is unique in the detector and X-ray source design configuration, enabling control in the balance between detection efficiency and spatial resolution. The system package is also unique: The sample manipulation approach implemented enables a wide gamut of in situ experimentation to analyze structure evolution under applied stimulus, by optimizing scan conditions through a high degree of controllability. The component selection and design process is detailed: Incorporated components are specified, custom designs are shared, and the approach for their integration into a fully functional XCT scanner is provided. Custom designs discussed include the dual-target X-ray source cradle which maintains position and trajectory of the beam between the two X-ray target configurations with respect to a scintillator mounting and positioning assembly and the imaging sensor, as well as a novel large-format X-ray detector with enhanced adaptability. The instrument is discussed from an operational point of view, including the details of data acquisition and processing implemented for 3D imaging via micro-CT. The performance of the instrument is demonstrated on a silica-glass particle/hydroxyl-terminated-polybutadiene (HTPB) matrix binder PBX simulant. Post-scan data processing, specifically segmentation of the sample's relevant microstructure from the 3D reconstruction, is provided to demonstrate the utility of the instrument. - Highlights: • Custom built X-ray tomography system for microstructural characterization • Detector design for maximizing polychromatic X-ray detection efficiency • X-ray design offered for maximizing X-ray flux with respect to imaging resolution • Novel lab-scale XCT data acquisition and data processing methods • 3D characterization of glass-bead mock plastic-bonded-explosive stimulant.

  5. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFESOpportunitiesNERSC GettingGraphene's 3D Counterpart Print ALS

  6. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Low LETUsefulJorgeAtlDayGraphene's 3D Counterpart Print

  7. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Low LETUsefulJorgeAtlDayGraphene's 3D Counterpart

  8. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Low LETUsefulJorgeAtlDayGraphene's 3D

  9. Graphene's 3D Counterpart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Low LETUsefulJorgeAtlDayGraphene's 3DGraphene's 3D

  10. Surface Anchoring of Nematic Phase on Carbon Nanotubes: Nanostructure of Ultra-High Temperature Materials

    SciTech Connect (OSTI)

    Ogale, Amod A

    2012-04-27

    Nuclear energy is a dependable and economical source of electricity. Because fuel supply sources are available domestically, nuclear energy can be a strong domestic industry that can reduce dependence on foreign energy sources. Commercial nuclear power plants have extensive security measures to protect the facility from intruders [1]. However, additional research efforts are needed to increase the inherent process safety of nuclear energy plants to protect the public in the event of a reactor malfunction. The next generation nuclear plant (NGNP) is envisioned to utilize a very high temperature reactor (VHTR) design with an operating temperature of 650-1000�°C [2]. One of the most important safety design requirements for this reactor is that it must be inherently safe, i.e., the reactor must shut down safely in the event that the coolant flow is interrupted [2]. This next-generation Gen IV reactor must operate in an inherently safe mode where the off-normal temperatures may reach 1500�°C due to coolant-flow interruption. Metallic alloys used currently in reactor internals will melt at such temperatures. Structural materials that will not melt at such ultra-high temperatures are carbon/graphtic fibers and carbon-matrix composites. Graphite does not have a measurable melting point; it is known to sublime starting about 3300�°C. However, neutron radiation-damage effects on carbon fibers are poorly understood. Therefore, the goal of this project is to obtain a fundamental understanding of the role of nanotexture on the properties of resulting carbon fibers and their neutron-damage characteristics. Although polygranular graphite has been used in nuclear environment for almost fifty years, it is not suitable for structural applications because it do not possess adequate strength, stiffness, or toughness that is required of structural components such as reaction control-rods, upper plenum shroud, and lower core-support plate [2,3]. For structural purposes, composites consisting of strong carbon fibers embedded in a carbon matrix are needed. Such carbon/carbon (C/C) composites have been used in aerospace industry to produce missile nose cones, space shuttle leading edge, and aircraft brake-pads. However, radiation-tolerance of such materials is not adequately known because only limited radiation studies have been performed on C/C composites, which suggest that pitch-based carbon fibers have better dimensional stability than that of polyacrylonitrile (PAN) based fibers [4]. The thermodynamically-stable state of graphitic crystalline packing of carbon atoms derived from mesophase pitch leads to a greater stability during neutron irradiation [5]. The specific objectives of this project were: (i) to generating novel carbonaceous nanostructures, (ii) measure extent of graphitic crystallinity and the extent of anisotropy, and (iii) collaborate with the Carbon Materials group at Oak Ridge National Lab to have neutron irradiation studies and post-irradiation examinations conducted on the carbon fibers produced in this research project.

  11. Idea Generation 3D printing

    E-Print Network [OSTI]

    Stylianou, Yannis

    2012 Idea Generation 3D printing at nanoscale Cruising on electrical roads Pushing back against Centre micro and nanoscale 15 Taking 3D printing to the nanoscale 18 Fighting cancer with a "lab

  12. Evaluation of PC-ISO for customized, 3D printed, gynecologic 192Ir HDR brachytherapy applicators

    E-Print Network [OSTI]

    2015-01-01

    A, Iuliano L, Violante MG. 3D printing technique applied toTengg-Kobligk H, et al. 3D printing based on imaging data:biocompatible, sterilizable 3D printing material, and its

  13. Taming Supersymmetric Defects in 3d-3d Correspondence

    E-Print Network [OSTI]

    Gang, Dongmin; Romo, Mauricio; Yamazaki, Masahito

    2015-01-01

    We study knots in 3d Chern-Simons theory with complex gauge group $SL(N,\\mathbb{C})$, in the context of its relation with 3d $\\mathcal{N}=2$ theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d $(2,0)$ theory, which is compactified on a 3-manifold $\\hat{M}$. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d $SL(N,\\mathbb{C})$ Chern-Simons theory, in 3d $\\mathcal{N}=2$ theory, in 5d $\\mathcal{N}=2$ super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper, which contains more details and more results.

  14. Three-dimensional graphene/LiFePO{sub 4} nanostructures as cathode materials for flexible lithium-ion batteries

    SciTech Connect (OSTI)

    Ding, Y.H., E-mail: yhding@xtu.edu.cn [College of Chemical Engineering, Xiangtan University, Hunan 411105 (China); Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Ren, H.M. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Huang, Y.Y. [BTR New Energy Materials Inc., Shenzhen 518000 (China); Chang, F.H.; Zhang, P. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China)

    2013-10-15

    Graphical abstract: Graphene/LiFePO{sub 4} composites as a high-performance cathode material for flexible lithium-ion batteries have been prepared by using a co-precipitation method to synthesize graphene/LiFePO4 powders as precursors and then followed by a solvent evaporation process. - Highlights: • Flexible LiFePO{sub 4}/graphene films were prepared first time by a solvent evaporation process. • The flexible electrode exhibited a high discharge capacity without conductive additives. • Graphene network offers the electrode adequate strength to withstand repeated flexing. - Abstract: Three-dimensional graphene/LiFePO{sub 4} nanostructures for flexible lithium-ion batteries were successfully prepared by solvent evaporation method. Structural characteristics of flexible electrodes were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrochemical performance of graphene/LiFePO{sub 4} was examined by a variety of electrochemical testing techniques. The graphene/LiFePO{sub 4} nanostructures showed high electrochemical properties and significant flexibility. The composites with low graphene content exhibited a high capacity of 163.7 mAh g{sup ?1} at 0.1 C and 114 mAh g{sup ?1} at 5 C without further incorporation of conductive agents.

  15. 3D Computer Vision and Video Computing 3D Vision3D Vision

    E-Print Network [OSTI]

    Zhu, Zhigang

    and right projections of P, respectively. #12;6 3D Computer Vision and Video Computing A Simple Stereo length Optical Center Or pr(xr,yr) RIGHT CAMERA #12;7 3D Computer Vision and Video Computing Disparity vs = Baseline f = focal length Optical Center Or pr(xr,yr) RIGHT CAMERA 3D Computer Vision and Video Computing

  16. Influence of material property variability on the mechanical behaviour of carotid atherosclerotic plaques: A 3D fluid-structure interaction analysis

    E-Print Network [OSTI]

    Yuan, Jianmin; Teng, Zhongzhao; Feng, Jiaxuan; Zhang, Yongxue; Brown, Adam J.; Gillard, Jonathan H.; Jing, Zaiping; Lu, Qingsheng

    2015-05-28

    [53], although plaques with juxtaluminal calcific nod- ules may be at higher risk [29]. We acknowledge other mechanisms may be involved in ischemic events, including calcific nodules and erosions. The effects of material properties on these mecha...

  17. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended...

  18. Catalytic Nanostructures | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemical commodities. The nanostructured materials will be composed of organic and inorganic species that will work cooperatively to effectively promote chemical conversions...

  19. Ceramic Materials and Nano-structures for Chemical Sensing Abdul-Majeed Azad

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    , polymer nanofibers are used as selective gas separation membranes, filters, biomedical materials (drug

  20. Beyond 3D Printing: The New Dimensions of Additive Fabrication

    E-Print Network [OSTI]

    Keating, Steven John

    Additive fabrication, often referred to as 3D printing, is the construction of objects by adding material. This stands in contrast to subtractive methods, which involve removing material by means of milling or cutting. ...

  1. 3D World Building System

    ScienceCinema (OSTI)

    None

    2014-02-26

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  2. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

    SciTech Connect (OSTI)

    Gao, Pu-Xian

    2013-07-31

    This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S-poisoning resistance. Further investigation is needed for unraveling the understanding, design and selection principles of this new class of nanostructure based monolithic catalysts.

  3. A two-fold interpenetrating 3D metal-organic framework material constructed from helical chains linked via 4,4'-H{sub 2}bpz fragments

    SciTech Connect (OSTI)

    Xie Yiming; Zhao Zhenguo; Wu Xiaoyuan; Zhang Qisheng; Chen Lijuan; Wang Fei; Chen Shanci; Lu Canzhong

    2008-12-15

    A 3-connected dia-f-type metal-organic framework compound {l_brace}[Ag(L){sub 3/2}H{sub 2}PO{sub 4}]{r_brace}{sub n} (1) has been synthesized by self-assembly of 4,4'-H{sub 2}bpz (L=4,4'-H{sub 2}bpz=3,3',5,5'-tetramethyl-4,4'-bipyrazole) and Ag{sub 4}P{sub 2}O{sub 7} under hydrothermal conditions. It crystallizes in the tetragonal space group I4{sub 1}/acd with a=21.406(4) A, b=21.406(4) A, c=36.298(8) A, Z=32. X-ray single-crystal diffraction reveals that 1 has a three-dimensional framework with an unprecedented alternate left- and right-handed helices structure, featuring a non-uniform two-fold interpenetrated (4.14{sup 2}) net. Photoluminescent investigation reveals that the title compound displays interesting emissions in a wide region, which shows that the title compound may be a good potential candidate as a photoelectric material. - Graphical abstract: A 3-connected dia-f-type metal-organic framework compound [Ag(4,4'-bpz){sub 3/2}H{sub 2}PO{sub 4}] shows unprecedented alternating left- and right-handed helices structure, featuring a non-uniform two-fold interpenetrated (4.14{sup 2}) net.

  4. Deeply-trapped molecules in self-nanostructured gas-phase material

    E-Print Network [OSTI]

    Alharbi, M; Debord, B; Gerome, F; Benabid, F

    2015-01-01

    Since the advent of atom laser-cooling, trapping or cooling natural molecules has been a long standing and challenging goal. Here, we demonstrate a method for laser-trapping molecules that is radically novel in its configuration, in its underlined physical dynamics and in its outcomes. It is based on self-optically spatially-nanostructured high pressure molecular hydrogen confined in hollow-core photonic-crystal-fibre. An accelerating molecular-lattice is formed by a periodic potential associated with Raman saturation except for a 1-dimentional array of nanometer wide and strongly-localizing sections. In these sections, molecules with a speed of as large as 1800 m/s are trapped, and stimulated Raman scattering in the Lamb-Dicke regime occurs to generate high power forward and backward-Stokes continuous-wave laser with sideband-resolved sub-Doppler emission spectrum. The spectrum exhibits a central line with a sub-recoil linewidth of as low as 14 kHz, more than 5 orders-of-magnitude narrower than in convention...

  5. Deeply-trapped molecules in self-nanostructured gas-phase material

    E-Print Network [OSTI]

    M. Alharbi; A. Husakou; B. Debord; F. Gerome; F. Benabid

    2015-06-03

    Since the advent of atom laser-cooling, trapping or cooling natural molecules has been a long standing and challenging goal. Here, we demonstrate a method for laser-trapping molecules that is radically novel in its configuration, in its underlined physical dynamics and in its outcomes. It is based on self-optically spatially-nanostructured high pressure molecular hydrogen confined in hollow-core photonic-crystal-fibre. An accelerating molecular-lattice is formed by a periodic potential associated with Raman saturation except for a 1-dimentional array of nanometer wide and strongly-localizing sections. In these sections, molecules with a speed of as large as 1800 m/s are trapped, and stimulated Raman scattering in the Lamb-Dicke regime occurs to generate high power forward and backward-Stokes continuous-wave laser with sideband-resolved sub-Doppler emission spectrum. The spectrum exhibits a central line with a sub-recoil linewidth of as low as 14 kHz, more than 5 orders-of-magnitude narrower than in conventional Raman scattering, and sidebands comprising Mollow triplet, molecular motional-sidebands and four-wave-mixing.

  6. Engineering 3D Nanostructures for a Multitude of Applications

    E-Print Network [OSTI]

    Flores, Jose Fernando

    2015-01-01

    2) Nickel-Copper (NiCu) electroplating is performed by a twoaccording to the following electroplating equation. Q = nFThe time (t) required for electroplating is dependent on the

  7. Engineering 3D Nanostructures for a Multitude of Applications

    E-Print Network [OSTI]

    Flores, Jose Fernando

    2015-01-01

    metal catalysts for PEM fuel cell applications. Can. J.cathode cata- lysts for fuel cell oxygen reduction reaction.Brodd. What are batteries, fuel cells, and supercapacitors?

  8. Engineering 3D Nanostructures for a Multitude of Applications

    E-Print Network [OSTI]

    Flores, Jose Fernando

    2015-01-01

    catalysts for PEM fuel cell applications. Can. J. Chem.applications including batteries, chemical sensors, and fuel cell

  9. Engineering 3D Nanostructures for a Multitude of Applications

    E-Print Network [OSTI]

    Flores, Jose Fernando

    2015-01-01

    for photoelectro- chemical water splitting. Nano Letters, 9(and photocatalytic water splitting. Chemical SocietyN.S. Lewis. Light work with water. Nature, 414(6864):589–90,

  10. Engineering 3D Nanostructures for a Multitude of Applications

    E-Print Network [OSTI]

    Flores, Jose Fernando

    2015-01-01

    applications of ZnO include diodes, photonic devices including solar cells and water splitting, gas and biological sensors, piezoelectric

  11. 3-D Nano-Structured Carbon/Tin Composite Anodes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    uniform dispersion of Sn in the carbon matrix 20 10 * Carbon matrix displays 10-15 nm graphene 0 1 2 3 4 >4 domains and regions typical of carbon blacks P article S ize (nm )...

  12. Engineering 3D Nanostructures for a Multitude of Applications

    E-Print Network [OSTI]

    Flores, Jose Fernando

    2015-01-01

    of cocatalysts in photocatalysis and photoelectrocatalysis.lar absorption for photocatalysis with black hydrogenatedKim. Visible light active photocatalysis on block copolymer

  13. Engineering 3D Nanostructures for a Multitude of Applications

    E-Print Network [OSTI]

    Flores, Jose Fernando

    2015-01-01

    to harvest solar energy, since water is a renewable resourceefficient sunlight water splitting. Energy Environ. Sci. ,and abundant solar energy. Water splitting can become one of

  14. Engineering 3D Nanostructures for a Multitude of Applications

    E-Print Network [OSTI]

    Flores, Jose Fernando

    2015-01-01

    casting Catalyst coating solution is prepared by dissolving P4VP, and each metalcomplexation of metal with polymer. Polymer spin casting is

  15. 3-D Nano-Structured Carbon/Tin Composite Anodes

    Broader source: Energy.gov [DOE]

    Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland.

  16. 3D Nanostructures DOI: 10.1002/anie.200801311

    E-Print Network [OSTI]

    Srinivasarao, Mohan

    of the rutile polymorph of titanium dioxide (titania) have led to its use in powder or film form in paints of Naval Research (N00014-05-1- 0303, Dr. Mark Spector, program manager), the National Science Foundation

  17. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01

    of High Energy-Density Batteries. Electrochemistry: Past and1971). Huggins, R. A. Advanced Batteries: Materials ScienceC. A. & Scrosati, B. Modern Batteries: An Introduction to

  18. GRAPHICS PROGRAMMING SECTION D -JAVA 3D

    E-Print Network [OSTI]

    Hill, Gary

    GRAPHICS PROGRAMMING SECTION D - JAVA 3D 1SECTION D - GRAPHICS 3-D........................................................................................... 2 30 Graphics 3D: Introduction to Java 3D........................................................................................ 78 ©Gary Hill September 2004 Java 3-D 1 of 13 #12;GRAPHICS PROGRAMMING SECTION D - GRAPHICS 3-D 30

  19. Imaging atoms in 3-D

    ScienceCinema (OSTI)

    Ercius, Peter

    2014-06-27

    Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

  20. Imaging atoms in 3-D

    SciTech Connect (OSTI)

    Ercius, Peter

    2013-10-31

    Berkeley Lab's Peter Ercius discusses "Imaging atoms in 3-D" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas

  1. A 3D Magnetic Force Manipulator DC Prototype

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    A 3D Magnetic Force Manipulator DC Prototype Leandra Vicci Microelectronic Systems Laboratory optical field intensities which interact strongly with many materials and may produce undesired side;Leandra Vicci A 3D Magnetic Force Manipulator DC Prototype 17 October 2001 1 Conceptual design

  2. Large area 3D helical photonic crystals A. K. Rauba)

    E-Print Network [OSTI]

    New Mexico, University of

    of helical structures (3D photonic crystals) using a simple, parallel, large-area lithography processLarge area 3D helical photonic crystals A. K. Rauba) and S. R. J. Brueckb) Center for High, enabling a high index contrast chiral meta- material. Optical transmission measurements of these helical

  3. Nanostructured thin film thermoelectric composite materials using conductive polymer PEDOT:PSS

    E-Print Network [OSTI]

    Kuryak, Chris A. (Chris Adam)

    2013-01-01

    Thermoelectric materials have the ability to convert heat directly into electricity. This clean energy technology has advantages over other renewable technologies in that it requires no sunlight, has no moving parts, and ...

  4. Incorporation of Novel Nanostructured Materials into Solar Cells and Nanoelectronic Devices

    SciTech Connect (OSTI)

    Rodriguez, Rene; Pak, Joshua; Holland, Andrew; Hunt, Alan; Bitterwolf, Thomas; Qiang, You; Bergman, Leah; Berven, Christine; Punnoose, Alex; Tenne, Dmitri

    2011-11-11

    Each of the investigators on this project has had significant accomplishments toward the production of semiconductor nanoparticles, particles, and thin films and attempts to incorporate these materials into photovoltaics or sensors; to use them for improving fluorescence diagnostics; or to employ them as cancer fighting agents. The synthesis and characterization of the nanomaterials, and more recently the device construction and testing of these materials, have been the subject of several publications and presentations by team members. During the course of the investigations, several students were fully involved as part of their graduate and undergraduate training. The nature of these projects in material development dictates that the students have gained significant experience in a diverse array of material-related topics.

  5. Multiscale Studies of the Formation and Stability of Surface-based Nanostructures, DOE Computational Materials Science Network - Final Report

    SciTech Connect (OSTI)

    Einstein, Theodore L.

    2011-10-31

    Summary of work performed under DOE-CMSN/FG0205ER46227, Multiscale Studies of the Formation and Stability of Surface-based Nanostructures, listing publications, collaborations, and presentations.

  6. Facile synthesis of nanostructured vanadium oxide as cathode materials for efficient Li-ion batteries

    E-Print Network [OSTI]

    Cao, Guozhong

    -ion batteries Yanyi Liu,a Evan Uchaker,a Nan Zhou,ab Jiangang Li,ac Qifeng Zhanga and Guozhong Cao*a Received 23 and VO2 (B) nanorods were tested as active cathode materials for Li-ion batteries. The V2O5 sheet for efficient Li-ion batteries. Introduction The expansion and demands for energy use in the past several

  7. 3D assembly and actuation of nanopatterned membranes using nanomagnets

    E-Print Network [OSTI]

    Nichol, Anthony John

    2011-01-01

    A new method for aligning and actuating membranes for 3D nano-assembly based on the interactions of nanomagnets has been developed. Arrays of nanopatterned magnetic material are integrated onto thin-film membranes. It is ...

  8. 3D Printed Microscope for Mobile Devices that Cost Pennies

    ScienceCinema (OSTI)

    Erikson, Rebecca; Baird, Cheryl; Hutchinson, Janine

    2015-06-23

    Scientists at PNNL have designed a 3D-printable microscope for mobile devices using pennies worth of plastic and glass materials. The microscope has a wide range of uses, from education to in-the-field science.

  9. 3D Printed Microscope for Mobile Devices that Cost Pennies

    SciTech Connect (OSTI)

    Erikson, Rebecca; Baird, Cheryl; Hutchinson, Janine

    2014-09-15

    Scientists at PNNL have designed a 3D-printable microscope for mobile devices using pennies worth of plastic and glass materials. The microscope has a wide range of uses, from education to in-the-field science.

  10. Vanadium oxide based nanostructured materials for catalytic oxidative dehydrogenation of propane : effect of heterometallic centers on the catalyst performance.

    SciTech Connect (OSTI)

    Khan, M. I.; Deb, S.; Aydemir, K.; Alwarthan, A. A.; Chattopadhyay, S.; Miller, J. T.; Marshall, C. L.

    2010-01-01

    Catalytic properties of a series of new class of catalysts materials-[Co{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42} (XO{sub 4})].24H{sub 2}O (VNM-Co), [Fe{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(XO{sub 4})].24H{sub 2}O (VNM-Fe) (X = V, S) and [H{sub 6}Mn{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(VO{sub 4})].30H{sub 2}O for the oxidative dehydrogenation of propane is studied. The open-framework nanostructures in these novel materials consist of three-dimensional arrays of {l_brace}V{sub 18}O{sub 42}(XO{sub 4}){r_brace} (X = V, S) clusters interconnected by {l_brace}-O-M-O-{r_brace} (M = Mn, Fe, Co) linkers. The effect of change in the heterometallic center M (M = Mn, Co, Fe) of the linkers on the catalyst performance was studied. The catalyst material with Co in the linker showed the best performance in terms of propane conversion and selectivity at 350 C. The material containing Fe was most active but least selective and Mn containing catalyst was least active. The catalysts were characterized by Temperature Programmed Reduction (TPR), BET surface area measurement, Diffuse Reflectance Infrared Fourier Transform Spectroscopy, and X-ray Absorption Spectroscopy. TPR results show that all three catalysts are easily reducible and therefore are active at relatively low temperature. In situ X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure spectroscopy (EXAFS) studies revealed that the oxidation state of Co(II) remained unchanged up to 425 C (even after pretreatment). The reduction of Co(II) into metallic form starts at 425 C and this process is completed at 600 C.

  11. Idea Generation 3D printing

    E-Print Network [OSTI]

    Papadopouli, Maria

    is a national research centre focused on smart electrical grid and energy storage technology, which Centre micro and nanoscale 15 Taking 3D printing to the nanoscale 18 Fighting cancer with a "lab of wireless speeds 24 Winners of erc grants electrical transportation 25 The power of electrical roads 27

  12. Computational Light Routing: 3D Printed Optical Fibers For Sensing and Display

    E-Print Network [OSTI]

    applications. Printing optical fibers is made possible by modern multi-material 3D printers. We print twoComputational Light Routing: 3D Printed Optical Fibers For Sensing and Display THIAGO PEREIRA or restrict themselves to light dif- fusion in volumes. We use multi-material 3D printing to fabricate objects

  13. SciTech Connect: "3d printing"

    Office of Scientific and Technical Information (OSTI)

    3d printing" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "3d printing" Semantic Semantic Term Title: Full Text: Bibliographic Data: Creator ...

  14. Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals

    SciTech Connect (OSTI)

    Runnerstrom, EL; Llordes, A; Lounis, SD; Milliron, DJ

    2014-06-04

    Electrochromic devices, which dynamically change colour under applied potential, are widely studied for use in energy-efficient smart windows. To improve the viability of smart windows, many researchers are utilizing nanomaterials, which can provide electrochromic devices with improved colouration efficiencies, faster switching times, longer cycle lives, and potentially reduced costs. In an effort to demonstrate a new type of electrochromic device that goes beyond the capabilities of commonly used electrochromic materials, researchers have turned to plasmonic transparent conductive oxide (TCO) nanocrystals. Electrochemical injection of electrons into plasmonic TCO nanocrystal films induces a shift in the plasmon frequency and gives rise to the new functionality of selective optical modulation in the near-infrared region of the solar spectrum. These nanocrystals can be used as building blocks to enable creation of advanced electrochromic devices containing mesoporous electrodes or nanocrystal-in-glass composites. Such devices have been important in advancing the field towards achieving the ideal smart window with independent control over visible and NIR transmittance.

  15. Optimal quantum control in nanostructures: Theory and application...

    Office of Scientific and Technical Information (OSTI)

    36 MATERIALS SCIENCE; CONVERGENCE; ENERGY LEVELS; LASER RADIATION; NANOSTRUCTURES; OPTICS; OPTIMAL CONTROL; OPTIMIZATION; PULSES; QUANTUM MECHANICS; USES; WAVE FUNCTIONS Word...

  16. Nanostructures for enzyme stabilization

    SciTech Connect (OSTI)

    Kim, Jungbae; Grate, Jay W.; Wang, Ping

    2006-02-02

    The last decade has witnessed notable breakthroughs in nanotechnology with development of various nanostructured materials such as mesoporous materials and nanoparticles. These nanostructures have been used as a host for enzyme immobilization via various approaches, such as enzyme adsorption, covalent attachment, enzyme encapsulation, and sophisticated combinations of methods. This review discusses the stabilization mechanisms behind these diverse approaches; such as confinement, pore size and volume, charge interaction, hydrophobic interaction, and multipoint attachment. In addition, we will introduce recent rigorous approaches to improve the enzyme stability in these nanostructures or develop new nanostructures for the enzyme stabilization. Especially, we will introduce our recent invention of a nanostructure, called single enzyme nanoparticles (SENs). In the form of SENs, each enzyme molecule is surrounded with a nanometer scale network, resulting in stabilization of enzyme activity without any serious limitation for the substrate transfer from solution to the active site. SENs can be further immobilized into mesoporous silica with a large surface area, providing a hierarchical approach for stable, immobilized enzyme systems for various applications, such as bioconversion, bioremediation, and biosensors.

  17. Nanostructured Materials for Advanced

    E-Print Network [OSTI]

    Cao, Guozhong

    for oil, associated with oil price increase, and environmental issues are continuing to exert pressure density [1]. How- ever, their power density is relatively low because of a large polarization at high

  18. Nanostructured Materials by Machining

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  19. Process Development for Nanostructured Photovoltaics

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    substrate. The aerogel is then coated with a thin layer of TCO material using atomic layer deposition. Successful scale-up and demonstration of the nanostructured solar cell and...

  20. Nanostructured Metal Oxide Anodes (Presentation)

    SciTech Connect (OSTI)

    Dillon, A. C.; Riley, L. A.; Lee, S.-H.; Kim, Y.-H.; Ban, C.; Gillaspie, D. T.; Pesaran, A.

    2009-05-01

    This summarizes NREL's FY09 battery materials research activity in developing metal oxide nanostructured anodes to enable high-energy, durable and affordable li-ion batteries for HEVs and PHEVs.

  1. 3D interactive pictorial maps 

    E-Print Network [OSTI]

    Naz, Asma

    2005-02-17

    will be used for data representation. I created the map of the United States of America and Europe. I displayed and compared the population density, and political stature of the states or countries by changing the color or heights of the 3D models of different... of height of models. The shades or patterns that represent each data must be clearly identifiable, not only on the legend, where the category boxes are ordered, but also on the map, where there is no predetermined order. If the shades are too similar...

  2. 3D Structures of Biomolecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONeApril351 Substation Demolition --3D Printed3DJohn

  3. Build-to-Last: Strength to Weight 3D Printed Objects Andrei Sharf2

    E-Print Network [OSTI]

    Sharf, Andrei

    The emergence of low-cost 3D printers steers the investigation of new geometric problems that controlBuild-to-Last: Strength to Weight 3D Printed Objects Lin Lu1 Andrei Sharf2 Haisen Zhao1 Yuan Wei1 Ben-Gurion University 3 Tel Aviv University Figure 1: We reduce the material of a 3D kitten (left

  4. Part removal of 3D printed parts

    E-Print Network [OSTI]

    Peńa Doll, Mateo

    2014-01-01

    An experimental study was performed to understand the correlation between printing parameters in the FDM 3D printing process, and the force required to remove a part from the build platform of a 3D printing using a patent ...

  5. The Makerbot: Desktop 3D printing

    E-Print Network [OSTI]

    Roughan, Matthew

    The Makerbot: Desktop 3D printing Matthew Roughan School of Mathematical Sciences matthew is Lots of maths hidden in something like 3D printing Geometry and Linear algebra ++ Same math used

  6. A view-sequential 3D display

    E-Print Network [OSTI]

    Cossairt, Oliver S. (Oliver Strider), 1978-

    2003-01-01

    This thesis outlines the various techniques for creating electronic 3D displays and analyzes their commercial potential. The thesis argues for the use of view-sequential techniques in the design of 3D displays based on ...

  7. DOI: 10.1002/adma.200600769 Introducing Defects in 3D Photonic Crystals

    E-Print Network [OSTI]

    Braun, Paul

    in all directions, a 3D PhC with an omnidirec- tional, or complete PBG (cPBG) is required. cPBG materials. Additionally, cPBG structures must be fabricated from optically transparent materials with a high dielectric. Because of the materials restrictions and stringent 3D fabrication requirements, there are only a small

  8. Spec2Fab: A reducer-tuner model for translating specifications to 3D prints

    E-Print Network [OSTI]

    Chen, Desai

    Multi-material 3D printing allows objects to be composed of complex, heterogenous arrangements of materials. It is often more natural to define a functional goal than to define the material composition of an object. ...

  9. Spec2Fab : a reducer-tuner model for translating specifications to 3D prints

    E-Print Network [OSTI]

    Chen, Desai

    2013-01-01

    Multi-material 3D printing allows objects to be composed of complex, heterogeneous arrangements of materials. It is often more natural to define a functional goal than to define the material composition of an object. ...

  10. Three-Dimensional Nanostructures Formed by Single Step, Two-Photon

    E-Print Network [OSTI]

    Rogers, John A.

    patterning of 3D structures is possible, with simple setups in which all of the optics can be contained describe the fabrication of unusual classes of three-dimensional (3D) nanostructures using single step, two. Confocal imaging, computational studies, and 3D reconstructions reveal the essential aspects of the flow

  11. RELAP5-3D User Problems

    SciTech Connect (OSTI)

    Riemke, Richard Allan

    2002-09-01

    The Reactor Excursion and Leak Analysis Program with 3D capability1 (RELAP5-3D) is a reactor system analysis code that has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the U. S. Department of Energy (DOE). The 3D capability in RELAP5-3D includes 3D hydrodynamics2 and 3D neutron kinetics3,4. Assessment, verification, and validation of the 3D capability in RELAP5-3D is discussed in the literature5,6,7,8,9,10. Additional assessment, verification, and validation of the 3D capability of RELAP5-3D will be presented in other papers in this users seminar. As with any software, user problems occur. User problems usually fall into the categories of input processing failure, code execution failure, restart/renodalization failure, unphysical result, and installation. This presentation will discuss some of the more generic user problems that have been reported on RELAP5-3D as well as their resolution.

  12. ITP Nanomanufacturing: Nanostructured Superhydrophobic Coatings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanostructured Superhydrophobic Coatings Large-scale Implementation of Nanostructured Superhydrophobic (SH) Powders for Breakthrough Energy Savings Nanostructured superhydrophobic...

  13. Printing 3D Models to the Genisys Xs 3D Printer By Sotiri Koyonos

    E-Print Network [OSTI]

    Illinois at Urbana-Champaign, University of

    Printing 3D Models to the Genisys Xs 3D Printer By Sotiri Koyonos VMIL Consultant 28 February 2003's Genisys Xs 3D printer. This document assumes that you have created a stereo lithography file (*.stl Abstract This document outlines the process for manufacturing three dimensional (3D) models on the ITG

  14. 3D Site Response using NLSSI

    Broader source: Energy.gov [DOE]

    3D Site Response using NLSSI Justin Coleman, P.E. Bob Spears Nuclear Science and Technology Idaho National Laboratory October 22, 2014

  15. UNCLASSIFIED Institute for Materials ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Garritt Tucker Drexel University, Philadelphia, Pennsylvania Atomistic Methods to Quantify Nanoscale Strain and Deformation Mechanisms in Nanostructured Materials Thursday, August...

  16. Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy

    E-Print Network [OSTI]

    Zaniewski, Anna Monro

    2012-01-01

    4.2.1 Organic solar cellOrganic Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.3.1 Organic solar cell materials . . . . .

  17. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D...

  18. 3-D seismology in the Arabian Gulf

    SciTech Connect (OSTI)

    Al-Husseini, M. [Gulf PetroLink, Manama (Bahrain); Chimblo, R. [Saudi Aramco, Dhahran (Saudi Arabia)

    1995-08-01

    Since 1977 when Aramco and GSI (Geophysical Services International) pioneered the first 3-D seismic survey in the Arabian Gulf, under the guidance of Aramco`s Chief Geophysicist John Hoke, 3-D seismology has been effectively used to map many complex subsurface geological phenomena. By the mid-1990s extensive 3-D surveys were acquired in Abu Dhabi, Oman, Qatar and Saudi Arabia. Also in the mid-1990`s Bahrain, Kuwait and Dubai were preparing to record surveys over their fields. On the structural side 3-D has refined seismic maps, focused faults and fractures systems, as well as outlined the distribution of facies, porosity and fluid saturation. In field development, 3D has not only reduced drilling costs significantly, but has also improved the understanding of fluid behavior in the reservoir. In Oman, Petroleum Development Oman (PDO) has now acquired the first Gulf 4-D seismic survey (time-lapse 3D survey) over the Yibal Field. The 4-D survey will allow PDO to directly monitor water encroachment in the highly-faulted Cretaceous Shu`aiba reservoir. In exploration, 3-D seismology has resolved complex prospects with structural and stratigraphic complications and reduced the risk in the selection of drilling locations. The many case studies from Saudi Arabia, Oman, Qatar and the United Arab Emirates, which are reviewed in this paper, attest to the effectiveness of 3D seismology in exploration and producing, in clastics and carbonates reservoirs, and in the Mesozoic and Paleozoic.

  19. 3, 35433588, 2003 3-D air pollution

    E-Print Network [OSTI]

    Boyer, Edmond

    ACPD 3, 3543­3588, 2003 3-D air pollution modelling L. M. Frohn et al. Title Page Abstract hemispheric nested air pollution model L. M. Frohn, J. H. Christensen, J. Brandt, C. Geels, and K. M. Hansen 2003 Correspondence to: L. M. Frohn (lmf@dmu.dk) 3543 #12;ACPD 3, 3543­3588, 2003 3-D air pollution

  20. ITP Nanomanufacturing: Nanostructured Superhydrophobic Coatings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanomanufacturing: Nanostructured Superhydrophobic Coatings ITP Nanomanufacturing: Nanostructured Superhydrophobic Coatings nanostructuredsuperhydrophobiccoatings.pdf More...

  1. Fabrication of 3D Silicon Sensors

    SciTech Connect (OSTI)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; Kenney, C.; Hasi, J.; Da Via, C.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  2. Merge2-3D: Combining Multiple Normal Maps with 3D Surfaces Sema Berkiten

    E-Print Network [OSTI]

    in computer graphics and vision, with demand for high-quality models driven by advances in 3D printing

  3. Generating 3D perspectives of textured volumetric scenes August 2005 Generating 3D perspectives

    E-Print Network [OSTI]

    Whelan, Paul F.

    Generating 3D perspectives of textured volumetric scenes August 2005 Generating 3D perspectives of textured volumetric scenes. Student Name: Michael Carmody Student ID: 98647636 Programme: Meng in Electronic Systems MEng in Electronic Systems 1 #12;Generating 3D perspectives of textured volumetric scenes

  4. DNA-based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response

    E-Print Network [OSTI]

    Kuzyk, Anton; Fan, Zhiyuan; Pardatscher, Günther; Roller, Eva-Maria; Högele, Alexander; Simmel, Friedrich C; Govorov, Alexander O; Liedl, Tim

    2011-01-01

    Surface plasmon resonances generated in metallic nanostructures can be utilized to tailor electromagnetic fields. The precise spatial arrangement of such structures can result in surprising optical properties that are not found in any naturally occurring material. Here, the designed activity emerges from collective effects of singular components equipped with limited individual functionality. Top-down fabrication of plasmonic materials with a predesigned optical response in the visible range by conventional lithographic methods has remained challenging due to their limited resolution, the complexity of scaling, and the difficulty to extend these techniques to three-dimensional architectures. Molecular self-assembly provides an alternative route to create such materials which is not bound by the above limitations. We demonstrate how the DNA origami method can be used to produce plasmonic materials with a tailored optical response at visible wavelengths. Harnessing the assembly power of 3D DNA origami, we arran...

  5. Computer Modelling of 3D Geological Surface

    E-Print Network [OSTI]

    Kodge, B G

    2011-01-01

    The geological surveying presently uses methods and tools for the computer modeling of 3D-structures of the geographical subsurface and geotechnical characterization as well as the application of geoinformation systems for management and analysis of spatial data, and their cartographic presentation. The objectives of this paper are to present a 3D geological surface model of Latur district in Maharashtra state of India. This study is undertaken through the several processes which are discussed in this paper to generate and visualize the automated 3D geological surface model of a projected area.

  6. Nanostructures, systems, and methods for photocatalysis

    DOE Patents [OSTI]

    Reece, Steven Y.; Jarvi, Thomas D.

    2015-12-08

    The present invention generally relates to nanostructures and compositions comprising nanostructures, methods of making and using the nanostructures, and related systems. In some embodiments, a nanostructure comprises a first region and a second region, wherein a first photocatalytic reaction (e.g., an oxidation reaction) can be carried out at the first region and a second photocatalytic reaction (e.g., a reduction reaction) can be carried out at the second region. In some cases, the first photocatalytic reaction is the formation of oxygen gas from water and the second photocatalytic reaction is the formation of hydrogen gas from water. In some embodiments, a nanostructure comprises at least one semiconductor material, and, in some cases, at least one catalytic material and/or at least one photosensitizing agent.

  7. Novel photonic phenomena in nanostructured material systems with applications and mid-range efficient insensitive wireless energy-transfer

    E-Print Network [OSTI]

    Karalis, Aristeidis, 1978-

    2008-01-01

    A set of novel mechanisms for the manipulation of light in the nanoscale is provided. In the class of all-dielectric material systems, techniques for the suppression of radiative loss from incomplete-photonic-bandgap ...

  8. Physical sectioning in 3D biological microscopy 

    E-Print Network [OSTI]

    Guntupalli, Jyothi Swaroop

    2009-05-15

    Our ability to analyze the microstructure of biological tissue in three dimensions (3D) has proven invaluable in modeling its functionality, and therefore providing a better understanding of the basic mechanisms of life. ...

  9. 3-D Model for Deactivation & Decommissioning

    Broader source: Energy.gov [DOE]

    The design and production of 3-D scale models that replicate the highly contaminated structures within the nuclear facility would provide a significant improvement in visualization of the work...

  10. 3D TORUS V1.0

    Energy Science and Technology Software Center (OSTI)

    002440MLTPL00 3D Torus Routing Engine Module for OFA OpenSM v. 1.0  http://www.openfabrics.org/git?p=sashak/management.git;a=sum 

  11. Electrochemical Nanoscale Templating: Laterally Self-Aligned Growth of Organic-Metal Nanostructures

    E-Print Network [OSTI]

    Borguet, Eric

    attractive for a wide range of applications such as the fabrication of nanoscale devices, energy storage of nanostructures into 2D or 3D arrays is necessary for the further hierarchical development of devices. TemplatingElectrochemical Nanoscale Templating: Laterally Self-Aligned Growth of Organic-Metal Nanostructures

  12. Assembly and Functionalization of 3D Photonic Crystals X. Yu, P.V. Braun

    E-Print Network [OSTI]

    Braun, Paul

    Assembly and Functionalization of 3D Photonic Crystals X. Yu, P.V. Braun Department of Materials manipulation, and DNA-directed assembly as pathways to complex 3D structures. INTRODUCTION Metallic photonic to such structures in an efficient fashion, be this introduction of aperiodic features such as optical cavities

  13. Nanostructured Transparent Conducting Oxides via Blockcopolymer Patterning

    E-Print Network [OSTI]

    Kim, Joung Youn Ellie

    2014-05-27

    . This can lead to new device designs of organic light emitting diodes (OLEDS), fuel cells, displays and solar cells. Moreover, the ability to incorporate other various functional materials to form a hybrid with the nanostructured TCO allows possibilities...

  14. Biomedical applications of nanostructured polymer films

    E-Print Network [OSTI]

    Gilbert, Jonathan Brian

    2014-01-01

    Functional polymeric thin films are often stratified with nanometer level structure and distinct purposes for each layer. These nanostructured polymeric materials are useful in a wide variety of applications including drug ...

  15. Interfacing nanostructures to biological cells

    DOE Patents [OSTI]

    Chen, Xing; Bertozzi, Carolyn R.; Zettl, Alexander K.

    2012-09-04

    Disclosed herein are methods and materials by which nanostructures such as carbon nanotubes, nanorods, etc. are bound to lectins and/or polysaccharides and prepared for administration to cells. Also disclosed are complexes comprising glycosylated nanostructures, which bind selectively to cells expressing glycosylated surface molecules recognized by the lectin. Exemplified is a complex comprising a carbon nanotube functionalized with a lipid-like alkane, linked to a polymer bearing repeated .alpha.-N-acetylgalactosamine sugar groups. This complex is shown to selectively adhere to the surface of living cells, without toxicity. In the exemplified embodiment, adherence is mediated by a multivalent lectin, which binds both to the cells and the .alpha.-N-acetylgalactosamine groups on the nanostructure.

  16. 3D Self-Portraits Etienne Vouga2

    E-Print Network [OSTI]

    O'Brien, James F.

    scanning pose change output reconstruction textured reconstruction large variety of examples3D print Figure for applications such as online avatars or 3D printing (the miniature shown here was printed using a ZPrinter 650 and accurate cap- ture system for 3D self-portraits using a single 3D sensor. Figure 2: 3D printed miniatures

  17. 3D Modeling Engine Representation Summary Report

    SciTech Connect (OSTI)

    Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang

    2014-09-01

    Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.

  18. Sculplexity: Sculptures of Complexity using 3D printing

    E-Print Network [OSTI]

    Reiss, D S; Evans, T S

    2014-01-01

    We show how to convert models of complex systems such as 2D cellular automata into a 3D printed object. Our method takes into account the limitations inherent to 3D printing processes and materials. Our approach automates the greater part of this task, bypassing the use of CAD software and the need for manual design. As a proof of concept, a physical object representing a modified forest fire model was successfully printed. Automated conversion methods similar to the ones developed here can be used to create objects for research, for demonstration and teaching, for outreach, or simply for aesthetic pleasure. As our outputs can be touched, they may be particularly useful for those with visual disabilities.

  19. Mesoporous Co{sub 3}O{sub 4} nanostructured material synthesized by one-step soft-templating: A magnetic study

    SciTech Connect (OSTI)

    Poyraz, Altug S.; Kuo, Chung-Hao; Li, Nan; Hines, William A. Perry, David M.; Suib, Steven L.

    2014-03-21

    A combined magnetization and zero-field {sup 59}Co spin-echo nuclear magnetic resonance (NMR) study has been carried out on one member of a recently developed class of highly ordered mesoporous nanostructured materials, mesoporous Co{sub 3}O{sub 4} (designated UCT-8, University of Connecticut, mesoporous materials). The material was synthesized using one-step soft-templating by an inverse micelles packing approach. Characterization of UCT-8 by powder x-ray diffraction and electron microscopy reveals that the mesostructure consists of random close-packed Co{sub 3}O{sub 4} nanoparticles ??12?nm in diameter. The N{sub 2} sorption isotherm for UCT-8, which is type IV with a type H1 hysteresis loop, yields a 134 m{sup 2}/g BET surface area and a 7.7?nm BJH desorption pore diameter. The effect of heat treatment on the structure is discussed. The antiferromagnetic Co{sub 3}O{sub 4} nanoparticles have a Néel temperature T{sub N}?=?27?K, somewhat lower than the bulk. A fit to the Curie-Weiss law over the temperature range 75?K???T???300?K yields an effective magnetic moment of ?{sub eff}?=?4.36??{sub B} for the Co{sup 2+} ions, indicative of some orbital contribution, and a Curie-Weiss temperature ??=??93.5?K, consistent with antiferromagnetic ordering. The inter-sublattice and intra-sublattice exchange constants for the Co{sup 2+} ions are J{sub 1}/k{sub B}?=?(?)4.75?K and J{sub 2}/k{sub B}?=?(?)0.87?K, respectively, both corresponding to antiferromagnetic coupling. The presence of uncompensated surface spins is observed below T{sub N} with shifts in the hysteresis loops, i.e., an exchange-bias effect. The {sup 59}Co NMR spectrum for UCT-8, which is attributed to Co{sup 2+} ions at the tetrahedral A sites, is asymmetrically broadened with a peak at ?55?MHz (T?=?4.2?K). Since there is cubic symmetry at the A-sites, the broadening is indicative of a magnetic field distribution due to the uncompensated surface spins. The spectrum is consistent with antiferromagnetically ordered particles that are nanometer in size and single domain.

  20. Novel spherical boron clusters and structural transition from 2D quasi-planar structures to 3D

    E-Print Network [OSTI]

    Pandey, Ravi

    into nanostructured materials can be expressed in form of miniaturization of these new materials and could lead and materials science. Dur- ing the last decade many researchers focused on a systematic search for new an opportunity for 'materials engineering', a systematic understanding and development of new nanoscale materials

  1. Fourier transform of the 3d NS equations The 3d NS equations are

    E-Print Network [OSTI]

    Salmon, Rick

    1 Fourier transform of the 3d NS equations The 3d NS equations are (1) vi t + vj vi xj = - p xi easily add it in at the end. Our interest is in the advection and pressure terms. Introducing the Fourier transforms (2) vi x( ) = ui k( )eikx k p x( ) = p k( )eikx k we obtain the Fourier transform of (1

  2. View Dependence of 3D Recovery from Folded Pictures and Warped 3D Faces

    E-Print Network [OSTI]

    Cavanagh, Patrick

    View Dependence of 3D Recovery from Folded Pictures and Warped 3D Faces Patrick Cavanagh Department vertical lines through the nose and the eyes. When this folded picture is tilted back and forth, the same is true, over a more restricted range of angles, as we move in front of a picture of an object

  3. 3D engine for immersive virtual environments 

    E-Print Network [OSTI]

    Anderson, Christopher Dean

    2005-02-17

    The purpose of this project is to develop a software framework, a 3D engine, which will generate images to be projected onto facets of a spatially immersive display (SID). The goal is to develop a software library to support the creation of images...

  4. 3D tracking via body radio reflections

    E-Print Network [OSTI]

    Kabelac, Zachary (Zachary E.)

    2014-01-01

    This thesis presents WiTrack, a system that tracks the 3D motion of a user from the radio signals reflected off her body. It works even if the person is occluded from the WiTrack device or in a different room. WiTrack does ...

  5. 3-D hydro + cascade model at RHIC

    E-Print Network [OSTI]

    Chiho Nonaka; Steffen A. Bass

    2005-11-07

    We present a 3-D hydro + cascade model in which viscosity and a realistic freezeout process for the hadronic phase are taken into account. We compare our results to experimental data and discuss the finite state interaction effects on physical observables.

  6. Speed-line for 3D animation 

    E-Print Network [OSTI]

    Song, Won Chan

    2007-04-25

    My thesis describes a tool which creates speed-lines automatically in 3D computer animations. Speed-lines are usually used in comic books to express fast motions in a still image. They are also used in 2D animations. Although animations don't need...

  7. Energy Savings in 3-D | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy savings in 3-D ORNL researchers show production, energy advantages of additive manufacturing ORNL 3-D printer in use. ORNL 3-D printer in use. Researchers at the Department...

  8. 3D Printed and Semiconductor Technology 'Mash-up' | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to 60 in under five seconds. Concept to reality in just six weeks. Photo Gallery: 3D Printing Brings Classic Shelby Cobra to Life 3-D Printed Inverter Novel 3-D Printed...

  9. Mesoporous Carbon-based Materials for Alternative Energy Applications

    E-Print Network [OSTI]

    Cross, Kimberly Michelle

    2012-01-01

    Nanostructured materials for advanced energy conversion and storage devices."devices for energy harvesting, storage, and conversion are based on the incorporation of nanostructured

  10. Millifluidics for time-resolved mapping of the growth of gold nanostructures

    SciTech Connect (OSTI)

    Sai Krishna, Katla; Navin, Chelliah; Biswas, Sanchita; Singh, Varshni; Ham, Kyungmin; Bovencamp, L. S.; Theegala, Chandra; Miller, Jeffrey T; Spivey, James J.; Kumar, Challa S.S.R.

    2013-04-10

    Innovative in situ characterization tools are essential for understanding the reaction mechanisms leading to the growth of nanoscale materials. Though techniques, such as in situ transmission X-ray microscopy, fast single-particle spectroscopy, small-angle X-ray scattering, etc., are currently being developed, these tools are complex, not easily accessible, and do not necessarily provide the temporal resolution required to follow the formation of nanomaterials in real time. Here, we demonstrate for the first time the utility of a simple millifluidic chip for an in situ real time analysis of morphology and dimension-controlled growth of gold nano- and microstructures with a time resolution of 5 ms. The structures formed were characterized using synchrotron radiation-based in situ X-ray absorption spectroscopy, 3-D X-ray tomography, and high-resolution electron microscopy. These gold nanostructures were found to be catalytically active for conversion of 4-nitrophenol into 4-aminophenol, providing an example of the potential opportunities for time-resolved analysis of catalytic reactions. While the investigations reported here are focused on gold nanostructures, the technique can be applied to analyze the time-resolved growth of other types of nanostructured metals and metal oxides. With the ability to probe at least a 10-fold higher concentrations, in comparison with traditional microfluidics, the tool has potential to revolutionize a broad range of fields from catalysis, molecular analysis, biodefense, and molecular biology.

  11. Fast 3D Scanning for Biometric Identification and Verification

    E-Print Network [OSTI]

    McShea, Daniel W.

    Fast 3D Scanning for Biometric Identification and Verification June 2011 Authors Anselmo., & Chen, A. (2011). Fast 3D Scanning for Biometric Identification and Verification. (Prepared by RTI

  12. Visualization and Analysis of 3D Gene Expression Data (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Visualization and Analysis of 3D Gene Expression Data Citation Details In-Document Search Title: Visualization and Analysis of 3D Gene Expression Data Recent...

  13. 3D Printing in 30 Seconds | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Printing in 30 Seconds 3D Printing in 30 Seconds Addthis An error occurred. Unable to execute Javascript. Duration :38 Topic Science & Technology...

  14. From pictures to 3D : global optimization for scene reconstruction

    E-Print Network [OSTI]

    Chandraker, Manmohan Krishna

    2009-01-01

    SAN DIEGO From Pictures to 3D: Global Optimization for SceneOF THE DISSERTATION From Pictures to 3D: Global Optimization

  15. Biologically-templated metal oxide and metal nanostructures for photovoltaic applications

    E-Print Network [OSTI]

    Dorval Courchesne, Noémie-Manuelle

    2015-01-01

    In several electronic, electrochemical and photonic systems, the organization of materials at the nanoscale is critical. Specifically, in nanostructured heterojunction solar cells, active materials with high surface area ...

  16. Ceramic nanostructures and methods of fabrication

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Morrell, Jonathan S. (Knoxville, TN)

    2009-11-24

    Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

  17. INCORPORATING DYNAMIC 3D SIMULATION INTO PRA

    SciTech Connect (OSTI)

    Steven R Prescott; Curtis Smith

    2011-07-01

    Through continued advancement in computational resources, development that was previously done by trial and error production is now performed through computer simulation. These virtual physical representations have the potential to provide accurate and valid modeling results and are being used in many different technical fields. Risk assessment now has the opportunity to use 3D simulation to improve analysis results and insights, especially for external event analysis. By using simulations, the modeler only has to determine the likelihood of an event without having to also predict the results of that event. The 3D simulation automatically determines not only the outcome of the event, but when those failures occur. How can we effectively incorporate 3D simulation into traditional PRA? Most PRA plant modeling is made up of components with different failure modes, probabilities, and rates. Typically, these components are grouped into various systems and then are modeled together (in different combinations) as a “system” with logic structures to form fault trees. Applicable fault trees are combined through scenarios, typically represented by event tree models. Though this method gives us failure results for a given model, it has limitations when it comes to time-based dependencies or dependencies that are coupled to physical processes which may themselves be space- or time-dependent. Since, failures from a 3D simulation are naturally time related, they should be used in that manner. In our simulation approach, traditional static models are converted into an equivalent state diagram representation with start states, probabilistic driven movements between states and terminal states. As the state model is run repeatedly, it converges to the same results as the PRA model in cases where time-related factors are not important. In cases where timing considerations are important (e.g., when events are dependent upon each other), then the simulation approach will typically provide superior results and insights. We also couple the state model with the dynamic 3D simulation analysis representing events (such as flooding) to determine which (if any) components fail. Not only does the simulation take into account any failed items from the state model, but any failures caused by the simulation are incorporated back into the state model and factored into the overall results. Using this method we incorporate accurate 3D simulation results, eliminate static-based PRA issues, and have time ordered failure information.

  18. 3D Technology for intelligent trackers

    SciTech Connect (OSTI)

    Lipton, Ronald; /Fermilab

    2010-09-01

    At Super-LHC luminosity it is expected that the standard suite of level 1 triggers for CMS will saturate. Information from the tracker will be needed to reduce trigger rates to satisfy the level 1 bandwidth. Tracking trigger modules which correlate information from closely-spaced sensor layers to form an on-detector momentum filter are being developed by several groups. We report on a trigger module design which utilizes three dimensional integrated circuit technology incorporating chips which are connected both to the top and bottom sensor, providing the ability to filter information locally. A demonstration chip, the VICTR, has been submitted to the Chartered/Tezzaron two-tier 3D run coordinated by Fermilab. We report on the 3D design concept, the status of the VICTR chip and associated sensor integration utilizing oxide bonding.

  19. 3D Structure and Nuclear Targets

    E-Print Network [OSTI]

    Dupré, R

    2015-01-01

    Recent experimental and theoretical ideas are laying the ground for a new era in the knowledge of the parton structure of nuclei. We report on two promising directions beyond inclusive deep inelastic scattering experiments, aimed at, among other goals, unveiling the three dimensional structure of the bound nucleon. The 3D structure in coordinate space can be accessed through deep exclusive processes, whose non-perturbative content is parametrized in terms of generalized parton distributions. In this way the distribution of partons in the transverse plane will be obtained, providing a pictorial view of the realization of the European Muon Collaboration effect. In particular, we show how, through the generalized parton distribution framework, non nucleonic degrees of freedom in nuclei can be unveiled. Analogously, the momentum space 3D structure can be accessed by studying transverse momentum dependent parton distributions in semi-inclusive deep inelastic scattering processes. The status of measurements is also...

  20. Azimuthally Anisotropic 3D Velocity Continuation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burnett, William; Fomel, Sergey

    2011-01-01

    We extend time-domain velocity continuation to the zero-offset 3D azimuthally anisotropic case. Velocity continuation describes how a seismic image changes given a change in migration velocity. This description turns out to be of a wave propagation process, in which images change along a velocity axis. In the anisotropic case, the velocity model is multiparameter. Therefore, anisotropic image propagation is multidimensional. We use a three-parameter slowness model, which is related to azimuthal variations in velocity, as well as their principal directions. This information is useful for fracture and reservoir characterization from seismic data. We provide synthetic diffraction imaging examples to illustratemore »the concept and potential applications of azimuthal velocity continuation and to analyze the impulse response of the 3D velocity continuation operator.« less

  1. Completing unknown portions of 3D scenes by 3D visual propagation 

    E-Print Network [OSTI]

    Breckon, Toby P

    As the requirement for more realistic 3D environments is pushed forward by the computer {graphics | movie | simulation | games} industry, attention turns away from the creation of purely synthetic, artist derived environments towards the use of real...

  2. Scanning and Printing Persons in 3D Jurgen Sturm1

    E-Print Network [OSTI]

    Lunds Universitet

    miniatures of persons using a Kinect sensor and a 3D color printer. To achieve this, we acquire color- through in rapid prototyping in recent years. Modern 3D printers are able to print colored 3D models at resolutions comparable to 2D paper printers. On the one hand, the creation of a detailed, printable 3D model

  3. Non-Realistic 3D Object Stylization Julian Kratt1

    E-Print Network [OSTI]

    Sharf, Andrei

    or might be printed using a 3D printer. We conducted a user study to verify the proposed stylizationsNon-Realistic 3D Object Stylization Julian Kratt1 Ferdinand Eisenkeil1 S¨oren Pirk1 Andrei Sharf2 paradigm of non-realistic 3D stylization, where the expressiveness of a given 3D model is man- ifested

  4. AUTOCOSTRUIRSI UNA STAMPANTE 3D Da Dove Iniziare?

    E-Print Network [OSTI]

    AUTOCOSTRUIRSI UNA STAMPANTE 3D #12;Da Dove Iniziare? Quale sarŕ la 3D Printer piů adatta al mio stampante 3D partendo da zero? · E' meglio che acquisto un kit di montaggio anche se piů caro? E' STATA UNA progetto sarŕ la costruzione di una stampante 3D. ATTENZIONE: Il fab lab non ti fa il lavoro ma ti supporta

  5. Web 3D Rendering Without Plug-Ins Andrs Buritic

    E-Print Network [OSTI]

    Dahlquist, Kam D.

    OpenJSGL Web 3D Rendering Without Plug-Ins Andrés Buriticá Loyola Marymount University Faculty, 2007 Introduction 3D graphics Applications The Worldwide Web #12;Concept OpenGL JavaScript OpenJSGL Previous Work: 3D In A Browser Java applets Flash JavaScript VRML, later called X3D Java Web Start Other

  6. CAN 3D PRINTING REVOLUTIONIZE GLOBAL MANUFACTURING? A DELPHI STUDY

    E-Print Network [OSTI]

    CAN 3D PRINTING REVOLUTIONIZE GLOBAL MANUFACTURING? A DELPHI STUDY ­ Master Thesis Proposal ­ BACKGROUND 3D printing (or additive manufacturing) is not an entirely new phenomenon. First introduced and president of Foxconn, calls it a nice "gimmick" and even Nick Allen, founder of 3D printing company 3D Print

  7. Interactive needle insertions in 3D nonlinear material

    E-Print Network [OSTI]

    Utrecht, Universiteit

    a tissue specimen. Another application is brachytherapy, treating cancer by inserting radioactive seeds directly in the tumor. The primary application of brachytherapy is prostate cancer. In this application] also simulate needle insertion using the FEM, and specifically target brachytherapy for prostate cancer

  8. 1998 3D GIS vs Advanced visualisation -Hack & Ozmutlu -LWI Seminar 1 3D-GIS vs Advanced Visualization

    E-Print Network [OSTI]

    Hack, Robert

    1998 3D GIS vs Advanced visualisation - Hack & Ozmutlu - LWI Seminar 1 3D-GIS vs Advanced Visualization Hack H.R.G.K. and Ozmutlu S. LWI seminar 1998 Delft, The Netherlands #12;1998 3D GIS vs Advanced visualisation - Hack & Ozmutlu - LWI Seminar 2 3D-GIS vs Advanced Visualization Visualization Strategy At source

  9. 3D reconstruction of tensors and vectors

    SciTech Connect (OSTI)

    Defrise, Michel; Gullberg, Grant T.

    2005-02-17

    Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.

  10. Past Achievements and Future Challenges in 3D Photonic Metamaterials

    E-Print Network [OSTI]

    Soukoulis, Costas M

    2011-01-01

    Photonic metamaterials are man-made structures composed of tailored micro- or nanostructured metallo-dielectric sub-wavelength building blocks that are densely packed into an effective material. This deceptively simple, yet powerful, truly revolutionary concept allows for achieving novel, unusual, and sometimes even unheard-of optical properties, such as magnetism at optical frequencies, negative refractive indices, large positive refractive indices, zero reflection via impedance matching, perfect absorption, giant circular dichroism, or enhanced nonlinear optical properties. Possible applications of metamaterials comprise ultrahigh-resolution imaging systems, compact polarization optics, and cloaking devices. This review describes the experimental progress recently made fabricating three-dimensional metamaterial structures and discusses some remaining future challenges.

  11. Kirkendall-effect-based growth of dendrite-shaped CuO hollow micro/nanostructures for lithium-ion battery anodes

    SciTech Connect (OSTI)

    Hu Yingying, E-mail: yyhu@phy.ccnu.edu.c [Center for Nanoscience and Nanotechnology, Huazhong Normal University, Wuhan 430079, Hubei (China); Huang Xintang, E-mail: xthuang@phy.ccnu.edu.c [Center for Nanoscience and Nanotechnology, Huazhong Normal University, Wuhan 430079, Hubei (China); Wang Kai; Liu Jinping; Jiang Jian; Ding Ruimin; Ji Xiaoxu; Li Xin [Center for Nanoscience and Nanotechnology, Huazhong Normal University, Wuhan 430079, Hubei (China)

    2010-03-15

    Three-dimensional (3D) dendrite-shaped CuO hollow micro/nanostructures have been prepared via a Kirkendall-effect-based approach for the first time and have been demonstrated as a high-performance anode material for lithium-ion batteries. The as-prepared hollow structures were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and electrochemical properties. A CuO hollow structure composed of nanocubes outside and a dense film inside was selected as a typical example of the optimized design; it exhibited significantly improved cyclability at a current rate of 0.5 C, with the average Coulombic efficiency of {approx}97.0% and 57.9% retention of the discharge capacity of the second cycle after 50 cycles. The correlation between the structure features of the hollow CuO and their electrochemical behavior was discussed in detail. Smaller size of primary structure and larger internal space of electrode materials are crucial to better electrochemical performance. This work represents that Kirkendall effect is a promising method to fabricate excellent hollow electrode materials for Li-ion batteries. - Graphical abstract: SEM images of 3D dendrite-shaped CuO hollow micro/nanostructures prepared via a Kirkendall-effect-based approach have been shown. The as-prepared CuO electrode exhibited significantly improved cyclability for Li-ion batteries.

  12. 3D Monitoring of LHCb Inner Tracker

    E-Print Network [OSTI]

    Sainvitu, Pascal

    2015-01-01

    The positions of the Inner Tracker (IT) detectors of the LHCb experiment installed in the LHC at CERN are impacted by the LHCb dipole magnet powering. In the past the movements of the stations have been measured using standard survey methods during magnet tests in shutdown periods. But the survey targets are visible only in very narrow spaces and the access to the IT is very difficult, even impossible in the central region when the detector is closed. Finally the precision of the standard survey measurement is affected by the poor configuration. In 2013 and 2014, during the first long shutdown of the LHC (LS1), the CERN Survey team (EN/MEF-SU) in collaboration with the LHCb Technical Coordination and the EPFL (Ecole Polytechnique Fédérale de LAUSANNE, CH), developed a permanent monitoring system which has been tested and installed in order to allow the 3D position measurement of the IT stations, even during the run periods, with a precision of 100 microns at 1 sigma level. The 3D Monitoring system of the LH...

  13. 3D Structure and Nuclear Targets

    E-Print Network [OSTI]

    R. Dupré; S. Scopetta

    2015-10-03

    Recent experimental and theoretical ideas are laying the ground for a new era in the knowledge of the parton structure of nuclei. We report on two promising directions beyond inclusive deep inelastic scattering experiments, aimed at, among other goals, unveiling the three dimensional structure of the bound nucleon. The 3D structure in coordinate space can be accessed through deep exclusive processes, whose non-perturbative content is parametrized in terms of generalized parton distributions. In this way the distribution of partons in the transverse plane will be obtained, providing a pictorial view of the realization of the European Muon Collaboration effect. In particular, we show how, through the generalized parton distribution framework, non nucleonic degrees of freedom in nuclei can be unveiled. Analogously, the momentum space 3D structure can be accessed by studying transverse momentum dependent parton distributions in semi-inclusive deep inelastic scattering processes. The status of measurements is also summarized, in particular novel coincidence measurements at high luminosity facilities, such as Jefferson Laboratory. Finally the prospects for the next years at future facilities, such as the 12~GeV Jefferson Laboratory and the Electron Ion Collider, are presented.

  14. Center for Nanophase Materials Sciences | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in nanostructured materials. Fieldstechniques include scanning probe microscopy, neutron scattering, optical spectroscopy and soft-matter electron and helium ion...

  15. IEEE TRANSACTIONS ON IMAGE PROCESSING 1 3D Discrete Shearlet Transform and Video

    E-Print Network [OSTI]

    Labate, Demetrio

    IEEE TRANSACTIONS ON IMAGE PROCESSING 1 3D Discrete Shearlet Transform and Video Processing Pooran , as M . Copyright (c) 2010 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee

  16. A detailed pore characterization in 2D and 3D by means of optical and fluorescence microscopy combined with high-resolution X-ray CT.

    E-Print Network [OSTI]

    Gent, Universiteit

    A detailed pore characterization in 2D and 3D by means of optical and fluorescence microscopy structure. However, the evolution of techniques like X-ray CT has enabled us to make non-destructive 3D images of materials and thus of rocks. 3D image analysis software enables us to characterize the pore

  17. Design, Optimization, Calibration, and a Case Study of a 3D-Printed, Low-cost Fingertip Sensor for Robotic Manipulation

    E-Print Network [OSTI]

    Todorov, Emanuel

    Design, Optimization, Calibration, and a Case Study of a 3D-Printed, Low-cost Fingertip Sensor fingertip force sensor for robotic manipulation. Our design makes the most of 3D printing technology sensor features a detachable fingertip made of 3D- printed materials, and a cantilever mechanism

  18. THERMAL TRANSPORT IN SELF-ASSEMBLED NANOSTRUCTURES IAN PEARSON BLITZ

    E-Print Network [OSTI]

    Braun, Paul

    THERMAL TRANSPORT IN SELF-ASSEMBLED NANOSTRUCTURES BY IAN PEARSON BLITZ THESIS Submitted in partial Understanding of phonon mediated thermal transport properties in nanostructured materials is essential of the thermal transport properties of model organic- inorganic, nanoscopically layered systems for the purpose

  19. Nanostructure Templating in Inorganic Solids with Organic Lyotropic Liquid Crystals

    E-Print Network [OSTI]

    Braun, Paul

    successful templated synthesis of periodically nanostructured inorganics which copied directly the symmetryNanostructure Templating in Inorganic Solids with Organic Lyotropic Liquid Crystals Paul V. Braun of Materials Science and Engineering and Chemistry, Northwestern UniVersity, EVanston, Illinois 60208 Recei

  20. Synthesis and Enhanced Intercalation Properties of Nanostructured Vanadium Oxides

    E-Print Network [OSTI]

    Cao, Guozhong

    intercalation properties of nanostructured vanadium oxides for energy storage as well as other applications-volume, and environment friendly energy storage/conversion devices are developed, and nanomaterials are attracting great-18 The nanostructured form of this material has been employed in FETs,19 sensors,20,21 spintronic devices,22

  1. Stepwise Nanopore Evolution in One-Dimensional Nanostructures

    E-Print Network [OSTI]

    Cui, Yi

    dielectric layers in microelectronic devices,5 hydrogen storage materi- als,6 supercapacitor electrodes,7Stepwise Nanopore Evolution in One-Dimensional Nanostructures Jang Wook Choi,, James Mc be used to produce nanopores inside various useful one-dimensional (1D) nanostructures such as zinc oxide

  2. 3D J-Integral Capability in Grizzly

    SciTech Connect (OSTI)

    Benjamin Spencer; Marie Backman; Pritam Chakraborty; William Hoffman

    2014-09-01

    This report summarizes work done to develop a capability to evaluate fracture contour J-Integrals in 3D in the Grizzly code. In the current fiscal year, a previously-developed 2D implementation of a J-Integral evaluation capability has been extended to work in 3D, and to include terms due both to mechanically-induced strains and due to gradients in thermal strains. This capability has been verified against a benchmark solution on a model of a curved crack front in 3D. The thermal term in this integral has been verified against a benchmark problem with a thermal gradient. These developments are part of a larger effort to develop Grizzly as a tool that can be used to predict the evolution of aging processes in nuclear power plant systems, structures, and components, and assess their capacity after being subjected to those aging processes. The capabilities described here have been developed to enable evaluations of Mode- stress intensity factors on axis-aligned flaws in reactor pressure vessels. These can be compared with the fracture toughness of the material to determine whether a pre-existing flaw would begin to propagate during a pos- tulated pressurized thermal shock accident. This report includes a demonstration calculation to show how Grizzly is used to perform a deterministic assessment of such a flaw propagation in a degraded reactor pressure vessel under pressurized thermal shock conditions. The stress intensity is calculated from J, and the toughness is computed using the fracture master curve and the degraded ductile to brittle transition temperature.

  3. Z-99 3D focussing operator estimation from sparse 3D data

    E-Print Network [OSTI]

    van Vliet, Lucas J.

    -line sampling criteria. Given the correct velocity model, and from the model the correct migration operators, these data-sets can be imaged very well by applying the 3D migration operators in a domain where full areal), whereby the imaging process was split up into two steps, focussing shots and receivers separately in depth

  4. 3DTV -PANORAMIC 3D MODEL ACQUISITION AND ITS 3D VISUALIZATION ON THE INTERACTIVE FOGSCREEN

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    - ings in a neighborhood for a car chase or cultural heritage sites for a documentary. The goal of 3D. INTRODUCTION - MODEL ACQUISITION FLOW AND VISUALIZATION For 3DTV systems we present a platform with two on the interactive FogScreen Our new platform comprises an 8 Mpixel omnidirectional camera CI in conjunction

  5. A Desktop 3D Printer in Safety-Critical Java

    E-Print Network [OSTI]

    A Desktop 3D Printer in Safety-Critical Java Tórur Biskopstř Strřm Kongens Lyngby 2012 IMM-MSc-2012-critical use cases implemented according to the specification. This thesis presents a RepRap 3D desktop printer

  6. 3D Visualization of Water Transport in Ferns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D Visualization of Water Transport in Ferns 3D Visualization of Water Transport in Ferns Print Monday, 08 April 2013 00:00 Plants transport water through elongated cells called...

  7. 3D printing rises to the occasion | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3D printing rises to the occasion ORNL group shows how it's done, one layer at a time A perforated metal box produced by an Arcam 3D printer. This detailed A perforated metal box...

  8. 3D Measurements in Images using CAD Models George Vosselman

    E-Print Network [OSTI]

    Vosselman, George

    the alignment. 1 Introduction Future geographical information systems will contain 3D and highly structured information. The development of procedures for the extraction of 3D object models from digital aerial imagery

  9. Tracking Objects Using 3D Edge Detectors February 2013

    E-Print Network [OSTI]

    O'Leary, Dianne P.

    Tracking Objects Using 3D Edge Detectors February 2013 SIAM CSE 2013 Dianne P. O'Leary c 2013 1 #12;Tracking Objects Using 3D Edge Detectors Dianne P. O'Leary Computer Science Dept. and Institute

  10. Energy Department Unveils 3D-Printed Building; New Initiatives...

    Office of Environmental Management (EM)

    Unveils 3D-Printed Building; New Initiatives During Industry Day Energy Department Unveils 3D-Printed Building; New Initiatives During Industry Day October 1, 2015 - 12:25pm...

  11. Visualization and Analysis of 3D Gene Expression Data (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Visualization and Analysis of 3D Gene Expression Data Citation Details In-Document Search Title: Visualization and Analysis of 3D Gene Expression Data You are...

  12. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema (OSTI)

    Zhang, Song

    2012-08-29

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  13. Characterizing tensile loading responses of 3D printed samples

    E-Print Network [OSTI]

    Haid, Christopher M

    2014-01-01

    An experimental study was performed to characterize the loading response of samples manufactured through 3D printing. Tensile testing was performed on a number of 3D printed samples created through Fused Filament Fabrication ...

  14. 3D Simulations of Thermonuclear Supernovae From Very Massive Stars

    E-Print Network [OSTI]

    Crowther, Paul

    3D Simulations of Thermonuclear Supernovae From Very Massive Stars Ke-Jung (Ken) Chen Johnston #12;3D Simulations of Thermonuclear Supernovae From Very Massive Stars Ke-Jung (Ken) Chen Johnston

  15. Computational 3D and reflectivity imaging with high photon efficiency

    E-Print Network [OSTI]

    Shin, Dongeek

    2014-01-01

    Imaging the 3D structure and reflectivity of a scene can be done using photon-counting detectors. Traditional imagers of this type typically require hundreds of detected photons per pixel for accurate 3D and reflectivity ...

  16. 3-D Seismic Methods For Geothermal Reservoir Exploration And...

    Open Energy Info (EERE)

    3-D Seismic Methods For Geothermal Reservoir Exploration And Assessment-Summary Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: 3-D Seismic Methods For...

  17. Facial image comparison using 3D techniques Arnout Ruifroka

    E-Print Network [OSTI]

    Veltkamp, Remco

    and European Surface Anthropometry Resource) survey [3]. The main goal of the CAESAR-survey was to acquire 3D

  18. Engineering Magnetic Anisotropy in Nanostructured 3d and 4f Ferromagnets

    E-Print Network [OSTI]

    Hsu, Chin-Jui

    2012-01-01

    International Mechanical Engineering Congress & Exposition,Taiwan B.S. , Mechanical Engineering National Cheng KungM.S. , Power Mechanical Engineering National Tsing Hua

  19. Engineering Magnetic Anisotropy in Nanostructured 3d and 4f Ferromagnets

    E-Print Network [OSTI]

    Hsu, Chin-Jui

    2012-01-01

    to the efficiency of a Carnot cycle (? Carnot ) operatingCarnot Figure 4-3: Isothermal magnetization curves and thermomagnetic cycle.Carnot calculated for eight ferromagnetic elements (Co, Fe, Ni, Gd, Tb, Dy, Ho, and Er) in a thermomagnetic cycle

  20. Engineering Magnetic Anisotropy in Nanostructured 3d and 4f Ferromagnets

    E-Print Network [OSTI]

    Hsu, Chin-Jui

    2012-01-01

    of deformation in h.c.p. rare-earth metals," Journal of theelectronic structure of rare-earth metals and alloys: the

  1. 3D Hollow Nanostructures as Building Blocks for Multifunctional Francesco De Angelis,*,

    E-Print Network [OSTI]

    and photochemical catal- ysis,14-17 photovoltaics,18 nanolaser and spaser,19,20 heat delivery,21 nano isolated). A third severe challenge that hinders the realization of the previous ones, and more in general manufacturing method based on secondary electron lithography generated by ion beam milling. It enables th

  2. Development of monolithic 3D ion traps microfabricated

    E-Print Network [OSTI]

    Hensinger, Winfried

    surface traps [1,2], 2) 3D Au coated alumina [3-5],3) 3D degenerate Silicon [6], 4) monolithic 3D Ga. 6) Electroplating to 5 µm thickness of Au. Concept Fabrication method Potential -25 V 25 V 0 V

  3. 3D FOOT DIGITIZING AND ITS APPLICATION TO FOOTWEAR FITTING

    E-Print Network [OSTI]

    Juan, Alfons

    1 3D FOOT DIGITIZING AND ITS APPLICATION TO FOOTWEAR FITTING DIGITALISATION 3D DU PIED ET LEUR and methodological difficulties. The combination of 3D scanning systems with mathematical classification techniques for a given customer. In this paper, a new approach for customized classification (assignment) of comfortable

  4. 3-D Earth model more accurately pinpoints explosions

    E-Print Network [OSTI]

    - 1 - 3-D Earth model more accurately pinpoints explosions October 25, 2013 During the Cold War, U) have partnered to develop a 3-D model of the Earth's mantle and crust called SALSA3D (Sandia-Los Alamos of explosions. Significance of the research After an explosion, the energy travels through the Earth as waves

  5. Structural Optimization and 3D Printing Robert V. Kohn

    E-Print Network [OSTI]

    Structural Optimization and 3D Printing Robert V. Kohn Courant Institute, NYU SIAM CS&E Meeting, March 2015 Robert V. Kohn Structural Optimization and 3D Printing #12;Outline Mandate: identify areas with interesting open questions. Hence 3D printing and structural optimization. My involvement began

  6. 3D Computer Vision and Video Computing IntroductionIntroduction

    E-Print Network [OSTI]

    Zhu, Zhigang

    /Analysis/Interpretation Interpretation is an Artificial Intelligence Problem Sources of Knowledge in Vision Levels of Abstraction1 3D Computer Vision and Video Computing IntroductionIntroduction CSc I6716 Spring 2012 3D Computer Vision Introduction Instructor: Zhigang Zhu City College of New York zzhu@ccny.cuny.edu 3D Computer

  7. 3D Computer Vision and Video Computing IntroductionIntroduction

    E-Print Network [OSTI]

    Zhu, Zhigang

    /Analysis/Interpretation Interpretation is an Artificial Intelligence Problem Sources of Knowledge in Vision Levels of Abstraction1 3D Computer Vision and Video Computing IntroductionIntroduction CSc I6716 Spring 2011 3D Computer Vision Introduction Instructor: Zhigang Zhu City College of New York zzhu@ccny.cuny.edu 3D Computer

  8. 3D Computer Vision and Video Computing Introduction

    E-Print Network [OSTI]

    Zhu, Zhigang

    /Analysis/Interpretation Interpretation is an Artificial Intelligence Problem Sources of Knowledge in Vision Levels of Abstraction3D Computer Vision and Video Computing Introduction Instructor: Zhigang Zhu City College of New York zzhu@ccny.cuny.edu CSc I6716 Fall 2010 3D Computer Vision Introduction #12;3D Computer Vision

  9. 3D Computer Vision and Video Computing IntroductionIntroduction

    E-Print Network [OSTI]

    Zhu, Zhigang

    /Analysis/Interpretation Interpretation is an Artificial Intelligence Problem Sources of Knowledge in Vision Levels of Abstraction1 3D Computer Vision and Video Computing IntroductionIntroduction CSc I6716 Spring 2013 3D Computer Vision Introduction Instructor: Zhigang Zhu City College of New York zzhu@ccny.cuny.edu 3D Computer

  10. RESEARCH ARTICLE Strengthening of 3D Printed Fused

    E-Print Network [OSTI]

    Haller, Gary L.

    RESEARCH ARTICLE Strengthening of 3D Printed Fused Deposition Manufactured Parts Using the Fill as examples of 3D printed parts used in real-world applications. Introduction While the quality of additive to the wider-spread implementation of 3D- printed components continues to be the limited strength of printed

  11. 3D PRINTING FOR INTELLIGENT METALLIC STRUCTURES M. Strantza1

    E-Print Network [OSTI]

    Boyer, Edmond

    3D PRINTING FOR INTELLIGENT METALLIC STRUCTURES M. Strantza1 , D. De Baere2 , M. Rombouts3 , SSHM system is produced by 3D printing or additive manufacturing. Additive Manufacturing (AM) is a "process to enable its implementation. This work demonstrates the feasibility study of eSHM systems produced by 3D

  12. Shell Element Verification & Regression Problems for DYNA3D

    SciTech Connect (OSTI)

    Zywicz, E

    2008-02-01

    A series of quasi-static regression/verification problems were developed for the triangular and quadrilateral shell element formulations contained in Lawrence Livermore National Laboratory's explicit finite element program DYNA3D. Each regression problem imposes both displacement- and force-type boundary conditions to probe the five independent nodal degrees of freedom employed in the targeted formulation. When applicable, the finite element results are compared with small-strain linear-elastic closed-form reference solutions to verify select aspects of the formulations implementation. Although all problems in the suite depict the same geometry, material behavior, and loading conditions, each problem represents a unique combination of shell formulation, stabilization method, and integration rule. Collectively, the thirty-six new regression problems in the test suite cover nine different shell formulations, three hourglass stabilization methods, and three families of through-thickness integration rules.

  13. 3D imaging of semiconductor components by discrete laminography

    SciTech Connect (OSTI)

    Batenburg, K. J.; Palenstijn, W. J.; Sijbers, J.

    2014-06-19

    X-ray laminography is a powerful technique for quality control of semiconductor components. Despite the advantages of nondestructive 3D imaging over 2D techniques based on sectioning, the acquisition time is still a major obstacle for practical use of the technique. In this paper, we consider the application of Discrete Tomography to laminography data, which can potentially reduce the scanning time while still maintaining a high reconstruction quality. By incorporating prior knowledge in the reconstruction algorithm about the materials present in the scanned object, far more accurate reconstructions can be obtained from the same measured data compared to classical reconstruction methods. We present a series of simulation experiments that illustrate the potential of the approach.

  14. Performance of a 3D Spectral code on the Cray T3D and IBM SP2 parallel supercomputers

    E-Print Network [OSTI]

    Brummell, Nic

    Performance of a 3D Spectral code on the Cray T3D and IBM SP2 parallel supercomputers Clive F of the new generation of distributed memory supercomputers, in particular the Cray T3D and IBM SP2, we of 256 3 and 512 3 . The first two tables are for the Cray T3D and the other two for the IBM SP2

  15. ZABULIS et al.: 3D HEAD POSE ESTIMATION FROM MULTIPLE DISTANT VIEWS 1 3D head pose estimation from multiple

    E-Print Network [OSTI]

    Zabulis, Xenophon

    imaging, despite the low-resolution appearance of subjects. 1 Introduction 3D head pose estimation. In such situations, a human head is imaged in relatively low resolution, illumination artifacts are frequentZABULIS et al.: 3D HEAD POSE ESTIMATION FROM MULTIPLE DISTANT VIEWS 1 3D head pose estimation from

  16. AUTOMATED RECOGNITION OF 3D CAD OBJECTS IN SITE LASER SCANS FOR PROJECT 3D STATUS VISUALIZATION AND

    E-Print Network [OSTI]

    Bosché, Frédéric

    15296) are being developed for project and facility life-cycle management. They are typically built upon control (QA/QC), and (4) life-cycle 3D health monitoring. On one side, multi-dimensional CAD softwareAUTOMATED RECOGNITION OF 3D CAD OBJECTS IN SITE LASER SCANS FOR PROJECT 3D STATUS VISUALIZATION

  17. Programao Grfica 3D com OpenGL, Open Inventor e Java 3D ALESSANDRO L. BICHO

    E-Print Network [OSTI]

    Barbosa, Alberto

    Programaçăo Gráfica 3D com OpenGL, Open Inventor e Java 3D ALESSANDRO L. BICHO ˝ LUIZ GONZAGA DA estudado a Open Inventor, uma ŘÓÓĐ Ř orientada a objetos construída sobre a OpenGL, contemplando funçőes a Java 3D, que é fortemente inspirada na Open Inventor. Ela é a biblioteca padrăo da linguagem Java para

  18. Stack and cell modelling with SOFC3D: a computer program for the 3D simulations of

    E-Print Network [OSTI]

    Herbin, Raphačle

    Stack and cell modelling with SOFC3D: a computer program for the 3D simulations of solid oxide fuel, France 1 Introduction SOFC3D is a computer program, which simulates the behaviour of a solid oxide fuel or the channels, the electrical potential \\Phi at any point of the solid part of the SOFC, and the molar fractions

  19. ISSN:1369 7021 Elsevier Ltd 2009JUNE 2009 | VOLUME 12 | NUMBER 628 The self-and directed assembly of materials has been of

    E-Print Network [OSTI]

    Braun, Paul

    approaches, such as multibeam optical interference are being utilized to create 3D nanostructured solids into 3D nanomaterials #12;Programming structure into 3D nanomaterials REVIEW JUNE 2009 | VOLUME 12 for a number of important applications. It is now possible to define, with nanometer accuracy, the complete 3D

  20. RELAP5-3D Compressor Model

    SciTech Connect (OSTI)

    James E. Fisher; Cliff B. Davis; Walter L. Weaver

    2005-06-01

    A compressor model has been implemented in the RELAP5-3D© code. The model is similar to that of the existing pump model, and performs the same function on a gas as the pump performs on a single-phase or two-phase fluid. The compressor component consists of an inlet junction and a control volume, and optionally, an outlet junction. This feature permits cascading compressor components in series. The equations describing the physics of the compressor are derived from first principles. These equations are used to obtain the head, the torque, and the energy dissipation. Compressor performance is specified using a map, specific to the design of the machine, in terms of the ratio of outlet-to-inlet total (or stagnation) pressure and adiabatic efficiency as functions of rotational velocity and flow rate. The input quantities are specified in terms of dimensionless variables, which are corrected to stagnation density and stagnation sound speed. A small correction was formulated for the input of efficiency to account for the error introduced by assumption of constant density when integrating the momentum equation. Comparison of the results of steady-state operation of the compressor model to those of the MIT design calculation showed excellent agreement for both pressure ratio and power.

  1. 3-D simulations of multiple beam klystrons

    SciTech Connect (OSTI)

    Smithe, David N.; Bettenhausen, Mike; Ludeking, Larry; Caryotakis, G.; Sprehn, Daryl; Scheitrum, Glenn [Mission Research Corporation, 8560 Cinderbed Rd., Suite 700, Newington, Virginia 22122 (United States); Stanford Linear Accelerator Center, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States)

    1999-05-07

    The MAGIC3D simulation code is being used to assess the multi-dimensional physics issues relating to the design and operation of multiple beam klystrons. Investigations, to date, include a detailed study of the mode structure of the cavities in the 19-beam hexagonally packed geometry and a study of the velocity spread caused by the cavity mode's field profile. Some attempts to minimize this effect are investigated. Additional simulations have provided quantification of the beam loading Q in a dual input cavity, and optimization of a dual output cavity. An important goal of the simulations is an accurate picture of beam transport along the length of the MBK. We have quantified the magnitude and spatial variation of the beam-line space charge interactions within a cavity gap. Present simulations have demonstrated the transport of the beam through three cavities (the present limits of our simulation size) without difficulty; additional length simulations are expected. We have also examined unbalanced beam-line scenarios, e.g., one beam-line suppressed, and find little disturbance to the transport in individual cavity tests, with results for multiple cavity transport expected.

  2. Oriented Nanostructures for Energy Conversion and Storage

    SciTech Connect (OSTI)

    Liu, Jun; Cao, Guozhong H.; Yang, Zhenguo; Wang, Donghai; DuBois, Daniel L.; Zhou, Xiao Dong; Graff, Gordon L.; Pederson, Larry R.; Zhang, Jiguang

    2008-08-28

    Recently the role of nanostructured materials in addressing the challenges in energy and natural resources has attracted wide attention. In particular, oriented nanostructures have demonstrated promising properties for energy harvesting, conversion and storage. The purpose of the paper is to review the synthesis and application of oriented nanostructures in a few key areas of energy technologies, namely photovoltaics, batteries, supercapacitors and thermoelectrics. Although the applications differ from field to field, one of the fundamental challenges is to improve the generation and transport of electrons and ions. We will first briefly review the several major approaches to attain oriented nanostructured films that are applicable for energy applications. We will then discuss how such controlled nanostructures can be used in photovoltaics, batteries, capacitors, thermoelectrics, and other unconventional ways of energy conversion. We will highlight the role of high surface area to maximize the surface activity, and the importance of optimum dimension and architecture, controlled pore channels and alignment of the nanocrystalline phase to optimize the electrons and ion transport. Finally, the paper will discuss the challenges in attaining integrated architectures to achieve the desired performance. Brief background information will be provided for the relevant technologies, but the emphasis is focused mainly on the nanoeffects of mostly inorganic based materials and devices.

  3. Crab Shells as Sustainable Templates from Nature for Nanostructured Battery Electrodes

    E-Print Network [OSTI]

    Cui, Yi

    Crab Shells as Sustainable Templates from Nature for Nanostructured Battery Electrodes Hongbin Yao materials issues for enabling next-generation high capacity lithium ion batteries for portable electronics to prepare nanostructured battery electrode materials, we are inspired by the diversity of natural materials

  4. Towards electroformed nanostructured aluminum alloys with high strength and ductility

    E-Print Network [OSTI]

    Ruan, Shiyun

    Nanostructured Al–Mn alloys are proposed as high-strength low-density materials, which can be electroformed (i.e., produced electrolytically and removed from the substrate) from ionic liquid. A variety of current waveforms, ...

  5. Nanomanufacturing of functional nanostructured surfaces for efficient light transport

    E-Print Network [OSTI]

    Kim, Jeong-Gil

    2015-01-01

    Nanostructured surfaces have given rise to many unique optical properties, such as broadband anti-reflectivity, structural coloring effects, and enhanced light extraction from high refractive index materials due to their ...

  6. DNA-based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response

    E-Print Network [OSTI]

    Anton Kuzyk; Robert Schreiber; Zhiyuan Fan; Günther Pardatscher; Eva-Maria Roller; Alexander Högele; Friedrich C. Simmel; Alexander O. Govorov; Tim Liedl

    2011-08-18

    Surface plasmon resonances generated in metallic nanostructures can be utilized to tailor electromagnetic fields. The precise spatial arrangement of such structures can result in surprising optical properties that are not found in any naturally occurring material. Here, the designed activity emerges from collective effects of singular components equipped with limited individual functionality. Top-down fabrication of plasmonic materials with a predesigned optical response in the visible range by conventional lithographic methods has remained challenging due to their limited resolution, the complexity of scaling, and the difficulty to extend these techniques to three-dimensional architectures. Molecular self-assembly provides an alternative route to create such materials which is not bound by the above limitations. We demonstrate how the DNA origami method can be used to produce plasmonic materials with a tailored optical response at visible wavelengths. Harnessing the assembly power of 3D DNA origami, we arranged metal nanoparticles with a spatial accuracy of 2 nm into nanoscale helices. The helical structures assemble in solution in a massively parallel fashion and with near quantitative yields. As a designed optical response, we generated giant circular dichroism and optical rotary dispersion in the visible range that originates from the collective plasmon-plasmon interactions within the nanohelices. We also show that the optical response can be tuned through the visible spectrum by changing the composition of the metal nanoparticles. The observed effects are independent of the direction of the incident light and can be switched by design between left- and right-handed orientation. Our work demonstrates the production of complex bulk materials from precisely designed nanoscopic assemblies and highlights the potential of DNA self-assembly for the fabrication of plasmonic nanostructures.

  7. Process Development for Nanostructured Photovoltaics

    SciTech Connect (OSTI)

    None

    2011-05-31

    Fact sheet describing low-cost nanofabrication method to develop nanostructured, dye-sensitized solar cells

  8. Magnetic/metallic thin films and nanostructures

    E-Print Network [OSTI]

    Lewis, Robert Michael

    examples. During the past decade applications of nano-scale magnetic devices to data storage have hadMagnetic/metallic thin films and nanostructures The College of William and MarY;'l Virginia http://www.as.wm.cdu/Faculty/Lukaszcw.html It is widely believed that revolutionary progress can be made as materials and devices are developed to operate

  9. Patterned Magnetic Nanostructures and Quantized Magnetic Disks

    E-Print Network [OSTI]

    -increasing demands in data storage and to new applications of magnetic devices in the field of sensors. NewPatterned Magnetic Nanostructures and Quantized Magnetic Disks STEPHEN Y. CHOU Invited Paper, opens up new opportunities for engineering innovative magnetic materials and devices, developing ultra

  10. Models of the formation of oxide phases in nanostructured materials based on lead chalcogenides subjected to treatment in oxygen and iodine vapors

    SciTech Connect (OSTI)

    Maraeva, E. V., E-mail: jenvmar@mail.ru; Moshnikov, V. A.; Tairov, Yu. M. [St. Petersburg State Electrotechnical University 'LETI' (Russian Federation)] [St. Petersburg State Electrotechnical University 'LETI' (Russian Federation)

    2013-10-15

    Model concepts concerning control over the formation of oxide layers during the course of oxidation are developed on the basis of experimental results of studies of systematic features of the formation of nanostructured layers after diffusion annealing. Data on a variation in the composition of oxide phases as the extent of deviation from stoichiometry is changed in the initial lead chalcogenide are presented. Model concepts related to the possibility of varying the thickness of the coating oxide phases using annealing in an oxygen-containing medium are developed. It is shown that annealing in an iodine atmosphere ensures the effective penetration of oxygen into the grains, which is necessary for an increase in the photoluminescence efficiency.

  11. Nanostructure templating using low temperature atomic layer deposition

    DOE Patents [OSTI]

    Grubbs, Robert K. (Albuquerque, NM); Bogart, Gregory R. (Corrales, NM); Rogers, John A. (Champaign, IL)

    2011-12-20

    Methods are described for making nanostructures that are mechanically, chemically and thermally stable at desired elevated temperatures, from nanostructure templates having a stability temperature that is less than the desired elevated temperature. The methods comprise depositing by atomic layer deposition (ALD) structural layers that are stable at the desired elevated temperatures, onto a template employing a graded temperature deposition scheme. At least one structural layer is deposited at an initial temperature that is less than or equal to the stability temperature of the template, and subsequent depositions made at incrementally increased deposition temperatures until the desired elevated temperature stability is achieved. Nanostructure templates include three dimensional (3D) polymeric templates having features on the order of 100 nm fabricated by proximity field nanopatterning (PnP) methods.

  12. Collective Excitations in Nanostructures: Towards Spatially-Resolved EELS

    E-Print Network [OSTI]

    Botti, Silvana

    microscopic structure + design new materials. macro micro Introduction Electron Energy-Loss Spectroscopy #12 structure + design new materials. macro micro How can we obtain information about nanostructures? Introduction Electron Energy-Loss Spectroscopy #12;Material Physics Dream of the Materials Physicist

  13. A Multifunctional 3D Ferroelectric and NLO-Active Porous Metal-Organic Zhengang Guo,

    E-Print Network [OSTI]

    Li, Jing

    A Multifunctional 3D Ferroelectric and NLO-Active Porous Metal-Organic Framework Zhengang Guo, Rong, second-order nonlinear optical (NLO) materials have also undergone rapid development owing of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences

  14. Linear Scaling 3D Fragment Method for Large-scale Electronic Structure Calculations

    E-Print Network [OSTI]

    Linear Scaling 3D Fragment Method for Large-scale Electronic Structure Calculations Lin-Wang Wang devices or optical devices like solar cells. Understanding the electronic structures of such systems structure, the charge density, the total energy and the atomic forces of a material system

  15. 3D phase-differentiated GDL microstructure generation with binder and PTFE distributions

    E-Print Network [OSTI]

    Kandlikar, Satish

    3D phase-differentiated GDL microstructure generation with binder and PTFE distributions Michael M of gas diffusion layer (GDL) materials with localized binder and poly- tetrafluoroethylene (PTFE mimics manufacturing processes and produces complete phase-differentiated (void, fiber, binder, and PTFE

  16. TSV Stress Aware Timing Analysis with Applications to 3D-IC Layout Optimization

    E-Print Network [OSTI]

    Lim, Sung Kyu

    TSV Stress Aware Timing Analysis with Applications to 3D-IC Layout Optimization Jae-Seok Yang, Krit TSV fill material is copper which causes tensile stress on sil- icon near TSV. In this paper, we propose systematic TSV stress aware timing analysis and show how to optimize lay- out for better

  17. High-Yield Synthesis of Stoichiometric Boron Nitride Nanostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nocua, José E.; Piazza, Fabrice; Weiner, Brad R.; Morell, Gerardo

    2009-01-01

    Boron nitride (BN) nanostructures are structural analogues of carbon nanostructures but have completely different bonding character and structural defects. They are chemically inert, electrically insulating, and potentially important in mechanical applications that include the strengthening of light structural materials. These applications require the reliable production of bulk amounts of pure BN nanostructures in order to be able to reinforce large quantities of structural materials, hence the need for the development of high-yield synthesis methods of pure BN nanostructures. Using borazine ( B 3 N 3 H 6 ) asmore »chemical precursor and the hot-filament chemical vapor deposition (HFCVD) technique, pure BN nanostructures with cross-sectional sizes ranging between 20 and 50?nm were obtained, including nanoparticles and nanofibers. Their crystalline structure was characterized by (XRD), their morphology and nanostructure was examined by (SEM) and (TEM), while their chemical composition was studied by (EDS), (FTIR), (EELS), and (XPS). Taken altogether, the results indicate that all the material obtained is stoichiometric nanostructured BN with hexagonal and rhombohedral crystalline structure. « less

  18. Ultrafast Non-linear Response of Gold Gyroid 3D Metamaterials

    E-Print Network [OSTI]

    Farah, Petros; Demetriadou, Angela; Salvatore, Stefano; Vignolini, Silvia; Stefik, Morgan; Wiesner, Ulrich; Hess, Ortwin; Steiner, Ullrich; Valev, Ventsi; Baumberg, Jeremy J.

    2014-10-07

    , University of Cambridge, Cambridge, CB3 0HE, UK 2 Department of Chemistry, Imperial College London, London, SW7 2AZ, United Kingdom 3 Department of Materials Science and Engineering Cornell University, Ithaca, New York 14853, USA 4 Blackett Laboratory... -? nanostructures induce magnetic fields opposing their motion, which govern the effective macro- scopic optical behaviour of the structure. It was recently shown [21, 23, 25] that gold gyroid films behave as an ar- tificial chiral plasma, with a Drude...

  19. 3D Magnetotelluric Characterization Of The Geothermal Anomaly...

    Open Energy Info (EERE)

    3D Magnetotelluric Characterization Of The Geothermal Anomaly In The Llucmajor Aquifer System (Majorca, Spain) Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  20. RELAP5-3D V. 4.X.X

    Energy Science and Technology Software Center (OSTI)

    000191MLTPL01 NON-NRC FUNDED RELAP5-3D VERSION 4.x.x SOFTWARE REACTOR EXCURSION AND LEAK ANALYSIS PACKAGE - THREE DIMENSIONAL   

  1. 3D Mt Resistivity Imaging For Geothermal Resource Assessment...

    Open Energy Info (EERE)

    3D Mt Resistivity Imaging For Geothermal Resource Assessment And Environmental Mitigation At The Glass Mountain Kgra, California Jump to: navigation, search OpenEI Reference...

  2. Novel 3-D Printed Inverters for Electric Vehicles Can Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Efficiency 3D Printed and Semiconductor Technology 'Mash-up' The General Motors Baltimore Operations facility at White Marsh is producing electric motors for the Chevrolet...

  3. 3-D Combustion Simulation Strategy Status, Future Potential,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Simulation Strategy Status, Future Potential, and Application Issues 3-D Combustion Simulation Strategy Status, Future Potential, and Application Issues 2004 Diesel...

  4. Fluid Imaging of Enhanced Geothermal Systems through Joint 3D...

    Open Energy Info (EERE)

    Fluid Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical Inverse Modeling Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011....

  5. Measuring Strong Nanostructures

    ScienceCinema (OSTI)

    Andy Minor

    2010-01-08

    Andy Minor of Berkeley Lab's National Center for Electron Microscopy explains measuring stress and strain on nanostructures with the In Situ Microscope. More information: http://newscenter.lbl.gov/press-relea...

  6. Nanostructures in Skutterudites

    Broader source: Energy.gov [DOE]

    In-situ synthesis by thermodynamic means such as phase segregation, for fabricating skutterudite-based nanocomposites yield robust and stable nanostructure phases likely to survive harsh thermoelectric power generation environments

  7. Novel Nanostructured Interface Solution for Automotive Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application...

  8. Sub-Doppler optical resolution by confining a vapour in a nanostructure

    E-Print Network [OSTI]

    Boyer, Edmond

    (typically, 10 or 20 layers of ~ 1µm diameter spheres). Sub-Doppler structures appear in the optical spectrum angles (~ 30-50°), are an original feature associated to the 3-D vapor confinement. It remembers a DickeSub-Doppler optical resolution by confining a vapour in a nanostructure Philippe BALLIN, Elias

  9. Slice and Dice, Peel and Stick: Emerging Methods for Nanostructure Fabrication

    E-Print Network [OSTI]

    Rogers, John A.

    enables quasi-3D, curved, and other complex layouts. These ideas, particularly when taken together older methods based on contact printing, writ- ing, and molding. Over the past 15­20 years, the White with emerging methods for transfer printing of nanomembranes and related solid nanostructures, have the strong

  10. Chopper: Partitioning models into 3D-printable parts

    E-Print Network [OSTI]

    Luo, Linjie

    3D printing technology is rapidly maturing and becoming ubiquitous. One of the remaining obstacles to wide-scale adoption is that the object to be printed must fit into the working volume of the 3D printer. We propose a ...

  11. Deep Learning Representation using Autoencoder for 3D Shape Retrieval

    E-Print Network [OSTI]

    Deep Learning Representation using Autoencoder for 3D Shape Retrieval Zhuotun Zhu, Xinggang Wang@hust.edu.cn Abstract--We study the problem of how to build a deep learning representation for 3D shape. Deep learning the features learned on 2D images. In addition, we show the proposed deep learning feature is complementary

  12. Noise Analysis and Synthesis for 3D Laser Depth Scanners

    E-Print Network [OSTI]

    Martin, Ralph R.

    Noise Analysis and Synthesis for 3D Laser Depth Scanners Xianfang Sun a,b,, Paul L. Rosin a , Ralph the noise present in range data measured by a Konica Minolta Vivid 910 scanner, in order to better characterise real scanner noise. Methods for denoising 3D mesh data have often assumed the noise to be Gaussian

  13. Density-Based Shape Descriptors for 3D Object Retrieval

    E-Print Network [OSTI]

    Yemez, Yücel

    position among competing methods. 1 Introduction There is a growing interest in 3D shape classification, matching and retrieval as 3D object models become more commonplace in various domains such as computer-aided design, medical imaging, molecular analysis and digital preser- vation of cultural heritage. The research

  14. 3D Wavelet-Based Filter and Method

    DOE Patents [OSTI]

    Moss, William C. (San Mateo, CA); Haase, Sebastian (San Francisco, CA); Sedat, John W. (San Francisco, CA)

    2008-08-12

    A 3D wavelet-based filter for visualizing and locating structural features of a user-specified linear size in 2D or 3D image data. The only input parameter is a characteristic linear size of the feature of interest, and the filter output contains only those regions that are correlated with the characteristic size, thus denoising the image.

  15. Kirchhoff prestack depth migration in 3-D simple models

    E-Print Network [OSTI]

    Cerveny, Vlastislav

    Kirchhoff prestack depth migration in 3-D simple models: comparison of triclinic anisotropy depth migration to calculate migrated sections in 3-D simple anisotropic homogeneous velocity models interface. The anisotropy in the upper layer is triclinic. We apply Kirch- hoff prestack depth migration

  16. AUTOMATIC AND ROBUST SEMANTIC REGISTRATION OF 3D HEAD SCANS

    E-Print Network [OSTI]

    Eisert, Peter

    useful for error- prone vision techniques like stereo analysis but also for model based repairing for applications such as 3D graphics production and also for computer vision research. Laser scanners are the primeAUTOMATIC AND ROBUST SEMANTIC REGISTRATION OF 3D HEAD SCANS David C. Schneider, Peter Eisert

  17. Unraveling the 3D genome: genomics tools for multiscale exploration

    E-Print Network [OSTI]

    Straight, Aaron

    Unraveling the 3D genome: genomics tools for multiscale exploration Viviana I. Risca and William J genome and the roles it may play in regulating transcription. Here we review core methods and new tools-scale chromosomal domains, and discuss the emerging pic- ture of the 3D genome that these tools have revealed. Blind

  18. Scatterplot3d an R package for Visualizing Multivariate Data

    E-Print Network [OSTI]

    Gotelli, Nicholas J.

    Scatterplot3d ­ an R package for Visualizing Multivariate Data Uwe Ligges and Martin M Software: Ligges, U. and M¨achler, M. (2003): Scatterplot3d ­ an R Package for Visualizing Multivariate for the visualization of multivariate data in a three dimensional space. R is a "language for data analysis and graphics

  19. Energy Effective 3D Stacked Hybrid NEMFET-CMOS Caches

    E-Print Network [OSTI]

    Cotofana, Sorin

    Energy Effective 3D Stacked Hybrid NEMFET-CMOS Caches Mihai Lefter, Marius Enachescu, George Razvan-stacked hybrid memories as alternative to traditional CMOS SRAMs in L1 and L2 cache implementations and analyse-per-Cycle (IPC) and energy consumption. The 3D hybrid memory cell relies on: (i) a Short Circuit Current Free

  20. 3-D Facial Imaging for Identification Anselmo Lastra

    E-Print Network [OSTI]

    McShea, Daniel W.

    Elkins ­ Ali Farsaie ­ Ping Zhuang #12;The Vision · For program like Global Entry, NEXUS, or SENTRI Right Camera Making the 3D Model · If we can identify same point in 2 views, we can compute depth at that point, and thus 3D model #12;Big Problem: Correspondence · What if we can't find corresponding point

  1. CREATING 3D ANIMATED HUMAN BEHAVIORS FOR VIRTUAL WORLDS

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    i CREATING 3D ANIMATED HUMAN BEHAVIORS FOR VIRTUAL WORLDS Jan M. Allbeck A DISSERTATION in Computer, and a scholar. #12;iv ABSTRACT CREATING 3D ANIMATED HUMAN BEHAVIORS FOR VIRTUAL WORLDS Jan M. Allbeck Norman I. Badler Creating virtual scenarios that simulate a substantial human population with typical and varied

  2. Nanostructure Fabrication In this project we are developing in situ measurements relevant to the

    E-Print Network [OSTI]

    , structure, and morphology of complex nanostructures to enable control and optimization of the resulting Materials Science and Engineering Laboratory Progress in optimizing materials processing in wet chemicalNanostructure Fabrication Processes METALS In this project we are developing in situ measurements

  3. Nanostructures having high performance thermoelectric properties

    DOE Patents [OSTI]

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I.; Chen, Renkun; Delgado, Raul Diaz

    2015-12-22

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  4. Nanostructures having high performance thermoelectric properties

    DOE Patents [OSTI]

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz

    2014-05-20

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  5. Nanowires, nanostructures and devices fabricated therefrom

    DOE Patents [OSTI]

    Majumdar, Arun (Orinda, CA); Shakouri, Ali (Santa Cruz, CA); Sands, Timothy D. (Moraga, CA); Yang, Peidong (Berkeley, CA); Mao, Samuel S. (Berkeley, CA); Russo, Richard E. (Walnut Creek, CA); Feick, Henning (Kensington, CA); Weber, Eicke R. (Oakland, CA); Kind, Hannes (Schaffhausen, CH); Huang, Michael (Los Angeles, CA); Yan, Haoquan (Albany, CA); Wu, Yiying (Albany, CA); Fan, Rong (El Cerrito, CA)

    2005-04-19

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  6. Mat. Res. Soc. Symp. Proc. Vol. 628 2000 Materials Research Society Hybrid Inorganic/Organic Diblock Copolymers. Nanostructure in Polyhedral Oligomeric

    E-Print Network [OSTI]

    Mather, Patrick T.

    Our main approach to the synthesis and study of hybrid organic/inorganic materials involvesMat. Res. Soc. Symp. Proc. Vol. 628 © 2000 Materials Research Society CC2.6.1 Hybrid Inorganic the synthesis of melt processable, linear hybrid polymers containing pendent inorganic clusters, and allows us

  7. DYNA3D/ParaDyn Regression Test Suite Inventory

    SciTech Connect (OSTI)

    Lin, J I

    2011-01-25

    The following table constitutes an initial assessment of feature coverage across the regression test suite used for DYNA3D and ParaDyn. It documents the regression test suite at the time of production release 10.1 in September 2010. The columns of the table represent groupings of functionalities, e.g., material models. Each problem in the test suite is represented by a row in the table. All features exercised by the problem are denoted by a check mark in the corresponding column. The definition of ''feature'' has not been subdivided to its smallest unit of user input, e.g., algorithmic parameters specific to a particular type of contact surface. This represents a judgment to provide code developers and users a reasonable impression of feature coverage without expanding the width of the table by several multiples. All regression testing is run in parallel, typically with eight processors. Many are strictly regression tests acting as a check that the codes continue to produce adequately repeatable results as development unfolds, compilers change and platforms are replaced. A subset of the tests represents true verification problems that have been checked against analytical or other benchmark solutions. Users are welcomed to submit documented problems for inclusion in the test suite, especially if they are heavily exercising, and dependent upon, features that are currently underrepresented.

  8. A parallel algorithm for 3D dislocation dynamics

    SciTech Connect (OSTI)

    Wang Zhiqiang [University of California - Los Angeles, Los Angeles, CA 90095-1597 (United States)]. E-mail: zhiqiang@lanl.gov; Ghoniem, Nasr [University of California - Los Angeles, Los Angeles, CA 90095-1597 (United States); Swaminarayan, Sriram [University of California, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); LeSar, Richard [University of California, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2006-12-10

    Dislocation dynamics (DD), a discrete dynamic simulation method in which dislocations are the fundamental entities, is a powerful tool for investigation of plasticity, deformation and fracture of materials at the micron length scale. However, severe computational difficulties arising from complex, long-range interactions between these curvilinear line defects limit the application of DD in the study of large-scale plastic deformation. We present here the development of a parallel algorithm for accelerated computer simulations of DD. By representing dislocations as a 3D set of dislocation particles, we show here that the problem of an interacting ensemble of dislocations can be converted to a problem of a particle ensemble, interacting with a long-range force field. A grid using binary space partitioning is constructed to keep track of node connectivity across domains. We demonstrate the computational efficiency of the parallel micro-plasticity code and discuss how O(N) methods map naturally onto the parallel data structure. Finally, we present results from applications of the parallel code to deformation in single crystal fcc metals.

  9. MPSalsa 3D Simulations of Chemically Reacting Flows

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Many important scientific and engineering applications require a detailed analysis of complex systems with coupled fluid flow, thermal energy transfer, mass transfer and nonequilibrium chemical reactions. Currently, computer simulations of these complex reacting flow problems are limited to idealized systems in one or two spatial dimensions when coupled with a detailed, fundamental chemistry model. The goal of our research is to develop, analyze and implement advanced MP numerical algorithms that will allow high resolution 3D simulations with an equal emphasis on fluid flow and chemical kinetics modeling. In our research, we focus on the development of new, fully coupled, implicit solution strategies that are based on robust MP iterative solution methods (copied from http://www.cs.sandia.gov/CRF/MPSalsa/). These simulations are needed for scientific and technical areas such as: combustion research for transportation, atmospheric chemistry modeling for pollution studies, chemically reacting flow models for analysis and control of manufacturing processes, surface catalytic reactors for methane to methanol conversion and chemical vapor deposition (CVD) process modeling for production of advanced semiconductor materials (http://www.cs.sandia.gov/CRF/MPSalsa/).

    This project website provides six QuickTime videos of these simulations, along with a small image gallery and slideshow animations. A list of related publications and conference presentations is also made available.

  10. Processes for fabricating composite reinforced material

    SciTech Connect (OSTI)

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  11. Ab Initio Study of Nanostructures for Energy Storage 

    E-Print Network [OSTI]

    Cristancho Albarracin, Dahiyana

    2014-05-07

    with the size of the material and 2 nanostructures with different electronic properties can be self-assembled in order to create a multi-junction that adsorbs solar energy in a wider range of the visible spectrum. 1.2 Solar Cells Solar cells...……………………………………………………………………..xiii CHAPTER I INTRODUCTION ........................................................................................ 1 1.1 Advantages of Using Nanostructures in Energy Storage ......................................... 1 1.2 Solar Cells...

  12. FSU Office of Research Program in Interdisciplinary Computing (PIC) What is 3D printing?

    E-Print Network [OSTI]

    Ronquist, Fredrik

    (PIC) What is 3D printing? 3D printing is a process of making. 3D printing is distinct from traditional machining techniques, which mostly organs, meat, circuit boards and batteries. 3D printing impacts nearly every

  13. SHORT PROGRAMS Materials By Design

    E-Print Network [OSTI]

    Entekhabi, Dara

    techniques including 3D printing, self-assembly, microfluidics and other technologies. We will distribute and analyze material samples designed based on multiscale simulations and manufactured using 3D printing

  14. Modeling 3D animals from a side-view sketch Even Entem a,b,n

    E-Print Network [OSTI]

    Cordier, Frederic

    environments and of 3D printing technologies, many practitioners would like to author their own 3D shapes

  15. Controlling Tokamak Geometry with 3D Magnetic Perturbations

    E-Print Network [OSTI]

    Bird, Thomas M

    2014-01-01

    It is shown that small externally applied magnetic perturbations can significantly alter important geometric properties of magnetic flux surfaces in tokamaks. Through 3D shaping, experimentally relevant perturbation levels are large enough to influence turbulent transport and MHD stability in the pedestal region. It is shown that the dominant pitch-resonant flux surface deformations are primarily induced by non-resonant 3D fields, particularly in the presence of significant axisymmetric shaping. The spectral content of the applied 3D field can be used to control these effects.

  16. Comparison of 2D and 3D gamma analyses

    SciTech Connect (OSTI)

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must be noted that clinical 2D versus 3D datasets may have additional differences—for example, if 2D measurements are made with a different dosimeter than 3D measurements. Factors such as inherent dosimeter differences may be an important additional consideration to the extra dimension of available data that was evaluated in this study.

  17. Suitability for 3D Printed Parts for Laboratory Use

    SciTech Connect (OSTI)

    Zwicker, Andrew P.; Bloom, Josh; Albertson, Robert; Gershman, Sophia

    2014-08-01

    3D printing has become popular for a variety of users, from industrial to the home hobbyist, to scientists and engineers interested in producing their own laboratory equipment. In order to determine the suitability of 3D printed parts for our plasma physics laboratory, we measured the accuracy, strength, vacuum compatibility, and electrical properties of pieces printed in plastic. The flexibility of rapidly creating custom parts has led to the 3D printer becoming an invaluable resource in our laboratory and is equally suitable for producing equipment for advanced undergraduate laboratories.

  18. Emerging Technologies in the Built Environment: Geographic Information Science (GIS), 3D Printing, and Additive Manufacturing

    SciTech Connect (OSTI)

    New, Joshua Ryan

    2014-01-01

    Abstract 1: Geographic information systems emerged as a computer application in the late 1960s, led in part by projects at ORNL. The concept of a GIS has shifted through time in response to new applications and new technologies, and is now part of a much larger world of geospatial technology. This presentation discusses the relationship of GIS and estimating hourly and seasonal energy consumption profiles in the building sector at spatial scales down to the individual parcel. The method combines annual building energy simulations for city-specific prototypical buildings and commonly available geospatial data in a GIS framework. Abstract 2: This presentation focuses on 3D printing technologies and how they have rapidly evolved over the past couple of years. At a basic level, 3D printing produces physical models quickly and easily from 3D CAD, BIM (Building Information Models), and other digital data. Many AEC firms have adopted 3D printing as part of commercial building design development and project delivery. This presentation includes an overview of 3D printing, discusses its current use in building design, and talks about its future in relation to the HVAC industry. Abstract 3: This presentation discusses additive manufacturing and how it is revolutionizing the design of commercial and residential facilities. Additive manufacturing utilizes a broad range of direct manufacturing technologies, including electron beam melting, ultrasonic, extrusion, and laser metal deposition for rapid prototyping. While there is some overlap with the 3D printing talk, this presentation focuses on the materials aspect of additive manufacturing and also some of the more advanced technologies involved with rapid prototyping. These technologies include design of carbon fiber composites, lightweight metals processing, transient field processing, and more.

  19. Anode materials for lithium-ion batteries

    DOE Patents [OSTI]

    Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

    2014-12-30

    An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

  20. Process Development for Nanostructured Photovoltaics

    SciTech Connect (OSTI)

    Elam, Jeffrey W.

    2015-01-01

    Photovoltaic manufacturing is an emerging industry that promises a carbon-free, nearly limitless source of energy for our nation. However, the high-temperature manufacturing processes used for conventional silicon-based photovoltaics are extremely energy-intensive and expensive. This high cost imposes a critical barrier to the widespread implementation of photovoltaic technology. Argonne National Laboratory and its partners recently invented new methods for manufacturing nanostructured photovoltaic devices that allow dramatic savings in materials, process energy, and cost. These methods are based on atomic layer deposition, a thin film synthesis technique that has been commercialized for the mass production of semiconductor microelectronics. The goal of this project was to develop these low-cost fabrication methods for the high efficiency production of nanostructured photovoltaics, and to demonstrate these methods in solar cell manufacturing. We achieved this goal in two ways: 1) we demonstrated the benefits of these coatings in the laboratory by scaling-up the fabrication of low-cost dye sensitized solar cells; 2) we used our coating technology to reduce the manufacturing cost of solar cells under development by our industrial partners.

  1. Synthesis of porphyrin nanostructures

    DOE Patents [OSTI]

    Fan, Hongyou; Bai, Feng

    2014-10-28

    The present disclosure generally relates to self-assembly methods for generating porphyrin nanostructures. For example, in one embodiment a method is provided that includes preparing a porphyrin solution and a surfactant solution. The porphyrin solution is then mixed with the surfactant solution at a concentration sufficient for confinement of the porphyrin molecules by the surfactant molecules. In some embodiments, the concentration of the surfactant is at or above its critical micelle concentration (CMC), which allows the surfactant to template the growth of the nanostructure over time. The size and morphology of the nanostructures may be affected by the type of porphyrin molecules used, the type of surfactant used, the concentration of the porphyrin and surfactant the pH of the mixture of the solutions, and the order of adding the reagents to the mixture, to name a few variables.

  2. Three-Dimensional Nanostructures for Photonics By Georg von Freymann,* Alexandra Ledermann, Michael Thiel,

    E-Print Network [OSTI]

    spheres) leads to well ordered 3D structures, the optical properties of which are mainly controlled via interference patterns, which are used to expose a photosensitive material. After development, a 3D structure multifunctional-layer systems and the next logical step is going to truly 3D architectures. Regarding optics

  3. 3D-Printed Car by Local Motors- The Strati

    Broader source: Energy.gov [DOE]

    A timelapse video of the production process behind The Strati - the 3D-printed car by Local Motors, which manufactured with Oak Ridge National Laboratory (ORNL) and delivered at the International Manufacturing Technology Show (IMTS) in September of 2014.

  4. The Active Wave-front Sampling based 3D endoscope

    E-Print Network [OSTI]

    Prakash, Hemanth

    2007-01-01

    This thesis investigates the potential of Active Wave-front Sampling (AWS) for real time quantified 3D endoscopy. AWS is a technique by which phase information from an aperture area of a lens is obtained by sampling ...

  5. CSers develop new 3-D design tool Haydar Taygun

    E-Print Network [OSTI]

    Laidlaw, David

    Painting," the old model for 3-D drawing at the Cave Automatic Virtual Environment in 2001, Keefe worked reality. Media Credit: Courtesy of Daniel Keefe A team of Brown computer scientists has developed "Drawing

  6. 3D Representations for Software Visualization Andrian Marcus

    E-Print Network [OSTI]

    Maletic, Jonathan I.

    research from software analysis, information visualization, human-computer interaction, and cognitive, texture, abstraction mechanism, and by supporting new manipulation techniques and user interfaces.2 [Information Interfaces and Presentation] User Interfaces Keywords: Software visualization, 3D visualization

  7. Fitting of Constrained Models to Poor 3D Data 

    E-Print Network [OSTI]

    Robertson, Craig; Fisher, Robert B.; Werghi, Naoufel; Ashbrook, Anthony

    2000-01-01

    In this work we have addressed the question of whether it is possible to extract parametric models of features from poor quality 3D data. In doing this we have examined the applicability of an evolutionary strategy to the ...

  8. 2013 Santa Sleigh 3D Printing Winner | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineers Pick Winner of 2013 Santa Sleigh 3D Printing Design Contest Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share...

  9. Infrastructure for 3D model reconstruction of marine structures

    E-Print Network [OSTI]

    Kurniawati, Hanna

    2011-01-01

    3D model reconstruction of marine structures, such as dams, oil-rigs, and sea caves, is both important and challenging. An important application includes structural inspection. Manual inspection of marine structures is ...

  10. Topobo : a 3-D constructive assembly system with kinetic memory

    E-Print Network [OSTI]

    Raffle, Hayes Solos, 1974-

    2004-01-01

    We introduce Topobo, a 3-D constructive assembly system em- bedded with kinetic memory, the ability to record and playback physical motion. Unique among modeling systems is Topobo's coincident physical input and output ...

  11. Development of an embedded 3D graphics processor 

    E-Print Network [OSTI]

    Murray, Brian

    2002-01-01

    Limitations in processing ability cause major graphical enhancements, such as support for real-time 3D graphics, to be next to impossible within embedded devices. Due to the size, power, and heat dissipation requirements, modern graphics hardware...

  12. An alternative derivation of the Minimal massive 3D gravity

    E-Print Network [OSTI]

    Ahmet Baykal

    2014-12-23

    By using the algebra of exterior forms and the first order formalism with constraints, an alternative derivation of the field equations for the Minimal massive 3D gravity model is presented.

  13. 3-D Extensions for Trustworthy Systems (Invited Paper)

    E-Print Network [OSTI]

    Kastner, Ryan

    , and passive monitoring for mass- produced processors. In our basic paradigm, a 3-D chip consists of one die combined with a control plane housing application-specific security functions; (2) physical isolation

  14. Texture splats for 3D vector and scalar field visualization

    SciTech Connect (OSTI)

    Crawfis, R.A.; Max, N.

    1993-04-06

    Volume Visualization is becoming an important tool for understanding large 3D datasets. A popular technique for volume rendering is known as splatting. With new hardware architectures offering substantial improvements in the performance of rendering texture mapped objects, we present textured splats. An ideal reconstruction function for 3D signals is developed which can be used as a texture map for a splat. Extensions to the basic splatting technique are then developed to additionally represent vector fields.

  15. Review: 3D Printing: Social and Cultural Trajectories Symposium -3D Printing Industry http://3dprintingindustry.com/2013/12/11/review-3d-printing-social-cultural-trajectories-symposium/[12/12/2013 11:25:00 AM

    E-Print Network [OSTI]

    Review: 3D Printing: Social and Cultural Trajectories Symposium - 3D Printing Industry http://3dprintingindustry.com/2013/12/11/review-3d-printing-social-cultural-trajectories-symposium/[12/12/2013 11:25:00 AM] Review: 3D Printing: Social and Cultural Trajectories Symposium BY ANGELA DALY & DARCY ALLEN ON WED

  16. Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals

    E-Print Network [OSTI]

    Ian B. Burgess; Joanna Aizenberg; Marko Loncar

    2012-11-29

    Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices.

  17. Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals

    E-Print Network [OSTI]

    Burgess, Ian B; Loncar, Marko

    2012-01-01

    Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices.

  18. Printing out Particle Detectors with 3D-Printers, a Potentially Transformational Advance for HEP Instrumentation

    E-Print Network [OSTI]

    Hohlmann, M

    2013-01-01

    This white paper suggests posing a "grand challenge" to the HEP instrumentation community, i.e. the aggressive development of additive manufacturing, also known as 3D-printing, for the production of particle detectors in collaboration with industry. This notion is an outcome of discussions within the instrumentation frontier group during the 2013 APS-DPF Snowmass summer study conducted by the U.S. HEP community. Improvements of current industrial 3D-printing capabilities by one to two orders of magnitude in terms of printing resolution, speed, and object size together with developing the ability to print composite materials could enable the production of any desired 3D detector structure directly from a digital model. Current industrial 3D-printing capabilities are briefly reviewed and contrasted with capabilities desired for printing detectors for particle physics, with micro-pattern gaseous detectors used as a first example. A significant impact on industrial technology could be expected if HEP were to part...

  19. Printing out Particle Detectors with 3D-Printers, a Potentially Transformational Advance for HEP Instrumentation

    E-Print Network [OSTI]

    M. Hohlmann

    2013-09-05

    This white paper suggests posing a "grand challenge" to the HEP instrumentation community, i.e. the aggressive development of additive manufacturing, also known as 3D-printing, for the production of particle detectors in collaboration with industry. This notion is an outcome of discussions within the instrumentation frontier group during the 2013 APS-DPF Snowmass summer study conducted by the U.S. HEP community. Improvements of current industrial 3D-printing capabilities by one to two orders of magnitude in terms of printing resolution, speed, and object size together with developing the ability to print composite materials could enable the production of any desired 3D detector structure directly from a digital model. Current industrial 3D-printing capabilities are briefly reviewed and contrasted with capabilities desired for printing detectors for particle physics, with micro-pattern gaseous detectors used as a first example. A significant impact on industrial technology could be expected if HEP were to partner with industry in taking on such a challenge.

  20. NANO EXPRESS Fabrication of Large Area Periodic Nanostructures Using

    E-Print Network [OSTI]

    Mohseni, Hooman

    , such as photonic band-gap materials, high dense data storage, and photonic devices. We have developed a maskless areas, such as photonic band-gap materials [1], high dense data storage [2], and photonic devices [3NANO EXPRESS Fabrication of Large Area Periodic Nanostructures Using Nanosphere Photolithography

  1. Nanostructured catalyst supports

    DOE Patents [OSTI]

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2012-10-02

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  2. Multiscale materials design of natural exoskeletons : fish armor

    E-Print Network [OSTI]

    Song, Juha

    2011-01-01

    Biological materials have developed hierarchical and heterogeneous material nanostructures and microstructures to provide protection against various environmental threats that, in turn, provide bioinspired clues to man-made, ...

  3. 2D?3D polycatenated and 3D?3D interpenetrated metal–organic frameworks constructed from thiophene-2,5-dicarboxylate and rigid bis(imidazole) ligands

    SciTech Connect (OSTI)

    Erer, Hakan; Ye?ilel, Okan Zafer; Ar?c?, Mürsel; Keskin, Seda; Büyükgüngör, Orhan

    2014-02-15

    Hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metal–organic frameworks, namely, [Zn(µ-tdc)(H{sub 2}O)(µ-dib)]{sub n} (1), [Cd(µ-tdc)(H{sub 2}O)(µ-dib)]{sub n} (2), and ([Cd{sub 2}(µ{sub 3}-tdc){sub 2}(µ-dimb){sub 2}]·(H{sub 2}O)){sub n}(3). These MOFs were characterized by FT-IR spectroscopy, elemental, thermal (TG, DTA, DTG and DSC), and single-crystal X-ray diffraction analyses. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D?3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. Moreover, these coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. - Graphical abstract: In this study, hydrothermal reactions of rigid 1,4-bis(imidazol-1-yl)benzene (dib) and 1,4-bis(imidazol-1-yl)-2,5-dimethylbenzene (dimb) with deprotonated thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) in the presence of Zn(II) and Cd(II) salts in H{sub 2}O produced three new metal–organic frameworks. Isomorphous complexes 1 and 2 reveal polycatenated 2D+2D?3D framework based on an undulated (4,4)-sql layer. Complex 3 exhibits a new 4-fold interpenetrating 3D framework with the point symbol of 6{sup 6}. Molecular simulations were used to assess the potentials of the complexes for H{sub 2} storage application. These coordination polymers exhibit blue fluorescent emission bands in the solid state at room temperature. Display Omitted - Highlights: • Complexes 1 and 2 display polycatenated 2D+2D?3D framework. • Complex 3 exhibits a new 4-fold interpenetrating 3D framework. • Complex 1 adsorbs the highest amount of H{sub 2} at 100 bar and 298 K. • Complexes display blue fluorescent emission bands.

  4. Un-Nanostructuring Solar Cells | ANSER Center | Argonne-Northwestern...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Un-Nanostructuring Solar Cells Home > Research > ANSER Research Highlights > Un-Nanostructuring Solar Cells...

  5. Methods for and products of processing nanostructure nitride, carbonitride and oxycarbonitride electrode power materials by utilizing sol gel technology for supercapacitor applications

    DOE Patents [OSTI]

    Huang, Yuhong (West Hills, CA); Wei, Oiang (West Hills, CA); Chu, Chung-tse (Chatsworth, CA); Zheng, Haixing (Oak Park, CA)

    2001-01-01

    Metal nitride, carbonitride, and oxycarbonitride powder with high surface area (up to 150 m.sup.2 /g) is prepared by using sol-gel process. The metal organic precursor, alkoxides or amides, is synthesized firstly. The metal organic precursor is modified by using unhydrolyzable organic ligands or templates. A wet gel is formed then by hydrolysis and condensation process. The solvent in the wet gel is then be removed supercritically to form porous amorphous hydroxide. This porous hydroxide materials is sintered to 725.degree. C. under the ammonia flow and porous nitride powder is formed. The other way to obtain high surface area nitride, carbonitride, and oxycarbonitride powder is to pyrolyze polymerized templated metal amides aerogel in an inert atmosphere. The electrochemical capacitors are prepared by using sol-gel prepared nitride, carbonitride, and oxycarbonitride powder. Two methods are used to assemble the capacitors. Electrode is formed either by pressing the mixture of nitride powder and binder to a foil, or by depositing electrode coating onto metal current collector. The binder or coating is converted into a continuous network of electrode material after thermal treatment to provide enhanced energy and power density. Liquid electrolyte is soaked into porous electrode. The electrochemical capacitor assembly further has a porous separator layer between two electrodes/electrolyte and forming a unit cell.

  6. Enhanced low-temperature impact toughness of nanostructured Ti V. V. Stolyarov and R. Z. Valiev

    E-Print Network [OSTI]

    Zhu, Yuntian T.

    and ductility of nanostructured Ti as well as smaller fracture dimples at lower temperatures. This result not result in high impact toughness if they have low ductility. Recently, some nanostructured materials is whether such an increase in strength and ductility leads to an increase in the impact toughness

  7. IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 7, JULY 2008 1935 Reversal Mechanisms in Ferromagnetic Nanostructures

    E-Print Network [OSTI]

    Adeyeye, Adekunle

    devices. A major challenge for technological applications of magnetic nanostructures arrays is the precise Nanostructures A. O. Adeyeye, S. Goolaup, N. Singh, W. Jun, C. C. Wang, S. Jain, and D. Tripathy Information Storage Materials Laboratory (ISML), Department of Electrical and Computer Engineering, National

  8. Automatically Creating Design Models from 3D Anthropometry Data

    E-Print Network [OSTI]

    Wuhrer, Stefanie; Bose, Prosenjit

    2011-01-01

    When designing a product that needs to fit the human shape, designers often use a small set of 3D models, called design models, either in physical or digital form, as representative shapes to cover the shape variabilities of the population for which the products are designed. Until recently, the process of creating these models has been an art involving manual interaction and empirical guesswork. The availability of the 3D anthropometric databases provides an opportunity to create design models optimally. In this paper, we propose a novel way to use 3D anthropometric databases to generate design models that represent a given population for design applications such as the sizing of garments and gear. We generate the representative shapes by solving a covering problem in a parameter space. Well-known techniques in computational geometry are used to solve this problem. We demonstrate the method using examples in designing glasses and helmets.

  9. 3 July 2003 HIRES3D -ITC Research Seminar -Robert Hack 1 HIGH RESOLUTION REMOTE SENSING

    E-Print Network [OSTI]

    Hack, Robert

    3 July 2003 HIRES3D - ITC Research Seminar - Robert Hack 1 HIRES3D HIGH RESOLUTION REMOTE SENSING FOR 3D GROUND MODELING AND CLASSIFICATION ITC Research Seminar, 3 July 2003 Robert Hack International Seminar - Robert Hack 2 HIRES3D HIGH RESOLUTION REMOTE SENSING FOR 3D GROUND MODELING AND CLASSIFICATION

  10. Nanostructured metal foams: synthesis and applications

    SciTech Connect (OSTI)

    Luther, Erik P; Tappan, Bryce; Mueller, Alex; Mihaila, Bogdan; Volz, Heather; Cardenas, Andreas; Papin, Pallas; Veauthier, Jackie; Stan, Marius

    2009-01-01

    Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

  11. Washington: Graphene Nanostructures for Lithium Batteries Recieves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

  12. 3-D Interpretation of Sewer Circular Structures Marina Kolesnik,

    E-Print Network [OSTI]

    Kolesnik, Marina

    3-D Interpretation of Sewer Circular Structures Marina Kolesnik, Institute for Autonomous interpretation of images taken in a sewer by a robot-inspector is presented. Modern sewers made of concrete sections. These pipe ends and joints provide regular marks on the sewer images and can be used for their 3

  13. Generic Programming in 3D Ralf Hinze a

    E-Print Network [OSTI]

    Löh, Andres

    Generic Programming in 3D Ralf Hinze a , Andres L¨oh b aInstitut f¨ur Informatik III, Universit mechanism is not restricted to equality: parsers, pretty-printers and several other functions are derivable: Haskell's pretty-printer, for instance, displays pairs and lists using a special mix-fix notation. If we

  14. Noise in 3D Laser Range Scanner Data Xianfang Sun

    E-Print Network [OSTI]

    Martin, Ralph R.

    Noise in 3D Laser Range Scanner Data Xianfang Sun Cardiff University, UK Beihang University, China University, UK Abstract This paper discusses noise in range data measured by a Konica Mi- nolta Vivid 910 Gaussian noise, which is independently distributed at each mesh point. Measure- ments of an accurately

  15. POSTER: Duct tracking in 3D medical data Martin Petrcek

    E-Print Network [OSTI]

    Pelikan, Josef

    POSTER: Duct tracking in 3D medical data Martin PetrĂ­cek Faculty of Mathematics and Physics Charles 2, 180 81 Praha 8 - Liben Czech Republic martin.horak@volny.cz ABSTRACT Implementing duct tracking interaction when selecting duct branches of interest or correcting possible mistakes in duct path segmentation

  16. EARS: Toward Fast Analysis of 3D Human

    E-Print Network [OSTI]

    State University 7171 E. Sonaran Arroyo Mall, Mesa, AZ 85212, USA 2. Brian.Corner@us.army.mil Ergonomics, visualize, and evaluate the geometric information of a 3D human body scan. To the best of our knowledge, EARS is the first complete system dedicated to fast evaluation and analysis of the quality of a human

  17. ORIGINAL PAPER Current and Future Applications of 3-D Global

    E-Print Network [OSTI]

    Simpson, Jamesina J.

    ORIGINAL PAPER Current and Future Applications of 3-D Global Earth-Ionosphere Models Based the world. Earth-iono- sphere models employing FDTD pose significant advantages over any other current-ionosphere system modeling is not so much in the computational technique itself, or in the availability of massively

  18. 3-D Structural Modeling of Humic Acids through Experimental

    E-Print Network [OSTI]

    Goddard III, William A.

    for a "typical" soilHA.SchlutenandSchnitzer(11)havecombinedelemental analysis, 13C NMR, pyrolysis mass Structure Elucidation and Atomistic Simulations. 1. Chelsea Soil Humic Acid M A M A D O U S . D I A L L O to the CASE program SIGNATURE to generate all 3-D structural models for Chelsea soil humic acid (HA

  19. Exposing Digital Forgeries From 3-D Lighting Environments

    E-Print Network [OSTI]

    Bucci, David J.

    Exposing Digital Forgeries From 3-D Lighting Environments Eric Kee 1 , Hany Farid 2 Department@cs.dartmouth.edu Abstract--When creating a photographic composite, it can be difficult to match lighting conditions. We describe a technique for measuring lighting conditions in an image, and describe its use in detecting

  20. Microbiol Monogr (3) D. Schler: Magnetoreception and Magnetosomes in Bacteria

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Microbiol Monogr (3) D. Schüler: Magnetoreception and Magnetosomes in Bacteria DOI 10 Abstract Magnetotactic bacteria can be regarded as model systems for studying the struc- tural, chemical Introduction Magnetotactic bacteria contain intracellular ferrimagnetic crystals that are typically 30­120 nm

  1. Reversible vectorisation of 3D digital planar curves and applications

    E-Print Network [OSTI]

    Sivignon, Isabelle

    Reversible vectorisation of 3D digital planar curves and applications Isabelle Sivignon a,, Florent the problem of the computation of a planar polygonal curve from a digital planar curve, such that the digital data can be exactly retrieved from the polygonal curve. The proposed transformation also provides

  2. REAL TIME ACQUISITION AND RENDERING OF LARGE 3D MODELS

    E-Print Network [OSTI]

    Rusinkiewicz, Szymon

    OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Szymon Marek Rusinkiewicz August 2001 #12;ii c Copyright grid, and point (splat) rendering is used to provide a real-time display of the partial 3D model. Given, backface culling, level-of-detail control, and splat rendering. The system may also be extended

  3. WATERMARKING 3D MODELS Thomas Harte and Adrian G. Bors

    E-Print Network [OSTI]

    Bors, Adrian

    - ing audio data, still images, or video [1, 2, 3]. While audio data consists of one-dimensional time varying signals, images are 2-D mappings of digital data distributed on a rectangular lattice. When. A copyright protection watermarking algorithm employing modifications in the histograms of 3D object surface

  4. Cyclic Cellular Automata in 3D Clifford A. Reiter

    E-Print Network [OSTI]

    Reiter, Clifford A.

    Cyclic Cellular Automata in 3D Clifford A. Reiter Department of Mathematics, Lafayette College, Easton, PA 18042 U.S.A reiterc@lafayette.edu Abstract Cyclic cellular automata in two dimensions have this work to three dimensional cyclic cellular automata and observe self organization dependent upon

  5. 3D Painting on Scanned Surfaces Maneesh Agrawala

    E-Print Network [OSTI]

    Agrawala, Maneesh

    3D Painting on Scanned Surfaces Maneesh Agrawala Andrew C. Beers Marc Levoy Computer Science Department Stanford University Abstract We present an intuitive interface for painting on unparameterized for painting on the mesh, making it intuitive and easy to accurately place color on the mesh. CR categories: 1

  6. ELECTROMOTION 2009 3D Analytical Calculation of Forces between

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Co or NdFeB, the designers can use magnets owning a really rigid magnetization. They are the magnets whichELECTROMOTION 2009 1 3D Analytical Calculation of Forces between Linear Halbach-Type Permanent Magnet Arrays H. Allag1,2 , J-P. Yonnet1 and M. E. H. Latreche2 1- Laboratoire de GĂ©nie Electrique de

  7. Evaluation of PC-ISO for customized, 3D printed, gynecologic 192Ir HDR brachytherapy applicators

    E-Print Network [OSTI]

    2015-01-01

    15) The precision of 3D printers has been closely evaluatedmaterial substrates for 3D printers. It is not approved pertheir treatment. While 3D printers with the capability to

  8. RELAP5-3D Developer Guidelines and Programming Practices

    SciTech Connect (OSTI)

    Dr. George L Mesina

    2014-03-01

    Our ultimate goal is to create and maintain RELAP5-3D as the best software tool available to analyze nuclear power plants. This begins with writing excellent programming and requires thorough testing. This document covers development of RELAP5-3D software, the behavior of the RELAP5-3D program that must be maintained, and code testing. RELAP5-3D must perform in a manner consistent with previous code versions with backward compatibility for the sake of the users. Thus file operations, code termination, input and output must remain consistent in form and content while adding appropriate new files, input and output as new features are developed. As computer hardware, operating systems, and other software change, RELAP5-3D must adapt and maintain performance. The code must be thoroughly tested to ensure that it continues to perform robustly on the supported platforms. The coding must be written in a consistent manner that makes the program easy to read to reduce the time and cost of development, maintenance and error resolution. The programming guidelines presented her are intended to institutionalize a consistent way of writing FORTRAN code for the RELAP5-3D computer program that will minimize errors and rework. A common format and organization of program units creates a unifying look and feel to the code. This in turn increases readability and reduces time required for maintenance, development and debugging. It also aids new programmers in reading and understanding the program. Therefore, when undertaking development of the RELAP5-3D computer program, the programmer must write computer code that follows these guidelines. This set of programming guidelines creates a framework of good programming practices, such as initialization, structured programming, and vector-friendly coding. It sets out formatting rules for lines of code, such as indentation, capitalization, spacing, etc. It creates limits on program units, such as subprograms, functions, and modules. It establishes documentation guidance on internal comments. The guidelines apply to both existing and new subprograms. They are written for both FORTRAN 77 and FORTRAN 95. The guidelines are not so rigorous as to inhibit a programmer’s unique style, but do restrict the variations in acceptable coding to create sufficient commonality that new readers will find the coding in each new subroutine familiar. It is recognized that this is a “living” document and must be updated as languages, compilers, and computer hardware and software evolve.

  9. A fast algorithm for gamma evaluation in 3D

    SciTech Connect (OSTI)

    Wendling, Markus; Zijp, Lambert J.; McDermott, Leah N.; Smit, Ewoud J.; Sonke, Jan-Jakob; Mijnheer, Ben J.; Herk, Marcel van [Department of Radiation Oncology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam (Netherlands)

    2007-05-15

    The {gamma}-evaluation method is a tool by which dose distributions can be compared in a quantitative manner combining dose-difference and distance-to-agreement criteria. Since its introduction, the {gamma} evaluation has been used in many studies and is on the verge of becoming the preferred dose distribution comparison method, particularly for intensity-modulated radiation therapy (IMRT) verification. One major disadvantage, however, is its long computation time, which especially applies to the comparison of three-dimensional (3D) dose distributions. We present a fast algorithm for a full 3D {gamma} evaluation at high resolution. Both the reference and evaluated dose distributions are first resampled on the same grid. For each point of the reference dose distribution, the algorithm searches for the best point of agreement according to the {gamma} method in the evaluated dose distribution, which can be done at a subvoxel resolution. Speed, computer memory efficiency, and high spatial resolution are achieved by searching around each reference point with increasing distance in a sphere, which has a radius of a chosen maximum search distance and is interpolated 'on-the-fly' at a chosen sample step size. The smaller the sample step size and the larger the differences between the dose distributions, the longer the {gamma} evaluation takes. With decreasing sample step size, statistical measures of the 3D {gamma} distribution converge. Two clinical examples were investigated using 3% of the prescribed dose as dose-difference and 0.3 cm as distance-to-agreement criteria. For 0.2 cm grid spacing, the change in {gamma} indices was negligible below a sample step size of 0.02 cm. Comparing the full 3D {gamma} evaluation and slice-by-slice 2D {gamma} evaluations ('2.5D') for these clinical examples, the {gamma} indices improved by searching in full 3D space, with the average {gamma} index decreasing by at least 8%.

  10. Design of 3D eye-safe middle range vibrometer

    SciTech Connect (OSTI)

    Polulyakh, Valeriy; Poutivski, Iouri

    2014-05-27

    Laser Doppler Vibrometer and Range Meter (3D-MRV) is designed for middle range distances [1–100 meters]. 3D-MRV combines more than one laser in one device for a simultaneous real time measuring the distance and movement of the targets. The first laser has a short pulse (t?30psec) and low energy (E?200nJ) for distance measurement and the second one is a CW (continuous wave) single frequency laser for the velocity measurement with output power (P?30mW). Both lasers perform on the eye-safe wavelength 1.5 ?m. 3D-MRV uses the same mono-static optical transmitting and receiving channel for both lasers including an output telescope and a scanning angular system. 3D-MRV has an optical polarization switch to combine linear polarized laser beams from two lasers into one optical channel. The laser beams from both lasers by turns illuminate the target and the scattered laser radiation is collected by the telescope on a photo detector. The electrical signal from photo detector is used for measuring the distance to the target and its movement. For distance measurement the time of flight method is employed. For targets movement the optical heterodyne method is employed. The received CW laser radiation is mixed on a photo detector with the frequency-shifted laser radiation that is taken from CW laser and passed through an acousto-optic cell. The electrical signal from a photo detector on the difference frequency and phase has information about movement of the scattered targets. 3D-MVR may be used for the real time picturing of vibration of the extensive targets like bridges or aircrafts.

  11. Theoretical prediction of fast 3D AC electro-osmotic pumps Martin Z. Bazant* and Yuxing Ben

    E-Print Network [OSTI]

    Bazant, Martin Z.

    a DC electric field applied down a microchannel made of insulating material to generate a plug flow. In this paper, we present some new design principles for periodic 3D ACEO pumps, such as the ``fluid conveyor slip of a liquid electrolyte past a solid surface in response to an applied electric field, since

  12. The Future of Manufacturing Takes Shape: 3D Printed Car on Display...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lead, Advanced Manufacturing Office Additive manufacturing - often referred to as 3D printing - is a revolutionary way to design and build products. Until now, 3D printing has...

  13. Development of 3D Simulation Training and Testing for Home Energy...

    Office of Environmental Management (EM)

    Development of 3D Simulation Training and Testing for Home Energy Score Assessor Candidates Development of 3D Simulation Training and Testing for Home Energy Score Assessor...

  14. Luminescent systems based on the isolation of conjugated PI systems and edge charge compensation with polar molecules on a charged nanostructured surface

    DOE Patents [OSTI]

    Ivanov, Ilia N.; Puretzky, Alexander A.; Zhao, Bin; Geohegan, David B.; Styers-Barnett, David J.; Hu, Hui

    2014-07-15

    A photoluminescent or electroluminescent system and method of making a non-luminescent nanostructured material into such a luminescent system is presented. The method of preparing the luminescent system, generally, comprises the steps of modifying the surface of a nanostructured material to create isolated regions to act as luminescent centers and to create a charge imbalance on the surface; applying more than one polar molecule to the charged surface of the nanostructured material; and orienting the polar molecules to compensate for the charge imbalance on the surface of the nanostructured material. The compensation of the surface charge imbalance by the polar molecules allows the isolated regions to exhibit luminescence.

  15. DEVELOPMENT OF A 3D GRID, FRACTURE AND PROPERTY MODELS FOR THE UPPER FREEPORT COAL AND OVERBURDEN USING 3D

    E-Print Network [OSTI]

    Wilson, Thomas H.

    DEVELOPMENT OF A 3D GRID, FRACTURE AND PROPERTY MODELS FOR THE UPPER FREEPORT COAL AND OVERBURDEN Richard A. Bajura, Director, National Research Center for Coal and Energy, West Virginia University Park, PA. Abstract Discrete fracture networks within a CO2 injection zone (the Upper Freeport coal

  16. Pipe3D, a pipeline to analyze Integral Field Spectroscopy data: I. New fitting phylosophy of FIT3D

    E-Print Network [OSTI]

    Sánchez, S F; Sánchez-Blázquez, P; González, J J; Rosález-Ortega, F F; Cano-Díaz, M; López-Cobá, C; Marino, R A; de Paz, A Gil; Mollá, M; López-Sánchez, A R; Ascasibar, Y; Barrera-Ballesteros, J

    2015-01-01

    We present an improved version of FIT3D, a fitting tool for the analysis of the spectroscopic properties of the stellar populations and the ionized gas derived from moderate resolution spectra of galaxies. FIT3D is a tool developed to analyze Integral Field Spectroscopy data and it is the basis of Pipe3D, a pipeline already used in the analysis of datasets like CALIFA, MaNGA, and SAMI. We describe the philosophy behind the fitting procedure, and in detail each of the different steps in the analysis. We present an extensive set of simulations in order to estimate the precision and accuracy of the derived parameters for the stellar populations. In summary, we find that using different stellar population templates we reproduce the mean properties of the stellar population (age, metallicity, and dust attenuation) within ~0.1 dex. A similar approach is adopted for the ionized gas, where a set of simulated emission- line systems was created. Finally, we compare the results of the analysis using FIT3D with those pro...

  17. 3-D Atomic-Scale Mapping of Manganese Dopants in Lead Sulfide Nanowires

    SciTech Connect (OSTI)

    Isheim, Dieter; Kaszpurenko, Jason; Yu, Dong; Mao, Zugang; Seidman, David N.; Arslan, Ilke

    2012-03-22

    Dopants in nanowires, whether intentional or unintentional, can ultimately control the material's properties and therefore need to be understood on the atomic scale. We study vapor-liquid-solid grown manganese-doped lead sulfide nanowires by atom-probe tomography for the first time for lead salt materials. The three-dimensional chemical concentration maps at the atomic scale demonstrate a radial distribution profile of Mn ions, with a concentration of only 0.18 at.% and 0.01 at.% for MnCl2 and Mn-acetate precursors, respectively. The ability to characterize these small concentrations of dopant atoms in Pb1-xMnxS nanowires (x = 0.0036 and 0.0002), important for spintronic and thermoelectric devices, sets a platform for similar analyses for all nanostructures. First-principles calculations confirm that Mn atoms substitute for Pb in the PbS structure.

  18. SU-E-T-04: 3D Printed Patient-Specific Surface Mould Applicators for Brachytherapy Treatment of Superficial Lesions

    SciTech Connect (OSTI)

    Cumming, I; Lasso, A; Rankin, A; Fichtinger, G [Laboratory for Percutaneous Surgery, School of Computing, Queen's University, Kingston, Ontario (Canada); Joshi, C P; Falkson, C; Schreiner, L John [CCSEO, Kingston General Hospital and Department of Oncology, Queen's University, Kingston, Ontario (Canada)

    2014-06-01

    Purpose: Evaluate the feasibility of constructing 3D-printed patient-specific surface mould applicators for HDR brachytherapy treatment of superficial lesions. Methods: We propose using computer-aided design software to create 3D printed surface mould applicators for brachytherapy. A mould generation module was developed in the open-source 3D Slicer ( http://www.slicer.org ) medical image analysis platform. The system extracts the skin surface from CT images, and generates smooth catheter paths over the region of interest based on user-defined start and end points at a specified stand-off distance from the skin surface. The catheter paths are radially extended to create catheter channels that are sufficiently wide to ensure smooth insertion of catheters for a safe source travel. An outer mould surface is generated to encompass the channels. The mould is also equipped with fiducial markers to ensure its reproducible placement. A surface mould applicator with eight parallel catheter channels of 4mm diameters was fabricated for the nose region of a head phantom; flexible plastic catheters of 2mm diameter were threaded through these channels maintaining 10mm catheter separations and a 5mm stand-off distance from the skin surface. The apparatus yielded 3mm thickness of mould material between channels and the skin. The mould design was exported as a stereolithography file to a Dimension SST1200es 3D printer and printed using ABS Plus plastic material. Results: The applicator closely matched its design and was found to be sufficiently rigid without deformation during repeated application on the head phantom. Catheters were easily threaded into channels carved along catheter paths. Further tests are required to evaluate feasibility of channel diameters smaller than 4mm. Conclusion: Construction of 3D-printed mould applicators show promise for use in patient specific brachytherapy of superficial lesions. Further evaluation of 3D printing techniques and materials is required for constructing sufficiently thin, rigid and durable surface moulds suitable for clinical deployment.

  19. 3-D MAPPING TECHNOLOGIES FOR HIGH LEVEL WASTE TANKS

    SciTech Connect (OSTI)

    Marzolf, A.; Folsom, M.

    2010-08-31

    This research investigated four techniques that could be applicable for mapping of solids remaining in radioactive waste tanks at the Savannah River Site: stereo vision, LIDAR, flash LIDAR, and Structure from Motion (SfM). Stereo vision is the least appropriate technique for the solids mapping application. Although the equipment cost is low and repackaging would be fairly simple, the algorithms to create a 3D image from stereo vision would require significant further development and may not even be applicable since stereo vision works by finding disparity in feature point locations from the images taken by the cameras. When minimal variation in visual texture exists for an area of interest, it becomes difficult for the software to detect correspondences for that object. SfM appears to be appropriate for solids mapping in waste tanks. However, equipment development would be required for positioning and movement of the camera in the tank space to enable capturing a sequence of images of the scene. Since SfM requires the identification of distinctive features and associates those features to their corresponding instantiations in the other image frames, mockup testing would be required to determine the applicability of SfM technology for mapping of waste in tanks. There may be too few features to track between image frame sequences to employ the SfM technology since uniform appearance may exist when viewing the remaining solids in the interior of the waste tanks. Although scanning LIDAR appears to be an adequate solution, the expense of the equipment ($80,000-$120,000) and the need for further development to allow tank deployment may prohibit utilizing this technology. The development would include repackaging of equipment to permit deployment through the 4-inch access ports and to keep the equipment relatively uncontaminated to allow use in additional tanks. 3D flash LIDAR has a number of advantages over stereo vision, scanning LIDAR, and SfM, including full frame time-of-flight data (3D image) collected with a single laser pulse, high frame rates, direct calculation of range, blur-free images without motion distortion, no need for precision scanning mechanisms, ability to combine 3D flash LIDAR with 2D cameras for 2D texture over 3D depth, and no moving parts. The major disadvantage of the 3D flash LIDAR camera is the cost of approximately $150,000, not including the software development time and repackaging of the camera for deployment in the waste tanks.

  20. Synthesis of nanostructured materials in supercritical ammonia: nitrides, metals and oxides Desmoulins-Krawiec S., Aymonier C., Loppinet-Serani A., Weill F., Grosse S., Etourneau J., Cansell F.

    E-Print Network [OSTI]

    Boyer, Edmond

    . Abstract : In this study, the synthesis of nanostructured particles of nitrides (Cr2N, Co2N, Fe4N, Cu3N, Ni to copper particle synthesis in a supercritical mixture CO2­ethanol demonstrated that this process allowsN in supercritical cryogenic nitrogen by self-propagating-high- temperature synthesis (6.21 MPa, ­141 °C);19 (ii) Ga

  1. Nanoscale quantification of stress and strain in III-V semiconducting nanostructures

    E-Print Network [OSTI]

    Jones, Eric James, Ph. D. Massachusetts Institute of Technology

    2015-01-01

    III-V semiconducting nanostructures present a promising platform for the realization of advanced optoelectronic devices due to their superior intrinsic materials properties including direct band gap energies that span the ...

  2. Structural Basis for Near Unity Quantum Yield Core/Shell Nanostructures

    E-Print Network [OSTI]

    Pennycook, Steve

    advances in photovoltaics, fuel cells, material composites, catalysis, and even drug discovery.1-3 Fluores of precisely engineered nanostructures with optimized properties is the lack of a means for determining

  3. Wetting and phase-change phenomena on micro/nanostructures for enhanced heat transfer

    E-Print Network [OSTI]

    Xiao, Rong, Ph. D. Massachusetts Institute of Technology

    2013-01-01

    Micro/nanostructures have been extensively studied to amplify the intrinsic wettability of materials to create superhydrophilic or superhydrophobic surfaces. Such extreme wetting properties can influence the heat transfer ...

  4. Computerized fluid movement mapping and 3-D visualization

    SciTech Connect (OSTI)

    Al-Awami, A.A.; Poore, J.W. [Saudi Aramco, Dhahran (Saudi Arabia); Sizer, J.P.

    1995-11-01

    Most of the fieldwide fluid movement monitoring techniques under utilize available computer resources. This paper discusses an approach reservoir management engineers use to monitor fluid movement in reservoirs with a multitude of wells. This approach allows the engineer to maintain up-to-date fluid movement studies and incorporate the latest information from data acquisition programs into the day to day decision-making process. The approach uses several in-house database applications and makes extensive use of commercially available software products to generate and visualize cross-sections, maps, and 3-d models. This paper reviews the computerized procedures to create cross-sections that display the current fluid contacts overlaying the lithology. It also reviews the mapping procedures nd presents examples of water encroachment maps by layer at specific time periods. 3-D geologic modeling software greatly enhances the visualization of the reservoir. This software can also be used to interpret and model fluid movement, given the appropriate engineering constraints.

  5. 3D supergravity from wrapped M5-branes

    E-Print Network [OSTI]

    Karndumri, Parinya

    2015-01-01

    Through consistent Kaluza-Klein reduction, we construct 3D N=2 gauged supergravities corresponding to twisted compactifications of M5-branes on a product of Riemann surfaces, including Kahler-Einstein four-manifolds. We extend the reduction to fermionic supersymmetry variations in order to determine the 3D Killing spinor equations and classify all (timelike) supersymmetric solutions. We show that the superpotential T dictates all supersymmetric solutions, not just AdS3 vacua. As a by-product, we identify an infinite class of new supersymmetric warped AdS3 (Godel) and warped dS3 critical points. Moreover, we show that T encodes the central charge and R symmetry of the dual N = (0,2) SCFTs in the large N limit. Upon uplift to 11D, we use this result to write the higher-dimensional geometries in canonical form and discuss the relation to existing classifications of supersymmetric AdS3 geometries.

  6. SU-F-BRE-04: Construction of 3D Printed Patient Specific Phantoms for Dosimetric Verification Measurements

    SciTech Connect (OSTI)

    Ehler, E; Higgins, P; Dusenbery, K

    2014-06-15

    Purpose: To validate a method to create per patient phantoms for dosimetric verification measurements. Methods: Using a RANDO phantom as a substitute for an actual patient, a model of the external features of the head and neck region of the phantom was created. A phantom was used instead of a human for two reasons: to allow for dosimetric measurements that would not be possible in-vivo and to avoid patient privacy issues. Using acrylonitrile butadiene styrene thermoplastic as the building material, a hollow replica was created using the 3D printer filled with a custom tissue equivalent mixture of paraffin wax, magnesium oxide, and calcium carbonate. A traditional parallel-opposed head and neck plan was constructed. Measurements were performed with thermoluminescent dosimeters in both the RANDO phantom and in the 3D printed phantom. Calculated and measured dose was compared at 17 points phantoms including regions in high and low dose regions and at the field edges. On-board cone beam CT was used to localize both phantoms within 1mm and 1° prior to radiation. Results: The maximum difference in calculated dose between phantoms was 1.8% of the planned dose (180 cGy). The mean difference between calculated and measured dose in the anthropomorphic phantom and the 3D printed phantom was 1.9% ± 2.8% and ?0.1% ± 4.9%, respectively. The difference between measured and calculated dose was determined in the RANDO and 3D printed phantoms. The differences between measured and calculated dose in each respective phantom was within 2% for 12 of 17 points. The overlap of the RANDO and 3D printed phantom was 0.956 (Jaccard Index). Conclusion: A custom phantom was created using a 3D printer. Dosimetric calculations and measurements showed good agreement between the dose in the RANDO phantom (patient substitute) and the 3D printed phantom.

  7. Multimessengers from 3D Core-Collapse Supernovae

    E-Print Network [OSTI]

    Yakunin, Konstantin N; Mezzacappa, Anthony; Messer, O E Bronson; Lentz, Eric J; Bruenn, Stephen W; Hix, W Rafael; Harris, J Austin

    2015-01-01

    We present gravitational wave and neutrino signatures obtained in our first principle 3D core-collapse supernova simulation of 15M non-rotating progenitor with Chimera code. Observations of neutrinos emitted by the forming neutron star, and gravitational waves, which are produced by hydrodynamic instabilities is the only way to get direct information about the supernova engine. Both GW and neutrino signals show different phases of supernova evolution.

  8. 3D, Flash, Induced Current Readout for Silicon Sensors

    SciTech Connect (OSTI)

    Parker, Sherwood I.

    2014-06-07

    A new method for silicon microstrip and pixel detector readout using (1) 65 nm-technology current amplifers which can, for the first time with silicon microstrop and pixel detectors, have response times far shorter than the charge collection time (2) 3D trench electrodes large enough to subtend a reasonable solid angle at most track locations and so have adequate sensitivity over a substantial volume of pixel, (3) induced signals in addition to, or in place of, collected charge

  9. On the Hamiltonian form of 3D massive gravity

    E-Print Network [OSTI]

    Olaf Hohm; Alasdair Routh; Paul K. Townsend; Baocheng Zhang

    2012-09-14

    We present a "Chern-Simons-like" action for the "general massive gravity" model propagating two spin-2 modes with independent masses in three spacetime dimensions (3D), and we use it to find a simple Hamiltonian form of this model. The number of local degrees of freedom, determined by the dimension of the physical phase space, agrees with a linearized analysis except in some limits, in particular that yielding "new topologically massive gravity", which therefore suffers from a linearization instability.

  10. 3D Printing and Immersive Visualization for Improved Perception of Ancient Artifacts

    E-Print Network [OSTI]

    Di Giuseppantonio Di Franco, Paola; Camporesi, Carlo; Galeazzi, Fabrizio; Kallmann, Marcelo

    2015-01-01

    ) with circular passive polarization filters. The projectors are connected to a rendering cluster of six commodity Linux-based rendering nodes (Pentium Q9550 2.83GHz GeForce GTX 280 4Gb RAM) driven by a similar main machine controlling the virtual scene being... jet print head. Finally, the part can be finished using infiltrants including wax, cyanoacrylate (super glue), and epoxy materials, which increase the 3D object strength and create the desired finish to ensure durability and more vivid colors...

  11. 3D acoustic imaging applied to the Baikal Neutrino Telescope

    E-Print Network [OSTI]

    K. G. Kebkal; R. Bannasch; O. G. Kebkal; A. I. Panfilov; R. Wischnewski

    2008-11-07

    A hydro-acoustic imaging system was tested in a pilot study on distant localization of elements of the Baikal underwater neutrino telescope. For this innovative approach, based on broad band acoustic echo signals and strictly avoiding any active acoustic elements on the telescope, the imaging system was temporarily installed just below the ice surface, while the telescope stayed in its standard position at 1100 m depth. The system comprised an antenna with four acoustic projectors positioned at the corners of a 50 meter square; acoustic pulses were "linear sweep-spread signals" - multiple-modulated wide-band signals (10-22 kHz) of 51.2 s duration. Three large objects (two string buoys and the central electronics module) were localized by the 3D acoustic imaging, with a accuracy of ~0.2 m (along the beam) and ~1.0 m (transverse). We discuss signal forms and parameters necessary for improved 3D acoustic imaging of the telescope, and suggest a layout of a possible stationary bottom based 3D imaging setup. The presented technique may be of interest for neutrino telescopes of km3-scale and beyond, as a flexible temporary or as a stationary tool to localize basic telescope elements, while these are completely passive.

  12. Enhanced Catalytic Activities of Nanostructured Materials 

    E-Print Network [OSTI]

    Martinez De La Hoz, Julibeth Milena

    2014-10-31

    structure decorated using two Pt13 clusters. Carbon atoms are grey and platinum atoms are blue ......... 95 Figure 6.3 Top view of four unit cells of a proposed NPG structure decorated using one Pt22 cluster. Carbon atoms are grey and platinum atoms... are blue ........... 95 Figure 6.4 Unit cell of a Pt26 cluster interacting with graphene at H=4.9 Ĺ (left) and H=15 Ĺ (right). Carbon atoms are grey and platinum atoms are blue...

  13. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    energy generation and battery storage via the use ofenergy generation and battery storage via the use of nanos-and storage (e.g lithium-ion rechargeable battery)

  14. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    electric energies from photovoltaic, wind, wood, biofuels and hydroelectrics to create a utility scale energy generation andgeneration and storage technologies is important for increasing the share of renewable energy sources and wider use of the plug-in electricgeneration and storage technologies are important for increas- ing the share of renewable energy sources and wider use of the plug-in electric

  15. Intensive Variables & Nanostructuring in Magnetostructural Materials

    SciTech Connect (OSTI)

    Lewis, Laura

    2014-08-13

    Over the course of this project, fundamental inquiry was carried out to investigate, understand and predict the effects of intensive variables, including the structural scale, on magnetostructural phase transitions in the model system of equiatomic FeRh. These transitions comprise simultaneous magnetic and structural phase changes that have their origins in very strong orbital-lattice coupling and thus may be driven by a plurality of effects.

  16. Nanostructured Materials for Renewable Alternative Energy

    SciTech Connect (OSTI)

    Parsons, Gregory

    2013-07-24

    This project has been in effect from July 25th, 2008 to July 24th, 2013. It supported 19 graduate students and 6 post-doctoral students and resulted in 23 publications, 7 articles in preparation, 44 presentations, and many other outreach efforts. Two representative recent publications are appended to this report. The project brought in more than $750,000 in cost share from North Carolina State University. The project funds also supported the purchase and installation of approximately $667,000 in equipment supporting solar energy research.

  17. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    Lithium-ion Batteries: Solid-Electrolyte Interphase. Impe-which address solid electrolyte interphase formation can beis referred to as solid electrolyte interphase (SEI). These

  18. Chemistry Controls Material's Nanostructure | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclear SecurityChattan oogaMakingChemistry Controls

  19. Subtask 5: Functional nanostructured transparent electrode materials |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel Production 1: Total systems analysis,Bio-Inspired

  20. Nanostructured Thermoelectric Materials and High Efficiency Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic Solar Photovoltaic Find More Like This Return to

  1. Method for producing nanostructured metal-oxides

    DOE Patents [OSTI]

    Tillotson, Thomas M.; Simpson, Randall L.; Hrubesh, Lawrence W.; Gash, Alexander

    2006-01-17

    A synthetic route for producing nanostructure metal-oxide-based materials using sol-gel processing. This procedure employs the use of stable and inexpensive hydrated-metal inorganic salts and environmentally friendly solvents such as water and ethanol. The synthesis involves the dissolution of the metal salt in a solvent followed by the addition of a proton scavenger, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively. Using this method synthesis of metal-oxide nanostructured materials have been carried out using inorganic salts, such as of Fe.sup.3+, Cr.sup.3+, Al.sup.3+, Ga.sup.3+, In.sup.3+, Hf.sup.4+, Sn.sup.4+, Zr.sup.4+, Nb.sup.5+, W.sup.6+, Pr.sup.3+, Er.sup.3+, Nd.sup.3+, Ce.sup.3+, U.sup.3+ and Y.sup.3+. The process is general and nanostructured metal-oxides from the following elements of the periodic table can be made: Groups 2 through 13, part of Group 14 (germanium, tin, lead), part of Group 15 (antimony, bismuth), part of Group 16 (polonium), and the lanthanides and actinides. The sol-gel processing allows for the addition of insoluble materials (e.g., metals or polymers) to the viscous sol, just before gelation, to produce a uniformly distributed nanocomposites upon gelation. As an example, energetic nanocomposites of Fe.sub.xO.sub.y gel with distributed Al metal are readily made. The compositions are stable, safe, and can be readily ignited to thermitic reaction.

  2. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterialMaterials Materials Access to

  3. Spheree: A 3D Perspective-Corrected Interactive Spherical Scalable Display Ferreira, F.q

    E-Print Network [OSTI]

    British Columbia, University of

    models can be exported or printed on a 3D printer. Other related 3D displays include: 1. pCubee [StavnessSpheree: A 3D Perspective-Corrected Interactive Spherical Scalable Display Ferreira, F.q , Cabral & U of British Columbia (a) (b) (c) (d) Figure 1: (a) A snowglobe; (b) a fish-tank animation; (c) a 3D

  4. Voxel-Based Assessment of Printability of 3D Alexandru Telea1

    E-Print Network [OSTI]

    Telea, Alexandru C.

    . Printability, the capability of a 3D printer to closely repro- duce a 3D model, is a complex decision involving on a given printer. As 3D printing technology works in a raster fashion, we implement our proposed metricsVoxel-Based Assessment of Printability of 3D Shapes Alexandru Telea1 and Andrei Jalba2 1 Institute

  5. 3D Fingerprint Phantoms Sunpreet S. Arora, Kai Cao and Anil K. Jain

    E-Print Network [OSTI]

    ) printing the 3D fingerprint phantoms using a commodity 3D printer. Preliminary experimental results show3D Fingerprint Phantoms Sunpreet S. Arora, Kai Cao and Anil K. Jain Department of Computer Science, we propose creating 3D fin- gerprint phantoms (phantoms or imaging phantoms are specially designed

  6. AUTOMATED MODELING OF 3D BUILDING ROOFS USING IMAGE AND LIDAR DATA

    E-Print Network [OSTI]

    Schindler, Konrad

    AUTOMATED MODELING OF 3D BUILDING ROOFS USING IMAGE AND LIDAR DATA N. Demir* , E. Baltsavias, Detection, 3D Modelling ABSTRACT: In this work, an automated approach for 3D building roof modelling of accurate and complete 3D building models with high degree of automation. Aerial images and LiDAR data

  7. Experience with 3D Optical Flow on Gated MRI Cardiac Datasets

    E-Print Network [OSTI]

    Barron, John

    ventricular chamber which pumps oxygenated blood to the body, as these are good indicators of heart function of points on a surface while generic 3D optical ow is 3D volumetric motion. We present two sim- ple contain 20 volumes of 3D volumetric data for one synchronized heart beat, with each 3D vol- ume dataset

  8. Towards 3D Internet: Why, What, and How? Tansu Alpcan, Christian Bauckhage, Evangelos Kotsovinos

    E-Print Network [OSTI]

    Alpcan, Tansu

    Towards 3D Internet: Why, What, and How? Tansu Alpcan, Christian Bauckhage, Evangelos Kotsovinos paradigm, the 3D Internet. We provide an overview of the concept 3D Internet and discuss why it is a goal communities. We explore first the motivation for the 3D Internet and the possibilities it brings. Subsequently

  9. ILLUSTRATING MATHEMATICS USING 3D PRINTERS OLIVER KNILL AND ELIZABETH SLAVKOVSKY

    E-Print Network [OSTI]

    Knill, Oliver

    printing technology can help to visualize proofs in mathematics. This talk aims to illustrate how 3D Greece, models allows to make mathematics more accessible. The new 3D printing technology makes unmatched. 3D printers allow us to do that with relative little effort. 2. 3D printing The industry of rapid

  10. Streamlining of the RELAP5-3D Code

    SciTech Connect (OSTI)

    Mesina, George L; Hykes, Joshua; Guillen, Donna Post

    2007-11-01

    RELAP5-3D is widely used by the nuclear community to simulate general thermal hydraulic systems and has proven to be so versatile that the spectrum of transient two-phase problems that can be analyzed has increased substantially over time. To accommodate the many new types of problems that are analyzed by RELAP5-3D, both the physics and numerical methods of the code have been continuously improved. In the area of computational methods and mathematical techniques, many upgrades and improvements have been made decrease code run time and increase solution accuracy. These include vectorization, parallelization, use of improved equation solvers for thermal hydraulics and neutron kinetics, and incorporation of improved library utilities. In the area of applied nuclear engineering, expanded capabilities include boron and level tracking models, radiation/conduction enclosure model, feedwater heater and compressor components, fluids and corresponding correlations for modeling Generation IV reactor designs, and coupling to computational fluid dynamics solvers. Ongoing and proposed future developments include improvements to the two-phase pump model, conversion to FORTRAN 90, and coupling to more computer programs. This paper summarizes the general improvements made to RELAP5-3D, with an emphasis on streamlining the code infrastructure for improved maintenance and development. With all these past, present and planned developments, it is necessary to modify the code infrastructure to incorporate modifications in a consistent and maintainable manner. Modifying a complex code such as RELAP5-3D to incorporate new models, upgrade numerics, and optimize existing code becomes more difficult as the code grows larger. The difficulty of this as well as the chance of introducing errors is significantly reduced when the code is structured. To streamline the code into a structured program, a commercial restructuring tool, FOR_STRUCT, was applied to the RELAP5-3D source files. The methodology employed follows Dijkstra's structured programming paradigm, which is based on splitting programs into sub-sections, each with single points of entry and exit and in which control is passed downward through the structure with no unconditional branches to higher levels. GO TO commands are typically avoided, since they alter the flow and control of a program’s execution by allowing a jump from one place in the routine to another. The restructuring of RELAP5-3D subroutines is complicated by several issues. The first is use of code other than standard FORTRAN77. The second is restructuring limitations of FOR_STRUCT. The third is existence of pre-compiler directives and the complication of nested directives. Techniques were developed to overcome all these difficulties and more and these are reported. By implementing these developments, all subroutines of RELAP were restructured. Measures of code improvement relative to maintenance and development are presented.

  11. Uncertainty Analysis of RELAP5-3D

    SciTech Connect (OSTI)

    Alexandra E Gertman; Dr. George L Mesina

    2012-07-01

    As world-wide energy consumption continues to increase, so does the demand for the use of alternative energy sources, such as Nuclear Energy. Nuclear Power Plants currently supply over 370 gigawatts of electricity, and more than 60 new nuclear reactors have been commissioned by 15 different countries. The primary concern for Nuclear Power Plant operation and lisencing has been safety. The safety of the operation of Nuclear Power Plants is no simple matter- it involves the training of operators, design of the reactor, as well as equipment and design upgrades throughout the lifetime of the reactor, etc. To safely design, operate, and understand nuclear power plants, industry and government alike have relied upon the use of best-estimate simulation codes, which allow for an accurate model of any given plant to be created with well-defined margins of safety. The most widely used of these best-estimate simulation codes in the Nuclear Power industry is RELAP5-3D. Our project focused on improving the modeling capabilities of RELAP5-3D by developing uncertainty estimates for its calculations. This work involved analyzing high, medium, and low ranked phenomena from an INL PIRT on a small break Loss-Of-Coolant Accident as wall as an analysis of a large break Loss-Of- Coolant Accident. Statistical analyses were performed using correlation coefficients. To perform the studies, computer programs were written that modify a template RELAP5 input deck to produce one deck for each combination of key input parameters. Python scripting enabled the running of the generated input files with RELAP5-3D on INL’s massively parallel cluster system. Data from the studies was collected and analyzed with SAS. A summary of the results of our studies are presented.

  12. Customizing mesoscale self-assembly with 3D printing

    E-Print Network [OSTI]

    M. Poty; G. Lumay; N. Vandewalle

    2013-10-17

    Self-assembly due to capillary forces is a common method for generating 2D mesoscale structures from identical floating particles at the liquid-air interface. Designing building blocks to obtain a desired mesoscopic structure is a scientific challenge. We show herein that it is possible to shape the particles with a low cost 3D printer, for composing specific mesoscopic structures. Our method is based on the creation of capillary multipoles inducing either attractive or repulsive forces. Since capillary interactions can be downscaled, our method opens new ways to low cost microfabrication.

  13. Convergence of Ginzburg-Landau functionals in 3-d superconductivity

    E-Print Network [OSTI]

    Sisto Baldo; Robert L. Jerrard; Giandomenico Orlandi; Mete Soner

    2011-02-23

    In this paper we consider the asymptotic behavior of the Ginzburg- Landau model for superconductivity in 3-d, in various energy regimes. We rigorously derive, through an analysis via {\\Gamma}-convergence, a reduced model for the vortex density, and we deduce a curvature equation for the vortex lines. In a companion paper, we describe further applications to superconductivity and superfluidity, such as general expressions for the first critical magnetic field H_{c1}, and the critical angular velocity of rotating Bose-Einstein condensates.

  14. A non-conforming 3D spherical harmonic transport solver

    SciTech Connect (OSTI)

    Van Criekingen, S.

    2006-07-01

    A new 3D transport solver for the time-independent Boltzmann transport equation has been developed. This solver is based on the second-order even-parity form of the transport equation. The angular discretization is performed through the expansion of the angular neutron flux in spherical harmonics (PN method). The novelty of this solver is the use of non-conforming finite elements for the spatial discretization. Such elements lead to a discontinuous flux approximation. This interface continuity requirement relaxation property is shared with mixed-dual formulations such as the ones based on Raviart-Thomas finite elements. Encouraging numerical results are presented. (authors)

  15. 3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK

    SciTech Connect (OSTI)

    Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D

    2006-08-24

    3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.

  16. 3-D Earth model more accurately pinpoints explosions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONeApril 30,University RegistrationNeed2 2D7P D3,3-D

  17. 3D Printing Aircraft Parts | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONeApril351 Substation Demolition --3D Printed andD

  18. 3D Printing Medical Devices | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONeApril351 Substation Demolition --3D Printed

  19. 3D Tracking at the Nanoscale | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONeApril351 Substation Demolition --3D

  20. 3-D Nanofilm Asymmetric Ultracapacitor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOffice | DepartmentVery1, in: A.R. Gavaskar and3-D Nanofilm

  1. How 3D Printers Work | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy, Ph.D.Food Drive HolidayHours UsedFire 1 in 3Households3D

  2. 3D Printing a Classic Shelby Cobra | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar: Demonstration ofDepartment1of5Department of Energy3D

  3. Engineering nanostructured electrodes away from equilibrium for lithium-ion Yanyi Liu, Dawei Liu, Qifeng Zhang and Guozhong Cao*

    E-Print Network [OSTI]

    Cao, Guozhong

    Engineering nanostructured electrodes away from equilibrium for lithium-ion batteries Yanyi Liu chapter. His specific research project is focused on nanostructured elec- trodes for efficient lithium ion materials, Li-ion batteries have achieved significant progress in energy storage performance since

  4. Electrical and dielectric properties of polyanilineAl2O3 nanocomposites derived from various Al2O3 nanostructures

    E-Print Network [OSTI]

    Guo, John Zhanhu

    storage devices.10 Nanomaterials are one kind of materials that have sizes smaller than 100 nm in at least nanostructures Jiahua Zhu,a Suying Wei,b Lei Zhang,a Yuanbing Mao,c Jongeun Ryu,d Neel Haldolaarachchige,e David03908j Four Al2O3 nanostructures (i.e. nanofiber, nanoplatelet, nanorod and nanoflake) have been

  5. Graphene Modified LiFePO4 Cathode Materials for High Power Lithium ion Batteries

    SciTech Connect (OSTI)

    Zhou, X.; Wang, F.; Zhu, Y.; Liu, Z.

    2011-01-24

    Graphene-modified LiFePO{sub 4} composite has been developed as a Li-ion battery cathode material with excellent high-rate capability and cycling stability. The composite was prepared with LiFePO{sub 4} nanoparticles and graphene oxide nanosheets by spray-drying and annealing processes. The LiFePO{sub 4} primary nanoparticles embedded in micro-sized spherical secondary particles were wrapped homogeneously and loosely with a graphene 3D network. Such a special nanostructure facilitated electron migration throughout the secondary particles, while the presence of abundant voids between the LiFePO{sub 4} nanoparticles and graphene sheets was beneficial for Li{sup +} diffusion. The composite cathode material could deliver a capacity of 70 mAh g{sup -1} at 60C discharge rate and showed a capacity decay rate of <15% when cycled under 10C charging and 20C discharging for 1000 times.

  6. Electrochemistry, Photoelectrochemistry And Photoelectron Spectroscopy Of Nanostructured Metal Oxides

    E-Print Network [OSTI]

    Södergren, S

    1997-01-01

    Electrochemistry, Photoelectrochemistry And Photoelectron Spectroscopy Of Nanostructured Metal Oxides

  7. 2009 Clusters, Nanocrystals & Nanostructures GRC

    SciTech Connect (OSTI)

    Lai-Sheng Wang

    2009-07-19

    For over thirty years, this Gordon Conference has been the premiere meeting for the field of cluster science, which studies the phenomena that arise when matter becomes small. During its history, participants have witnessed the discovery and development of many novel materials, including C60, carbon nanotubes, semiconductor and metal nanocrystals, and nanowires. In addition to addressing fundamental scientific questions related to these materials, the meeting has always included a discussion of their potential applications. Consequently, this conference has played a critical role in the birth and growth of nanoscience and engineering. The goal of the 2009 Gordon Conference is to continue the forward-looking tradition of this meeting and discuss the most recent advances in the field of clusters, nanocrystals, and nanostructures. As in past meetings, this will include new topics that broaden the field. In particular, a special emphasis will be placed on nanomaterials related to the efficient use, generation, or conversion of energy. For example, we anticipate presentations related to batteries, catalysts, photovoltaics, and thermoelectrics. In addition, we expect to address the controversy surrounding carrier multiplication with a session in which recent results addressing this phenomenon will be discussed and debated. The atmosphere of the conference, which emphasizes the presentation of unpublished results and lengthy discussion periods, ensures that attendees will enjoy a valuable and stimulating experience. Because only a limited number of participants are allowed to attend this conference, and oversubscription is anticipated, we encourage all interested researchers from academia, industry, and government institutions to apply as early as possible. An invitation is not required. We also encourage all attendees to submit their latest results for presentation at the poster sessions. We anticipate that several posters will be selected for 'hot topic' oral presentations. Because of the important role that students and postdocs play in the future of this field, we also anticipate to select several posters from young investigators for oral presentations.

  8. TOWARDSAUTOMATICMODELING OF 3D CULTURAL HERITAGE M. Andreetto, R. Bemardini, G.M. Cortelazzo,L. Lucchese

    E-Print Network [OSTI]

    Abu-Mostafa, Yaser S.

    by means of the "3D printing" devices used in mechanical rapid prototyping. Another one is that 3D objects

  9. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the metal-alloy tip component of a hybrid nanostructure with that of free-standing metal-alloy nanoparticles. Transmission electron microscopy (TEM) image of PtCo-CdS...

  10. Thermorheological properties of nanostructured dispersions

    E-Print Network [OSTI]

    Gordon, Jeremy B

    2007-01-01

    Nanostructured dispersions, which consist of nanometer-sized particles, tubes, sheets, or droplets that are dispersed in liquids, have exhibited substantially higher thermal conductivities over those of the liquids alone. ...

  11. Growth of metal and semiconductor nanostructures using localized photocatalysts

    SciTech Connect (OSTI)

    Shelnutt, John A; Wang, Zhongchun; Medforth, Craig J

    2006-03-08

    Our overall goal has been to understand and develop a light-driven approach to the controlled growth of novel metal and semiconductor nanostructures and nanomaterials. In this photochemical process, bio-inspired porphyrin-based photocatalysts reduce metal salts in aqueous solutions at ambient temperatures when exposed to visible light, providing metal nucleation and growth centers. The photocatalyst molecules are pre-positioned at the nanoscale to control the location of the deposition of metal and therefore the morphology of the nanostructures that are grown. Self-assembly, chemical confinement, and molecular templating are some of the methods we are using for nanoscale positioning of the photocatalyst molecules. When exposed to light, each photocatalyst molecule repeatedly reduces metal ions from solution, leading to deposition near the photocatalyst and ultimately the synthesis of new metallic nanostructures and nanostructured materials. Studies of the photocatalytic growth process and the resulting nanostructures address a number of fundamental biological, chemical, and environmental issues and draw on the combined nanoscience characterization and multi-scale simulation capabilities of the new DOE Center for Integrated Nanotechnologies at Sandia National Laboratories and the University of Georgia. Our main goals are to elucidate the processes involved in the photocatalytic growth of metal nanomaterials and provide the scientific basis for controlled nanosynthesis. The nanomaterials resulting from these studies have applications in nanoelectronics, photonics, sensors, catalysis, and micromechanical systems. Our specific goals for the past three years have been to understand the role of photocatalysis in the synthesis of dendritic metal (Pt, Pd, Au) nanostructures grown from aqueous surfactant solutions under ambient conditions and the synthesis of photocatalytic porphyrin nanostructures (e.g., nanotubes) as templates for fabrication of photo-active metal-composite nanodevices. The proposed nanoscience concentrates on two thematic research areas: (1) the creation of metal and semiconductor nanostructures and nanomaterials for realizing novel catalytic phenomena and quantum control, (2) understanding photocatalytic metal deposition processes at the nanoscale especially on photocatalytic porphyrin nanostructures such as nanotubes, and (3) the development and use of multi-scale, multi-phenomena theory and simulation for ionic self-assembly and catalytic processes.

  12. ASIC for High Rate 3D Position Sensitive Detectors

    SciTech Connect (OSTI)

    Vernon, E.; De Geronimo, G.; Ackley, K.; Fried, J.; He, Z.; Herman, C.; Zhang, F.

    2010-06-16

    We report on the development of an application specific integrated circuit (ASIC) for 3D position sensitive detectors (3D PSD). The ASIC is designed to operate with pixelated wide bandgap sensors like Cadmium-Zinc-Telluride (CZT), Mercuric Iodide (Hgl2) and Thallium Bromide (TIBr). It measures the amplitudes and timings associated with an ionizing event on 128 anodes, the anode grid, and the cathode. Each channel provides low-noise charge amplification, high-order shaping with peaking time adjustable from 250 ns to 12 {micro}s, gain adjustable to 20 mV/fC or 120 mV/fC (for a dynamic range of 3.2 MeV and 530 keV in CZT), amplitude discrimination with 5-bit trimming, and positive and negative peak and timing detections. The readout can be full or sparse, based on a flag and single- or multi-cycle token passing. All channels, triggered channels only, or triggered with neighbors can be read out thus increasing the rate capability of the system to more than 10 kcps. The ASIC dissipates 330 mW which corresponds to about 2.5 mW per channel.

  13. Image Appraisal for 2D and 3D Electromagnetic Inversion

    SciTech Connect (OSTI)

    Alumbaugh, D.L.; Newman, G.A.

    1999-01-28

    Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.

  14. AUTOMATED, HIGHLY ACCURATE VERIFICATION OF RELAP5-3D

    SciTech Connect (OSTI)

    George L Mesina; David Aumiller; Francis Buschman

    2014-07-01

    Computer programs that analyze light water reactor safety solve complex systems of governing, closure and special process equations to model the underlying physics. In addition, these programs incorporate many other features and are quite large. RELAP5-3D[1] has over 300,000 lines of coding for physics, input, output, data management, user-interaction, and post-processing. For software quality assurance, the code must be verified and validated before being released to users. Verification ensures that a program is built right by checking that it meets its design specifications. Recently, there has been an increased importance on the development of automated verification processes that compare coding against its documented algorithms and equations and compares its calculations against analytical solutions and the method of manufactured solutions[2]. For the first time, the ability exists to ensure that the data transfer operations associated with timestep advancement/repeating and writing/reading a solution to a file have no unintended consequences. To ensure that the code performs as intended over its extensive list of applications, an automated and highly accurate verification method has been modified and applied to RELAP5-3D. Furthermore, mathematical analysis of the adequacy of the checks used in the comparisons is provided.

  15. THE THOMSON SURFACE. III. TRACKING FEATURES IN 3D

    SciTech Connect (OSTI)

    Howard, T. A.; DeForest, C. E.; Tappin, S. J.; Odstrcil, D.

    2013-03-01

    In this, the final installment in a three-part series on the Thomson surface, we present simulated observations of coronal mass ejections (CMEs) observed by a hypothetical polarizing white light heliospheric imager. Thomson scattering yields a polarization signal that can be exploited to locate observed features in three dimensions relative to the Thomson surface. We consider how the appearance of the CME changes with the direction of trajectory, using simulations of a simple geometrical shape and also of a more realistic CME generated using the ENLIL model. We compare the appearance in both unpolarized B and polarized pB light, and show that there is a quantifiable difference in the measured brightness of a CME between unpolarized and polarized observations. We demonstrate a technique for using this difference to extract the three-dimensional (3D) trajectory of large objects such as CMEs. We conclude with a discussion on how a polarizing heliospheric imager could be used to extract 3D trajectory information about CMEs or other observed features.

  16. Methods of fabricating nanostructures and nanowires and devices fabricated therefrom

    DOE Patents [OSTI]

    Majumdar,; Arun (Orinda, CA); Shakouri, Ali (Santa Cruz, CA); Sands, Timothy D. (Moraga, CA); Yang, Peidong (Berkeley, CA); Mao, Samuel S. (Berkeley, CA); Russo, Richard E. (Walnut Creek, CA); Feick, Henning (Kensington, CA); Weber, Eicke R. (Oakland, CA); Kind, Hannes (Schaffhausen, CH); Huang, Michael (Los Angeles, CA); Yan, Haoquan (Albany, CA); Wu, Yiying (Albany, CA); Fan, Rong (El Cerrito, CA)

    2009-08-04

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  17. Methods of fabricating nanostructures and nanowires and devices fabricated therefrom

    DOE Patents [OSTI]

    Majumdar, Arun (Orinda, CA); Shakouri, Ali (Santa Cruz, CA); Sands, Timothy D. (Moraga, CA); Yang, Peidong (Berkeley, CA); Mao, Samuel S. (Berkeley, CA); Russo, Richard E. (Walnut Creek, CA); Feick, Henning (Kensington, CA); Weber, Eicke R. (Oakland, CA); Kind, Hannes (Schaffhausen, CH); Huang, Michael (Los Angeles, CA); Yan, Haoquan (Albany, CA); Wu, Yiying (Albany, CA); Fan, Rong (El Cerrito, CA)

    2010-11-16

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  18. RELAP5-3D Restart and Backup Verification Testing

    SciTech Connect (OSTI)

    Dr. George L Mesina

    2013-09-01

    Existing testing methodology for RELAP5-3D employs a set of test cases collected over two decades to test a variety of code features and run on a Linux or Windows platform. However, this set has numerous deficiencies in terms of code coverage, detail of comparison, running time, and testing fidelity of RELAP5-3D restart and backup capabilities. The test suite covers less than three quarters of the lines of code in the relap directory and just over half those in the environmental library. Even in terms of code features, many are not covered. Moreover, the test set runs many problems long past the point necessary to test the relevant features. It requires standard problems to run to completion. This is unnecessary for features can be tested in a short-running problem. For example, many trips and controls can be tested in the first few time steps, as can a number of fluid flow options. The testing system is also inaccurate. For the past decade, the diffem script has been the primary tool for checking that printouts from two different RELAP5-3D executables agree. This tool compares two output files to verify that all characters are the same except for those relating to date, time and a few other excluded items. The variable values printed on the output file are accurate to no more than eight decimal places. Therefore, calculations with errors in decimal places beyond those printed remain undetected. Finally, fidelity of restart is not tested except in the PVM sub-suite and backup is not specifically tested at all. When a restart is made from any midway point of the base-case transient, the restart must produce the same values. When a backup condition occurs, the code repeats advancements with the same time step. A perfect backup can be tested by forcing RELAP5 to perform a backup by falsely setting a backup condition flag at a user-specified-time. Comparison of the calculations of that run and those produced by the same input w/o the spurious condition should be identical. Backup testing is more difficult the other kinds of testing described above because it requires additional coding to implement. The testing system constructed and described in this document resolves all of these issues. A matrix of test features and short-running cases that exercise them is presented. A small information file that contains sufficient data to verify calculations to the last decimal place and bit is produced. This testing system is used to test base cases (called null testing) as well as restart and backup cases. The programming that implements these new capabilities is presented.

  19. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterial

  20. RELAP5-3D Thermal Hydraulics Computer Program Analysis Coupled with DAKOTA and STAR-CCM+ Codes 

    E-Print Network [OSTI]

    Rodriguez, Oscar

    2012-12-06

    RELAP5-3D COUPLED WITH DAKOTA Introduction The containment building of a typical Light Water Reactor (LWR) is designed to contain the radioactive materials released during an accident and to facilitate the core cooling during a LOCA event. Under... the cold water (nominal 85 ?F) contained in the Reactor Water Spent Fuel Tank (RWST) located inside the containment. The same water is discharged directly in the containment via containment sprays to keep its pressure under desired limits. Once all...

  1. Exploration 3-D Seismic Field Test/Native Tribes Initiative

    SciTech Connect (OSTI)

    Carroll, Herbert B.; Chen, K.C.; Guo, Genliang; Johnson, W.I.; Reeves,T.K.; Sharma,Bijon

    1999-04-27

    To determine current acquisition procedures and costs and to further the goals of the President's Initiative for Native Tribes, a seismic-survey project is to be conducted on Osage tribal lands. The goals of the program are to demonstrate the capabilities, costs, and effectiveness of 3-D seismic work in a small-operator setting and to determine the economics of such a survey. For these purposes, typical small-scale independent-operator practices are being followed and a shallow target chose in an area with a high concentration of independent operators. The results will be analyzed in detail to determine if there are improvements and/or innovations which can be easily introduced in field-acquisition procedures, in processing, or in data manipulation and interpretation to further reduce operating costs and to make the system still more active to the small-scale operator.

  2. 3D Model of the Neal Hot Springs Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

  3. Modeling the GFR with RELAP5-3D

    SciTech Connect (OSTI)

    Cliff B. Davis; Theron D. Marshall; K. D. Weaver

    2005-09-01

    Significant improvements have been made to the RELAP5-3D computer code for analysis of the Gas Fast Reactor (GFR). These improvements consisted of adding carbon dioxide as a working fluid, improving the turbine component, developing a compressor model, and adding the Gnielinski heat transfer correlation. The code improvements were validated, generally through comparisons with independent design calculations. A model of the power conversion unit of the GFR was developed. The model of the power conversion unit was coupled to a reactor model to develop a complete model of the GFR system. The RELAP5 model of the GFR was used to simulate two transients, one initiated by a reactor trip and the other initiated by a loss of load.

  4. TRACE3D. Interactive Beam-Dynamics Program

    SciTech Connect (OSTI)

    Singleton, L.; Yao, C.Y.

    1993-12-01

    TRACE3D is an interactive program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined system. The transport system may consist of the following elements: drift, thin lens, quadrupole, permanent magnet quadrupole, solenoid, doublet, triplet, bending magnet, edge angle (for bend), RF gap, radio-frequency-quadrupole cell, RF cavity, coupled-cavity tank, user-desired element, coordinate rotation, and identical element. The beam is represented by a 6X6 matrix defining a hyper-ellipsoid in six-dimensional phase space. The projection of this hyperellipsoid on any two-dimensional plane is an ellipse that defines the boundary of the beam in that plane.

  5. Visualizing 3D velocity fields near contour surfaces. Revision 1

    SciTech Connect (OSTI)

    Max, N.; Crawfis, R.; Grant, C.

    1994-08-08

    Vector field rendering is difficult in 3D because the vector icons overlap and hide each other. We propose four different techniques for visualizing vector fields only near surfaces. The first uses motion blurred particles in a thickened region around the surface. The second uses a voxel grid to contain integral curves of the vector field. The third uses many antialiased lines through the surface, and the fourth uses hairs sprouting from the surface and then bending in the direction of the vector field. All the methods use the graphics pipeline, allowing real time rotation and interaction, and the first two methods can animate the texture to move in the flow determined by the velocity field.

  6. 3D Model of the San Emidio Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    James E. Faulds

    2013-12-31

    The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30ş eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.

  7. Eigenvalue Contributon Estimator for Sensitivity Calculations with TSUNAMI-3D

    SciTech Connect (OSTI)

    Rearden, Bradley T [ORNL; Williams, Mark L [ORNL

    2007-01-01

    Since the release of the Tools for Sensitivity and Uncertainty Analysis Methodology Implementation (TSUNAMI) codes in SCALE [1], the use of sensitivity and uncertainty analysis techniques for criticality safety applications has greatly increased within the user community. In general, sensitivity and uncertainty analysis is transitioning from a technique used only by specialists to a practical tool in routine use. With the desire to use the tool more routinely comes the need to improve the solution methodology to reduce the input and computational burden on the user. This paper reviews the current solution methodology of the Monte Carlo eigenvalue sensitivity analysis sequence TSUNAMI-3D, describes an alternative approach, and presents results from both methodologies.

  8. Automating the determination of 3D protein structure

    SciTech Connect (OSTI)

    Rayl, K.D.

    1993-12-31

    The creation of an automated method for determining 3D protein structure would be invaluable to the field of biology and presents an interesting challenge to computer science. Unfortunately, given the current level of protein knowledge, a completely automated solution method is not yet feasible, therefore, our group has decided to integrate existing databases and theories to create a software system that assists X-ray crystallographers in specifying a particular protein structure. By breaking the problem of determining overall protein structure into small subproblems, we hope to come closer to solving a novel structure by solving each component. By generating necessary information for structure determination, this method provides the first step toward designing a program to determine protein conformation automatically.

  9. 3D Model of the Neal Hot Springs Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.

  10. 3D Model of the San Emidio Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    James E. Faulds

    The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30ş eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.

  11. Rapid and Inexpensive Reconstruction of 3D Structures for Micro-Objects Using Common Optical Microscopy

    E-Print Network [OSTI]

    Berejnov, V V

    2009-01-01

    A simple method of constructing the 3D surface of non-transparent micro-objects by extending the depth-of-field on the whole attainable surface is presented. The series of images of a sample are recorded by the sequential movement of the sample with respect to the microscope focus. The portions of the surface of the sample appear in focus in the different images in the series. The indexed series of the in-focus portions of the sample surface is combined in one sharp 2D image and interpolated into the 3D surface representing the surface of an original micro-object. For an image acquisition and processing we use a conventional upright stage microscope that is operated manually, the inexpensive Helicon Focus software, and the open source MeshLab software. Three objects were tested: an inclined flat glass slide with an imprinted 10 um calibration grid, a regular metal 100x100 per inch mesh, and a highly irregular surface of a material known as a porous electrode used in polyelectrolyte fuel cells. The accuracy of...

  12. A self-consistent stellar and 3D nebular model for Planetary Nebula IC418

    E-Print Network [OSTI]

    Morisset, C

    2009-01-01

    We present a coherent stellar and nebular model reproducing the observations of the Planetary Nebula IC418. We want to test whether a stellar model obtained by fitting the stellar observations is able to satisfactory ionize the nebula and reproduce the nebular observations, which is by no mean evident. This allows us to determine all the physical parameters of both the star and the nebula, including the abundances and the distance. We used all the observational material available (FUSE, IUE, STIS and optical spectra) to constrain the stellar atmosphere model performed using the CMFGEN code. The photoionization model is done with Cloudy_3D, and is based on CTIO, Lick, SPM, IUE and ISO spectra as well as HST images. More than 140 nebular emission lines are compared to the observed intensities. We reproduce all the observations for the star and the nebula. The 3D morphology of the gas distribution is determined. The effective temperature of the star is 36.7kK. Its luminosity is 7700 solar luminosity. We describe...

  13. Investigation into Nanostructured Lanthanum Halides and CeBr{sub 3} for Nuclear Radiation Detection

    SciTech Connect (OSTI)

    Guss, P., Guise, R., Mukhopadhyay, S., Yuan, D.

    2011-06-22

    This slide-show presents work on radiation detection with nanostructured lanthanum halides and CeBr{sub 3}. The goal is to extend the gamma energy response on both low and high-energy regimes by demonstrating the ability to detect low-energy x-rays and relatively high-energy activation prompt gamma rays simultaneously using the nano-structured lanthanum bromide, lanthanum fluoride, cerium bromide, or other nanocrystal material. Homogeneous and nano structure cases are compared.

  14. A simulation technique for 3D MR-guided acoustic radiation force imaging

    SciTech Connect (OSTI)

    Payne, Allison; Bever, Josh de; Farrer, Alexis; Coats, Brittany; Parker, Dennis L.; Christensen, Douglas A.

    2015-02-15

    Purpose: In magnetic resonance-guided focused ultrasound (MRgFUS) therapies, the in situ characterization of the focal spot location and quality is critical. MR acoustic radiation force imaging (MR-ARFI) is a technique that measures the tissue displacement caused by the radiation force exerted by the ultrasound beam. This work presents a new technique to model the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model. Methods: When a steady-state point-source force acts internally in an infinite homogeneous medium, the displacement of the material in all directions is given by the Somigliana elastostatic tensor. The radiation force field, which is caused by absorption and reflection of the incident ultrasound intensity pattern, will be spatially distributed, and the tensor formulation takes the form of a convolution of a 3D Green’s function with the force field. The dynamic accumulation of MR phase during the ultrasound pulse can be theoretically accounted for through a time-of-arrival weighting of the Green’s function. This theoretical model was evaluated experimentally in gelatin phantoms of varied stiffness (125-, 175-, and 250-bloom). The acoustic and mechanical properties of the phantoms used as parameters of the model were measured using independent techniques. Displacements at focal depths of 30- and 45-mm in the phantoms were measured by a 3D spin echo MR-ARFI segmented-EPI sequence. Results: The simulated displacements agreed with the MR-ARFI measured displacements for all bloom values and focal depths with a normalized RMS difference of 0.055 (range 0.028–0.12). The displacement magnitude decreased and the displacement pattern broadened with increased bloom value for both focal depths, as predicted by the theory. Conclusions: A new technique that models the displacements caused by the radiation force of an ultrasound beam in a homogeneous tissue model theory has been rigorously validated through comparison with experimentally obtained 3D displacement data in homogeneous gelatin phantoms using a 3D MR-ARFI sequence. The agreement of the experimentally measured and simulated results demonstrates the potential to use MR-ARFI displacement data in MRgFUS therapies.

  15. NANOSTRUCTURES, MAGNETIC SEMICONDUCTORS AND SPINELECTRONICS Paata Kervalishvili

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to data storage, switching, lighting and other devices, can lead to substantially new hardwareNANOSTRUCTURES, MAGNETIC SEMICONDUCTORS AND SPINELECTRONICS Paata Kervalishvili Georgian Technical and manipulation on a nanometre scale, which allows the fabrication of nanostructures with the properties mainly

  16. DYNA3D: A nonlinear, explicit, three-dimensional finite element...

    Office of Scientific and Technical Information (OSTI)

    Service, Springfield, VA at www.ntis.gov. This report is the User Manual for the 1993 version of DYNA3D, and also serves as a User Guide. DYNA3D is a nonlinear, explicit,...

  17. Simultaneous Detection and Registration for Ileo-Cecal Valve Detection in 3D CT Colonography

    E-Print Network [OSTI]

    Barbu, Adrian

    Simultaneous Detection and Registration for Ileo-Cecal Valve Detection in 3D CT Colonography Le Lu1-Cecal Valve (ICV) detection in both clean and tagged 3D CT colonography scans. Our final ICV detection system

  18. Fabrication and applications of sub-micron 2D and 3D periodic...

    Office of Scientific and Technical Information (OSTI)

    Fabrication and applications of sub-micron 2D and 3D periodic carbon structures. Citation Details In-Document Search Title: Fabrication and applications of sub-micron 2D and 3D...

  19. Domain Fishing and 3D-JIGSAW: tools for protein comparative modelling

    E-Print Network [OSTI]

    Moreira, Bruno Contreras

    Domain Fishing and 3D-JIGSAW: tools for protein comparative modelling Bruno Contreras Fishing up to 7 alternative alignments #12;3D-JIGSAW Example #12;EVA: continuous evaluation of servers

  20. Statistical methods for 2D-3D registration of optical and LIDAR images

    E-Print Network [OSTI]

    Mastin, Dana Andrew

    2009-01-01

    Fusion of 3D laser radar (LIDAR) imagery and aerial optical imagery is an efficient method for constructing 3D virtual reality models. One difficult aspect of creating such models is registering the optical image with the ...