Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Nanostructured composite reinforced material  

DOE Patents [OSTI]

A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

Seals, Roland D. (Oak Ridge, TN); Ripley, Edward B. (Knoxville, TN); Ludtka, Gerard M. (Oak Ridge, TN)

2012-07-31T23:59:59.000Z

2

Nanostructured materials for hydrogen storage  

DOE Patents [OSTI]

A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

2007-12-04T23:59:59.000Z

3

Nanostructured Electrode Materials for Supercapacitors  

E-Print Network [OSTI]

and batteries/fuel cells. Nanostructured electrode materials have demonstrated superior electrochemical of polymethine dyes electronic spectra is crucial for successful design of the new molecules with optimized

Wu, Shin-Tson

4

Lie symmetries and 2D Material Physics  

E-Print Network [OSTI]

Inspired from Lie symmetry classification, we establish a correspondence between rank two Lie symmetries and 2D material physics. The material unit cell is accordingly interpreted as the geometry of a root system. The hexagonal cells, appearing in graphene like models, are analyzed in some details and are found to be associated with A_2 and G_2 Lie symmetries. This approach can be applied to Lie supersymmetries associated with fermionic degrees of freedom. It has been suggested that these extended symmetries can offer a new way to deal with doping material geometries. Motivated by Lie symmetry applications in high energy physics, we speculate on a possible connection with (p,q) brane networks used in the string theory compactification on singular Calabi-Yau manifolds.

Adil Belhaj; Moulay Brahim Sedra

2014-04-18T23:59:59.000Z

5

Preparation of Nanostructured Materials Having Improved Ductility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Preparation of Nanostructured Materials Having Improved Ductility Preparation of Nanostructured Materials Having Improved Ductility Preparation of Nanostructured Materials Having Improved Ductility A method for preparing a nanostructured aluminum alloy involves heating an aluminum alloy workpiece at temperature sufficient to produce a single phase coarse grained aluminum alloy. June 20, 2013 Preparation of Nanostructured Materials Having Improved Ductility A method for preparing a nanostructured aluminum alloy involves heating an aluminum alloy workpiece at temperature sufficient to produce a single phase coarse grained aluminum alloy. Available for thumbnail of Feynman Center for Innovation (505) 665-9090 Email Preparation of Nanostructured Materials Having Improved Ductility A method for preparing a nanostructured aluminum alloy involves heating an

6

Method of fabrication of anchored nanostructure materials  

SciTech Connect (OSTI)

Methods for fabricating anchored nanostructure materials are described. The methods include heating a nano-catalyst under a protective atmosphere to a temperature ranging from about 450.degree. C. to about 1500.degree. C. and contacting the heated nano-catalysts with an organic vapor to affix carbon nanostructures to the nano-catalysts and form the anchored nanostructure material.

Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

2013-11-26T23:59:59.000Z

7

Anchored nanostructure materials and method of fabrication  

DOE Patents [OSTI]

Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

2012-11-27T23:59:59.000Z

8

Nanostructured Thermoelectric Materials and High Efficiency Power...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanostructured Thermoelectric Materials and High Efficiency Power Generation Modules Home Author: T. Hogan, A. Downey, J. Short, S. D. Mahanti, H. Schock, E. Case Year: 2007...

9

Innovative Nano-structuring Routes for Novel ThermoelectricMaterials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nano-structuring Routes for Novel Thermoelectric Materials;Phonon Blocking & DOS Engineering Innovative Nano-structuring Routes for Novel Thermoelectric Materials;Phonon Blocking &...

10

Nanostructured Materials for Energy Generation and Storage  

E-Print Network [OSTI]

efficiency of the thermoelectric energy generation and battery storageefficiency of the thermoelectric energy generation and battery storagebattery electrodes suggest that the use of nanostructured materials can substantially improve the thermal management of the batteries and their energy storage efficiency.

Khan, Javed Miller

2012-01-01T23:59:59.000Z

11

Subtask 5: Functional nanostructured transparent electrode materials...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: Functional nanostructured transparent electrode materials All papers by year Subtask 1 Subtask 2 Subtask 3 Subtask 4 Subtask 5 Jeon, K.-W. and Seo, D.-K.(2014)Concomitant...

12

Nanostructured Materials as Anodes | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2010 -- Washington D.C. es063whittingham2010p.pdf More Documents & Publications Nano-structured Materials as Anodes Metal-Based, High-Capacity Lithium-Ion Anodes...

13

Radiative heat transfer in 2D Dirac materials  

E-Print Network [OSTI]

We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. Finally, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.

Pablo Rodriguez-Lopez; Wang-Kong Tse; Diego A. R. Dalvit

2015-02-02T23:59:59.000Z

14

Radiative heat transfer in 2D Dirac materials  

E-Print Network [OSTI]

We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene. Neglecting spatial dispersion, we derive both numerically and analytically the short-distance asymptotics of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. We argue that this scaling law for the near-field heat transfer is generic for any two-dimensional systems.

Pablo Rodriguez-Lopez; Wang-Kong Tse; Diego A. R. Dalvit

2014-10-16T23:59:59.000Z

15

Thermal Energy Transport in Nanostructured Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Energy Transport in Nanostructured Materials Thermal Energy Transport in Nanostructured Materials Speaker(s): Ravi Prasher Date: August 25, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ashok Gadgil World energy demand is expected to reach ~30 TW by 2050 from the current demand of ~13 TW. This requires substantial technological innovation. Thermal energy transport and conversion play a very significant role in more than 90% of energy technologies. All four modes of thermal energy transport, conduction, convection, radiation, and phase change (e.g. evaporation/boiling) are important in various energy technologies such as vapor compression power plants, refrigeration, internal combustion engines and building heating/cooling. Similarly thermal transport play a critical role in electronics cooling as the performance and reliability of

16

3D Printing of nanostructured catalytic materials | The Ames...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3D Printing of nanostructured catalytic materials Over the last couple of decades, scientists have been able to develop a tremendous control over the synthesis and properties of...

17

Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1  

E-Print Network [OSTI]

Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1. Materials with a large thermoelectric figure of merit can be used to develop efficient solid-state devices nanocomposites, aiming at developing high efficiency thermoelectric energy conversion materials. 1. Introduction

Chen, Gang

18

Electron and Phonon Engineering in Nanostructured Thermoelectric Materials Zhifeng Ren  

E-Print Network [OSTI]

2.00pm Electron and Phonon Engineering in Nanostructured Thermoelectric Materials Zhifeng Ren Department of Physics, Boston College, Chestnut Hill, Massachusetts Abstract Thermoelectric materials a successful case for potentially large scale application using thermoelectric materials. Biography Dr Zhifeng

Levi, Anthony F. J.

19

Final Technical Progress Report NANOSTRUCTURED MAGNETIC MATERIALS  

SciTech Connect (OSTI)

This report describes progress made during the final phase of our DOE-funded program on Nanostructured Magnetic Materials. This period was quite productive, resulting in the submission of three papers and presentation of three talks at international conferences and three seminars at research institutions. Our DOE-funded research efforts were directed toward studies of magnetism at surfaces and interfaces in high-quality, well-characterized materials prepared by Molecular Beam Epitaxy (MBE) and sputtering. We have an exceptionally well-equipped laboratory for these studies, with: Thin film preparation equipment; Characterization equipment; Equipment to study magnetic properties of surfaces and ultra-thin magnetic films and interfaces in multi-layers and superlattices.

Charles M. Falco

2012-09-13T23:59:59.000Z

20

Nanostructured Materials for Energy Generation and Storage  

E-Print Network [OSTI]

for Electrochemical Energy Storage Nanostructured Electrodesof Electrode Design for Energy Storage and Generation .batteries and their energy storage efficiency. vii Contents

Khan, Javed Miller

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

2D Dirac Materials: From Graphene to Topological Insulators  

E-Print Network [OSTI]

Hor, R. J. Cava and M. Z. Hasan, Nature, 452, 970 (2007). [14] M.Z. Hasan, and C. L Kane, Rev. Mod. Phys. 82, 3045 (Cava, A. Bansil, and M. Z. Hasan, Nature Materials, 9, 546 (

Teweldebrhan, Desalegne Bekuretsion

2011-01-01T23:59:59.000Z

22

Potential applications of nanostructured materials in nuclear waste management.  

SciTech Connect (OSTI)

This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.

Braterman, Paul S. (The University of North Texas, Denton, TX); Phol, Phillip Isabio; Xu, Zhi-Ping (The University of North Texas, Denton, TX); Brinker, C. Jeffrey; Yang, Yi (University of New Mexico, Albuquerque, NM); Bryan, Charles R.; Yu, Kui; Xu, Huifang (University of New Mexico, Albuquerque, NM); Wang, Yifeng; Gao, Huizhen

2003-09-01T23:59:59.000Z

23

Thermoelectric energy conversion using nanostructured materials  

E-Print Network [OSTI]

High performance thermoelectric materials in a wide range of temperatures are essential to broaden the application spectrum of thermoelectric devices. This paper presents experiments on the power and efficiency characteristics ...

Chen, Gang

24

New frontier in thin film epitaxy and nanostructured materials  

Science Journals Connector (OSTI)

Nanomaterials hold the key to the success of nanotechnology. This review starts with a new paradigm for thin film growth based upon matching of integral multiples of lattice planes across the film-substrate interface. This paradigm of domain matching epitaxy (DME) unifies small as well as large misfit systems utilising the concept of systematic domain variation. By controlling the kinetics of clustering and energetics of interfaces, it is possible to obtain nanoclusters of uniform size and create novel nanostructured materials by design, where relative orientation with respect to matrix can be controlled by DME. In nanostructured materials with unit dimensions 1â??100 nm, science and processing challenges include self-assembly processing, control of interfacial atoms and energetics, quantum confinement issues, nanoscale structure-property correlations. In addition, metastability of interfaces should be controlled for reliability in manufacturing of nanosystems. This paper presents fundamentals of synthesis and processing of nanomaterials, role of interfaces, nanoscale characterisation to establish atomic structure-property correlations and modelling to create novel nanostructured structural, magnetic, photonic and electronic systems with unique and improved properties for next-generation systems with new functionality.

Jagdish Narayan

2009-01-01T23:59:59.000Z

25

Novel nano-structured materials: synthesis and application  

Science Journals Connector (OSTI)

Novel nano-structured materials: nano-particle materials like V-SiO2, TiO2 and nano-sized pore materials like Si-MCM-41, Ti-MCM-41 and Al-MCM-41Analogues were successfully synthesised using different methods: precipitation, sol-gel, micro-emulsion and hydrothermal treatment. These obtained nano-structured materials were characterised by using different physico-chemical methods: FE-SEM, TEM, XRD, IR, UV-vis and nitrogen adsorption/desorption (BET). These materials were examined to investigate adsorptive and catalytic properties of the materials. Nano TiO2 exhibited highly photocatalytic activity in the degradation of methyl red (MR). Pure silica form MCM-41 (Si-MCM-41Analogue) was a selective absorbent for VOCs (m-xylene) removal. Ti substituted MCM-41Analogue exhibited highly photocatalytic activity in the degradation of red phenol (RP) while Al substituted MCM-41Analogue showed high catalytic cracking of petroleum residue (Bach Ho oil field – Vietnam). The obtained results are discussed and rationalised.

Vu Anh Tuan; Tran Manh Cuong; Dang Tuyet Phuong; Tran Thi Kim Hoa; Bui Thi Hai Linh; Nguyen Dinh Tuyen; Nguyen Quoc Tuan

2011-01-01T23:59:59.000Z

26

High volume production of nanostructured materials  

DOE Patents [OSTI]

A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

Ripley, Edward B. (Knoxville, TN); Morrell, Jonathan S. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Ludtka, Gerard M. (Oak Ridge, TN)

2009-10-13T23:59:59.000Z

27

Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data  

E-Print Network [OSTI]

Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity materials by joint 2D inversion of dc resistivity and seismic data, Geophys. Res. Lett., 30(13), 1658, doi electrical resistivity and seismic compressional (P) wave velocity in heterogeneous near-surface materials

Meju, Max

28

Femto-second laser fabrication of phase change material nanostructures for novel applications  

Science Journals Connector (OSTI)

In this paper, we will demonstrate our recent results of laser lithography of nanostructures of phase change material for novel nanophotonic application.

Tseng, Ming Lun; Chu, Cheng Hung; Chang, Chia Min; Lin, Wei Chih; Chu, Nien-Nan; Mansuripur, Masud; Liu, Ai Qun; Tsai, Din Ping

29

Giant light extraction enhancement of medical imaging scintillation materials using biologically inspired integrated nanostructures  

Science Journals Connector (OSTI)

We have utilized biologically inspired (bio-inspired), moth-eye nanostructures and further improved this biomimetic structure to enhance the scintillator materials external quantum...

Pignalosa, P; Liu, Bo; Chen, Hong; Smith, H; Yi, Yasha

2012-01-01T23:59:59.000Z

30

Nanomanufacturing : nano-structured materials made layer-by-layer.  

SciTech Connect (OSTI)

Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen; Tjiptowidjojo, Kristianto (University of New Mexico); Reedy, Earl David, Jr.; Fan, Hongyou; Schunk, Peter Randall; Chandross, Michael Evan; Roberts, Scott A.

2011-10-01T23:59:59.000Z

31

High performance capacitors using nano-structure multilayer materials fabrication  

DOE Patents [OSTI]

A high performance capacitor is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The notepad capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

1995-05-09T23:59:59.000Z

32

High performance capacitors using nano-structure multilayer materials fabrication  

DOE Patents [OSTI]

A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

Barbee, Jr., Troy W. (Palo Alto, CA); Johnson, Gary W. (Livermore, CA); O'Brien, Dennis W. (Livermore, CA)

1995-01-01T23:59:59.000Z

33

High performance capacitors using nano-structure multilayer materials fabrication  

DOE Patents [OSTI]

A high performance capacitor is described which is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200--300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The ``notepad`` capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

1996-01-23T23:59:59.000Z

34

High performance capacitors using nano-structure multilayer materials fabrication  

DOE Patents [OSTI]

A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

Barbee, Jr., Troy W. (Palo Alto, CA); Johnson, Gary W. (Livermore, CA); O'Brien, Dennis W. (Livermore, CA)

1996-01-01T23:59:59.000Z

35

Routes to Nanostructured Inorganic Materials with Potential for Solar Energy Applications  

Science Journals Connector (OSTI)

Routes to Nanostructured Inorganic Materials with Potential for Solar Energy Applications ... The behavior of the transition energies with temp. is explained by a self-energy correction attributed to the interaction between electrons and nonpolar phonons. ...

Karthik Ramasamy; Mohammad Azad Malik; Neerish Revaprasadu; Paul O’Brien

2013-06-18T23:59:59.000Z

36

Tuning energy transport in solar thermal systems using nanostructured materials  

E-Print Network [OSTI]

Solar thermal energy conversion can harness the entire solar spectrum and theoretically achieve very high efficiencies while interfacing with thermal storage or back-up systems for dispatchable power generation. Nanostructured ...

Lenert, Andrej

2014-01-01T23:59:59.000Z

37

Workshop in Novel Emitters and Nanostructured Materials | U.S. DOE Office  

Office of Science (SC) Website

Workshop in Novel Emitters and Nanostructured Workshop in Novel Emitters and Nanostructured Materials Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications Contact BES Home 09.01.11 Workshop in Novel Emitters and Nanostructured Materials Print Text Size: A A A Subscribe FeedbackShare Page The Solid-State Lighting Science Energy Frontier Research Center (SSLS EFRC) is hosting a workshop in conjunction with CINT's Annual User Conference on September 14, 2011. The workshop covers topics on Novel Emitters and Light-Matter Interaction in Nanostructured Materials, and features a plenary talk by Lars Samuelson, Director of the Nanometer Structure Consortium at Lund University. Additional speakers include John Schlager, NIST; Silvija Gradecak, MIT;

38

Method of making nanopatterns and nanostructures and nanopatterned functional oxide materials  

DOE Patents [OSTI]

Method for nanopatterning of inorganic materials, such as ceramic (e.g. metal oxide) materials, and organic materials, such as polymer materials, on a variety of substrates to form nanopatterns and/or nanostructures with control of dimensions and location, all without the need for etching the materials and without the need for re-alignment between multiple patterning steps in forming nanostructures, such as heterostructures comprising multiple materials. The method involves patterning a resist-coated substrate using electron beam lithography, removing a portion of the resist to provide a patterned resist-coated substrate, and spin coating the patterned resist-coated substrate with a liquid precursor, such as a sol precursor, of the inorganic or organic material. The remaining resist is removed and the spin coated substrate is heated at an elevated temperature to crystallize the deposited precursor material.

Dravid, Vinayak P; Donthu, Suresh K; Pan, Zixiao

2014-02-11T23:59:59.000Z

39

Thermal Characterization of Nanostructures and Advanced Engineered Materials  

E-Print Network [OSTI]

paraffin Composite Phase Change Material,” Carbon vol. 48,EG)/paraffin composite phase change materials (PCMs) [29] as

Goyal, Vivek Kumar

2011-01-01T23:59:59.000Z

40

Development of Nanostructured Materials with Improved Radiation Tolerance for Advanced Nuclear Systems  

SciTech Connect (OSTI)

This project will explore the fundamental mechanisms through which interfaces in nanolayered structures and grain boundaries of bulk nanomaterials are able to attract and rapidly eliminate point defects and unwanted foreign species. Candidate materials that will be studied include both nanostructured multilayer composites synthesized by magnetron sputtering and structural bulk nanomaterials produced by severed plastic deformation, equal channel angular extrusion.

Zinghang Zhang; K. Ted Hartwig

2009-08-12T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Chemically modified and nanostructured porous silicon as a drug delivery material and device  

E-Print Network [OSTI]

Sailor, M. J. , Engineering the chemistry and nanostructureSailor, M. J. , Engineering the chemistry and nanostructureSailor, M. J. , Engineering the chemistry and nanostructure

Anglin, Emily Jessica

2007-01-01T23:59:59.000Z

42

Wear-resistance and hardness: Are they directly related for nanostructured hard materials?  

Science Journals Connector (OSTI)

Abstract The major challenge in the field of cemented carbides and other hard materials is to obtain their better combination of hardness, wear-resistance and fracture toughness. It is well known that the dependence of abrasion wear on fracture toughness for WC–Co cemented carbides is represented by a relatively narrow band and it is hardly possible to “break away” out from it by the use of conventional approaches based on varying the WC mean grain size and Co content. Also, it is well known that the wear-resistance of conventional cemented carbides depends mainly on their hardness. The major objective of this paper is to establish what will happen with the wear-resistance of hard materials as a result of their nanostructuring when the hardness is nearly the same as for conventional WC–Co cemented carbides. The results obtained provide clear evidence that, if one enters the region of nanostructured materials with the mean grain size of less than 10 nm, traditional wisdom indicating that the wear-resistance is directly related to the hardness appears not to be valid. In some cases of such nanostructured materials, it can be possible to achieve the dramatically improved wear-resistance compared to that of conventional WC–Co cemented carbides at nearly the same level of hardness and fracture toughness. The abovementioned is based on considering hard nanomaterials of the following four types: (1) WC–Co cemented carbides with nanograin reinforced binder, (2) near-nano WC–Co cemented carbides, (3) cemented carbides of the W–C–Cr–Si–Fe system for hard-facing having a nanostructured Fe-based binder, and (4) CVD hard materials consisting of nanostructured W2C grains embedded in a tungsten metal binder.

I. Konyashin; B. Ries; D. Hlawatschek; Y. Zhuk; A. Mazilkin; B. Straumal; F. Dorn; D. Park

2014-01-01T23:59:59.000Z

43

Optoelectronics of 2D Materials | MIT-Harvard Center for Excitonics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

University of Washington focuses on creation, control, and understanding of novel optoelectronic devices based on two-dimensional quantum materials. Selected awards include DAPRA...

44

Exciton transport and coherence in molecular and nanostructured materials  

E-Print Network [OSTI]

Over the past 20 years a new classes of optically active materials have been developed that are composites of nano-engineered constituents such as molecules, polymers, and nanocrystals. These disordered materials have ...

Akselrod, Gleb M. (Gleb Markovitch)

2013-01-01T23:59:59.000Z

45

Aerogels and Sol–Gel Composites as Nanostructured Energetic Materials  

Science Journals Connector (OSTI)

In the last 10 years there have been a significant number of investigations of the application of aerogels and sol–gel-derived materials and methods to the field of energetic materials (e.g., explosives, prope...

Alexander E. Gash; Randall L. Simpson; Joe H. Satcher Jr

2011-01-01T23:59:59.000Z

46

Nanostructures having high performance thermoelectric properties  

DOE Patents [OSTI]

The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz

2014-05-20T23:59:59.000Z

47

Method of producing catalytic materials for fabricating nanostructures  

DOE Patents [OSTI]

Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.

Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

2013-02-19T23:59:59.000Z

48

High-capacity nanostructured germanium-containing materials and lithium alloys thereof  

DOE Patents [OSTI]

Electrodes comprising an alkali metal, for example, lithium, alloyed with nanostructured materials of formula Si.sub.zGe.sub.(z-1), where 0

Graetz, Jason A. (Upton, NY); Fultz, Brent T. (Pasadena, CA); Ahn, Channing (Pasadena, CA); Yazami, Rachid (Los Angeles, CA)

2010-08-24T23:59:59.000Z

49

Nanostructured energetic materials using sol–gel methodologies  

Science Journals Connector (OSTI)

We have utilized a sol–gel synthetic approach in preparing nano-sized transition metal oxide components for new energetic nanocomposites. Nanocomposites of Fe2O3/Al(s), are readily produced from a solution of Fe(III) salt by adding an organic epoxide and a powder of the fuel metal. These materials can be processed to aerogel or xerogel monolithic composite solids. High resolution transmission electron microscopy (HRTEM) of the dried energetic nanocomposites reveal that the metal oxide component consists of small (3–10 nm) clusters of Fe2O3 that are in intimate contact with ultra fine grain (UFG) ?25 nm diameter Al metal particles. HRTEM results also indicate that the Al particles have an oxide coating ?5 nm thick. This value agrees well with analysis of pristine UFG Al powder and indicates that the sol–gel synthetic method and processing does not significantly perturb the fuel metal. Both qualitative and quantitative characterization has shown that these materials are indeed energetic. The materials described here are relatively insensitive to standard impact, spark, and friction tests, results of which will be presented. Qualitatively, it does appear that these energetic nanocomposites burn faster and are more sensitive to thermal ignition than their conventional counterparts and that aerogel materials are more sensitive to ignition than xerogels. We believe that the sol–gel method will at the very least provide processing advantages over conventional methods in the areas of cost, purity, homogeneity, and safety and potentially yield energetic materials with interesting and special properties.

T.M Tillotson; A.E Gash; R.L Simpson; L.W Hrubesh; J.H Satcher Jr.; J.F Poco

2001-01-01T23:59:59.000Z

50

Methods for high volume production of nanostructured materials  

DOE Patents [OSTI]

A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

Ripley, Edward B. (Knoxville, TN); Morrell, Jonathan S. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Ludtka, Gerald M. (Oak Ridge, TN)

2011-03-22T23:59:59.000Z

51

Nanostructured material for advanced energy storage : magnesium battery cathode development.  

SciTech Connect (OSTI)

Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

Sigmund, Wolfgang M. (University of Florida, Gainesville, FL); Woan, Karran V. (University of Florida, Gainesville, FL); Bell, Nelson Simmons

2010-11-01T23:59:59.000Z

52

Special issue to “ICMAT 2009, Symposium F: nanostructured materials for electrochemical energy systems: lithium batteries, supercapacitors and fuel cells, June 28-July 3, 2009, Singapore”  

Science Journals Connector (OSTI)

The Symposium F on “Nanostructured Materials for Electrochemical Energy Systems: Lithium Batteries, Supercapacitors and Fuel Cells” provided an excellent opportunity for interdisciplinary ... (cathodes and anodes...

Palani Balaya; San Ping Jiang; Atsuo Yamada…

2010-10-01T23:59:59.000Z

53

The Challenges and Opportunities of Measuring Properties of Nanoparticles and Nanostructured Materials: Importance of a Multi-Technique Approach  

SciTech Connect (OSTI)

Nanostructured materials are increasingly subject to nearly every type of chemical and physical analysis possible. Because of their small feature size there is a significant focus on tools with high spatial resolution. Since, in addition, because of their high surface area, it is natural to characterize nanomaterials using tools designed to analyze surfaces. Regardless of the approach, nanostructured materials present a variety of obstacles to useful analysis. Specimen handling, contamination, environmental conditions and time can be important for analysis of many materials but are of increased concern for nanomaterials. Impacts of shape and stability of nanostructured materials are less explored. In a program focused on iron nanoparticles we use a combination of tools for routine analysis including XPS, TEM, and XRD and apply other methods as needed to obtain essential information.

Baer, Donald R.; Engelhard, Mark H.; Wang, Chong M.; Lea, Alan S.; Pecher, Klaus H.

2006-04-26T23:59:59.000Z

54

Mechanical Behavior of Indium Nanostructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mechanical Behavior of Indium Nanostructures Mechanical Behavior of Indium Nanostructures Print Wednesday, 26 May 2010 00:00 Indium is a key material in lead-free solder...

55

Optoacoustic Microscopy for Investigation of Material Nanostructures-Embracing the Ultrasmall, Ultrafast, and the Invisible  

SciTech Connect (OSTI)

The goal of this grant was the development of a new type of scanning acoustic microscope for nanometer resolution ultrasound imaging, based on ultrafast optoacoustics (>GHz). In the microscope, subpicosecond laser pulses was used to generate and detect very high frequency ultrasound with nanometer wavelengths. We report here on the outcome of the 3-year DOE/BES grant which involved the design, multifaceted construction, and proof-of-concept demonstration of an instrument that can be used for quantitative imaging of nanoscale material features – including features that may be buried so as to be inaccessible to conventional lightwave or electron microscopies. The research program has produced a prototype scanning optoacoustic microscope which, in combination with advanced computational modeling, is a system-level new technology (two patents issues) which offer novel means for precision metrology of material nanostructures, particularly those that are of contemporary interest to the frontline micro- and optoelectronics device industry. For accomplishing the ambitious technical goals, the research roadmap was designed and implemented in two phases. In Phase I, we constructed a “non-focusing” optoacoustic microscope instrument (“POAM”), with nanometer vertical (z-) resolution, while limited to approximately 10 micrometer scale lateral recolution. The Phase I version of the instrument which was guided by extensive acoustic and optical numerical modeling of the basic underlying acoustic and optical physics, featured nanometer scale close loop positioning between the optoacoustic transducer element and a nanostructured material sample under investigation. In phase II, we implemented and demonstrated a scanning version of the instrument (“SOAM”) where incident acoustic energy is focused, and scanned on lateral (x-y) spatial scale in the 100 nm range as per the goals of the project. In so doing we developed advanced numerical simulations to provide computational models of the focusing of multi-GHz acoustic waves to the nanometer scale and innovated a series fabrication approaches for a new type of broadband high-frequency acoustic focusing microscope objective by applying methods on nanoimprinting and focused-ion beam techniques. In the following, the Phase I and Phase II instrument development is reported as Section II. The first segment of this section describes the POAM instrument and its development, while including much of the underlying ultrafast acoustic physics which is common to all of our work for this grant. Then, the science and engineering of the SOAM instrument is described, including the methods of fabricating new types of acoustic microlenses. The results section is followed by reports on publications (Section III), Participants (Section IV), and statement of full use of the allocated grant funds (Section V).

Nurmikko, Arto; Humphrey, Maris

2014-07-10T23:59:59.000Z

56

Nanostructure, Chemistry and Crystallography of Iron Nitride...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nanostructure, Chemistry and Crystallography of Iron Nitride Magnetic Materials by Ultra-High-Resolution Electron Microscopy and Related Methods Nanostructure, Chemistry and...

57

Surface Anchoring of Nematic Phase on Carbon Nanotubes: Nanostructure of Ultra-High Temperature Materials  

SciTech Connect (OSTI)

Nuclear energy is a dependable and economical source of electricity. Because fuel supply sources are available domestically, nuclear energy can be a strong domestic industry that can reduce dependence on foreign energy sources. Commercial nuclear power plants have extensive security measures to protect the facility from intruders [1]. However, additional research efforts are needed to increase the inherent process safety of nuclear energy plants to protect the public in the event of a reactor malfunction. The next generation nuclear plant (NGNP) is envisioned to utilize a very high temperature reactor (VHTR) design with an operating temperature of 650-1000�°C [2]. One of the most important safety design requirements for this reactor is that it must be inherently safe, i.e., the reactor must shut down safely in the event that the coolant flow is interrupted [2]. This next-generation Gen IV reactor must operate in an inherently safe mode where the off-normal temperatures may reach 1500�°C due to coolant-flow interruption. Metallic alloys used currently in reactor internals will melt at such temperatures. Structural materials that will not melt at such ultra-high temperatures are carbon/graphtic fibers and carbon-matrix composites. Graphite does not have a measurable melting point; it is known to sublime starting about 3300�°C. However, neutron radiation-damage effects on carbon fibers are poorly understood. Therefore, the goal of this project is to obtain a fundamental understanding of the role of nanotexture on the properties of resulting carbon fibers and their neutron-damage characteristics. Although polygranular graphite has been used in nuclear environment for almost fifty years, it is not suitable for structural applications because it do not possess adequate strength, stiffness, or toughness that is required of structural components such as reaction control-rods, upper plenum shroud, and lower core-support plate [2,3]. For structural purposes, composites consisting of strong carbon fibers embedded in a carbon matrix are needed. Such carbon/carbon (C/C) composites have been used in aerospace industry to produce missile nose cones, space shuttle leading edge, and aircraft brake-pads. However, radiation-tolerance of such materials is not adequately known because only limited radiation studies have been performed on C/C composites, which suggest that pitch-based carbon fibers have better dimensional stability than that of polyacrylonitrile (PAN) based fibers [4]. The thermodynamically-stable state of graphitic crystalline packing of carbon atoms derived from mesophase pitch leads to a greater stability during neutron irradiation [5]. The specific objectives of this project were: (i) to generating novel carbonaceous nanostructures, (ii) measure extent of graphitic crystallinity and the extent of anisotropy, and (iii) collaborate with the Carbon Materials group at Oak Ridge National Lab to have neutron irradiation studies and post-irradiation examinations conducted on the carbon fibers produced in this research project.

Ogale, Amod A

2012-04-27T23:59:59.000Z

58

Three-dimensional graphene/LiFePO{sub 4} nanostructures as cathode materials for flexible lithium-ion batteries  

SciTech Connect (OSTI)

Graphical abstract: Graphene/LiFePO{sub 4} composites as a high-performance cathode material for flexible lithium-ion batteries have been prepared by using a co-precipitation method to synthesize graphene/LiFePO4 powders as precursors and then followed by a solvent evaporation process. - Highlights: • Flexible LiFePO{sub 4}/graphene films were prepared first time by a solvent evaporation process. • The flexible electrode exhibited a high discharge capacity without conductive additives. • Graphene network offers the electrode adequate strength to withstand repeated flexing. - Abstract: Three-dimensional graphene/LiFePO{sub 4} nanostructures for flexible lithium-ion batteries were successfully prepared by solvent evaporation method. Structural characteristics of flexible electrodes were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrochemical performance of graphene/LiFePO{sub 4} was examined by a variety of electrochemical testing techniques. The graphene/LiFePO{sub 4} nanostructures showed high electrochemical properties and significant flexibility. The composites with low graphene content exhibited a high capacity of 163.7 mAh g{sup ?1} at 0.1 C and 114 mAh g{sup ?1} at 5 C without further incorporation of conductive agents.

Ding, Y.H., E-mail: yhding@xtu.edu.cn [College of Chemical Engineering, Xiangtan University, Hunan 411105 (China); Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Ren, H.M. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Huang, Y.Y. [BTR New Energy Materials Inc., Shenzhen 518000 (China); Chang, F.H.; Zhang, P. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China)

2013-10-15T23:59:59.000Z

59

Complexed Multifunctional Metallic and Chalcogenide Nanostructures as Theranostic Agents.  

E-Print Network [OSTI]

??Nanostructures have attracted substantial attention due to their distinctive properties and various applications. Nanostructures consisting of multiple morphologies and/or materials have recently become the focus… (more)

Young, Joseph

2013-01-01T23:59:59.000Z

60

Mechanical Behavior of Indium Nanostructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended...

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Nanostructured thin film thermoelectric composite materials using conductive polymer PEDOT:PSS  

E-Print Network [OSTI]

Thermoelectric materials have the ability to convert heat directly into electricity. This clean energy technology has advantages over other renewable technologies in that it requires no sunlight, has no moving parts, and ...

Kuryak, Chris A. (Chris Adam)

2013-01-01T23:59:59.000Z

62

Facile synthesis of nanostructured vanadium oxide as cathode materials for efficient Li-ion batteries  

E-Print Network [OSTI]

approximately 100 nm in width and 1­2 mm in length have been fabricated via the hydrothermal process microspheres;10 hydrothermal synthesis of VO2 (B) nanobelts,11,12 nanorods,13 nanoflakes and nanoflowers.14 materials, long fabrication times and complicated processing methods, which in turn result in a high cost

Cao, Guozhong

63

Vanadium oxide based nanostructured materials for catalytic oxidative dehydrogenation of propane : effect of heterometallic centers on the catalyst performance.  

SciTech Connect (OSTI)

Catalytic properties of a series of new class of catalysts materials-[Co{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42} (XO{sub 4})].24H{sub 2}O (VNM-Co), [Fe{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(XO{sub 4})].24H{sub 2}O (VNM-Fe) (X = V, S) and [H{sub 6}Mn{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(VO{sub 4})].30H{sub 2}O for the oxidative dehydrogenation of propane is studied. The open-framework nanostructures in these novel materials consist of three-dimensional arrays of {l_brace}V{sub 18}O{sub 42}(XO{sub 4}){r_brace} (X = V, S) clusters interconnected by {l_brace}-O-M-O-{r_brace} (M = Mn, Fe, Co) linkers. The effect of change in the heterometallic center M (M = Mn, Co, Fe) of the linkers on the catalyst performance was studied. The catalyst material with Co in the linker showed the best performance in terms of propane conversion and selectivity at 350 C. The material containing Fe was most active but least selective and Mn containing catalyst was least active. The catalysts were characterized by Temperature Programmed Reduction (TPR), BET surface area measurement, Diffuse Reflectance Infrared Fourier Transform Spectroscopy, and X-ray Absorption Spectroscopy. TPR results show that all three catalysts are easily reducible and therefore are active at relatively low temperature. In situ X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure spectroscopy (EXAFS) studies revealed that the oxidation state of Co(II) remained unchanged up to 425 C (even after pretreatment). The reduction of Co(II) into metallic form starts at 425 C and this process is completed at 600 C.

Khan, M. I.; Deb, S.; Aydemir, K.; Alwarthan, A. A.; Chattopadhyay, S.; Miller, J. T.; Marshall, C. L. (Chemical Sciences and Engineering Division); (Illinois Inst. of Tech.); (King Saud Univ.)

2010-01-01T23:59:59.000Z

64

Nanostructured Materials by Machining  

Broader source: Energy.gov [DOE]

Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

65

Three dimensional, bulk nanostructured materials and composites have matured into a new class of materials that is being considered in a variety of engineering applications. The successful synthesis of large-scale nanostructured materials is of  

E-Print Network [OSTI]

Engineering and Materials Science at UC Davis., where he was promoted to Distinguished Professor in 2007. His Science University of California, Davis School for Engineering of Matter, Transport & Energy Reception of the University of California, Davis, from January 2009 to December 2010. Prior to arriving at Davis, Lavernia

66

Nanostructures in Skutterudites | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Nanostructures in Skutterudites Recent Progress in the Development of N-type Skutterudites Overview of Research on Thermoelectric Materials and Devices in China...

67

Nanostructured Thermoelectrics. The New Paradigm | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

figure of merit of bulk nanostructured thermoelectric and materials using low cost earth abundant elements kanatzidis.pdf More Documents & Publications DOENSF Thermoelectric...

68

Nanostructured photocatalysts for green chemistry and sustainable...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanostructured photocatalysts for green chemistry and sustainable catalysis Nanoscale materials with precise structure and composition offer unique opportunities in the development...

69

Molecular nanostructure and nanotechnology  

Science Journals Connector (OSTI)

...Molecular nanostructure and nanotechnology compiled and edited by Chunli...Molecular nanostructure and nanotechnology Chunli Bai 1 Chen Wang 2...Molecular nanostructure and nanotechnology . This Theme Issue exemplifies...

2013-01-01T23:59:59.000Z

70

Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy.  

E-Print Network [OSTI]

??The ability to make materials with nanoscale dimensions opens vast opportunities for creating custom materials with unique properties. The properties of materials on the nanoscale… (more)

Zaniewski, Anna Monro

2012-01-01T23:59:59.000Z

71

NANOSTRUCTURE PATTERNING UNDER ENERGETIC PARTICLE BEAM IRRADIATION  

SciTech Connect (OSTI)

Energetic ion bombardment can lead to the development of complex and diverse nanostructures on or beneath the material surface through induced self-organization processes. These self-organized structures have received particular interest recently as promising candidates as simple, inexpensive, and large area patterns, whose optical, electronic and magnetic properties are different from those in the bulk materials [1-5]. Compared to the low mass efficiency production rate of lithographic methods, these self-organized approaches display new routes for the fabrication of nanostructures over large areas in a short processing time at the nanoscale, beyond the limits of lithography [1,4]. Although it is believed that surface nanostructure formation is based on the morphological instability of the sputtered surface, driven by a kinetic balance between roughening and smoothing actions [6,7], the fundamental mechanisms and experimental conditions for the formation of these nanostructures has still not been well established, the formation of the 3-D naopatterns beneath the irradiated surface especially needs more exploration. During the last funding period, we have focused our efforts on irradiation-induced nanostructures in a broad range of materials. These structures have been studied primarily through in situ electron microscopy during electron or ion irradiation. In particular, we have performed studies on 3-D void/bubble lattices (in metals and CaF2), embedded sponge-like porous structure with uniform nanofibers in irradiated semiconductors (Ge, GaSb, and InSb), 2-D highly ordered pattern of nanodroplets (on the surface of GaAs), hexagonally ordered nanoholes (on the surface of Ge), and 1-D highly ordered ripple and periodic arrays (of Cu nanoparticles) [3,8-11]. The amazing common feature in those nanopatterns is the uniformity of the size of nanoelements (nanoripples, nanodots, nanovoids or nanofibers) and the distance separating them. Our research focuses on the understanding of fundamental scientific basis for the irradiation-induced self-organization processes. The fundamental physical mechanisms underlying ordered pattern formation, which include defect production and migration, ion sputtering, redeposition, viscous flow and diffusion, are investigated through a combination of modeling and in situ and ex-situ observations [3,9,11]. In addition, these nanostructured materials exhibit considerable improvement of optical properties [9,12,13]. For example, patterned Ge with a hexagonally ordered, honeycomb-like structure of nanoscale holes possesses a high surface area and a considerably blue-shifted energy gap [9], and oxidation of ordered Ga droplets shows noticeable enhancement of optical transmission [12]. This research has addressed nanopattern formation in a variety of materials under ion bombardment and provided a fundamental understanding of the dynamic mechanisms involved. In addition, have also stared to systematically investigate pattern formation under ion irradiation for more systems with varied experimental conditions and computation, including the collaboration with Dr. Veena Tikare of Sandia National Laboratory with a hybrid computation method at the ending this grant. A more detailed relationship between nanostructure formation and experimental conditions will be revealed with our continued efforts.

Wang, Lumin [Regents of the University of Michigan; Lu, Wei [Regents of the University of Michigan

2013-01-31T23:59:59.000Z

72

Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy  

E-Print Network [OSTI]

4.2.1 Organic solar cellOrganic Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.3.1 Organic solar cell materials . . . . .

Zaniewski, Anna Monro

2012-01-01T23:59:59.000Z

73

Novel photonic phenomena in nanostructured material systems with applications and mid-range efficient insensitive wireless energy-transfer  

E-Print Network [OSTI]

A set of novel mechanisms for the manipulation of light in the nanoscale is provided. In the class of all-dielectric material systems, techniques for the suppression of radiative loss from incomplete-photonic-bandgap ...

Karalis, Aristeidis, 1978-

2008-01-01T23:59:59.000Z

74

Mechanical Behavior of Indium Nanostructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mechanical Behavior of Indium Nanostructures Print Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of Waterloo, California Institute of Technology, and Los Alamos National Laboratory have collaborated with a team at ALS Beamline 12.3.2 to investigate the small-scale mechanics of indium nanostructures. Scanning x-ray microdiffraction (ÎĽSXRD) studies revealed that the indium microstructure is typical of a well-annealed metal, containing very few initial dislocations and showing close-to-theoretical strength.

75

Mechanical Behavior of Indium Nanostructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mechanical Behavior of Indium Nanostructures Print Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of Waterloo, California Institute of Technology, and Los Alamos National Laboratory have collaborated with a team at ALS Beamline 12.3.2 to investigate the small-scale mechanics of indium nanostructures. Scanning x-ray microdiffraction (ÎĽSXRD) studies revealed that the indium microstructure is typical of a well-annealed metal, containing very few initial dislocations and showing close-to-theoretical strength.

76

Mechanical Behavior of Indium Nanostructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mechanical Behavior of Indium Nanostructures Print Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of Waterloo, California Institute of Technology, and Los Alamos National Laboratory have collaborated with a team at ALS Beamline 12.3.2 to investigate the small-scale mechanics of indium nanostructures. Scanning x-ray microdiffraction (ÎĽSXRD) studies revealed that the indium microstructure is typical of a well-annealed metal, containing very few initial dislocations and showing close-to-theoretical strength.

77

Tripyrrylmethane based 2D porous structure for hydrogen storage  

Science Journals Connector (OSTI)

The key to hydrogen storage is to design new materials with light ... explored Ti-tripyrrylmethane based 2D porous structure for hydrogen storage using density functional theory. We have found ... and the exposed...

Xiao Zhou ??; Jian Zhou ??; Qiang Sun ??

2011-06-01T23:59:59.000Z

78

Nanostructured photovoltaics  

Science Journals Connector (OSTI)

Energy and the environment are two of the most important global issues that we currently face. The development of clean and sustainable energy resources is essential to reduce greenhouse gas emission and meet our ever-increasing demand for energy. Over the last decade photovoltaics, as one of the leading technologies to meet these challenges, has seen a continuous increase in research, development and investment. Meanwhile, nanotechnology, which is considered to be the technology of the future, is gradually revolutionizing our everyday life through adaptation and incorporation into many traditional technologies, particularly energy-related technologies, such as photovoltaics. While the record for the highest efficiency is firmly held by multijunction III–V solar cells, there has never been a shortage of new research effort put into improving the efficiencies of all types of solar cells and making them more cost effective. In particular, there have been extensive and exciting developments in employing nanostructures; features with different low dimensionalities, such as quantum wells, nanowires, nanotubes, nanoparticles and quantum dots, have been incorporated into existing photovoltaic technologies to enhance their performance and/or reduce their cost. Investigations into light trapping using plasmonic nanostructures to effectively increase light absorption in various solar cells are also being rigorously pursued. In addition, nanotechnology provides researchers with great opportunities to explore the new ideas and physics offered by nanostructures to implement advanced solar cell concepts such as hot carrier, multi-exciton and intermediate band solar cells. This special issue of Journal of Physics D: Applied Physics contains selected papers on nanostructured photovoltaics written by researchers in their respective fields of expertise. These papers capture the current excitement, as well as addressing some open questions in the field, covering topics including the III–V quantum well superlattice and quantum dot solar cells, Si quantum dot tandem cells, nanostructure-enhanced dye-sensitized solar cells and nanopatterned organic solar cells. We thank all the authors and reviewers for their contribution to this special issue. Special thanks are due to the journal's Publisher, Dr Olivia Roche and the editorial and publishing staff for their help and support.

Lan Fu; H Hoe Tan; Chennupati Jagadish

2013-01-01T23:59:59.000Z

79

Thermoelectric Bulk Materials from the Explosive Consolidation of Nanopowders  

Broader source: Energy.gov [DOE]

Describes technique of explosively consolidating nanopowders to yield fully dense, consolidated, nanostructured thermoelectric material

80

Biomedical applications of nanostructured polymer films  

E-Print Network [OSTI]

Functional polymeric thin films are often stratified with nanometer level structure and distinct purposes for each layer. These nanostructured polymeric materials are useful in a wide variety of applications including drug ...

Gilbert, Jonathan Brian

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Dendritic metal nanostructures  

DOE Patents [OSTI]

Dendritic metal nanostructures made using a surfactant structure template, a metal salt, and electron donor species.

Shelnutt, John A. (Tijeras, NM); Song, Yujiang (Albuquerque, NM); Pereira, Eulalia F. (Vila Nova de Gaia, PT); Medforth, Craig J. (Winters, CA)

2010-08-31T23:59:59.000Z

82

ARM - Datastreams - sonicwind2d  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Datastreamssonicwind2d Datastreamssonicwind2d Documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : SONICWIND2D Horizontal wind speed and direction from ultrasonic wind sensor (Vaisala WS425), 2m above ground on Barrow MET tower Active Dates 2003.10.31 - 2008.09.16 Measurement Categories Atmospheric State Originating Instrument ultrasonic wind sensor (SONICWIND) Measurements Only measurements considered scientifically relevant are shown below by default. Show all measurements Measurement Units Variable Horizontal wind Wind direction vector mean deg SonicWD_DU_WVT ( time ) Wind direction vector mean standard deviation deg SonicWD_SDU_WVT ( time ) Horizontal wind Wind speed arithmetic mean m/s SonicWS_S_WVT ( time )

83

Interfacing nanostructures to biological cells  

DOE Patents [OSTI]

Disclosed herein are methods and materials by which nanostructures such as carbon nanotubes, nanorods, etc. are bound to lectins and/or polysaccharides and prepared for administration to cells. Also disclosed are complexes comprising glycosylated nanostructures, which bind selectively to cells expressing glycosylated surface molecules recognized by the lectin. Exemplified is a complex comprising a carbon nanotube functionalized with a lipid-like alkane, linked to a polymer bearing repeated .alpha.-N-acetylgalactosamine sugar groups. This complex is shown to selectively adhere to the surface of living cells, without toxicity. In the exemplified embodiment, adherence is mediated by a multivalent lectin, which binds both to the cells and the .alpha.-N-acetylgalactosamine groups on the nanostructure.

Chen, Xing; Bertozzi, Carolyn R.; Zettl, Alexander K.

2012-09-04T23:59:59.000Z

84

Two-dimensional polymer synthesis : towards a two-dimensional replicating system for nanostructures  

E-Print Network [OSTI]

The general concept of a replicating monolayer system is introduced as a new method of nanostructure synthesis. One possible implementation of a 2-D replicating system is pursued which uses a diacetylene moiety for ...

Mosley, David W

2005-01-01T23:59:59.000Z

85

Application of carbonized nanostructured polyaniline in electrocatalysis and electrical energy storage.  

E-Print Network [OSTI]

??The aim of this doctoral dissertation is to study nitrogen-containing nanostructured carbon materials, denoted as C-PANI, C-PANI.DNSA and C-PANI.SSA, prepared by the carbonization of nanostructured… (more)

Gavrilov Nemanja

2013-01-01T23:59:59.000Z

86

Novel Ferroelectric Nanostructures for Nanoelectronic Devices  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scientific Highlight 31 March 2008 Novel Ferroelectric Nanostructures for Nanoelectronic Devices New approaches to the fabrication of ferroelectric nanostructures onto substrates are critical for the development of competitive functional devices that successfully integrate at nanoscale ferroelectrics as alternative materials in the microelectronic industry. These approaches have to meet reliability and utilization requirements to realize a cost-effective production of an increasing demand for ultra-high-density memories or nanometric electromechanical systems. An important challenge in the fabrication of ferroelectric nanomaterials supported onto substrates is the ability to fabricate an organized arrangement of the nanostructures. This is a key point for the applications of ferroelectrics in nanoelectronic devices.

87

2D Gauge Field Theory  

SciTech Connect (OSTI)

We show from the action integral that under the assumption of longitudinal dominance and transverse confinement, QCD4 in (3+1) dimensional space-time can be approximately compactified into QCD2 in (1+1) dimensional space-time. In such a process, we find the relation between the coupling constant $g(2D)$ in QCD2 and the coupling constant $g(4D)$ in QCD4. We also show that quarks and gluons in QCD2 acquire masses as a result of the compactification.

Koshelkin, Andrey V. [Moscow Institute for Physics and Engineering, Russia] [Moscow Institute for Physics and Engineering, Russia; Wong, Cheuk-Yin [ORNL] [ORNL

2012-01-01T23:59:59.000Z

88

Thermoelectric Bulk Materials from the Explosive Consolidation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

explosively consolidating nanopowders to yield fully dense, consolidated, nanostructured thermoelectric material nemir.pdf More Documents & Publications Enhancing the...

89

Unparticle Example in 2D  

Science Journals Connector (OSTI)

We discuss what can be learned about unparticle physics by studying simple quantum field theories in one space and one time dimension. We argue that the exactly soluble 2D theory of a massless fermion coupled to a massive vector boson, the Sommerfield model, is an interesting analog of a Banks-Zaks model, approaching a free theory at high energies and a scale-invariant theory with nontrivial anomalous dimensions at low energies. We construct a toy standard model coupling to the fermions in the Sommerfield model and study how the transition from unparticle behavior at low energies to free particle behavior at high energies manifests itself in interactions with the toy standard model particles.

Howard Georgi and Yevgeny Kats

2008-09-25T23:59:59.000Z

90

Argonne CNM News: Casimir Force Reduction through Nanostructuring  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Casimir Force Reduction through Nanostructuring Casimir Force Reduction through Nanostructuring Casimir force reduction (a) Configuration used to measure the Casimir force between a gold-coated sphere and a nanostructured grating. The sphere is attached to the torsional plate of a micromechanical oscillator and the nanostructured grating is fixed to a single-mode optical fiber. SEM images: (b) nanostructured grating limited by two uniform films (scale bar, 100 µm). (c) Magnified grating showing the high spatial uniformity (scale bar, 400 nm). (d) cross-section of a single grating element (scale bar, 100 nm). By nanostructuring one of two interacting metal surfaces at scales below the plasma wavelength, a new regime in the Casimir force was observed by researchers in the Center for Nanoscale Materials Nanofabrication & Devices

91

Abnormal Cyclibility in Ni@Graphene Core–Shell and Yolk–Shell Nanostructures for Lithium Ion Battery Anodes  

Science Journals Connector (OSTI)

Abnormal Cyclibility in Ni@Graphene Core–Shell and Yolk–Shell Nanostructures for Lithium Ion Battery Anodes ... A new graphene-based hybrid nanostructure is designed for anode materials in lithium-ion batteries. ...

Huawei Song; Hao Cui; Chengxin Wang

2014-07-08T23:59:59.000Z

92

Compositional Variation Within Hybrid Nanostructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compositional Variation Within Hybrid Nanostructures Print Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in solution. The altered growth process can lead to modulations in stoichiometry, elemental homogeneity, and surface structure, all of which can profoundly affect the catalytic or magnetic properties of the bimetallic nanoparticles. Now, researchers have experimentally observed these subtle structural differences through x-ray absorption spectroscopic studies at ALS Beamline 10.3.2. The results illustrate how directed nanoparticle growth on specific surfaces can lead to hybrid nanomaterials with a structurally different bimetallic component than its unhybridized counterpart.

93

Compositional Variation Within Hybrid Nanostructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compositional Variation Within Hybrid Nanostructures Print Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in solution. The altered growth process can lead to modulations in stoichiometry, elemental homogeneity, and surface structure, all of which can profoundly affect the catalytic or magnetic properties of the bimetallic nanoparticles. Now, researchers have experimentally observed these subtle structural differences through x-ray absorption spectroscopic studies at ALS Beamline 10.3.2. The results illustrate how directed nanoparticle growth on specific surfaces can lead to hybrid nanomaterials with a structurally different bimetallic component than its unhybridized counterpart.

94

Compositional Variation Within Hybrid Nanostructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compositional Variation Within Hybrid Nanostructures Print Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in solution. The altered growth process can lead to modulations in stoichiometry, elemental homogeneity, and surface structure, all of which can profoundly affect the catalytic or magnetic properties of the bimetallic nanoparticles. Now, researchers have experimentally observed these subtle structural differences through x-ray absorption spectroscopic studies at ALS Beamline 10.3.2. The results illustrate how directed nanoparticle growth on specific surfaces can lead to hybrid nanomaterials with a structurally different bimetallic component than its unhybridized counterpart.

95

Compositional Variation Within Hybrid Nanostructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compositional Variation Within Hybrid Nanostructures Print Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in solution. The altered growth process can lead to modulations in stoichiometry, elemental homogeneity, and surface structure, all of which can profoundly affect the catalytic or magnetic properties of the bimetallic nanoparticles. Now, researchers have experimentally observed these subtle structural differences through x-ray absorption spectroscopic studies at ALS Beamline 10.3.2. The results illustrate how directed nanoparticle growth on specific surfaces can lead to hybrid nanomaterials with a structurally different bimetallic component than its unhybridized counterpart.

96

Compositional Variation Within Hybrid Nanostructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compositional Variation Within Hybrid Nanostructures Print Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in solution. The altered growth process can lead to modulations in stoichiometry, elemental homogeneity, and surface structure, all of which can profoundly affect the catalytic or magnetic properties of the bimetallic nanoparticles. Now, researchers have experimentally observed these subtle structural differences through x-ray absorption spectroscopic studies at ALS Beamline 10.3.2. The results illustrate how directed nanoparticle growth on specific surfaces can lead to hybrid nanomaterials with a structurally different bimetallic component than its unhybridized counterpart.

97

Construction and Properties of Structure- and Size-controlled Micro/nano-Energetic Materials  

Science Journals Connector (OSTI)

Abstract This article presents a comprehensive review of recent progress of research dedicated to structure- and size-controlled micro/nano-energetic materials. The development of the construction strategies for achieving zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) micro/nanostructures from energetic molecules is introduced. Also, an overview of the unique properties induced by micro/nanostructures and size effects is provided. Special emphasis is focused on the size-dependent properties that are different from those of the conventional micro-sized energetic materials, such as thermal decomposition, sensitivity, combustion and detonation, and compaction behaviors. A conclusion and our view of the future development of micro/nano-energetic materials and devices are given.

Bing Huang; Min-hua Cao; Fu-de Nie; Hui Huang; Chang-wen Hu

2013-01-01T23:59:59.000Z

98

Carbon nanostructures-elixir or poison?  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon nanostructures-elixir or poison? Carbon nanostructures-elixir or poison? Carbon nanostructures-elixir or poison? A LANL toxicologist and a team of researchers have documented potential cellular damage from "fullerenes"-soccer-ball-shaped, cage-like molecules composed of 60 carbon atoms. March 31, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

99

MHL 2D Wind/Wave | Open Energy Information  

Open Energy Info (EERE)

MHL 2D Wind/Wave MHL 2D Wind/Wave Jump to: navigation, search Basic Specifications Facility Name MHL 2D Wind/Wave Overseeing Organization University of Michigan Hydrodynamics Hydrodynamic Testing Facility Type Tunnel Length(m) 35.1 Beam(m) 0.7 Depth(m) 1.2 Cost(per day) $2000 (+ Labor/Materials) Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Regular and irregular wave spectrum Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Removable beach Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities Yes Wind Velocity Range(m/s) 20.4

100

Form 2D | Open Energy Information  

Open Energy Info (EERE)

Form 2DLegal Abstract Form 2D: Application for Permit to Discharge Process Wastewater - New Industrial Facilities, current through August 14, 2014. Published NA Year...

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Synthesis of nanostructured nanoclay-zirconia multilayers: a feasibility study  

Science Journals Connector (OSTI)

This paper reports the first effort to synthesize a new class of inorganic nanostructured materials consisting of alternating ultrathin layers of nanoclays and oxide ceramics. A novel solution-based layer-by-layer (LBL) deposition technique was developed ...

Hao Chen; Guoping Zhang; Kathleen Richardson; Jian Luo

2008-01-01T23:59:59.000Z

102

Mesoporous Carbon-based Materials for Alternative Energy Applications  

E-Print Network [OSTI]

processing ceramics into nanostructured materials, with notable examples based on sol–gel chemistry, pyrolysis, and hydrothermal

Cross, Kimberly Michelle

2012-01-01T23:59:59.000Z

103

ITP Nanomanufacturing: Nanostructured Superhydrophobic Coatings  

Broader source: Energy.gov [DOE]

Large-scale Implementation of Nanostructured Superhydrophobic (SH) Powders for Breakthrough Energy Savings

104

Sonochemical Synthesis of Nanostructured Molybdenum Sulfide  

E-Print Network [OSTI]

to nanophase transition metal powders, alloys, carbides, and colloids.10-13 We report here a simple-4 The established methods for the preparation of nanostructured inorganic materials include metal evaporation,5 reduction of metal salts,6,7 and thermal decomposition and laser pyrolysis of organometallic compounds.8

Suslick, Kenneth S.

105

Elongated nanostructures for radial junction solar cells  

Science Journals Connector (OSTI)

In solar cell technology, the current trend is to thin down the active absorber layer. The main advantage of a thinner absorber is primarily the reduced consumption of material and energy during production. For thin film silicon (Si) technology, thinning down the absorber layer is of particular interest since both the device throughput of vacuum deposition systems and the stability of the devices are significantly enhanced. These features lead to lower cost per installed watt peak for solar cells, provided that the (stabilized) efficiency is the same as for thicker devices. However, merely thinning down inevitably leads to a reduced light absorption. Therefore, advanced light trapping schemes are crucial to increase the light path length. The use of elongated nanostructures is a promising method for advanced light trapping. The enhanced optical performance originates from orthogonalization of the light's travel path with respect to the direction of carrier collection due to the radial junction, an improved anti-reflection effect thanks to the three-dimensional geometric configuration and the multiple scattering between individual nanostructures. These advantages potentially allow for high efficiency at a significantly reduced quantity and even at a reduced material quality, of the semiconductor material. In this article, several types of elongated nanostructures with the high potential to improve the device performance are reviewed. First, we briefly introduce the conventional solar cells with emphasis on thin film technology, following the most commonly used fabrication techniques for creating nanostructures with a high aspect ratio. Subsequently, several representative applications of elongated nanostructures, such as Si nanowires in realistic photovoltaic (PV) devices, are reviewed. Finally, the scientific challenges and an outlook for nanostructured PV devices are presented.

Yinghuan Kuang; Marcel Di Vece; Jatindra K Rath; Lourens van Dijk; Ruud E I Schropp

2013-01-01T23:59:59.000Z

106

Staring 2-D hadamard transform spectral imager  

DOE Patents [OSTI]

A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

Gentry, Stephen M. (Albuquerque, NM); Wehlburg, Christine M. (Albuquerque, NM); Wehlburg, Joseph C. (Albuquerque, NM); Smith, Mark W. (Albuquerque, NM); Smith, Jody L. (Albuquerque, NM)

2006-02-07T23:59:59.000Z

107

Injection of Electrons and Holes into Nanostructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Injection of Electrons and Holes into Nanostructures Injection of Electrons and Holes into Nanostructures This program targets fundamental understanding of nanoscale charge transfer processes. The proposed work draws on the strengths of the Brookhaven Chemistry Department in the areas of electron transfer experiment and theory, and extends the area of inquiry to nanoscale processes. Electron/hole injection into a wire, a nanocrystal, a nanotube or other nanostructure in solution may be brought about by light absorption, by an electron pulse (pulse radiolysis, LEAF), by a chemical reagent, or through an electrode. These processes are being studied by transient methods by following conductivity, current, but most generally, spectroscopic changes in the solutions to determine the dynamics of charge injection. The observed transient spectra can also provide values for electron-transfer coupling elements and energetics. Theoretical/computational studies can help in materials design and in the interpretation of the experimental results. The experimental systems being examined include molecular wires and metal nanoclusters.

108

Effect of Quantum Confinement on Thermoelectric Properties of 2D and 1D Semiconductor Thin Films  

E-Print Network [OSTI]

Effect of Quantum Confinement on Thermoelectric Properties of 2D and 1D Semiconductor Thin Films A. Bulusu and D. G. Walker1 Interdisciplinary Program in Material Science Vanderbilt University Nashville on device characteristics of 1D and 2D thin film superlattices whose applications include thermoelectric

Walker, D. Greg

109

Measuring Strong Nanostructures  

ScienceCinema (OSTI)

Andy Minor of Berkeley Lab's National Center for Electron Microscopy explains measuring stress and strain on nanostructures with the In Situ Microscope. More information: http://newscenter.lbl.gov/press-relea...

Andy Minor

2010-01-08T23:59:59.000Z

110

Anode materials for lithium-ion batteries  

DOE Patents [OSTI]

An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

2014-12-30T23:59:59.000Z

111

2D cognitive optical data processing with phase change materials  

Science Journals Connector (OSTI)

We demonstrate high-density, multi-level crystallization of a Ge2Sb2Te5 thin film using tightly focused femtosecond laser pulses. The optical reflectivity in each distinct phase states...

Wang, qian; Maddock, Jonathan; Rogers, Edward T; Roy, Tapashree; Craig, Christopher; MacDonald, Kevin F; Hewak, Dan; Zheludev, Nikolay I

112

Quasi 2D Materials: Raman Nanometrology and Thermal Management Applications  

E-Print Network [OSTI]

medicine, biotechnology, manufacturing, computing, information technology and communications. With nanotechnology,

Shahil, Khan Mohammad Farhan

2012-01-01T23:59:59.000Z

113

Quasi 2D Materials: Raman Nanometrology and Thermal Management Applications  

E-Print Network [OSTI]

a package. Current technology produces solar cell that aretechnologies in the current “green” revolution is solar photovoltaic cell (

Shahil, Khan Mohammad Farhan

2012-01-01T23:59:59.000Z

114

Eighteenth international conference 'Advanced technology in powder metallurgy and ceramics', 8â??12 September 2003 at Kiev, Ukraine. Section 'Nanostructured materials'  

Science Journals Connector (OSTI)

This article provides a brief introduction to the 18th international conference held by the Frantsevich Institute for Problems of Materials Science, on advanced technology in powder metallurgy and ceramics. Five papers from the conference appear in this issue of IJNT.

Valery Skorokhod; Leonid Chernyshev

2006-01-01T23:59:59.000Z

115

Mesoporous Nanostructured Nb-Doped Titanium Dioxide Microsphere Catalyst Supports for PEM Fuel Cell Electrodes  

Science Journals Connector (OSTI)

Mesoporous Nanostructured Nb-Doped Titanium Dioxide Microsphere Catalyst Supports for PEM Fuel Cell Electrodes ... The material has been investigated as cathode electrocatalyst support for polymer electrolyte membrane (PEM) fuel cells. ... doped titania; PEMFC; electrocatalyst; mesoporous materials; microspheres ...

Laure Chevallier; Alexander Bauer; Sara Cavaliere; Rob Hui; Jacques Rozičre; Deborah J. Jones

2012-03-19T23:59:59.000Z

116

Compositional Variation Within Hybrid Nanostructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Compositional Variation Within Compositional Variation Within Hybrid Nanostructures Compositional Variation Within Hybrid Nanostructures Print Wednesday, 29 September 2010 00:00 The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in solution. The altered growth process can lead to modulations in stoichiometry, elemental homogeneity, and surface structure, all of which can profoundly affect the catalytic or magnetic properties of the bimetallic nanoparticles. Now, researchers have experimentally observed these subtle structural differences through x-ray absorption spectroscopic studies at ALS Beamline 10.3.2. The results illustrate how directed nanoparticle growth on specific surfaces can lead to hybrid nanomaterials with a structurally different bimetallic component than its unhybridized counterpart.

117

Process Development for Nanostructured Photovoltaics  

SciTech Connect (OSTI)

Photovoltaic manufacturing is an emerging industry that promises a carbon-free, nearly limitless source of energy for our nation. However, the high-temperature manufacturing processes used for conventional silicon-based photovoltaics are extremely energy-intensive and expensive. This high cost imposes a critical barrier to the widespread implementation of photovoltaic technology. Argonne National Laboratory and its partners recently invented new methods for manufacturing nanostructured photovoltaic devices that allow dramatic savings in materials, process energy, and cost. These methods are based on atomic layer deposition, a thin film synthesis technique that has been commercialized for the mass production of semiconductor microelectronics. The goal of this project was to develop these low-cost fabrication methods for the high efficiency production of nanostructured photovoltaics, and to demonstrate these methods in solar cell manufacturing. We achieved this goal in two ways: 1) we demonstrated the benefits of these coatings in the laboratory by scaling-up the fabrication of low-cost dye sensitized solar cells; 2) we used our coating technology to reduce the manufacturing cost of solar cells under development by our industrial partners.

Elam, Jeffrey W.

2015-01-01T23:59:59.000Z

118

Biomimetic Nanostructures: Creating  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Biomimetic Biomimetic Nanostructures: Creating a High-Affinity Zinc-Binding Site in a Folded Nonbiological Polymer Byoung-Chul Lee, †,‡ Tammy K. Chu, † Ken A. Dill,* ,‡ and Ronald N. Zuckermann* ,† Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, Graduate group in Biophysics and Department of Pharmaceutical Chemistry, 600 16th Street, UniVersity of CaliforniasSan Francisco, San Francisco, California 94143 Received March 21, 2008; E-mail: dill@maxwell.compbio.ucsf.edu; rnzuckermann@lbl.gov Abstract: One of the long-term goals in developing advanced biomaterials is to generate protein-like nanostructures and functions from a completely nonnatural polymer. Toward that end, we introduced a high-affinity zinc-binding function into a peptoid (N-substituted glycine

119

Synthesis of porphyrin nanostructures  

DOE Patents [OSTI]

The present disclosure generally relates to self-assembly methods for generating porphyrin nanostructures. For example, in one embodiment a method is provided that includes preparing a porphyrin solution and a surfactant solution. The porphyrin solution is then mixed with the surfactant solution at a concentration sufficient for confinement of the porphyrin molecules by the surfactant molecules. In some embodiments, the concentration of the surfactant is at or above its critical micelle concentration (CMC), which allows the surfactant to template the growth of the nanostructure over time. The size and morphology of the nanostructures may be affected by the type of porphyrin molecules used, the type of surfactant used, the concentration of the porphyrin and surfactant the pH of the mixture of the solutions, and the order of adding the reagents to the mixture, to name a few variables.

Fan, Hongyou; Bai, Feng

2014-10-28T23:59:59.000Z

120

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 MAG LAB REPORTS Volume 18 No. 1 CONDENSED MATTER SCIENCE Technique development, graphene, magnetism & magnetic materials, topological insulators, quantum fl uids & solids,...

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Hopkinson bar simulation using DYNA2D  

SciTech Connect (OSTI)

A finite-element simulation of a Split Hopkinson's bar (Kolsky apparatus) technique involving mortar specimens is accomplished with DYNA2D, an explicit two-dimensional finite-element code. Calculations are compared with experimental results contained in a University of Florida report Dynamic Response of Concrete and Concrete Structures, and with analytic solutions of the appropriate wave propagation problem.

Smith, J.A.; Glover, T.A.

1985-01-08T23:59:59.000Z

122

Direct-Write of Silicon and Germanium Nanostructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Direct-Write of Silicon and Germanium Nanostructures Print Direct-Write of Silicon and Germanium Nanostructures Print Nanostructured materials (nanowires, nanotubes, nanoclusters, graphene) are attractive possible alternatives to traditionally microfabricated silicon in continuing the miniaturization trend in the electronics industry. To go from nanomaterials to electronics, however, the precise one-by-one assembly of billions of nanoelements into a functioning circuit is required-clearly not a simple task. An interdisciplinary team from the University of Washington, in collaboration with the ALS and the Pacific Northwest National Laboratory, has devised a strategy that could make this task a little easier. They have demonstrated the ability to directly "write" nanostructures of Si, Ge, and SiGe with deterministic size, geometry, and placement control. As purity is essential for electronic-grade semiconductors, the resulting patterns were carefully evaluated for carbon contamination using photoemission electron microscopes at ALS Beamlines 7.3.1 and 11.0.1.

123

2D-network of inorganic-organic hybrid material built on Keggin type polyoxometallate and amino acid: [L-C{sub 2}H{sub 6}NO{sub 2}]{sub 3}[(PO{sub 4})Mo{sub 12}O{sub 36}].5H{sub 2}O  

SciTech Connect (OSTI)

A new inorganic-organic hybrid material based on polyoxometallate, [L-C{sub 2}H{sub 6}NO{sub 2}]{sub 3}[(PO{sub 4})Mo{sub 12}O{sub 36}].5H{sub 2}O, has been successfully synthesized and characterized by single-crystal X-ray analysis, elemental analysis, infrared and ultraviolet spectroscopy, proton nuclear magnetic resonance and differential thermal analysis techniques. The title compound crystallizes in the monoclinic space group, P2{sub 1}/c{sub ,} with a = 12.4938 (8) A, b = 19.9326 (12) A, c = 17.9270 (11) A, {beta} = 102.129 (1){sup o}, V = 4364.8 (5) A{sup 3}, Z = 4 and R{sub 1}(wR{sub 2}) = 0.0513, 0.0877. The most remarkable structural feature of this hybrid can be described as two-dimensional inorganic infinite plane-like (2D/{infinity} [(PO{sub 4})Mo{sub 12}O{sub 36}]{sup 3-}) which forming via weak Van der Waals interactions along the z axis. The characteristic band of the Keggin anion [(PO{sub 4})Mo{sub 12}O{sub 36}]{sup 3-} appears at 210 nm in the UV spectrum. Thermal analysis indicates that the Keggin anion skeleton begins to decompose at 520 deg. C.

Alizadeh, M.H. [Department of Chemistry, School of Sciences, Ferdowsi University, Mashhad 91779-1436 (Iran, Islamic Republic of)], E-mail: mhalizadehg@yahoo.com; Mirzaei, M. [Department of Chemistry, School of Sciences, Ferdowsi University, Mashhad 91779-1436 (Iran, Islamic Republic of); Razavi, H. [Department of Chemistry, Georgetown University, Washington, DC 20057 (United States)

2008-03-04T23:59:59.000Z

124

Nanostructured catalyst supports  

DOE Patents [OSTI]

The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

2012-10-02T23:59:59.000Z

125

Autonomous Programmable Biomolecular Devices Using Self-Assembled DNA Nanostructures  

E-Print Network [OSTI]

-Assembled DNA Nanostructures: · use synthetic DNA to self-assemble into DNA nanostructure devices. Goals

Reif, John H.

126

Graphene–Nanotube–Iron Hierarchical Nanostructure as Lithium Ion Battery Anode  

Science Journals Connector (OSTI)

Graphene–Nanotube–Iron Hierarchical Nanostructure as Lithium Ion Battery Anode ... In this study, we report a novel route via microwave irradiation to synthesize a bio-inspired hierarchical graphene–nanotube–iron three-dimensional nanostructure as an anode material in lithium-ion batteries. ...

Si-Hwa Lee; Vadahanambi Sridhar; Jung-Hwan Jung; Kaliyappan Karthikeyan; Yun-Sung Lee; Rahul Mukherjee; Nikhil Koratkar; Il-Kwon Oh

2013-04-03T23:59:59.000Z

127

MESH2D GRID GENERATOR DESIGN AND USE  

SciTech Connect (OSTI)

Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j{sub 0}) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. The overall mesh is constructed from grid zones that are typically then subdivided into a collection of smaller grid cells. The grid zones usually correspond to distinct materials or larger-scale geometric shapes. The structured grid zones are identified through uppercase indices (I,J). Subdivision of zonal regions into grid cells can be done uniformly, or nonuniformly using either a polynomial or geometric skewing algorithm. Grid cells may be concentrated backward, forward, or toward both ends. Figure 1 illustrates the above concepts in the context of a simple four zone grid.

Flach, G.; Smith, F.

2012-01-20T23:59:59.000Z

128

GBL-2D Version 1.0: a 2D geometry boolean library.  

SciTech Connect (OSTI)

This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J. (Elemental Technologies, American Fort, UT)

2006-11-01T23:59:59.000Z

129

Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

130

Hierarchical Assembly of Inorganic Nanostructure Building Blocks...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanostructure Building Blocks to Octahedral Superstructures – A True Template-Free Self Hierarchical Assembly of Inorganic Nanostructure Building Blocks to Octahedral...

131

Washington: Graphene Nanostructures for Lithium Batteries Recieves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

132

Silica Supported Ceria Nanoparticles: A Hybrid Nanostructure...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanoparticles: A Hybrid Nanostructure To Increase Stability And Surface Reactivity Of Nano-crystalline Silica Supported Ceria Nanoparticles: A Hybrid Nanostructure To Increase...

133

Vehicle Technologies Office Merit Review 2014: Nanostructured...  

Broader source: Energy.gov (indexed) [DOE]

2014: Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Vehicle Technologies Office Merit Review 2014: Nanostructured...

134

A scalable 2-D parallel sparse solver  

SciTech Connect (OSTI)

Scalability beyond a small number of processors, typically 32 or less, is known to be a problem for existing parallel general sparse (PGS) direct solvers. This paper presents a parallel general sparse PGS direct solver for general sparse linear systems on distributed memory machines. The algorithm is based on the well-known sequential sparse algorithm Y12M. To achieve efficient parallelization, a 2-D scattered decomposition of the sparse matrix is used. The proposed algorithm is more scalable than existing parallel sparse direct solvers. Its scalability is evaluated on a 256 processor nCUBE2s machine using Boeing/Harwell benchmark matrices.

Kothari, S.C.; Mitra, S. [Iowa State Univ., Ames, IA (United States)

1995-12-01T23:59:59.000Z

135

Electromagnetic energy storage and power dissipation in nanostructures  

E-Print Network [OSTI]

The processes of storage and dissipation of electromagnetic energy in nanostructures depend on both the material properties and the geometry. In this paper, the distributions of local energy density and power dissipation in nanogratings are investigated using the rigorous coupled-wave analysis. It is demonstrated that the enhancement of absorption is accompanied by the enhancement of energy storage both for material at the resonance of its dielectric function described by the classical Lorentz oscillator and for nanostructures at the resonance induced by its geometric arrangement. The appearance of strong local electric field in nanogratings at the geometry-induced resonance is directly related to the maximum electric energy storage. Analysis of the local energy storage and dissipation can also help gain a better understanding of the global energy storage and dissipation in nanostructures for photovoltaic and heat transfer applications.

Zhao, J M

2014-01-01T23:59:59.000Z

136

Luminescent systems based on the isolation of conjugated PI systems and edge charge compensation with polar molecules on a charged nanostructured surface  

DOE Patents [OSTI]

A photoluminescent or electroluminescent system and method of making a non-luminescent nanostructured material into such a luminescent system is presented. The method of preparing the luminescent system, generally, comprises the steps of modifying the surface of a nanostructured material to create isolated regions to act as luminescent centers and to create a charge imbalance on the surface; applying more than one polar molecule to the charged surface of the nanostructured material; and orienting the polar molecules to compensate for the charge imbalance on the surface of the nanostructured material. The compensation of the surface charge imbalance by the polar molecules allows the isolated regions to exhibit luminescence.

Ivanov, Ilia N.; Puretzky, Alexander A.; Zhao, Bin; Geohegan, David B.; Styers-Barnett, David J.; Hu, Hui

2014-07-15T23:59:59.000Z

137

Nanostructured materials for solar energy conversion.  

E-Print Network [OSTI]

??The energy requirements of our planet will continue to grow with increasing world population and the modernization of currently underdeveloped countries. This will force us… (more)

Hoang, Son Thanh

2013-01-01T23:59:59.000Z

138

Nanostructured Materials for Energy Generation and Storage  

E-Print Network [OSTI]

waste-heat recovery allowing for energy reuse. The limited use of thermoelectric generatorswaste-heat recovery allowing for en- ergy reuse. The limited use of thermoelectric generators

Khan, Javed Miller

2012-01-01T23:59:59.000Z

139

Nanostructured Materials for Energy Generation and Storage  

E-Print Network [OSTI]

life of the battery since the electrode thermal propertiesthe Li-ion battery electrodes. The thermal con- ductivity,in the Li-ion battery electrodes. The thermal conductivity,

Khan, Javed Miller

2012-01-01T23:59:59.000Z

140

Chemistry Controls Material's Nanostructure | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

selenium and sulfur precursors. The more strongly bound the selenium or sulfur is to phosphorous in the precursor, the lower the reactivity. The lower the reactivity, the longer...

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Intensive Variables & Nanostructuring in Magnetostructural Materials  

SciTech Connect (OSTI)

Over the course of this project, fundamental inquiry was carried out to investigate, understand and predict the effects of intensive variables, including the structural scale, on magnetostructural phase transitions in the model system of equiatomic FeRh. These transitions comprise simultaneous magnetic and structural phase changes that have their origins in very strong orbital-lattice coupling and thus may be driven by a plurality of effects.

Lewis, Laura

2014-08-13T23:59:59.000Z

142

Nano-structured Materials as Anodes  

Broader source: Energy.gov [DOE]

2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

143

Nanostructured Materials for Energy Generation and Storage  

E-Print Network [OSTI]

results obtained for the Li-ion battery electrodes suggestnanotubes utilized in the Li-ion battery electrodes. Thenanotubes utilized in the Li-ion battery electrodes. The

Khan, Javed Miller

2012-01-01T23:59:59.000Z

144

Dissipative flows of 2D foams  

E-Print Network [OSTI]

We analyze the flow of a liquid foam between two plates separated by a gap of the order of the bubble size (2D foam). We concentrate on the salient features of the flow that are induced by the presence, in an otherwise monodisperse foam, of a single large bubble whose size is one order of magnitude larger than the average size. We describe a model suited for numerical simulations of flows of 2D foams made up of a large number of bubbles. The numerical results are successfully compared to analytical predictions based on scaling arguments and on continuum medium approximations. When the foam is pushed inside the cell at a controlled rate, two basically different regimes occur: a plug flow is observed at low flux whereas, above a threshold, the large bubble migrates faster than the mean flow. The detailed characterization of the relative velocity of the large bubble is the essential aim of the present paper. The relative velocity values, predicted both from numerical and from analytical calculations that are discussed here in great detail, are found to be in fair agreement with experimental results.

Isabelle Cantat; Renaud Delannay

2005-07-21T23:59:59.000Z

145

Subwavelength resonant nanostructured films for sensing  

SciTech Connect (OSTI)

We present a novel subwavelength nanostructure architecture that may be utilized for optical standoff sensing applications. The subwavelength structures are fabricated via a combination of nanoimprint lithography and metal sputtering to create metallic nanostructured films encased within a transparent media. The structures are based on the open ring resonator (ORR) architecture and have their analog in resonant LC circuits, which display a resonance frequency that is inversely proportional to the square root of the product of the inductance and capacitance. Therefore, any perturbation of the nanostructured films due to chemical or environmental effects can alter the inductive or capacitive behavior of the subwavelength features, which can shift the resonant frequency and provide an indication of the external stimulus. This shift in resonance can be interrogated remotely either actively using either laser illumination or passively using hyperspectral or multispectral sensing. These structures may be designed to be either anisotropic or isotropic, which can also provide polarization-sensitive interrogation. Due to the nanometer-scale of the structures, they can be tailored to be optically responsive in the visible or near infrared spectrum with a highly reflective resonant peak that is dependent solely on structural dimensions and material characteristics. We present experimental measurements of the optical response of these structures as a function of wavelength, polarization, and incident angle demonstrating the resonant effect in the near infrared region. Numerical modeling data showing the effect of different fabrication parameters such as structure parameters are also discussed.

Alvine, Kyle J.; Bernacki, Bruce E.; Suter, Jonathan D.; Bennett, Wendy D.; Edwards, Daniel L.; Mendoza, Albert

2013-05-29T23:59:59.000Z

146

Predictive evaluation for the preparation of a synthetic Y-shaped DNA nanostructure  

Science Journals Connector (OSTI)

With the advent of deoxyribonucleic acid (DNA) nanotechnology, the Y-shaped DNA nanostructure (Y-DNA) as a basic block was first created ... to their characteristic selectivity and specificity, Y-DNA-based materi...

Kyung Soo Park; Seung Won Shin; Jin-Ha Choi…

2014-03-01T23:59:59.000Z

147

Design of Nanostructured Solar Cells Using Coupled Optical and Electrical Modeling  

E-Print Network [OSTI]

Design of Nanostructured Solar Cells Using Coupled Optical and Electrical Modeling Michael G of Applied Physics, California Institute of Technology, Pasadena, California 91125, United States Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

Atwater, Harry

148

Three-dimensional nanostructures fabricated by stacking pre-patterned monocrystalline silicon nanomembranes  

E-Print Network [OSTI]

This thesis considers the viability of nanomembrane handling and stacking approaches to enable the fabrication of three-dimensional (3D) nano-structured materials. Sequentially stacking previously-patterned membranes to ...

Fucetola, Corey Patrick

2013-01-01T23:59:59.000Z

149

Phase and Shape Evolutions of Ion Beam Synthesized Ge Based Nanostructures  

E-Print Network [OSTI]

ion beam synthesized Ge nanocrystals," in Department of materials science and engineering:nanoscale engineering. In Chapter 5, ion beam and electronIon Beam Synthesized Ge Based Nanostructures by Swanee Shin Doctor of Philosophy in Engineering –

Shin, Swanee

2009-01-01T23:59:59.000Z

150

Wetting and phase-change phenomena on micro/nanostructures for enhanced heat transfer  

E-Print Network [OSTI]

Micro/nanostructures have been extensively studied to amplify the intrinsic wettability of materials to create superhydrophilic or superhydrophobic surfaces. Such extreme wetting properties can influence the heat transfer ...

Xiao, Rong, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

151

Pauli matrices and 2D electron gas  

E-Print Network [OSTI]

In the present paper it will be argued that transport in a 2D electron gas can be implemented as 'local hidden instrument based' variables. With this concept of instrumentalism it is possible to explain the quantum correlation, the particle-wave duality and Wheeler's 'backward causation of a particle'. In the case of quantum correlation the spin measuring variant of the Einstein Podolsky and Rosen paradox is studied. In the case of particle-wave duality the system studied is single photon Mach-Zehnder (MZ) interferometry with a phase shift size $\\delta$. The idea that the instruments more or less neutrally may show us the way to the particle will be replaced by the concept of laboratory equipment contributing in an unexpected way to the measurement.

J. F. Geurdes

2012-10-22T23:59:59.000Z

152

Development of Nanostructures in Thermoelectric Pb-Te-Sb Alloys , L. A. Collins2  

E-Print Network [OSTI]

in the figure of merit of thermoelectric materials. Fabrication of nanostructured thermoelectric materials via the discovery of materials with a high thermoelectric figure of merit, zT, defined as S2 T/, where immiscible thermoelectric materials: PbTe-Sb2Te3. This ternary system was selected for investigation because

153

HEXAGONAL ARRAY STRUCTURE FOR 2D NDE APPLICATIONS  

SciTech Connect (OSTI)

This paper describes a combination of simulation and experimentation to evaluate the advantages offered by utilizing a hexagonal shaped array element in a 2D NDE array structure. The active material is a 1-3 connectivity piezoelectric composite structure incorporating triangular shaped pillars--each hexagonal array element comprising six triangular pillars. A combination of PZFlex, COMSOL and Matlab has been used to simulate the behavior of this device microstructure, for operation around 2.25 MHz, with unimodal behavior and low levels of mechanical cross-coupling predicted. Furthermore, the application of hexagonal array elements enables the array aperture to increase by approximately 30%, compared to a conventional orthogonal array matrix and hence will provide enhanced volumetric coverage and SNR. Prototype array configurations demonstrate good corroboration of the theoretically predicted mechanical cross-coupling between adjacent array elements (approx23 dB).

Dziewierz, J.; Ramadas, S. N.; Gachagan, A.; O'Leary, R. L. [Centre for Ultrasonic Engineering, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow, G1 1XW (United Kingdom)

2010-02-22T23:59:59.000Z

154

DNA-inspired materials for 'bottom-up' nanotechnology.  

E-Print Network [OSTI]

??DNA is a remarkable material that is both an inspiration for polymer nanotechnology and a versatile building block for assembling well-defined nanostructures. To create polymeric… (more)

Ishihara, Yoshihiro.

2007-01-01T23:59:59.000Z

155

Center for Nanophase Materials Sciences (CNMS) - Call For Proposals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

materials Deuterated vinyl and diene monomers and polymers Soft matter TEM OPTOELECTRONIC NANOSTRUCTURES Laser and CVD synthesis of carbon nanomaterials, oxide film...

156

Engineering the optical properties of subwavelength devices and materials  

E-Print Network [OSTI]

Many applications demand materials with seemingly incompatible optical characteristics. For example, immersion photolithography is a resolution enhancing technique used to fabricate the ever-shrinking nanostructures in ...

Anant, Vikas, 1980-

2007-01-01T23:59:59.000Z

157

Center for Materials at Irradiation and Mechanical Extremes:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

effects in metallic materials Transmission electron microscopy Sample Publications "Mechanical Behavior of Metallic Nanolaminates," A. Misra, chapter in Nanostructure Control of...

158

2D 3D * iklee)@yonsei.ac.kr  

E-Print Network [OSTI]

1 2012 2D 3D * 0 , 1 , 2 0,2 1 ( 0 skrcjstk, 2 iklee)@yonsei.ac.kr 1 rinthel Science, Yonsei University. 1 Dept. of Information Media, The University of Suwon. 2D 3D . 2D - , 3D (Disparity) 3D . . 1. 3D 3D . 3D 3D [1

Lee, In-Kwon

159

The Shockley-Queisser limit for nanostructured solar cells  

E-Print Network [OSTI]

The Shockley-Queisser limit describes the maximum solar energy conversion efficiency achievable for a particular material and is the standard by which new photovoltaic technologies are compared. This limit is based on the principle of detailed balance, which equates the photon flux into a device to the particle flux (photons or electrons) out of that device. Nanostructured solar cells represent a new class of photovoltaic devices, and questions have been raised about whether or not they can exceed the Shockley-Queisser limit. Here we show that single-junction nanostructured solar cells have a theoretical maximum efficiency of 42% under AM 1.5 solar illumination. While this exceeds the efficiency of a non- concentrating planar device, it does not exceed the Shockley-Queisser limit for a planar device with optical concentration. We conclude that nanostructured solar cells offer an important route towards higher efficiency photovoltaic devices through a built-in optical concentration.

Xu, Yunlu; Munday, Jeremy N

2014-01-01T23:59:59.000Z

160

Synthesis, Characterization, Properties, and Tribological Performance of 2D Nanomaterials  

E-Print Network [OSTI]

of lubricants using novel nanostructured particles. Experimental approaches include synthesis, characterization, and tribological and rheological investigation of nanoparticles, yttrium oxide (Y_(2)O_(3)), ?-zirconium phosphate (ZrP), and boron (B...

He, Xingliang

2014-04-25T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Assisted Teleoperation Strategies for Aggressively Controlling a Robot Arm with 2D Input  

E-Print Network [OSTI]

Assisted Teleoperation Strategies for Aggressively Controlling a Robot Arm with 2D Input Erkang You,hauserk}@indiana.edu Abstract--This paper studies assisted teleoperation techniques for controlling a 6DOF robot arm using click enable novice users to control robot arms successfully in applications such as material handling

Indiana University

162

Compositional ordering and stability in nanostructured, bulk thermoelectric alloys.  

SciTech Connect (OSTI)

Thermoelectric materials have many applications in the conversion of thermal energy to electrical power and in solid-state cooling. One route to improving thermoelectric energy conversion efficiency in bulk material is to embed nanoscale inclusions. This report summarize key results from a recently completed LDRD project exploring the science underpinning the formation and stability of nanostructures in bulk thermoelectric and the quantitative relationships between such structures and thermoelectric properties.

Hekmaty, Michelle A.; Faleev, S.; Medlin, Douglas L.; Leonard, F.; Lensch-Falk, J.; Sharma, Peter Anand; Sugar, J. D.

2009-09-01T23:59:59.000Z

163

CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications  

Science Journals Connector (OSTI)

Abstract Nanoscale metal oxide materials have been attracting much attention because of their unique size- and dimensionality-dependent physical and chemical properties as well as promising applications as key components in micro/nanoscale devices. Cupric oxide (CuO) nanostructures are of particular interest because of their interesting properties and promising applications in batteries, supercapacitors, solar cells, gas sensors, bio sensors, nanofluid, catalysis, photodetectors, energetic materials, field emissions, superhydrophobic surfaces, and removal of arsenic and organic pollutants from waste water. This article presents a comprehensive review of recent synthetic methods along with associated synthesis mechanisms, characterization, fundamental properties, and promising applications of CuO nanostructures. The review begins with a description of the most common synthetic strategies, characterization, and associated synthesis mechanisms of CuO nanostructures. Then, it introduces the fundamental properties of CuO nanostructures, and the potential of these nanostructures as building blocks for future micro/nanoscale devices is discussed. Recent developments in the applications of various CuO nanostructures are also reviewed. Finally, several perspectives in terms of future research on CuO nanostructures are highlighted.

Qiaobao Zhang; Kaili Zhang; Daguo Xu; Guangcheng Yang; Hui Huang; Fude Nie; Chenmin Liu; Shihe Yang

2014-01-01T23:59:59.000Z

164

Characterization of iron(III) oxide/hydroxide nanostructured materials produced by sol–gel technology based on the Fe(NO3)3·9H2O–C2H5OH–CH3CHCH2O system  

Science Journals Connector (OSTI)

Nanostructured iron oxide/hydroxide materials were synthesized by sol–gel technology, starting from the ternary system Fe(NO3)3·9H2O/ethanol/propylene oxide. Evaporative drying and supercritical fluids extraction were used as drying techniques to produce xerogels and aerogels, respectively. The materials were physically, structurally and chemically characterized, to analyze their suitability for surface-dependent applications and the influence of the drying technique on their properties. In addition, the chemistry involved in the sol–gel synthesis of iron oxides/hydroxides with the referred ternary system is reviewed. The produced materials were composed by aggregates of nanometric crystallites: ?1 nm for xerogels and ?5 nm for aerogels. Their high porosity and surface area (xerogels – 50% and 150 m2 g?1; aerogels – 90% and 400 m2 g?1) make them suitable for surface-dependent processes, being the aerogels far more adequate. The FTIR, XRD and Mössbauer spectroscopy results gave some insight on the composition of these materials, showing that the 2-line ferrihydrite is their most probable constituent phase. Finally, it was concluded that the continuous supercritical fluids extraction is the best drying procedure for these materials, since it preserves the mesoporous structure of the gels. When evaporative drying is used, the pores shrinkage leads to a predominantly microporous structure.

Luisa Durăes; Ana Moutinho; Inęs J. Seabra; Benilde F.O. Costa; Hermínio C. de Sousa; António Portugal

2011-01-01T23:59:59.000Z

165

Role of Nanostructures in Reducing Thermal Conductivity below Alloy Limit in Crystalline Solids  

E-Print Network [OSTI]

reduce electrical conductivity, making it ineffective for increasing the material's thermoelectric figure conversion devices depends on the thermoelectric figure of merit (ZT) of a material, which is defined as ZT thermoelectric materials [3-5]. While the original goal for nanostructuring was to increase S2 due to quantum

166

Thermoelectric properties of high quality nanostructured Ge:Mn thin D. Tanoff2*  

E-Print Network [OSTI]

. The thermoelectric performance ZT of such material is as high as 0.15 making them a promising thermoelectric p the thermal properties by inducing phonon diffusion. The efficiency of thermoelectric materials is given properties of a nanostructured thermoelectric material are never those of the related bulk ones. Different

Boyer, Edmond

167

Specific heat of a superconducting multilayer: 2D fluctuations and 2D-0D crossover  

Science Journals Connector (OSTI)

We have measured the specific heat of multilayers of superconducting amorphous Mo77Ge23 layers separated by insulating amorphous germanium. We observe a fluctuation regime in quantitative agreement with predictions for two-dimensional superconductivity. The fluctuation peak is rapidly suppressed by the application of small magnetic fields perpendicular to the layers, and the transition becomes extremely broad as the field is increased. The transition widths scale as expected for a field-induced 2D to 0D crossover, and are in excellent agreement with the exact result for 0D fluctuations.

J. S. Urbach; W. R. White; M. R. Beasley; A. Kapitulnik

1992-10-19T23:59:59.000Z

168

Photorefractive holography for 2D mechanical vibrations measurement  

Science Journals Connector (OSTI)

We report an efficient holographic setup for the real time measurement of 2D mechanical vibration modes in surfaces, based on the time-average holographic interferometry technique...

de Oliveira, Ivan; Frejlich, Jaime

169

Digital Transfer Growth of Patterned 2D Metal Chalcogenides by...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Energy Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation October 28, 2014 (a) Illustration of the digital transfer growth...

170

JOURNAL OF MATERIALS SCIENCE 39 (2004) 1085 1086 UV transmitters of aluminum polyphosphates prepared by high  

E-Print Network [OSTI]

nanostructured ceramic or composite materials with the desired properties [6­10]. Aluminum polyphosphate nanostructured systems have been used extensively as pigment for painting [11, 12], as matrix for composite University of Goi´as (UFG), 74001-970 Goi^ania, GO, Brazil The possibility to obtain nanostructured ceramic

Gallas, Márcia Russman

171

Key Physical Mechanisms in Nanostructured Solar Cells  

SciTech Connect (OSTI)

The objective of the project was to study both theoretically and experimentally the excitation, recombination and transport properties required for nanostructured solar cells to deliver energy conversion efficiencies well in excess of conventional limits. These objectives were met by concentrating on three key areas, namely, investigation of physical mechanisms present in nanostructured solar cells, characterization of loss mechanisms in nanostructured solar cells and determining the properties required of nanostructured solar cells in order to achieve high efficiency and the design implications.

Dr Stephan Bremner

2010-07-21T23:59:59.000Z

172

CFD Modelling of Particle Mixtures in a 2D CFB  

Science Journals Connector (OSTI)

The capability of Fluent 6.2.16 to simulate particle mixtures in a laboratory scale 2D circulating fluidized bed (CFB) unit has been tested. In the ... 40 cm wide and 3 m high 2D CFB was modeled using a grid with...

M. Seppälä; S. Kallio

2010-01-01T23:59:59.000Z

173

P2Q2Iso2D = 2D ISOPARAMETRIC FEM IN MATLAB S. BARTELS, C. CARSTENSEN  

E-Print Network [OSTI]

P2Q2Iso2D = 2D ISOPARAMETRIC FEM IN MATLAB S. BARTELS, C. CARSTENSEN , AND A. HECHT Abstract. A short Matlab implementation realizes a flexible isoparametric finite element method up to quadratic a short Matlab implementation of this finite element method for the Laplace equation in two dimensions

Bartels, Soeren

174

In Conversation With Materials Scientist Ron Zuckermann  

ScienceCinema (OSTI)

Nov. 11, 2009: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest Berkeley Lab's Ron Zuckerman, who discusses biological nanostructures and the world of peptoids.

Ron Zuckerman

2010-01-08T23:59:59.000Z

175

Controlled placement and orientation of nanostructures  

DOE Patents [OSTI]

A method for controlled deposition and orientation of molecular sized nanoelectromechanical systems (NEMS) on substrates is disclosed. The method comprised: forming a thin layer of polymer coating on a substrate; exposing a selected portion of the thin layer of polymer to alter a selected portion of the thin layer of polymer; forming a suspension of nanostructures in a solvent, wherein the solvent suspends the nanostructures and activates the nanostructures in the solvent for deposition; and flowing a suspension of nanostructures across the layer of polymer in a flow direction; thereby: depositing a nanostructure in the suspension of nanostructures only to the selected portion of the thin layer of polymer coating on the substrate to form a deposited nanostructure oriented in the flow direction. By selectively employing portions of the method above, complex NEMS may be built of simpler NEMSs components.

Zettl, Alex K; Yuzvinsky, Thomas D; Fennimore, Adam M

2014-04-08T23:59:59.000Z

176

Comparison of 2D and 3D gamma analyses  

SciTech Connect (OSTI)

Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must be noted that clinical 2D versus 3D datasets may have additional differences—for example, if 2D measurements are made with a different dosimeter than 3D measurements. Factors such as inherent dosimeter differences may be an important additional consideration to the extra dimension of available data that was evaluated in this study.

Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F., E-mail: sfkry@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States); Bosca, Ryan [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States)] [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States); O’Daniel, Jennifer [Department of Radiation Oncology, Duke University, Durham, North Carolina 27705 (United States)] [Department of Radiation Oncology, Duke University, Durham, North Carolina 27705 (United States)

2014-02-15T23:59:59.000Z

177

2D Ising model for hydrated protein surfaces  

Science Journals Connector (OSTI)

To understand the nature of the glassy dielectric relaxation recently observed in hydrated protein powders, we model the protein surface as a 2D Ising square net, and identify frustration at the...

G. Careri

178

Ising-Bloch transition in 2D degenerate wave mixing  

Science Journals Connector (OSTI)

We show experimentally and theoretically the existence of a 2D Ising-Bloch transition in the field generated by degenerate four wave mixing in a BaTiO3-resonator.

Larionova, Yevgeniya; Peschel, Ulf; Esteban-Martin, Adolfo; Weiss, Carl Otto

179

Unfolding Square Root Singularities in the 2D Boussinesq Equations  

E-Print Network [OSTI]

Unfolding Square Root Singularities in the 2D Boussinesq Equations Russel Caflisch October 13 in the complex plane for Boussinesq. 1 Boussineq Equations The Boussinesq equations in stream function

Soatto, Stefano

180

4d/2d correspondence : instantons and W-algebras.  

E-Print Network [OSTI]

?? In this thesis, we study the 4d/2d correspondence of Alday-Gaiotto-Tachikawa, which relates the class of 4-dimensional N=2 gauge theories (theories of class S) to… (more)

Song, Jaewon

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The Branching of Graphs in 2-d Quantum Gravity  

E-Print Network [OSTI]

The branching ratio is calculated for three different models of 2d gravity, using dynamical planar phi-cubed graphs. These models are pure gravity, the D=-2 Gaussian model coupled to gravity and the single spin Ising model coupled to gravity. The ratio gives a measure of how branched the graphs dominating the partition function are. Hence it can be used to estimate the location of the branched polymer phase for the multiple Ising model coupled to 2d gravity.

M. G. Harris

1996-07-16T23:59:59.000Z

182

Center for Nanophase Materials Sciences (CNMS) - Highlights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

that have hindered the scalable growth and pattering of such materials for optoelectronic and energy related applications. "Digital Transfer Growth of Patterned 2D Metal...

183

Self-Assembled, Nanostructured Carbon for Energy Storage and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment nanostructuredcarbon.pdf...

184

Silicon Nanostructure-based Technology for Next Generation Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Silicon Nanostructure-based Technology for Next Generation Energy Storage Silicon Nanostructure-based Technology for Next Generation Energy Storage 2013 DOE Hydrogen and Fuel Cells...

185

Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Office Merit Review 2012: Silicon Nanostructure-based Technology for Next Generation Energy Storage Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure-based...

186

Highly Reversible Mg Insertion in Nanostructured Bi for Mg Ion...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reversible Mg Insertion in Nanostructured Bi for Mg Ion Batteries. Highly Reversible Mg Insertion in Nanostructured Bi for Mg Ion Batteries. Abstract: Rechargeable magnesium...

187

Three-Dimensional Composite Nanostructures for Lean NOx Emission...  

Broader source: Energy.gov (indexed) [DOE]

Three-Dimensional Composite Nanostructures for Lean NOx Emission Control Three-Dimensional Composite Nanostructures for Lean NOx Emission Control 2010 DOE Vehicle Technologies and...

188

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy...

189

Nano-structures Thermoelectric Materals - Part 2 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nano-structures Thermoelectric Materals - Part 2 Nano-structures Thermoelectric Materals - Part 2 2002 DEER Conference Presentation: RTI International 2002deervenkatasubramanian2...

190

Nano-structures Thermoelectric Materals - Part 1 | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nano-structures Thermoelectric Materals - Part 1 Nano-structures Thermoelectric Materals - Part 1 2002 DEER Conference Presentation: RTI International 2002deervenkatasubramanian1...

191

Radiation Stability of Nanoclusters in Nano-structured Oxide...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Stability of Nanoclusters in Nano-structured Oxide Dispersion Strengthened (ODS) Steels. Radiation Stability of Nanoclusters in Nano-structured Oxide Dispersion Strengthened (ODS)...

192

Condensation on superhydrophobic copper oxide nanostructures  

E-Print Network [OSTI]

Condensation is an important process in many power generation and water desalination technologies. Superhydrophobic nanostructured surfaces have unique condensation properties that may enhance heat transfer through a ...

Dou, Nicholas (Nicholas Gang)

2012-01-01T23:59:59.000Z

193

Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficient Automotive Waste Heat Recovery Multi-physics modeling of thermoelectric generators for waste heat recovery applications Nanostructured High-Temperature Bulk...

194

Ordered nanostructures through colloidal self assembly.  

E-Print Network [OSTI]

??The fabrication of ordered nanostructures plays an important role in the realization of the potential of nanotechnology and consequently, it has become an intense field… (more)

Koh, Yaw Koon.

2008-01-01T23:59:59.000Z

195

Condensation on Superhydrophobic Copper Oxide Nanostructures  

E-Print Network [OSTI]

Condensation is an important process in both emerging and traditional power generation and water desalination technologies. Superhydrophobic nanostructures promise enhanced condensation heat transfer by reducing the ...

Enright, Ryan

196

Formation of nanostructures at the glass-carbon surface exposed to laser radiation  

SciTech Connect (OSTI)

An experimental technique for obtaining nanostructures in the field of high-power laser radiation at the surface of carbon materials is developed. A specific feature of this technique is the formation of liquid carbon inside the region of laser action in the sample exposed to radiation in air at a pressure of {approx}1 atm. Several types of nanostructures (quasi-domains and nanopeaks) are detected in the laser cavern and beyond the range of laser action. Mechanisms of formation of such structures are proposed. The formation of quasi-domains is related to crystallisation of the melt. The nanopeak groups are formed outside the laser action region during the deposition of hot vapours of the material escaping from this region. The dependences of the variation in morphological properties of the nanostructures on the duration of laser action and the radii of typical cavern zones on the laser radiation power are obtained. (interaction of laser radiation with matter. laser plasma)

Abramov, D V; Gerke, M N; Kucherik, A O; Kutrovskaya, S V; Prokoshev, V G; Arakelyan, S M [Vladimir State University, Vladimir (Russian Federation)

2007-11-30T23:59:59.000Z

197

2D-3D transition of gold cluster anions resolved  

Science Journals Connector (OSTI)

Small gold cluster anions Aun? are known for their unusual two-dimensional (2D) structures, giving rise to properties very different from those of bulk gold. Previous experiments and calculations disagree about the number of gold atoms nc where the transition to 3D structures occurs. We combine trapped ion electron diffraction and state of the art electronic structure calculations to resolve this puzzle and establish nc=12. It is shown that theoretical studies using traditional generalized gradient functionals are heavily biased towards 2D structures. For a correct prediction of the 2D-3D crossover point it is crucial to use density functionals yielding accurate jellium surface energies, such as the Tao-Perdew-Staroverov-Scuseria (TPSS) functional or the Perdew-Burke-Ernzerhof functional modified for solids (PBEsol). Further, spin-orbit effects have to be included, and large, flexible basis sets employed. This combined theoretical-experimental approach is promising for larger gold and other metal clusters.

Mikael P. Johansson; Anne Lechtken; Detlef Schooss; Manfred M. Kappes; Filipp Furche

2008-05-19T23:59:59.000Z

198

Shallow quantum well excitons: 2D or 3D?  

Science Journals Connector (OSTI)

A new regime is obtained in semiconductor heterostructures with constituents of nearly identical band gaps. Previously, it has been shown that even extremely shallow quantum wells (SHQWs) exhibit excitonic and electroabsorption properties typical of a 2D system, but 3D transport features. We show that, surprisingly, even when carriers are two-dimensionally confined in SHQWs, the hole spin relaxation is extremely fast (?400 fsec) as in the bulk (3D) limit and that a 2D-3D transition in the hole spin dynamics in GaAs/AlxGa1-xAs SHQWs takes place at x?5%.

I. Brener; W. H. Knox; K. W. Goossen; J. E. Cunningham

1993-01-18T23:59:59.000Z

199

2D-1D Coupling in Cleaved Edge Overgrowth  

Science Journals Connector (OSTI)

We study the scattering properties of an interface between a one-dimensional (1D) wire and a two-dimensional (2D) electron gas. Experiments were conducted in the highly controlled geometry provided by molecular bean epitaxy overgrowth onto the cleaved edge of a high quality GaAs /AlGaAs quantum well. Such structures allow for the creation of variable length 1D-2D coupling sections. We find ballistic 1D electron transport through these interaction regions with a mean free path as long as 6 ?m. Our results explain the origin of the puzzling nonuniversal conductance quantization observed previously in such 1D wires.

R. de Picciotto; H. L. Stormer; A. Yacoby; L. N. Pfeiffer; K. W. Baldwin; K. W. West

2000-08-21T23:59:59.000Z

200

Fast approximate Duplicate Detection for 2D-NMR Spectra  

E-Print Network [OSTI]

, the one-dimensional plots at the axes are projections of the original two-dimensional intensity function the influences of two different atom types at the same time, e.g. 1 H (hydrogen) and 13 C (carbon). The result of a 2D-NMR measurement can be seen as an intensity function measured over two independent variables3

Hinneburg, Alexander

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The AAO 2dF QSO Redshift Survey  

E-Print Network [OSTI]

We describe the aims, strategy and status of the AAO 2dF QSO redshift survey. This goal of the survey is to obtain redshifts for 30000 QSOs in a homogeneous magnitude limited (B<21) survey. The survey began in early 1997 and should be complete by the end of 1999.

Boyle; R. J. Smith; T. Shanks; S. M. Croom; L. Miller

1997-10-20T23:59:59.000Z

202

Dispersion diagrams of chromospheric MHD waves in a 2D  

E-Print Network [OSTI]

Dispersion diagrams of chromospheric MHD waves in a 2D simulation Chris Dove The Evergreen State MHD code models dynamics · Methods to get clearer pictures · Analysis of results · Patterns/NCAR, Thursday 29 July 2004 A diagram of the Sun, courtesy NASA sohowww

Zita, E.J.

203

Universal topological phase of 2D stabilizer codes  

E-Print Network [OSTI]

Two topological phases are equivalent if they are connected by a local unitary transformation. In this sense, classifying topological phases amounts to classifying long-range entanglement patterns. We show that all 2D topological stabilizer codes are equivalent to several copies of one universal phase: Kitaev's topological code. Error correction benefits from the corresponding local mappings.

H. Bombin; Guillaume Duclos-Cianci; David Poulin

2011-03-23T23:59:59.000Z

204

Hopkinson bar simulation using DYNA2D. Revision 1  

SciTech Connect (OSTI)

A finite-element simulation of a Split Hopkinson's bar (Kolsky apparatus) technique involving mortar specimens is accomplished with DYNA2D, an explicit two-dimensional finite-element code. Calculations are compared with experimental results contained in a University of Florida report Dynamic Response of Concrete and Concrete Structures, and with analytic solutions of the appropriate wave propagation problem.

Smith, J.A.; Glover, T.A.

1985-05-01T23:59:59.000Z

205

Biogenic gas nanostructures as ultrasonic molecular reporters  

E-Print Network [OSTI]

Biogenic gas nanostructures as ultrasonic molecular reporters Mikhail G. Shapiro1,2,3 *, Patrick W on the nanoscale. Here, we introduce a new class of reporters for ultrasound based on genetically encoded gas nanostructures from microorganisms, including bacteria and archaea. Gas vesicles are gas-filled protein

Schaffer, David V.

206

Nanostructures produced by phase-separation during growth of (III-V).sub.1-x(IV.sub.2).sub.x alloys  

DOE Patents [OSTI]

Nanostructures (18) and methods for production thereof by phase separation during metal organic vapor-phase epitaxy (MOVPE). An embodiment of one of the methods may comprise providing a growth surface in a reaction chamber and introducing a first mixture of precursor materials into the reaction chamber to form a buffer layer (12) thereon. A second mixture of precursor materials may be provided into the reaction chamber to form an active region (14) on the buffer layer (12), wherein the nanostructure (18) is embedded in a matrix (16) in the active region (14). Additional steps are also disclosed for preparing the nanostructure (18) product for various applications.

Norman, Andrew G. (Evergreen, CO); Olson, Jerry M. (Lakewood, CO)

2007-06-12T23:59:59.000Z

207

The Anglo-Australian Observatory's 2dF Facility  

E-Print Network [OSTI]

The 2dF (Two-degree Field) facility at the prime focus of the Anglo-Australian Telescope provides multiple object spectroscopy over a 2 degree field of view. Up to 400 target fibres can be independently positioned by a complex robot. Two spectrographs provide spectra with resolutions of between 500 and 2000, over wavelength ranges of 440nm and 110nm respectively. The 2dF facility began routine observations in 1997. 2dF was designed primarily for galaxy redshift surveys and has a number of innovative features. The large corrector lens incorporates an atmospheric dispersion compensator, essential for wide wavelength coverage with small diameter fibres. The instrument has two full sets of fibres on separate field plates, so that re-configuring can be done in parallel with observing. The robot positioner places one fibre every 6 seconds, to a precision of 0.3 arcsec (20micron) over the full field. All components of 2dF, including the spectrographs, are mounted on a 5-m diameter telescope top-end ring for ease of handling and to keep the optical fibres short in order to maximise UV throughput . There is a pipeline data reduction system which allows each data set to be fully analysed while the next field is being observed. In this paper we provide the historical background to the 2dF facility, the design philosophy, a full technical description and a summary of the performance of the instrument. We also briefly review its scientific applications and possible future developments.

I. J. Lewis; R. D. Cannon; K. Taylor; K. Glazebrook; J. A. Bailey; I. K. Baldry; J. R. Barton; T. J. Bridges; G. B. Dalton; T. J. Farrell; P. M. Gray; A. Lankshear; C. McCowage; I. R. Parry; R. M. Sharples; K. Shortridge; G. A. Smith; J. Stevenson; J. O. Straede; L. G. Waller; J. D. Whittard; J. K. Wilcox; K. C. Willis

2002-02-08T23:59:59.000Z

208

Improved medical implants comes from nanostructuring  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Improved medical implants comes from nanostructuring Improved medical implants comes from nanostructuring Improved medical implants comes from nanostructuring Together, LANL and Russia institutes modify metals to better match and integrate, or bond, with human bone tissue. April 3, 2012 Improved medical implants comes from nanostructuring In addition to possessing strength beyond what is possible in conventional pure metals, Biotanium(tm) has also been optimized for integration with living bone. Scientific studies of the attachment and growth of bone cells on Biotanium(tm) consistently show that these cells adhere better and grow significantly faster -- up to 20 times faster. ...nanostructuring remarkably improves other metal properties, including strength, cyclic load resistance, corrosion resistance, machinability, and

209

Three-body abrasive wear of fine pearlite, nanostructured bainite and martensite  

E-Print Network [OSTI]

, U.K b Mechanical, Materials and Manufacturing, University of Nottingham Abstract The abrasive wearThree-body abrasive wear of fine pearlite, nanostructured bainite and martensite S. Das Bakshi1a- sion rates and wear coefficients are not very different for the three states, the mechanisms

Cambridge, University of

210

Dry rolling/sliding wear of nanostructured bainite S. Das Bakshia  

E-Print Network [OSTI]

Dry rolling/sliding wear of nanostructured bainite S. Das Bakshia , A. Leirob , B. Prakashb , H. K. D. H. Bhadeshiaa a Materials Science and Metallurgy, University of Cambridge, U.K. b Applied Physics and Mechanical Engineering, Lule°a University of Technology, Sweden Abstract The abrasive wear of carbide

Cambridge, University of

211

Nanostructured Titania-Polymer Photovoltaic Devices Made Using PFPE-Based Nanomolding Techniques  

E-Print Network [OSTI]

Nanostructured Titania-Polymer Photovoltaic Devices Made Using PFPE-Based Nanomolding Techniques heterojunction photovoltaic (PV) cells using a perfluoropolyether (PFPE) elastomeric mold to control the donor photovoltaic materials because they are strong light absorbers and solution pro- cessable and can be deposited

McGehee, Michael

212

Hierarchical Silica Nanostructures Inspired by Diatom Algae Yield Superior Deformability, Toughness, and Strength  

E-Print Network [OSTI]

Hierarchical Silica Nanostructures Inspired by Diatom Algae Yield Superior Deformability, Toughness algae that is mainly composed of amorphous silica, which features a hierarchical structure that ranges in diatom algae as a basis to study a bioinspired nanoporous material implemented in crystalline silica. We

Buehler, Markus J.

213

Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in  

E-Print Network [OSTI]

Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects the growth and incorporation of MgO nanorods into high temperature superconductors (HTS's) has been developed a limitation to the performance of HTS materials at high temperatures and magnetic fields.11­13 The traditional

Yang, Peidong

214

PetaScale Calculations of the Electronic Structures of Nanostructures with Hundreds of Thousands of Processors  

E-Print Network [OSTI]

PetaScale Calculations of the Electronic Structures of Nanostructures with Hundreds of Thousands in the material science category. The DFT can be used to calculate the electronic structure, the charge density selfconsistent calculation without atomic relaxation). But there are many problems which either requires much

215

Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite  

SciTech Connect (OSTI)

REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to today’s best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

None

2012-01-01T23:59:59.000Z

216

Migration and Accretion of Protoplanets in 2D and 3D Global Hydrodynamical Simulations  

E-Print Network [OSTI]

Planet evolution is tightly connected to the dynamics of both distant and close disk material. Hence, an appropriate description of disk-planet interaction requires global and high resolution computations, which we accomplish by applying a Nested-Grid method. Through simulations in two and three dimensions, we investigate how migration and accretion are affected by long and short range interactions. For small mass objects, 3D models provide longer growth and migration time scales than 2D ones do, whereas time lengths are comparable for large mass planets.

G. D'Angelo; W. Kley; Th. Henning

2002-08-30T23:59:59.000Z

217

MaterialsChemistryA Materials for energy and sustainability  

E-Print Network [OSTI]

Pages 5939�6248 #12;High efficiency perovskite solar cells: from complex nanostructure to planar, the power conversion efficiency (PCE) of perovskite-based dye-sensitized solar cells (DSSCs) has rapidly the prognosis for future progress in exploiting perovskite materials for high efficiency solar cells. 1

Lin, Zhiqun

218

High-Performance Nanostructured Coating  

Broader source: Energy.gov [DOE]

The High-Performance Nanostructured Coating fact sheet details a SunShot project led by a University of California, San Diego research team working to develop a new high-temperature spectrally selective coating for receiver surfaces. These receiver surfaces, used in concentrating solar power systems, rely on high-temperature SSCs to effectively absorb solar energy without emitting much blackbody radiation.The optical properties of the SSC directly determine the efficiency and maximum attainable temperature of solar receivers, which in turn influence the power-conversion efficiency and overall system cost.

219

International Symposium on Clusters and Nanostructures (Energy, Environment, and Health)  

SciTech Connect (OSTI)

The international Symposium on Clusters and Nanostructures was held in Richmond, Virginia during November 7-10, 2011. The symposium focused on the roles clusters and nanostructures play in solving outstanding problems in clean and sustainable energy, environment, and health; three of the most important issues facing science and society. Many of the materials issues in renewable energies, environmental impacts of energy technologies as well as beneficial and toxicity issues of nanoparticles in health are intertwined. Realizing that both fundamental and applied materials issues require a multidisciplinary approach the symposium provided a forum by bringing researchers from physics, chemistry, materials science, and engineering fields to share their ideas and results, identify outstanding problems, and develop new collaborations. Clean and sustainable energy sessions addressed challenges in production, storage, conversion, and efficiency of renewable energies such as solar, wind, bio, thermo-electric, and hydrogen. Environmental issues dealt with air- and water-pollution and conservation, environmental remediation and hydrocarbon processing. Topics in health included therapeutic and diagnostic methods as well as health hazards attributed to nanoparticles. Cross-cutting topics such as reactions, catalysis, electronic, optical, and magnetic properties were also covered.

Jena, Puru [Distinguished Professor of Physics, VCU

2011-11-10T23:59:59.000Z

220

1D-to-2D tunneling in electron waveguides  

Science Journals Connector (OSTI)

We present a comprehensive experimental study of the tunneling and transport characteristics of split-gate ‘‘leaky’’ one-dimensional (1D) electron waveguides implemented in AlxGa1-xAs/GaAs heterostructures. In a leaky electron waveguide, electrons can tunnel out of the 1D channel through a thin side wall barrier into an adjacent 2D electron bath. A sharp peak and valley structure is observed in the 1D-to-2D tunneling current as the carrier concentration is modulated in the 1D waveguide through the field-effect action of the split gates. A semiclassical model confirms that the tunneling features originate from the 1D subbands in the channel.

Cristopher C. Eugster; Jesús A. del Alamo; Michael R. Melloch; Michael J. Rooks

1993-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Cellular-automaton-based simulation of 2D polymer dynamics  

Science Journals Connector (OSTI)

A cellular-automaton-based model that simulates flexible polymers in good solvents is constructed. Excluded-volume effects as well as hydrodynamic interactions are incorporated in this model in a very natural way. The center-of-mass velocity autocorrelation function of a single polymer chain in a 2D solution is found to obey a dynamic scaling relation which violates the nondraining concept.

J. M. Vianney A. Koelman

1990-04-16T23:59:59.000Z

222

Valley and electric photocurrents in 2D silicon and graphene  

SciTech Connect (OSTI)

We show that the optical excitation of multi-valley systems leads to valley currents which depend on the light polarization. The net electric current, determined by the vector sum of single-valley contributions, vanishes for some peculiar distributions of carriers in the valley and momentum spaces forming a pure valley current. We report on the study of this phenomenon, both experimental and theoretical, for graphene and 2D electron channels on the silicon surface.

Tarasenko, S. A.; Ivchenko, E. L. [Ioffe Physical-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Olbrich, P.; Ganichev, S. D. [Terahertz Center, University of Regensburg, 93040 Regensburg (Germany)

2013-12-04T23:59:59.000Z

223

Local Topological Order Inhibits Thermal Stability in 2D  

Science Journals Connector (OSTI)

We study the robustness of quantum information stored in the degenerate ground space of a local, frustration-free Hamiltonian with commuting terms on a 2D spin lattice. On one hand, a macroscopic energy barrier separating the distinct ground states under local transformations would protect the information from thermal fluctuations. On the other hand, local topological order would shield the ground space from static perturbations. Here we demonstrate that local topological order implies a constant energy barrier, thus inhibiting thermal stability.

Olivier Landon-Cardinal and David Poulin

2013-02-28T23:59:59.000Z

224

Assessment of 2D resistivity structures using 1D inversions  

E-Print Network [OSTI]

) E. R. Hoskins (Head of Departsnent) May 1987 ABSTRACT Assessment of 2D Resistivity Structures Using 1D Inversion. (May 1987) Les Paul Beard, B. S. , East Texas State University Chairman of Advisory Committee: Dr. Frank Dale Morgan Resistivity... sections from Schlumberger soundings over and near normal fault. 4. 11 Inverted sections from Wenner soundings over and near nornral fault 4. 12 Schlumberger apparent resistivity contour for normal fault 4. 13 Wenner apparenl resistivity contour...

Beard, Les Paul

1987-01-01T23:59:59.000Z

225

Synthesis and characterization of WO{sub 3} nanostructures prepared by an aged-hydrothermal method  

SciTech Connect (OSTI)

Nanostructures of tungsten trioxide (WO{sub 3}) have been successfully synthesized by using an aged route at low temperature (60 deg. C) followed by a hydrothermal method at 200 deg. C for 48 h under well controlled conditions. The material was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). Specific Surface Area (S{sub BET}) were measured by using the BET method. The lengths of the WO{sub 3} nanostructures obtained are between 30 and 200 nm and their diameters are from 20 to 70 nm. The growth direction of the tungsten oxide nanostructures was determined along [010] axis with an inter-planar distance of 0.38 nm.

Huirache-Acuna, R., E-mail: rafael_huirache@yahoo.it [CFATA-UNAM, Boulevard Juriquilla 3001, Juriquilla Queretaro, 76230 (Mexico); Universidad La Salle Morelia, Av. Universidad 500, Mpio. Tarimbaro Mich., 58880 (Mexico); Paraguay-Delgado, F. [Centro de Investigacion en Materiales Avanzados, S.C. CIMAV, Laboratorio Nacional de Nanotecnologia-Chihuahua, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chih., 31109 (Mexico); Albiter, M.A.; Lara-Romero, J. [Facultad de Ingenieria Quimica, Universidad Michoacana de San Nicolas de Hidalgo, Morelia Mich., 58000 (Mexico); Martinez-Sanchez, R. [Centro de Investigacion en Materiales Avanzados, S.C. CIMAV, Laboratorio Nacional de Nanotecnologia-Chihuahua, Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chih., 31109 (Mexico)

2009-09-15T23:59:59.000Z

226

2D monolayers could yield thinnest solar cells ever  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

have shown how using a different type of material could yield thinner, more lightweight solar panels that provide power densities - watts per kilogram of material - orders of...

227

On choosing a nonlinear initial iterate for solving the 2-D 3-T heat conduction equations  

SciTech Connect (OSTI)

The 2-D 3-T heat conduction equations can be used to approximately describe the energy broadcast in materials and the energy swapping between electron and photon or ion. To solve the equations, a fully implicit finite volume scheme is often used as the discretization method. Because the energy diffusion and swapping coefficients have a strongly nonlinear dependence on the temperature, and some physical parameters are discontinuous across the interfaces between the materials, it is a challenge to solve the discretized nonlinear algebraic equations. Particularly, as time advances, the temperature varies so greatly in the front of energy that it is difficult to choose an effective initial iterate when the nonlinear algebraic equations are solved by an iterative method. In this paper, a method of choosing a nonlinear initial iterate is proposed for iterative solving this kind of nonlinear algebraic equations. Numerical results show the proposed initial iterate can improve the computational efficiency, and also the convergence behavior of the nonlinear iteration.

An Hengbin [High Performance Computing Center, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)], E-mail: an_hengbin@iapcm.ac.cn; Mo Zeyao [High Performance Computing Center, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)], E-mail: zeyao_mo@iapcm.ac.cn; Xu Xiaowen [High Performance Computing Center, Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)], E-mail: xwxu@iapcm.ac.cn; Liu Xu [Graduate School of China Academy of Engineering Physics, Beijing 100088 (China)], E-mail: ninad@sohu.com

2009-05-20T23:59:59.000Z

228

Modeling Light Trapping in Nanostructured Solar Cells  

Science Journals Connector (OSTI)

The integration of nanophotonic and plasmonic structures with solar cells offers the ability to control and confine light in nanoscale dimensions. These nanostructures can be used to couple incident sunlight into both localized and guided modes, enhancing ...

Vivian E. Ferry; Albert Polman; Harry A. Atwater

2011-11-14T23:59:59.000Z

229

Radiation Damage in Nanostructured Metallic Films  

E-Print Network [OSTI]

with favorable microstructures and to investigate their response to radiation. The goals of this thesis are to study the radiation responses of several nanostructured metallic thin film systems, including Ag/Ni multilayers, nanotwinned Ag and nanocrystalline Fe...

Yu, Kaiyuan

2013-04-15T23:59:59.000Z

230

Nanostructured Solid Oxide Fuel Cell Electrodes  

E-Print Network [OSTI]

post-Doping of Solid Oxide Fuel Cell Cathodes,? P.h.D.and V. I. Birss, in Solid Oxide Fuel Cells (SOFC IX), S. C.Nanostructured Solid Oxide Fuel Cell Electrodes By Tal Zvi

Sholklapper, Tal Zvi

2007-01-01T23:59:59.000Z

231

Self-Assembly of Organic Nanostructures  

E-Print Network [OSTI]

This dissertation focuses on investigating the morphologies, optical and photoluminescence properties of porphyrin nanostructures prepared by the self-assembly method. The study is divided into three main parts. In the first part, a large variety...

Wan, Albert

2012-10-19T23:59:59.000Z

232

Trends in Particulate Nanostructure | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(nanostructure) of the soot across platforms, heavy-duty and light-duty, and biodiesel blend level. p-10strzelec.pdf More Documents & Publications Investigation of NO2...

233

Method for cooling nanostructures to microkelvin temperatures  

SciTech Connect (OSTI)

We propose a new scheme aimed at cooling nanostructures to microkelvin temperature based on the well established technique of adiabatic nuclear demagnetization: we attach each device measurement lead to an individual nuclear refrigerator, allowing efficient thermal contact to a microkelvin bath. On a prototype consisting of a parallel network of nuclear refrigerators, temperatures of {approx}1 mK simultaneously on ten measurement leads have been reached upon demagnetization, thus completing the first steps toward ultracold nanostructures.

Clark, A. C.; Schwarzwaelder, K. K.; Bandi, T.; Maradan, D.; Zumbuehl, D. M. [Department of Physics, University of Basel, Klingelbergstrasse 82, Basel CH-4056 (Switzerland)

2010-10-15T23:59:59.000Z

234

Production of fullerenic nanostructures in flames  

DOE Patents [OSTI]

A method for the production of fullerenic nanostructures is described in which unsaturated hydrocarbon fuel and oxygen are combusted in a burner chamber at a sub-atmospheric pressure, thereby establishing a flame. The condensibles of the flame are collected at a post-flame location. The condensibles contain fullerenic nanostructures, such as single and nested nanotubes, single and nested nanoparticles and giant fullerenes. The method of producing fullerenic soot from flames is also described.

Howard, Jack B. (Winchester, MA); Vander Sande, John B. (Newbury, MA); Chowdhury, K. Das (Cambridge, MA)

1999-01-01T23:59:59.000Z

235

Gold nanostructures and methods of use  

DOE Patents [OSTI]

The invention is drawn to novel nanostructures comprising hollow nanospheres and nanotubes for use as chemical sensors, conduits for fluids, and electronic conductors. The nanostructures can be used in microfluidic devices, for transporting fluids between devices and structures in analytical devices, for conducting electrical currents between devices and structure in analytical devices, and for conducting electrical currents between biological molecules and electronic devices, such as bio-microchips.

Zhang, Jin Z. (Santa Cruz, CA); Schwartzberg, Adam (Santa Cruz, CA); Olson, Tammy Y. (Santa Cruz, CA)

2012-03-20T23:59:59.000Z

236

Amazing Materials and the Emerging Field of Spintronics | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a 3D counterpart to one of the flattest materials of them all -- the amazing material graphene. Graphene is effectively a 2D material, consisting of single layers of carbon atoms...

237

Zero curvature condition and 2D gravity theories  

SciTech Connect (OSTI)

In this paper, the authors propose interpreting the zero curvature condition associated with an integrable model as an anomaly equation. This can lead to the WZWN action and the associated current algebra quite readily and clarifies further the connections found between the integrable models and 2D gravity theories. The authors analyze, in detail, the cases SL(2,R) (KdV hierarchy), OSp(2/1) (sKdV hierarchy) and SL(3,R) (Boussinesq hierarchy) and obtain the operator product expansions of the appropriate fields. The authors also make some observations on the generalization of our method to SL(n,R).

Das, A.; Huang, W.J.; Roy, S. (Dept. of Physics and Astronomy, Univ. of Rochester, Rochester, NY (US))

1992-06-20T23:59:59.000Z

238

Polarization Singularities in 2D and 3D Speckle Fields  

Science Journals Connector (OSTI)

The 3D structure of randomly polarized light fields is exemplified by its polarization singularities: lines along which the polarization is purely circular (C lines) and surfaces on which the polarization is linear (L surfaces). We visualize these polarization singularities experimentally in vector laser speckle fields, and in numerical simulations of random wave superpositions. Our results confirm previous analytical predictions [M.?R. Dennis, Opt. Commun. 213, 201 (2002)] regarding the statistical distribution of types of C points and relate their 2D properties to their 3D structure.

Florian Flossmann; Kevin O‘Holleran; Mark R. Dennis; Miles J. Padgett

2008-05-22T23:59:59.000Z

239

Multiple Ising Spins Coupled to 2d Quantum Gravity  

E-Print Network [OSTI]

We study a model in which p independent Ising spins are coupled to 2d quantum gravity (in the form of dynamical planar phi-cubed graphs). Consideration is given to the p tends to infinity limit in which the partition function becomes dominated by certain graphs; we identify most of these graphs. A truncated model is solved exactly providing information about the behaviour of the full model in the limit of small beta. Finally, we derive a bound for the critical value of the coupling constant, beta_c and examine the magnetization transition in the limit p tends to zero.

M. G. Harris; J. F. Wheater

1994-04-28T23:59:59.000Z

240

DOE/BES/NSET annual report on growth of metal and semiconductor nanostructures using localized photocatalysts.  

SciTech Connect (OSTI)

Our overall goal is to understand and develop a novel light-driven approach to the controlled growth of unique metal and semiconductor nanostructures and nanomaterials. In this photochemical process, bio-inspired porphyrin-based photocatalysts reduce metal salts in aqueous solutions at ambient temperatures to provide metal nucleation and growth centers. Photocatalyst molecules are pre-positioned at the nanoscale to control the location and morphology of the metal nanostructures grown. Self-assembly, chemical confinement, and molecular templating are some of the methods used for nanoscale positioning of the photocatalyst molecules. When exposed to light, the photocatalyst molecule repeatedly reduces metal ions from solution, leading to deposition and the synthesis of the new nanostructures and nanostructured materials. Studies of the photocatalytic growth process and the resulting nanostructures address a number of fundamental biological, chemical, and environmental issues and draw on the combined nanoscience characterization and multi-scale simulation capabilities of the new DOE Center for Integrated Nanotechnologies, the University of New Mexico, and Sandia National Laboratories. Our main goals are to elucidate the processes involved in the photocatalytic growth of metal nanomaterials and provide the scientific basis for controlled synthesis. The nanomaterials resulting from these studies have applications in nanoelectronics, photonics, sensors, catalysis, and micromechanical systems. The proposed nanoscience concentrates on three thematic research areas: (1) the creation of nanoscale structures for realizing novel phenomena and quantum control, (2) understanding nanoscale processes in the environment, and (3) the development and use of multi-scale, multi-phenomena theory and simulation. Our goals for FY03 have been to understand the role of photocatalysis in the synthesis of dendritic platinum nanostructures grown from aqueous surfactant solutions under ambient conditions. The research is expected to lead to highly nanoengineered materials for catalysis mediated by platinum, palladium, and potentially other catalytically important metals. The nanostructures made also have potential applications in nanoelectronics, nanophotonics, and nanomagnetic systems. We also expect to develop a fundamental understanding of the uses and limitations of biomimetic photocatalysis as a means of producing metal and semiconductor nanostructures and nanomaterials. The work has already led to a relationship with InfraSUR LLC, a small business that is developing our photocatalytic metal reduction processes for environmental remediation. This work also contributes to science education at a predominantly Hispanic and Native American university.

Haddad, Raid Edward; Brinker, C. Jeffrey; Shelnutt, John Allen; Yang, Yi; Nuttall, H. Eric; Watt, Richard K.; Singl, Anup K.; Challa, Sivakumar R.; Wang, Zhongchun; van Swol, Frank B.; Pereira, Eulalia; Qiu, Yan; Jiang, Ying-Bing; Xu, Huifang; Medforth, Craig J.; Song, Yujiang

2003-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Titanate and titania nanostructures and nanostructure assemblies, and methods of making same  

DOE Patents [OSTI]

The invention relates to nanomaterials and assemblies including, a micrometer-scale spherical aggregate comprising: a plurality of one-dimensional nanostructures comprising titanium and oxygen, wherein the one-dimensional nanostructures radiate from a hollow central core thereby forming a spherical aggregate.

Wong, Stanislaus S; Mao, Yuanbing

2013-05-14T23:59:59.000Z

242

4D-2D projection of Lorentz-violating Myers-Pospelov QED  

Science Journals Connector (OSTI)

We consider the four-dimensional quantum electrodynamics extended with Myers-Pospelov Lorentz-violating dimension-five operators to investigate 4D-2D projection. In projecting out the 4D theory down to a 2D theory, we get analogs of these operators. Namely, we obtain a new two-dimensional theory with corresponding scalar and fermionic 2D Myers-Pospelov Lorentz-violating dimension-three operators. New defect structures can also be found from this new projected-out 2D scalar sector. Furthermore, we also show that this 2D scalar sector can also be radiatively induced through the new 2D fermionic sector.

F. A. Brito; M. S. Guimaraes; E. Passos; P. Sampaio; C. Wotzasek

2012-11-20T23:59:59.000Z

243

SunShot Initiative: High-Performance Nanostructured Coating  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High-Performance Nanostructured High-Performance Nanostructured Coating to someone by E-mail Share SunShot Initiative: High-Performance Nanostructured Coating on Facebook Tweet about SunShot Initiative: High-Performance Nanostructured Coating on Twitter Bookmark SunShot Initiative: High-Performance Nanostructured Coating on Google Bookmark SunShot Initiative: High-Performance Nanostructured Coating on Delicious Rank SunShot Initiative: High-Performance Nanostructured Coating on Digg Find More places to share SunShot Initiative: High-Performance Nanostructured Coating on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

244

Spheroidisation of Hypereutectoid State of Nanostructured Bainitic Steel  

E-Print Network [OSTI]

Spheroidisation of Hypereutectoid State of Nanostructured Bainitic Steel D. Luoa , M.J. Peeta , S can be achieved using this method. Keywords: nanostructured bainite, hypereutectoid steel, spheroidisation, cementite, softening heat treatments 1. Introduction Strong steels sometimes need to be formed

Cambridge, University of

245

Solar energy harvesting scheme utilizing three-dimensional hierarchical nanostructures  

Science Journals Connector (OSTI)

The nanostructured CIGS NTRs can have efficiency enhancement of ~160 % due to the higher light absorption ability because of the nanostructure. In the secondary part of my talk, an...

Chueh, Yu-Lun

246

Electronic noise in nanostructures: limitations and sensing applications  

E-Print Network [OSTI]

and their characteristic length is close to acoustical phonon wavelength. Moreover, because nanostructures include significantly fewer charge carriers than microscale structures, electronic noise in nanostructures is enhanced compared to microscale structures. Additionally...

Kim, Jong Un

2007-04-25T23:59:59.000Z

247

Lensless Imaging of Magnetic Nanostructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lensless Imaging of Magnetic Nanostructures Print Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the first time to nanometer-scale magnetic structures in an alloy. Many Ways To See You open your eyes and detect the light rays streaming through your bedroom window (transmission), illuminating your socks on the floor (scattering). You put on your glasses (refraction) to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the arrangement of the atoms in the crystal (diffraction). Now, thanks to Turner et al., you can also shine some x-ray light on a magnetic sample to detect the arrangement of its electron spins through a method known as lensless imaging. This last example is an equally valid way to "see," but instead of using windows, lenses, or mirrors to manipulate light and construct an image, mathematical formulas are used to describe the effects that particles and fields in the sample have on the light. These formulas have always contained terms that relate to the electron spin of magnetic atoms, but they were previously ignored. Using the full formula allows for the determination of not only crystal structure, but magnetic spin distribution and orientation as well, with a spatial resolution limited only by the wavelength of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering the potential for imaging in unprecedented detail the structure and motion of boundaries between regions with different magnetic orientation.

248

Lensless Imaging of Magnetic Nanostructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lensless Imaging of Magnetic Nanostructures Print Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the first time to nanometer-scale magnetic structures in an alloy. Many Ways To See You open your eyes and detect the light rays streaming through your bedroom window (transmission), illuminating your socks on the floor (scattering). You put on your glasses (refraction) to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the arrangement of the atoms in the crystal (diffraction). Now, thanks to Turner et al., you can also shine some x-ray light on a magnetic sample to detect the arrangement of its electron spins through a method known as lensless imaging. This last example is an equally valid way to "see," but instead of using windows, lenses, or mirrors to manipulate light and construct an image, mathematical formulas are used to describe the effects that particles and fields in the sample have on the light. These formulas have always contained terms that relate to the electron spin of magnetic atoms, but they were previously ignored. Using the full formula allows for the determination of not only crystal structure, but magnetic spin distribution and orientation as well, with a spatial resolution limited only by the wavelength of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering the potential for imaging in unprecedented detail the structure and motion of boundaries between regions with different magnetic orientation.

249

Lensless Imaging of Magnetic Nanostructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lensless Imaging of Magnetic Nanostructures Print Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the first time to nanometer-scale magnetic structures in an alloy. Many Ways To See You open your eyes and detect the light rays streaming through your bedroom window (transmission), illuminating your socks on the floor (scattering). You put on your glasses (refraction) to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the arrangement of the atoms in the crystal (diffraction). Now, thanks to Turner et al., you can also shine some x-ray light on a magnetic sample to detect the arrangement of its electron spins through a method known as lensless imaging. This last example is an equally valid way to "see," but instead of using windows, lenses, or mirrors to manipulate light and construct an image, mathematical formulas are used to describe the effects that particles and fields in the sample have on the light. These formulas have always contained terms that relate to the electron spin of magnetic atoms, but they were previously ignored. Using the full formula allows for the determination of not only crystal structure, but magnetic spin distribution and orientation as well, with a spatial resolution limited only by the wavelength of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering the potential for imaging in unprecedented detail the structure and motion of boundaries between regions with different magnetic orientation.

250

Lensless Imaging of Magnetic Nanostructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lensless Imaging of Magnetic Nanostructures Print Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the first time to nanometer-scale magnetic structures in an alloy. Many Ways To See You open your eyes and detect the light rays streaming through your bedroom window (transmission), illuminating your socks on the floor (scattering). You put on your glasses (refraction) to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the arrangement of the atoms in the crystal (diffraction). Now, thanks to Turner et al., you can also shine some x-ray light on a magnetic sample to detect the arrangement of its electron spins through a method known as lensless imaging. This last example is an equally valid way to "see," but instead of using windows, lenses, or mirrors to manipulate light and construct an image, mathematical formulas are used to describe the effects that particles and fields in the sample have on the light. These formulas have always contained terms that relate to the electron spin of magnetic atoms, but they were previously ignored. Using the full formula allows for the determination of not only crystal structure, but magnetic spin distribution and orientation as well, with a spatial resolution limited only by the wavelength of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering the potential for imaging in unprecedented detail the structure and motion of boundaries between regions with different magnetic orientation.

251

Lensless Imaging of Magnetic Nanostructures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lensless Imaging of Magnetic Lensless Imaging of Magnetic Nanostructures Lensless Imaging of Magnetic Nanostructures Print Wednesday, 28 March 2012 00:00 Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the first time to nanometer-scale magnetic structures in an alloy. Many Ways To See You open your eyes and detect the light rays streaming through your bedroom window (transmission), illuminating your socks on the floor (scattering). You put on your glasses (refraction) to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the arrangement of the atoms in the crystal (diffraction). Now, thanks to Turner et al., you can also shine some x-ray light on a magnetic sample to detect the arrangement of its electron spins through a method known as lensless imaging. This last example is an equally valid way to "see," but instead of using windows, lenses, or mirrors to manipulate light and construct an image, mathematical formulas are used to describe the effects that particles and fields in the sample have on the light. These formulas have always contained terms that relate to the electron spin of magnetic atoms, but they were previously ignored. Using the full formula allows for the determination of not only crystal structure, but magnetic spin distribution and orientation as well, with a spatial resolution limited only by the wavelength of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering the potential for imaging in unprecedented detail the structure and motion of boundaries between regions with different magnetic orientation.

252

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Vehicle Technologies Office...

253

PNNL Enhanced Pool-Boiling Heat Transfer Using Nanostructured Surfaces  

ScienceCinema (OSTI)

Close-up video of boiling taking place on a nanostructured surface in a controlled laboratory experiment.

None

2012-12-31T23:59:59.000Z

254

2-D tomography with bolometry in DIII-D  

SciTech Connect (OSTI)

We have installed a 48-channel platinum-foil bolometer system on DIII-D achieve better spatial and temporal resolution of the radiated power in diverted discharges. Two 24-channel arrays provide complete plasma coverage with optimized views of the divertor. We have measured the divertor radiation profile for a series of radiative divertor and power balance experiments. We observe a rapid change in the magnitude and distribution of divertor radiation with heavy gas puffing. Unfolding the radiation profile with only two views requires us to treat the core and divertor radiation separately. The core radiation is fitted to a function of magnetic flux and is then subtracted from the divertor viewing chords. The divertor profile is then fit to a 2-D spline as a function of magnetic flux and poloidal angle.

Leonard, A.W. [General Atomics, San Diego, CA (United States); Meyer, W.H.; Geer, B.; Behne, D.M.; Hill, D.N. [Lawrence Livermore National Lab., CA (United States)

1994-07-01T23:59:59.000Z

255

areaDetector: Software for 2-D Detectors in EPICS  

SciTech Connect (OSTI)

areaDetector is a new EPICS module designed to support 2-D detectors. It is modular C++ code that greatly simplifies the task of writing support for a new detector. It also supports plugins, which receive detector data from the driver and process it in some way. Existing plugins perform Region-Of-Interest extraction and analysis, file saving (in netCDF, HDF, TIFF and JPEG formats), color conversion, and export to EPICS records for image display in clients like ImageJ and IDL. Drivers have now been written for many of the detectors commonly used at synchrotron beamlines, including CCDs, pixel array and amorphous silicon detectors, and online image plates.

Rivers, M. (UC)

2011-09-23T23:59:59.000Z

256

areaDetector: Software for 2-D Detectors in EPICS  

SciTech Connect (OSTI)

areaDetector is a new EPICS module designed to support 2-D detectors. It is modular C++ code that greatly simplifies the task of writing support for a new detector. It also supports plugins, which receive detector data from the driver and process it in some way. Existing plugins perform Region-Of-Interest extraction and analysis, file saving (in netCDF, HDF, TIFF and JPEG formats), color conversion, and export to EPICS records for image display in clients like ImageJ and IDL. Drivers have now been written for many of the detectors commonly used at synchrotron beamlines, including CCDs, pixel array and amorphous silicon detectors, and online image plates.

Rivers, Mark L. [Center for Advanced Radiation Sources and Department of Geophysical Sciences, University of Chicago, Argonne, IL 60439 (United States)

2010-06-23T23:59:59.000Z

257

Hydrothermally grown nanostructured WO films and their electrochromic characteristics  

E-Print Network [OSTI]

Hydrothermally grown nanostructured WO 3 films and their electrochromic characteristics.1088/0022-3727/43/28/285501 Hydrothermally grown nanostructured WO3 films and their electrochromic characteristics Zhihui Jiao1 , Xiao Wei and their electrochromic characteristics. Plate-like monoclinic WO3 nanostructures were grown directly on fluorine

Demir, Hilmi Volkan

258

Pressure-Tuning the Quantum Phase Transition in a Model 2-D Magnet |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reappearing Superconductivity Surprises Scientists Reappearing Superconductivity Surprises Scientists Manipulating Genes with Hidden TALENs A New Discovery Answers an Old Question Peering into the Interfaces of Nanoscale Polymeric Materials Ironing Out the Details of the Earth's Core Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Pressure-Tuning the Quantum Phase Transition in a Model 2-D Magnet APRIL 11, 2012 Bookmark and Share Argonne and University of Chicago physicist Sara Haravifard with the instrument on XSD beamline 6-ID-B at the APS used for the high-resolution, high-pressure structural measurements of SCBO at cryogenic temperatures. The fundamental interactions that determine how spins arrange themselves in

259

Nanostructured Biomaterials Lab Dept. of Chemical Engineering and Materials Science  

E-Print Network [OSTI]

Synthetic DNA: collagen gene - First de novo collagen gene (!) - Modular design (for introducing non

Mease, Kenneth D.

260

Carbon Nanostructures As Thermal Interface Materials: Processing And Properties.  

E-Print Network [OSTI]

??The power density of electronic packages has substantially increased. The thermal interface resistance involves more than 50% of the total thermal resistance in current high-power… (more)

Memon, Muhammad Omar

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Metal Oxide Nanostructured Materials for Optical and Energy Applications  

E-Print Network [OSTI]

of waste-heat thermoelectric power generators. AppliedThermoelectric generators The worldwide consumption of energy for electricity generation and transportation produces vast amounts of low-quality waste heat

Moore, Michael Christopher

2013-01-01T23:59:59.000Z

262

Electrochemical Synthesis and Characterization of Nanostructured Chalcogenide Materials  

E-Print Network [OSTI]

fixed ?0.50 V vs. Ag/AgCl. (c) Electrical resistance changefixed ?0.50 V vs. Ag/AgCl. (c) Electrical resistance changeelectrical properties was done by adopting the deposition potential of ?0.15 and ?0.5, and ?0.65 V vs.

Chang, Chong Hyun

2011-01-01T23:59:59.000Z

263

Solution Phase Routes to Functional Nanostructured Materials for Energy Applications  

E-Print Network [OSTI]

Carbon Nanotubes for Enhanced Electrochemical EnergyEnergy dispersive X-ray spectra for CuInSe 2 nanowires (a) and nanotubes (Energy dispersive X-ray spectra for CuInSe 2 nanowires (a) and nanotubes (

Rauda, Iris Ester

2012-01-01T23:59:59.000Z

264

A nanostructured composite material for hydrogen storage: design & analysis.  

E-Print Network [OSTI]

??Hydrogen has long been considered an ideal energy carrier for a sustainable energy economy, for both direct combustion and as a fuel for polymer-electrolyte fuel… (more)

Al-Hajjaj, A.A.

2012-01-01T23:59:59.000Z

265

Applications of Ultrasound to the Synthesis of Nanostructured Materials  

E-Print Network [OSTI]

phase techniques (e.g., molten metal evaporation, flash vacuum thermal and laser pyrolysis decom successful ultrasound-assisted synthetic methods (sonochemistry and ultrasonic spray pyrolysis for ultrasonic spray pyrolysis (USP) with subsequent reactions occurring in the heated droplets of the mist

Suslick, Kenneth S.

266

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network [OSTI]

photovoltaic (PV) solar cell technology. It is defined asWEIGHT SOLAR CELLS Current solar array technologies provide

Shao, Qinghui

2009-01-01T23:59:59.000Z

267

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network [OSTI]

and P. Peumans, “Organic solar cells with solution-processedtypical thickness in organic solar cell application [4]. At

Shao, Qinghui

2009-01-01T23:59:59.000Z

268

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network [OSTI]

for concentrator photovoltaic cells (CPV) is 100 K – 200 Kimplementing photovoltaic and photochemical cells on largeConcentrated Photovoltaic (CPV) cells have been demonstrated

Shao, Qinghui

2009-01-01T23:59:59.000Z

269

High capacity nanostructured electrode materials for lithium-ion batteries.  

E-Print Network [OSTI]

??The lithium-ion battery is currently the most widely used electrochemical storage system on the market, with applications ranging from portable electronics to electric vehicles, to… (more)

Seng, Kuok H

2013-01-01T23:59:59.000Z

270

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network [OSTI]

Geisz, Sarah Kurtz, M. W. Wanlass, J. S. Ward, A. Duda, D.D.J. Aiken, and M.W. Wanlass, “Direct-bonded GaAs/InGaAs

Shao, Qinghui

2009-01-01T23:59:59.000Z

271

Combination of Lightweight Elements and Nanostructured Materials for Batteries  

Science Journals Connector (OSTI)

His research expertise is energy storage & conversion with batteries, fuel cells, and solar cells. ... (2) The main issues facing various current batteries are the slow electrode-process kinetics with large polarization and low rate of ionic diffusion/migration, resulting in limited practical energy output and battery performance. ...

Jun Chen; Fangyi Cheng

2009-04-08T23:59:59.000Z

272

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network [OSTI]

for Improvement of Photovoltaic Solar Energy Converters,”drastic improvement in photovoltaic (PV) energy conversionwith photovoltaic devices to improve the energy conversion

Shao, Qinghui

2009-01-01T23:59:59.000Z

273

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network [OSTI]

energy conversion efficiency of solar cells increased steadily in the last decade through enhanced photon absorption and charge carrier

Shao, Qinghui

2009-01-01T23:59:59.000Z

274

The Anglo-Australian Observatory 2dF facility  

Science Journals Connector (OSTI)

......corrector design. The prism material is a high refractive...the observations. 7 Diagram showing design of fibre...button handles. The handling of the fibre probes...a sheet of magnetic material which was then mounted...Hertzsprung-Russell diagram. This can be compared......

I. J. Lewis; R. D. Cannon; K. Taylor; K. Glazebrook; J. A. Bailey; I. K. Baldry; J. R. Barton; T. J. Bridges; G. B. Dalton; T. J. Farrell; P. M. Gray; A. Lankshear; C. McCowage; I. R. Parry; R. M. Sharples; K. Shortridge; G. A. Smith; J. Stevenson; J. O. Straede; L. G. Waller; J. D. Whittard; J. K. Wilcox; K. C. Willis

2002-06-21T23:59:59.000Z

275

An Improved Ant Colony Optimisation Algorithm for the 2D HP Protein Folding Problem  

E-Print Network [OSTI]

An Improved Ant Colony Optimisation Algorithm for the 2D HP Protein Folding Problem Alena hydrophobic-polar (2D HP) protein folding problem. We present an improved version of our recently proposed Ant search. Overall, the results presented here establish our new ACO algorithm for 2D HP protein folding

Hoos, Holger H.

276

An Ant Colony Optimization Algorithm for the 2D HP Protein Folding Problem  

E-Print Network [OSTI]

An Ant Colony Optimization Algorithm for the 2D HP Protein Folding Problem Alena Shmygelska, Rosal, the two dimensional hydrophobic-polar (2D HP) protein folding problem. We introduce an ant colony algorithm closely approaches that of specialised, state-of-the methods for 2D HP protein folding. 1

Hoos, Holger H.

277

Exhibit 2D -Refund of Royalties UT-B Contracts Div Page 1 of 1  

E-Print Network [OSTI]

Exhibit 2D - Refund of Royalties UT-B Contracts Div Dec 2005 Page 1 of 1 ex2D-dec05.doc Exhibit 2D Ref: DEAR 970.5227-8 REFUND OF ROYALTIES (Dec 2005) (a) During performance of this subcontract, if any royalties are proposed to be charged to the Company as costs under this subcontract, the Seller agrees

Pennycook, Steve

278

ESS 2012 Peer Review - Architectural Diversity of Metal Oxide Nanostructures - Esther Takeuchi, Stony Brook University  

Broader source: Energy.gov (indexed) [DOE]

Architectural Diversity of Metal Oxide Nanostructures: Architectural Diversity of Metal Oxide Nanostructures: An Opportunity for the Rational Optimization of Group II Cation Based Batteries. Esther S. Takeuchi, Kenneth J. Takeuchi, Amy C. Marschilok esther.takeuchi@stonybrook.edu, kenneth.takeuchi.1@stonybrook.edu, amy.marschilok@stonybrook.edu Utilize earth abundant, low cost elements with minimal environmental impact as battery materials. Exploit magnesium due to air stability and ~1,000X higher natural abundance than lithium and ~5,000X higher abundance than lead. Cathode materials feature Mn, Fe or V metal centers. Strategy Results Results This project targets some of the unique needs of large scale power storage: 1) reduced cost 2) low environmental impact 3) scalability 4) reversibility

279

Transport properties and Kondo correlations in nanostructures: Time-dependent DMRG method applied to quantum dots coupled to Wilson chains  

E-Print Network [OSTI]

elements to handle this problem: i a discretization procedure of the metallic band, leading to a mappingTransport properties and Kondo correlations in nanostructures: Time-dependent DMRG method applied,4 C. A. BĂĽsser,5 G. B. Martins,5 E. V. Anda,6 and E. Dagotto1 1 Materials Science and Technology

Dias, Luis GregĂłrio

280

Nanoscale topographical replication of graphene architecture by artificial DNA nanostructures  

SciTech Connect (OSTI)

Despite many studies on how geometry can be used to control the electronic properties of graphene, certain limitations to fabrication of designed graphene nanostructures exist. Here, we demonstrate controlled topographical replication of graphene by artificial deoxyribonucleic acid (DNA) nanostructures. Owing to the high degree of geometrical freedom of DNA nanostructures, we controlled the nanoscale topography of graphene. The topography of graphene replicated from DNA nanostructures showed enhanced thermal stability and revealed an interesting negative temperature coefficient of sheet resistivity when underlying DNA nanostructures were denatured at high temperatures.

Moon, Y.; Seo, S.; Park, J.; Park, T.; Ahn, J. R., E-mail: jrahn@skku.edu [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Shin, J.; Dugasani, S. R. [Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Woo, S. H. [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Park, S. H., E-mail: sunghapark@skku.edu [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

2014-06-09T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Microfluidic channel with embedded SERS 2D platform for the aptamer detection of ochratoxin A  

Science Journals Connector (OSTI)

A selective aptameric sequence is adsorbed on a two-dimensional nanostructured metallic platform optimized for surface-enhanced Raman spectroscopy (SERS ... confined environment, using very small amounts of chemicals

Betty C. Galarreta; Mohammadali Tabatabaei…

2013-02-01T23:59:59.000Z

282

2D modeling of electromagnetic waves in cold plasmas  

SciTech Connect (OSTI)

The consequences of sheath (rectified) electric fields, resulting from the different mobility of electrons and ions as a response to radio frequency (RF) fields, are a concern for RF antenna design as it can cause damage to antenna parts, limiters and other in-vessel components. As a first step to a more complete description, the usual cold plasma dielectric description has been adopted, and the density profile was assumed to be known as input. Ultimately, the relevant equations describing the wave-particle interaction both on the fast and slow timescale will need to be tackled but prior to doing so was felt as a necessity to get a feeling of the wave dynamics involved. Maxwell's equations are solved for a cold plasma in a 2D antenna box with strongly varying density profiles crossing also lower hybrid and ion-ion hybrid resonance layers. Numerical modelling quickly becomes demanding on computer power, since a fine grid spacing is required to capture the small wavelengths effects of strongly evanescent modes.

Crombé, K. [Laboratory for Plasma Physics, Association EURATOM - Belgian State Trilateral Euregio Cluster, Renaissancelaan 30 Avenue de la Renaissance, B-1000 Brussels, Belgium and Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, B (Belgium); Van Eester, D.; Koch, R.; Kyrytsya, V. [Laboratory for Plasma Physics, Association EURATOM - Belgian State Trilateral Euregio Cluster, Renaissancelaan 30 Avenue de la Renaissance, B-1000 Brussels (Belgium)

2014-02-12T23:59:59.000Z

283

2D/3D registration algorithm for lung brachytherapy  

SciTech Connect (OSTI)

Purpose: A 2D/3D registration algorithm is proposed for registering orthogonal x-ray images with a diagnostic CT volume for high dose rate (HDR) lung brachytherapy. Methods: The algorithm utilizes a rigid registration model based on a pixel/voxel intensity matching approach. To achieve accurate registration, a robust similarity measure combining normalized mutual information, image gradient, and intensity difference was developed. The algorithm was validated using a simple body and anthropomorphic phantoms. Transfer catheters were placed inside the phantoms to simulate the unique image features observed during treatment. The algorithm sensitivity to various degrees of initial misregistration and to the presence of foreign objects, such as ECG leads, was evaluated. Results: The mean registration error was 2.2 and 1.9 mm for the simple body and anthropomorphic phantoms, respectively. The error was comparable to the interoperator catheter digitization error of 1.6 mm. Preliminary analysis of data acquired from four patients indicated a mean registration error of 4.2 mm. Conclusions: Results obtained using the proposed algorithm are clinically acceptable especially considering the complications normally encountered when imaging during lung HDR brachytherapy.

Zvonarev, P. S. [McMaster University, Medical Physics and Applied Radiation Sciences, Hamilton, Ontario L8S 4L8 (Canada); Farrell, T. J.; Hunter, R.; Wierzbicki, M.; Hayward, J. E. [McMaster University, Medical Physics and Applied Radiation Sciences, Hamilton, Ontario L8S 4L8 (Canada); Juravinski Cancer Centre, Medical Physics, Hamilton, Ontario L8V 5C2 (Canada); Sur, R. K. [McMaster University, Medical Physics and Applied Radiation Sciences, Hamilton, Ontario L8S 4L8 (Canada); Juravinski Cancer Centre, Radiation Oncology, Hamilton, Ontario L8V 5C2 (Canada)

2013-02-15T23:59:59.000Z

284

Optical Property of Silicon Based Nanostructure and Fabrication of Silicon Nanostructure Solar Cells  

Science Journals Connector (OSTI)

Several types of silicon nanostructures have been achieved through a silver-assisted electroless etching technique. Radial p-n junction solar cells were designed and fabricated, and a...

Li, Meicheng

285

Functional Materials for Energy | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Characterization Chemical and Morphological Changes of High Voltage Lithium-Manganese Rich Cathodes with Cycling August 26, 2014 Top panels (a)-(d): 2D images Mn K edge...

286

OPTICAL AND DYNAMIC PROPERTIES OF UNDOPED AND DOPED SEMICONDUCTOR NANOSTRUCTURES  

SciTech Connect (OSTI)

This chapter provides an overview of some recent research activities on the study of optical and dynamic properties of semiconductor nanomaterials. The emphasis is on unique aspects of these properties in nanostructures as compared to bulk materials. Linear, including absorption and luminescence, and nonlinear optical as well as dynamic properties of semiconductor nanoparticles are discussed with focus on their dependence on particle size, shape, and surface characteristics. Both doped and undoped semiconductor nanomaterials are highlighted and contrasted to illustrate the use of doping to effectively alter and probe nanomaterial properties. Some emerging applications of optical nanomaterials are discussed towards the end of the chapter, including solar energy conversion, optical sensing of chemicals and biochemicals, solid state lighting, photocatalysis, and photoelectrochemistry.

Grant, C D; Zhang, J Z

2007-09-28T23:59:59.000Z

287

Biomolecule-Based Nanomaterials and Nanostructures  

Science Journals Connector (OSTI)

Similarly, biomolecule-quantum dot hybrid systems are implemented for optical biosensing, and for monitoring intracellular metabolic processes. ... Such motor nanostructures, consisting of biomolecule-metal nanowire hybrids, hold promise as future nanotransporting elements. ... motors that carry cargoes within cells have inspired the construction of rudimentary DNA walkers that run along self-assembled tracks. ...

Itamar Willner; Bilha Willner

2010-09-15T23:59:59.000Z

288

Nanostructure and Bioactivity of Hybrid Aerogels  

Science Journals Connector (OSTI)

Nanostructure and Bioactivity of Hybrid Aerogels ... Several CaO?SiO2?PDMS hybrid sono-aerogels were investigated. ... Hybrid sono-aerogels in the CaO?SiO2?poly(dimethyl siloxane) (PDMS) system with low density and high surface area and pore volume were investigated to be used as biomaterials. ...

Antonio J. Salinas; María Vallet-Regí; José A. Toledo-Fernández; Roberto Mendoza-Serna; Manuel Pińero; Luis Esquivias; Julio Ramírez-Castellanos; José M. González-Calbet

2008-12-03T23:59:59.000Z

289

Hydrogen Storage by Polylithiated Molecules and Nanostructures  

Science Journals Connector (OSTI)

Hydrogen Storage by Polylithiated Molecules and Nanostructures ... (3) Physisorption offers the possibility of storing hydrogen in molecular form. ... Also given in Table 1 are the hydrogen binding energies, which are calculated by subtracting the total energy of the hydrogenated polylithiated molecules from the sum of the total energies of the isolated polylithiated molecules and the hydrogen molecules, divided by the number of hydrogen molecules. ...

Süleyman Er; Gilles A. de Wijs; Geert Brocks

2009-04-29T23:59:59.000Z

290

A large 2D PSD for thermal neutron detection  

SciTech Connect (OSTI)

A 2D PSD based on a MWPC has been constructed for a small angle neutron scattering instrument. The active area of the detector was 640 x 640 mm{sup 2}. To meet the specifications for neutron detection efficiency and spatial resolution, and to minimize parallax, the gas mixture was 190 kPa {sup 3}He plus 100 kPa CF{sub 4} and the active volume had a thickness of 30 mm. The design maximum neutron count-rate of the detector was 10{sup 5} events per second. The (calculated) neutron detection efficiency was 60% for 2{angstrom} neutrons and the (measured) neutron energy resolution on the anode grid was typically 20% (fwhm). The location of a neutron detection event within the active area was determined using the wire-by-wire method: the spatial resolution (5 x 5 mm{sup 2}) was thereby defined by the wire geometry. A 16 channel charge-sensitive preamplifier/amplifier/comparator module has been developed with a channel sensitivity of 0.1 V/fC, noise linewidth of 0.4 fC (fwhm) and channel-to-channel cross-talk of less than 5%. The Proportional Counter Operating System (PCOS III) (LeCroy Corp USA) was used for event encoding. The ECL signals produced by the 16 channel modules were latched in PCOS III by a trigger pulse from the anode and the fast encoders produce a position and width for each event. The information was transferred to a UNIX workstation for accumulation and online display.

Knott, R.B.; Watt, G.; Boldeman, J.W. [Australian Nuclear Science and Technology Organization, Menai, New South Wales (Australia). Physics Div.; Smith, G.C. [Brookhaven National Lab., Upton, NY (United States). Instrumentation Div.

1996-12-31T23:59:59.000Z

291

Material nanosizing effect on living organisms: non-specific, biointeractive, physical size effects  

Science Journals Connector (OSTI)

...Introduction 1.1 Nanotechnology and biological organisms The development of nanotechnology has a large influence...investigated in biology and medicine. For materials...Graduate School of Dental Medicine, Hokkaido University...Nanostructures chemistry Nanotechnology Nanotubes, Carbon...

2009-01-01T23:59:59.000Z

292

Data:Bef2d82a-31eb-4fde-8533-2d38bc6f7da3 | Open Energy Information  

Open Energy Info (EERE)

Bef2d82a-31eb-4fde-8533-2d38bc6f7da3 Bef2d82a-31eb-4fde-8533-2d38bc6f7da3 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Crisp County Power Comm Effective date: 2012/06/01 End date if known: Rate name: Fuel Cost Recovery Schedule- Secondary Distribution Sector: Commercial Description: This schedule is applicable to and becomes a part of each retail rate schedule in which reference is mad to the Fuel Cost Recovery Schedule. This provision applies to both regular and minimum bills. Secondary Distribution Customers= Any customer not defined as a transmission or primary distribution customer.

293

Data:436bd023-2d2d-4202-b859-0b278bb80ef2 | Open Energy Information  

Open Energy Info (EERE)

bd023-2d2d-4202-b859-0b278bb80ef2 bd023-2d2d-4202-b859-0b278bb80ef2 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Perry, Oklahoma (Utility Company) Effective date: End date if known: Rate name: Residential- All-Electric Sector: Residential Description: Source or reference: http://www.cityofperryok.com/Files/Codes/City_Code_101211.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous

294

OECD/MCCI 2-D Core Concrete Interaction (CCI) tests : final report February 28, 2006.  

SciTech Connect (OSTI)

Although extensive research has been conducted over the last several years in the areas of Core-Concrete Interaction (CCI) and debris coolability, two important issues warrant further investigation. The first issue concerns the effectiveness of water in terminating a CCI by flooding the interacting masses from above, thereby quenching the molten core debris and rendering it permanently coolable. This safety issue was investigated in the EPRI-sponsored Melt Attack and Coolability Experiments (MACE) program. The approach was to conduct large scale, integral-type reactor materials experiments with core melt masses ranging up to two metric tons. These experiments provided unique, and for the most part repeatable, indications of heat transfer mechanism(s) that could provide long term debris cooling. However, the results did not demonstrate definitively that a melt would always be completely quenched. This was due to the fact that the crust anchored to the test section sidewalls in every test, which led to melt/crust separation, even at the largest test section lateral span of 1.20 m. This decoupling is not expected for a typical reactor cavity, which has a span of 5-6 m. Even though the crust may mechanically bond to the reactor cavity walls, the weight of the coolant and the crust itself is expected to periodically fracture the crust and restore contact with the melt. Although crust fracturing does not ensure that coolability will be achieved, it nonetheless provides a pathway for water to recontact the underlying melt, thereby allowing other debris cooling mechanisms to proceed. A related task of the current program, which is not addressed in this particular report, is to measure crust strength to check the hypothesis that a corium crust would not be strong enough to sustain melt/crust separation in a plant accident. The second important issue concerns long-term, two-dimensional concrete ablation by a prototypic core oxide melt. As discussed by Foit the existing reactor material database for dry cavity conditions is solely one-dimensional. Although the MACE Scoping Test was carried out with a two-dimensional concrete cavity, the interaction was flooded soon after ablation was initiated to investigate debris coolability. Moreover, due to the scoping nature of this test, the apparatus was minimally instrumented and therefore the results are of limited value from the code validation viewpoint. Aside from the MACE program, the COTELS test series also investigated 2-D CCI under flooded cavity conditions. However, the input power density for these tests was quite high relative to the prototypic case. Finally, the BETA test series provided valuable data on 2-D core concrete interaction under dry cavity conditions, but these tests focused on investigating the interaction of the metallic (steel) phase with concrete. Due to these limitations, there is significant uncertainty in the partition of energy dissipated for the ablation of concrete in the lateral and axial directions under dry cavity conditions for the case of a core oxide melt. Accurate knowledge of this 'power split' is important in the evaluation of the consequences of an ex-vessel severe accident; e.g., lateral erosion can undermine containment structures, while axial erosion can penetrate the basemat, leading to ground contamination and/or possible containment bypass. As a result of this uncertainty, there are still substantial differences among computer codes in the prediction of 2-D cavity erosion behavior under both wet and dry cavity conditions. In light of the above issues, the OECD-sponsored Melt Coolability and Concrete Interaction (MCCI) program was initiated at Argonne National Laboratory. The project conducted reactor materials experiments and associated analysis to achieve the following technical objectives: (1) resolve the ex-vessel debris coolability issue through a program that focused on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties relat

Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S. (Nuclear Engineering Division); (NRC)

2011-05-23T23:59:59.000Z

295

ccsd00002720, 1D action and partition function for the 2D Ising  

E-Print Network [OSTI]

ccsd­00002720, version 2 ­ 11 Jan 2005 1D action and partition function for the 2D Ising model an alternative method to that developed by B. McCoy and T.T. Wu to obtain some exact results for the 2D Ising is a generalisation of ideas from V.N. Plechko presented for the 2D Ising model in zero #12;eld, based

296

The Department of Chemical Engineering and Materials Science Michigan State University  

E-Print Network [OSTI]

AND NANOSTRUCTURE INFLUENCES ON MECHANICAL PROPERTIES OF THERMOELECTRIC MATERIALS Thermoelectric (TE) materials in a device, the thermoelectric material must be able to withstand the applied thermal and mechanical forcesThe Department of Chemical Engineering and Materials Science Michigan State University Ph

297

Vanishing heat conductivity limit for the 2D Cahn-Hilliard-Boussinesq system  

Science Journals Connector (OSTI)

This article studies the vanishing heat conductivity limit for the 2D Cahn-Hilliard-boussinesq system in a bounded domain with non-...

Zaihong Jiang; Jishan Fan

2011-12-01T23:59:59.000Z

298

E-Print Network 3.0 - arch 2d-4d echocardiography Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for: arch 2d-4d echocardiography Page: << < 1 2 3 4 5 > >> 1 Kentucky Children's Heart Center Summary: Heart Association, American Society of Echocardiography, American...

299

Pushing the boundaries of the thermal conductivity of materials  

E-Print Network [OSTI]

Pushing the boundaries of the thermal conductivity of materials David G. Cahill, C. Chiritescu, Y. · Advances in time-domain thermoreflectance. · Amorphous limit to the thermal conductivity of materials. #12;50 nm Interfaces are critical at the nanoscale · Low thermal conductivity in nanostructured

Braun, Paul

300

Recent achievements on materials for hydrogen storage  

Science Journals Connector (OSTI)

After a brief introduction on the problems related to hydrogen storage, recent trends of the research on hydrogen storage materials are presented and discussed: metal hydrides; nanostructured magnesium-based hydrides; nanocomposites based on mixtures of amides and hydrides, amides and alanates, and borohydrides and hydrides; chemical hydrides; and nonhydride systems. The aim of the paper is to show that, even if none of these studied materials satisfies all the requirements for a very wide practical use, some niche applications are already feasible.

Filippo Agresti; Ashish Khandelwal; Amedeo Maddalena; Giovanni Principi; Sergio Lo Russo

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Computational Challenges for Nanostructure Solar Cells Project at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Challenges for Challenges for Nanostructure Solar Cells Computational Challenges for Nanostructure Solar Cells ZZ2.jpg Key Challenges: Current nanostructure solar cells often have energy efficiencies well below that of traditional solar cells. To understand why, one must understand the complete photoelectron dynamics in a nanostructure - the photon absorption, exciton generation, exciton dissociation, carrier transport and carrier collection. However, the large number of surface states, the strong exciton binding energies, the nano-interfaces, the lack of doping, and the possibility of unintended internal electric fields make this a daunting task that requires a suite of techniques and computer codes offering different electronic structure methods and varying levels of

302

Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application  

Broader source: Energy.gov [DOE]

Presents nanostructured thermal/electrical interface Ťtape? concept involving carbon nanotube and metal nanowire films to improve thermomechanical cycling behavior of automotive TEGs

303

Silicon Nanostructure-based Technology for Next Generation Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Storage Silicon Nanostructure-based Technology for Next Generation Energy Storage 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual...

304

Plasmonic and High Index Nanostructures for Efficient Solar Energy Conversion  

Science Journals Connector (OSTI)

I will discuss the use of nanometallic and high-index dielectric nanostructures in boosting the energy conversion efficiency of photovoltaic and photo-electrochemical cells.

Brongersma, Mark L

305

Graphene and its Hybrid Nanostructures for Nanoelectronics and Energy Applications.  

E-Print Network [OSTI]

??This dissertation focuses on investigating the synthesis of graphene and its hybrid nanostructures by chemical vapor deposition (CVD) process, as well as their applications in… (more)

LIN, JIAN

2011-01-01T23:59:59.000Z

306

Nanostructures for Electrical Energy Storage (NEES) | U.S. DOE...  

Office of Science (SC) Website

Nanostructures for Electrical Energy Storage (NEES) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events...

307

Three-Dimensional Composite Nanostructures for Lean NOx Emission...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Emission Control Catalysts Three-Dimensional Composite Nanostructures for Lean NOx Emission Control Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic Catalysts...

308

Three-Dimensional Composite Nanostructures for Lean NOx Emission...  

Broader source: Energy.gov (indexed) [DOE]

Nanowire Lean NOx Emission Control Catalysts Ultra-efficient, Robust and Well-defined Nano-Array based Monolithic Catalysts Three-Dimensional Composite Nanostructures for Lean...

309

Field Emission and Nanostructure of Carbon Films  

SciTech Connect (OSTI)

The results of field emission measurements of various forms of carbon films are reported. It is shown that the films nanostructure is a crucial factor determining the field emission properties. In particular, smooth, pulsed-laser deposited amorphous carbon films with both high and low sp3 contents are poor field emitters. This is similar to the results obtained for smooth nanocrystalline, sp2-bonded carbon films. In contrast, carbon films prepared by hot-filament chemical vapor deposition (HE-CVD) exhibit very good field emission properties, including low emission turn-on fields, high emission site density, and excellent durability. HF-CVD carbon films were found to be predominantly sp2-bonded. However, surface morphology studies show that these films are thoroughly nanostructured, which is believed to be responsible for their promising field emission properties.

Merkulov, V.I.; Lowndes, D.H.; Baylor, L.R.

1999-11-29T23:59:59.000Z

310

Research Areas - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanostructured Thin Films Nanostructured Thin Films Theme: The Nanostructured Thin Films program is focused on the synthesis, characterization, and modeling of dimensionally constrained materials systems in which a nano-scale trait of the material (e.g. grain size, film thickness, interfacial boundary, etc.) fundamentally determines its structure-property relationships. The work performed in this program falls primarily into two areas: (1) studies of thin-film growth phenomena and film properties, with emphasis on diamond and multicomponent oxides; and (2) first principles quantum-mechanical calculations that model thin film growth processes and electronic structure. Frequently, the experimental and theoretical efforts are coordinated on common scientific issues in a particular material system. Current research is devoted to (a) growth

311

Research Areas - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

http://www.msd.anl.gov/research-areas Sun, 12 Jan 2014 01:06:27 +0000 Joomla! 1.6 - Open Source Content Management en-gb Dynamics of Active Self-Assemble Materials http://www.msd.anl.gov/research-areas/dynamics-of-active-self-assemble-materials http://www.msd.anl.gov/research-areas/dynamics-of-active-self-assemble-materials krajniak@anl.gov (Ken Krajniak) Fri, 13 May 2011 17:17:28 +0000 Elastic Relaxation and Correlation of Local Strain Gradients with Ferroelectric Domains in (001) BiFeO3 Nanostructures http://www.msd.anl.gov/research-areas/elastic-relaxation-and-correlation-of-local-strain-gradients-with-ferroelectric-domains-in-001-bifeo3-nanostructures http://www.msd.anl.gov/research-areas/elastic-relaxation-and-correlation-of-local-strain-gradients-with-ferroelectric-domains-in-001-bifeo3-nanostructures

312

A FINITE-VOLUME VERSION OF AIZENMAN-HIGUCHI THEOREM FOR THE 2D ISING MODEL  

E-Print Network [OSTI]

A FINITE-VOLUME VERSION OF AIZENMAN-HIGUCHI THEOREM FOR THE 2D ISING MODEL LOREN COQUILLE AND YVAN-neighbor Ising model at inverse temperature 0 are of the form µ+ + (1 - )µ- , where µ+ and µ- are the two-neighbor ferromagnetic (2d n.n.f.) Ising model, with boundary condition and at inverse temperature 0

Velenik, Yvan

313

Reynolds-Averaged Navier-Stokes Simulation of a 2D Circulation Control Wind Tunnel Experiment  

E-Print Network [OSTI]

Reynolds-Averaged Navier-Stokes Simulation of a 2D Circulation Control Wind Tunnel Experiment Brian airfoil. 2D and 3D simulation results are compared to a circulation control wind tunnel test conducted simulations are performed using a Reynolds-averaged Navier-Stokes (RANS) flow solver for a circulation control

Frey, Pascal

314

THE 2D EULER-BOUSSINESQ EQUATIONS WITH A LOGARITHMICALLY SUPERCRITICAL VELOCITY  

E-Print Network [OSTI]

THE 2D EULER-BOUSSINESQ EQUATIONS WITH A LOGARITHMICALLY SUPERCRITICAL VELOCITY DURGA KC, DIPENDRA of solutions to a generalized 2D Euler-Boussinesq systems of equations with a logarithmically super- critical Euler- Boussinesq system of equations with a singular velocity t + u · = x1 , t + u · + = 0, u

Wu, Jiahong

315

GLOBAL WELL-POSEDNESS FOR THE 2D BOUSSINESQ SYSTEM WITHOUT HEAT DIFFUSION AND WITH EITHER  

E-Print Network [OSTI]

GLOBAL WELL-POSEDNESS FOR THE 2D BOUSSINESQ SYSTEM WITHOUT HEAT DIFFUSION AND WITH EITHER: 612/626-7370 URL: http://www.ima.umn.edu #12;GLOBAL WELL-POSEDNESS FOR THE 2D BOUSSINESQ SYSTEM for the two-dimensional non-diffusive Boussinesq system with viscosity only in the horizontal direction, which

316

Active Ankle Response for a 2-D Biped Robot with Terrain Contact Sensing  

E-Print Network [OSTI]

Active Ankle Response for a 2-D Biped Robot with Terrain Contact Sensing By Francis Hitschmann Submitted to the graduate degree program in Mechanical Engineering and the Graduate Faculty of the University of Kansas School... certifies that this is the approved Version of the following thesis: Active Ankle Response for a 2-D Biped Robot with Terrain Contact Sensing Committee: Chairperson* Date Approved...

Hitschmann, Francis Lee

2009-11-18T23:59:59.000Z

317

Design optimization of a 2D prompt-gamma measurement system for proton dose verification  

Science Journals Connector (OSTI)

To verify in-vivo proton dose distribution, a 2-dimensional (2D) prompt-gamma measurement system, comprised of a multi-hole collimation system, a 2D array of CsI(Tl) scintillators, and a position-sensitive pho...

Han Rim Lee; Jong Hoon Park; Chan Hyeong Kim…

2012-07-01T23:59:59.000Z

318

Reversible fragile watermarking for locating tampered blocks in 2D vector maps  

Science Journals Connector (OSTI)

For 2D vector maps, obtaining good tamper localization performance and original content recovery with existing reversible fragile watermarking schemes is a technically challenging problem. Using an improved reversible watermarking method and a fragile ... Keywords: 2D vector map, Authentication, Fragile watermarking, Reversible data hiding, Tamper localization

Nana Wang; Chaoguang Men

2013-12-01T23:59:59.000Z

319

Combining rails and anchors with laser forcing for selective manipulation within 2D droplet arrays  

E-Print Network [OSTI]

-dimensional (2D)array format is a standard approachfor implementing a large number of parallel assays arrays of droplets in microchannels has proved more challenging, in part due to the standard methods and operating protocols, leading to different methods to array drops: quasi-2D arrays were formed by winding

Boyer, Edmond

320

Multifractal Fields Simulation Software Matlab functions eps1D and eps2D  

E-Print Network [OSTI]

1 Multifractal Fields Simulation Software Matlab functions eps1D and eps2D Basic Summary A fractal inputs required for eps2D, the first two, lambdat and lambday, are the resolution of the field. Note input is a switch which allows to make the process acausal (switch=0) or causal (switch=0). eps1D works

Lovejoy, Shaun

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Higher order global differentiability local approximations for 2-D and 3-D distorted element geometries  

E-Print Network [OSTI]

: C22 HGDA element,p? = p? = 5 96 4.21 ComparisonofUndistortedandDistorteddiscretizationsversusdegrees of freedom for 2-D Poisson?s equation : C33 HGDA element,p? = p? = 7 97 4.22 ComparisonofCij DistortedHGDAelementsversusdiscretizationlength for 2-D...

Maduri, Rajesh Kumar

2008-02-01T23:59:59.000Z

322

Fast 2-D Camera Control, Data Acquisition, and Database Techniques for Edge Studies on NSTX  

E-Print Network [OSTI]

. Scotti1, M. K. Ko3 1Princeton Plasma Physics Laboratory, Princeton, NJ 08540 2 Lodestar Research Corporation, Boulder, CO 80301 3 Princeton H.S., Princeton, NJ 08540 Poster P3-01 Abstract Number ???? #12;NSTX-U 9th IAEA TM ­ Fast 2-D Camera Plasma Edge Studies (W. Davis) May 6-10, 2013 Abstract 2 Fast 2-D

Princeton Plasma Physics Laboratory

323

A 2D/3D Discrete Duality Finite Volume Scheme. Application to ECG simulation  

E-Print Network [OSTI]

A 2D/3D Discrete Duality Finite Volume Scheme. Application to ECG simulation Y. Coudi`ere Universit-10Oct2008 #12;A 2D/3D DDFV scheme for ECG simulation 1 Introduction Computer models of the electrical-known electrocardiogram (ECG). It gives a non-invasive representation of the cardiac electrical function. Un- derstanding

Paris-Sud XI, Université de

324

The 2dF Galaxy Redshift Survey: Final Data Release  

E-Print Network [OSTI]

The 2dF Galaxy Redshift Survey (2dFGRS) has obtained spectra for 245591 sources, mainly galaxies, brighter than a nominal extinction-corrected magnitude limit of b_J=19.45. Reliable redshifts were measured for 221414 galaxies. The galaxies are selected from the extended APM Galaxy Survey and cover an area of approximately 1500 square degrees in three regions: an NGP strip, an SGP strip and random fields scattered around the SGP strip. This paper describes the 2dFGRS final data release of 30 June 2003 and complements Colless et al. (2001), which described the survey and the initial 100k data release. The 2dFGRS database and full documentation are available on the WWW at http://www.mso.anu.edu.au/2dFGRS/

Matthew Colless; Bruce A. Peterson; Carole Jackson; John A. Peacock; Shaun Cole; Peder Norberg; Ivan K. Baldry; Carlton M. Baugh; Joss Bland-Hawthorn; Terry Bridges; Russell Cannon; Chris Collins; Warrick Couch; Nicholas Cross; Gavin Dalton; Roberto De Propris; Simon P. Driver; George Efstathiou; Richard S. Ellis; Carlos S. Frenk; Karl Glazebrook; Ofer Lahav; Ian Lewis; Stuart Lumsden; Steve Maddox; Darren Madgwick; Will Sutherland; Keith Taylor

2003-06-27T23:59:59.000Z

325

Argonne National Laboratory Center for Nanoscale Materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

Laboratory Center for Nanoscale Materials Laboratory Center for Nanoscale Materials An Office of Science User Facility U.S. Department of Energy Search CNM ... Search CNM Home About CNM Research Facilities People For Users Publications News & Highlights Events Jobs CNM Users Organization Contact Us Other DOE Nanoscale Science Research Centers Casimir force reduction Casimir Force Reduction through Nanostructuring By nanostructuring one of two interacting metal surfaces at scales below the plasma wavelength, a new regime in the Casimir force was observed by researchers in the Center for Nanoscale Materials Nanofabrication & Devices Group working with collaborators at NIST, other national laboratories, and universities. Replacing a flat surface with a deep metallic lamellar grating with <100 nm features strongly suppresses the Casimir force and,

326

Meta-DNA: synthetic biology via DNA nanostructures and  

E-Print Network [OSTI]

Meta-DNA: synthetic biology via DNA nanostructures and hybridization reactions Harish Chandran1 strands and may be modified to allow for mutations. Keywords: DNA self-assembly; synthetic biology; DNA nanostructures 1. INTRODUCTION 1.1. Synthetic biology using DNA nanosystems A major goal of synthetic biology

Reif, John H.

327

Light Trapping in Solar Cells Using Resonant Nanostructures P. Spinelli  

E-Print Network [OSTI]

Light Trapping in Solar Cells Using Resonant Nanostructures P. Spinelli #12;Summary Photovoltaics solar cell is reduced, due to incomplete absorption of light. In this thesis, we investigate new ways of enhancing light absorption in Si solar cells by using nanostructures that show resonant interaction

van Rooij, Robert

328

The 2013 Clusters, Nanocrystals & Nanostructures Gordon Research Conference/Gordon Research Seminar  

SciTech Connect (OSTI)

The fundamental properties of small particles and their potential for groundbreaking applications are among the most exciting areas of study in modern physics, chemistry, and materials science. The Clusters, Nanocrystals & Nanostructures Gordon ResearchConference and Gordon Research Seminar synthesize contributions from these inter-related fields that reflect the pivotal role of nano-particles at the interface between these disciplines. Size-dependent optical, electronic, magnetic and catalytic properties offer prospects for applications in many fields, and possible solutions for many of the grand challenges facing energy generation, consumption, delivery, and storage in the 21st century. The goal of the 2013 Clusters, Nanocrystals & Nanostructures Gordon Research Conference and Gordon Research Seminar is to continue the historical interdisciplinary tradition of this series and discuss the most recent advances, basic scientific questions, and emerging applications of clusters, nanocrystals, and nanostructures. The Clusters, Nanocrystals & Nanostructures GRC/GRS traditionally brings together the leading scientific groups that have made significant recent advances in one or more fundamental nanoscience or nanotechnology areas. Broad interests of the DOE BES and Solar Photochemistry Program addressed by this meeting include the areas of solar energy to fuels conversion, new photovoltaic systems, fundamental characterization of nanomaterials, magnetism, catalysis, and quantum physics. The vast majority of speakers and attendees will address either directly the topic of nanotechnology for photoinduced charge transfer, charge transport, and catalysis, or will have made significant contributions to related areas that will impact these fields indirectly. These topics have direct relevance to the mission of the DOE BES since it is this cutting-edge basic science that underpins our energy future.

Krauss, Todd D. [University of Rochester

2014-11-25T23:59:59.000Z

329

Ultra-sensitive thermal conductance measurement of one-dimensional nanostructures enhanced by differential bridge  

Science Journals Connector (OSTI)

Thermal conductivity of one-dimensional nanostructures such as nanowires nanotubes and polymer chains is of significant interest for understanding nanoscale thermal transport phenomena as well as for practical applications in nanoelectronics energy conversion and thermal management. Various techniques have been developed during the past decade for measuring this fundamental quantity at the individual nanostructure level. However the sensitivity of these techniques is generally limited to 1 × 10?9 W/K which is inadequate for small diameter nanostructures that potentially possess thermal conductance ranging between 10?11 and 10?10 W/K. In this paper we demonstrate an experimental technique which is capable of measuring thermal conductance of ?10?11 W/K. The improved sensitivity is achieved by using an on-chip Wheatstone bridge circuit that overcomes several instrumentation issues. It provides a more effective method of characterizing the thermal properties of smaller and less conductive one-dimensional nanostructures. The best sensitivity experimentally achieved experienced a noise equivalent temperature below 0.5 mK and a minimum conductancemeasurement of 1 × 10?11 W/K. Measuring the temperature fluctuation of both the four-point and bridge measurements over a 4 h time period shows a reduction in measured temperature fluctuation from 100 mK to 0.6 mK. Measurement of a 15 nm Genanowire and background conductance signal with no wire present demonstrates the increased sensitivity of the bridge method over the traditional four-point I-V measurement. This ultra-sensitive measurement platform allows for thermal measurements of materials at new size scales and will improve our understanding of thermal transport in nanoscale structures.

Matthew C. Wingert; Zack C. Y. Chen; Shooshin Kwon; Jie Xiang; Renkun Chen

2012-01-01T23:59:59.000Z

330

V-226: HP StoreOnce D2D Backup Systems Denial of Service Vulnerability |  

Broader source: Energy.gov (indexed) [DOE]

6: HP StoreOnce D2D Backup Systems Denial of Service 6: HP StoreOnce D2D Backup Systems Denial of Service Vulnerability V-226: HP StoreOnce D2D Backup Systems Denial of Service Vulnerability August 24, 2013 - 3:45am Addthis PROBLEM: A vulnerability has been reported in HP StoreOnce D2D Backup Systems, which can be exploited by malicious people to cause a DoS (Denial of Service). PLATFORM: HP StoreOnce D2D Backup Systems 1.x, HP StoreOnce D2D Backup Systems 2.x ABSTRACT: The vulnerability is reported in versions 2.2.18 and prior and 1.2.18 and prior. REFERENCE LINKS: Secunia Advisory SA54598 CVE-2013-2353 IMPACT ASSESSMENT: Moderate DISCUSSION: A vulnerability has been reported in HP StoreOnce D2D Backup Systems, which can be exploited by malicious people to cause a DoS (Denial of Service). The vulnerability is caused due to an unspecified error. No further

331

Matrix-assisted energy conversion in nanostructured piezoelectric arrays  

DOE Patents [OSTI]

A nanoconverter is capable of directly generating electricity through a nanostructure embedded in a polymer layer experiencing differential thermal expansion in a stress transfer zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or substantially vertically aligned on a substrate. The resulting nanoforest is then embedded with the polymer layer, which transfers stress to the nanostructures in the stress transfer zone, thereby creating a nanostructure voltage output due to the piezoelectric effect acting on the nanostructure. Electrodes attached at both ends of the nanostructures generate output power at densities of .about.20 nW/cm.sup.2 with heating temperatures of .about.65.degree. C. Nanoconverters arrayed in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries.

Sirbuly, Donald J.; Wang, Xianying; Wang, Yinmin

2013-01-01T23:59:59.000Z

332

THREE-DIMENSIONAL IMAGING OF NANOSCALE MATERIALS BY UISNG COHERENT X-RAYS  

SciTech Connect (OSTI)

X-ray crystallography is currently the primary methodology used to determine the 3D structure of materials and macromolecules. However, many nanostructures, disordered materials, biomaterials, hybrid materials and biological specimens are noncrystalline and, hence, their structures are not accessible by X-ray crystallography. Probing these structures therefore requires the employment of different approaches. A very promising technique currently under rapid development is X-ray diffraction microscopy (or lensless imaging), in which the coherent X-ray diffraction pattern of a noncrystalline specimen is measured and then directly phased to obtain a high-resolution image. Through the DOE support over the past three years, we have applied X-ray diffraction microscopy to quantitative imaging of GaN quantum dot particles, and revealed the internal GaN-Ga2O3 core shell structure in three dimensions. By exploiting the abrupt change in the scattering cross-section near electronic resonances, we carried out the first experimental demonstration of resonant X-ray diffraction microscopy for element specific imaging. We performed nondestructive and quantitative imaging of buried Bi structures inside a Si crystal by directly phasing coherent X-ray diffraction patterns acquired below and above the Bi M5 edge. We have also applied X-ray diffraction microscopy to nondestructive imaging of mineral crystals inside biological composite materials - intramuscular fish bone - at the nanometer scale resolution. We identified mineral crystals in collagen fibrils at different stages of mineralization and proposed a dynamic mechanism to account for the nucleation and growth of mineral crystals in the collagen matrix. In addition, we have also discovered a novel 3D imaging modality, denoted ankylography, which allows for complete 3D structure determination without the necessity of sample titling or scanning. We showed that when the diffraction pattern of a finite object is sampled at a sufficiently fine scale on the Ewald sphere, the 3D structure of the object is determined by the 2D spherical pattern. We confirmed the theoretical analysis by performing 3D numerical reconstructions of a sodium silicate glass structure at 2 Ă? resolution from a 2D spherical diffraction pattern alone. As X-ray free electron lasers are under rapid development worldwide, ankylography may open up a new horizon to obtain the 3D structure of a non-crystalline specimen from a single pulse and allow time-resolved 3D structure determination of disordered materials.

Jianwei Miao

2011-04-18T23:59:59.000Z

333

Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award  

Broader source: Energy.gov [DOE]

EERE-supported graphene nanostructures increases capacity of batteries, improves performance and convenience of electric vehicles.

334

NANOSTRUCTURED SOLAR CELLS FOR HIGH EFFICIENCY PHOTOVOLTAICS Christiana B. Honsberg1  

E-Print Network [OSTI]

for solar energy conversion. NANOSTRUCTURED SOLAR CELLS Nanostructured solar cells offer several advantages to contribute to high efficiency devices NEW CONCEPTS FOR SOLAR CELLS An important advantage for nanostructuredNANOSTRUCTURED SOLAR CELLS FOR HIGH EFFICIENCY PHOTOVOLTAICS Christiana B. Honsberg1 , Allen M

Honsberg, Christiana

335

2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe  

SciTech Connect (OSTI)

A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

Chen, Y. H.; Yang, X. Y.; Lin, C., E-mail: linchen0812@pku.edu.cn, E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J., E-mail: linchen0812@pku.edu.cn, E-mail: cjxiao@pku.edu.cn [State Key Lab of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871 (China); Wang, L. [Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190 (China); Xu, M. [Center for Fusion Science of Southwestern Institute of Physics, P. O. Box 432, Chengdu 610041 (China)

2014-11-15T23:59:59.000Z

336

Crossover from 2D to 3D in a Weakly Interacting Fermi Gas  

Science Journals Connector (OSTI)

We have studied the transition from two to three dimensions in a low temperature weakly interacting Li6 Fermi gas. Below a critical atom number N2D only the lowest transverse vibrational state of a highly anisotropic oblate trapping potential is occupied and the gas is two dimensional. Above N2D the Fermi gas enters the quasi-2D regime where shell structure associated with the filling of individual transverse oscillator states is apparent. This dimensional crossover is demonstrated through measurements of the cloud size and aspect ratio versus atom number.

P. Dyke; E. D. Kuhnle; S. Whitlock; H. Hu; M. Mark; S. Hoinka; M. Lingham; P. Hannaford; C. J. Vale

2011-03-11T23:59:59.000Z

337

Curie temperature of multiphase nanostructures  

SciTech Connect (OSTI)

The Curie temperature and the local spontaneous magnetization of ferromagnetic nanocomposites are investigated. The macroscopic character of the critical fluctuations responsible for the onset of ferromagnetic order means that there is only one Curie temperature, independent of the number of magnetic phases present. The Curie temperature increases with the grain size and is, in general, larger than predicted from the volume averages of the exchange constants. However, the Curie-temperature enhancement is accompanied by a relative reduction of the spontaneous magnetization. Due to the quadratic dependence of the permanent-magnet energy product on the spontaneous magnetization, this amounts to a deterioration of the magnets performance. The length scale on which an effective intergranular exchange coupling is realized (coupling length) depends on the Curie-temperature difference between the phases and on the spacial distribution of the local interatomic exchange. As a rule, it is of the order of a few interatomic distances; for much bigger grain sizes the structures mimic an interaction-free ensemble of different ferromagnetic materials. This must be compared to the magnetic-anisotropy coupling length, which is of the order of 10 nm. The difference is explained by the nonrelativistic character of the Curie-temperature problem. (c) 2000 American Institute of Physics.

Skomski, R. [Department of Physics and Astronomy and Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588 (United States)] [Department of Physics and Astronomy and Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588 (United States); Sellmyer, D. J. [Department of Physics and Astronomy and Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588 (United States)] [Department of Physics and Astronomy and Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588 (United States)

2000-05-01T23:59:59.000Z

338

Data:86080fd2-d7f0-470b-8485-ac01338b1d2d | Open Energy Information  

Open Energy Info (EERE)

0fd2-d7f0-470b-8485-ac01338b1d2d 0fd2-d7f0-470b-8485-ac01338b1d2d No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Piedmont Electric Member Corp Effective date: 2011/01/01 End date if known: Rate name: OUTDOOR LIGHTING SERVICE 175 Watt Mercury Vapor Lamp Sector: Lighting Description: 1. The Cooperative shall furnish and install a wooden pole if required for the outdoor light, within 150 feet of existing secondary circuits. If an additional wood pole is required, other than for mounting the lighting fixture, there will be a contribution-in-aid of construction of $125.00 per pole. The contribution-in-aid of construction for the decorative post top fixture on the decorative fluted fiberglass pole with a twelve (12) foot mounting height will be $1,125.00. 2.The charge for the purchased power related costs shall be 3.904¢ times the estimated average monthly kWh usage. 3. Consumer requested conversion of an existing, properly operating Security light fixture will require the following one time service charge(s): Conversion of fixture on same pole, same location: $ 36.00 Conversion of fixture requiring removal of a pole: $36.00

339

Data:693e6aec-7e2d-4a28-8b2d-8657bd6c2317 | Open Energy Information  

Open Energy Info (EERE)

aec-7e2d-4a28-8b2d-8657bd6c2317 aec-7e2d-4a28-8b2d-8657bd6c2317 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Long Island Power Authority Effective date: 2012/03/05 End date if known: Rate name: 281 (Large General Service Secondary) Sector: Commercial Description: For monthly-billed Customers, electric use during the last twelve (12) months has equaled or been greater than 2,000 KWH in each of two (2) consecutive monthly billing periods, or b) For bimonthly-billed Customers, electric use during the last twelve (12) months has equaled or been greater than 4,000 KWH in one (1) bimonthly billing period, or c) For Applicants, the Authority estimates their demands at 7 KW or more.

340

Data:E6c26b6e-354f-4fde-9d2d-aeab2d913c5c | Open Energy Information  

Open Energy Info (EERE)

c26b6e-354f-4fde-9d2d-aeab2d913c5c c26b6e-354f-4fde-9d2d-aeab2d913c5c No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Blue Ridge Elec Member Corp Effective date: 2010/03/03 End date if known: Rate name: Outdoor Lighting Service Sector: Lighting Description: Availability: Available for dusk to dawn outdoor lighting service to all members where the Cooperative's distribution facilities are located. Not available for part-time or seasonal operation of luminaires. Membership: Each consumer receiving service under this schedule shall be a member of the Cooperative and agrees to comply with the bylaws and abide by all service rules and regulations as adopted by the Cooperative's Board of Directors.

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Data:909cb0ad-9159-40ad-a117-2d7740c2d61e | Open Energy Information  

Open Energy Info (EERE)

cb0ad-9159-40ad-a117-2d7740c2d61e cb0ad-9159-40ad-a117-2d7740c2d61e No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Nodak Electric Coop Inc Effective date: 2012/05/20 End date if known: Rate name: GS High Density-Single Phase Sector: Industrial Description: Additional Meters (Off-Peak Included) $ 3.60/Meter/Month Available for service to locations in a High Density area. A High Density area is defined as: ď‚· An enlargement (generally 160 acres) with 20 or more active locations, or ď‚· A cluster of 20 or more active locations, or ď‚· A cluster with 10 or more active locations that adjoins an enlargement with 20 or more active locations, or ď‚· An area adjacent to an incorporated town with 20 or more active locations. Renewable Energy Market Adjustment $0.003/KWH (Added to All Above Energy Rates) Controlled Water Heater Credit $.00736/KWH Applies to the first 1,000 KWHs each month (October-March)

342

Data:130918b6-4287-43f2-b2d5-6b848b57a2d9 | Open Energy Information  

Open Energy Info (EERE)

4287-43f2-b2d5-6b848b57a2d9 4287-43f2-b2d5-6b848b57a2d9 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Pontotoc Electric Power Assn Effective date: 2013/07/01 End date if known: Rate name: General Power Service GSA (51 kW -1000 kW) Multi-Phase Sector: Commercial Description: Source or reference: http://www.sitemason.com/files/fjDo1q/May%202012.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous

343

Data:81a39522-c0da-49ee-8539-2d51e2d0df10 | Open Energy Information  

Open Energy Info (EERE)

9522-c0da-49ee-8539-2d51e2d0df10 9522-c0da-49ee-8539-2d51e2d0df10 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Northcentral Mississippi E P A Effective date: 2011/10/11 End date if known: Rate name: General Service GSA (50 kW - 1000 kW) Sector: Commercial Description: *This rate shall apply to the firm power requirements (where a customer's contract demand is 5,000 kW or less) for electric service to commercial, industrial, and governmental customers, and to institutional customers including, without limitation, churches, clubs, fraternities, orphanages, nursing homes, rooming or boarding houses, and like customers. This rate shall also apply to customers to whom service is not available under any other resale rate schedule.

344

Quantum Phase Extraction in Isospectral Electronic Nanostructures  

SciTech Connect (OSTI)

Quantum phase is not a direct observable and is usually determined by interferometric methods. We present a method to map complete electron wave functions, including internal quantum phase information, from measured single-state probability densities. We harness the mathematical discovery of drum-like manifolds bearing different shapes but identical resonances, and construct quantum isospectral nanostructures possessing matching electronic structure but divergent physical structure. Quantum measurement (scanning tunneling microscopy) of these 'quantum drums' [degenerate two-dimensional electron states on the Cu(111) surface confined by individually positioned CO molecules] reveals that isospectrality provides an extra topological degree of freedom enabling robust quantum state transplantation and phase extraction.

Moon, Christopher

2010-04-28T23:59:59.000Z

345

Magnetism in hybrid carbon nanostructures: Nanobuds  

Science Journals Connector (OSTI)

The robust magnetic state of recently synthesized hybrid carbon nanostructures, i.e., nanobuds, is predicted through comprehensive spin-polarized density-functional calculations. The effects of chirality, curvature, and topology on the magnetism of nanobuds are scrutinized by detailed electronic structure analysis. The substantial emergent amounts of unpaired spins originate in the presence of carbon radicals introduced by the geometry-induced electronic frustration. The location of radicals is mainly on the nanotube surface within the connecting region with fullerene, rather than surfaces with negative Gaussian curvature. The magnetic nanobuds hold great promise in the field of spintronics owing to their ready accessibility by experimental synthesis and fabrication.

Xi Zhu and Haibin Su

2009-04-02T23:59:59.000Z

346

Temperature-jump 2D IR spectroscopy to study protein conformational dynamics  

E-Print Network [OSTI]

Temperature-jump (T-jump) two-dimensional infrared spectroscopy (2D IR) is developed, characterized, and applied to the study of protein folding and association. In solution, protein conformational changes span a wide range ...

Jones, Kevin C. (Kevin Chapman)

2012-01-01T23:59:59.000Z

347

Computational study and analysis of structural imperfections in 1D and 2D photonic crystals  

E-Print Network [OSTI]

Dielectric reflectors that are periodic in one or two dimensions, also known as 1D and 2D photonic crystals, have been widely studied for many potential applications due to the presence of wavelength-tunable photonic ...

Maskaly, Karlene Rosera

2005-01-01T23:59:59.000Z

348

2D Multi-class Occupancy Grid Map for a Mobile Security Robot in Urban Environments  

Science Journals Connector (OSTI)

Previously developed our 3D sematic perception and mapping technique can provide semantic information of the urban structures. In this paper we propose 2D MOG map to integrate semantic information of the urban st...

Yungeun Choe; Myung Jin Chung

2013-01-01T23:59:59.000Z

349

IEEE P1363.2 / D2001-06-21 Copyright 2001 IEEE. All rights reserved.  

E-Print Network [OSTI]

to IEEE P1363.2/D2001-05-14 (rough draft), namely, inclusion of an elliptic curve group based SRP protocol ........................................................................................................................................ 3 7.2.4 ECPVDGP-SRP........................................................................................................................... 3 7.2.5 ECPEPKGP-SRP

Wang, Yongge

350

Parameter Identification for a Dispersive Dielectric in 2D Electromagnetics: Forward and Inverse  

E-Print Network [OSTI]

Parameter Identification for a Dispersive Dielectric in 2D Electromagnetics: Forward and Inverse with a Debye dielectric slab and PML absorbing boundaries. This system assumes that the electric #12;Parameter

351

Hydrogen Bond Rearrangements in Water Probed with Temperature-Dependent 2D IR  

E-Print Network [OSTI]

We use temperature-dependent two-dimensional infrared spectroscopy (2D IR) of dilute HOD in H2O to investigate hydrogen bond rearrangements in water. The OD stretching frequency is sensitive to its environment, and loss ...

Nicodemus, Rebecca A.

352

2D and 3D Acoustic Source Localization Using the AML Algorithm and ENSBox Nodes  

E-Print Network [OSTI]

Networked Sensing 2D and 3D Acoustic Source Localizationhairs, median red square) 3D bearing estimates: (azimuth,1.37,1.52) (2.38,1.82) Node 153 3D AML performance UCLA –

2007-01-01T23:59:59.000Z

353

Electrostatic interactions in phospholipid membranes revealed by coherent 2D IR spectroscopy  

E-Print Network [OSTI]

organelle in a cell, the membrane sets the information and energy gradients necessary for life. Car- bonyl of the carbonyl absorption can be attributed to electric field fluctuations. 2D IR techniques are femtosecond

Mukamel, Shaul

354

Structure of the novel ternary hydrides Li4Tt2D (Tt = Si and Ge)  

Science Journals Connector (OSTI)

The crystal structures of novel Li4Tt2D (Tt = Si and Ge) ternary hydrides were solved using neutron powder diffraction data. All hydrogen atoms were found to occupy Li6-octahedral interstices.

Wu, H.

2007-01-15T23:59:59.000Z

355

2D/3D Discrete Duality Finite Volume Scheme (DDFV) applied to ECG simulation.  

E-Print Network [OSTI]

2D/3D Discrete Duality Finite Volume Scheme (DDFV) applied to ECG simulation. DDFV scheme part, the method is used for the resolution of a problem arising in bio-mathematics: the ECG

Coudière, Yves

356

A new 2D FEM analysis of a disc machine with offset rotor  

SciTech Connect (OSTI)

The paper presents a new 2-Dimensional Finite Element Method (2D FEM) analysis of a double sided axial field, permanent magnet excited brushless DC motor. The rotor of the machine is free to move in a direction perpendicular to the axis of the shaft. Computed 2D results are compared with 3D FEM analysis and the new analysis method is shown to give close agreement.

Gair, S.; Canova, A. [Napier Univ., Edinburgh (United Kingdom). Dept. of Electrical, Electronic and Computer Engineering; Eastham, J.F.; Betzer, T. [Univ. of Bath (United Kingdom). School of Electronic and Electrical Engineering

1995-12-31T23:59:59.000Z

357

Deconfinement in a 2D Optical Lattice of Coupled 1D Boson Systems  

Science Journals Connector (OSTI)

We show that a two-dimensional (2D) array of 1D interacting boson tubes has a deconfinement transition between a 1D Mott insulator and a 3D superfluid for commensurate fillings and a dimensional crossover for the incommensurate case. We determine the phase diagram and excitations of this system and discuss the consequences for Bose condensates loaded in 2D optical lattices.

A. F. Ho; M. A. Cazalilla; T. Giamarchi

2004-04-02T23:59:59.000Z

358

On the Connection Between 2d Topological Gravity and the Reduced Hermitian Matrix Model  

E-Print Network [OSTI]

We discuss how concepts such as geodesic length and the volume of space-time can appear in 2d topological gravity. We then construct a detailed mapping between the reduced Hermitian matrix model and 2d topological gravity at genus zero. This leads to a complete solution of the counting problem for planar graphs with vertices of even coordination number. The connection between multi-critical matrix models and multi-critical topological gravity at genus zero is studied in some detail.

J. Ambjorn; M. G. Harris; M. Weis

1997-02-26T23:59:59.000Z

359

Nanostructured Solid Oxide Fuel Cell Electrodes  

SciTech Connect (OSTI)

The ability of Solid Oxide Fuel Cells (SOFC) to directly and efficiently convert the chemical energy in hydrocarbon fuels to electricity places the technology in a unique and exciting position to play a significant role in the clean energy revolution. In order to make SOFC technology cost competitive with existing technologies, the operating temperatures have been decreased to the range where costly ceramic components may be substituted with inexpensive metal components within the cell and stack design. However, a number of issues have arisen due to this decrease in temperature: decreased electrolyte ionic conductivity, cathode reaction rate limitations, and a decrease in anode contaminant tolerance. While the decrease in electrolyte ionic conductivities has been countered by decreasing the electrolyte thickness, the electrode limitations have remained a more difficult problem. Nanostructuring SOFC electrodes addresses the major electrode issues. The infiltration method used in this dissertation to produce nanostructure SOFC electrodes creates a connected network of nanoparticles; since the method allows for the incorporation of the nanoparticles after electrode backbone formation, previously incompatible advanced electrocatalysts can be infiltrated providing electronic conductivity and electrocatalysis within well-formed electrolyte backbones. Furthermore, the method is used to significantly enhance the conventional electrode design by adding secondary electrocatalysts. Performance enhancement and improved anode contamination tolerance are demonstrated in each of the electrodes. Additionally, cell processing and the infiltration method developed in conjunction with this dissertation are reviewed.

Sholklapper, Tal Zvi

2007-12-15T23:59:59.000Z

360

Colour centres and nanostructures on the surface of laser crystals  

SciTech Connect (OSTI)

This paper presents a study of structural and radiationinduced colour centres in the bulk and ordered nanostructures on the surface of doped laser crystals: sapphire, yttrium aluminium garnet and strontium titanate. The influence of thermal annealing, ionising radiation and plasma exposure on the spectroscopic properties of high-purity materials and crystals containing Ti, V and Cr impurities is examined. Colour centres resulting from changes in the electronic state of impurities and plasma-induced surface modification of the crystals are studied by optical, EPR and X-ray spectroscopies, scanning electron microscopy and atomic force microscopy. X-ray line valence shift measurements are used to assess changes in the electronic state of some impurity and host ions in the bulk and on the surface of oxide crystals. Conditions are examined for the formation of one- and two-level arrays of ordered crystallites 10{sup -10} to 10{sup -7} m in size on the surface of crystals doped with irongroup and lanthanoid ions. The spectroscopic properties of the crystals are analysed using ab initio self-consistent field calculations for Me{sup n+} : [O{sup 2-}]{sub k} clusters. (interaction of laser radiation with matter. laser plasma)

Kulagin, N A [Firma SIFA Ukraine - Germany Joint Venture, ul. Shekspira 6-48, 61045 Kharkiv (Ukraine)

2012-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Delay-dependent robust $$H_\\infty $$ control for 2-D discrete nonlinear systems with state delays  

Science Journals Connector (OSTI)

This paper investigates the problem of robust $$H_\\infty $$ control for a class of 2-D (two-dimensional) discrete state delayed systems with sector nonlinearity ... Keywords: $$H_\\infty $$ performance, 2D discrete systems, Exponential stability, State delays

Shipei Huang; Zhengrong Xiang

2014-10-01T23:59:59.000Z

362

Tunable nanostructured composite with built-in metallic wire-grid electrode  

SciTech Connect (OSTI)

In this paper, the authors report an experimental demonstration of microwave reflection tuning in carbon nanostructure-based composites by means of an external voltage supplied to the material. DC bias voltages are imparted through a metal wire-grid. The magnitude of the reflection coefficient is measured upon oblique plane-wave incidence. Increasing the bias from 13 to 700 V results in a lowering of ?20 dB, and a “blueshift” of ?600 MHz of the material absorption resonance. Observed phenomena are ascribed to a change of the dielectric response of the carbon material. Inherently, the physical role of tunneling between nanofillers (carbon nanotubes) is discussed. Achievements aim at the realization of a tunable absorber. There are similar studies in literature that focus on tunable metamaterials operating at either optical or THz wavelengths.

Micheli, Davide, E-mail: davide.micheli@uniroma1.it; Pastore, Roberto; Marchetti, Mario [Department of Astronautics, Electrical and Energy Engineering, University of Rome Sapienza Via Eudossiana, 18, 00184 – Rome (Italy)] [Department of Astronautics, Electrical and Energy Engineering, University of Rome Sapienza Via Eudossiana, 18, 00184 – Rome (Italy); Gradoni, Gabriele [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Paint Branch Drive, MD-20740 (United States)] [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Paint Branch Drive, MD-20740 (United States)

2013-11-15T23:59:59.000Z

363

Response of nanostructured ferritic alloys to high-dose heavy ion irradiation  

SciTech Connect (OSTI)

A latest-generation aberration-corrected scanning/transmission electron microscope (STEM) is used to study heavy-ion-irradiated nanostructured ferritic alloys (NFAs). Results are presented for STEM X-ray mapping of NFA 14YWT irradiated with 10 MeV Pt to 16 or 160 dpa at -100°C and 750°C, as well as pre-irradiation reference material. Irradiation at -100°C results in ballistic destruction of the beneficial microstructural features present in the pre-irradiated reference material, such as Ti-Y-O nanoclusters (NCs) and grain boundary (GB) segregation. Irradiation at 750°C retains these beneficial features, but indicates some coarsening of the NCs, diffusion of Al to the NCs, and a reduction of the Cr-W GB segregation (or solute excess) content. Ion irradiation combined with the latest-generation STEM hardware allows for rapid screening of fusion candidate materials and improved understanding of irradiation-induced microstructural changes in NFAs.

Parish, Chad M.; White, Ryan M.; LeBeau, James M.; Miller, Michael K.

2014-02-01T23:59:59.000Z

364

Nanostructured Composite Electrodes for Lithium Batteries (Final Technical Report)  

SciTech Connect (OSTI)

The objective of this study was to explore new ways to create nanostructured electrodes for rechargeable lithium batteries. Of particular interests are unique nanostructures created by electrochemical deposition, etching and combustion chemical vapor deposition (CCVD). Three-dimensional nanoporous Cu6Sn5 alloy has been successfully prepared using an electrochemical co-deposition process. The walls of the foam structure are highly-porous and consist of numerous small grains. This represents a novel way of creating porous structures that allow not only fast transport of gas and liquid but also rapid electrochemical reactions due to high surface area. The Cu6Sn5 samples display a reversible capacity of {approx}400 mAhg-1. Furthermore, these materials exhibit superior rate capability. At a current drain of 10 mA/cm2(20C rate), the obtainable capacity was more than 50% of the capacity at 0.5 mA/cm2 (1C rate). Highly open and porous SnO2 thin films with columnar structure were obtained on Si/SiO2/Au substrates by CCVD. The thickness was readily controlled by the deposition time, varying from 1 to 5 microns. The columnar grains were covered by nanoparticles less than 20 nm. These thin film electrodes exhibited substantially high specific capacity. The reversible specific capacity of {approx}3.3 mAH/cm2 was demonstrated for up to 80 cycles at a charge/discharge rate of 0.3 mA/cm2. When discharged at 0.9 mA/cm2, the capacity was about 2.1 mAH/cm2. Tin dioxide box beams or tubes with square or rectangular cross sections were synthesized using CCVD. The cross-sectional width of the SnO2 tubules was tunable from 50 nm to sub-micrometer depending on synthesis temperature. The tubes are readily aligned in the direction perpendicular to the substrate surface to form tube arrays. Silicon wafers were electrochemically etched to produce porous silicon (PS) with honeycomb-type channels and nanoporous walls. The diameters of the channels are about 1 to 3 microns and the depth of the channels can be up to 100 microns. We have successfully used the PS as a matrix for Si-Li-based alloy. Other component(s) can be incorporated into the PS either by an electroless metallization or by kinetically controlled vapor deposition.

Meilin Liu, James Gole

2006-12-14T23:59:59.000Z

365

Condensed Matter Physics & Materials Science Department, Brookhaven  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

People People Facilities Publications Presentations Organizational Chart Other Information Basic Energy Sciences Directorate BNL Site Index Can't View PDFs? :: Next CMPMS Seminar There are no seminars scheduled at this time. Advanced Energy Materials Group We study both the microscopic and macroscopic properties of complex and nano-structured materials with a view to understanding and developing their application in different energy related technologies Group Leader: Qiang Li Condensed Matter Physics and Materials Science Department Brookhaven National Laboratory Upton, New York 11973-5000 (631) 344-4490 qiangli@bnl.gov AEM group news: Current research topics include: Superconducting Materials Nano-scale Materials (S. Wong) Applied Superconductivity Thermoelectric Materials

366

Cold spray coating: review of material systems and future perspectives  

E-Print Network [OSTI]

. This includes metallic, ceramic and metal matrix composite (MMC) coatings and their applications. Polymer (both matrix composite, Polymer, Ceramic, Nanostructured Powder This paper is part of a special issue on cold. Different materials such as metals, ceramics, composites and polymers can be deposited using CS, creating

Suresh, Subra

367

Bioinspired nanoscale materials for biomedical and energy applications  

Science Journals Connector (OSTI)

...as electrode materials in rechargeable lithium batteries [19,73]. The nanostructure...fabricating genetically engineered high-power lithium ion battery cathodes using the above multi-functional...synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312...

2014-01-01T23:59:59.000Z

368

ccsd-00002720,version2-11Jan2005 1D action and partition function for the 2D Ising  

E-Print Network [OSTI]

ccsd-00002720,version2-11Jan2005 1D action and partition function for the 2D Ising model by B. McCoy and T.T. Wu to obtain some exact results for the 2D Ising model with a general boundary presented for the 2D Ising model in zero field, based on the representation of the Ising model using

Paris-Sud XI, Université de

369

2-D Hypersonic Non-equilibrium Flow Simulation using r-p Adaptive Time-Implicit Discontinuous Galerkin Method  

E-Print Network [OSTI]

2-D Hypersonic Non-equilibrium Flow Simulation using r-p Adaptive Time-Implicit Discontinuous Aerospace Sciences Meeting #12;1 American Institute of Aeronautics and Astronautics 2-D Hypersonic Non Galerkin (DG) methods to 2-D hypersonic flow problems. Previous applications of DG method were limited

Roy, Subrata

370

Materials Synthesis and Characterization | Center for Functional  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Synthesis and Characterization Facility Materials Synthesis and Characterization Facility materials synthesis The Materials Synthesis and Characterization Facility includes laboratories for producing nanostructured materials and characterizing their basic structural, chemical and optical properties. The facility staff has significant experience in solution-phase chemistry of nanocrystal/nanowire materials, synthesis of polymer materials by a range of controlled polymerization techniques; inorganic synthesis by chemical vapor deposition, physical vapor deposition, and atomic layer deposition. The staff includes experts in techniques of nanoscale fabrication by self-assembly. The facility also supports infrastructure and expertise in solution-based processing of organic thin films, including tools for spin-casting, thermal processing, and UV/ozone treatment.

371

Efficient light-trapping nanostructures in thin silicon solar cells  

E-Print Network [OSTI]

We examine light-trapping in thin crystalline silicon periodic nanostructures for solar cell applications. Using group theory, we show that light-trapping can be improved over a broad band when structural mirror symmetry ...

Han, Sang Eon

372

Titanium-Catalyzed Silicon Nanostructures Grown by APCVD  

Science Journals Connector (OSTI)

We report on growth of Ti-catalyzed silicon nanostructures (SNCs) through atmospheric-pressure chemical vapor deposition. An extensive growth study relating the growth condition parameters, including the parti...

Mohammad A. U. Usman; Brady J. Smith; Justin B. Jackson…

2014-11-01T23:59:59.000Z

373

Graphene nanostructures as tunable storage media for molecular hydrogen  

Science Journals Connector (OSTI)

Graphene nanostructures as tunable storage media...structures of nano-graphite platelets (graphene), which are light-weight, cheap, chemically...Methods A computationally tractable model of graphene is provided by quantum-mechanical description...

Serguei Patchkovskii; John S. Tse; Sergei N. Yurchenko; Lyuben Zhechkov; Thomas Heine; Gotthard Seifert

2005-01-01T23:59:59.000Z

374

Ballistic Transport in Nanostructures, and its Application to Functionalized Nanotubes  

E-Print Network [OSTI]

We developed and implemented a first-principles based theory of the Landauer ballistic conductance, to determine the transport properties of nanostructures and molecular-electronics devices. Our approach starts from a ...

Marzari, Nicola

375

Photothermal Properties of Hollow Gold Nanostructures for Cancer Theranostics  

Science Journals Connector (OSTI)

Cancer theranostic agents are defined as integrated platforms, which can combine the tumor diagnosis, therapeutic, or even therapeutic evaluation functions in one system. Hollow gold (Au) nanostructures have been...

Liangran Guo; Yajuan Li; Zeyu Xiao; Wei Lu

2014-01-01T23:59:59.000Z

376

Charge Transport within a Three-Dimensional DNA Nanostructure...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Charge Transport within a Three-Dimensional DNA Nanostructure Framework Authors: Lu, N., Pei, H., Ge, Z., Simmons, C.R., Yan, H., and Fan, C. Title: Charge Transport within a...

377

Selenophene–Thiophene Block Copolymer Solar Cells with Thermostable Nanostructures  

Science Journals Connector (OSTI)

Selenophene–Thiophene Block Copolymer Solar Cells with Thermostable Nanostructures ... Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada ...

Dong Gao; Jon Hollinger; Dwight S. Seferos

2012-07-05T23:59:59.000Z

378

Photo of the Week: Butterflies, Crystal Nanostructures and Solar Cell  

Broader source: Energy.gov (indexed) [DOE]

Butterflies, Crystal Nanostructures and Solar Butterflies, Crystal Nanostructures and Solar Cell Research Photo of the Week: Butterflies, Crystal Nanostructures and Solar Cell Research October 26, 2012 - 11:44am Addthis What do butterflies and solar cell research have in common? Both have been developing tiny crystals that selectively reflect colors. Over millions of years of evolution, butterfly wings have developed the tiny crystal nanostructures that give butterflies their vivid colors. At Argonne National Laboratory, scientists are working to manufacture these crystals, which could one day be used to create "greener" and more efficient paints, fiber optics and solar cells. In this photo, the iridescent scales of an emerald-patched Cattleheart butterfly are magnified 20 times to highlight the crystals that selectively reflect green colors. | Photo courtesy of Argonne National Laboratory.

379

Materialism and materiality  

Science Journals Connector (OSTI)

Accountants and auditors in recent financial scandals have been pictured as materialistic, simply calculating consequences and ignoring duties. This paper potentially explains this apparently materialistic behaviour in what has historically been a truthtelling profession. Materiality, which drives audit priorities, has been institutionalised in accounting and auditing standards. But a materiality focus inherently implies that all amounts that are not 'materially' misstated are equally true. This leads to habitual immaterial misstatements and promotes the view that auditors do not care about truth at all. Auditors' lack of commitment to truth undermines their claim to be professionals in the classic sense.

Michael K. Shaub

2005-01-01T23:59:59.000Z

380

Molybdenum-rhenium superconducting suspended nanostructures  

SciTech Connect (OSTI)

Suspended superconducting nanostructures of MoRe 50%/50% by weight are fabricated employing commonly used fabrication steps in micro- and nano-meter scale devices followed by wet-etching with Hydro-fluoric acid of a SiO{sub 2} sacrificial layer. Suspended superconducting channels as narrow as 50?nm and length 3??m have a critical temperature of ?6.5?K, which can increase by 0.5?K upon annealing at 400?°C. A detailed study of the dependence of the superconducting critical current and critical temperature upon annealing and in devices with different channel widths reveals that desorption of contaminants is responsible for the improved superconducting properties. These findings pave the way for the development of superconducting electromechanical devices using standard fabrication techniques.

Aziz, Mohsin; Christopher Hudson, David; Russo, Saverio [Centre for Graphene Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom)

2014-06-09T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Doped carbon nanostructure field emitter arrays for infrared imaging  

DOE Patents [OSTI]

An infrared imaging device and method for making infrared detector(s) having at least one anode, at least one cathode with a substrate electrically connected to a plurality of doped carbon nanostructures; and bias circuitry for applying an electric field between the anode and the cathode such that when infrared photons are adsorbed by the nanostructures the emitted field current is modulated. The detectors can be doped with cesium to lower the work function.

Korsah, Kofi (Knoxville, TN) [Knoxville, TN; Baylor, Larry R (Farragut, TN) [Farragut, TN; Caughman, John B (Oak Ridge, TN) [Oak Ridge, TN; Kisner, Roger A (Knoxville, TN) [Knoxville, TN; Rack, Philip D (Knoxville, TN) [Knoxville, TN; Ivanov, Ilia N (Knoxville, TN) [Knoxville, TN

2009-10-27T23:59:59.000Z

382

Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water Vapor Radiometer Pazmany, Andrew ProSensing Inc. Category: Instruments ProSensing Inc. has developed a G-band (183 GHz, 1.5 mm wavelength) water vapor radiometer (GVR) for the measurement of low concentrations of atmospheric water vapor and liquid water. The instrument's precipitable water vapor measurement precision is approximately 0.01 mm in dry (<2 mm vapor column) conditions. The ground-based version of the instrument was first deployed at ProSensing's facility in Amherst, MA in February 2005, then at the North Slope of Alaska DOE ARM site in Barrow AK in April 2005, where it has been continuously operating since. An airborne version, designed to operate from a standard PMS 2-D probe canister, is now being

383

Plot/SurfW: Plotting Utility for EDGE2D Output  

SciTech Connect (OSTI)

This report describes a utility that was developed to display EDGE2D results. The utility is focused on results that relate to impurity density, velocity, and particle fluxes in the SOL and divertor. Due to the complicated nature of 2D impurity sources, the concentration of the thermal force near the separatrix and near the divertor entrance, the impurity flow pattern and impurity densities are not necessarily easy to visualize. Thus, we wanted a utility that allowed simple and quick visualization of the impurity behavior. In order to achieve this we overlaid the divertor hardware for plots inside the divertor and we expanded the appearance of the main chamber SOL by plotting distance along the field lines vs. SOL depth with the density (or velocity or flux or other quantity) the false colour. Also, we allowed for the plotted variable to be a function of the other EDGE2D result variables. __________________________________________________

W.M. Davis and J.D. Strachan

2012-06-22T23:59:59.000Z

384

Transparent Conducting Electrodes based on 1D and 2D Ag Nanogratings for Organic Photovoltaics  

E-Print Network [OSTI]

The optical and electrical properties of optically-thin one-dimensional (1D) Ag nanogratings and two-dimensional (2D) Ag nanogrids are studied, and their use as transparent electrodes in organic photovoltaics are explored. A large broadband and polarization-insensitive optical absorption enhancement in the organic light-harvesting layers is theoretically and numerically demonstrated using either single-layer 2D Ag nanogrids or two perpendicular 1D Ag nanogratings, and is attributed to the excitation of surface plasmon resonances and plasmonic cavity modes. Total photon absorption enhancements of 150% and 200% are achieved for the optimized single-layer 2D Ag nanogrids and double (top and bottom) perpendicular 1D Ag nanogratings, respectively.

Zeng, Beibei; Bartoli, Filbert J

2014-01-01T23:59:59.000Z

385

The 2dF Galaxy Redshift Survey: Spectra and redshifts  

E-Print Network [OSTI]

The 2dF Galaxy Redshift Survey (2dFGRS) is designed to measure redshifts for approximately 250000 galaxies. This paper describes the survey design, the spectroscopic observations, the redshift measurements and the survey database. The 2dFGRS uses the 2dF multi-fibre spectrograph on the Anglo-Australian Telescope, which is capable of observing 400 objects simultaneously over a 2-degree diameter field. The source catalogue for the survey is a revised and extended version of the APM galaxy catalogue, and the targets are galaxies with extinction-corrected magnitudes brighter than b_J=19.45. The main survey regions are two declination strips, one in the southern Galactic hemisphere spanning 80deg x 15deg around the SGP, and the other in the northern Galactic hemisphere spanning 75deg x 10deg along the celestial equator; in addition, there are 99 fields spread over the southern Galactic cap. The survey covers 2000 sq.deg and has a median depth of z=0.11. Adaptive tiling is used to give a highly uniform sampling rate of 93% over the whole survey region. Redshifts are measured from spectra covering 3600A-8000A at a two-pixel resolution of 9.0A and a median S/N of 13 per pixel. All redshift identifications are visually checked and assigned a quality parameter Q in the range 1-5; Q>=3 redshifts are 98.4% reliable and have an rms uncertainty of 85 km/s. The overall redshift completeness for Q>=3 redshifts is 91.8%, but this varies with magnitude from 99% for the brightest galaxies to 90% for objects at the survey limit. The 2dFGRS database is available on the WWW at http://www.mso.anu.edu.au/2dFGRS

Matthew Colless; G. B. Dalton; S. J. Maddox; W. J. Sutherland; P. Norberg; S. Cole; J. Bland-Hawthorn; T. J. Bridges; R. D. Cannon; C. A. Collins; W. J Couch; N. G. J. Cross; K. Deeley; R. DePropris; S. P. Driver; G. Efstathiou; R. S. Ellis; C. S. Frenk; K. Glazebrook; C. A. Jackson; O. Lahav; I. J. Lewis; S. L. Lumsden; D. S. Madgwick; J. A. Peacock; B. A. Peterson; I. A. Price; M. Seaborne; K. Taylor

2001-12-10T23:59:59.000Z

386

Step-Orientation-Dependent Oxidation: From 1D to 2D Oxides  

Science Journals Connector (OSTI)

Using scanning tunneling microscopy and density functional theory, we have studied the initial oxidation of Rh(111) surfaces with two types of straight steps, having {100} and {111} microfacets. The one-dimensional (1D) oxide initially formed at the steps acts as a barrier impeding formation of the 2D oxide on the (111) terrace behind it. We demonstrate that the details of the structure of the 1D oxide govern the rate of 2D oxidation and discuss implications for oxidation of nanoparticles.

J. Klikovits; M. Schmid; L. R. Merte; P. Varga; R. Westerström; A. Resta; J. N. Andersen; J. Gustafson; A. Mikkelsen; E. Lundgren; F. Mittendorfer; G. Kresse

2008-12-29T23:59:59.000Z

387

Design of cellular VLSI 2-D mesh for large state space viterbi algorithms  

E-Print Network [OSTI]

DESIGN OF CELLULAR VLSI 2-D MESH FOR LARGE STATE SPACE VITERBI ALGORITHMS A Thesis by SAIFUL HASAN Submitted to the OAice of Graduate Studies of Texas A 8t M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1991 Major Subject: Electrical Engineering DESIGN OF CELLULAR VLSI 2-D MESH FOR LARGE STATE SPACE VITERBI ALGORITHMS A Thesis by SAIFUL HASAN Appmved as to style and content by: William Bliss ( Co-chairman of Committee ) Hosame Abu...

Hasan, Saiful

1991-01-01T23:59:59.000Z

388

The 2dF Galaxy Redshift Survey: The amplitudes of fluctuations in the 2dFGRS and the CMB, and implications for galaxy biasing  

E-Print Network [OSTI]

We compare the amplitudes of fluctuations probed by the 2dF Galaxy Redshift Survey and by the latest measurements of the Cosmic Microwave Background anisotropies. By combining the 2dFGRS and CMB data we find the linear-theory rms mass fluctuations in 8 Mpc/h spheres to be sigma_8 = 0.73 +-0.05 (after marginalization over the matter density parameter Omega_m and three other free parameters). This normalization is lower than the COBE normalization and previous estimates from cluster abundance, but it is in agreement with some revised cluster abundance determinations. We also estimate the scale-independent bias parameter of present-epoch L_s = 1.9L_* APM-selected galaxies to be b(L_s,z=0) = 1.10 +- 0.08 on comoving scales of 0.02 < k < 0.15 h/Mpc. If luminosity segregation operates on these scales, L_* galaxies would be almost un-biased, b(L_*,z=0) = 0.96. These results are derived by assuming a flat Lambda-CDM Universe, and by marginalizing over other free parameters and fixing the spectral index n=1 and the optical depth due to reionization tau=0. We also study the best fit pair (Omega_m,b), and the robustness of the results to varying n and tau. Various modelling corrections can each change the resulting b by 5-15 per cent. The results are compared with other independent measurements from the 2dFGRS itself, and from the SDSS, cluster abundance and cosmic shear.

Ofer Lahav; Sarah L. Bridle; Will J. Percival; John A. Peacock; George Efstathiou; Carlton M. Baugh; Joss Bland-Hawthorn; Terry Bridges; Russell Cannon; Shaun Cole; Matthew Colless; Chris Collins; Warrick Couch; Gavin Dalton; Roberto De Propris; Simon P. Driver; Richard S. Ellis; Carlos S. Frenk; Karl Glazebrook; Carole Jackson; Ian Lewis; Stuart Lumsden; Steve Maddox; Darren S. Madgwick; Stephen Moody; Peder Norberg; Bruce A. Peterson; Will Sutherland; Keith Taylor

2002-05-19T23:59:59.000Z

389

Materials Science in Semiconductor Processing 8 (2005) 295299 Evaluating and designing the optimal 2D collector profile for a  

E-Print Network [OSTI]

. Tel.: +1 802 769 3269; fax: +1 802 769 9659. E-mail address: stricker@us.ibm.com (A.D. Stricker). #12

Rieh, Jae-Sung

390

Revolutionizing Materials for Energy Storage - TMSI Initiative, PNNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a report published in a report published in Chemical Reviews, PNNL researchers say future batteries used by the energy grid to store power from the wind and the sun must be reliable, durable and safe, but affordability is key to wide- spread market deployment. Transformational Materials Science Initiative Revolutionizing Materials for Energy Storage The Transformational Materials Science Initiative at Pacific Northwest National Laboratory is elucidating the principles of synthesizing and assembling functional nanostructures, understanding nanoscale-to-macroscale phenomena within materials of interest, and developing multi-scale computational models and unique characterization tools to understand essential phenomena in energy storage materials. Chief among PNNL's

391

Conditions for diffusion-limited and reaction-limited recombination in nanostructured solar cells  

SciTech Connect (OSTI)

The performance of Dye-sensitized solar cells (DSC) and related devices made of nanostructured semiconductors relies on a good charge separation, which in turn is achieved by favoring charge transport against recombination. Although both processes occur at very different time scales, hence ensuring good charge separation, in certain cases the kinetics of transport and recombination can be connected, either in a direct or an indirect way. In this work, the connection between electron transport and recombination in nanostructured solar cells is studied both theoretically and by Monte Carlo simulation. Calculations using the Multiple-Trapping model and a realistic trap distribution for nanostructured TiO{sub 2} show that for attempt-to-jump frequencies higher than 10{sup 11}–10{sup 13} Hz, the system adopts a reaction limited (RL) regime, with a lifetime which is effectively independent from the speed of the electrons in the transport level. For frequencies lower than those, and depending on the concentration of recombination centers in the material, the system enters a diffusion-limited regime (DL), where the lifetime increases if the speed of free electrons decreases. In general, the conditions for RL or DL recombination depend critically on the time scale difference between recombination kinetics and free-electron transport. Hence, if the former is too rapid with respect to the latter, the system is in the DL regime and total thermalization of carriers is not possible. In the opposite situation, a RL regime arises. Numerical data available in the literature, and the behavior of the lifetime with respect to (1) density of recombination centers and (2) probability of recombination at a given center, suggest that a typical DSC in operation stays in the RL regime with complete thermalization, although a transition to the DL regime may occur for electrolytes or hole conductors where recombination is especially rapid or where there is a larger dispersion of energies of electron acceptors.

Ansari-Rad, Mehdi, E-mail: ansari.rad@ut.ac.ir [Department of Physics, University of Tehran, 1439955961 Tehran (Iran, Islamic Republic of) [Department of Physics, University of Tehran, 1439955961 Tehran (Iran, Islamic Republic of); Department of Physics, University of Shahrood, Shahrood (Iran, Islamic Republic of); Anta, Juan A., E-mail: anta@upo.es [Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, 41013 Sevilla (Spain); Arzi, Ezatollah [Department of Physics, University of Tehran, 1439955961 Tehran (Iran, Islamic Republic of)] [Department of Physics, University of Tehran, 1439955961 Tehran (Iran, Islamic Republic of)

2014-04-07T23:59:59.000Z

392

Synthesis of thin films and materials utilizing a gaseous catalyst  

DOE Patents [OSTI]

A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.

Morse, Daniel E; Schwenzer, Birgit; Gomm, John R; Roth, Kristian M; Heiken, Brandon; Brutchey, Richard

2013-10-29T23:59:59.000Z

393

Percolation and number of phases in the 2D Ising model  

E-Print Network [OSTI]

Percolation and number of phases in the 2D Ising model Hans­Otto Georgii Mathematisches Institut approach of Russo, Aizenman and Higuchi for showing that there exist only two phases in the Ising model to the Ising model on other planar lattices such as the triangular and honeycomb lattice. We can also treat

394

GLOBAL WELL-POSEDNESS FOR THE 2D BOUSSINESQ SYSTEM WITHOUT HEAT DIFFUSION AND WITH EITHER  

E-Print Network [OSTI]

GLOBAL WELL-POSEDNESS FOR THE 2D BOUSSINESQ SYSTEM WITHOUT HEAT DIFFUSION AND WITH EITHER-diffusive Boussinesq system with viscosity only in the horizontal direction, which arises in Ocean dynamics. This work for the Boussinesq system with anisotropic viscosity and zero diffusion. Al- though we follow some of their ideas

Larios, Adam

395

Solution of 2D Boussinesq systems with FreeFem++: the flat bottom case  

E-Print Network [OSTI]

Solution of 2D Boussinesq systems with FreeFem++: the flat bottom case Georges Sadaka May 14, 2012-parameter family of Boussinesq type systems in two space dimensions which approx- imate the three-dimensional Euler and Mitsotakis have developed a code in finite volumes for the Boussinesq system with variable bottom in 1D ([Dut

Paris-Sud XI, Université de

396

Fourier-Galerkin method for 2D solitons of Boussinesq equation  

Science Journals Connector (OSTI)

We develop a Fourier-Galerkin spectral technique for computing the stationary solutions of 2D generalized wave equations. To this end a special complete orthonormal system of functions in L^2(-~,~) is used for which product formula is available. The ... Keywords: 02.60.Cb, 02.70.Hm, Boussinesq equation, Galerkin spectral method, Solitons

M. A. Christou; C. I. Christov

2007-03-01T23:59:59.000Z

397

GENERALIZED 2D EULER-BOUSSINESQ EQUATIONS WITH A SINGULAR VELOCITY  

E-Print Network [OSTI]

GENERALIZED 2D EULER-BOUSSINESQ EQUATIONS WITH A SINGULAR VELOCITY DURGA KC, DIPENDRA REGMI a system of equations generalizing the two-dimensional incompressible Boussinesq equa- tions. The velocity- value problem of this generalized Boussinesq equations when the velocity is "double logarithmically

Wu, Jiahong

398

TRAVELING WAVES IN 2D REACTIVE BOUSSINESQ SYSTEMS WITH NO-SLIP BOUNDARY CONDITIONS  

E-Print Network [OSTI]

TRAVELING WAVES IN 2D REACTIVE BOUSSINESQ SYSTEMS WITH NO-SLIP BOUNDARY systems of reactive Boussinesq equations in two di* *men- sional strips that are not aligned Boussinesq systems with no-slip boundary conditions (the fluid flow vanishes at* * the boundary). Much

Constantin, Peter

399

LNG FEM: GENERATING GRADED MESHES AND SOLVING ELLIPTIC EQUATIONS ON 2-D DOMAINS OF POLYGONAL STRUCTURES  

E-Print Network [OSTI]

LNG FEM: GENERATING GRADED MESHES AND SOLVING ELLIPTIC EQUATIONS ON 2-D DOMAINS OF POLYGONAL, Minnesota 55455­0436 Phone: 612-624-6066 Fax: 612-626-7370 URL: http://www.ima.umn.edu #12;LNG FEM AND VICTOR NISTOR Abstract. We develop LNG FEM, a software package for graded mesh gen- eration

400

Asymptotic stability of ground states in 2D nonlinear Schrodinger equation including subcritical cases  

E-Print Network [OSTI]

Asymptotic stability of ground states in 2D nonlinear Schr¨odinger equation including subcritical encompassing for the first time both subcritical and supercrit- ical (in L2 ) nonlinearities. We study) = ei g(s), R. (1.4) The equation has important applications in statistical physics, optics and water

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Asymptotic stability of ground states in 2D nonlinear Schrodinger equation including subcritical cases  

E-Print Network [OSTI]

Asymptotic stability of ground states in 2D nonlinear Schr¨odinger equation including subcritical general encompassing for the first time both subcritical and supercritical (in L2 ) nonlinearities. We physics, optics and water waves. For g(s) = s3 , it describes certain limiting behavior of Bose

Zarnescu, Arghir Dani

402

Sorting out Mixtures with 2D NMR Gregory S. Boebinger, National High Magnetic Field Laboratory  

E-Print Network [OSTI]

of the resonances. The combination of 2D NMR spectra with full-resolution statistical analysis provides a platform for chemical and biological studies in cellular biochemistry, metabolomics, and chemical ecology. Alignment: Application to Nematode Chemical Ecology.", Analytical Chemistry 83 (5), 1649­1657 (2011). Support: NHMFL

Weston, Ken

403

2D and 3D Visibility in Discrete Geometry: an application to discrete geodesic paths  

E-Print Network [OSTI]

1 2D and 3D Visibility in Discrete Geometry: an application to discrete geodesic paths D discrete geodesic paths in discrete domain with obstacles. This allows us to introduce a new geodesic metric in discrete geometry. Keywords: discrete visibility, geodesic path, distance transform, discrete

Boyer, Edmond

404

Quantum Monte Carlo study of a disordered 2D Josephson junction array  

E-Print Network [OSTI]

Quantum Monte Carlo study of a disordered 2D Josephson junction array W.A. Al-Saidi *, D. Stroud reserved. PACS: 74.25.Dw; 05.30.Jp; 85.25.Cp Keywords: Josephson junctions; Quantum Monte Carlo; Disorder 1. Introduction A Josephson junction array (JJA) consists of a collection of superconducting islands connected

Stroud, David

405

Genetic Algorithm for Predicting Protein Folding in the 2D HP Model  

E-Print Network [OSTI]

Genetic Algorithm for Predicting Protein Folding in the 2D HP Model A Parameter Tuning Case Study of a protein, predicting its tertiary structure is known as the protein folding problem. This problem has been. The protein folding problem in the HP model is to find a conformation (a folded sequence) with the lowest

Emmerich, Michael

406

A 2D + 3D Rich Data Approach to Scene Understanding Jianxiong Xiao  

E-Print Network [OSTI]

toward rich representation also opens up new challenges that require a new kind of big data ­ dataA 2D + 3D Rich Data Approach to Scene Understanding by Jianxiong Xiao Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree

Xiao, Jianxiong

407

Lattice Boltzmann simulations of 2D laminar flows past two tandem cylinders  

E-Print Network [OSTI]

Lattice Boltzmann simulations of 2D laminar flows past two tandem cylinders Alberto Mussa the lattice Boltzmann equation (LBE) with multiple-relaxation-time (MRT) colli- sion model to simulate laminar. Introduction In recent years the lattice Boltzmann equation (LBE) has become a viable means for computational

Luo, Li-Shi

408

A Proposal of QLearning to Control the Attack of a 2D Robot Soccer Simulation Team  

Science Journals Connector (OSTI)

This document presents a novel approach to control the attack behavior of a team of simulated soccer playing robot of the Robocup 2D category. The presented approach modifies the behavior of each player only when in the state "controlling the ball". ... Keywords: Simulated robot soccer, machine learning, learning, Q-Learning algorithm

Jose Rodrigo Ferreira Neri; Maicon Rafael Zatelli; Carlos Henrique Farias dos Santos; Joao Alberto Fabro

2012-10-01T23:59:59.000Z

409

Myoglobin-CO Conformational Substate Dynamics: 2D Vibrational Echoes and MD Simulations  

E-Print Network [OSTI]

Myoglobin-CO Conformational Substate Dynamics: 2D Vibrational Echoes and MD Simulations Kusai A over a range of temperatures. The A1 and A3 conformational substates of MbCO are found to have assignments for the MbCO conformational substates. INTRODUCTION Protein dynamics have been the focus of both

Fayer, Michael D.

410

Motion Tasks and Force Control for Robot Manipulators on Embedded 2-D Manifolds  

E-Print Network [OSTI]

a challenging problem of the robotics field with many appli- cations including robotic surface painting, surfaceMotion Tasks and Force Control for Robot Manipulators on Embedded 2-D Manifolds Xanthi Papageorgiou the end effector of a robotic manipulator across the surface of an object in the workspace

Loizou, Savvas G.

411

Motion Tasks for Robot Manipulators on Embedded 2-D Manifolds under Input Constraints  

E-Print Network [OSTI]

a task along a particular surface, such as robotic surface painting, surface cleaning, and surfaceMotion Tasks for Robot Manipulators on Embedded 2-D Manifolds under Input Constraints Xanthi the end effector of a robotic manipulator, which is constrained in terms of joint rates, on the surface

Tanner, Herbert G.

412

Understanding 2D critical percolation from Harris to Smirnov and beyond  

E-Print Network [OSTI]

Understanding 2D critical percolation from Harris to Smirnov and beyond Oded Schramm http? Harris 1960 / Kesten 1980: no for d = 2. Hara & Slade 1990: no if d 19. 5 #12;Specialize to critical;Triangular lattice, site percolation (TG): 8 #12;Triangular lattice, site percolation (TG): 9 #12;The Harris

Narasayya, Vivek

413

Electronic properties of 2D and 3D hybrid organic/inorganic perovskites for optoelectronic  

E-Print Network [OSTI]

Electronic properties of 2D and 3D hybrid organic/inorganic perovskites for optoelectronic, optoelectronic properties, photovoltaic, exciton 1. Introduction Over the past decade, Hybrid Organic/inorganic Perovskites (HOP) have attracted increasing interest in the field of optoelectronics (Mitzi et al. 1995

Paris-Sud XI, Université de

414

A 2D/3D Hybrid Geographical Information System Stephen Brooks*  

E-Print Network [OSTI]

the exploration, presentation and manipulation of geographical data. 3D maps can be used by GIS specialists is a 3D marine GIS that supports real-time input and texture mapped imagery using a simple viewpoint Abstract We present a unique Geographical Information System (GIS) that seamlessly integrates 2D and 3D

Brooks, Stephen

415

Narrow band region-based active contours and surfaces for 2D and 3D segmentation  

Science Journals Connector (OSTI)

We describe a narrow band region approach for deformable curves and surfaces in the perspective of 2D and 3D image segmentation. Basically, we develop a region energy involving a fixed-width band around the curve or surface. Classical region-based methods, ... Keywords: Active contour, Active surface, Deformable model, Level sets, Narrow band region energy, Segmentation

Julien Mille

2009-09-01T23:59:59.000Z

416

Hydrogen Bond Migration between Molecular Sites Observed with Ultrafast 2D IR Chemical Exchange Spectroscopy  

E-Print Network [OSTI]

Hydrogen Bond Migration between Molecular Sites Observed with Ultrafast 2D IR Chemical ExchangeVed: January 12, 2010 Hydrogen-bonded complexes between phenol and phenylacetylene are studied using ultrafast hydrogen bonding acceptor sites (phenyl or acetylene) that compete for hydrogen bond donors in solution

Fayer, Michael D.

417

2-D TOMOGRAPHY FROM NOISY PROJECTIONS TAKEN AT UNKNOWN RANDOM DIRECTIONS  

E-Print Network [OSTI]

to the Fourier-projection slice theorem that relates the 1-D Fourier transform R(f) of the Radon transform2-D TOMOGRAPHY FROM NOISY PROJECTIONS TAKEN AT UNKNOWN RANDOM DIRECTIONS A. SINGER AND H.-T. WU Abstract. Computerized Tomography (CT) is a standard method for obtaining internal struc- ture of objects

Singer, Amit

418

SEEING 3D OBJECTS IN A SINGLE 2D IMAGE Diego Rother  

E-Print Network [OSTI]

SEEING 3D OBJECTS IN A SINGLE 2D IMAGE By Diego Rother and Guillermo Sapiro IMA Preprint SeriesD segmentation, object recognition, and 3D reconstruction from a single image is introduced in this paper. The proposed approach partitions 3D space into voxels and estimates the voxel states

419

The 2dF Galaxy Redshift Survey: voids and hierarchical scaling models  

E-Print Network [OSTI]

We measure the redshift space reduced void probability function (VPF) for 2dFGRS volume limited galaxy samples covering the absolute magnitude range M_bJ-5logh=-18 to -22. Theoretically, the VPF connects the distribution of voids to the moments of galaxy clustering of all orders, and can be used to discriminate clustering models in the weakly non-linear regime. The reduced VPF measured from the 2dFGRS is in excellent agreement with the paradigm of hierarchical scaling of the galaxy clustering moments. The accuracy of our measurement is such that we can rule out, at a very high significance, popular models for galaxy clustering, including the lognormal distribution. We demonstrate that the negative binomial model gives a very good approximation to the 2dFGRS data over a wide range of scales, out to at least 20h-1Mpc. Conversely, the reduced VPF for dark matter in a LambdaCDM universe does appear to be lognormal on small scales but deviates significantly beyond \\approx 4h-1Mpc. We find little dependence of the 2dFGRS reduced VPF on galaxy luminosity. Our results hold independently in both the north and south Galactic pole survey regions.

D. J. Croton; M. Colless; E. Gaztanaga; C. M. Baugh; P. Norberg; I. K. Baldry; J. Bland-Hawthorn; T. Bridges; R. Cannon; S. Cole; C. Collins; W. Couch; G. Dalton; R. De Propris; S. P. Driver; G. Efstathiou; R. S. Ellis; C. S. Frenk; K. Glazebrook; C. Jackson; O. Lahav; I. Lewis; S. Lumsden; S. Maddox; D. Madgwick; J. A. Peacock; B. A. Peterson; W. Sutherland; K. Taylor

2004-08-23T23:59:59.000Z

420

The 2dF Galaxy Redshift Survey: Spectral Types and Luminosity Functions  

E-Print Network [OSTI]

We describe the 2dF Galaxy Redshift Survey (2dFGRS), and the current status of the observations. In this exploratory paper, we apply a Principal Component Analysis to a preliminary sample of 5869 galaxy spectra and use the two most significant components to split the sample into five spectral classes. These classes are defined by considering visual classifications of a subset of the 2dF spectra, and also by comparing to high quality spectra of local galaxies. We calculate a luminosity function for each of the different classes and find that later-type galaxies have a fainter characteristic magnitude, and a steeper faint-end slope. For the whole sample we find M*=-19.7 (for Omega=1, H_0=100 km/sec/Mpc), alpha=-1.3, phi*=0.017. For class 1 (`early-type') we find M*=-19.6, alpha=-0.7, while for class 5 (`late-type') we find M*=-19.0, alpha=-1.7. The derived 2dF luminosity functions agree well with other recent luminosity function estimates.

S. R. Folkes; S. Ronen; I. Price; O. Lahav; M. Colless; S. J. Maddox; K. E. Deeley; K. Glazebrook; J. Bland-Hawthorn; R. D. Cannon; S. Cole; C. A. Collins; W. J. Couch; S. P. Driver; G. Dalton; G. Efstathiou; R. S. Ellis; C. S. Frenk; N. Kaiser; I. J. Lewis; S. L. Lumsden; J. A. Peacock; B. A. Peterson; W. Sutherland; K. Taylor

1999-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The 2dF Galaxy Redshift Survey: The Number and Luminosity Density of Galaxies  

E-Print Network [OSTI]

We present the bivariate brightness distribution (BBD) for the 2dF Galaxy Redshift Survey (2dFGRS) based on a preliminary subsample of 45,000 galaxies. The BBD is an extension of the galaxy luminosity function incorporating surface brightness information. It allows the measurement of the local luminosity density, j_B, and the galaxy luminosity and surface brightness distributions while accounting for surface brightness selection biases. The recovered 2dFGRS BBD shows a strong surface brightness-luminosity relation (M_B~2.4\\mu_e). The luminosity-density is dominated by normal galaxies and the luminosity-density peak lies away from the selection boundaries implying that the 2dFGRS is complete and that luminous low surface brightness galaxies are rare. The final value we derive for the local luminosity-density, inclusive of surface brightness corrections, is: j_B=2.49+/-0.20x10^8 h L_solar Mpc^-3. Representative Schechter function parameters are: M*=-19.75+/-0.05, phi*=2.02+/-0.02x10^-2 and alpha=-1.09+/-0.03. Extending the conventional methodology to incorporate surface brightness selection effects has resulted in an increase in the luminosity-density of 37%.

Nicholas Cross; Simon P. Driver; Warrick Couch; Carlton M. Baugh; Joss Bland-Hawthorn; Terry Bridges; Russell Cannon; Shaun Cole; Matthew Colless; Chris Collins; Gavin Dalton; Kathryn Deeley; Roberto De Propris; George Efstathiou; Richard S. Ellis; Carlos S. Frenk; Karl Glazebrook; Carole Jackson; Ofer Lahav; Ian Lewis; Stuart Lumsden; Steve Maddox; Darren Madgwick; Stephen Moody; Peder Norberg; John A. Peacock; Bruce A. Peterson; Ian Price; Mark Seaborne; Will Sutherland; Helen Tadros; Keith Taylor

2002-02-07T23:59:59.000Z

422

Observation of Magnetically Induced Effective-Mass Enhancement of Quasi-2D Excitons  

Science Journals Connector (OSTI)

We present the first measurements of the dispersion relation of a quasi-2D magnetoexciton. We demonstrate that the magnetoexciton effective mass is determined by the coupling between the center-of-mass motion and internal structure and becomes overwhelmingly larger than the sum of the electron and hole masses in high magnetic fields.

L. V. Butov, C. W. Lai, D. S. Chemla, Yu. E. Lozovik, K. L. Campman, and A. C. Gossard

2001-11-01T23:59:59.000Z

423

Water Dynamics in Salt Solutions Studied with Ultrafast Two-Dimensional Infrared (2D IR)  

E-Print Network [OSTI]

Water Dynamics in Salt Solutions Studied with Ultrafast Two-Dimensional Infrared (2D IR RECEIVED ON FEBRUARY 3, 2009 C O N S P E C T U S Water is ubiquitous in nature, but it exists as pure water infrequently. From the ocean to biology, water molecules interact with a wide variety of dissolved species

Fayer, Michael D.

424

Factorization of Darboux transformations of arbitrary order for 2D Schroedinger operators  

E-Print Network [OSTI]

We give a proof of Darboux's conjecture that every Darboux transformation of arbitrary order of a 2D Schroedinger type operator can be factorized into Darboux transformations of order one. The proof is constructive. The result was achieved in the framework of an algebraic approach to Darboux transformations which is put forward in this paper.

Ekaterina Shemyakova

2014-02-24T23:59:59.000Z

425

A 2D/3D Discrete Duality Finite Volume Scheme. Application to ECG simulation  

E-Print Network [OSTI]

A 2D/3D Discrete Duality Finite Volume Scheme. Application to ECG simulation Y. Coudi`ere Universit for ECG simulation 1 Introduction Computer models of the electrical activity in the myocardium, the measurement of which on the body surface is the well-known electrocardiogram (ECG). It gives a non

Coudière, Yves

426

An Efficient Genetic Algorithm for Predicting Protein Tertiary Structures in the 2D HP Model  

E-Print Network [OSTI]

, predicting its tertiary structure is known as the protein folding problem. This problem has been widely genetic algo- rithm for the protein folding problem under the HP model in the two-dimensional square Genetic Algorithm, Protein Folding Problem, 2D HP Model 1. INTRODUCTION Amino acids are the building

Istrail, Sorin

427

A temporal warped 2D psychoacoustic modeling for robust speech recognition system  

Science Journals Connector (OSTI)

Human auditory system performs better than speech recognition system under noisy condition, which leads us to the idea of incorporating the human auditory system into automatic speech recognition engines. In this paper, a hybrid feature extraction method, ... Keywords: 2D mask, Automatic speech recognition, Simultaneous masking, Temporal masking, Temporal warping

Peng Dai; Ing Yann Soon

2011-02-01T23:59:59.000Z

428

Kinetics and mechanisms of oxidation of 2D woven C/SiC composites; 1: Experimental approach  

SciTech Connect (OSTI)

The oxidation behavior of a 2D woven C/SiC composite partly protected with a SiC seal coating and heat-treated (stabilized) at 1,600 C in inert gas has been investigated through an experimental approach based on thermogravimetric analyses and optical/electron microscopy. Results of the tests, performed under flowing oxygen, have shown that the oxidation behavior of the composite material in terms of oxidation kinetics and morphological evolutions is related to the presence of thermal microcracks in the seal coating as well as in the matrix. Three different temperature domains exist. At low temperatures (< 800 C), the mechanisms of reaction between carbon and oxygen control the oxidation kinetics and are associated with a uniform degradation of the carbon reinforcement. At intermediate temperatures, (between 800 and 1,100 C), the oxidation kinetics are controlled by the gas-phase diffusion through a network of microcracks in the SiC coatings, resulting in a nonuniform degradation of the carbon phases. At high temperatures (> 1,100 C), such diffusion mechanisms are limited by sealing of the microcracks by silica; therefore, the degradation of the composite remains superficial. The study of the oxidation behavior of (i) the heat-treated composite in a lower oxygen content environment (dry air) and (ii) the as-processed (unstabilized) composite in dry oxygen confirms the different mechanisms proposed to explain the oxidation behavior of the composite material.

Lamouroux, F.; Camus, G. (UMR 47, Pessac (France). Lab. des Composites Thermostructuraux); Thebault, J. (Societe Europeenne de Propulsion, Saint Medard-en-Jalles (France))

1994-08-01T23:59:59.000Z

429

Two-color Laser Desorption of Nanostructured MgO Thin Films....  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two-color Laser Desorption of Nanostructured MgO Thin Films. Two-color Laser Desorption of Nanostructured MgO Thin Films. Abstract: Neutral magnesium atom emission from...

430

Self-assembled TiO2-Graphene Hybrid Nanostructures for Enhanced...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

TiO2-Graphene Hybrid Nanostructures for Enhanced Li-ion Insertion . Self-assembled TiO2-Graphene Hybrid Nanostructures for Enhanced Li-ion Insertion . Abstract: We used anionic...

431

Carbon nanostructures production by AC arc discharge plasma process at atmospheric pressure  

Science Journals Connector (OSTI)

Carbon nanostructures have received much attention for a wide range of applications. In this paper, we produced carbon nanostructures by decomposition of benzene using AC arc discharge plasma process at atmospheric pressure. Discharge was carried out ...

Shenqiang Zhao; Ruoyu Hong; Zhi Luo; Haifeng Lu; Biao Yan

2011-01-01T23:59:59.000Z

432

Luminescence Enhancement of CdTe Nanostructures in LaF3:Ce/CdTe...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Enhancement of CdTe Nanostructures in LaF3:CeCdTe Nanocomposites. Luminescence Enhancement of CdTe Nanostructures in LaF3:CeCdTe Nanocomposites. Abstract: Radiation detection...

433

Forensics of Soot: C5-Related Nanostructure as a Diagnostic of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Forensics of Soot: C5-Related Nanostructure as a Diagnostic of In-Cylinder Chemistry Forensics of Soot: C5-Related Nanostructure as a Diagnostic of In-Cylinder Chemistry Changes...

434

The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis  

SciTech Connect (OSTI)

Purpose: This work proposes a new method of building 3D models of microcalcification clusters and describes the validation of their realistic appearance when simulated into 2D digital mammograms and into breast tomosynthesis images. Methods: A micro-CT unit was used to scan 23 breast biopsy specimens of microcalcification clusters with malignant and benign characteristics and their 3D reconstructed datasets were segmented to obtain 3D models of microcalcification clusters. These models were then adjusted for the x-ray spectrum used and for the system resolution and simulated into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. Six radiologists were asked to distinguish between 40 real and 40 simulated clusters of microcalcifications in two separate studies on 2D mammography and tomosynthesis datasets. Receiver operating characteristic (ROC) analysis was used to test the ability of each observer to distinguish between simulated and real microcalcification clusters. The kappa statistic was applied to assess how often the individual simulated and real microcalcification clusters had received similar scores (''agreement'') on their realistic appearance in both modalities. This analysis was performed for all readers and for the real and the simulated group of microcalcification clusters separately. ''Poor'' agreement would reflect radiologists' confusion between simulated and real clusters, i.e., lesions not systematically evaluated in both modalities as either simulated or real, and would therefore be interpreted as a success of the present models. Results: The area under the ROC curve, averaged over the observers, was 0.55 (95% confidence interval [0.44, 0.66]) for the 2D study, and 0.46 (95% confidence interval [0.29, 0.64]) for the tomosynthesis study, indicating no statistically significant difference between real and simulated lesions (p > 0.05). Agreement between allocated lesion scores for 2D mammography and those for the tomosynthesis series was poor. Conclusions: The realistic appearance of the 3D models of microcalcification clusters, whether malignant or benign clusters, was confirmed for 2D digital mammography images and the breast tomosynthesis datasets; this database of clusters is suitable for use in future observer performance studies related to the detectability of microcalcification clusters. Such studies include comparing 2D digital mammography to breast tomosynthesis and comparing different reconstruction algorithms.

Shaheen, Eman; Van Ongeval, Chantal; Zanca, Federica; Cockmartin, Lesley; Marshall, Nicholas; Jacobs, Jurgen; Young, Kenneth C.; Dance, David R.; Bosmans, Hilde [Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium); National Coordinating Centre for the Physics of Mammography, Royal Surrey County Hospital, Guildford, GU2 7XX (United Kingdom); Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000 Leuven (Belgium)

2011-12-15T23:59:59.000Z

435

Facile synthesis of five 2D surface modifiers by highly selective photocyclic aromatization and efficient enhancement of oxygen permselectivities of three polymer membranes by surface modification using a small amount of the 2D surface modifiers  

Science Journals Connector (OSTI)

Abstract A facile synthesis of novel five 2D (planar) surface modifiers having a triphenylbenzene derivatives as a 2D structure has been achieved by the highly selective photocyclic aromatization reaction. Efficient enhancement of oxygen permselectivities through the three polymer membranes has been achieved by adding a small amount (<5.0 wt%) of the 2D surface modifiers. Among the five 2D surface modifiers, a modifier compound having oligoethylene oxide groups showed the best performance for the enhancement. These improvements were thought to be caused mainly by improvement of the solution selectivity on the membrane surface where the 2D surface modifiers were accumulated. In some of the surface-modified blend membranes, their plots in the P O 2 -? graph were over or close to the upper boundary line by Robeson in 1991. Since all the membranes containing the 2D surface modifiers showed better permselectivities than the corresponding substrate membranes, it is very promising for the future.

Jianjun Wang; Yu Zang; Guanwu Yin; Toshiki Aoki; Hiroyuki Urita; Ken Taguwa; Lijia Liu; Takeshi Namikoshi; Masahiro Teraguchi; Takashi Kaneko; Liqun Ma; Hongge Jia

2014-01-01T23:59:59.000Z

436

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tailored from nanostructures as building blocks, are the foundations for constructing nano- and microdevices. However, assembling nanostructures into ordered micronetworks...

437

Nanomedicine for Cancer: Lipid-Based Nanostructures for Drug Delivery and Monitoring  

Science Journals Connector (OSTI)

Nanomedicine for Cancer: Lipid-Based Nanostructures for Drug Delivery and Monitoring ... Lipid-Based Nanomedicines for Cancer ...

Yoshihisa Namiki; Teruaki Fuchigami; Norio Tada; Ryo Kawamura; Satoshi Matsunuma; Yoshitaka Kitamoto; Masaru Nakagawa

2011-07-26T23:59:59.000Z

438

Final report: high resolution lensless 3D imaging of nanostructures with coherent x-rays  

SciTech Connect (OSTI)

Final report on the project "High resolution lensless 3D imaging of nanostructures with coherent x-rays"

Jacobsen, Chris

2014-12-07T23:59:59.000Z

439

Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: A review  

Science Journals Connector (OSTI)

Abstract Sn-based materials have attracted much attention as anodes in lithium ion batteries (LIBs) due to their low cost, high theoretical capacities, and high energy density. However, their practical applications are limited by the poor cyclability originating from the huge volume changes. Graphene nanosheets (GNSs), a novel two-dimensional carbon sheet with one atom thickness and one of the thinnest materials, significantly address the challenges of Sn-based anodes as excellent buffering materials, showing great research interests in LIBs. In this review, various nanocomposites of GNSs/Sn-based anodes are summarized in detail, including binary and ternary composites. The significant impact of 2D \\{GNSs\\} on the volume change of Sn-based anodes during cycling is discussed, along with with their preparation methods, properties and enhanced LIB performance.

Yang Zhao; Xifei Li; Bo Yan; Dejun Li; Stephen Lawes; Xueliang Sun

2015-01-01T23:59:59.000Z

440

Chapter 6 - Nanostructured Membranes for Water Purification  

Science Journals Connector (OSTI)

Application of nanotechnology to water purification is currently faced with the issue of how to design nanomaterials that are capable of collecting and preconcentrating a large number of contaminants per unit volume. Specifically, it is not clear how to interface nanoparticles with contaminants because direct addition of nanoparticles into drinking water may require extra separation steps to recover the expensive nanomaterials. Due to their large pore sizes, conventional membrane filters cannot be used for removing submicron particles, engineered nanoparticles, or biological particles within the range of 100 nm or below. To overcome these challenges, we present transformative membrane technologies that are based on the use of nanostructured conducting phase-inverted poly(amic acid) membranes to isolate and remove silver nanoparticles, quantum dots, and titanium dioxide particles in environmental samples. nPAA membranes have also been utilized to remove pathogenic bacteria in drinking water. Filtration efficiency of over 99.98% was recorded for most contaminants. The membrane pore sizes were experimentally controlled from 4 to 35 nm, and the optimized membranes were tested against three of the most common drinking water contaminants, namely Escherichia coli, Citrobacter freundii, and Staphylococcus epidermidis. Hundred percent removal of these microbial species were recorded and the results were validated with conventional plating techniques.

Omowunmi A. Sadik; Nian Du; Idris Yazgan; Veronica Okello

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Photonic switching devices based on semiconductor nanostructures  

E-Print Network [OSTI]

Focusing and guiding light into semiconductor nanostructures can deliver revolutionary concepts for photonic devices, which offer a practical pathway towards next-generation power-efficient optical networks. In this review, we consider the prospects for photonic switches using semiconductor quantum dots (QDs) and photonic cavities which possess unique properties based on their low dimensionality. The optical nonlinearity of such photonic switches is theoretically analyzed by introducing the concept of a field enhancement factor. This approach reveals drastic improvement in both power-density and speed, which is able to overcome the limitations that have beset conventional photonic switches for decades. In addition, the overall power consumption is reduced due to the atom-like nature of QDs as well as the nano-scale footprint of photonic cavities. Based on this theoretical perspective, the current state-of-the-art of QD/cavity switches is reviewed in terms of various optical nonlinearity phenomena which have been utilized to demonstrate photonic switching. Emerging techniques, enabled by cavity nonlinear effects such as wavelength tuning, Purcell-factor tuning and plasmonic effects are also discussed.

Chao-Yuan Jin; Osamu Wada

2014-02-26T23:59:59.000Z

442

3D MPSoC Design Using 2D EDA tools: Analysis of Parameters M. H. Jabbar1,2  

E-Print Network [OSTI]

3D MPSoC Design Using 2D EDA tools: Analysis of Parameters M. H. Jabbar1,2 , A. M'zah2 , O. Hammami2 , D. Houzet1 1 GIPSA-Lab, Grenoble INP 2 ENSTA Paristech Abstract ­ Design space exploration of 3D MPSoC architecture is reported in this paper analyzing the impact of 2D EDA tools to the 3D

Paris-Sud XI, Université de

443

Nanostructured columnar heterostructures of TiO2 and Cu2O enabled by a thin-film self-assembly approach: Potential for photovoltaics  

SciTech Connect (OSTI)

Significant efforts are being devoted to the development of semiconductor thin film and nanostructured material architectures as components of solar energy harvesting and conversion devices. In particular, nanostructured assemblies with well-defined geometrical shapes have emerged as possible highly efficient and economically viable alternatives to planar junction thin film architectures , , , . However, fabrication of inorganic nanostructures generally requires complicated and multiple step processing techniques, making them less suitable for large-scale manufacturing. Hence, innovative cell architectures and materials processing schemes are essential to large-scale integration and practical viability in photovoltaic devices. Here we present here a new approach towards nanostructured thin film solar cells, by exploiting phase-separated self-assembly , . Through a single-step deposition by rf magnetron sputtering, we demonstrate growth of an epitaxial, composite film matrix formed as self-assembled, well ordered, phase segregated, and oriented p-n type interfacial nanopillars of Cu2O and TiO2. The composite films were structurally characterized to atomic resolution by a variety of analytical tools, and evaluated for preliminary optical properties using absorption measurements. We find nearly atomically distinct Cu2O-TiO2 interfaces (i.e. a p-n junction), and an absorption profile that captures a wide range of the solar spectrum extending from ultraviolet to visible wavelengths. This work opens a novel avenue for development of simple and cost-effective optically active thin film architectures, and offers promise for significantly increased photovoltaic device efficiencies using nanostructured cells that can be optimized for both incident light absorption and carrier collection.

Polat, Ozgur [ORNL; Aytug, Tolga [ORNL; Lupini, Andrew R [ORNL; Paranthaman, Mariappan Parans [ORNL; Ertugrul, Memhet [Ataturk University; Bogorin, Daniela Florentina [ORNL; Meyer III, Harry M [ORNL; Wang, Wei [ORNL; Pennycook, Stephen J [ORNL; Christen, David K [ORNL

2013-01-01T23:59:59.000Z

444

Toward Nanostructured Thermoelectrics: Synthesis and Characterization of Lead Telluride Gels and Aerogels  

SciTech Connect (OSTI)

The synthesis and characterization of lead telluride (PbTe) gels and aerogels with nanostructured features of potential benefit for enhanced thermoelectrics is reported. In this approach, discrete thiolate-capped PbTe nanoparticles were synthesized by a solution-based approach followed by oxidation-induced nanoparticle assembly with tetranitromethane or hydrogen peroxide to form wet gels. Drying of the wet gels by supercritical CO{sub 2} extraction yielded aerogels, whereas xerogels were produced by ambient pressure bench top drying. The gels consist of an interconnected network of colloidal nanoparticles and pores with surface areas up to 74 m{sup 2} g{sup ?1}. The thermal stability of the nanostructures relative to nanoparticles was probed with the help of in situ transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The aerogels were observed to sublime at a higher temperature and over a larger range (425–500 °C) relative to the precursor nanoparticles. TGA-DSC suggests that organic capping groups can be removed in the region 250–450 °C, and melting of PbTe nanoparticles occurs near the temperature for bulk materials (ca. 920 °C). The good thermal stability combined with the presence of nanoscale interfaces suggests PbTe gels may show promise in thermoelectric devices.

Ganguly, Shreyashi; Brock, Stephanie

2011-01-01T23:59:59.000Z

445

Comparison of 1D and 2D CSR Models with Application to the FERMI@ELETTRA Bunch Compressors  

SciTech Connect (OSTI)

We compare our 2D mean field (Vlasov-Maxwell) treatment of coherent synchrotron radiation (CSR) effects with 1D approximations of the CSR force which are commonly implemented in CSR codes. In our model we track particles in 4D phase space and calculate 2D forces [1]. The major cost in our calculation is the computation of the 2D force. To speed up the computation and improve 1D models we also investigate approximations to our exact 2D force. As an application, we present numerical results for the Fermi{at}Elettra first bunch compressor with the configuration described in [1].

Bassi, G.; Ellison, J.A.; Heinemann, K.

2011-03-28T23:59:59.000Z

446

Category:Reference Materials | Open Energy Information  

Open Energy Info (EERE)

Category Category Edit History Facebook icon Twitter icon » Category:Reference Materials (Redirected from Reference Materials) Jump to: navigation, search This is a deprecated subcategory. All Reference Materials will be converted to References. Pages in category "Reference Materials" The following 200 pages are in this category, out of 2,265 total. (previous 200) (next 200) 1 10 CFR § 1021 2 2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- Resistivity Distribution To About 3000 M Depth 2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains (Russia), Contemporaneous Granites, And Associated Ore Deposits 238U Decay Series Systematics Of Young Lavas From Batur Volcano, Sunda Arc 2D Joint Inversion Of Dc And Scalar Audio-Magnetotelluric Data In The Evaluation Of Low Enthalpy Geothermal Fields

447

Nanostructure templating using low temperature atomic layer deposition  

DOE Patents [OSTI]

Methods are described for making nanostructures that are mechanically, chemically and thermally stable at desired elevated temperatures, from nanostructure templates having a stability temperature that is less than the desired elevated temperature. The methods comprise depositing by atomic layer deposition (ALD) structural layers that are stable at the desired elevated temperatures, onto a template employing a graded temperature deposition scheme. At least one structural layer is deposited at an initial temperature that is less than or equal to the stability temperature of the template, and subsequent depositions made at incrementally increased deposition temperatures until the desired elevated temperature stability is achieved. Nanostructure templates include three dimensional (3D) polymeric templates having features on the order of 100 nm fabricated by proximity field nanopatterning (PnP) methods.

Grubbs, Robert K. (Albuquerque, NM); Bogart, Gregory R. (Corrales, NM); Rogers, John A. (Champaign, IL)

2011-12-20T23:59:59.000Z

448

7 - New metallic materials development by laser additive manufacturing  

Science Journals Connector (OSTI)

Abstract The application of laser-based additive manufacturing (AM) technology to prepare novel structured high-performance materials and components is of unique interest. The special material incremental manufacturing (MIM) processing strategy and highly nonequilibrium metallurgical nature of laser processes favor the formation of bulk-form materials with unique microstructures and properties. This chapter summarizes our research work on the development of the nanostructured TiC reinforced Ti nanocomposites and microcellular stainless steel porous material, using the selective laser melting (SLM) AM process.

Dongdong Gu

2015-01-01T23:59:59.000Z

449

Novel Approach to Plasma Facing Materials in Nuclear Fusion Reactors  

SciTech Connect (OSTI)

A novel material design in nuclear fusion reactors is proposed based on W-nDiamond nanostructured composites. Generally, a microstructure refined to the nanometer scale improves the mechanical strength due to modification of plasticity mechanisms. Moreover, highly specific grain-boundary area raises the number of sites for annihilation of radiation induced defects. However, the low thermal stability of fine-grained and nanostructured materials demands the presence of particles at the grain boundaries that can delay coarsening by a pinning effect. As a result, the concept of a composite is promising in the field of nanostructured materials. The hardness of diamond renders nanodiamond dispersions excellent reinforcing and stabilization candidates and, in addition, diamond has extremely high thermal conductivity. Consequently, W-nDiamond nanocomposites are promising candidates for thermally stable first-wall materials. The proposed design involves the production of W/W-nDiamond/W-Cu/Cu layered castellations. The W, W-nDiamond and W-Cu layers are produced by mechanical alloying followed by a consolidation route that combines hot rolling with spark plasma sintering (SPS). Layer welding is achieved by spark plasma sintering. The present work describes the mechanical alloying processsing and consolidation route used to produce W-nDiamond composites, as well as microstructural features and mechanical properties of the material produced Long term plasma exposure experiments are planned at ISTTOK and at FTU (Frascati)

Livramento, V.; Correia, J. B.; Shohoji, N.; Osawa, E. [INETI, Departamento de Materiais e Tecnologias de Producao, Estrada do Pacco do Lumiar, 1649-038 Lisboa (Portugal); Nunes, D. [Associacao Euratom/IST, Departamento de Engenharia de Materiais, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Carvalho, P. A.; Fernandes, H.; Silva, C. [Associacao Euratom/IST, Centro de Fusao Nuclear, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Hanada, K. [National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba, Ibaraki 305-8564 (Japan)

2008-04-07T23:59:59.000Z

450

Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science Materials Science Materials Science1354608000000Materials ScienceSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Materials Science Some of these resources are LANL-only and will require Remote Access. Key Resources Data Sources Reference Organizations Journals Key Resources CINDAS Materials Property Databases video icon Thermophysical Properties of Matter Database (TPMD) Aerospace Structural Metals Database (ASMD) Damage Tolerant Design Handbook (DTDH) Microelectronics Packaging Materials Database (MPMD) Structural Alloys Handbook (SAH) Proquest Technology Collection Includes the Materials Science collection MRS Online Proceedings Library Papers presented at meetings of the Materials Research Society Data Sources

451

Bulk Nanostructured FCC Steels With Enhanced Radiation Tolerance  

SciTech Connect (OSTI)

The objective of this project is to increase radiation tolerance in austenitic steels through optimization of grain size and grain boundary (GB) characteristics. The focus will be on nanocrystalline austenitic Fe-Cr-Ni alloys with an fcc crystal structure. The long-term goal is to design and develop bulk nanostructured austenitic steels with enhanced void swelling resistance and substantial ductility, and to enhance their creep resistance at elevated temperatures via GB engineering. The combination of grain refinement and grain boundary engineering approaches allows us to tailor the material strength, ductility, and resistance to swelling by 1) changing the sink strength for point defects, 2) by increasing the nucleation barriers for bubble formation at GBs, and 3) by changing the precipitate distributions at boundaries. Compared to ferritic/martensitic steels, austenitic stainless steels (SS) possess good creep and fatigue resistance at elevated temperatures, and better toughness at low temperature. However, a major disadvantage of austenitic SS is that they are vulnerable to significant void swelling in nuclear reactors, especially at the temperatures and doses anticipated in the Advanced Burner Reactor. The lack of resistance to void swelling in austenitic alloys led to the switch to ferritic/martensitic steels as the preferred material for the fast reactor cladding application. Recently a type of austenitic stainless steel, HT-UPS, was developed at ORNL, and is expected to show enhanced void swelling resistance through the trapping of point defects at nanometersized carbides. Reducing the grain size and increasing the fraction of low energy grain boundaries should reduce the available radiation-produced point defects (due to the increased sink area of the grain boundaries), should make bubble nucleation at the boundaries less likely (by reducing the fraction of high-energy boundaries), and improve the strength and ductility under radiation by producing a higher density of nanometer sized carbides on the boundaries. This project will focus on void swelling but advances in processing of austenitic steels are likely to also improve the radiation response of the mechanical properties.

Xinghang Zhang; Hartwig, K. Ted; Todd Allen; Yong Yang

2012-10-27T23:59:59.000Z

452

2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets-  

Open Energy Info (EERE)

D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- Resistivity Distribution To About 3000 M Depth Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- Resistivity Distribution To About 3000 M Depth Details Activities (0) Areas (0) Regions (0) Abstract: With the aim of investigating the possibilities of magnetotelluric methods for the exploration of potential Enhanced Geothermal System (EGS) sites in the Upper Rhine valley, a 2-D magnetotelluric (MT) survey has been carried out on a 13 km long profile across the thermal anomaly in the area of the geothermal power plant of Soultz-sous-Forets in the winter 2007/08. Despite strong artificial noise, processing using remote referencing and Sutarno phase consistent smoothing

453

2D and 3D simulations of damage in 5-grain copper gas gun samples  

SciTech Connect (OSTI)

2D and 3D Hydrocode simulations were done of a gas gun damage experiment involving a 5 grain sample with a polycrystalline flyer with a velocity of about 140 m/s. The simulations were done with the Flag hydrocode and involved explicit meshing of the 5 grains with a single crystal plasticity model and a pressure based damage model. The calculated fields were compared with two cross sections from the recovered sample. The sample exhibited grain boundary cracks at high angle and tilt grain boundaries in the sample but not at a sigma 3 twin boundary. However, the calculation showed large gradients in stress and strain at only the twin boundary, contrary to expectation. This indicates that the twin boundary is quite strong to resist the predicted high gradients and that the calculation needs the addition of a grain boundary fracture mode. The 2D and 3D simulations were compared.

Tonks, Davis L [Los Alamos National Laboratory; Cerreta, Ellen K [Los Alamos National Laboratory; Dennis - Koller, Darcie [Los Alamos National Laboratory; Escobedo - Diaz, Juan P [Los Alamos National Laboratory; Trujillo, Carl P [Los Alamos National Laboratory; Luo, Shengian [Los Alamos National Laboratory; Bingert, John F [Los Alamos National Laboratory

2010-12-16T23:59:59.000Z

454

2D separated-local-field spectra from projections of 1D experiments  

Science Journals Connector (OSTI)

A novel procedure for reconstruction of 2D separated-local-field (SLF) NMR spectra from projections of 1D NMR data is presented. The technique, dubbed SLF projection reconstruction from one-dimensional spectra (SLF-PRODI), is particularly useful for uniaxially oriented membrane protein samples and represents a fast and robust alternative to the popular PISEMA experiment which correlates 1H–15N dipole–dipole couplings with 15N chemical shifts. The different 1D projections in the SLF-PRODI experiment are obtained from 1D spectra recorded under influence of homonuclear decoupling sequences with different scaling factors for the heteronuclear dipolar couplings. We demonstrate experimentally and numerically that as few as 2–4 1D projections will normally be sufficient to reconstruct a 2D SLF-PRODI spectrum with a quality resembling typical PISEMA spectra, leading to significant reduction of the acquisition time.

Kresten Bertelsen; Jan M. Pedersen; Niels Chr. Nielsen; Thomas Vosegaard

2007-01-01T23:59:59.000Z

455

The 2dF Galaxy Redshift Survey: The clustering of galaxy groups  

E-Print Network [OSTI]

We measure the clustering of galaxy groups in the 2dFGRS Percolation-Inferred Galaxy Group (2PIGG) catalogue. The 2PIGG sample has 29,000 groups with at least two members. The clustering amplitude of the full 2PIGG catalogue is weaker than that of 2dFGRS galaxies, in agreement with theoretical predictions. We have subdivided the 2PIGG catalogue into samples that span a factor of 25 in median total luminosity. Our correlation function measurements span an unprecedented range of clustering strengths, connecting the regimes probed by groups fainter than L* galaxies and rich clusters. There is a steady increase in clustering strength with group luminosity; the most luminous groups are ten times more strongly clustered than the full 2PIGG catalogue. We demonstrate that the 2PIGG results are in very good agreement with the clustering of groups expected in the LCDM model.

Nelson D. Padilla; C. M. Baugh; V. R. Eke; P. Norberg; S. Cole; C. S. Frenk; D. J. Croton; I. K. Baldry; J. Bland-Hawthorn; T. Bridges; R. Cannon; M. Colless; C. Collins; W. Couch; G. Dalton; R. De Propris; S. P. Driver; G. Efstathiou; R. S. Ellis; K. Glazebrook; C. Jackson; O. Lahav; I. Lewis; S. Lumsden; S. Maddox; D. Madgwick; J. A. Peacock; B. A. Peterson; W. Sutherland; K. Taylor.

2004-07-12T23:59:59.000Z

456

High Performance Nanostructured Spectrally Selective Coating  

Broader source: Energy.gov (indexed) [DOE]

of semiconductor alloy. (b) Semiconductor material charges in a shaker pot container cell for spark erosion process. (a) (b) Pulsed power source Charge Electrode Screen Spark...

457

Thermoelectric Properties of Nanostructured Silicon Films.  

E-Print Network [OSTI]

??Based on the Seebeck effect, thermoelectric materials can convert temperature heat into electrical energy. Alternatively, based on the Peltier effect, thermoelectric cooling can be achieved… (more)

Guo, Xiao

2014-01-01T23:59:59.000Z

458

Trends in Thermoelectric Properties with Nanostructure: Ferecrystals...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to interleave on the nanoscale two or more compounds with different crystal structures johnson.pdf More Documents & Publications Ferecrystals: Thermoelectric Materials Poised...

459

Nanostructure, Chemistry and Crystallography of Iron Nitride...  

Broader source: Energy.gov (indexed) [DOE]

of hybrid-electric and battery electric vehicles may increase worldwide demand for rare earth elements and certain other materials. It is likely that future supply of these...

460

Center on Nanostructuring for Efficient Energy Conversion  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the bottom footer Read the latest stories about our priorities in: previous next stop resume Project 1: Controlling material structures and properties at the nanoscale The goal of...

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Photocurable Oil/Water Interfaces as a Universal Platform for 2-D Self-Assembly  

Science Journals Connector (OSTI)

T shows a situation where thermal energy disperses the particles into a 2-D gas (Figure 2a), v1 shows equilibrium phase separation as depicted by our rule-based growth algorithm, v2 is an RLA simulation (ref 46), and v3 is a DLA simulation (ref 45). ... When exposed to a 365 nm high-pressure mercury lamp at an intensity of 8 mW/cm2, solidification of DDMA was achieved within 1 s. ...

Jason J. Benkoski; Ronald L. Jones; Jack F. Douglas; Alamgir Karim

2007-02-21T23:59:59.000Z

462

Galerkin Spectral Method for the 2D Solitary Waves of Boussinesq Paradigm Equation  

SciTech Connect (OSTI)

We consider the 2D stationary propagating solitary waves of the so-called Boussinesq Paradigm equation. The fourth- order elliptic boundary value problem on infinite interval is solved by a Galerkin spectral method. An iterative procedure based on artificial time ('false transients') and operator splitting is used. Results are obtained for the shapes of the solitary waves for different values of the dispersion parameters for both subcritical and supercritical phase speeds.

Christou, M. A. [Department of Computer Science, University of Nicosia (Cyprus); Christov, C. I. [Department of Mathematics, University of Louisiana at Lafayette, LA (United States)

2009-10-29T23:59:59.000Z

463

Fano-type coupling of a bound paramagnetic state with 2D continuum  

SciTech Connect (OSTI)

We analyze an effect of a bound impurity state located at a tunnel distance from a quantum well (QW). The study is focused on the resonance case when the bound state energy lies within the continuum of the QW states. Using the developed theory we calculate spin polarization of 2D holes induced by paramagnetic (Mn) delta-layer in the vicinity of the QW and indirect exchange interaction between two impurities located at a tunnel distance from electron gas.

Rozhansky, I. V. [A.F. Ioffe Physical Technical Institute, 194021 St.Petersburg, Russia and Lappeenranta University of Technology, P.O. Box 20, FI-53851, Lappeenranta (Finland); Averkiev, N. S. [A.F. Ioffe Physical Technical Institute, 194021 St.Petersburg (Russian Federation); Lähderanta, E. [Lappeenranta University of Technology, P.O. Box 20, FI-53851, Lappeenranta (Finland)

2013-12-04T23:59:59.000Z

464

Parameter constraints for flat cosmologies from CMB and 2dFGRS power spectra  

E-Print Network [OSTI]

We constrain flat cosmological models with a joint likelihood analysis of a new compilation of data from the cosmic microwave background (CMB) and from the 2dF Galaxy Redshift Survey (2dFGRS). Fitting the CMB alone yields a known degeneracy between the Hubble constant h and the matter density Omega_m, which arises mainly from preserving the location of the peaks in the angular power spectrum. This `horizon-angle degeneracy' is considered in some detail and shown to follow a simple relation Omega_m h^{3.4} = constant. Adding the 2dFGRS power spectrum constrains Omega_m h and breaks the degeneracy. If tensor anisotropies are assumed to be negligible, we obtain values for the Hubble constant h=0.665 +/- 0.047, the matter density Omega_m=0.313 +/- 0.055, and the physical CDM and baryon densities Omega_c h^2 = 0.115 +/- 0.009, Omega_b h^2 = 0.022 +/- 0.002 (standard rms errors). Including a possible tensor component causes very little change to these figures; we set a upper limit to the tensor-to-scalar ratio of r<0.7 at 95% confidence. We then show how these data can be used to constrain the equation of state of the vacuum, and find w<-0.52 at 95% confidence. The preferred cosmological model is thus very well specified, and we discuss the precision with which future CMB data can be predicted, given the model assumptions. The 2dFGRS power-spectrum data and covariance matrix, and the CMB data compilation used here, are available from http://www.roe.ac.uk/~wjp/

Will J. Percival; Will Sutherland; John A. Peacock; Carlton M. Baugh; Joss Bland-Hawthorn; Terry Bridges; Russell Cannon; Shaun Cole; Matthew Colless; Chris Collins; Warrick Couch; Gavin Dalton; Roberto De Propris; Simon P. Driver; George Efstathiou; Richard S. Ellis; Carlos S. Frenk; Karl Glazebrook; Carole Jackson; Ofer Lahav; Ian Lewis; Stuart Lumsden; Steve Maddox; Stephen Moody; Peder Norberg; Bruce A. Peterson; Keith Taylor

2002-08-22T23:59:59.000Z

465

Role of Electronic Excitations in Ion Collisions with Carbon Nanostructures  

SciTech Connect (OSTI)

By combining ab initio time-dependent density functional calculations for electrons with molecular dynamics simulations for ions in real time, we investigate the microscopic mechanism of collisions between energetic protons and graphitic carbon nanostructures. We identify not only the amount of energy lost by the projectile, but also the electronic and ionic degrees of freedom of the target that accommodate this energy as a function of the impact parameter and projectile energy. Our results establish validity limits for the Born-Oppenheimer approximation and the threshold energy for defect formation in carbon nanostructures.

Krasheninnikov, Arkady V. [Accelerator Laboratory, P.O. Box 43, FIN-00014 University of Helsinki (Finland); Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, Helsinki 02015 (Finland); Miyamoto, Yoshiyuki [Nano Electronics Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, 305-8501 (Japan); Tomanek, David [Physics and Astronomy Department, Michigan State University, East Lansing, Michigan 48824-2320 (United States)

2007-07-06T23:59:59.000Z

466

Development of an isothermal 2D zonal air volume model with impulse  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of an isothermal 2D zonal air volume model with impulse Development of an isothermal 2D zonal air volume model with impulse conservation Title Development of an isothermal 2D zonal air volume model with impulse conservation Publication Type Conference Paper Year of Publication 2010 Authors Victor, Norrefeldt, Thierry Stephane Nouidui, and Gunnar Gruen Conference Name Clima 2010, 10th Rehva World Congress "Sustainable Energy Use in Buildings" Conference Location Antalya, Turkey Abstract This paper presents a new approach to model air flows with a zonal model. The aim of zonal models is to perform quick simulations of the air distribution in rooms. Therefore an air volume is subdivided into several discrete zones, typically 10 to 100. The zones are connected with flow elements computing the amount of air exchanged between them. In terms of complexity and needed computational time zonal models are a compromise between CFDcalculations and the approximation of perfect mixing. In our approach the air flow velocity is used as property of the zones. Thus the distinction between normal zones and jet or plume influenced zones becomes obsolete. The model is implemented in the object oriented and equation based language Modelica. A drawback of the new formulation is that the calculated flow pattern depends on the discretization. Nevertheless, the results show that the new zonal model performs well and is a useful extension to existing models.

467

Excited states of exciton-polariton condensates in 2D and 1D harmonic traps  

Science Journals Connector (OSTI)

We present a theoretical description of Bogolyubov-type excitations of exciton-polariton Bose-Einstein condensates (BECs) in semiconductor microcavities. For a typical two-dimensional (2D) BEC we focus on two limiting cases, the weak- and strong-coupling regimes, where a perturbation theory and the Thomas-Fermi approximation, respectively, are valid. We calculate integrated scattering intensity spectra for probing the collective excitations of the condensate in both considered limits. Moreover, in relation to recent experiments on optical modulation allowing localization of condensates in a trap with well-controlled shape and dimensions, we study the quasi-one-dimensional (1D) motion of the BEC in microwires and report the corresponding Bogolyubov excitation spectrum. We show that in the 1D case the characteristic polariton-polariton interaction constant is expressed as g1=3?N/(2Ly) (? is the 2D polariton-polariton interaction parameter in the cavity, N the number of the particles, and Ly the wire cavity width). We reveal some interesting features for 2D and 1D Bogolyubov spectra for both repulsive (?>0) and attractive (?<0) interactions.

C. Trallero-Giner; M. V. Durnev; Y. Núńez Fernández; M. I. Vasilevskiy; V. López-Richard; A. Kavokin

2014-05-27T23:59:59.000Z

468

Conformal anomaly for 2D and 4D dilaton coupled spinors  

Science Journals Connector (OSTI)

We study quantum dilaton coupled spinors in two and four dimensions. Making a classical transformation of the metric, the dilaton coupled spinor theory is transformed into the minimal spinor theory with another metric and in the 4D case a spinor also in the background of the nontrivial vector field. This makes it possible to calculate 2D and 4D dilaton-dependent conformal (or Weyl) anomalies easily. The anomaly-induced effective action for such spinors is derived. In the 2D case, the effective action reproduces, without any extra terms, the term added by hand in the quantum correction for the Russo-Susskind-Thorlacius model, which is exactly solvable. For the 4D spinor the chiral anomaly which depends explicitly on the dilaton is also found. As some applications we discuss supersymmetric black holes (BH’s) in dilatonic supergravity with Wess-Zumino-type matter and Hawking radiation in the same theory. As another application we investigate spherically reduced Einstein gravity with a 2D dilaton coupled fermion anomaly-induced effective action and show the existence of quantum-corrected Schwarzchild–de Sitter (Nariai) BH’s with multiple horizons.

Peter van Nieuwenhuizen; Shin’ichi Nojiri; Sergei D. Odintsov

1999-09-24T23:59:59.000Z

469

An Advanced Computational Scheme for the Optimization of 2D Radial Reflectors in Pressurized Water Reactors  

E-Print Network [OSTI]

This paper presents a computational scheme for the determination of equivalent 2D multi-group heterogeneous reflectors in a Pressurized Water Reactor (PWR). The proposed strategy is to define a full-core calculation consistent with a reference lattice code calculation such as the Method Of Characteristics (MOC) as implemented in APOLLO2 lattice code. The computational scheme presented here relies on the data assimilation module known as "Assimilation de donn\\'{e}es et Aide \\`{a} l'Optimisation (ADAO)" of the SALOME platform developed at \\'{E}lectricit\\'{e} De France (EDF), coupled with the full-core code COCAGNE and with the lattice code APOLLO2. A first validation of the computational scheme is made using the OPTEX reflector model developed at \\'{E}cole Polytechnique de Montr\\'{e}al (EPM). As a result, we obtain 2D multi-group, spatially heterogeneous 2D reflectors, using both diffusion or $\\text{SP}_{\\text{N}}$ operators. We observe important improvements of the power discrepancies distribution over the cor...

Clerc, Thomas; Leroyer, Hadrien; Argaud, Jean-Philippe; Bouriquet, Bertrand; Ponçot, Agélique

2014-01-01T23:59:59.000Z

470

Studying large-scale structure with the 2dF Galaxy Redshift Survey  

E-Print Network [OSTI]

The 2dF Galaxy Redshift Survey is the first to observe more than 100,000 redshifts. This allows precise measurements of many of the key statistics of galaxy clustering, in particular redshift-space distortions and the large-scale power spectrum. This paper presents the current 2dFGRS results in these areas. Redshift-space distortions are detected with a high degree of significance, confirming the detailed Kaiser distortion from large-scale infall velocities, and measuring the distortion parameter beta equiv Omega_m^{0.6}/b = 0.43 +- 0.07. The power spectrum is measured to 0.02 h Mpc^{-1}, and is well fitted by a CDM model with Omega_m h = 0.20 +- 0.03 and a baryon fraction of 0.15 +- 0.07. A joint analysis with CMB data requires Omega_m = 0.29 +- 0.05, assuming scalar fluctuations, but no priors on other parameters. Two methods are used to determine the large-scale bias parameter: an internal bispectrum analysis yields b = 1.04 +- 0.11, in very good agreement with the b = 1.10 +- 0.08 obtained from a joint 2dFGRS+CMB analysis, again assuming scalar fluctuations. These figures refer to galaxies of approximate luminosity 2L^*; luminosity dependence of clustering is detected at high significance, and is well described by b/b^* = 0.85 + 0.15(L/L^*).

J. A. Peacock; M. Colless; I. Baldry; C. Baugh; J. Bland-Hawthorn; T. J. Bridges; R. Cannon; S. Cole; C. A. Collins; W. Couch; G. B. Dalton; R. De Propris; S. P. Driver; G. Efstathiou; R. S. Ellis; C. S. Frenk; K. Glazebrook; C. A. Jackson; O. Lahav; I. J. Lewis; S. Lumsden; S. J. Maddox; D. Madgwick; P. Norberg; W. Percival; B. A. Peterson; W. J. Sutherland; K. Taylor

2002-05-28T23:59:59.000Z

471

Automatic high-fidelity 3D road network modeling based on 2D GIS data  

Science Journals Connector (OSTI)

Abstract Many computer applications such as racing games and driving simulations demand high-fidelity 3D road network models. However, few methods exist for the automatic generation of 3D realistic road networks, especially for those in the real world. On the other hand, vast 2D road network data in various geographical information systems (GIS) have been collected in the past and are used by a wide range of applications. A method that can automatically produce 3D high-fidelity road network models from 2D real road GIS data will significantly reduce both the labor and time cost, and greatly benefit applications involving road networks. Based on a set of carefully selected civil engineering rules for road design, this paper proposes a novel approach that transforms existing road GIS data that contain only 2D road centerline information into high-fidelity 3D road network models. The proposed method consists of several major components, including road GIS data preprocessing, 3D centerline modeling, and 3D geometric modeling. With this approach, basic road elements such as road segments, road intersections and traffic interchanges are generated automatically to compose sophisticated road networks in a seamless manner. Results show that this approach provides a rapid and efficient 3D road modeling method for applications that have stringent requirements on high-fidelity road models.

Jie Wang; Gary Lawson; Yuzhong Shen

2014-01-01T23:59:59.000Z

472

Improved Solar Cell Efficiency Through the Use of an Additive Nanostructure-Based Optical Downshifter: Final Subcontract Report, January 28, 2010 -- February 28, 2011  

SciTech Connect (OSTI)

This final report summarizes all SpectraWatt's progress in achieving a boost in solar cell efficiency using an optical downshifter. Spectrawatt's downshifting technology is based on a nanostructured material system which absorbs high energy (short wavelength) light and reemits it at a lower energy (long wavelength) with high efficiency. This system has shown unprecedented performance parameters including near unity quantum yield and high thermal stability.

Kurtin, J.

2011-05-01T23:59:59.000Z

473

Postdoctoral Research Associate Functional Hybrid Nanostructures Group  

E-Print Network [OSTI]

for Nanophase Materials Sciences (865) 576-7406 shaom@ornl.gov Education Huazhong University of Science for Nanophase Materials Sciences, Oak Ridge National Laboratory (ORNL) Professional and Synergistic Activities, ASM ­ Oak Ridge Chapter, Poster Competition 2005 Guanghua Fellowship, Shanghai University, China 2000

Pennycook, Steve

474

Reference Material  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reference Materials There are a variety of reference materials the NSSAB utilizes and have been made available on its website. Documents Fact Sheets - links to Department of Energy...

475

Materials Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Materials Science science-innovationassetsimagesicon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos...

476

MOBILITY OF THE 2 D ADSORBED PHASES. STUDY OF THE MOBILITY Ol? AN HYPERCRITICAL TWO-DIMENSIONAL  

E-Print Network [OSTI]

MOBILITY OF THE 2 D ADSORBED PHASES. STUDY OF THE MOBILITY Ol? AN HYPERCRITICAL TWO the diffusion coefficient of the two-dimensional hypercritical fluid of methane adsorbed on the graphite basal to measure the dynamical properties of the two-dimensional (2 D) adsorbed fluids pointed out a few years ago

Boyer, Edmond

477

Accelerated Short-TE 3D Proton Echo-Planar Spectroscopic Imaging Using 2D-SENSE with  

E-Print Network [OSTI]

Accelerated Short-TE 3D Proton Echo-Planar Spectroscopic Imaging Using 2D-SENSE with a 32-Channel times and 2D acceleration with a large array coil is expected to provide high acceleration capability using a 32-channel array coil can be accelerated 8-fold (R 4 2) along y-z to achieve a minimum

478

35 Cal. 3d 197, *; 673 P.2d 660, **; 197 Cal. Rptr. 783, ***; 1983 Cal. LEXIS 266  

E-Print Network [OSTI]

Page 1 35 Cal. 3d 197, *; 673 P.2d 660, **; 197 Cal. Rptr. 783, ***; 1983 Cal. LEXIS 266 Note., Defendants and Respondents L.A. No. 31603 Supreme Court of California 35 Cal. 3d 197; 673 P.2d 660; 197 Cal OFFICIAL REPORTS HEADNOTES Classified to California Digest of Official Reports, 3d Series #12;Page 2 35 Cal

Kammen, Daniel M.

479

Nanostructured lithium-aluminum alloy electrodes for lithium-ion batteries.  

SciTech Connect (OSTI)

Electrodeposited aluminum films and template-synthesized aluminum nanorods are examined as negative electrodes for lithium-ion batteries. The lithium-aluminum alloying reaction is observed electrochemically with cyclic voltammetry and galvanostatic cycling in lithium half-cells. The electrodeposition reaction is shown to have high faradaic efficiency, and electrodeposited aluminum films reach theoretical capacity for the formation of LiAl (1 Ah/g). The performance of electrodeposited aluminum films is dependent on film thickness, with thicker films exhibiting better cycling behavior. The same trend is shown for electron-beam deposited aluminum films, suggesting that aluminum film thickness is the major determinant in electrochemical performance regardless of deposition technique. Synthesis of aluminum nanorod arrays on stainless steel substrates is demonstrated using electrodeposition into anodic aluminum oxide templates followed by template dissolution. Unlike nanostructures of other lithium-alloying materials, the electrochemical performance of these aluminum nanorod arrays is worse than that of bulk aluminum.

Hudak, Nicholas S.; Huber, Dale L.

2010-12-01T23:59:59.000Z

480

Array of titanium dioxide nanostructures for solar energy utilization  

DOE Patents [OSTI]

An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

2014-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Enhanced radiative heat transfer between nanostructured gold plates  

E-Print Network [OSTI]

We compute the radiative heat transfer between nanostructured gold plates in the framework of the scattering theory. We predict an enhancement of the heat transfer as we increase the depth of the corrugations while keeping the distance of closest approach fixed. We interpret this effect in terms of the evolution of plasmonic and guided modes as a function of the grating's geometry.

R. Guérout; J. Lussange; F. S. S. Rosa; J. -P. Hugonin; D. A. R. Dalvit; J. -J. Greffet; A. Lambrecht; S. Reynaud

2012-03-07T23:59:59.000Z

482

On the control of carbon nanostructures for hydrogen storage applications  

E-Print Network [OSTI]

On the control of carbon nanostructures for hydrogen storage applications Patrice Guay a , Barry L April 2004 Available online 25 May 2004 Abstract The storage of hydrogen in different carbon nanofibers, Doped carbon; C. Molecular simulation; D. Gas storage 1. Introduction Hydrogen storage in carbon

Rochefort, Alain

483

Calcium-Decorated Graphene-Based Nanostructures for Hydrogen Storage  

Science Journals Connector (OSTI)

We report a first-principles study of hydrogen storage media consisting of calcium atoms and graphene-based nanostructures. We find that Ca atoms prefer to be individually adsorbed on the zigzag edge of graphene with a Ca?Ca distance of 10 Ĺ without ...

Hoonkyung Lee; Jisoon Ihm; Marvin L. Cohen; Steven G. Louie

2010-01-27T23:59:59.000Z

484

Dielectric nanostructures for broadband light trapping in organic solar cells  

E-Print Network [OSTI]

Dielectric nanostructures for broadband light trapping in organic solar cells Aaswath Raman, Zongfu light trapping configuration for thin-film solar cells," Appl. Phys. Lett. 91, 243501 (2007). 8. M@stanford.edu Abstract: Organic bulk heterojunction solar cells are a promising candidate for low-cost next

Fan, Shanhui

485

Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells  

E-Print Network [OSTI]

Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells Vivian E. Ferry, Luke in thin film solar cells. In particular, the ability of plasmonic structures to localize light sunlight into guided modes in thin film Si and GaAs plasmonic solar cells whose back interface is coated

Atwater, Harry

486

5D Data Storage by Ultrafast Laser Nanostructuring in Glass  

E-Print Network [OSTI]

5D Data Storage by Ultrafast Laser Nanostructuring in Glass Jingyu Zhang* , Mindaugas Gecevicius-assembled form birefringence and retrieved in glass opening the era of unlimited lifetime data storage. © 2013 laser writing in glass were proposed for the polarization multiplexed optical memory, where

Anderson, Jim

487

New trends for the Kondo effect in nanostructures  

Science Journals Connector (OSTI)

The Kondo effect in confined nanostructures (quantum dots) provides a testbed for a variety of physical behaviours involving strong electronic correlations. Here some extensions of the Kondo effect beyond the standard single-impurity Anderson model are reviewed. Apart from their fundamental interest, these issues may also open new roads for low-temperature spintronics.

Sabine Andergassen; Denis Feinberg; Serge Florens; Mireille Lavagna; Shiueyuan Shiau; Pascal Simon; Raphael Van Roermund

2010-01-01T23:59:59.000Z

488

Nanostructured Molybdenum Carbide: Sonochemical Synthesis and Catalytic Properties  

E-Print Network [OSTI]

to be a useful technique to generate nanophase transition metals.7,8 Recently, molybdenum and tungsten carbides of metal salts.5,6 Sonochemical decomposition of transition metal carbonyl compounds has also been provenNanostructured Molybdenum Carbide: Sonochemical Synthesis and Catalytic Properties Taeghwan Hyeon

Suslick, Kenneth S.

489

Ordered Hierarchical Nanostructured Carbon as a Highly Efficient Cathode Catalyst Support in Proton Exchange Membrane Fuel Cell  

Science Journals Connector (OSTI)

Ordered hierarchical nanostructured carbon (OHNC) has been fabricated through inverse replication of silica template and explored for the first time to support high loading of Pt nanoparticles as cathode catalyst in proton exchange membrane fuel cells (PEMFC). ... Ordered porous carbon materials with three-dimensionally interconnected pore structures and highly developed porosity have a variety of potential applications such as catalyst supports in low temperature fuel cells,(1, 2) electrode materials for electric double-layer capacitors(3, 4) and for lithium ion batteries,(5) adsorbents, and hydrogen storage materials. ... Carbon black Vulcan XC-72 (VC) is widely used as an electrocatalyst support in the PEMFCs due to its relatively large surface area and excellent chemical stability in the fuel cell environment. ...

Baizeng Fang; Jung Ho Kim; Minsik Kim; Jong-Sung Yu

2009-02-04T23:59:59.000Z

490

The 2dF Galaxy Redshift Survey: Galaxy luminosity functions per spectral type  

E-Print Network [OSTI]

We calculate the optical bj luminosity function of the 2dF Galaxy Redshift Survey (2dFGRS) for different subsets defined by their spectral properties. These spectrally selected subsets are defined using a new parameter, eta, which is a linear combination of the first two projections derived from a Principal Component Analysis. This parameter eta identifies the average emission and absorption line strength in the galaxy rest-frame spectrum and hence is a useful indicator of the present star formation. We use a total of 75,000 galaxies in our calculations, chosen from a sample of high signal-to-noise ratio, low redshift galaxies observed before January 2001. We find that there is a systematic steepening of the faint end slope (alpha) as one moves from passive (alpha = -0.54) to active (alpha = -1.50) star-forming galaxies, and that there is also a corresponding faintening of the rest-frame characteristic magnitude M* - 5\\log_10(h) (from -19.6 to -19.2). We also show that the Schechter function provides a poor fit to the quiescent (Type 1) LF for very faint galaxies (M - 5log_10(h) fainter than -16.0), perhaps suggesting the presence of a significant dwarf population. The luminosity functions presented here give a precise confirmation of the trends seen previously in a much smaller preliminary 2dFGRS sample, and in other surveys. We also present a new procedure for determining self-consistent K-corrections and investigate possible fibre-aperture biases.

D. S. Madgwick; O. Lahav; I. K. Baldry; C. M. Baugh; J. Bland-Hawthorn; T. Bridges; R. Cannon; S. Cole; M. Colless; C. Collins; W. Couch; G. Dalton; R. De Propris; S. P. Driver; G. Efstathiou; R. S. Ellis; C. S. Frenk; K. Glazebrook; C. Jackson; I. Lewis; S. Lumsden; S. Maddox; P. Norberg; J. A. Peacock; B. A. Peterson; W. Sutherland; K. Taylor

2002-02-06T23:59:59.000Z

491

The 2dF Galaxy Redshift Survey: the local E+A galaxy population  

E-Print Network [OSTI]

We select a sample of low-redshift (z ~ 0.1) E+A galaxies from the 2dF Galaxy Redshift Survey (2dFGRS). The spectra of these objects are defined by strong hydrogen Balmer absorption lines (H-delta, H-gamma, H-beta) combined with a lack of [OII] 3727A emission, together implying a recently-truncated burst of star formation. The E+A spectrum is thus a signpost to galaxies in the process of evolution. We quantify the local environments, clustering properties and luminosity function of the E+A galaxies. We find that the environments are consistent with the ensemble of 2dFGRS galaxies: low-redshift E+A systems are located predominantly in the field, existing as isolated objects or in poor groups. However, the luminosity distribution of galaxies selected using three Balmer absorption lines H-delta-gamma-beta appears more typical of ellipticals. Indeed, morphologically these galaxies are preferentially spheroidal (E/S0) systems. In a small but significant number we find evidence for recent major mergers, such as tidal tails. We infer that major mergers are one important formation mechanism for E+A galaxies, as suggested by previous studies. At low redshift the merger probability is high in the field and low in clusters, thus these recently-formed spheroidal systems do not follow the usual morphology-density relation for ellipticals. Regarding the selection of E+A galaxies: we find that basing the Balmer-line criterion solely on H-delta absorption leads to a significant sub-population of disk systems with detectable H-alpha emission. In these objects the [OII] emission is presumably either obscured by dust or present with a low signal-to-noise ratio, whilst the (H-gamma, H-beta) absorption features are subject to emission-filling.

Chris Blake; Michael Pracy; Warrick Couch; Kenji Bekki; Ian Lewis; Karl Glazebrook; Ivan Baldry; Carlton Baugh; Joss Bland-Hawthorn; Terry Bridges; Russell Cannon; Shaun Cole; Matthew Colless; Chris Collins; Gavin Dalton; Roberto De Propris; Simon Driver; George Efstathiou; Richard Ellis; Carlos Frenk; Carole Jackson; Ofer Lahav; Stuart Lumsden; Steve Maddox; Darren Madgwick; Peder Norberg; John Peacock; Bruce Peterson; Will Sutherland; Keith Taylor

2004-08-29T23:59:59.000Z

492

Magnetic helicity signature produced by cross-field 2D turbulence  

SciTech Connect (OSTI)

Hybrid numerical simulations of freely decaying 2D turbulence are presented. The background magnetic field is perpendicular to the simulation plane, which eliminates linear kinetic Alfven waves from the system. The normalized magnetic helicity of the initial large-scale fluctuations is zero, while the normalized cross-helicity is not. As the turbulence evolves, it develops nonzero magnetic helicity at smaller scales, in the proton kinetic range. In the quasi-steady state of evolution, the magnetic helicity spectrum has a peak consistent with the solar wind observations.

Markovskii, S. A.; Vasquez, Bernard J. [Space Science Center, Institute for the Study of Earth, Oceans, and Space, and Department of Physics, University of New Hampshire, Durham, NH 03824 (United States)

2013-06-13T23:59:59.000Z

493

Static vacancies on a 2D Heisenberg spin-1/2 antiferromagnet  

Science Journals Connector (OSTI)

We study static vacancies on a 2D Heisenberg spin-(1/2 lattice at T=0, using linear spin-wave theory (LSW) and exact diagonalizaton. Unexpectedly, quantum fluctuations are reduced on neighbors of an isolated vacancy. Two vacancies are attractive, with lowest energy as nearest neighbors. We find LSW to be surprisingly accurate relative to exact diagonalization, both done on a 4×4 lattice. However, LSW on larger systems gives substantial modification of the 4×4 results for binding and ground-state energies, suggesting the need for larger lattices than previously suspected for reliable numerical estimates.

N. Bulut; D. Hone; D. J. Scalapino; E. Y. Loh

1989-05-01T23:59:59.000Z

494

Thermometer for the 2D Electron Gas using 1D Thermopower  

Science Journals Connector (OSTI)

We measure the temperature of a 2D electron gas in GaAs from the thermopower of a one-dimensional ballistic constriction, using the Mott relation to confirm the calibration from the electrical conductance. Under hot electron conditions, this technique shows that the power loss by the electrons follows a T5 dependence in the Gruneisen-Bloch regime, as predicted for acoustic phonon emission with a screened piezoelectric interaction. An independent measurement using conventional thermometry based on Shubnikov–de Haas oscillations gives a T3 loss rate. We discuss reasons for this discrepancy.

N. J. Appleyard; J. T. Nicholls; M. Y. Simmons; W. R. Tribe; M. Pepper

1998-10-19T23:59:59.000Z

495

Weak localization of dilute 2D electrons in undoped GaAs heterostructures.  

SciTech Connect (OSTI)

The temperature dependence of the resistivity and magnetoresistance of dilute 2D electrons are reported. The temperature dependence of the resistivity can be qualitatively described through phonon and ionized impurity scattering. While the temperature dependence indicates no ln(T) increase in the resistance, a sharp negative magnetoresistance feature is observed at small magnetic fields. This is shown to arise from weak localization. At very low density, we believe weak localization is still present, but cannot separate it from other effects that cause magnetoresistance in the semi-classical regime.

Seamons, John Andrew; Lilly, Michael Patrick; Reno, John Louis; Bielejec, Edward Salvador

2004-07-01T23:59:59.000Z

496

Multipacting Simulation Study for 56 MHz Quarter Wave Resonator using 2D Code  

SciTech Connect (OSTI)

A beam excited 56 MHz Radio Frequency (RF) Niobium Quarter Wave Resonator (QWR) has been proposed to enhance RHIC beam luminosity and bunching. Being a RF cavity, multipacting is expected; therefore an extensive study was carried out with the Multipac 2.1 2D simulation code. The study revealed that multipacting occurs in various bands up to peak surface electric field 50 kV/m and is concentrated mostly above the beam gap and on the outer conductor. To suppress multipacting, a ripple structure was introduced to the outer conductor and the phenomenon was successfully eliminated from the cavity.

Naik,D.; Ben-Zvi, I.

2009-01-02T23:59:59.000Z

497

High-Resolution 2D NMR Spectroscopy of Bicelles To Measure the Membrane Interaction of Ligands  

Science Journals Connector (OSTI)

Since dipolar couplings correspond to local magnetic fields in the molecule, this class of experiments is referred to as separated local field (SLF) spectroscopy. ... There are several experimental protocols for SLF spectroscopy which differ in the details of the preparation and evolution periods, while in all cases the 13C signal is observed during the detection period t2 as it evolves under the 13C chemical shift interaction and in the presence of 1H decoupling. ... These results are directly transferable to 2D SLF studies of 15N nuclei, where they are typically applied for structural measurements on uniformly 15N labeled membrane proteins. ...

Sergey V. Dvinskikh; Ulrich H. N. Dürr; Kazutoshi Yamamoto; Ayyalusamy Ramamoorthy

2007-01-05T23:59:59.000Z

498

Magnetic helicity signature produced by cross-field 2D turbulence  

Science Journals Connector (OSTI)

Hybrid numerical simulations of freely decaying 2D turbulence are presented. The background magnetic field is perpendicular to the simulation plane which eliminates linear kinetic Alfvén waves from the system. The normalized magnetic helicity of the initial large-scale fluctuations is zero while the normalized cross-helicity is not. As the turbulence evolves it develops nonzero magnetic helicity at smaller scales in the proton kinetic range. In the quasi-steady state of evolution the magnetic helicity spectrum has a peak consistent with the solar wind observations.

2013-01-01T23:59:59.000Z

499

The Y(4140), X(4260), psi(2D), psi(4S) and tentative psi(3D)  

E-Print Network [OSTI]

Data on B+ --> J/psi phi K+ and the Y(4140) enhancement recently reported by the CDF collaboration [arxiv:0903.2229] are analysed. The threshold behaviour, as well as traces of the X(4260) enhancement, the known c-cbar resonances psi(2D), psi(4S), and a tentative psi(3D) state, as observed in the mass distribution, suggest that the J/psi+phi system has quantum numbers JPC=1--. It is then argued that the Y(4140) enhancement does not represent any kind of resonance, but instead is a natural consequence of the opening of the J/psi+phi channel.

Eef van Beveren; George Rupp

2009-06-12T23:59:59.000Z

500

2D Schrödinger Equation with Mixed Potential in Noncommutaive Complex space  

E-Print Network [OSTI]

We obtain exact solutions of the 2D Schr\\"odinger equation for Hydrogen atom with the lenear and Harmonic Potentials in noncommutative complex space, using the Power-series expansion method. Hence we can say that the Schr\\"odinger equation in noncommutative complex space describes to the particles with spin (1/2)in an external uniform magnitic field. Where the noncommutativity play the role of magnetic field with created the total magnetic moment of particle with spin 1/2, who in turn shifted the spectrum of energy. Such effects are similar to the Zeeman splitting in a commutative space.

Slimane Zaim; Hakim Guelmamene; Abdelkader Bahache

2014-10-01T23:59:59.000Z