Powered by Deep Web Technologies
Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Nanostructured composite reinforced material  

DOE Patents (OSTI)

A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

Seals, Roland D. (Oak Ridge, TN); Ripley, Edward B. (Knoxville, TN); Ludtka, Gerard M. (Oak Ridge, TN)

2012-07-31T23:59:59.000Z

2

Nanostructured Materials for Advanced  

E-Print Network (OSTI)

of electric vehicles (EVs) and hybrid electric vehicles (HEVs). High energy and high power densitiesT Nanostructured Materials for Advanced Li-Ion Rechargeable Batteries THE RECENT INCREASE IN demand

Cao, Guozhong

3

Nanostructured materials for hydrogen storage  

DOE Patents (OSTI)

A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

2007-12-04T23:59:59.000Z

4

Nanostructured Cobalt Ferrites, Multifunctional Materials  

Science Conference Proceedings (OSTI)

... perspective of combining many functionalities in future generations of remote switchable ... Graphene-like 2D-layered Materials for Nanoelectronics & Sensing

5

Preparation of Nanostructured Materials Having Improved Ductility  

NLE Websites -- All DOE Office Websites (Extended Search)

Preparation of Nanostructured Materials Having Improved Ductility Preparation of Nanostructured Materials Having Improved Ductility Preparation of Nanostructured Materials Having Improved Ductility A method for preparing a nanostructured aluminum alloy involves heating an aluminum alloy workpiece at temperature sufficient to produce a single phase coarse grained aluminum alloy. June 20, 2013 Preparation of Nanostructured Materials Having Improved Ductility A method for preparing a nanostructured aluminum alloy involves heating an aluminum alloy workpiece at temperature sufficient to produce a single phase coarse grained aluminum alloy. Available for thumbnail of Feynman Center for Innovation (505) 665-9090 Email Preparation of Nanostructured Materials Having Improved Ductility A method for preparing a nanostructured aluminum alloy involves heating an

6

Method of fabrication of anchored nanostructure materials  

SciTech Connect

Methods for fabricating anchored nanostructure materials are described. The methods include heating a nano-catalyst under a protective atmosphere to a temperature ranging from about 450.degree. C. to about 1500.degree. C. and contacting the heated nano-catalysts with an organic vapor to affix carbon nanostructures to the nano-catalysts and form the anchored nanostructure material.

Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

2013-11-26T23:59:59.000Z

7

Anchored nanostructure materials and method of fabrication  

Science Conference Proceedings (OSTI)

Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

2012-11-27T23:59:59.000Z

8

1 Beyond Graphene - Novel Nanosheets of 2D Crystalline Materials ...  

Science Conference Proceedings (OSTI)

that graphene, a 2D nanosheet form of carbon, can exist as a stable material and exceptional properties that are not observed in 3D or 1D form of carbon are ...

9

Nanostructured Materials: Symthesis in Supercritical Fluids  

Science Conference Proceedings (OSTI)

This chapter summarizes the recent developent of synthesis and characterization of nanostructured materials synthesized in supercritical fluids. Nanocomposite catalysts such as Pt and Pd on carbon nanotube support have been synthesized and used for fuel cell applications.

Lin, Yuehe; Ye, Xiangrong; Wai, Chien M.

2009-03-24T23:59:59.000Z

10

Chemical Transformations of Nanostructured Materials  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Solution-based Processing for Ceramic Materials. Presentation Title, Chemical ...

11

Nanostructured Multi-Phase Titanium Based Materials Consolidated ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Nanostructured multi-phase titanium based materials were produced by severe ... Electrolytic Infiltration of Laser Sintered Porous Preforms.

12

Thermal Energy Transport in Nanostructured Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Energy Transport in Nanostructured Materials Thermal Energy Transport in Nanostructured Materials Speaker(s): Ravi Prasher Date: August 25, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Ashok Gadgil World energy demand is expected to reach ~30 TW by 2050 from the current demand of ~13 TW. This requires substantial technological innovation. Thermal energy transport and conversion play a very significant role in more than 90% of energy technologies. All four modes of thermal energy transport, conduction, convection, radiation, and phase change (e.g. evaporation/boiling) are important in various energy technologies such as vapor compression power plants, refrigeration, internal combustion engines and building heating/cooling. Similarly thermal transport play a critical role in electronics cooling as the performance and reliability of

13

Nanostructure material for supercapacitor application  

Science Conference Proceedings (OSTI)

Transition metal nitrides and carbonitride materials were fabricated via sol-gel technology. The transition metal amides were synthesized by two methods: chemical route and electrolysis. The transition metal amides were then further polymerized, sintering to high temperature in an inert or reduced atmosphere. Transition metal nitrides and carbonitrides powders with surface area up to 160 m{sup 2}/g were obtained. The resultant electrode material showed high specific capacitance as crystalline ruthenium oxide.

Huang, Y.; Chu, C.T.; Wei, Q.; Zheng, H.

2000-07-01T23:59:59.000Z

14

Aerogel Derived Nanostructured Thermoelectric Materials  

Science Conference Proceedings (OSTI)

America’s dependence on foreign sources for fuel represents a economic and security threat for the country. These non renewable resources are depleting, and the effects of pollutants from fuels such as oil are reaching a problematic that affects the global community. Solar concentration power (SCP) production systems offer the opportunity to harness one of the United States’ most under utilized natural resources; sunlight. While commercialization of this technology is increasing, in order to become a significant source of electricity production in the United States the costs of deploying and operating SCP plants must be further reduced. Parabolic Trough SCP technologies are close to meeting energy production cost levels that would raise interest in the technology and help accelerate its adoption as a method to produce a significant portion of the Country’s electric power needs. During this program, Aspen Aerogels will develop a transparent aerogel insulation that can replace the costly vacuum insulation systems that are currently used in parabolic trough designs. During the Phase I program, Aspen Aerogels will optimize the optical and thermal properties of aerogel to meet the needs of this application. These properties will be tested, and the results will be used to model the performance of a parabolic trough HCE system which uses this novel material in place of vacuum. During the Phase II program, Aspen Aerogels will scale up this technology. Together with industry partners, Aspen Aerogels will build and test a prototype Heat Collection Element that is insulated with the novel transparent aerogel material. This new device will find use in parabolic trough SCP applications.

Wendell E Rhine, PI; Dong, Wenting; Greg Caggiano, PM

2010-10-08T23:59:59.000Z

15

How use nanostructured materials effectively in rechargeable lithium ...  

Science Conference Proceedings (OSTI)

Presentation Title, How use nanostructured materials effectively in rechargeable lithium/sulfur battery. Author(s), Sheng Shui Zhang. On-Site Speaker (Planned) ...

16

Nanostructured Materials for Lithium Ion Batteries and for ...  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... Nanostructured Materials for Lithium Ion Batteries and for ... to control capacity loss and enhance energy efficiency of lithium-ion batteries.

17

Synthesis of Nanostructured Materials Using Template-Assisted ...  

Science Conference Proceedings (OSTI)

... and energy storage.3,4 These nanostructured materials can be synthesized by a number of techniques, such as inert gas condensation, plasma processing, ...

18

Energy Challenge and Functional Design of Nanostructured Materials  

Science Conference Proceedings (OSTI)

Energy Challenge and Functional Design of Nanostructured Materials ... Optimization of VO2 Metal-to-insulator Transition Properties for THz Applications.

19

Final Technical Progress Report NANOSTRUCTURED MAGNETIC MATERIALS  

SciTech Connect

This report describes progress made during the final phase of our DOE-funded program on Nanostructured Magnetic Materials. This period was quite productive, resulting in the submission of three papers and presentation of three talks at international conferences and three seminars at research institutions. Our DOE-funded research efforts were directed toward studies of magnetism at surfaces and interfaces in high-quality, well-characterized materials prepared by Molecular Beam Epitaxy (MBE) and sputtering. We have an exceptionally well-equipped laboratory for these studies, with: Thin film preparation equipment; Characterization equipment; Equipment to study magnetic properties of surfaces and ultra-thin magnetic films and interfaces in multi-layers and superlattices.

Charles M. Falco

2012-09-13T23:59:59.000Z

20

Rheological and morphological characterization of hierarchically nanostructured materials  

E-Print Network (OSTI)

Hierarchically nanostructured materials exhibit order on multiple length scales, with at least one of a few nanometers. The expected enhancements for applications using these materials include improved mechanical, thermal ...

Wang, Benjamin Ning-Haw

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nanostructured Materials for Energy Generation and Storage  

E-Print Network (OSTI)

for Electrochemical Energy Storage Nanostructured Electrodesof Electrode Design for Energy Storage and Generation .batteries and their energy storage efficiency. vii Contents

Khan, Javed Miller

2012-01-01T23:59:59.000Z

22

Surfaces and Interfaces in Nanostructured Materials II  

Science Conference Proceedings (OSTI)

Nano-Structured Metals and Oxides. N-Implantation ... Nano-Scale Coatings for Surface Modification of Carbon Structures...........................................89. P.P. Joshi ...

23

Morphology Engineering of 1D, 2D and 3D TiO2 Nanostructures and ...  

Science Conference Proceedings (OSTI)

Design of Light Weight Structure for Wind Turbine Tower by Using Nano- Materials · Development of Highly Active Titania-Based Nanoparticles for Composite ...

24

PROPERTIES AND NANOSTRUCTURES OF MATERIALS PROCESSED BY SPD TECHNIQUES  

Science Conference Proceedings (OSTI)

Metallic materials usually exhibit higher strength but lower ductility after being plastically deformed by conventional techniques such as rolling, drawing and extrusion. In contrast, nanostructured metals and alloys processed by severe plastic deformation (SPD) have demonstrated both high strength and high ductility. This extraordinary mechanical behavior is attributed to the unique nanostructures generated by SPD processing. It demonstrates the possibility of tailoring the microstructures of metals and alloys by SPD to obtain superior mechanical properties. The SPD-generated nanostructures have many features related to deformation, including high dislocation densities, and high- and low-angle grain boundaries in equilibrium or non-equilibrium states. This paper reviews the mechanical properties and the defect structures of SPD-processed nanostructured materials. Keywords: strength, ductility, nanostructures, SPD, non-equilibrium grain boundary

Liao, Xiaoshan; Huang, J. (Jianyu); Zhu, Y. T. (Yuntian Theodore)

2001-01-01T23:59:59.000Z

25

Potential applications of nanostructured materials in nuclear waste management.  

Science Conference Proceedings (OSTI)

This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.

Braterman, Paul S. (The University of North Texas, Denton, TX); Phol, Phillip Isabio; Xu, Zhi-Ping (The University of North Texas, Denton, TX); Brinker, C. Jeffrey; Yang, Yi (University of New Mexico, Albuquerque, NM); Bryan, Charles R.; Yu, Kui; Xu, Huifang (University of New Mexico, Albuquerque, NM); Wang, Yifeng; Gao, Huizhen

2003-09-01T23:59:59.000Z

26

Nanostructured 3.9 V Triplite Cathode Materials for Li-Ion Batteries  

Science Conference Proceedings (OSTI)

Microstructural Evolution of SnS Thin Films Grown by Electrodeposition · Morphology Engineering of 1D, 2D and 3D TiO2 Nanostructures and Their Application ...

27

Nanostructured Functional Materials for Energy Conversion and ...  

Science Conference Proceedings (OSTI)

... V: Clean Coal-, Hydrogen Based-Technologies, Fuel Cells, and Materials for Energy Storage ... Deployment of New High Temperature Alloys for Power Generation Systems ... Materials Metrology for a Hydrogen Distribution Infrastructure.

28

Surfaces and Interfaces in Nanostructured Materials - TMS  

Science Conference Proceedings (OSTI)

Mar 1, 2004 ... Proceedings from the Global Innovations Symposium on Materials ... by the MPMD, provide description, insight, challenges, and projections for ...

29

Designing Nanostructured Hybrid Materials for Energy Storage ...  

Science Conference Proceedings (OSTI)

The resulting devices fabricated with low-cost materials through the scalable ... which can offer >5 times higher charge storage capacity than current technology.

30

Composite, nanostructured, super-hydrophobic material  

DOE Patents (OSTI)

A hydrophobic disordered composite material having a protrusive surface feature includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a protrusive surface feature, the protrusive feature being hydrophobic.

D' Urso, Brian R. (Clinton, TN); Simpson, John T. (Clinton, TN)

2007-08-21T23:59:59.000Z

31

Thermoelectric energy conversion using nanostructured materials  

E-Print Network (OSTI)

High performance thermoelectric materials in a wide range of temperatures are essential to broaden the application spectrum of thermoelectric devices. This paper presents experiments on the power and efficiency characteristics ...

Chen, Gang

32

High volume production of nanostructured materials  

DOE Patents (OSTI)

A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

Ripley, Edward B. (Knoxville, TN); Morrell, Jonathan S. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Ludtka, Gerard M. (Oak Ridge, TN)

2009-10-13T23:59:59.000Z

33

Accretion of low angular momentum material onto black holes: 2D hydrodynamical inviscid case  

E-Print Network (OSTI)

We report on the first phase of our study of slightly rotating accretion flows onto black holes. We consider inviscid accretion flows with a spherically symmetric density distribution at the outer boundary, but with spherical symmetry broken by the introduction of a small, latitude-dependent angular momentum. We study accretion flows by means of numerical 2D, axisymmetric, hydrodynamical simulations. Our main result is that the properties of the accretion flow do not depend as much on the outer boundary conditions (i.e., the amount as well as distribution of the angular momentum) as on the geometry of the non-accreting matter. The material that has too much angular momentum to be accreted forms a thick torus near the equator. Consequently, the geometry of the polar region, where material is accreted (the funnel), and the mass accretion rate through it are constrained by the size and shape of the torus. Our results show one way in which the mass accretion rate of slightly rotating gas can be significantly reduced compared to the accretion of non-rotating gas (i.e., the Bondi rate), and set the stage for calculations that will take into account the transport of angular momentum and energy.

D. Proga; M. C. Begelman

2002-08-28T23:59:59.000Z

34

Nanomanufacturing : nano-structured materials made layer-by-layer.  

Science Conference Proceedings (OSTI)

Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen; Tjiptowidjojo, Kristianto (University of New Mexico); Reedy, Earl David, Jr.; Fan, Hongyou; Schunk, Peter Randall; Chandross, Michael Evan; Roberts, Scott A.

2011-10-01T23:59:59.000Z

35

Graphene-like 2D-layered Materials for Nanoelectronics & Sensing ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Recently, layered 2D crystals similar to graphene have been ... the best graphene transistors at room temperature, with comparable mobilities.

36

High performance capacitors using nano-structure multilayer materials fabrication  

DOE Patents (OSTI)

A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

Barbee, Jr., Troy W. (Palo Alto, CA); Johnson, Gary W. (Livermore, CA); O' Brien, Dennis W. (Livermore, CA)

1995-01-01T23:59:59.000Z

37

High performance capacitors using nano-structure multilayer materials fabrication  

DOE Patents (OSTI)

A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

Barbee, Jr., Troy W. (Palo Alto, CA); Johnson, Gary W. (Livermore, CA); O' Brien, Dennis W. (Livermore, CA)

1996-01-01T23:59:59.000Z

38

High performance capacitors using nano-structure multilayer materials fabrication  

DOE Patents (OSTI)

A high performance capacitor is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The notepad capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

1995-05-09T23:59:59.000Z

39

High performance capacitors using nano-structure multilayer materials fabrication  

DOE Patents (OSTI)

A high performance capacitor is described which is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200--300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The ``notepad`` capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

1996-01-23T23:59:59.000Z

40

Hydrogen Storage Properties of Magnesium Base Nanostructured Composite Materials  

DOE Green Energy (OSTI)

In this work, nanostructured composite materials have been synthesized using the mechanical alloying process. The new materials produced have been investigated by X-ray diffraction (XRD), transition electron microscope (TEM), scanning electron microscope (SEM) and electron energy dispersion spectrum (EDS) for their phase compositions, crystal structure, grain size, particle morphology and the distribution of catalyst element. Hydrogen storage capacities and the hydriding-dehydriding kinetics of the new materials have been measured at different temperatures using a Sieverts apparatus. It is observed that mechanical alloying accelerates the hydrogenation kinetics of the magnesium based materials at low temperature, but a high temperature must be provided to release the absorbed hydrogen from the hydrided magnesium based materials. It is believed that the dehydriding temperature is largely controlled by the thermodynamic configuration of magnesium hydride. Doping Mg-Ni nano/amorphous composite materials with lanthanum reduces the hydriding and dehydriding temperature. Although the stability of MgH2 can not be easily reduced by ball milling alone, the results suggest the thermodynamic properties of Mg-Ni nano/amorphous composite materials can be alternated by additives such as La or other effective elements. Further investigation toward understanding the mechanism of additives will be rewarded.

AU, M

2004-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

First Industrial Nanostructured WC-Co Composite Materials  

Science Conference Proceedings (OSTI)

Morphological Forms of Phosphogypsum Depending on Modification Approaches in Using as Mineral Filler for Polymer Composites · Nanostructured ...

42

Chemical Functionalization of Nanostructured Materials Using Supercritical Reaction Media  

SciTech Connect

There exists a need for durable and thin functional coatings to utilize the afforded surface area of highly porous ceramic materials. Deposition of silane-based Self Assembled Monolayers (SAMs) has thus far been limited to maximum coverages of 4-5 molecules/nm2 and long processing times (up to 2 weeks), due to the restricted internal geometry of the substrates. Results are presented for SAMs deposited on high surface area silica from supercritical fluids (SCFs). The SAMs so produced display unprecedented coverages, high monolayer integrity, and extremely low surface defect density. Moreover, the depositions and subsequent removal of reaction byproducts are complete in a matter of minutes rather than days. Nuclear Magnetic Resonance (NMR) spectra of the surface modified silica are presented, demonstrating the SAM integrity and evolution over time. Sorption of aqueous metal ions is demonstrated, and results are given demonstrating the broad pH stability of the deposited SAMs. A chemical explanation for the enhanced deposition is posited, and the kinetics of mass transport into and out of the nanostructured spaces are discussed.Related experiments using zeolite substrates show deposition of thiol-terminated silanes to internal surfaces of 6? microporous material. After oxidation of the thiol functional group size selective chemistry was demonstrated using the produced catalyst, proving the efficacy of the supercritical reaction medium for installing functional coatings inside pores of similar diameters to the chain length of the deposited molecule[]. Comparisons are made between the response of the different substrates to the supercritical fluid-based processing, and remarks on the utility of SCF based processing of nanostructured materials are presented.

Zemanian, Thomas S.; Fryxell, Glen E.; Liu, Jun; Mattigod, Shas V.; Shin, Yongsoon; Franz, James A.; Ustyugov, Oleksiy A.; Nie, Zimin

2001-12-15T23:59:59.000Z

43

The Important Role of Nanostructure in Material and Electrode ...  

Science Conference Proceedings (OSTI)

3D Nanostructured Bicontinuous Electrodes: Path to Ultra-High Power and Energy ... High Energy Density Lithium Capacitors Using Carbon-Carbon Electrodes.

44

SPD-Processed Bulk Nanostructured Materials for Extreme ...  

Science Conference Proceedings (OSTI)

We consider several examples of producing nanostructured light alloys (Al and Ti ) and ... Fluorescent Nanoparticle Tracers for Oil Exploration and Production.

45

Nanostructured Materials for Lithium Ion Batteries and for ...  

Science Conference Proceedings (OSTI)

3D Nanostructured Bicontinuous Electrodes: Path to Ultra-High Power and Energy ... The Electrochemical Flow Capacitor for Efficient Grid-Scale Energy Storage.

46

Solution Phase Routes to Functional Nanostructured Materials for Energy Applications  

E-Print Network (OSTI)

a Low Band Gap Polymer and CdSe Nanostructures Exceeding 3%A. P. Shape Control of CdSe Nanocrystals. Nature, 2000, 404,Strongly Luminescing ZnS-Capped CdSe Nanocrystals. J. Phys.

Rauda, Iris Ester

2012-01-01T23:59:59.000Z

47

Workshop in Novel Emitters and Nanostructured Materials | U.S. DOE Office  

Office of Science (SC) Website

Workshop in Novel Emitters and Nanostructured Workshop in Novel Emitters and Nanostructured Materials Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications Contact BES Home 09.01.11 Workshop in Novel Emitters and Nanostructured Materials Print Text Size: A A A Subscribe FeedbackShare Page The Solid-State Lighting Science Energy Frontier Research Center (SSLS EFRC) is hosting a workshop in conjunction with CINT's Annual User Conference on September 14, 2011. The workshop covers topics on Novel Emitters and Light-Matter Interaction in Nanostructured Materials, and features a plenary talk by Lars Samuelson, Director of the Nanometer Structure Consortium at Lund University. Additional speakers include John Schlager, NIST; Silvija Gradecak, MIT;

48

Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk  

E-Print Network (OSTI)

Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk ion cathode materials for high capacity lithium-ion batteries. Owing to their inherently low electronic in these materials is also to unravel the factors governing ion and electron transport within the lattice. Lithium de

Ryan, Dominic

49

PROPERTIES AND NANOSTRUCTURES OF NANO-MATERIALS PROCESSED BY SEVERE PLASTIC DEFORMATION (SPD).  

Science Conference Proceedings (OSTI)

Metallic materials usually exhibit higher strength but lower ductility after being plastically deformed by conventional techniques such as rolling, drawing and extrusion. In contrast, nanostructured metals and alloys processed by severe plastic deformation (SPD) have demonstrated both high strength and high ductility. This extraordinary mechanical behavior is attributed to the unique nanostructures generated by SPD processing. The combination of ultrafine grain size and high-density dislocations appears to enable deformation by new mechanisms not active in coarse-grained metals and alloys. These results demonstrate the possibility of tailoring the microstructures of metals and alloys by SPD to obtain superior mechanical properties. Nanostructured metals and alloys processed by SPD techniques have unique nanostructures not observed in nanomaterials synthesized by other techniques such as the consolidation of nanopowders. The SPD-generated nanostructures have many features related to deformation, including high dislocation densities, and high- and low-angle grain boundaries in equilibrium or nonequilibrium states. Future studies are needed to investigate the deformation mechanisms that relate the unique nanostructures with the superior mechanical properties exhibited by SPD-processed metals and alloys.

Zhu, Y. T. (Yuntian Theodore)

2001-01-01T23:59:59.000Z

50

Post-doc position : Nanostructured materials for the realization of enhanced micro-supercapacitors  

E-Print Network (OSTI)

Post-doc position : Nanostructured materials for the realization of enhanced micro-supercapacitors and temperature range. The integration of low-profile, miniaturized supercapacitors could, CDC, CNT, RuO2...) for the development of micro-supercapacitors. An attractive

Ingrand, François

51

Sol-gel processing of nanostructured inorganic scintillating materials  

Science Conference Proceedings (OSTI)

The development of scintillating materials is believed to reach a new step by controlling their preparation on a nanometric level. Sol-Gel chemistry offers very unique tools for nanoscale mastering of the materials preparation. In particular, shaping ...

J. M. Nedelec

2007-01-01T23:59:59.000Z

52

An Experimental Study of Deformation and Fracture of a Nanostructured Metallic Material  

E-Print Network (OSTI)

The mechanical properties of materials strongly depend on their microstructure. Therefore, engineering the material's microstructure can lead to improving its mechanical properties. One method for enhancing the strength of metallic materials consists of refining the grain size down to the nanometer scale. Such nanostructured materials possess remarkable strength without using conventional metallurgical strengthening methods. However, this strength often comes at the expense of workhardening capacity, thus favoring flow localization and loss of ductility and toughness. The deformation behavior of nanostructured metallic materials has been extensively studied in the literature. However, little is known of their fracture behavior. In this study, the mechanical behavior of a nanostructured, nearly pure material is investigated in order to link processing conditions, microstructure, and fracture locus in stress space. With focus laid on BCC materials which can undergo a ductile-to-brittle transition, Interstitial- Free (IF) steel is chosen. The microstructure is refined using Severe Plastic Deformation (SPD) to achieve ultra-fine grain (UFG) materials with grain sizes in the range 100nm- 1 mu m. Equal Channel Angular Extrusion (ECAE) is used to obtain three types of UFG-IF steel microstructures by varying the extrusion rate and processing temperature. The deformation behavior is investigated for the three UFG materials using round smooth bars and is compared with the behavior of the as-received material. The damage behavior and the fracture mechanisms are studied using tensile round notched bars with varying notch radii. The findings indicate a remarkable combination of strength and notch ductility at room temperature, including for the material with the finest microstructure. They also point to the need for careful characterization of temperature effects before such materials can be considered in structural applications.

Abdel Al, Nisrin Rizek

2009-12-01T23:59:59.000Z

53

Method of producing catalytic materials for fabricating nanostructures  

DOE Patents (OSTI)

Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.

Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

2013-02-19T23:59:59.000Z

54

Advances in Nanostructured Materials and Applications: The 2011 ...  

Science Conference Proceedings (OSTI)

R. Singh (Clemson Univ); R N Singh (Univ. of Cincinnati); A.Tiwari (University of Utah); L. Vayssieres (National Institute for Materials Science International ...

55

CRYOGENIC ADSORPTION OF HYDROGEN ISOTOPES OVER NANO-STRUCTURED MATERIALS  

DOE Green Energy (OSTI)

Porous materials such as zeolites, activated carbon, silica gels, alumina and a number of industrial catalysts are compared and ranked for hydrogen and deuterium adsorption at liquid nitrogen temperature. All samples show higher D{sub 2} adsorption than that of H{sub 2}, in which a HY sample has the greatest isotopic effect while 13X has the highest hydrogen uptake capacity. Material's moisture content has significant impact to its hydrogen uptake. A material without adequate drying could result in complete loss of its adsorption capacity. Even though some materials present higher H{sub 2} adsorption capacity at full pressure, their adsorption at low vapor pressure may not be as good as others. Adsorption capacity in a dynamic system is much less than in a static system. A sharp desorption is also expected in case of temperature upset.

Xiao, S.; Heung, L.

2010-10-07T23:59:59.000Z

56

CRYOGENIC ADSORPTION OF HYDROGEN ISOTOPES OVER NANO-STRUCTURED MATERIALS  

SciTech Connect

Porous materials such as zeolites, activated carbon, silica gels, alumina and a number of industrial catalysts are compared and ranked for hydrogen and deuterium adsorption at liquid nitrogen temperature. All samples show higher D{sub 2} adsorption than that of H{sub 2}, in which a HY sample has the greatest isotopic effect while 13X has the highest hydrogen uptake capacity. Material's moisture content has significant impact to its hydrogen uptake. A material without adequate drying could result in complete loss of its adsorption capacity. Even though some materials present higher H{sub 2} adsorption capacity at full pressure, their adsorption at low vapor pressure may not be as good as others. Adsorption capacity in a dynamic system is much less than in a static system. A sharp desorption is also expected in case of temperature upset.

Xiao, S.; Heung, L.

2010-10-07T23:59:59.000Z

57

Theory and Simulation of Nanostructured Materials for Photovoltaic Applications  

Science Conference Proceedings (OSTI)

Quantum mechanical electronic structure calculations are playing an ever-expanding role in advancing nanotechnology as well as in advancing our understanding and design of new functional materials. Recent research utilizing quantum mechanical electronic ... Keywords: Quantum mechanical, optoelectronics, photovoltaics, solar cells, nanoscience and nanotechnology, electronic structure calculations

Yosuke Kanai; Jeffrey B. Neaton; Jeffrey C. Grossman

2010-03-01T23:59:59.000Z

58

Conversion of cellulose materials into nanostructured ceramics by biomineralization  

DOE Green Energy (OSTI)

Synthesis of hierarchically ordered silica materials having ordered wood cellular structures has been demonstrated through in-situ mineralization of wood by means of surfactant-directed mineralization in solutions of different pH. At low pH, silicic acid penetrates the buried interfaces of the wood cellular structure without clogging the pores to subsequently “molecularly paint” the interfaces thereby forming a positive replica following calcinations. At high pH, the hydrolyzed silica rapidly condenses to fill the open cells and pits within the structure resulting in a negative replica of the structure. Surfactant-templated mineralization in acid solutions leads to the formation of micelles that hexagonally pack at the wood interfaces preserving structural integrity while integrating hexagonally ordered nanoporosity into the structure of the cell walls following thermal treatment in air. The carbothermal reduction of mineralized wood with silica at high temperature produces biomorphic silicon carbide (SiC) materials, which are typical aggregations of ?-SiC nanoparticles. To understand the roles of each component (lignin, crystalline cellulose, amorphous cellulose) comprising the natural biotemplates in the transformation to SiC rods, three different cellulose precursors including unbleached and bleached pulp, and cellulose nanocrystals have been utilized. Lignin in unbleached pulp blocked homogeneous penetration of silica into the pores between cellulose fibers resulting in non-uniform SiC fibers containing thick silica layers. Bleached pulp produced uniform SiC rods with camelback structures (80nm in diameter; ~50?m in length), indicating that more silica infiltrates into the amorphous constituent of cellulose to form chunky rather than straight rod structures. The cellulose nanocrystal (CNXL) material produced clean and uniform SiC nanowires (70nm in diameter; >100?m in length) without the camelback structure.

Shin, Yongsoon; Exarhos, Gregory J.

2007-06-01T23:59:59.000Z

59

Methods for high volume production of nanostructured materials  

DOE Patents (OSTI)

A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

Ripley, Edward B. (Knoxville, TN); Morrell, Jonathan S. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Ludtka, Gerald M. (Oak Ridge, TN)

2011-03-22T23:59:59.000Z

60

Nanostructure multilayer dielectric materials for capacitors and insulators  

DOE Patents (OSTI)

A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO{sub 2}) and alumina (Al{sub 2}O{sub 3}). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO{sub 2}) and alumina (Al{sub 2}O{sub 3}) in alternating layers to form a nano-laminate. 1 fig.

Barbee, T.W. Jr.; Johnson, G.W.

1998-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Nanostructure multilayer dielectric materials for capacitors and insulators  

DOE Patents (OSTI)

A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3) in alternating layers to form a nano-laminate.

Barbee, Jr., Troy W. (Palo Alto, CA); Johnson, Gary W. (Livermore, CA)

1998-04-21T23:59:59.000Z

62

Nanostructured material for advanced energy storage : magnesium battery cathode development.  

SciTech Connect

Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

Sigmund, Wolfgang M. (University of Florida, Gainesville, FL); Woan, Karran V. (University of Florida, Gainesville, FL); Bell, Nelson Simmons

2010-11-01T23:59:59.000Z

63

Nanostructured material for advanced energy storage : magnesium battery cathode development.  

DOE Green Energy (OSTI)

Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

Sigmund, Wolfgang M. (University of Florida, Gainesville, FL); Woan, Karran V. (University of Florida, Gainesville, FL); Bell, Nelson Simmons

2010-11-01T23:59:59.000Z

64

Reactive Ballistic Deposition of Nanostructured Model Materials for Electrochemical Energy Conversion and Storage  

SciTech Connect

Finely structured, supported thin films offer a host of opportunities for fundamental and applied research. Nanostructured materials often exhibit physical properties which differ from their bulk counterparts due to the increased importance of the surface in determining the thermodynamics and behavior of the system. Thus, control of the characteristic size, porosity, morphology, and surface area presents opportunities to tailor new materials which are useful platforms for elucidating the fundamental processes related to energy conversion and storage. The ability to produce high purity materials with direct control of relevant film parameters such as porosity, film thickness, and film morphology is of immediate interest in the fields of electrochemistry, photocatalysis, and thermal catalysis. Studies of various photoactive materials have introduced questions concerning the effects of film architecture and surface structure on the performance of the materials, while recent work has demonstrated that nanostructured, mesoporous, or disordered materials often deform plastically, making them robust in applications where volumetric expansion and phase transformations occur, such as in materials for lithium-ion batteries. Moreover, renewed emphasis has been placed on the formation of semi-conductive electrodes with controlled pore-size and large surface areas for the study and application of pseudo-capacitance and cation insertion processes for electrical energy storage. Understanding how the performance of such materials depends on morphology, porosity, and surface structure and area requires a synthesis technique which provides for incremental variations in structure and facilitates assessment of the performance with the appropriate analytical tools, preferably those that provide both structural information and kinetic insight into photoelectrochemical processes.

Flaherty, David W.; Hahn, Nathan T.; May, Robert A.; Berglund, Sean P.; Lin, Yong-Mao; Stevenson, Keith J.; Dohnalek, Zdenek; Kay, Bruce D.; Mullins, C. Buddie

2012-03-20T23:59:59.000Z

65

Electrospray neutralization process and apparatus for generation of nano-aerosol and nano-structured materials  

DOE Patents (OSTI)

The claimed invention describes methods and apparatuses for manufacturing nano-aerosols and nano-structured materials based on the neutralization of charged electrosprayed products with oppositely charged electrosprayed products. Electrosprayed products include molecular ions, nano-clusters and nano-fibers. Nano-aerosols can be generated when neutralization occurs in the gas phase. Neutralization of electrospan nano-fibers with molecular ions and charged nano-clusters may result in the formation of fibrous aerosols or free nano-mats. Nano-mats can also be produced on a suitable substrate, forming efficient nano-filters.

Bailey, Charles L. (Cross Junction, VA); Morozov, Victor (Manassas, VA); Vsevolodov, Nikolai N. (Kensington, MD)

2010-08-17T23:59:59.000Z

66

Nanostructured Materials  

Science Conference Proceedings (OSTI)

Aug 5, 2013... 1University of California, Irvine; 2Boeing Research & Technology, ... whereas helium as well as heavy ion irradiation experiments were used ...

67

Nanostructured Materials  

Science Conference Proceedings (OSTI)

Oct 18, 2011... GE Global Research; Kevin Fox, Savannah River National Laboratory; ... David Forrest, Department of Energy; Aladar Csontos, U.S. Nuclear ...

68

Final Technical Summary: Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials  

DOE Green Energy (OSTI)

The core projects for this DOE-sponsored Center at Michigan Tech have focused on several of the materials problems identified by the NAS. These include: new electrode materials, enhanced PEM materials, lighter and more effective bipolar plates, and improvement of the carbon used as a current carrier. This project involved fundamental and applied research in the development and testing of lightweight and nanostructured materials to be used in fuel cell applications and for chemical synthesis. The advent of new classes of materials engineered at the nanometer level can produce materials that are lightweight and have unique physical and chemical properties. The grant was used to obtain and improve the equipment infrastructure to support this research and also served to fund seven research projects. These included: 1. Development of lightweight, thermally conductive bipolar plates for improved thermal management in fuel cells; 2. Exploration of pseudomorphic nanoscale overlayer bimetallic catalysts for fuel cells; 3. Development of hybrid inorganic/organic polymer nanocomposites with improved ionic and electronic properties; 4. Development of oriented polymeric materials for membrane applications; 5. Preparation of a graphitic carbon foam current collectors; 6. The development of lightweight carbon electrodes using graphitic carbon foams for battery and fuel cell applications; and 7. Movement of water in fuel cell electrodes.

Michael Mullins, Tony Rogers, Julia King, Jason Keith, Bahne Cornilsen, Jeffrey Allen, Ryan Gilbert, Joseph Holles.

2010-09-28T23:59:59.000Z

69

Molecular Level Assessment of Thermal Transport and Thermoelectricity in Materials: From Bulk Alloys to Nanostructures  

E-Print Network (OSTI)

The ability to manipulate material response to dynamical processes depends on the extent of understanding of transport properties and their variation with chemical and structural features in materials. In this perspective, current work focuses on the thermal and electronic transport behavior of technologically important bulk and nanomaterials. Strontium titanate is a potential thermoelectric material due to its large Seebeck coefficient. Here, first principles electronic band structure and Boltzmann transport calculations are employed in studying the thermoelectric properties of this material in doped and deformed states. The calculations verified that excessive carrier concentrations are needed for this material to be used in thermoelectric applications. Carbon- and boron nitride-based nanomaterials also offer new opportunities in many applications from thermoelectrics to fast heat removers. For these materials, molecular dynamics calculations are used to evaluate lattice thermal transport. To do this, first, an energy moment term is reformulated for periodic boundary conditions and tested to calculate thermal conductivity from Einstein relation in various systems. The influences of the structural details (size, dimensionality) and defects (vacancies, Stone-Wales defects, edge roughness, isotopic disorder) on the thermal conductivity of C and BN nanostructures are explored. It is observed that single vacancies scatter phonons stronger than other type of defects due to unsatisfied bonds in their structure. In pristine states, BN nanostructures have 4-6 times lower thermal conductivity compared to C counterparts. The reason of this observation is investigated on the basis of phonon group velocities, life times and heat capacities. The calculations show that both phonon group velocities and life times are smaller in BN systems. Quantum corrections are also discussed for these classical simulations. The chemical and structural diversity that could be attained by mixing hexagonal boron nitride and graphene provide further avenues for tuning thermal and electronic properties. In this work, the thermal conductivity of hybrid graphene/hexagonal-BN structures: stripe superlattices and BN (graphene) dots embedded in graphene (BN) are studied. The largest reduction in thermal conductivity is observed at 50% chemical mixture in dot superlattices. The dot radius appears to have little effect on the magnitude of reduction around large concentrations while smaller dots are more influential at dilute systems.

Kinaci, Alper

2013-05-01T23:59:59.000Z

70

Novel Design of Nanostructured Si Anode on Nanohair Array ...  

Science Conference Proceedings (OSTI)

Symposium, Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors. Presentation Title, Novel Design of Nanostructured Si Anode on  ...

71

Direct-Write of Silicon and Germanium Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanostructures Print Nanostructured materials (nanowires, nanotubes, nanoclusters, graphene) are attractive possible alternatives to traditionally microfabricated silicon in...

72

Surface Anchoring of Nematic Phase on Carbon Nanotubes: Nanostructure of Ultra-High Temperature Materials  

Science Conference Proceedings (OSTI)

Nuclear energy is a dependable and economical source of electricity. Because fuel supply sources are available domestically, nuclear energy can be a strong domestic industry that can reduce dependence on foreign energy sources. Commercial nuclear power plants have extensive security measures to protect the facility from intruders [1]. However, additional research efforts are needed to increase the inherent process safety of nuclear energy plants to protect the public in the event of a reactor malfunction. The next generation nuclear plant (NGNP) is envisioned to utilize a very high temperature reactor (VHTR) design with an operating temperature of 650-1000�°C [2]. One of the most important safety design requirements for this reactor is that it must be inherently safe, i.e., the reactor must shut down safely in the event that the coolant flow is interrupted [2]. This next-generation Gen IV reactor must operate in an inherently safe mode where the off-normal temperatures may reach 1500�°C due to coolant-flow interruption. Metallic alloys used currently in reactor internals will melt at such temperatures. Structural materials that will not melt at such ultra-high temperatures are carbon/graphtic fibers and carbon-matrix composites. Graphite does not have a measurable melting point; it is known to sublime starting about 3300�°C. However, neutron radiation-damage effects on carbon fibers are poorly understood. Therefore, the goal of this project is to obtain a fundamental understanding of the role of nanotexture on the properties of resulting carbon fibers and their neutron-damage characteristics. Although polygranular graphite has been used in nuclear environment for almost fifty years, it is not suitable for structural applications because it do not possess adequate strength, stiffness, or toughness that is required of structural components such as reaction control-rods, upper plenum shroud, and lower core-support plate [2,3]. For structural purposes, composites consisting of strong carbon fibers embedded in a carbon matrix are needed. Such carbon/carbon (C/C) composites have been used in aerospace industry to produce missile nose cones, space shuttle leading edge, and aircraft brake-pads. However, radiation-tolerance of such materials is not adequately known because only limited radiation studies have been performed on C/C composites, which suggest that pitch-based carbon fibers have better dimensional stability than that of polyacrylonitrile (PAN) based fibers [4]. The thermodynamically-stable state of graphitic crystalline packing of carbon atoms derived from mesophase pitch leads to a greater stability during neutron irradiation [5]. The specific objectives of this project were: (i) to generating novel carbonaceous nanostructures, (ii) measure extent of graphitic crystallinity and the extent of anisotropy, and (iii) collaborate with the Carbon Materials group at Oak Ridge National Lab to have neutron irradiation studies and post-irradiation examinations conducted on the carbon fibers produced in this research project.

Ogale, Amod A

2012-04-27T23:59:59.000Z

73

Nanostructured Coatings for Improved Erosion Resistance of Valve Stem Materials – 2013 Field Test Trials Update  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute- (EPRI-) developed nanostructured coatings (nanocoatings), deposited by plasma- enhanced magnetron sputtering, show great promise for improved erosion and wear resistance in many power plant applications. EPRI laboratory research in 2010 developed the processing to apply these coatings over nitrided/malcomized (hardened) steam turbine valve stems, which is described in EPRI report 1019796, Application of Nanocoatings for Erosion Protection of Valve ...

2013-12-20T23:59:59.000Z

74

Micro- and Nano-Structures of I-III-VI 2 -Based Materials Prepared ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2011. Symposium, Controlled Synthesis, Processing and Applications of Structural and Functional ...

75

Nanostructured thin film thermoelectric composite materials using conductive polymer PEDOT:PSS  

E-Print Network (OSTI)

Thermoelectric materials have the ability to convert heat directly into electricity. This clean energy technology has advantages over other renewable technologies in that it requires no sunlight, has no moving parts, and ...

Kuryak, Chris A. (Chris Adam)

2013-01-01T23:59:59.000Z

76

Incorporation of Novel Nanostructured Materials into Solar Cells and Nanoelectronic Devices  

DOE Green Energy (OSTI)

Each of the investigators on this project has had significant accomplishments toward the production of semiconductor nanoparticles, particles, and thin films and attempts to incorporate these materials into photovoltaics or sensors; to use them for improving fluorescence diagnostics; or to employ them as cancer fighting agents. The synthesis and characterization of the nanomaterials, and more recently the device construction and testing of these materials, have been the subject of several publications and presentations by team members. During the course of the investigations, several students were fully involved as part of their graduate and undergraduate training. The nature of these projects in material development dictates that the students have gained significant experience in a diverse array of material-related topics.

Rodriguez, Rene; Pak, Joshua; Holland, Andrew; Hunt, Alan; Bitterwolf, Thomas; Qiang, You; Bergman, Leah; Berven, Christine; Punnoose, Alex; Tenne, Dmitri

2011-11-11T23:59:59.000Z

77

High performance Na-doped PbTe-PbS thermoelectric materials: electronic density of states modification and shaped-controlled nanostructures.  

SciTech Connect

Thermoelectric heat-to-power generation is an attractive option for robust and environmentally friendly renewable energy production. Historically, the performance of thermoelectric materials has been limited by low efficiencies, related to the thermoelectric figure-of-merit ZT. Nanostructuring thermoelectric materials have shown to enhance ZT primarily via increasing phonon scattering, beneficially reducing lattice thermal conductivity. Conversely, density-of-states (DOS) engineering has also enhanced electronic transport properties. However, successfully joining the two approaches has proved elusive. Herein, we report a thermoelectric materials system whereby we can control both nanostructure formations to effectively reduce thermal conductivity, while concurrently modifying the electronic structure to significantly enhance thermoelectric power factor. We report that the thermoelectric system PbTe-PbS 12% doped with 2% Na produces shape-controlled cubic PbS nanostructures, which help reduce lattice thermal conductivity, while altering the solubility of PbS within the PbTe matrix beneficially modifies the DOS that allow for enhancements in thermoelectric power factor. These concomitant and synergistic effects result in a maximum ZT for 2% Na-doped PbTe-PbS 12% of 1.8 at 800 K.

Girard, S. N.; He, J.; Zhou, X.; Shoemaker, D.; Jaworski, C. M.; Uher, C.; Dravid, V. P.; Heremans, J. P.; Kanatzidis, M. G. (Materials Science Division); (Northwestern Univ.); (Univ. Michigan-Ann Arbor); (Ohio State Univ.)

2011-01-01T23:59:59.000Z

78

Multiscale Studies of the Formation and Stability of Surface-based Nanostructures, DOE Computational Materials Science Network - Final Report  

SciTech Connect

Summary of work performed under DOE-CMSN/FG0205ER46227, Multiscale Studies of the Formation and Stability of Surface-based Nanostructures, listing publications, collaborations, and presentations.

Einstein, Theodore L.

2011-10-31T23:59:59.000Z

79

Optimizing the Binding Energy of Hydrogen on Nanostructured Carbon Materials through Structure Control and Chemical Doping  

DOE Green Energy (OSTI)

The second phase of the project involved developing a low-cost and scalable approach for the synthesis of microporous carbon materials with well-controlled pore sizes that would be suitable for hydrogen storage. The team studied several approaches, including the use of different zeolites as a template, the use of organic micelle structures as a template, and the slow oxidation of polymer precursors. Among them, the slow activation of Polyether ether ketone (PEEK) under either CO2 environment or H2O vapor produced microporous carbon with an average pore size of less than 2 nm. Initial testing at 77K at both NREL and the California Institute of Technology (CalTech) showed that these materials can store ~5.1 wt% hydrogen (excess) at 40 bar and 77K. The main feature to note with this material is that while the excess gravimetric capacities (>5 wt% at 77K) and specific surface areas (>3100 m2/g) are similar to AX-21 and other “super activated” commercial carbon sorbents at the same temperatures and pressures, due to the smaller pore sizes, bulk densities greater than 0.7 g/ml can be achieved, enabling excess volumetric capacities greater than 35 g/L; more than double that of AX-21.

Jie Liu

2011-02-01T23:59:59.000Z

80

Vanadium oxide based nanostructured materials for catalytic oxidative dehydrogenation of propane : effect of heterometallic centers on the catalyst performance.  

Science Conference Proceedings (OSTI)

Catalytic properties of a series of new class of catalysts materials-[Co{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42} (XO{sub 4})].24H{sub 2}O (VNM-Co), [Fe{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(XO{sub 4})].24H{sub 2}O (VNM-Fe) (X = V, S) and [H{sub 6}Mn{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(VO{sub 4})].30H{sub 2}O for the oxidative dehydrogenation of propane is studied. The open-framework nanostructures in these novel materials consist of three-dimensional arrays of {l_brace}V{sub 18}O{sub 42}(XO{sub 4}){r_brace} (X = V, S) clusters interconnected by {l_brace}-O-M-O-{r_brace} (M = Mn, Fe, Co) linkers. The effect of change in the heterometallic center M (M = Mn, Co, Fe) of the linkers on the catalyst performance was studied. The catalyst material with Co in the linker showed the best performance in terms of propane conversion and selectivity at 350 C. The material containing Fe was most active but least selective and Mn containing catalyst was least active. The catalysts were characterized by Temperature Programmed Reduction (TPR), BET surface area measurement, Diffuse Reflectance Infrared Fourier Transform Spectroscopy, and X-ray Absorption Spectroscopy. TPR results show that all three catalysts are easily reducible and therefore are active at relatively low temperature. In situ X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure spectroscopy (EXAFS) studies revealed that the oxidation state of Co(II) remained unchanged up to 425 C (even after pretreatment). The reduction of Co(II) into metallic form starts at 425 C and this process is completed at 600 C.

Khan, M. I.; Deb, S.; Aydemir, K.; Alwarthan, A. A.; Chattopadhyay, S.; Miller, J. T.; Marshall, C. L. (Chemical Sciences and Engineering Division); (Illinois Inst. of Tech.); (King Saud Univ.)

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Nanostructured Materials Meetings  

Science Conference Proceedings (OSTI)

... January 22-27, 2011 Various Symposia on Nanomaterials, SPIE Photonics West Conference, The Moscone Center, San Francisco, California ...

2012-10-01T23:59:59.000Z

82

Nanostructured Metal Oxide Anodes (Presentation)  

DOE Green Energy (OSTI)

This summarizes NREL's FY09 battery materials research activity in developing metal oxide nanostructured anodes to enable high-energy, durable and affordable li-ion batteries for HEVs and PHEVs.

Dillon, A. C.; Riley, L. A.; Lee, S.-H.; Kim, Y.-H.; Ban, C.; Gillaspie, D. T.; Pesaran, A.

2009-05-01T23:59:59.000Z

83

Nanostructured Metal Oxide Anodes (Presentation)  

SciTech Connect

This summarizes NREL's FY09 battery materials research activity in developing metal oxide nanostructured anodes to enable high-energy, durable and affordable li-ion batteries for HEVs and PHEVs.

Dillon, A. C.; Riley, L. A.; Lee, S.-H.; Kim, Y.-H.; Ban, C.; Gillaspie, D. T.; Pesaran, A.

2009-05-01T23:59:59.000Z

84

Synthesis of Nanostructured TiO2 /Carbon Nanotube Heterojunction ...  

Science Conference Proceedings (OSTI)

Microstructural Evolution of SnS Thin Films Grown by Electrodeposition · Morphology Engineering of 1D, 2D and 3D TiO2 Nanostructures and Their Application ...

85

NANOSTRUCTURE PATTERNING UNDER ENERGETIC PARTICLE BEAM IRRADIATION  

SciTech Connect

Energetic ion bombardment can lead to the development of complex and diverse nanostructures on or beneath the material surface through induced self-organization processes. These self-organized structures have received particular interest recently as promising candidates as simple, inexpensive, and large area patterns, whose optical, electronic and magnetic properties are different from those in the bulk materials [1-5]. Compared to the low mass efficiency production rate of lithographic methods, these self-organized approaches display new routes for the fabrication of nanostructures over large areas in a short processing time at the nanoscale, beyond the limits of lithography [1,4]. Although it is believed that surface nanostructure formation is based on the morphological instability of the sputtered surface, driven by a kinetic balance between roughening and smoothing actions [6,7], the fundamental mechanisms and experimental conditions for the formation of these nanostructures has still not been well established, the formation of the 3-D naopatterns beneath the irradiated surface especially needs more exploration. During the last funding period, we have focused our efforts on irradiation-induced nanostructures in a broad range of materials. These structures have been studied primarily through in situ electron microscopy during electron or ion irradiation. In particular, we have performed studies on 3-D void/bubble lattices (in metals and CaF2), embedded sponge-like porous structure with uniform nanofibers in irradiated semiconductors (Ge, GaSb, and InSb), 2-D highly ordered pattern of nanodroplets (on the surface of GaAs), hexagonally ordered nanoholes (on the surface of Ge), and 1-D highly ordered ripple and periodic arrays (of Cu nanoparticles) [3,8-11]. The amazing common feature in those nanopatterns is the uniformity of the size of nanoelements (nanoripples, nanodots, nanovoids or nanofibers) and the distance separating them. Our research focuses on the understanding of fundamental scientific basis for the irradiation-induced self-organization processes. The fundamental physical mechanisms underlying ordered pattern formation, which include defect production and migration, ion sputtering, redeposition, viscous flow and diffusion, are investigated through a combination of modeling and in situ and ex-situ observations [3,9,11]. In addition, these nanostructured materials exhibit considerable improvement of optical properties [9,12,13]. For example, patterned Ge with a hexagonally ordered, honeycomb-like structure of nanoscale holes possesses a high surface area and a considerably blue-shifted energy gap [9], and oxidation of ordered Ga droplets shows noticeable enhancement of optical transmission [12]. This research has addressed nanopattern formation in a variety of materials under ion bombardment and provided a fundamental understanding of the dynamic mechanisms involved. In addition, have also stared to systematically investigate pattern formation under ion irradiation for more systems with varied experimental conditions and computation, including the collaboration with Dr. Veena Tikare of Sandia National Laboratory with a hybrid computation method at the ending this grant. A more detailed relationship between nanostructure formation and experimental conditions will be revealed with our continued efforts.

Wang, Lumin [Regents of the University of Michigan; Lu, Wei [Regents of the University of Michigan

2013-01-31T23:59:59.000Z

86

ARM - Datastreams - sonicwind2d  

NLE Websites -- All DOE Office Websites (Extended Search)

Datastreamssonicwind2d Datastreamssonicwind2d Documentation Data Quality Plots ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Datastream : SONICWIND2D Horizontal wind speed and direction from ultrasonic wind sensor (Vaisala WS425), 2m above ground on Barrow MET tower Active Dates 2003.10.31 - 2008.09.16 Measurement Categories Atmospheric State Originating Instrument ultrasonic wind sensor (SONICWIND) Measurements Only measurements considered scientifically relevant are shown below by default. Show all measurements Measurement Units Variable Horizontal wind Wind direction vector mean deg SonicWD_DU_WVT ( time ) Wind direction vector mean standard deviation deg SonicWD_SDU_WVT ( time ) Horizontal wind Wind speed arithmetic mean m/s SonicWS_S_WVT ( time )

87

(Nanowires), 2-D - Programmaster.org  

Science Conference Proceedings (OSTI)

Approaching Multimaterial 3D Nanostructured Gas Phase Nanoxerographic Printers · Carbon Nanotube Coatings Laser Power and Energy Measurements.

88

CHEM2D. 2-D, 3-Phase Chemical Flood Simulator  

Science Conference Proceedings (OSTI)

CHEM2D is a two-dimensional, three-phase, nine component, finite difference chemical flood simulator. It can model primary depletion, waterfloods, polymer floods, and micellar/polymer floods using heterogeneous one or two-dimensional (areal or cross-sectional) reservoir descriptions. This includes the ability to model primary depletion and waterflooding of an undersaturated oil reservoir and a polymer flood in which gels are injected with polymer or cross-linking chemicals are injected. One injection well and up to four production wells are available. The user may specify well performance as either rate or pressure constrained, and both a constant time-step size and a variable time-step size based on extrapolation of concentration changes are available as options. The major physical phenomena modeled in CHEM2D are: adsorption, capillary pressure, capillary trapping, cation exchange, dilution, dispersion, interfacial tension, binary and ternary phase behavior, relative permeability, specific densities, and polymer properties (inaccessible pore volume, non-Newtonian viscosity and shear thinning, and permeability reduction). Components include water, oil, surfactant, polymer, total nonsorbing anions, calcium, alcohol, calcium-surfactant complex, and sodium. Components may partition amongst the aqueous, oleic, and microemulsion phases. An auxiliary program, PHASE, is included to provide the CHEM2D user with a tool for looking directly at the phase behavior of a system. PHASE is the phase behavior calculation of CHEM2D coupled with a driving program for generating ternary phase behavior input data and for writing out tabular results. It can be used to compute phase concentrations and saturations as a function of effective salinity and total component concentrations and phase saturations (relative volumes) as a function of effective salinity for a fixed set of total component concentrations.

Burtch, F.W. [USDOE Bartlesville Energy Technology Center, OK (United States)

1984-02-01T23:59:59.000Z

89

Novel photonic phenomena in nanostructured material systems with applications and mid-range efficient insensitive wireless energy-transfer  

E-Print Network (OSTI)

A set of novel mechanisms for the manipulation of light in the nanoscale is provided. In the class of all-dielectric material systems, techniques for the suppression of radiative loss from incomplete-photonic-bandgap ...

Karalis, Aristeidis, 1978-

2008-01-01T23:59:59.000Z

90

Mechanical Behavior of Indium Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Mechanical Behavior of Indium Nanostructures Print Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of Waterloo, California Institute of Technology, and Los Alamos National Laboratory have collaborated with a team at ALS Beamline 12.3.2 to investigate the small-scale mechanics of indium nanostructures. Scanning x-ray microdiffraction (μSXRD) studies revealed that the indium microstructure is typical of a well-annealed metal, containing very few initial dislocations and showing close-to-theoretical strength.

91

Mechanical Behavior of Indium Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Mechanical Behavior of Indium Nanostructures Print Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of Waterloo, California Institute of Technology, and Los Alamos National Laboratory have collaborated with a team at ALS Beamline 12.3.2 to investigate the small-scale mechanics of indium nanostructures. Scanning x-ray microdiffraction (μSXRD) studies revealed that the indium microstructure is typical of a well-annealed metal, containing very few initial dislocations and showing close-to-theoretical strength.

92

Mechanical Behavior of Indium Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Mechanical Behavior of Indium Nanostructures Print Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended ductility, and high electrical conductivity. With the size of electronic devices continuing to shrink and the promise of indium-based nanotechnologies, it is important to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of Waterloo, California Institute of Technology, and Los Alamos National Laboratory have collaborated with a team at ALS Beamline 12.3.2 to investigate the small-scale mechanics of indium nanostructures. Scanning x-ray microdiffraction (μSXRD) studies revealed that the indium microstructure is typical of a well-annealed metal, containing very few initial dislocations and showing close-to-theoretical strength.

93

Direct-Write of Silicon and Germanium Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

29 June 2011 00:00 Nanostructured materials (nanowires, nanotubes, nanoclusters, graphene) are attractive possible alternatives to traditionally microfabricated silicon in...

94

Two-dimensional polymer synthesis : towards a two-dimensional replicating system for nanostructures  

E-Print Network (OSTI)

The general concept of a replicating monolayer system is introduced as a new method of nanostructure synthesis. One possible implementation of a 2-D replicating system is pursued which uses a diacetylene moiety for ...

Mosley, David W

2005-01-01T23:59:59.000Z

95

Nanostructures, magnetic semiconductors and spintronics  

Science Conference Proceedings (OSTI)

The aim of this paper is to give a brief overview of recent advances in the area of semiconductor nanomaterials, which represent extremely promising applications for materials with the spin-polarized transport of the charge carriers. It is shown on the ... Keywords: Magnetic properties, Nanostructure, Semiconductor, Spin-polarized transport, Spintronics

Paata Kervalishvili; Alexander Lagutin

2008-08-01T23:59:59.000Z

96

Interfacing nanostructures to biological cells  

DOE Patents (OSTI)

Disclosed herein are methods and materials by which nanostructures such as carbon nanotubes, nanorods, etc. are bound to lectins and/or polysaccharides and prepared for administration to cells. Also disclosed are complexes comprising glycosylated nanostructures, which bind selectively to cells expressing glycosylated surface molecules recognized by the lectin. Exemplified is a complex comprising a carbon nanotube functionalized with a lipid-like alkane, linked to a polymer bearing repeated .alpha.-N-acetylgalactosamine sugar groups. This complex is shown to selectively adhere to the surface of living cells, without toxicity. In the exemplified embodiment, adherence is mediated by a multivalent lectin, which binds both to the cells and the .alpha.-N-acetylgalactosamine groups on the nanostructure.

Chen, Xing; Bertozzi, Carolyn R.; Zettl, Alexander K.

2012-09-04T23:59:59.000Z

97

AnisWave2D: User's Guide to the 2d Anisotropic Finite-DifferenceCode  

Science Conference Proceedings (OSTI)

This document describes a parallel finite-difference code for modeling wave propagation in 2D, fully anisotropic materials. The code utilizes a mesh refinement scheme to improve computational efficiency. Mesh refinement allows the grid spacing to be tailored to the velocity model, so that fine grid spacing can be used in low velocity zones where the seismic wavelength is short, and coarse grid spacing can be used in zones with higher material velocities. Over-sampling of the seismic wavefield in high velocity zones is therefore avoided. The code has been implemented to run in parallel over multiple processors and allows large-scale models and models with large velocity contrasts to be simulated with ease.

Toomey, Aoife

2005-01-06T23:59:59.000Z

98

Novel Ferroelectric Nanostructures for Nanoelectronic Devices  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientific Highlight 31 March 2008 Novel Ferroelectric Nanostructures for Nanoelectronic Devices New approaches to the fabrication of ferroelectric nanostructures onto substrates are critical for the development of competitive functional devices that successfully integrate at nanoscale ferroelectrics as alternative materials in the microelectronic industry. These approaches have to meet reliability and utilization requirements to realize a cost-effective production of an increasing demand for ultra-high-density memories or nanometric electromechanical systems. An important challenge in the fabrication of ferroelectric nanomaterials supported onto substrates is the ability to fabricate an organized arrangement of the nanostructures. This is a key point for the applications of ferroelectrics in nanoelectronic devices.

99

Ceramic nanostructures and methods of fabrication  

DOE Patents (OSTI)

Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

Ripley, Edward B. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Morrell, Jonathan S. (Knoxville, TN)

2009-11-24T23:59:59.000Z

100

Redshift Surveys with 2dF  

E-Print Network (OSTI)

We report on the 2dF Galaxy and QSO Redshift Surveys now in progress with the Two Degree Field facility at the Anglo-Australian Observatory. We describe the 2dF instrumentation, outline the scientific aims of the surveys and their current status, and present some initial results.

Matthew Colless; Brian Boyle

1997-10-24T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

MHL 2D Wind/Wave | Open Energy Information  

Open Energy Info (EERE)

MHL 2D Wind/Wave MHL 2D Wind/Wave Jump to: navigation, search Basic Specifications Facility Name MHL 2D Wind/Wave Overseeing Organization University of Michigan Hydrodynamics Hydrodynamic Testing Facility Type Tunnel Length(m) 35.1 Beam(m) 0.7 Depth(m) 1.2 Cost(per day) $2000 (+ Labor/Materials) Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities Yes Maximum Wave Height(m) 0.2 Wave Period Range(s) 0.0 Current Velocity Range(m/s) 0.0 Programmable Wavemaking Yes Wavemaking Description Regular and irregular wave spectrum Wave Direction Uni-Directional Simulated Beach Yes Description of Beach Removable beach Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Recirculating No Wind Capabilities Wind Capabilities Yes Wind Velocity Range(m/s) 20.4

102

Electrospark Welding of Nanostructured Materials  

Science Conference Proceedings (OSTI)

Abstract Scope, Nanomaterials possess a microstructural length scale in at least ... and Microstructure of Tandem Submerged Arc Welded X80 Pipeline Steel.

103

Nanostructured Materials Programs and Projects  

Science Conference Proceedings (OSTI)

... Microscopy of Carbon Nanotube Composites Last Updated Date: 07/01/2013 Carbon nanomaterials such as carbon nanotubes (CNTs) and ...

2010-05-24T23:59:59.000Z

104

Performance Enhanced Nanostructured Thermoelectric Materials ...  

Science Conference Proceedings (OSTI)

... for applications in solar energy conversion and waste heat conversion. ... Bond Networks, Conduction Channels, and More: Diamond-like Compounds as a ...

105

Amorphous and Nanostructured Magnetocaloric Materials  

Science Conference Proceedings (OSTI)

Mar 2, 2011 ... Magnetocaloric Studies in Binary Gd-X (X = B, Ga, & Mn) Alloys: Tanjore Jayaraman1; Laura Langemeier1; Mark Koten1; Jeffrey Shield1; ...

106

Nanostructured Materials for Magnetic Refrigeration  

Science Conference Proceedings (OSTI)

... of Nd-Fe-B Magnets to the Megawatt Scale Generator for the Wind Turbine ... Low Loss, High Power Density Magnetics in Inductor/Transformer Cores for Army  ...

107

Lattice Heat Capacity of Mesoscopic Nanostructures  

E-Print Network (OSTI)

We present a rigorous full quantum mechanical model for the lattice heat capacity of mesoscopic nanostructures in various dimensions. Model can be applied to arbitrary nanostructures with known vibrational spectrum in zero, one, two, or three dimensions. The limiting case of infinitely sized multi-dimensional materials are also found, which are in agreement with well-known results. As examples, we obtain the heat capacity of fullerenes.

Gharekhanlou, B; Vafai, A

2010-01-01T23:59:59.000Z

108

Harnessing Bulk Nano-Materials for High Pressure High Temperature  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2011. Symposium, International Symposium on Advances in Nanostructured Materials and ...

109

AOCS Official Method Ca 2d-25  

Science Conference Proceedings (OSTI)

Moisture and Volatile Matter Vacuum Oven Method AOCS Official Method Ca 2d-25 Methods Methods and Analyses Analytical Chemistry Methods Downloads Methods Downloads DEFINITION This method determines the moisture

110

Finite Heat conduction in 2D Lattices  

E-Print Network (OSTI)

This paper gives a 2D hamonic lattices model with missing bond defects, when the capacity ratio of defects is enough large, the temperature gradient can be formed and the finite heat conduction is found in the model. The defects in the 2D harmonic lattices impede the energy carriers free propagation, by another words, the mean free paths of the energy carrier are relatively short. The microscopic dynamics leads to the finite conduction in the model.

Lei Yang; Yang Kongqing

2001-07-30T23:59:59.000Z

111

Novel Synthesis and Consolidation of Powder Materials  

Science Conference Proceedings (OSTI)

Electrolytic Infiltration of Laser Sintered Porous Preforms ... Nanostructured Multi- Phase Titanium Based Materials Consolidated from Particles by Severe Plastic ...

112

Scanning Probe Techniques for Functional Materials  

Science Conference Proceedings (OSTI)

Nanoscale Electromechanical Properties of Novel Materials for Actuator and Energy Harvesting Applications · Optical Imaging of Dielectric Nano-structures with ...

113

Argonne CNM News: Casimir Force Reduction through Nanostructuring  

NLE Websites -- All DOE Office Websites (Extended Search)

Casimir Force Reduction through Nanostructuring Casimir Force Reduction through Nanostructuring Casimir force reduction (a) Configuration used to measure the Casimir force between a gold-coated sphere and a nanostructured grating. The sphere is attached to the torsional plate of a micromechanical oscillator and the nanostructured grating is fixed to a single-mode optical fiber. SEM images: (b) nanostructured grating limited by two uniform films (scale bar, 100 µm). (c) Magnified grating showing the high spatial uniformity (scale bar, 400 nm). (d) cross-section of a single grating element (scale bar, 100 nm). By nanostructuring one of two interacting metal surfaces at scales below the plasma wavelength, a new regime in the Casimir force was observed by researchers in the Center for Nanoscale Materials Nanofabrication & Devices

114

Freely movable ferromagnetic shape memory nanostructures for actuation  

Science Conference Proceedings (OSTI)

This paper presents the design and fabrication of freely movable ferromagnetic shape memory nanostructures for actuation in nanometer dimensions. Ni-Mn-Ga is chosen as a transducer material as it combines the shape memory effect and ferromagnetic properties. ... Keywords: Electron beam lithography, Epitaxial Ni-Mn-Ga films, Ion beam etching, Nanostructures

M. Schmitt; A. Backen; S. FäHler; M. Kohl

2012-10-01T23:59:59.000Z

115

Hierarchical Microporous Materials: Rational and Designable ...  

Science Conference Proceedings (OSTI)

Microstructural Evolution of SnS Thin Films Grown by Electrodeposition · Morphology Engineering of 1D, 2D and 3D TiO2 Nanostructures and Their Application ...

116

Compositional Variation Within Hybrid Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Compositional Variation Within Hybrid Nanostructures Print Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in solution. The altered growth process can lead to modulations in stoichiometry, elemental homogeneity, and surface structure, all of which can profoundly affect the catalytic or magnetic properties of the bimetallic nanoparticles. Now, researchers have experimentally observed these subtle structural differences through x-ray absorption spectroscopic studies at ALS Beamline 10.3.2. The results illustrate how directed nanoparticle growth on specific surfaces can lead to hybrid nanomaterials with a structurally different bimetallic component than its unhybridized counterpart.

117

Compositional Variation Within Hybrid Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Compositional Variation Within Hybrid Nanostructures Print Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in solution. The altered growth process can lead to modulations in stoichiometry, elemental homogeneity, and surface structure, all of which can profoundly affect the catalytic or magnetic properties of the bimetallic nanoparticles. Now, researchers have experimentally observed these subtle structural differences through x-ray absorption spectroscopic studies at ALS Beamline 10.3.2. The results illustrate how directed nanoparticle growth on specific surfaces can lead to hybrid nanomaterials with a structurally different bimetallic component than its unhybridized counterpart.

118

Compositional Variation Within Hybrid Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Compositional Variation Within Hybrid Nanostructures Print Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in solution. The altered growth process can lead to modulations in stoichiometry, elemental homogeneity, and surface structure, all of which can profoundly affect the catalytic or magnetic properties of the bimetallic nanoparticles. Now, researchers have experimentally observed these subtle structural differences through x-ray absorption spectroscopic studies at ALS Beamline 10.3.2. The results illustrate how directed nanoparticle growth on specific surfaces can lead to hybrid nanomaterials with a structurally different bimetallic component than its unhybridized counterpart.

119

Compositional Variation Within Hybrid Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Compositional Variation Within Hybrid Nanostructures Print Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in solution. The altered growth process can lead to modulations in stoichiometry, elemental homogeneity, and surface structure, all of which can profoundly affect the catalytic or magnetic properties of the bimetallic nanoparticles. Now, researchers have experimentally observed these subtle structural differences through x-ray absorption spectroscopic studies at ALS Beamline 10.3.2. The results illustrate how directed nanoparticle growth on specific surfaces can lead to hybrid nanomaterials with a structurally different bimetallic component than its unhybridized counterpart.

120

Compositional Variation Within Hybrid Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Compositional Variation Within Hybrid Nanostructures Print Compositional Variation Within Hybrid Nanostructures Print The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in solution. The altered growth process can lead to modulations in stoichiometry, elemental homogeneity, and surface structure, all of which can profoundly affect the catalytic or magnetic properties of the bimetallic nanoparticles. Now, researchers have experimentally observed these subtle structural differences through x-ray absorption spectroscopic studies at ALS Beamline 10.3.2. The results illustrate how directed nanoparticle growth on specific surfaces can lead to hybrid nanomaterials with a structurally different bimetallic component than its unhybridized counterpart.

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

TOPAZ2D heat transfer code users manual and thermal property data base  

Science Conference Proceedings (OSTI)

TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.

Shapiro, A.B.; Edwards, A.L.

1990-05-01T23:59:59.000Z

122

A new inversion method for (T2, D) 2D NMR logging and fluid typing  

Science Conference Proceedings (OSTI)

One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also ... Keywords: Diffusion coefficient (D), Fluid typing, Transverse relaxation time (T2), Two-dimensional NMR (2D NMR) logging

Maojin Tan; Youlong Zou; Cancan Zhou

2013-02-01T23:59:59.000Z

123

Quasi 2D Materials: Raman Nanometrology and Thermal Management Applications  

E-Print Network (OSTI)

efficiency loss per °C increase in cell temperature [11] Since the highest temperatures of solar PV panels

Shahil, Khan Mohammad Farhan

2012-01-01T23:59:59.000Z

124

Carbon nanostructures-elixir or poison?  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon nanostructures-elixir or poison? Carbon nanostructures-elixir or poison? Carbon nanostructures-elixir or poison? A LANL toxicologist and a team of researchers have documented potential cellular damage from "fullerenes"-soccer-ball-shaped, cage-like molecules composed of 60 carbon atoms. March 31, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

125

Coherent multi-exciton dynamics in semiconductor nanostructures via two-dimensional Fourier transform optical spectroscopy  

E-Print Network (OSTI)

The Coulomb correlations between photoexcited charged particles in materials such as photosynthetic complexes, conjugated polymer systems, J-aggregates, and bulk or nanostructured semiconductors produce a hierarchy of ...

Stone, Katherine Walowicz

2009-01-01T23:59:59.000Z

126

On Global Regularity of 2D Generalized Magnetohydrodynamic Equations  

E-Print Network (OSTI)

In this article we study the global regularity of 2D generalized magnetohydrodynamic equations (2D GMHD), in which the dissipation terms are $- \

Tran, Chuong V; Zhai, Zhichun

2013-01-01T23:59:59.000Z

127

Synthesis of nanostructured nanoclay-zirconia multilayers: a feasibility study  

Science Conference Proceedings (OSTI)

This paper reports the first effort to synthesize a new class of inorganic nanostructured materials consisting of alternating ultrathin layers of nanoclays and oxide ceramics. A novel solution-based layer-by-layer (LBL) deposition technique was developed ...

Hao Chen; Guoping Zhang; Kathleen Richardson; Jian Luo

2008-01-01T23:59:59.000Z

128

Crab Shells as Sustainable Templates from Nature for Nanostructured Battery Electrodes  

E-Print Network (OSTI)

Crab Shells as Sustainable Templates from Nature for Nanostructured Battery Electrodes Hongbin Yao materials issues for enabling next-generation high capacity lithium ion batteries for portable electronics to prepare nanostructured battery electrode materials, we are inspired by the diversity of natural materials

Cui, Yi

129

Silicon Anode Materials for All-Solid-State Lithium-ion Microbatteries  

Science Conference Proceedings (OSTI)

Symposium, Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors. Presentation Title, Silicon Anode Materials for All-Solid-State ...

130

Injection of Electrons and Holes into Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Injection of Electrons and Holes into Nanostructures Injection of Electrons and Holes into Nanostructures This program targets fundamental understanding of nanoscale charge transfer processes. The proposed work draws on the strengths of the Brookhaven Chemistry Department in the areas of electron transfer experiment and theory, and extends the area of inquiry to nanoscale processes. Electron/hole injection into a wire, a nanocrystal, a nanotube or other nanostructure in solution may be brought about by light absorption, by an electron pulse (pulse radiolysis, LEAF), by a chemical reagent, or through an electrode. These processes are being studied by transient methods by following conductivity, current, but most generally, spectroscopic changes in the solutions to determine the dynamics of charge injection. The observed transient spectra can also provide values for electron-transfer coupling elements and energetics. Theoretical/computational studies can help in materials design and in the interpretation of the experimental results. The experimental systems being examined include molecular wires and metal nanoclusters.

131

Development, Kinetic Analysis and Applications of 2-D Nanostructured Layered Metal Hydroxides.  

E-Print Network (OSTI)

??Nanodimensional layered metal hydroxides which include layered hydroxy salts (LHSs) and hydroxy double salts (HDSs) have the ability to accommodate species between the layers. The… (more)

Majoni, Stephen

2011-01-01T23:59:59.000Z

132

Advanced Materials and Reservoir Engineering for Extreme Oil ...  

Science Conference Proceedings (OSTI)

Nanostructured and advanced materials potentially offer new possibilities in drilling, exploration and production. In this symposium both academia and industry ...

133

TMS 2013: Technical Area - Nanoscale and Amorphous Materials  

Science Conference Proceedings (OSTI)

Nanostructured and advanced materials potentially offer new possibilities in drilling, exploration and production. In this symposium both academia and industry ...

134

Lead-Free Piezoelectric Materials for Sensors and Capacitors  

Science Conference Proceedings (OSTI)

Presentation Title, Lead-Free Piezoelectric Materials for Sensors and Capacitors ... Oxide Nanostructures and Their Potential for Mechanical Energy Scavenging.

135

Graphene-Based and Graphene-Derived Materials for ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors.

136

Light-matter Interactions in Semiconductor Nanostructures  

Science Conference Proceedings (OSTI)

Light-matter interactions in Semiconductor Nanostructures. ... We investigate the interaction of light with semiconductor-based nanostructures. ...

2012-05-30T23:59:59.000Z

137

Finite Heat conduction in 2D Lattices  

E-Print Network (OSTI)

This paper gives a 2D hamonic lattices model with missing bond defects, when the capacity ratio of defects is enough large, the temperature gradient can be formed and the finite heat conduction is found in the model. The defects in the 2D harmonic lattices impede the energy carriers free propagation, by another words, the mean free paths of the energy carrier are relatively short. The microscopic dynamics leads to the finite conduction in the model. PACS numbers: 44.10. +I, 05.45.Jn, 05.60.-k, 05.70.Ln The study of heat conduction in models of insulating solids is a rather old and debated problem, and the more general problem is one of understanding the nonequilibrium energy current carrying state of a many body system. The most of the work on heat conduction investigated the process of heat transport in 1D lattices. The different models have been studied for obtaining Fourier’s law, several kinds of factors have been taken into account in the models, such as the nonlinearity, on-site potentials, mass disorder and etc. Then the typical 1D lattices Hamiltonian is

Lei Yang; Yang Kongqing

2001-01-01T23:59:59.000Z

138

Pauli matrices and 2D electron gas  

E-Print Network (OSTI)

In the present paper it will be argued that transport in a 2D electron gas can be implemented as 'local hidden instrument based' variables. With this concept of instrumentalism it is possible to explain the quantum correlation, the particle-wave duality and Wheeler's 'backward causation of a particle'. In the case of quantum correlation the spin measuring variant of the Einstein Podolsky and Rosen paradox is studied. In the case of particle-wave duality the system studied is single photon Mach-Zehnder (MZ) interferometry with a phase shift size $\\delta$. The idea that the instruments more or less neutrally may show us the way to the particle will be replaced by the concept of laboratory equipment contributing in an unexpected way to the measurement.

J. F. Geurdes

2012-10-22T23:59:59.000Z

139

Nanowires, nanostructures and devices fabricated therefrom  

DOE Patents (OSTI)

One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

Majumdar, Arun (Orinda, CA); Shakouri, Ali (Santa Cruz, CA); Sands, Timothy D. (Moraga, CA); Yang, Peidong (Berkeley, CA); Mao, Samuel S. (Berkeley, CA); Russo, Richard E. (Walnut Creek, CA); Feick, Henning (Kensington, CA); Weber, Eicke R. (Oakland, CA); Kind, Hannes (Schaffhausen, CH); Huang, Michael (Los Angeles, CA); Yan, Haoquan (Albany, CA); Wu, Yiying (Albany, CA); Fan, Rong (El Cerrito, CA)

2005-04-19T23:59:59.000Z

140

Surface and Nanostructure Metrology Group  

Science Conference Proceedings (OSTI)

... The Surface and Nanostructure Metrology Group in the Semiconductor & Dimensional Metrology Division of the Physical Measurement Laboratory ...

2013-06-24T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Voltammetric characterization of ruthenium oxide-based aerogels and other RuO{sub 2} solids: The nature of capacitance in nanostructured materials  

Science Conference Proceedings (OSTI)

Ruthenium dioxide is an important electrode material for applications in electrocatalysis and power sources. High surface areas are achieved in hydrous RuO{sub 2} precipitates and in mixed ruthenium oxide-titanium oxide, (Ru-Ti)O{sub x}, aerogels ( in which nanoscale domains are networked to form a highly porous structure). The electrochemical properties of (Ru-Ti)O{sub x} aerogels, RuO{sub 2}, and hydrous RuO{sub 2} are examined by direct pressing of sub-milligram quantities of the solid onto the surface of a conductive carbon/wax composite. Voltammetric measurements in acidic electrolyte confirm a pseudocapacitive response for all the RuO{sub x}-based materials. Despite an improvement in BET surface area, as compared with other RuO{sub 2} materials, the (Ru-Ti)O{sub x} aerogel displays a low specific capacitance, which correlated to the high degree of crystallinity of the aerogel. Nanocrystallites of rutile RuO{sub 2}, formed during thermal treatment of the sol-gel Ru/Ti precursors, deleteriously affect the specific capacitance of the material; however, all RuO{sub x} domains in the aerogel are voltammetrically addressable. The influence of proton-donating species on the observed capacitance for the (Ru-Ti)O{sub x} aerogel is evident from the dependence of the voltammetric charge in acidic electrolyte on the potential scan rate.

Long, J.W.; Swider, K.E.; Merzbacher, C.I.; Rolison, D.R. [Naval Research Lab., Washington, DC (United States)

1999-02-02T23:59:59.000Z

142

Biomimetic Nanostructures: Creating  

NLE Websites -- All DOE Office Websites (Extended Search)

Biomimetic Biomimetic Nanostructures: Creating a High-Affinity Zinc-Binding Site in a Folded Nonbiological Polymer Byoung-Chul Lee, †,‡ Tammy K. Chu, † Ken A. Dill,* ,‡ and Ronald N. Zuckermann* ,† Biological Nanostructures Facility, The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, Graduate group in Biophysics and Department of Pharmaceutical Chemistry, 600 16th Street, UniVersity of CaliforniasSan Francisco, San Francisco, California 94143 Received March 21, 2008; E-mail: dill@maxwell.compbio.ucsf.edu; rnzuckermann@lbl.gov Abstract: One of the long-term goals in developing advanced biomaterials is to generate protein-like nanostructures and functions from a completely nonnatural polymer. Toward that end, we introduced a high-affinity zinc-binding function into a peptoid (N-substituted glycine

143

Compositional Variation Within Hybrid Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Compositional Variation Within Compositional Variation Within Hybrid Nanostructures Compositional Variation Within Hybrid Nanostructures Print Wednesday, 29 September 2010 00:00 The inherently high surface area of bimetallic nanoparticles makes them especially attractive materials for heterogeneous catalysis. The ability to selectively grow these and other types of nanoparticles on a desired surface is ideal for the fabrication of higher-order nanoscale architectures. However, the growth mechanism for bimetallic nanoparticles on a surface is expected to be quite different than that for free particles in solution. The altered growth process can lead to modulations in stoichiometry, elemental homogeneity, and surface structure, all of which can profoundly affect the catalytic or magnetic properties of the bimetallic nanoparticles. Now, researchers have experimentally observed these subtle structural differences through x-ray absorption spectroscopic studies at ALS Beamline 10.3.2. The results illustrate how directed nanoparticle growth on specific surfaces can lead to hybrid nanomaterials with a structurally different bimetallic component than its unhybridized counterpart.

144

Direct-Write of Silicon and Germanium Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Direct-Write of Silicon and Germanium Nanostructures Print Direct-Write of Silicon and Germanium Nanostructures Print Nanostructured materials (nanowires, nanotubes, nanoclusters, graphene) are attractive possible alternatives to traditionally microfabricated silicon in continuing the miniaturization trend in the electronics industry. To go from nanomaterials to electronics, however, the precise one-by-one assembly of billions of nanoelements into a functioning circuit is required-clearly not a simple task. An interdisciplinary team from the University of Washington, in collaboration with the ALS and the Pacific Northwest National Laboratory, has devised a strategy that could make this task a little easier. They have demonstrated the ability to directly "write" nanostructures of Si, Ge, and SiGe with deterministic size, geometry, and placement control. As purity is essential for electronic-grade semiconductors, the resulting patterns were carefully evaluated for carbon contamination using photoemission electron microscopes at ALS Beamlines 7.3.1 and 11.0.1.

145

Nanostructured catalyst supports  

DOE Patents (OSTI)

The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

2012-10-02T23:59:59.000Z

146

Methods for and products of processing nanostructure nitride, carbonitride and oxycarbonitride electrode power materials by utilizing sol gel technology for supercapacitor applications  

SciTech Connect

Metal nitride, carbonitride, and oxycarbonitride powder with high surface area (up to 150 m.sup.2 /g) is prepared by using sol-gel process. The metal organic precursor, alkoxides or amides, is synthesized firstly. The metal organic precursor is modified by using unhydrolyzable organic ligands or templates. A wet gel is formed then by hydrolysis and condensation process. The solvent in the wet gel is then be removed supercritically to form porous amorphous hydroxide. This porous hydroxide materials is sintered to 725.degree. C. under the ammonia flow and porous nitride powder is formed. The other way to obtain high surface area nitride, carbonitride, and oxycarbonitride powder is to pyrolyze polymerized templated metal amides aerogel in an inert atmosphere. The electrochemical capacitors are prepared by using sol-gel prepared nitride, carbonitride, and oxycarbonitride powder. Two methods are used to assemble the capacitors. Electrode is formed either by pressing the mixture of nitride powder and binder to a foil, or by depositing electrode coating onto metal current collector. The binder or coating is converted into a continuous network of electrode material after thermal treatment to provide enhanced energy and power density. Liquid electrolyte is soaked into porous electrode. The electrochemical capacitor assembly further has a porous separator layer between two electrodes/electrolyte and forming a unit cell.

Huang, Yuhong (West Hills, CA); Wei, Oiang (West Hills, CA); Chu, Chung-tse (Chatsworth, CA); Zheng, Haixing (Oak Park, CA)

2001-01-01T23:59:59.000Z

147

Multiscale materials design of natural exoskeletons : fish armor  

E-Print Network (OSTI)

Biological materials have developed hierarchical and heterogeneous material nanostructures and microstructures to provide protection against various environmental threats that, in turn, provide bioinspired clues to man-made, ...

Song, Juha

2011-01-01T23:59:59.000Z

148

Nanostructured metal foams: synthesis and applications  

DOE Green Energy (OSTI)

Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

Luther, Erik P [Los Alamos National Laboratory; Tappan, Bryce [Los Alamos National Laboratory; Mueller, Alex [Los Alamos National Laboratory; Mihaila, Bogdan [Los Alamos National Laboratory; Volz, Heather [Los Alamos National Laboratory; Cardenas, Andreas [Los Alamos National Laboratory; Papin, Pallas [Los Alamos National Laboratory; Veauthier, Jackie [Los Alamos National Laboratory; Stan, Marius [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

149

Lensless Imaging of Magnetic Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine....

150

2D sigma model approach to 4D instantons  

SciTech Connect

4D self-dual theories are proposed to generalize 2D conformal field theory. The authors identify 4D self-dual gravity as well as self-dual Yang-Mills theory with 2D sigma models valued in infinite-dimensional gauge groups. It is shown that these models possess infinite-dimensional symmetries with associated algebras - CP{sup 1} extensions of respective gauge algebras of 2D sigma models - which generalize the Kac-Moody algebra as well as W{sub {infinity}}. This paper addresses various issues concerning 2D sigma models, twistors and sheaf cohomology. An attempt to connect 4D self-dual theories with 2D conformal field theory is made through sl({infinity}) Toda field theory.

Park, Q.H. (Dept. of Physics and Astronomy, Univ. of Maryland at College Park, College Park, MD (US))

1992-03-20T23:59:59.000Z

151

Engineering Nanostructured Materials for Extreme Applications  

Science Conference Proceedings (OSTI)

... Corrosion Resistance in the Exploration of Subterranean Energy Sources ... Rising challenges for the petroleum refiners in managing corrosion risks.

152

Design and Applications of Nanostructured Energy Materials  

Science Conference Proceedings (OSTI)

A new class of molecularly-tailored nanomaterials and interfaces for energy conversion and thermal management · Atomic-Scale Understanding of Deformation ...

153

Materials That Power Our World – Nanostructured Carbon  

Solar C-FD n-type •Common p-type is polythiophene ... Strong Earnings Potential •Positive outlook for energy and electronics •Proprietary C -FD and C-Ink

154

The Molecular Foundry - Theory of Nanostructured Materials -...  

NLE Websites -- All DOE Office Websites (Extended Search)

J. B. Neaton, "Length Dependence of Conductance in Aromatic Single-Molecule Junctions," Nano Letters, 9, 3949 (2009). pdf Z. Wu, J. B. Neaton and J. C. Grossman, "Charge...

155

Composite, nanostructured, super-hydrophobic material - Energy ...  

Hydrogen and Fuel Cell; Hydropower, Wave and Tidal; Industrial Technologies; Solar Photovoltaic; Solar Thermal; Startup America; ... July 27, 2004: Government Interests:

156

Nanostructured or Nanocrystalline Materials - Programmaster.org  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Using a bottom-up approach, W-based alloys, including W-Mo-Fe, have been produced using high energy ball milling and consolidated with ...

157

The magnetocaloric effect in nanostructured materials  

Science Conference Proceedings (OSTI)

Giant magnetocaloric effect: Is there room for improvement? ... magnetocaloric properties and magnetoresistance in Mn-rich Mn50.5-xNi41Sn8.5+x alloys.

158

Nanostructured Energy Materials for Advanced Technical Applications  

Science Conference Proceedings (OSTI)

For photovoltaic solar cells and solar thermal devices such as Concentrated ... for the Synthesis of Aluminum Oxide Nanofibers: Features and Specifications of ...

159

Characterizing Nanostructured Magnetic Materials with Photonic ...  

Science Conference Proceedings (OSTI)

... synchrotron light source facilities have been constructed and instrumentation .... data acquisition computer, which also controls the etalon scanning stage.

160

Materials and Processing Issues in Nanostructured Semiconductor ...  

Science Conference Proceedings (OSTI)

Recently studies indicate that the most noble metal, gold, on transition metal oxides could have important applications for room-temperature catalytic oxidation of ...

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Nanostructured Materials for Rechargeable Batteries and for ...  

Science Conference Proceedings (OSTI)

Jul 15, 2013... synthesis and application of high performance biochars with tuned porosity and surface functionality, Si and Ge nanowires, novel oxides for ...

162

Three-Dimensional Composite Nanostructures for Lean NOx Emission Control  

DOE Green Energy (OSTI)

In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S-poisoning resistance. Further investigation is needed for unraveling the understanding, design and selection principles of this new class of nanostructure based monolithic catalysts.

Gao, Pu-Xian

2013-07-31T23:59:59.000Z

163

Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

164

Thin Film and nanostructure Processing Staff  

Science Conference Proceedings (OSTI)

Thin Film Nanostructure Staff Directory. John Bonevich, Group Leader. Shari Beauchamp, Office Assistant. STAFF & NRC POSTDOCS. ...

2013-06-11T23:59:59.000Z

165

Nanostructured multifilamentary carbon-copper composites: fabrication, microstructural characterization, and properties  

Science Conference Proceedings (OSTI)

This work is part of research on the emerging techniques to produce bulk nanostructured composites materials by severe plastic deformation and their characterization. Based on the Levi work, we present a new method to synthesize a composite wirecontaining ...

Evarice Yama Nzoma; Alain Guillet; Philippe Pareige

2012-01-01T23:59:59.000Z

166

Wetting and phase-change phenomena on micro/nanostructures for enhanced heat transfer  

E-Print Network (OSTI)

Micro/nanostructures have been extensively studied to amplify the intrinsic wettability of materials to create superhydrophilic or superhydrophobic surfaces. Such extreme wetting properties can influence the heat transfer ...

Xiao, Rong, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

167

Material  

DOE Green Energy (OSTI)

Li(Ni{sub 0.4}Co{sub 0.15}Al{sub 0.05}Mn{sub 0.4})O{sub 2} was investigated to understand the effect of replacement of the cobalt by aluminum on the structural and electrochemical properties. In situ X-ray absorption spectroscopy (XAS) was performed, utilizing a novel in situ electrochemical cell, specifically designed for long-term X-ray experiments. The cell was cycled at a moderate rate through a typical Li-ion battery operating voltage range. (1.0-4.7 V) XAS measurements were performed at different states of charge (SOC) during cycling, at the Ni, Co, and the Mn edges, revealing details about the response of the cathode to Li insertion and extraction processes. The extended X-ray absorption fine structure (EXAFS) region of the spectra revealed the changes of bond distance and coordination number of Ni, Co, and Mn absorbers as a function of the SOC of the material. The oxidation states of the transition metals in the system are Ni{sup 2+}, Co{sup 3+}, and Mn{sup 4+} in the as-made material (fully discharged), while during charging the Ni{sup 2+} is oxidized to Ni{sup 4+} through an intermediate stage of Ni{sup 3+}, Co{sup 3+} is oxidized toward Co{sup 4+}, and Mn was found to be electrochemically inactive and remained as Mn{sup 4+}. The EXAFS results during cycling show that the Ni-O changes the most, followed by Co-O, and Mn-O varies the least. These measurements on this cathode material confirmed that the material retains its symmetry and good structural short-range order leading to the superior cycling reported earlier.

Rumble, C.; Conry, T.E.; Doeff, Marca; Cairns, Elton J.; Penner-Hahn, James E.; Deb, Aniruddha

2010-06-14T23:59:59.000Z

168

Three-Dimensional Composite Nanostructures for Lean NOx Emission Control  

SciTech Connect

This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S-poisoning resistance. Further investigation is needed for unraveling the understanding, design and selection principles of this new class of nanostructure based monolithic catalysts.

Gao, Pu-Xian

2013-07-31T23:59:59.000Z

169

Hypercube performance for 2-D seismic finite-difference modeling  

Science Conference Proceedings (OSTI)

Wave-equation seismic modeling in two space dimensions is computationally intensive, often requiring hours of supercomputer CPU time to run typical geological models with 500 × 500 grids and 100 sources. This paper analyzes the performance of ACOUS2D, ...

L. J. Baker

1989-01-01T23:59:59.000Z

170

Conformal equivalence of 2D dilaton gravity models  

E-Print Network (OSTI)

We investigate the behavior of generic, matter-coupled, 2D dilaton gravity theories under dilaton-dependent Weyl rescalings of the metric. We show that physical observables associated with 2D black holes, such as the mass, the temperature and the flux of Hawking radiation are invariant under the action of both Weyl transformations and dilaton reparametrizations. The field theoretical and geometrical meaning of these invariances is discussed.

Mariano Cadoni

1996-10-25T23:59:59.000Z

171

Entropy of 2D black holes from counting microstates  

E-Print Network (OSTI)

We present a microscopical derivation of the entropy of the black hole solutions of the Jackiw-Teitelboim theory. We show that the asymptotic symmetry of two-dimensional (2D) Anti-de Sitter space is generated by a central extension of the Virasoro algebra. Using a canonical realization of this symmetry and Cardy's formula we calculate the statistical entropy of 2D black holes, which turns out to agree, up to a factor $\\sqrt 2$, with the thermodynamical result.

Mariano Cadoni; Salvatore Mignemi

1998-10-30T23:59:59.000Z

172

Nanostructures boost the thermoelectric performance of PbS.  

Science Conference Proceedings (OSTI)

In situ nanostructuring in bulk thermoelectric materials through thermo-dynamic phase segregation has established itself as an effective paradigm for optimizing the performance of thermoelectric materials. In bulk PbTe small compositional variations create coherent and semicoherent nanometer sized precipitates embedded in a PbTe matrix, where they can impede phonon propagation at little or no expense to the electronic properties. In this paper the nanostructuring paradigm is for the first time extended to a bulk PbS based system, which despite obvious advantages of price and abundancy, so far has been largely disregarded in thermoelectric research due to inferior room temperature thermoelectric properties relative to the pristine fellow chalcogenides, PbSe and PbTe. Herein we report on the synthesis, microstructural morphology and thermoelectric properties of two phase (PbS){sub 1-x}(PbTe){sub x}x = 0-0.16 samples. We have found that the addition of only a few percent PbTe to PbS results in a highly nanostructured material, where PbTe precipitates are coherently and semicoherently embedded in a PbS matrix. The present (PbS){sub 1-x}(PbTe){sub x} nanostructured samples show substantial decreases in lattice thermal conductivity relative to pristine PbS, while the electronic properties are left largely unaltered. This in turn leads to a marked increase in the thermoelectric figure of merit. This study underlines the efficiency of the nanostructuring approach and strongly supports its generality and applicability to other material systems. We demonstrate that these PbS-based materials, which are made primarily from abundant Pb and S, outperform optimally n-type doped pristine PbTe above 770 K.

Johnsen, S.; Androulakis, J.; He, J. Q.; Dravid, V. P.; Todorov, I.; Chung, D. Y.; Kanatzidis, M. G. (Materials Science Division); (Northwestern Univ.)

2011-03-16T23:59:59.000Z

173

Radiation Damage in Nanostructured Metallic Films  

E-Print Network (OSTI)

High energy neutron and charged particle radiation cause microstructural and mechanical degradation in structural metals and alloys, such as phase segregation, void swelling, embrittlement and creep. Radiation induced damages typically limit nuclear materials to a lifetime of about 40 years. Next generation nuclear reactors require materials that can sustain over 60 - 80 years. Therefore it is of great significance to explore new materials with better radiation resistance, to design metals with favorable microstructures and to investigate their response to radiation. The goals of this thesis are to study the radiation responses of several nanostructured metallic thin film systems, including Ag/Ni multilayers, nanotwinned Ag and nanocrystalline Fe. Such systems obtain high volume fraction of boundaries, which are considered sinks to radiation induced defects. From the viewpoint of nanomechanics, it is of interest to investigate the plastic deformation mechanisms of nanostructured films, which typically show strong size dependence. By controlling the feature size (layer thickness, twin spacing and grain size), it is applicable to picture a deformation mechanism map which also provides prerequisite information for subsequent radiation hardening study. And from the viewpoint of radiation effects, it is of interest to explore the fundamentals of radiation response, to examine the microstructural and mechanical variations of irradiated nanometals and to enrich the design database. More importantly, with the assistance of in situ techniques, it is appealing to examine the defect generation, evolution, annihilation, absorption and interaction with internal interfaces (layer interfaces, twin boundaries and grain boundaries). Moreover, well-designed nanostructures can also verify the speculation that radiation induced defect density and hardening show clear size dependence. The focus of this thesis lies in the radiation response of Ag/Ni multilayers and nanotwinned Ag subjected to charged particles. The radiation effects in irradiated nanograined Fe are also investigated for comparison. Radiation responses in these nanostructured metallic films suggest that immiscible incoherent Ag/Ni multilayers are more resistant to radiation in comparison to their monolithic counterparts. Their mechanical properties and radiation response show strong layer thickness dependence in terms of radiation hardening and defect density. Coherent twin boundaries can interact with stacking fault tetrahedral and remove them effectively. Twin boundaries can actively absorb radiation induced defects and defect clusters resulting in boundary migration. Size dependence is also found in nanograins where fewer defects exhibit in films with smaller grains.

Yu, Kaiyuan

2013-05-01T23:59:59.000Z

174

Thermorheological properties of nanostructured dispersions  

E-Print Network (OSTI)

Nanostructured dispersions, which consist of nanometer-sized particles, tubes, sheets, or droplets that are dispersed in liquids, have exhibited substantially higher thermal conductivities over those of the liquids alone. ...

Gordon, Jeremy B

2007-01-01T23:59:59.000Z

175

1st World Congress on Integrated Computational Materials ...  

Science Conference Proceedings (OSTI)

Nov 15, 2010 ... Atomic Ordering in Nanostructured Fe-1%Zr Alloy ... Lattice Dynamics and Thermodynamics of Lithium Battery Materials LiMPO4 (M = Mn, Fe, ...

176

Phase Change Materials – An Overview - Programmaster.org  

Science Conference Proceedings (OSTI)

Stellite Coatings on Hot Work Tool Steels for Tooling Applications in Semi-Solid Processing of Steels · Surface Modification of Nanostructured Materials for ...

177

Engineering the optical properties of subwavelength devices and materials  

E-Print Network (OSTI)

Many applications demand materials with seemingly incompatible optical characteristics. For example, immersion photolithography is a resolution enhancing technique used to fabricate the ever-shrinking nanostructures in ...

Anant, Vikas, 1980-

2007-01-01T23:59:59.000Z

178

2009 Clusters, Nanocrystals & Nanostructures GRC  

SciTech Connect

For over thirty years, this Gordon Conference has been the premiere meeting for the field of cluster science, which studies the phenomena that arise when matter becomes small. During its history, participants have witnessed the discovery and development of many novel materials, including C60, carbon nanotubes, semiconductor and metal nanocrystals, and nanowires. In addition to addressing fundamental scientific questions related to these materials, the meeting has always included a discussion of their potential applications. Consequently, this conference has played a critical role in the birth and growth of nanoscience and engineering. The goal of the 2009 Gordon Conference is to continue the forward-looking tradition of this meeting and discuss the most recent advances in the field of clusters, nanocrystals, and nanostructures. As in past meetings, this will include new topics that broaden the field. In particular, a special emphasis will be placed on nanomaterials related to the efficient use, generation, or conversion of energy. For example, we anticipate presentations related to batteries, catalysts, photovoltaics, and thermoelectrics. In addition, we expect to address the controversy surrounding carrier multiplication with a session in which recent results addressing this phenomenon will be discussed and debated. The atmosphere of the conference, which emphasizes the presentation of unpublished results and lengthy discussion periods, ensures that attendees will enjoy a valuable and stimulating experience. Because only a limited number of participants are allowed to attend this conference, and oversubscription is anticipated, we encourage all interested researchers from academia, industry, and government institutions to apply as early as possible. An invitation is not required. We also encourage all attendees to submit their latest results for presentation at the poster sessions. We anticipate that several posters will be selected for 'hot topic' oral presentations. Because of the important role that students and postdocs play in the future of this field, we also anticipate to select several posters from young investigators for oral presentations.

Lai-Sheng Wang

2009-07-19T23:59:59.000Z

179

Compositional ordering and stability in nanostructured, bulk thermoelectric alloys.  

SciTech Connect

Thermoelectric materials have many applications in the conversion of thermal energy to electrical power and in solid-state cooling. One route to improving thermoelectric energy conversion efficiency in bulk material is to embed nanoscale inclusions. This report summarize key results from a recently completed LDRD project exploring the science underpinning the formation and stability of nanostructures in bulk thermoelectric and the quantitative relationships between such structures and thermoelectric properties.

Hekmaty, Michelle A.; Faleev, S.; Medlin, Douglas L.; Leonard, F.; Lensch-Falk, J.; Sharma, Peter Anand; Sugar, J. D.

2009-09-01T23:59:59.000Z

180

Applications of Ultrafast Terahertz Pulses for Intra-ExcitonicSpectroscopy of Quasi-2D Electron-Hole Gases  

Science Conference Proceedings (OSTI)

Excitons are of fundamental interest and of importance foropto-electronic applications of bulk and nano-structured semiconductors.This paper discusses the utilization of ultrafast terahertz (THz) pulsesfor the study of characteristic low-energy excitations of photoexcitedquasi 2D electron-hole (e-h) gases. Optical-pump THz-probe spectroscopyat 250-kHz repetition rate is employed to detect characteristic THzsignatures of excitons and unbound e-h pairs in GaAs quantum wells.Exciton and free-carrier densities are extracted from the data using atwo-component model. We report the detailed THz response and pairdensities for different photoexcitation energies resonant to heavy-holeexcitons, light-hole excitons, or the continuum of unbound pairs. Suchexperiments can provide quantitative insights into wavelength, time, andtemperature dependence of the low-energy response and composition ofoptically excited e-h gases in low-dimensionalsemiconductors.

Kaindl, Robert A.; Carnahan, Marc A.; Hagele, Daniel; Chemla, D.S.

2006-09-02T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Methods of fabricating nanostructures and nanowires and devices fabricated therefrom  

DOE Patents (OSTI)

One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

Majumdar,; Arun (Orinda, CA); Shakouri, Ali (Santa Cruz, CA); Sands, Timothy D. (Moraga, CA); Yang, Peidong (Berkeley, CA); Mao, Samuel S. (Berkeley, CA); Russo, Richard E. (Walnut Creek, CA); Feick, Henning (Kensington, CA); Weber, Eicke R. (Oakland, CA); Kind, Hannes (Schaffhausen, CH); Huang, Michael (Los Angeles, CA); Yan, Haoquan (Albany, CA); Wu, Yiying (Albany, CA); Fan, Rong (El Cerrito, CA)

2009-08-04T23:59:59.000Z

182

Methods of fabricating nanostructures and nanowires and devices fabricated therefrom  

DOE Patents (OSTI)

One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

Majumdar, Arun (Orinda, CA); Shakouri, Ali (Santa Cruz, CA); Sands, Timothy D. (Moraga, CA); Yang, Peidong (Berkeley, CA); Mao, Samuel S. (Berkeley, CA); Russo, Richard E. (Walnut Creek, CA); Feick, Henning (Kensington, CA); Weber, Eicke R. (Oakland, CA); Kind, Hannes (Schaffhausen, CH); Huang, Michael (Los Angeles, CA); Yan, Haoquan (Albany, CA); Wu, Yiying (Albany, CA); Fan, Rong (El Cerrito, CA)

2010-11-16T23:59:59.000Z

183

Interactive image search by 2D semantic map  

Science Conference Proceedings (OSTI)

In this demo, we present a novel interactive image search system, image search by 2D semantic map. This system enables users to indicate what semantic concepts are expected to appear and even how these concepts are spatially distributed in the ... Keywords: color map, concept map, interactive image search

Hao Xu; Jingdong Wang; Xian-Sheng Hua; Shipeng Li

2010-04-01T23:59:59.000Z

184

Drop Axis Ratios from a 2D Video Disdrometer  

Science Conference Proceedings (OSTI)

Results from an experiment to measure the drop shapes using a 2D video disdrometer (2DVD) are reported. Under calm conditions, drops were generated from a hose located on a bridge 80 m above ground, this height being sufficient to allow drop ...

Merhala Thurai; V. N. Bringi

2005-07-01T23:59:59.000Z

185

Comparative Visual Analysis of 2D Function Ensembles  

Science Conference Proceedings (OSTI)

In the development process of powertrain systems, 2D function ensembles frequently occur in the context of multi-run simulations. An analysis has many facets, including distributions of extracted features, comparisons between ensemble members and target ... Keywords: I.3.3 [Computer Graphics]: Picture/Image Generation—Line and curve generation

H. Piringer; S. Pajer; W. Berger; H. Teichmann

2012-06-01T23:59:59.000Z

186

2D Markovian modeling for character recognition and segmentation  

Science Conference Proceedings (OSTI)

Processing text components in multimedia contents remains a challenging issue for document indexing and retrieval. More specifically, handwritten characters processing is a very active field of pattern recognition. This paper describes an innovative ... Keywords: 2D dynamic programming, Markov random fields, handwriting recognition

Sylvain Chevalier; Edouard Geoffrois; Françoise Prêteux

2005-07-01T23:59:59.000Z

187

Real-time SPECT and 2D ultrasound image registration  

Science Conference Proceedings (OSTI)

In this paper we present a technique for fully automatic, real-time 3D SPECT (Single Photon Emitting Computed Tomography) and 2D ultrasound image registration. We use this technique in the context of kidney lesion diagnosis. Our registration algorithm ...

Marek Bucki; Fabrice Chassat; Francisco Galdames; Takeshi Asahi; Daniel Pizarro; Gabriel Lobo

2007-10-01T23:59:59.000Z

188

Development of a 2-D 2-group neutron noise simulator  

E-Print Network (OSTI)

Development of a 2-D 2-group neutron noise simulator C. Demazie` re* Chalmers University of Technology, Department of Reactor Physics, SE-412 96 Go¨teborg, Sweden Received 10 May 2003; accepted 27 August 2003 Abstract In this paper, the development of a so-called neutron noise simulator is reported

Demazière, Christophe

189

Matrix-assisted energy conversion in nanostructured ...  

A nanoconverter is capable of directly generating electricity through a nanostructure embedded in a polymer layer experiencing differential thermal ...

190

Key Physical Mechanisms in Nanostructured Solar Cells  

DOE Green Energy (OSTI)

The objective of the project was to study both theoretically and experimentally the excitation, recombination and transport properties required for nanostructured solar cells to deliver energy conversion efficiencies well in excess of conventional limits. These objectives were met by concentrating on three key areas, namely, investigation of physical mechanisms present in nanostructured solar cells, characterization of loss mechanisms in nanostructured solar cells and determining the properties required of nanostructured solar cells in order to achieve high efficiency and the design implications.

Dr Stephan Bremner

2010-07-21T23:59:59.000Z

191

Exotic phenomena in spintronic nanostructures: from giant ...  

Science Conference Proceedings (OSTI)

Page 1. Exotic phenomena in spintronic nanostructures: from giant spin dependent tunneling to unconventional ferromagnetism SSP Parkin 1,2 ...

2012-09-11T23:59:59.000Z

192

Nanostructured Water Oxidation Catalysts - Energy Innovation ...  

Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient Oxygen-Evolving Catalysts. Angewandte Chemie International Edition. Vol. 28: ...

193

Investigation into Nanostructured Lanthanum Halides and CeBr{sub 3} for Nuclear Radiation Detection  

Science Conference Proceedings (OSTI)

This slide-show presents work on radiation detection with nanostructured lanthanum halides and CeBr{sub 3}. The goal is to extend the gamma energy response on both low and high-energy regimes by demonstrating the ability to detect low-energy x-rays and relatively high-energy activation prompt gamma rays simultaneously using the nano-structured lanthanum bromide, lanthanum fluoride, cerium bromide, or other nanocrystal material. Homogeneous and nano structure cases are compared.

Guss, P., Guise, R., Mukhopadhyay, S., Yuan, D.

2011-06-22T23:59:59.000Z

194

Vortex ice in nanostructured superconductors  

SciTech Connect

We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

195

2D LIDAR Aided INS for Vehicle Positioning in Urban Environments  

E-Print Network (OSTI)

residual formation and EKF LIDAR aiding methods. Section VIintensity. Utilization of 2D LIDAR in localization has a2D LIDAR Aided INS for Vehicle Positioning in Urban

Zhao, Sheng; Farrell, Jay A.

2013-01-01T23:59:59.000Z

196

Nanostructured Magnetoelectrics & Multiferroics  

Science Conference Proceedings (OSTI)

Recent developments on synthesis, characterization and theoretical modeling of these materials as well as their behaviour at the nanoscale will be presented ...

197

Instantons in the Quantum Framework of 2D Gravity  

E-Print Network (OSTI)

We analyze the non--perturbative features of 2D quantum gravity defined by stochastic regularization of the unstable matrix model showing, first, that the WKB approximation of the well-defined quantum Fokker-Planck hamiltonian corresponds to the semiclassical eigenvalue density of the former. The double scaled potential exhibits an instanton--like behaviour, which is universal and scales, but whose interpretation in terms of pure gravity is still open.

J. Luis Miramontes; Joaquin Sanchez Guillen

1991-10-18T23:59:59.000Z

198

On the effective shear speed in 2D phononic crystals  

E-Print Network (OSTI)

The quasistatic limit of the antiplane shear-wave speed ('effective speed') $c$ in 2D periodic lattices is studied. Two new closed-form estimates of $c$ are derived by employing two different analytical approaches. The first proceeds from a standard background of the plane wave expansion (PWE). The second is a new approach, which resides in $\\mathbf{x}$-space and centers on the monodromy matrix (MM) introduced in the 2D case as the multiplicative integral, taken in one coordinate, of a matrix with components being the operators with respect to the other coordinate. On the numerical side, an efficient PWE-based scheme for computing $c$ is proposed and implemented. The analytical and numerical findings are applied to several examples of 2D square lattices with two and three high-contrast components, for which the new PWE and MM estimates are compared with the numerical data and with some known approximations. It is demonstrated that the PWE estimate is most efficient in the case of densely packed stiff inclusions, especially when they form a symmetric lattice, while in general it is the MM estimate that provides the best overall fitting accuracy.

A. A. Kutsenko; A. L. Shuvalov; A. N. Norris; O. Poncelet

2011-06-27T23:59:59.000Z

199

Nanostructures and Lithium Electrochemical Reactivity of Lithium Titanites and Titanium Oxides: A Review  

SciTech Connect

Being inherently safe and chemically compatible with the electrolyte, titanium oxidebased materials, including both Li-titanites and various TiO2-polymorphs, are considered alternatives to carbonaceous anodes in Li-ion batteries. Given the commercial success of the spinel lithium titanites, TiO2-polymorphs, in particular in nanostructured forms, have been fabricated and investigated for the applications. Nanostructuring leads to increased reaction areas, shortened Li+ diffusion and potentially enhanced solubility/capacity. Integration with an electron conductive second phase into the TiO2-based nanostructures eases the electron transport, resulting in further improved lithium electrochemical activity and the overall electrochemical performance. This paper reviews structural characteristics and Li-electrochemical reactivity, along with synthetic approaches, of nanostructures and nano-composites based on lithium titanites and TiO2-polymorphs that include rutile, anatase, bronze and brookite.

Yang, Zhenguo; Choi, Daiwon; Kerisit, Sebastien N.; Rosso, Kevin M.; Wang, Donghai; Zhang, Jiguang; Graff, Gordon L.; Liu, J.

2009-07-15T23:59:59.000Z

200

METALLIC AND HYBRID NANOSTRUCTURES: FUNDAMENTALS AND APPLICATIONS  

SciTech Connect

This book chapter presents an overview of research conducted in our laboratory on preparation, optical and physico-chemical properties of metallic and nanohybrid materials. Metallic nanoparticles, particularly gold, silver, platinum or a combination of those are the main focus of this review manuscript. These metallic nanoparticles were further functionalized and used as templates for creation of complex and ordered nanomaterials with tailored and tunable structural, optical, catalytic and surface properties. Controlling the surface chemistry on/off metallic nanoparticles allows production of advanced nanoarchitectures. This includes coupled or encapsulated core-shell geometries, nano-peapods, solid or hollow, monometallic/bimetallic, hybrid nanoparticles. Rational assemblies of these nanostructures into one-, two- and tridimensional nano-architectures is described and analyzed. Their sensing, environmental and energy related applications are reviewed.

Murph, S.

2012-05-02T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals  

E-Print Network (OSTI)

Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices.

Ian B. Burgess; Joanna Aizenberg; Marko Loncar

2012-11-29T23:59:59.000Z

202

Nanostructures for medical diagnostics  

Science Conference Proceedings (OSTI)

Nanotechnology is the art of manipulating materials on atomic or molecular scales especially to build nanoscale structures and devices. The field is expanding quickly, and a lot of work is ongoing in the design, characterization, synthesis, and application ...

Md. Motasim Bellah; Shawn M. Christensen; Samir M. Iqbal

2012-01-01T23:59:59.000Z

203

Induced gravity and entanglement entropy of 2D black holes  

E-Print Network (OSTI)

Using the fact that 2D Newton constant is wholly induced by a conformal field theory, we derive a formula for the entanglement entropy of the anti-de Sitter black hole in two spacetime dimensions. The leading term in the large black hole mass expansion of our formula reproduces exactly the Bekenstein-Hawking entropy S_{BH}, whereas the subleading term behaves as ln S_{BH}. This subleading term has the universal form typical for the entanglement entropy of physical systems described by effective conformal fields theories (e.g. one-dimensional statistical models at the critical point).

Mariano Cadoni

2007-09-03T23:59:59.000Z

204

Exact solutions for the 2d one component plasma  

E-Print Network (OSTI)

The 2d one component gas of pointlike charges in a uniform neutralizing background interacting with a logarithmic potential is a common model for plasmas. In its classical equilibrium statistics at fixed temperature (canonical ensemble) it is formally related to certain types of random matrices with Gaussian distribution and complex eigenvalues. In this paper, I present an exact integration of this ensemble for $N$ such particles (or alternatively $N\\times N$ matrices) for all even non-negative temperatures, a significant open problem in statistical physics for several decades. I achieve this exact integration via an exact integration of a related ensemble, the two-dimensional Selberg integral.

Timothy D. Andersen

2011-11-02T23:59:59.000Z

205

Material-Independent Design of Photoluminescent Systems  

Nanomaterials have attracted much attention recently because of their unique functionality. Researchers at ORNL have discovered a method to make nonluminescent nanostructured materials luminescent (photoluminescent and/or electroluminescent), ...

206

Nanostructured thermoelectrics : big efficiency gains from small features.  

SciTech Connect

The field of thermoelectrics has progressed enormously and is now growing steadily because of recently demonstrated advances and strong global demand for cost-effective, pollution-free forms of energy conversion. Rapid growth and exciting innovative breakthroughs in the field over the last 10-15 years have occurred in large part due to a new fundamental focus on nanostructured materials. As a result of the greatly increased research activity in this field, a substantial amount of new data - especially related to materials - have been generated. Although this has led to stronger insight and understanding of thermoelectric principles, it has also resulted in misconceptions and misunderstanding about some fundamental issues. This article sets out to summarize and clarify the current understanding in this field; explain the underpinnings of breakthroughs reported in the past decade; and provide a critical review of various concepts and experimental results related to nanostructured thermoelectrics. We believe recent achievements in the field augur great possibilities for thermoelectric power generation and cooling, and discuss future paths forward that build on these exciting nanostructuring concepts.

Vineis, C. J.; Shakouri, A.; Majumdar, A.; Kanatzidis, M. G.; Materials Science Division; Northwestern Univ.; Univ.of California at Santa Cruz; Univ. of California at Berkeley

2010-01-01T23:59:59.000Z

207

Laser wavelength effects in ultrafast near-field laser nanostructuring...  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser wavelength effects in ultrafast near-field laser nanostructuring of Si Title Laser wavelength effects in ultrafast near-field laser nanostructuring of Si Publication Type...

208

Superhydrophilic Nanostructure for Antifogging Glass - Energy ...  

Technology Marketing Summary Samuel Mao and a team of scientists at Berkeley Lab have created superhydrophilic nanostructures that can be used as a stable antifogging ...

209

Pseudocapacitive Properties of Nanostructured Transition Metal ...  

Science Conference Proceedings (OSTI)

Abstract Scope, Batteries and electrochemical capacitors (ECs) represent the most ... 3D Nanostructured Bicontinuous Electrodes: Path to Ultra-High Power and ...

210

Laser Created Nanostructured Aluminum Current Collector for ...  

Science Conference Proceedings (OSTI)

3D Nanostructured Bicontinuous Electrodes: Path to Ultra-High Power and Energy ... High Energy Density Lithium Capacitors Using Carbon-Carbon Electrodes.

211

The Molecular Foundry - Biological Nanostructures - Staff - Caroline...  

NLE Websites -- All DOE Office Websites (Extended Search)

Caroline Ajo-Franklin Overview Capabilities & Tools Staff Staff Publications User Publications Staff Scientist, Biological Nanostructures Facility cajo-franklin@lbl.gov...

212

Nanostructured manganese oxide clusters supported on ...  

2 evolution at nano-structured Mn oxide clusters in mesoporous silica under very mild conditions for the ?rst time. For driving the catalyst with

213

Condensation on superhydrophobic copper oxide nanostructures  

E-Print Network (OSTI)

Condensation is an important process in many power generation and water desalination technologies. Superhydrophobic nanostructured surfaces have unique condensation properties that may enhance heat transfer through a ...

Dou, Nicholas (Nicholas Gang)

2012-01-01T23:59:59.000Z

214

Thin Film and Nanostructure Processing Group Homepage  

Science Conference Proceedings (OSTI)

... The Thin Film and Nanostructure Processing Group is one of seven ... Deposition of thin films Electrodeposition of metals and alloys Evaporation of ...

2012-10-15T23:59:59.000Z

215

Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2  

Science Conference Proceedings (OSTI)

Materials with very low thermal conductivity are of high interest for both thermoelectric and optical phase-change applications. Synthetic nanostructuring is most promising to suppress thermal conductivity by scattering phonons, but challenges remain in producing bulk samples. We show that in crystalline AgSbTe2, a spontaneously-forming nanostructure leads to a suppression of thermal conductivity to a glass-like level. Our mappings of phonon mean-free-paths provide a novel bottom- up microscopic account of thermal conductivity, and also reveal intrinsic anisotropies associated with the nanostructure. Ground-state degeneracy in AgSbTe2 leads to the natural formation of nanoscale domains with different orderings on the cation sublattice, and correlated atomic displacements, which efficiently scatter phonons. This mechanism is general and points to a new avenue in nano- scale engineering of materials, to achieve low thermal conductivities for efficient thermoelectric converters and phase-change memory devices.

Abernathy, Douglas L [ORNL; Ehlers, Georg [ORNL; Huq, Ashfia [ORNL; Ma, Jie [ORNL; May, Andrew F [ORNL; McGuire, Michael A [ORNL; Sales, Brian C [ORNL; Delaire, Olivier A [ORNL; Hong, Tao [ORNL; Tian, Wei [ORNL

2013-01-01T23:59:59.000Z

216

Biomimetic soft lithography on curved nanostructured surfaces  

Science Conference Proceedings (OSTI)

In this paper a nano-molding process using a nature-created master is demonstrated. The eye of night moth Agotis exclamationis having 100nm-scale structures on a curved surface is used as biomimetic master mold from which nanostructures are replicated ... Keywords: Antireflective, Biomimetic, Nanostructures, Replication, Soft lithography

V. Auzelyte; V. Flauraud; V. J. Cadarso; T. Kiefer; J. Brugger

2012-09-01T23:59:59.000Z

217

Improved medical implants comes from nanostructuring  

NLE Websites -- All DOE Office Websites (Extended Search)

Improved medical implants comes from nanostructuring Improved medical implants comes from nanostructuring Improved medical implants comes from nanostructuring Together, LANL and Russia institutes modify metals to better match and integrate, or bond, with human bone tissue. April 3, 2012 Improved medical implants comes from nanostructuring In addition to possessing strength beyond what is possible in conventional pure metals, Biotanium(tm) has also been optimized for integration with living bone. Scientific studies of the attachment and growth of bone cells on Biotanium(tm) consistently show that these cells adhere better and grow significantly faster -- up to 20 times faster. ...nanostructuring remarkably improves other metal properties, including strength, cyclic load resistance, corrosion resistance, machinability, and

218

2D/3D registration algorithm for lung brachytherapy  

Science Conference Proceedings (OSTI)

Purpose: A 2D/3D registration algorithm is proposed for registering orthogonal x-ray images with a diagnostic CT volume for high dose rate (HDR) lung brachytherapy. Methods: The algorithm utilizes a rigid registration model based on a pixel/voxel intensity matching approach. To achieve accurate registration, a robust similarity measure combining normalized mutual information, image gradient, and intensity difference was developed. The algorithm was validated using a simple body and anthropomorphic phantoms. Transfer catheters were placed inside the phantoms to simulate the unique image features observed during treatment. The algorithm sensitivity to various degrees of initial misregistration and to the presence of foreign objects, such as ECG leads, was evaluated. Results: The mean registration error was 2.2 and 1.9 mm for the simple body and anthropomorphic phantoms, respectively. The error was comparable to the interoperator catheter digitization error of 1.6 mm. Preliminary analysis of data acquired from four patients indicated a mean registration error of 4.2 mm. Conclusions: Results obtained using the proposed algorithm are clinically acceptable especially considering the complications normally encountered when imaging during lung HDR brachytherapy.

Zvonarev, P. S. [McMaster University, Medical Physics and Applied Radiation Sciences, Hamilton, Ontario L8S 4L8 (Canada); Farrell, T. J.; Hunter, R.; Wierzbicki, M.; Hayward, J. E. [McMaster University, Medical Physics and Applied Radiation Sciences, Hamilton, Ontario L8S 4L8 (Canada); Juravinski Cancer Centre, Medical Physics, Hamilton, Ontario L8V 5C2 (Canada); Sur, R. K. [McMaster University, Medical Physics and Applied Radiation Sciences, Hamilton, Ontario L8S 4L8 (Canada); Juravinski Cancer Centre, Radiation Oncology, Hamilton, Ontario L8V 5C2 (Canada)

2013-02-15T23:59:59.000Z

219

Self-trapping dynamics in a 2D optical lattice  

E-Print Network (OSTI)

We describe theoretical models for the recent experimental observation of Macroscopic Quantum Self-Trapping (MQST) in the transverse dynamics of an ultracold bosonic gas in a 2D lattice. The pure mean-field model based on the solution of coupled nonlinear equations fails to reproduce the experimental observations. It greatly overestimates the initial expansion rates at short times and predicts a slower expansion rate of the cloud at longer times. It also predicts the formation of a hole surrounded by a steep square fort-like barrier which was not observed in the experiment. An improved theoretical description based on a simplified Truncated Wigner Approximation (TWA), which adds phase and number fluctuations in the initial conditions, pushes the theoretical results closer to the experimental observations but fails to quantitatively reproduce them. An explanation of the delayed expansion as a consequence of a new type of self-trapping mechanism, where quantum correlations suppress tunneling even when there are no density gradients, is discussed and supported by numerical time-dependent Density Matrix Renormalization Group (t-DMRG) calculations performed in a simplified two coupled tubes set-up.

Shuming Li; Salvatore R. Manmana; Ana Maria Rey; Rafael Hipolito; Aaron Reinhard; Jean-Félix Riou; Laura A. Zundel; David S. Weiss

2013-05-20T23:59:59.000Z

220

Simulating geomagnetic reversals through 2D Ising systems  

E-Print Network (OSTI)

In this work 2D Ising systems were used to simulate the reversals of the Earth's magnetic field. Each spin was supposed to be a ring current in the Earth dynamo and the magnetization to be proportional to the field intensity. Given the relative success of some physical few-discs modeling of this system all the simulations were implemented in small systems. The temperature T was used as a tunning parameter. It plays the role of external perturbations. Power laws were obtained for the distribution of times between reversals. When the system size was increased the exponent of the power law asymptotically tended towards values very near -1.5, generally accepted as the right value for this phenomenon. Depending on the proximity of T and Tc the average duration of reversal period changes. In this way it is possible to establish a parallel between the model and more or less well defined periods of the reversal record. Some possible trends for future works are advanced.

Jorge O. O. Franco; Vitor H. A. Dias; Andres R. R. Papa

2006-05-05T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Pressure-Tuning the Quantum Phase Transition in a Model 2-D Magnet |  

NLE Websites -- All DOE Office Websites (Extended Search)

Reappearing Superconductivity Surprises Scientists Reappearing Superconductivity Surprises Scientists Manipulating Genes with Hidden TALENs A New Discovery Answers an Old Question Peering into the Interfaces of Nanoscale Polymeric Materials Ironing Out the Details of the Earth's Core Science Highlights Archives: 2013 | 2012 | 2011 | 2010 2009 | 2008 | 2007 | 2006 2005 | 2004 | 2003 | 2002 2001 | 2000 | 1998 | Subscribe to APS Science Highlights rss feed Pressure-Tuning the Quantum Phase Transition in a Model 2-D Magnet APRIL 11, 2012 Bookmark and Share Argonne and University of Chicago physicist Sara Haravifard with the instrument on XSD beamline 6-ID-B at the APS used for the high-resolution, high-pressure structural measurements of SCBO at cryogenic temperatures. The fundamental interactions that determine how spins arrange themselves in

222

2D monolayers could yield thinnest solar cells ever  

NLE Websites -- All DOE Office Websites (Extended Search)

us: how with just two layers of material it is possible to absorb 10 percent of the solar spectrum and have a cell that is 2 percent efficient as a result." NERSC...

223

Sub-Nanostructured Non Transition Metal Complex Grids for Hydrogen Storage  

DOE Green Energy (OSTI)

This project involved growing sub-nanostructured metal grids to increase dynamic hydrogen storage capacity of metal hydride systems. The nano particles of any material have unique properties unlike its bulk form. Nano-structuring metal hydride materials can result in: {sm_bullet}Increased hydrogen molecule dissociation rate, {sm_bullet} Increased hydrogen atom transport rate, {sm_bullet} Decreased decrepitation caused by cycling, {sm_bullet} Increased energy transfer in the metal matrix, {sm_bullet} Possible additional contribution by physical adsorption, and {sm_bullet} Possible additional contribution by quantum effects The project succeeded in making nano-structured palladium using electrochemical growth in templates including zeolites, mesoporous silica, polycarbonate films and anodized alumina. Other metals were used to fine-tune the synthesis procedures. Palladium was chosen to demonstrate the effects of nano-structuring since its bulk hydrogen storage capacity and kinetics are well known. Reduced project funding was not sufficient for complete characterization of these materials for hydrogen storage application. The project team intends to seek further funding in the future to complete the characterization of these materials for hydrogen storage.

Dr. Orhan Talu; Dr. Surendra N. Tewari

2007-10-27T23:59:59.000Z

224

Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite  

Science Conference Proceedings (OSTI)

REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to today’s best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

None

2012-01-01T23:59:59.000Z

225

Nanoparticle modifications of photodefined nanostructures for energy applications.  

Science Conference Proceedings (OSTI)

The advancement of materials technology towards the development of novel 3D nanostructures for energy applications has been a long-standing challenge. The purpose of this project was to explore photolithographically defineable pyrolyzed photoresist carbon films for possible energy applications. The key attributes that we explored were as follows: (1) Photo-interferometric fabrication methods to produce highly porous (meso, micro, and nano) 3-D electrode structures, and (2) conducting polymer and nanoparticle-modification strategies on these structures to provide enhanced catalytic capabilities and increase conductivity. The resulting electrodes were then explored for specific applications towards possible use in battery and energy platforms.

Polsky, Ronen; Xiao, Xiaoyin; Burckel, David Bruce; Brozik, Susan Marie; Washburn, Cody M.; Wheeler, David Roger

2011-10-01T23:59:59.000Z

226

Ferroelectric nanostructure having switchable multi-stable vortex states  

DOE Patents (OSTI)

A ferroelectric nanostructure formed as a low dimensional nano-scale ferroelectric material having at least one vortex ring of polarization generating an ordered toroid moment switchable between multi-stable states. A stress-free ferroelectric nanodot under open-circuit-like electrical boundary conditions maintains such a vortex structure for their local dipoles when subject to a transverse inhomogeneous static electric field controlling the direction of the macroscopic toroidal moment. Stress is also capable of controlling the vortex's chirality, because of the electromechanical coupling that exists in ferroelectric nanodots.

Naumov, Ivan I. (Fayetteville, AR); Bellaiche, Laurent M. (Fayetteville, AR); Prosandeev, Sergey A. (Fayetteville, AR); Ponomareva, Inna V. (Fayetteville, AR); Kornev, Igor A. (Fayetteville, AR)

2009-09-22T23:59:59.000Z

227

Emission spectra analysis of arc plasma for synthesis of carbon nanostructures in various magnetic conditions  

SciTech Connect

Arc discharge supported by the erosion of anode materials is one of the most practical and efficient methods to synthesize various high-quality carbon nanostructures. By introducing a non-uniform magnetic field in arc plasmas, high-purity single-walled carbon nanotubes (SWCNT) and large-scale graphene flakes can be obtained in a single step. In this paper, ultraviolet-visible emission spectra of arc in different spots under various magnetic conditions are analyzed to provide an in situ investigation for transformation processes of evaporated species and growth of carbon nanostructures in arc. Based on the arc spectra of carbon diatomic Swan bands, vibrational temperature in arc is determined. The vibrational temperature in arc center was measured around 6950 K, which is in good agreement with our simulation results. Experimental and simulation results suggest that SWCNT are formed in the arc periphery region. Transmission electronic microscope and Raman spectroscope are also employed to characterize the properties of carbon nanostructures.

Li Jian; Kundrapu, Madhusudhan; Shashurin, Alexey; Keidar, Michael [Department of Mechanical and Aerospace Engineering, George Washington University, Washington, DC 20052 (United States)

2012-07-15T23:59:59.000Z

228

STRUCTURAL FLUCTUATIONS, ELECTRICAL RESPONSE AND THE RELIABILITY OF NANOSTRUCTURES (FINAL REPORT)  

SciTech Connect

The goal of the research supported by DOE-FG02-01ER45939 was to synthesize a number of experimental and theoretical approaches to understand the relationship between morphological fluctuations, the electrical response and the reliability (failure) of metallic nanostructures. The primary focus of our work was the study of metallic nanowires which we regard as prototypical of nanoscale interconnects. Our research plan has been to link together these materials properties and behaviors by understanding the phenomenon of, and the effects of electromigration at nanometer length scales. The thrust of our research has been founded on the concept that, for nanostructures where the surface-to-volume ratio is necessarily high, surface diffusion is the dominant mass transport mechanism that governs the fluctuations, electrical properties and failure modes of nanostructures. Our approach has been to develop experimental methods that permit the direct imaging of the electromagnetic distributions within nanostructures, their structural fluctuations and their electrical response. This experimental research is complemented by a parallel theoretical and computational program that describes the temporal evolution of nanostructures in response to current flow.

Philip J. Rous; Ellen D. Williams; Michael S. Fuhrer

2006-07-31T23:59:59.000Z

229

Investigation into Nanostructured Lanthanum Halides and CeBr3 for Nuclear Radiation Detection  

SciTech Connect

Nanocomposites may enable the use of scintillator materials such as cerium-doped lanthanum fluoride (LaF3:Ce) and cerium bromide (CeBr3) without requiring the growth of large crystals [1]. Nanostructured detectors may allow us to engineer immensely sized detectors of flexible form factors that will have a broad energy range and an energy resolution sufficient to perform isotopic identification. Furthermore, nanocomposites are easy to prepare and very low in cost. It is much less costly to use nanocomposites rather than grow large whole crystals of scintillator materials; with nanocomposites fabricated on an industrial scale, costs are even less. Nanostructured radiation scintillator detectors may improve quantum efficiency and provide vastly improved detector form factors. Quantum efficiencies up to 60% have been seen in photoluminescence from silicon nanocrystals in a densely-packed ensemble [2]. We have fabricated nanoparticles with sizes <10 nm and characterized their nanocomposite radiation detector properties. This work investigates the properties of the nanostructured radiation scintillator in order to extend the gamma energy response on both low- and high-energy regimes by demonstrating the ability to detect low-energy x-rays and relatively high-energy activation prompt gamma rays simultaneously using nanostructured lanthanum bromide, lanthanum fluoride, or CeBr3. Preliminary results of this investigation are consistent with a significant response of these materials to nuclear radiation.

Guss, P. P., Guise, R., Mukhopadhyay, S., Yuan, D.

2011-07-06T23:59:59.000Z

230

SLAC National Accelerator Laboratory - New Nanostructure for...  

NLE Websites -- All DOE Office Websites (Extended Search)

New Nanostructure for Batteries Keeps Going and Going ... By Mike Ross May 10, 2012 For more than a decade, scientists have tried to improve lithium-based batteries by replacing...

231

Kinematic and dynamic modeling of Nanostructured Origami  

E-Print Network (OSTI)

Nanostructured Origami is a manufacturing process that folds nanopatterned thin films into a desired 3D shape. This process extends the properties of 3D design and connectivity found in origami artwork to the bulk fabrication ...

Stellman, Paul Steven

2006-01-01T23:59:59.000Z

232

Heterogeneous Metallurgical Patterning of Semiconducting Oxide Nanostructures.  

E-Print Network (OSTI)

??By directly heating a surface-dezincified polycrystalline brass (Cu70Zn30 alloy) in ambient conditions, semiconductor nanostructure networks composed of CuO nanofilm and ZnO nanowires have been successfully… (more)

Sarac, Mehmet F

2010-01-01T23:59:59.000Z

233

Nanostructured Solid Oxide Fuel Cell Electrodes  

E-Print Network (OSTI)

in Solid Oxide Fuel Cells (SOFC IX), S. C. Singhal and J.create connected nanostructured SOFC electrodes is reviewed.of Solid Oxide Fuel Cells (SOFC) to directly and efficiently

Sholklapper, Tal Zvi

2007-01-01T23:59:59.000Z

234

Dynamic Electron Control using Light and Nanostructure.  

E-Print Network (OSTI)

??The advent of nano-technology has made possible the manipulation of electron or light through nanostructures. For example, a nano-tip in near-field optical microscopy allows imaging… (more)

Huang, Cheng-Wei

2013-01-01T23:59:59.000Z

235

Correlated exciton dynamics in semiconductor nanostructures  

E-Print Network (OSTI)

The absorption and dissipation of energy in semiconductor nanostructures are often determined by excited electron dynamics. In semiconductors, one fundamentally important electronic state is an exciton, an excited electron ...

Wen, Patrick, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

236

Extreme solid state refrigeration using nanostructured Bi-Te alloys.  

SciTech Connect

Materials are desperately needed for cryogenic solid state refrigeration. We have investigated nanostructured Bi-Te alloys for their potential use in Ettingshausen refrigeration to liquid nitrogen temperatures. These alloys form alternating layers of Bi{sub 2} and Bi{sub 2}Te{sub 3} blocks in equilibrium. The composition Bi{sub 4}Te{sub 3} was identified as having the greatest potential for having a high Ettingshausen figure of merit. Both single crystal and polycrystalline forms of this material were synthesized. After evaluating the Ettingshausen figure of merit for a large, high quality polycrystal, we simulated the limits of practical refrigeration in this material from 200 to 77 K using a simple device model. The band structure was also computed and compared to experiments. We discuss the crystal growth, transport physics, and practical refrigeration potential of Bi-Te alloys.

Lima Sharma, Ana L. (San Jose State University, San Jose, CA); Spataru, Dan Catalin; Medlin, Douglas L.; Sharma, Peter Anand; Morales, Alfredo Martin

2009-09-01T23:59:59.000Z

237

Gold nanostructures and methods of use  

DOE Patents (OSTI)

The invention is drawn to novel nanostructures comprising hollow nanospheres and nanotubes for use as chemical sensors, conduits for fluids, and electronic conductors. The nanostructures can be used in microfluidic devices, for transporting fluids between devices and structures in analytical devices, for conducting electrical currents between devices and structure in analytical devices, and for conducting electrical currents between biological molecules and electronic devices, such as bio-microchips.

Zhang, Jin Z. (Santa Cruz, CA); Schwartzberg, Adam (Santa Cruz, CA); Olson, Tammy Y. (Santa Cruz, CA)

2012-03-20T23:59:59.000Z

238

Production of fullerenic nanostructures in flames  

DOE Patents (OSTI)

A method for the production of fullerenic nanostructures is described in which unsaturated hydrocarbon fuel and oxygen are combusted in a burner chamber at a sub-atmospheric pressure, thereby establishing a flame. The condensibles of the flame are collected at a post-flame location. The condensibles contain fullerenic nanostructures, such as single and nested nanotubes, single and nested nanoparticles and giant fullerenes. The method of producing fullerenic soot from flames is also described.

Howard, Jack B. (Winchester, MA); Vander Sande, John B. (Newbury, MA); Chowdhury, K. Das (Cambridge, MA)

1999-01-01T23:59:59.000Z

239

Method for cooling nanostructures to microkelvin temperatures  

Science Conference Proceedings (OSTI)

We propose a new scheme aimed at cooling nanostructures to microkelvin temperature based on the well established technique of adiabatic nuclear demagnetization: we attach each device measurement lead to an individual nuclear refrigerator, allowing efficient thermal contact to a microkelvin bath. On a prototype consisting of a parallel network of nuclear refrigerators, temperatures of {approx}1 mK simultaneously on ten measurement leads have been reached upon demagnetization, thus completing the first steps toward ultracold nanostructures.

Clark, A. C.; Schwarzwaelder, K. K.; Bandi, T.; Maradan, D.; Zumbuehl, D. M. [Department of Physics, University of Basel, Klingelbergstrasse 82, Basel CH-4056 (Switzerland)

2010-10-15T23:59:59.000Z

240

Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

is inserted in the middle of the image based on the structure model c with the atomic ratio of Pb:Ag:Sb in Pb Ag Sb site being 50:25:25 in c. c Structure model...

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Nanostructures  

Science Conference Proceedings (OSTI)

May 28, 2010... Lincoln Laboratory, Lexington, MA, USA; Rajaram Bhat, Corning Inc .... Area Growth: Wui Hean Goh1; Gilles Patriarche2; Peter Bonanno1; ...

242

Data:Bef2d82a-31eb-4fde-8533-2d38bc6f7da3 | Open Energy Information  

Open Energy Info (EERE)

Bef2d82a-31eb-4fde-8533-2d38bc6f7da3 Bef2d82a-31eb-4fde-8533-2d38bc6f7da3 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Crisp County Power Comm Effective date: 2012/06/01 End date if known: Rate name: Fuel Cost Recovery Schedule- Secondary Distribution Sector: Commercial Description: This schedule is applicable to and becomes a part of each retail rate schedule in which reference is mad to the Fuel Cost Recovery Schedule. This provision applies to both regular and minimum bills. Secondary Distribution Customers= Any customer not defined as a transmission or primary distribution customer.

243

Data:436bd023-2d2d-4202-b859-0b278bb80ef2 | Open Energy Information  

Open Energy Info (EERE)

bd023-2d2d-4202-b859-0b278bb80ef2 bd023-2d2d-4202-b859-0b278bb80ef2 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: City of Perry, Oklahoma (Utility Company) Effective date: End date if known: Rate name: Residential- All-Electric Sector: Residential Description: Source or reference: http://www.cityofperryok.com/Files/Codes/City_Code_101211.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous

244

Commercial Implementation of Model-Based Manufacturing of Nanostructured Metals  

SciTech Connect

Computational modeling is an essential tool for commercial production of nanostructured metals. Strength is limited by imperfections at the high strength levels that are achievable in nanostructured metals. Processing to achieve homogeneity at the micro- and nano-scales is critical. Manufacturing of nanostructured metals is intrinsically a multi-scale problem. Manufacturing of nanostructured metal products requires computer control, monitoring and modeling. Large scale manufacturing of bulk nanostructured metals by Severe Plastic Deformation is a multi-scale problem. Computational modeling at all scales is essential. Multiple scales of modeling must be integrated to predict and control nanostructural, microstructural, macrostructural product characteristics and production processes.

Lowe, Terry C. [Los Alamos National Laboratory

2012-07-24T23:59:59.000Z

245

Titanate and titania nanostructures and nanostructure assemblies, and methods of making same  

DOE Patents (OSTI)

The invention relates to nanomaterials and assemblies including, a micrometer-scale spherical aggregate comprising: a plurality of one-dimensional nanostructures comprising titanium and oxygen, wherein the one-dimensional nanostructures radiate from a hollow central core thereby forming a spherical aggregate.

Wong, Stanislaus S; Mao, Yuanbing

2013-05-14T23:59:59.000Z

246

Multiscale modeling and analysis of nanofibers and nonwoven materials  

E-Print Network (OSTI)

Nanostructured fibrous materials have been made more readily available in large part owing to recent advances in electrospinning, which is a technique for the production of nanofibers with diameters down to the range of a ...

Buell, Sezen

2010-01-01T23:59:59.000Z

247

2D/3D Data Registration and Fusion - Programmaster.org  

Science Conference Proceedings (OSTI)

This talk will introduce the concepts behind data fusion and current algorithms to register 2D/3D data sets obtained using various experimental imaging ...

248

Mesh Requirement Investigation for 2D and 3D Aerodynamic Simulation of Vertical Axis Wind Turbines.  

E-Print Network (OSTI)

??The accuracy of a Computational Fluid Dynamics (CFD) model to capture the complex flow around a small vertical axis wind turbine (VAWT) on 2D and… (more)

Naghib Zadeh, Saman

2013-01-01T23:59:59.000Z

249

NCNR Quantum Impurities in the 2 D Spin One-Half ...  

Science Conference Proceedings (OSTI)

... The hope for insight into the physics of high temperature superconductors has generated enormous interest in the case of the two-dimensional (2 D ...

250

OECD/MCCI 2-D Core Concrete Interaction (CCI) tests : final report February 28, 2006.  

SciTech Connect

Although extensive research has been conducted over the last several years in the areas of Core-Concrete Interaction (CCI) and debris coolability, two important issues warrant further investigation. The first issue concerns the effectiveness of water in terminating a CCI by flooding the interacting masses from above, thereby quenching the molten core debris and rendering it permanently coolable. This safety issue was investigated in the EPRI-sponsored Melt Attack and Coolability Experiments (MACE) program. The approach was to conduct large scale, integral-type reactor materials experiments with core melt masses ranging up to two metric tons. These experiments provided unique, and for the most part repeatable, indications of heat transfer mechanism(s) that could provide long term debris cooling. However, the results did not demonstrate definitively that a melt would always be completely quenched. This was due to the fact that the crust anchored to the test section sidewalls in every test, which led to melt/crust separation, even at the largest test section lateral span of 1.20 m. This decoupling is not expected for a typical reactor cavity, which has a span of 5-6 m. Even though the crust may mechanically bond to the reactor cavity walls, the weight of the coolant and the crust itself is expected to periodically fracture the crust and restore contact with the melt. Although crust fracturing does not ensure that coolability will be achieved, it nonetheless provides a pathway for water to recontact the underlying melt, thereby allowing other debris cooling mechanisms to proceed. A related task of the current program, which is not addressed in this particular report, is to measure crust strength to check the hypothesis that a corium crust would not be strong enough to sustain melt/crust separation in a plant accident. The second important issue concerns long-term, two-dimensional concrete ablation by a prototypic core oxide melt. As discussed by Foit the existing reactor material database for dry cavity conditions is solely one-dimensional. Although the MACE Scoping Test was carried out with a two-dimensional concrete cavity, the interaction was flooded soon after ablation was initiated to investigate debris coolability. Moreover, due to the scoping nature of this test, the apparatus was minimally instrumented and therefore the results are of limited value from the code validation viewpoint. Aside from the MACE program, the COTELS test series also investigated 2-D CCI under flooded cavity conditions. However, the input power density for these tests was quite high relative to the prototypic case. Finally, the BETA test series provided valuable data on 2-D core concrete interaction under dry cavity conditions, but these tests focused on investigating the interaction of the metallic (steel) phase with concrete. Due to these limitations, there is significant uncertainty in the partition of energy dissipated for the ablation of concrete in the lateral and axial directions under dry cavity conditions for the case of a core oxide melt. Accurate knowledge of this 'power split' is important in the evaluation of the consequences of an ex-vessel severe accident; e.g., lateral erosion can undermine containment structures, while axial erosion can penetrate the basemat, leading to ground contamination and/or possible containment bypass. As a result of this uncertainty, there are still substantial differences among computer codes in the prediction of 2-D cavity erosion behavior under both wet and dry cavity conditions. In light of the above issues, the OECD-sponsored Melt Coolability and Concrete Interaction (MCCI) program was initiated at Argonne National Laboratory. The project conducted reactor materials experiments and associated analysis to achieve the following technical objectives: (1) resolve the ex-vessel debris coolability issue through a program that focused on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties relat

Farmer, M. T.; Lomperski, S.; Kilsdonk, D. J.; Aeschlimann, R. W.; Basu, S. (Nuclear Engineering Division); (NRC)

2011-05-23T23:59:59.000Z

251

Nanostructured electrocatalyst for fuel cells : silica templated synthesis of Pt/C composites.  

DOE Green Energy (OSTI)

Platinum-based electrocatalysts are currently required for state-of-the-art fuel cells and represent a significant portion of the overall fuel cell cost. If fuel cell technology is to become competitive with other energy conversion technologies, improve the utilization of precious metal catalysts is essential. A primary focus of this work is on creating enhanced nanostructured materials which improve precious-metal utilization. The goal is to engineer superior electrocatalytic materials through the synthesis, development and investigation of novel templated open frame structures synthesized in an aerosol-based approach. Bulk templating methods for both Pt/C and Pt-Ru composites are evaluated in this study and are found to be limited due to the fact that the nanostructure is not maintained throughout the entire sample. Therefore, an accurate examination of structural effects was previously impossible. An aerosol-based templating method of synthesizing nanostructured Pt-Ru electrocatalysts has been developed wherein the effects of structure can be related to electrocatalytic performance. The aerosol-based templating method developed in this work is extremely versatile as it can be conveniently modified to synthesize alternative materials for other systems. The synthesis method was able to be extended to nanostructured Pt-Sn for ethanol oxidation in alkaline media. Nanostructured Pt-Sn electrocatalysts were evaluated in a unique approach tailored to electrocatalytic studies in alkaline media. At low temperatures, nanostructured Pt-Sn electrocatalysts were found to have significantly higher ethanol oxidation activity than a comparable nanostructured Pt catalyst. At higher temperatures, the oxygen-containing species contribution likely provided by Sn is insignificant due to a more oxidized Pt surface. The importance of the surface coverage of oxygen-containing species in the reaction mechanism is established in these studies. The investigations in this work present original studies of anion exchange ionomers as entrapment materials for rotating disc electrode (RDE) studies in alkaline media. Their significance is linked to the development of membrane electrode assemblies (MEAs) with the same ionomer for a KOH-free alkaline fuel cell (AFC).

Stechel, Ellen Beth; Switzer, Elise E.; Fujimoto, Cy H.; Atanassov, Plamen Borissov; Cornelius, Christopher James; Hibbs, Michael R.

2007-09-01T23:59:59.000Z

252

SunShot Initiative: High-Performance Nanostructured Coating  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Performance Nanostructured High-Performance Nanostructured Coating to someone by E-mail Share SunShot Initiative: High-Performance Nanostructured Coating on Facebook Tweet about SunShot Initiative: High-Performance Nanostructured Coating on Twitter Bookmark SunShot Initiative: High-Performance Nanostructured Coating on Google Bookmark SunShot Initiative: High-Performance Nanostructured Coating on Delicious Rank SunShot Initiative: High-Performance Nanostructured Coating on Digg Find More places to share SunShot Initiative: High-Performance Nanostructured Coating on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

253

Microwave Plasma Chemical Vapor Depositon of Nano-Structured...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plasma Chemical Vapor Depositon of Nano-Structured SnC Composite Thin-Film anodes for Li-ion Battteries Title Microwave Plasma Chemical Vapor Depositon of Nano-Structured SnC...

254

Lensless Imaging of Magnetic Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Magnetic Nanostructures Print Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the first time to nanometer-scale magnetic structures in an alloy. Many Ways To See You open your eyes and detect the light rays streaming through your bedroom window (transmission), illuminating your socks on the floor (scattering). You put on your glasses (refraction) to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the arrangement of the atoms in the crystal (diffraction). Now, thanks to Turner et al., you can also shine some x-ray light on a magnetic sample to detect the arrangement of its electron spins through a method known as lensless imaging. This last example is an equally valid way to "see," but instead of using windows, lenses, or mirrors to manipulate light and construct an image, mathematical formulas are used to describe the effects that particles and fields in the sample have on the light. These formulas have always contained terms that relate to the electron spin of magnetic atoms, but they were previously ignored. Using the full formula allows for the determination of not only crystal structure, but magnetic spin distribution and orientation as well, with a spatial resolution limited only by the wavelength of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering the potential for imaging in unprecedented detail the structure and motion of boundaries between regions with different magnetic orientation.

255

Lensless Imaging of Magnetic Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Magnetic Nanostructures Print Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the first time to nanometer-scale magnetic structures in an alloy. Many Ways To See You open your eyes and detect the light rays streaming through your bedroom window (transmission), illuminating your socks on the floor (scattering). You put on your glasses (refraction) to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the arrangement of the atoms in the crystal (diffraction). Now, thanks to Turner et al., you can also shine some x-ray light on a magnetic sample to detect the arrangement of its electron spins through a method known as lensless imaging. This last example is an equally valid way to "see," but instead of using windows, lenses, or mirrors to manipulate light and construct an image, mathematical formulas are used to describe the effects that particles and fields in the sample have on the light. These formulas have always contained terms that relate to the electron spin of magnetic atoms, but they were previously ignored. Using the full formula allows for the determination of not only crystal structure, but magnetic spin distribution and orientation as well, with a spatial resolution limited only by the wavelength of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering the potential for imaging in unprecedented detail the structure and motion of boundaries between regions with different magnetic orientation.

256

Lensless Imaging of Magnetic Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Magnetic Lensless Imaging of Magnetic Nanostructures Lensless Imaging of Magnetic Nanostructures Print Wednesday, 28 March 2012 00:00 Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the first time to nanometer-scale magnetic structures in an alloy. Many Ways To See You open your eyes and detect the light rays streaming through your bedroom window (transmission), illuminating your socks on the floor (scattering). You put on your glasses (refraction) to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the arrangement of the atoms in the crystal (diffraction). Now, thanks to Turner et al., you can also shine some x-ray light on a magnetic sample to detect the arrangement of its electron spins through a method known as lensless imaging. This last example is an equally valid way to "see," but instead of using windows, lenses, or mirrors to manipulate light and construct an image, mathematical formulas are used to describe the effects that particles and fields in the sample have on the light. These formulas have always contained terms that relate to the electron spin of magnetic atoms, but they were previously ignored. Using the full formula allows for the determination of not only crystal structure, but magnetic spin distribution and orientation as well, with a spatial resolution limited only by the wavelength of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering the potential for imaging in unprecedented detail the structure and motion of boundaries between regions with different magnetic orientation.

257

Lensless Imaging of Magnetic Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Magnetic Nanostructures Print Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the first time to nanometer-scale magnetic structures in an alloy. Many Ways To See You open your eyes and detect the light rays streaming through your bedroom window (transmission), illuminating your socks on the floor (scattering). You put on your glasses (refraction) to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the arrangement of the atoms in the crystal (diffraction). Now, thanks to Turner et al., you can also shine some x-ray light on a magnetic sample to detect the arrangement of its electron spins through a method known as lensless imaging. This last example is an equally valid way to "see," but instead of using windows, lenses, or mirrors to manipulate light and construct an image, mathematical formulas are used to describe the effects that particles and fields in the sample have on the light. These formulas have always contained terms that relate to the electron spin of magnetic atoms, but they were previously ignored. Using the full formula allows for the determination of not only crystal structure, but magnetic spin distribution and orientation as well, with a spatial resolution limited only by the wavelength of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering the potential for imaging in unprecedented detail the structure and motion of boundaries between regions with different magnetic orientation.

258

Lensless Imaging of Magnetic Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless Imaging of Magnetic Nanostructures Print Lensless Imaging of Magnetic Nanostructures Print Magnetism is useful for many devices and techniques, from electric motors and computer hard drives to magnetic resonance imaging used in medicine. By studying the basics of magnetism, scientists aim to better understand the fundamental physical principles that govern magnetic systems, perhaps leading to important new technologies. The high brightness and coherence of the ALS's soft x-rays have enabled scientists to apply lensless x-ray imaging for the first time to nanometer-scale magnetic structures in an alloy. Many Ways To See You open your eyes and detect the light rays streaming through your bedroom window (transmission), illuminating your socks on the floor (scattering). You put on your glasses (refraction) to detect the state of your image in the mirror (reflection). If you are an ALS scientist, perhaps you go to work and shine some x-ray light on a crystal to detect the arrangement of the atoms in the crystal (diffraction). Now, thanks to Turner et al., you can also shine some x-ray light on a magnetic sample to detect the arrangement of its electron spins through a method known as lensless imaging. This last example is an equally valid way to "see," but instead of using windows, lenses, or mirrors to manipulate light and construct an image, mathematical formulas are used to describe the effects that particles and fields in the sample have on the light. These formulas have always contained terms that relate to the electron spin of magnetic atoms, but they were previously ignored. Using the full formula allows for the determination of not only crystal structure, but magnetic spin distribution and orientation as well, with a spatial resolution limited only by the wavelength of x-rays used. This promising method can be used at any coherent light source, including modern x-ray free-electron lasers, where ultrashort pulses would freeze-frame magnetic changes, offering the potential for imaging in unprecedented detail the structure and motion of boundaries between regions with different magnetic orientation.

259

One-Dimensional ZnO Nanostructures for Photonic and ...  

Science Conference Proceedings (OSTI)

Approaching Multimaterial 3D Nanostructured Gas Phase Nanoxerographic Printers · Carbon Nanotube Coatings Laser Power and Energy Measurements.

260

Development of Nanostructured Composite Electrodes for All Solid ...  

Science Conference Proceedings (OSTI)

Approaching Multimaterial 3D Nanostructured Gas Phase Nanoxerographic Printers · Carbon Nanotube Coatings Laser Power and Energy Measurements.

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

One-Dimensional Nanostructures of Transition Metal Oxides with ...  

Science Conference Proceedings (OSTI)

Approaching Multimaterial 3D Nanostructured Gas Phase Nanoxerographic Printers · Carbon Nanotube Coatings Laser Power and Energy Measurements.

262

Nanostructuring of Microporous Carbons with Carbon Nanotubes for ...  

Science Conference Proceedings (OSTI)

Presentation Title, Nanostructuring of Microporous Carbons with Carbon Nanotubes for Efficient Carbon Dioxide Capture. Author(s), Stephen C. Hawkins,  ...

263

A comparison of line extraction algorithms using 2D range data for indoor mobile robotics  

Science Conference Proceedings (OSTI)

This paper presents an experimental evaluation of different line extraction algorithms applied to 2D laser scans for indoor environments. Six popular algorithms in mobile robotics and computer vision are selected and tested. Real scan data collected ... Keywords: 2D range data, Line extraction algorithm, Mobile robotics

Viet Nguyen; Stefan Gächter; Agostino Martinelli; Nicola Tomatis; Roland Siegwart

2007-08-01T23:59:59.000Z

264

2D meets 3D: a human-centered interface for visual data exploration  

Science Conference Proceedings (OSTI)

There is still a controversial debate on the usefulness of 3D user interfaces. Most of the time, 2D metaphors are force-fitted to establish a rich set of functionality. With the aim of shifting the 20-year-old 2D WIMP (windows, icons, menus, and pointing ... Keywords: human-computer interaction, virtual environments, visual data exploration

Sebastian Baumgärtner; Achim Ebert; Matthias Deller; Stefan Agne

2007-04-01T23:59:59.000Z

265

Wind Tunnel and Field Test of Three 2D Sonic Anemometers  

E-Print Network (OSTI)

Wind Tunnel and Field Test of Three 2D Sonic Anemometers Wiel Wauben R&D Information and Observation Technology, KNMI September 17, 2007 #12;#12;Wind Tunnel and Field Test of Three 2D Sonic.....................................................................................................1 2. Wind sensors

Stoffelen, Ad

266

Trace anomaly and Hawking effect in 2D dilaton gravity theories  

E-Print Network (OSTI)

We investigate the classical and semiclassical features of generic 2D, matter-coupled, dilaton gravity theories. In particular, we show that the mass, the temperature and the flux of Hawking radiation associated with 2D black holes are invariant under dilaton-dependent Weyl rescalings of the metric. The relationship between quantum anomalies and Hawking radiation is discussed.

Mariano Cadoni

1996-12-16T23:59:59.000Z

267

Assessment of GPU computational enhancement to a 2D flood model  

Science Conference Proceedings (OSTI)

This paper presents a study of the computational enhancement of a Graphics Processing Unit (GPU) enabled 2D flood model. The objectives are to demonstrate the significant speedup of a new GPU-enabled full dynamic wave flood model and to present the effect ... Keywords: 2D flood model, CUDA, Flood simulation, GPU programming

Alfred J. Kalyanapu; Siddharth Shankar; Eric R. Pardyjak; David R. Judi; Steven J. Burian

2011-08-01T23:59:59.000Z

268

A visibility algorithm for converting 3D meshes into editable 2D vector graphics  

Science Conference Proceedings (OSTI)

Artists often need to import and embellish 3D models coming from CAD-CAM into 2D vector graphics software to produce, e.g., brochures or manuals. Current automatic solutions tend to result, at best, in a 2D triangle soup and artists often have to trace ... Keywords: NPR, geometry processing, vector graphics, visibility

Elmar Eisemann; Sylvain Paris; Frédo Durand

2009-07-01T23:59:59.000Z

269

STUDY OF THE MTC ESTIMATION BY NOISE ANALYSIS IN 2-D HETEROGENEOUS SYSTEMS  

E-Print Network (OSTI)

, and realistic data corresponding to a commercial reactor were axially condensed in 2-D. It was found is investigated. This investigation relies on 2-group diffusion theory, and all the calculations are performed propose here to perform a substantially more advanced study of the same problem in 2-D two-group diffusion

Demazière, Christophe

270

Real-Time 2D NMR Identification of Analytes Undergoing Continuous Chromatographic Separation  

E-Print Network (OSTI)

Real-Time 2D NMR Identification of Analytes Undergoing Continuous Chromatographic Separation Boaz of multidimensional nuclear magnetic resonance (NMR) spectra within a single scan. A promising application opened up, with the real-time acquisition of a series of 2D 1 H NMR spectra arising from a mixture of compounds subject

Frydman, Lucio

271

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network (OSTI)

of the intermediate band solar cell under nonideal spaceefficient InGaP/GaAs tandem solar cells,” Appl. Phys. Lett.band impact ionization and solar cell efficiency,” J. Appl.

Shao, Qinghui

2009-01-01T23:59:59.000Z

272

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network (OSTI)

for Improvement of Photovoltaic Solar Energy Converters,”drastic improvement in photovoltaic (PV) energy conversionwith photovoltaic devices to improve the energy conversion

Shao, Qinghui

2009-01-01T23:59:59.000Z

273

Surface Layer Deposition of Nanostructured Materials onto Support ...  

Science Conference Proceedings (OSTI)

One of the main reasons impeding their current uptake into wider usage is their high ... Nanocrystalline Phosphors for Lighting and Detection Applications.

274

Thermal Characterization of Nanostructures and Advanced Engineered Materials  

E-Print Network (OSTI)

A. and McEuen, P. L. , “Thermal Transport Measurements ofTomanek, D. , “Unusually High Thermal Conductivity of Carbonand Lau, C. N. , “Superior thermal conductivity of single-

Goyal, Vivek Kumar

2011-01-01T23:59:59.000Z

275

Nanostructured Materials for Lithium Ion Batteries and for ...  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... In order to investigate how this lithiation-induced softening affects the fracturing conditions, we investigate the coupled mechano-diffusional ...

276

Nanostructured Materials for Lithium Ion Batteries and for ...  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... NMR is element- (nuclear-) specific and sensitive to small variations in the ... substrate for future applications of flexible energy storage devices.

277

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network (OSTI)

IBSC Tc = 300K Solar Concentration Ratio (suns) Fig. 3.25irradiation and solar cells The irradiance of the sun on thebetween Sun and Earth - is called the solar constant. The

Shao, Qinghui

2009-01-01T23:59:59.000Z

278

Nanostructured Materials by Mechanical Alloying: New Results on ...  

Science Conference Proceedings (OSTI)

Preliminary Investigation of Novel Micro-Scale Current Activated Tip-Based Sintering (?-CATS) · Processing and Oxidation Resistance of Nanocrystalline Fe- Cr ...

279

Solution Phase Routes to Functional Nanostructured Materials for Energy Applications  

E-Print Network (OSTI)

Carbon Nanotubes as Supercapacitor Electrodes. J. Phys.Z. Enhancing the Supercapacitor Performance of Graphene/MnO

Rauda, Iris Ester

2012-01-01T23:59:59.000Z

280

Ductility of Bulk Nanostructured Materials - Programmaster.org  

Science Conference Proceedings (OSTI)

Geometry Dependence of the Strain-driven Self-rolling of Semiconductor Nanotubes · Gold Nano-Engineered Mercury Sensor for Alumina Refineries.

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Nanostructured Materials for Lithium Ion Batteries and for ...  

Science Conference Proceedings (OSTI)

Mar 7, 2013 ... For more demanding applications such as powering electric ... and supported by the U.S. Department of Energy's Office of Basic Energy ...

282

Plasticity and Strength of Nanostructured and Nanoscale Materials III  

Science Conference Proceedings (OSTI)

Feb 16, 2010... Approach: Siu Sin Quek1; Rajeev Ahluwalia1; David Srolovitz2; 1Institute of High Performance Computing Singapore; 2Yeshiva University

283

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network (OSTI)

for concentrator photovoltaic cells (CPV) is 100 K – 200 Kimplementing photovoltaic and photochemical cells on largeConcentrated Photovoltaic (CPV) cells have been demonstrated

Shao, Qinghui

2009-01-01T23:59:59.000Z

284

Studies of Nanostructured Thermoelectric Materials and Devices for ...  

Science Conference Proceedings (OSTI)

... into thermoelectric devices to show excellent power generation and cooling ... Property in Grain Boundary Character Distribution-Optimized Ni-based Alloy.

285

Ultrafinegrain and Nanostructured Materials at High Strain Rates ...  

Science Conference Proceedings (OSTI)

Lignocellulosic-Based Carbon Fibers from Biofuel Production Wastes · Magnesium Sheets Produced by Extrusion · Magnetite Formation Observed with TEM on ...

286

Cryogenic Adsorption of Hydrogen Isotopes over Nano-Structured Materials  

Science Conference Proceedings (OSTI)

Detritiation and Isotope Separation / Proceedings of the Ninth International Conference on Tritium Science and Technology (Part 2)

X. Xiao; L. K. Heung

287

Solution Phase Routes to Functional Nanostructured Materials for Energy Applications  

E-Print Network (OSTI)

MnFe 2 O 4 ), and tin-doped indium oxide (ITO). 12 We use anfoil or tin- doped indium oxide (ITO) coated glass. Films2 O 4 , and tin- doped indium oxide (ITO). 25 We used an

Rauda, Iris Ester

2012-01-01T23:59:59.000Z

288

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network (OSTI)

properties of tin doped indium oxide films by picosecondare usually made from indium tin oxide (ITO), because of its

Shao, Qinghui

2009-01-01T23:59:59.000Z

289

Nanostructured Materials for Lithium Ion Batteries and for ...  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Since lithium sources are concentrated in only few countries and sodium is available worldwide, there is interest to develop a Na-ion battery ...

290

Nanostructured Materials for Lithium Ion Batteries and for ...  

Science Conference Proceedings (OSTI)

Mar 5, 2013 ... Supercapacitors are gradually becoming a very popular subject, presumably as a result of the growing demand on fossil fuels and the ...

291

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network (OSTI)

better matched to the solar spectrum has been used to solvea different part of the solar spectrum. The subcell with thetransparency to the solar spectrum. The latter is the

Shao, Qinghui

2009-01-01T23:59:59.000Z

292

Thermal Characterization of Nanostructures and Advanced Engineered Materials  

E-Print Network (OSTI)

Performance,” Invention Disclosure; University ofGraphene as Filler,” Invention Disclosure; University of

Goyal, Vivek Kumar

2011-01-01T23:59:59.000Z

293

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network (OSTI)

to lowering the cost of solar power and hence to making itefficiency of solar panels and power to weight ratio inimprove the solar cell power conversion efficiency and it is

Shao, Qinghui

2009-01-01T23:59:59.000Z

294

Nanostructured Materials for Lithium Ion Batteries and for ...  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Session Chair: David Mitlin , University of Alberta and NINT NRC; Reza Shahbazian-Yassar, Michigan Technological University; Peter ...

295

Surfaces and Interfaces in Nanostructured Materials II (Electronic ...  

Science Conference Proceedings (OSTI)

Jun 1, 2007 ... Topics explored in this publication include interfacial modification and surface engineering approaches at the nanoscale; biology- and ...

296

Solution Phase Routes to Functional Nanostructured Materials for Energy Applications  

E-Print Network (OSTI)

Networks: Ag 2 Se Gels and Aerogels by Cation ExchangeArea Vanadium Oxide Aerogels. Electrochem. Solid State Lett.of a 3D Graphene/Nanoparticle Aerogel. Adv. Mater. 2011, 23,

Rauda, Iris Ester

2012-01-01T23:59:59.000Z

297

Workshop in Novel Emitters and Nanostructured Materials | U.S...  

Office of Science (SC) Website

speakers include John Schlager, NIST; Silvija Gradecak, MIT; Jennifer Hollingsworth, LANL; Leonid Butov, UC-San Diego; Vladimir Bulovic, MIT; and Stephane Kena-Cohen, Imperial...

298

Thermal Characterization of Nanostructures and Advanced Engineered Materials  

E-Print Network (OSTI)

T. and Achimov, D. , “Heat Conduction Mechanisms and PhononD.G. and Pop, E. , “Heat Conduction Across Monolayer andand Nika, D.L. , “Heat Conduction Properties of Graphene and

Goyal, Vivek Kumar

2011-01-01T23:59:59.000Z

299

Precursor Derived Nanostructured Si-C-X Materials for Nuclear ...  

Science Conference Proceedings (OSTI)

CASL: The Consortium for Advanced Simulation of Light Water Reactors: A U.S. ... Strategies for Studying High Dose Irradiation Effects in Reactor Components.

300

A First Principles Study of Nanostructured Thermoelectric Materials  

Science Conference Proceedings (OSTI)

Phonon Studies with Inelastic Neutron Scattering and First-Principles Simulations ... Asynchronous In-Situ Neutron Diffraction at the Spallation Neutron Source.

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Plasticity and Strength of Nanostructured and Nanoscale Materials II  

Science Conference Proceedings (OSTI)

Feb 15, 2010 ... Reaction Rate Theory Prediction of Dislocation Nucleation in Aluminum at Room Temperature: Linh Nguyen1; Derek Warner1; 1Cornell ...

302

Mechanical Properties Evaluation of Nano-Structured Materials in ...  

Science Conference Proceedings (OSTI)

The nano-manipulator was set up in the SEM, and the force sensor, which is formed as a cantilever, was mounted on the nano-manipulator. Then, the force ...

303

Optimized Designs and Materials for Nanostructure Based Solar Cells  

E-Print Network (OSTI)

University of California Riverside. Specifically I wouldUNIVERSITY OF CALIFORNIA RIVERSIDE Optimized Designs andUniversity of California, Riverside ACKNOWLEDGEMENTS I would

Shao, Qinghui

2009-01-01T23:59:59.000Z

304

V-226: HP StoreOnce D2D Backup Systems Denial of Service Vulnerability |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: HP StoreOnce D2D Backup Systems Denial of Service 6: HP StoreOnce D2D Backup Systems Denial of Service Vulnerability V-226: HP StoreOnce D2D Backup Systems Denial of Service Vulnerability August 24, 2013 - 3:45am Addthis PROBLEM: A vulnerability has been reported in HP StoreOnce D2D Backup Systems, which can be exploited by malicious people to cause a DoS (Denial of Service). PLATFORM: HP StoreOnce D2D Backup Systems 1.x, HP StoreOnce D2D Backup Systems 2.x ABSTRACT: The vulnerability is reported in versions 2.2.18 and prior and 1.2.18 and prior. REFERENCE LINKS: Secunia Advisory SA54598 CVE-2013-2353 IMPACT ASSESSMENT: Moderate DISCUSSION: A vulnerability has been reported in HP StoreOnce D2D Backup Systems, which can be exploited by malicious people to cause a DoS (Denial of Service). The vulnerability is caused due to an unspecified error. No further

305

Indium oxide 'rods in dots' nanostructures  

SciTech Connect

The authors have demonstrated a special indium oxide (In{sub 2}O{sub 3}) 'rods in dots' nanostructure with high nanorod sheet density of over 10{sup 12} cm{sup -2}. The approach has been realized through depositing controllable individual In{sub 2}O{sub 3} nanorods in both number and shape within a single porous alumina membrane (PAM) nanochannel under radio frequency magnetron sputtering. The authors further discussed in detail effects of the PAM configurations (pore diameter and thickness) and sputtering conditions (substrate temperature and argon pressure) on the formation of the In{sub 2}O{sub 3} nanostructure.

Ding, G. Q.; Shen, W. Z.; Zheng, M. J.; Zhou, Z. B. [Laboratory of Condensed Matter Spectroscopy and Opto-Electronic Physics, Department of Physics, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030 (China)

2006-08-07T23:59:59.000Z

306

User-Friendly End Station at the ALS for Nanostructure Characterization  

Science Conference Proceedings (OSTI)

This is a construction project for an end station at the ALS, which is optimized for measuring NEXAFS of nanostructures with fluorescence detection. Compared to the usual electron yield detection, fluorescence is able to probe buried structures and is sensitive to dilute species, such as nanostructures supported on a substrate. Since the quantum yield for fluorescence is 10{sup -4}-10{sup -5} times smaller than for electrons in the soft x-ray regime, such an end station requires bright undulator beamlines at the ALS. In order to optimize the setup for a wide range of applications, two end stations were built: (1) A simple, mobile chamber with efficient photon detection (>10{sup 4} times the solid angle collection of fluorescence spectrographs) and a built-in magnet for MCD measurements at EPU beamlines (Fig. 1 left). It allows rapid mapping the electronic states of nanostructures (nanocrystals, nanowires, tailored magnetic materials, buried interfaces, biologically-functionalized surfaces). It was used with BL 8.0 (linear polarized undulator) and BL 4.0 (variable polarization). (2) A sophisticated, stationary end station operating at Beamline 8.0 (Fig. 1 right). It contains an array of surface characterization instruments and a micro-focus capability for scanning across graded samples (wedges for thickness variation, stoichiometry gradients, and general variations of the sample preparation conditions for optimizing nanostructures).

F. J. Himpsel; P. Alivisatos; T. Callcott; J. Carlisle; J. D. Denlinger; D. E. Eastman; D. Ederer; Z. Hussain; L.J. Terminello; T. Van Buuren; R. S. Williams

2006-07-05T23:59:59.000Z

307

An integrated method for material properties characterization based on pulsed laser generated surface acoustic waves  

Science Conference Proceedings (OSTI)

A novel integrated method enabling the study of nano-structured materials is presented, which is based on the imaging and monitoring of the spatiotemporal evolution of short-pulse-laser-generated Surface Acoustic Waves (SAWs). The method combines a 3D ... Keywords: Dynamic laser interferometry, Finite Elements, Nano-acoustics, Nanostructures

Yannis Orphanos, Vasilis Dimitriou, Evaggelos Kaselouris, Efthimios Bakarezos, Nikolaos Vainos, Michael Tatarakis, Nektarios A. Papadogiannis

2013-12-01T23:59:59.000Z

308

Aerogels: Chemical Functionalization of Nanostructured ...  

Summary. There exists a need for durable and thin functional coatings to utilize the afforded surface area of highly porous ceramic materials. ...

309

Mechanical Behavior of Indium Nanostructures  

NLE Websites -- All DOE Office Websites (Extended Search)

materials such as indium, since conventional pillar fabrication by focused ion-beam milling techniques ultimately leads to melting or structural degradation. All indium...

310

Coupling light to periodic nanostructures.  

E-Print Network (OSTI)

??This thesis describes coupling of light to periodic structures. A material is patterned with a regular pattern on a length scale comparable to the wavelength… (more)

Driessen, Eduard Frans Clemens

2009-01-01T23:59:59.000Z

311

KIVA: a comprehensive model for 2D and 3D engine simulations  

DOE Green Energy (OSTI)

This paper summarizes a comprehensive numerical model that represents the spray dynamics, fluid flow, species transport, mixing, chemical reactions, and accompanying heat release that occur inside the cylinder of an internal combustion engine. The model is embodied in the KIVA computer code. The code calculates both two-dimensional (2D) and three-dimensional (3D) situations. It is an outgrowth of the earlier 2D CONCHAS-SPRAY computer program. Sample numerical calculations are presented to indicate the level of detail that is available from these simulations. These calculations are for a direct injection stratified charge engine with swirl. Both a 2D and a 3D example are shown.

Amsden, A.A.; Butler, T.D.; O'Rourke, P.J.; Ramshaw, J.D.

1985-01-01T23:59:59.000Z

312

Data:86080fd2-d7f0-470b-8485-ac01338b1d2d | Open Energy Information  

Open Energy Info (EERE)

0fd2-d7f0-470b-8485-ac01338b1d2d 0fd2-d7f0-470b-8485-ac01338b1d2d No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Piedmont Electric Member Corp Effective date: 2011/01/01 End date if known: Rate name: OUTDOOR LIGHTING SERVICE 175 Watt Mercury Vapor Lamp Sector: Lighting Description: 1. The Cooperative shall furnish and install a wooden pole if required for the outdoor light, within 150 feet of existing secondary circuits. If an additional wood pole is required, other than for mounting the lighting fixture, there will be a contribution-in-aid of construction of $125.00 per pole. The contribution-in-aid of construction for the decorative post top fixture on the decorative fluted fiberglass pole with a twelve (12) foot mounting height will be $1,125.00. 2.The charge for the purchased power related costs shall be 3.904¢ times the estimated average monthly kWh usage. 3. Consumer requested conversion of an existing, properly operating Security light fixture will require the following one time service charge(s): Conversion of fixture on same pole, same location: $ 36.00 Conversion of fixture requiring removal of a pole: $36.00

313

Data:693e6aec-7e2d-4a28-8b2d-8657bd6c2317 | Open Energy Information  

Open Energy Info (EERE)

aec-7e2d-4a28-8b2d-8657bd6c2317 aec-7e2d-4a28-8b2d-8657bd6c2317 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Long Island Power Authority Effective date: 2012/03/05 End date if known: Rate name: 281 (Large General Service Secondary) Sector: Commercial Description: For monthly-billed Customers, electric use during the last twelve (12) months has equaled or been greater than 2,000 KWH in each of two (2) consecutive monthly billing periods, or b) For bimonthly-billed Customers, electric use during the last twelve (12) months has equaled or been greater than 4,000 KWH in one (1) bimonthly billing period, or c) For Applicants, the Authority estimates their demands at 7 KW or more.

314

Data:909cb0ad-9159-40ad-a117-2d7740c2d61e | Open Energy Information  

Open Energy Info (EERE)

cb0ad-9159-40ad-a117-2d7740c2d61e cb0ad-9159-40ad-a117-2d7740c2d61e No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Nodak Electric Coop Inc Effective date: 2012/05/20 End date if known: Rate name: GS High Density-Single Phase Sector: Industrial Description: Additional Meters (Off-Peak Included) $ 3.60/Meter/Month Available for service to locations in a High Density area. A High Density area is defined as: ï‚· An enlargement (generally 160 acres) with 20 or more active locations, or ï‚· A cluster of 20 or more active locations, or ï‚· A cluster with 10 or more active locations that adjoins an enlargement with 20 or more active locations, or ï‚· An area adjacent to an incorporated town with 20 or more active locations. Renewable Energy Market Adjustment $0.003/KWH (Added to All Above Energy Rates) Controlled Water Heater Credit $.00736/KWH Applies to the first 1,000 KWHs each month (October-March)

315

Data:130918b6-4287-43f2-b2d5-6b848b57a2d9 | Open Energy Information  

Open Energy Info (EERE)

4287-43f2-b2d5-6b848b57a2d9 4287-43f2-b2d5-6b848b57a2d9 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Pontotoc Electric Power Assn Effective date: 2013/07/01 End date if known: Rate name: General Power Service GSA (51 kW -1000 kW) Multi-Phase Sector: Commercial Description: Source or reference: http://www.sitemason.com/files/fjDo1q/May%202012.pdf Source Parent: Comments Applicability Demand (kW) Minimum (kW): Maximum (kW): History (months): Energy (kWh) Minimum (kWh): Maximum (kWh): History (months): Service Voltage Minimum (V): Maximum (V): Character of Service Voltage Category: Phase Wiring: << Previous

316

Data:81a39522-c0da-49ee-8539-2d51e2d0df10 | Open Energy Information  

Open Energy Info (EERE)

9522-c0da-49ee-8539-2d51e2d0df10 9522-c0da-49ee-8539-2d51e2d0df10 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Northcentral Mississippi E P A Effective date: 2011/10/11 End date if known: Rate name: General Service GSA (50 kW - 1000 kW) Sector: Commercial Description: *This rate shall apply to the firm power requirements (where a customer's contract demand is 5,000 kW or less) for electric service to commercial, industrial, and governmental customers, and to institutional customers including, without limitation, churches, clubs, fraternities, orphanages, nursing homes, rooming or boarding houses, and like customers. This rate shall also apply to customers to whom service is not available under any other resale rate schedule.

317

Data:E6c26b6e-354f-4fde-9d2d-aeab2d913c5c | Open Energy Information  

Open Energy Info (EERE)

c26b6e-354f-4fde-9d2d-aeab2d913c5c c26b6e-354f-4fde-9d2d-aeab2d913c5c No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1. Basic Information 2. Demand 3. Energy << Previous 1 2 3 Next >> Basic Information Utility name: Blue Ridge Elec Member Corp Effective date: 2010/03/03 End date if known: Rate name: Outdoor Lighting Service Sector: Lighting Description: Availability: Available for dusk to dawn outdoor lighting service to all members where the Cooperative's distribution facilities are located. Not available for part-time or seasonal operation of luminaires. Membership: Each consumer receiving service under this schedule shall be a member of the Cooperative and agrees to comply with the bylaws and abide by all service rules and regulations as adopted by the Cooperative's Board of Directors.

318

ESS 2012 Peer Review - Architectural Diversity of Metal Oxide Nanostructures - Esther Takeuchi, Stony Brook University  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Architectural Diversity of Metal Oxide Nanostructures: Architectural Diversity of Metal Oxide Nanostructures: An Opportunity for the Rational Optimization of Group II Cation Based Batteries. Esther S. Takeuchi, Kenneth J. Takeuchi, Amy C. Marschilok esther.takeuchi@stonybrook.edu, kenneth.takeuchi.1@stonybrook.edu, amy.marschilok@stonybrook.edu Utilize earth abundant, low cost elements with minimal environmental impact as battery materials. Exploit magnesium due to air stability and ~1,000X higher natural abundance than lithium and ~5,000X higher abundance than lead. Cathode materials feature Mn, Fe or V metal centers. Strategy Results Results This project targets some of the unique needs of large scale power storage: 1) reduced cost 2) low environmental impact 3) scalability 4) reversibility

319

Fast 2D non-LTE radiative modelling of prominences I. Numerical methods and benchmark results  

E-Print Network (OSTI)

New high-resolution spectropolarimetric observations of solar prominences require improved radiative modelling capabilities in order to take into account both multi-dimensional - at least 2D - geometry and complex atomic models. This makes necessary the use of very fast numerical schemes for the resolution of 2D non-LTE radiative transfer problems considering freestanding and illuminated slabs. The implementation of Gauss-Seidel and successive over-relaxation iterative schemes in 2D, together with a multi-grid algorithm, is thoroughly described in the frame of the short characteristics method for the computation of the formal solution of the radiative transfer equation in cartesian geometry. We propose a new test for multidimensional radiative transfer codes and we also provide original benchmark results for simple 2D multilevel atom cases which should be helpful for the further development of such radiative transfer codes, in general.

L. Leger; L. Chevallier; F. Paletou

2007-03-27T23:59:59.000Z

320

Hydrogen Bond Rearrangements in Water Probed with Temperature-Dependent 2D IR  

E-Print Network (OSTI)

We use temperature-dependent two-dimensional infrared spectroscopy (2D IR) of dilute HOD in H2O to investigate hydrogen bond rearrangements in water. The OD stretching frequency is sensitive to its environment, and loss ...

Nicodemus, Rebecca A.

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Some Techniques and Uses of 2D-C Habit Classification Software for Snow Particles  

Science Conference Proceedings (OSTI)

A technique has been designed that uses observable properties of images from a 2D-C optical array probe (size, linearity, area, perimeter, and image density) to classify unsymmetrical ice particles into nine habit classes. Concentrations are ...

Edmond W. Holroyd III

1987-09-01T23:59:59.000Z

322

Simulations of a Boreal Grassland Hydrology at Valdai, Russia: PILPS Phase 2(d)  

Science Conference Proceedings (OSTI)

The Project for the Intercomparison of Land-Surface Parameterization Schemes (PILPS) aims to improve understanding and modeling of land surface processes. PILPS phase 2(d) uses a set of meteorological and hydrological data spanning 18 yr (1966–83)...

C. Adam Schlosser; Andrew G. Slater; Alan Robock; Andrew J. Pitman; Konstantin Ya. Vinnikov; Ann Henderson-Sellers; Nina A. Speranskaya; Ken Mitchell; The PILPS 2(D) Contributors

2000-02-01T23:59:59.000Z

323

2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets...  

Open Energy Info (EERE)

a 2-D magnetotelluric (MT) survey has been carried out on a 13 km long profile across the thermal anomaly in the area of the geothermal power plant of Soultz-sous-Forets in the...

324

Application of 2D VSP Imaging Technology to the Targeting of...  

Open Energy Info (EERE)

2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project...

325

On O-X mode conversion in 2D inhomogeneous plasma with a sheared magnetic field  

E-Print Network (OSTI)

The conversion of an ordinary wave to an extraordinary wave in a 2D inhomogeneous slab model of the plasma confined by a sheared magnetic field is studied analytically.

A Yu Popov

2009-08-10T23:59:59.000Z

326

Ellipse-Fitting Techniques Applied to 2D-PMS Raindrop Images  

Science Conference Proceedings (OSTI)

An ellipse-fitting technique is introduced in this paper to process the images of raindrops sampled by a 2D-PMS (Particle Measuring Systems, Inc.) probe. Algorithms to estimate size, shape, and orientation parameters of partial raindrop images ...

Rongrui Xiao; V. Chandrasekar; David Garbrick

1995-12-01T23:59:59.000Z

327

A novel 2-D model approach for the prediction of hourly solar radiation  

Science Conference Proceedings (OSTI)

In this work, a two-dimensional (2-D) representation of the hourly solar radiation data is proposed. The model enables accurate forecasting using image prediction methods. One year solar radiation data that is acquired and collected between August 1, ...

F. Onur Hocaoglu; Ö Nezih Gerek; Mehmet Kurban

2007-06-01T23:59:59.000Z

328

Computational study and analysis of structural imperfections in 1D and 2D photonic crystals  

E-Print Network (OSTI)

Dielectric reflectors that are periodic in one or two dimensions, also known as 1D and 2D photonic crystals, have been widely studied for many potential applications due to the presence of wavelength-tunable photonic ...

Maskaly, Karlene Rosera

2005-01-01T23:59:59.000Z

329

Black Holes, q-Deformed 2d Yang-Mills, and Non-perturbative Topological Strings  

E-Print Network (OSTI)

Two-dimensional Yang-Mills, black holes and topologicalfor the two- dimensional black hole,” Nucl. Phys. B 622 (LBNL- 56688 Black Holes, q-Deformed 2d Yang-Mills, and Non-

Aganagic, Mina

2009-01-01T23:59:59.000Z

330

Temperature-jump 2D IR spectroscopy to study protein conformational dynamics  

E-Print Network (OSTI)

Temperature-jump (T-jump) two-dimensional infrared spectroscopy (2D IR) is developed, characterized, and applied to the study of protein folding and association. In solution, protein conformational changes span a wide range ...

Jones, Kevin C. (Kevin Chapman)

2012-01-01T23:59:59.000Z

331

Self-assembled Semiconductor 0D, 1D and 2D Quantum Structures ...  

Science Conference Proceedings (OSTI)

In the present work, we present how bandgap modulation can be achieved by the introduction of self-assembled 0D, 1D and 2D quantum structures, quantum ...

332

Vibrational analysis of graphene based nanostructures  

Science Conference Proceedings (OSTI)

This paper deals with the molecular mechanics simulations of graphene nanostructures and their vibration behavior for potential applications on nano-electronics and nanocomposites. The fundamental frequencies for CNTs range from 10 to 250GHz and 100 ... Keywords: Carbon nanotubes, Graphene nanosheets, Modal analysis, Molecular mechanics, Vibration

Antonio F. Ávila; Alexandre C. Eduardo; Almir S. Neto

2011-06-01T23:59:59.000Z

333

Irradiation-Induced Nanostructures in Cadmium Niobate Pyrochlores  

Science Conference Proceedings (OSTI)

This paper reports the formation processes of crystalline Cd nanostructures on ion-cut surfaces of cadmium niobate pyrochlores (Cd{sub 2}Nb{sub 2}O{sub 7}). Irradiation with 3 MeV He{sup +} ions has been performed at low temperatures (295 K) to induce material decomposition and aggregation of host atoms. The irradiation also leads to surface exfoliation due to rupture of gas (He and O{sub 2}) filled blisters. Nanoparticles and nanowires are observed on the ion-cut surfaces at low and higher doses, respectively. These structures are examined and characterized using a suite of experimental tools. Both the particles and wires are found to be single crystals that primarily consist of metallic Cd.

Jiang, Weilin [Pacific Northwest National Laboratory (PNNL); Weber, William J. [Pacific Northwest National Laboratory (PNNL); Young, J. S. [Pacific Northwest National Laboratory (PNNL); Boatner, Lynn A [ORNL; Lian, Jie [University of Michigan; Wang, L. M. [University of Michigan; Ewing, Rodney C. [University of Michigan

2006-01-01T23:59:59.000Z

334

Subtle Chemistry of Colloidal, Quantum-Confined Semiconductor Nanostructures  

SciTech Connect

Nanoscale colloidal semiconductor structures with at least one dimension small enough to experience quantum confinement effects have captured the imagination and attention of scientists interested in controlling various chemical and photophysical processes. Aside from having desirable quantum confinement properties, colloidal nanocrystals are attractive because they are often synthesized in low-temperature, low-cost, and potentially scalable manners using simple benchtop reaction baths. Considerable progress in producing a variety of shapes, compositions, and complex structures has been achieved. However, there are challenges to overcome in order for these novel materials to reach their full potential and become new drivers for commercial applications. The final shape, composition, nanocrystal-ligand structure, and size can depend on a delicate interplay of precursors, surface ligands, and other compounds that may or may not participate in the reaction. In this Perspective, we discuss current efforts toward better understanding how the reactivity of the reagents can be used to produce unique and complex nanostructures.

Hughes, B. K.; Luther, J. M.; Beard, M. C.

2012-06-26T23:59:59.000Z

335

A review of nanostructured based radiation sensors for neutron  

SciTech Connect

Currently radiation sensors with various mechanisms such as radio thermo luminescence, radiographic and radiochromic film, semiconductor and ionization have been used for the detection of nuclear radiation. Sensitivity, handling procedure, heating condition, energy response, nonlinearity, polarization, non-uniform electric field, high bias voltage and spatial resolution due to large physical size are some of the key issues faced by these sensors. Due to the excellent electrical and mechanical properties, nanostructured materials such as carbon nanotubes (CNTs) have been researched as sensing elements in the sensors to overcome the mentioned problems. However CNTs are found to pose different problems, arising from the uncontrolled helicity and small cross-sectional area. Therefore, alternative sensing elements are still been sought after and the possibility of using boron nitride nanotubes for sensing neutron is considered in this review.

Ahmad, Pervaiz; Mohamed, Norani Muti; Burhanudin, Zainal Arif [Center of Excellence in Nanotechnology Department of Fundamental and Applied Sciences, Department of Electrical and Electronic Engineering Universiti Teknologi PETRONAS (Malaysia)

2012-09-26T23:59:59.000Z

336

Numerical analysis of nanostructures for enhanced light extraction from OLEDs  

E-Print Network (OSTI)

Nanostructures, like periodic arrays of scatters or low-index gratings, are used to improve the light outcoupling from organic light-emitting diodes (OLED). In order to optimize geometrical and material properties of such structures, simulations of the outcoupling process are very helpful. The finite element method is best suited for an accurate discretization of the geometry and the singular-like field profile within the structured layer and the emitting layer. However, a finite element simulation of the overall OLED stack is often beyond available computer resources. The main focus of this paper is the simulation of a single dipole source embedded into a twofold infinitely periodic OLED structure. To overcome the numerical burden we apply the Floquet transform, so that the computational domain reduces to the unit cell. The relevant outcoupling data are then gained by inverse Flouqet transforming. This step requires a careful numerical treatment as reported in this paper.

Zschiedrich, L; Burger, S; Schmidt, F; 10.1117/12.2001132

2013-01-01T23:59:59.000Z

337

OPTICAL AND DYNAMIC PROPERTIES OF UNDOPED AND DOPED SEMICONDUCTOR NANOSTRUCTURES  

Science Conference Proceedings (OSTI)

This chapter provides an overview of some recent research activities on the study of optical and dynamic properties of semiconductor nanomaterials. The emphasis is on unique aspects of these properties in nanostructures as compared to bulk materials. Linear, including absorption and luminescence, and nonlinear optical as well as dynamic properties of semiconductor nanoparticles are discussed with focus on their dependence on particle size, shape, and surface characteristics. Both doped and undoped semiconductor nanomaterials are highlighted and contrasted to illustrate the use of doping to effectively alter and probe nanomaterial properties. Some emerging applications of optical nanomaterials are discussed towards the end of the chapter, including solar energy conversion, optical sensing of chemicals and biochemicals, solid state lighting, photocatalysis, and photoelectrochemistry.

Grant, C D; Zhang, J Z

2007-09-28T23:59:59.000Z

338

Discovery, integration, and interrogation of biotic/abiotic materials and systems.  

SciTech Connect

Immobilization of individual cells and collections of cells in well-defined, reproducible, nano-to-microscale structures that allow structural and functional manipulation and interrogation is important for developing new classes of biotic/abiotic materials, for establishing the relationship between genotype and phenotype, and for elucidating responses to disease, injury/stress, or therapy - primary goals of biomedical research. Although there has been considerable recent progress in investigating the response of cells to chemical or topological patterns defined lithographically on 2D surfaces, it is time to advance from two-dimensional adhesion on dishes/fluidic devices to three-dimensional architectures that better represent the nanoporous, 3-D extracellular matrix (ECM). 3D immobilization in nanostructured hosts enables cells to be surrounded by other cells, maintains fluidic connectivity/accessibility, and allows development of 3-D molecular or chemical gradients that provide an instructive background to guide cellular behavior. Although 3-D cell immobilization in polymers, hydrogels, and inorganic gels has been practiced for decades, these approaches do not provide for bio/nano interfaces with 3D spatial control of topology and composition important to both the maintenance of natural cellular behavior patterns and the development of new non-native behaviors and functions. This LDRD project exploited our discovery of the ability of living cells to organize extended nanostructures and nano-objects in a manner that creates a unique, highly biocompatible bio/nano interface, mimicking the ECM, and maintaining cell viability, accessibility, and functionality (Baca et al. Science, 2006). Briefly, we found that, using short chain phospholipids to direct the formation of thin film silica mesophases during evaporation-induced self-assembly (EISA, Lu, Brinker et al. Nature 1997), the introduction of cells (yeast, Gram negative and positive bacteria, and several mammalian cells) alters profoundly the inorganic self-assembly pathway. Cells actively organize around themselves an ordered, multilayered lipid-membrane that interfaces coherently with a lipid-templated silica nanostructure. This bio/nano interface is unique in that it withstands drying (even evacuation) without cracking or the development of tensile stresses - yet it maintains accessibility to molecules, proteins/antibodies, plasmids, etc - introduced into the 3D silica host. Additionally cell viability is preserved for weeks to months in the absence of buffer or a fluidic architecture, making these constructs useful as standalone cell-based sensors. (On this basis, our sensors were launched to the space station for viability studies after exposure to vacuum and UV). The bio/nano interfaces we describe do not form 'passively' - rather they are a consequence of the cell's ability to sense and actively respond to external stimuli. During EISA, solvent evaporation concentrates the extracellular environment in osmolytes. In response to this hyperosmotic stress, the cells release water, creating a gradient in pH (and presumably other molecular components), which is maintained within the adjoining nanostructured host and serves to localize lipids, proteins, plasmids, lipidized nanocrystals, and a variety of other components at the cellular surface. This active organization of the bio/nano interface, which we refer to as cell directed assembly (CDA) can be accomplished during ink-jet printing or selective wetting - processes allowing patterning of cellular arrays - what's more we find that cells printed onto preformed, fluid lipid/silica mesophases integrate themselves within the silica nanostructure, creating a 3D environment essentially indistinguishable from that in CDA. We refer to this latterprocess as cell-directed integration (CDI). The synthetic constructs we have developed have allowed us to explore several fundamental questions concerning the mechanisms by which cells actively control nanostructure formation and function and conversely the mechanisms by which nanost

Dunphy, Darren Robert (University of New Mexico, Albuquerque, NM); Brinker, C. Jeffrey; Ashley, Carlee E. (University of New Mexico, Albuquerque, NM); Baca, Helen Kennicott (University of New Mexico, Albuquerque, NM); Lopez, DeAnna M. (University of New Mexico, Albuquerque, NM); Carnes, Eric C. (University of New Mexico, Albuquerque, NM)

2009-10-01T23:59:59.000Z

339

Development of nanostructured and surface modified semiconductors for hybrid organic-inorganic solar cells.  

DOE Green Energy (OSTI)

Solar energy conversion is increasingly being recognized as one of the principal ways to meet future energy needs without causing detrimental environmental impact. Hybrid organic-inorganic solar cells (SCs) are attracting particular interest due to the potential for low cost manufacturing and for use in new applications, such as consumer electronics, architectural integration and light-weight sensors. Key materials advantages of these next generation SCs over conventional semiconductor SCs are in design opportunities--since the different functions of the SCs are carried out by different materials, there are greater materials choices for producing optimized structures. In this project, we explore the hybrid organic-inorganic solar cell system that consists of oxide, primarily ZnO, nanostructures as the electron transporter and poly-(3-hexylthiophene) (P3HT) as the light-absorber and hole transporter. It builds on our capabilities in the solution synthesis of nanostructured semiconducting oxide arrays to this photovoltaic (PV) technology. The three challenges in this hybrid material system for solar applications are (1) achieving inorganic nanostructures with critical spacing that matches the exciton diffusion in the polymer, {approx} 10 nm, (2) infiltrating the polymer completely into the dense nanostructure arrays, and (3) optimizing the interfacial properties to facilitate efficient charge transfer. We have gained an understanding and control over growing oriented ZnO nanorods with sub-50 nm diameters and the required rod-to-rod spacing on various substrates. We have developed novel approaches to infiltrate commercially available P3HT in the narrow spacing between ZnO nanorods. Also, we have begun to explore ways to modify the interfacial properties. In addition, we have established device fabrication and testing capabilities at Sandia for prototype devices. Moreover, the control synthesis of ZnO nanorod arrays lead to the development of an efficient anti-reflection coating for multicrystalline Si solar cells. An important component of this project is the collaboration with Dr. Dave Ginley's group at NREL. The NREL efforts, which are funded by NREL's LDRD program, focus on measuring device performance, external quantum efficiency, photoconductance through highly specialized non-contact time-resolved microwave conductivity (TRMC) measurements, and vapor phase deposition of oxide materials. The close collaboration with NREL enables us to enter this competitive field in such short time. Joint publications and presentations have resulted from this fruitful collaboration. To this date, 5 referred journal papers have resulted from this project, with 2 more in preparation. Several invited talks and numerous contributed presentations in international conferences are also noted. Sandia has gained the reputation of being one of forefront research groups on nanostructured hybrid solar cells.

Hsu, Julia, W. P.

2008-09-01T23:59:59.000Z

340

Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions An investigation of precision and scaling issues in  

E-Print Network (OSTI)

Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions An investigation of precision Department of Physics Massachusetts Institute of Technology 11 March 2009 (1/50) #12;Introduction NMR 2-D Ion precision (2/50) #12;Introduction NMR 2-D Ion Arrays Electronic Networking Conclusions Digital simulation

Raizen, Mark G.

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Nanostructured thin films for solid oxide fuel cells  

E-Print Network (OSTI)

The goals of this work were to synthesize high performance perovskite based thin film solid oxide fuel cell (TF-SOFC) cathodes by pulsed laser deposition (PLD), to study the structural, electrical and electrochemical properties of these cathodes and to establish structure-property relations for these cathodes in order to further improve their properties and design new structures. Nanostructured cathode thin films with vertically-aligned nanopores (VANP) were processed using PLD. These VANP structures enhance the oxygen-gas phase diffusivity, thus improve the overall TF-SOFC performance. La0.5Sr0.5CoO3 (LSCO) and La0.4Sr0.6Co0.8Fe0.2O3 (LSCFO) were deposited on various substrates (YSZ, Si and pressed Ce0.9Gd0.1O1.95 (CGO) disks). Microstructures and properties of the nanostructured cathodes were characterized by transmission electron microscope (TEM), high resolution TEM (HRTEM), scanning electron microscope (SEM) and electrochemical impedance spectroscopy (EIS) measurements. A thin layer of vertically-aligned nanocomposite (VAN) structure was deposited in between the CGO electrolyte and the thin film LSCO cathode layer for TF-SOFCs. The VAN structure consists of the electrolyte and the cathode materials in the composition of (CGO) 0.5 (LSCO) 0.5. The self-assembled VAN nanostructures contain highly ordered alternating vertical columns formed through a one-step thin film deposition using a PLD technique. These VAN structures significantly increase the interface area between the electrolyte and the cathode as well as the area of active triple phase boundary (TPB), thus improving the overall TF-SOFC performance at low temperatures, as low as 400oC, demonstrated by EIS measurements. In addition, the binary VAN interlayer could act as the transition layer that improves the adhesion and relieves the thermal stress and lattice strain between the cathode and the electrolyte. The microstructural properties and growth mechanisms of CGO thin film prepared by PLD technique were investigated. Thin film CGO electrolytes with different grain sizes and crystal structures were prepared on single crystal YSZ substrates under different deposition conditions. The effect of the deposition conditions such as substrate temperature and laser ablation energy on the microstructural properties of these films are examined using XRD, TEM, SEM, and optical microscope. CGO thin film deposited above 500 ºC starts to show epitaxial growth on YSZ substrates. The present study suggests that substrate temperature significantly influences the microstructure of the films especially film grain size.

Yoon, Jongsik

2008-12-01T23:59:59.000Z

342

Thermal Degradation of Single Crystal Zinc Oxide and the Growth of Nanostructures  

SciTech Connect

Heat treatment of (0001) single crystal zinc oxide (ZnO) seems to degrade the surface morphology at high temperature. The degradation, however, does not suppress the growth of ZnO nanostructures on selective regions of the single crystal ZnO that have been sputtered with metallic zinc (Zn) and annealed at 800 degree sign C. On the uncoated regions, no growth occurs but the presence of pits suggests material loss from the surface. The formation of ZnO nanostructures on the selective regions could be aided by the preferential loss of oxygen as well as zinc suboxides from the uncoated regions. Indirect evidence of the role of oxygen and zinc suboxides can be inferred from the formation of nickel zinc oxide Ni{sub 0.9}Zn{sub 0.1}O and nickel oxide NiO{sub 2} when Zn is replaced by Ni and annealed under similar conditions.

Saw, K. G.; Tan, G. L. [Physics Section, School of Distance Education, Universiti Sains Malaysia, 11800 Penang (Malaysia); Hassan, Z.; Yam, F. K.; Ng, S. S. [Schools of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia)

2010-07-07T23:59:59.000Z

343

Metal oxide and metal fluoride nanostructures and methods of making same  

SciTech Connect

The present invention includes pure single-crystalline metal oxide and metal fluoride nanostructures, and methods of making same. These nanostructures include nanorods and nanoarrays.

Wong, Stanislaus S. (Stony Brook, NY); Mao, Yuanbing (Los Angeles, CA)

2009-08-18T23:59:59.000Z

344

Computational Challenges for Nanostructure Solar Cells Project at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenges for Challenges for Nanostructure Solar Cells Computational Challenges for Nanostructure Solar Cells ZZ2.jpg Key Challenges: Current nanostructure solar cells often have energy efficiencies well below that of traditional solar cells. To understand why, one must understand the complete photoelectron dynamics in a nanostructure - the photon absorption, exciton generation, exciton dissociation, carrier transport and carrier collection. However, the large number of surface states, the strong exciton binding energies, the nano-interfaces, the lack of doping, and the possibility of unintended internal electric fields make this a daunting task that requires a suite of techniques and computer codes offering different electronic structure methods and varying levels of

345

Silicon Carbide Nanostructures for Micro-Supercapacitor Applications  

Science Conference Proceedings (OSTI)

3D Nanostructured Bicontinuous Electrodes: Path to Ultra-High Power and Energy ... High Energy Density Lithium Capacitors Using Carbon-Carbon Electrodes.

346

3D Nanostructured Bicontinuous Electrodes: Path to Ultra-High ...  

Science Conference Proceedings (OSTI)

3D Nanostructured Bicontinuous Electrodes: Path to Ultra-High Power and Energy ... High Energy Density Lithium Capacitors Using Carbon-Carbon Electrodes.

347

Nanostructured Carbon Shows Promise for Energy Storage in ...  

ORNL 2010-G00385/jcn UT-B ID 200301297 Nanostructured Carbon Shows Promise for Energy Storage in Supercapacitors Technology Summary Researchers at ORNL have designed ...

348

Multilevel interference lithography--fabricating sub-wavelength periodic nanostructures  

E-Print Network (OSTI)

Periodic nanostructures have many exciting applications, including high-energy spectroscopy, patterned magnetic media, photonic crystals, and templates for self-assembly. Interference lithography (IL) is an attractive ...

Chang, Chih-Hao, 1980-

2008-01-01T23:59:59.000Z

349

High Strength Nano-Structured Steel - Energy Innovation Portal  

High Strength Nano-Structured Steel The NanoSteel Company Complex modern challenges are driving new ... sheet design breakthrough for the automotive industry.

350

Silicon/Graphite –Tin Nano-structured Composites Synthesized by ...  

Science Conference Proceedings (OSTI)

Presentation Title, Silicon/Graphite –Tin Nano-structured Composites Synthesized by High Energy Mechanical Milling for Lithium-ion Rechargeable Batteries ...

351

Fabrication of Nanostructural Aluminum Alloy Powder with Ball ...  

Science Conference Proceedings (OSTI)

The aim of this paper is to fabricate aluminum alloy powder with nanostructure using ball milling method. The commercial Al-Mg-Cu alloy powder was milled ...

352

Nanostructure Formation and Carbides Dissolution in Rail Steel ...  

Science Conference Proceedings (OSTI)

Feb 1, 2002 ... Nanostructure Formation and Carbides Dissolution in Rail Steel Deformed by High Pressure Torsion by Yu.V. Ivanisenko, R.Z. Valiev, ...

353

Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water  

NLE Websites -- All DOE Office Websites (Extended Search)

Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water Ground-Based and Airborne (PMS 2-D Probe Canister-Mounted) 183 GHz Water Vapor Radiometer Pazmany, Andrew ProSensing Inc. Category: Instruments ProSensing Inc. has developed a G-band (183 GHz, 1.5 mm wavelength) water vapor radiometer (GVR) for the measurement of low concentrations of atmospheric water vapor and liquid water. The instrument's precipitable water vapor measurement precision is approximately 0.01 mm in dry (<2 mm vapor column) conditions. The ground-based version of the instrument was first deployed at ProSensing's facility in Amherst, MA in February 2005, then at the North Slope of Alaska DOE ARM site in Barrow AK in April 2005, where it has been continuously operating since. An airborne version, designed to operate from a standard PMS 2-D probe canister, is now being

354

Integrating 3D and 2D computer generated imagery for the comics medium  

E-Print Network (OSTI)

Advances in 3D computer technology have led to aesthetic experimentation within the comics medium. Comic creators have produced comic books done entirely with 3D models that are then assembled digitally for the printed page. However, in using these 3D objects in a comic format, the creators have developed art styles that do not adhere to the paradigms established by this traditionally 2D medium. More successful results can be achieved by integrating 3D computer generated imagery with traditional 2D imagery, rather than replacing it. This thesis develops a method of combining rendered 3D models with 2D vector graphics to create a comic book art style that is consistent with the traditional medium, while still taking advantage of the new technology.

DeLuna, Ruben

2004-12-01T23:59:59.000Z

355

Ball-milled Materials as Inert Anodes for Aluminum Production in KF ...  

Science Conference Proceedings (OSTI)

In this study, various nanostructured materials including Cu-Ni-Fe, Cu-Al-Ni-Fe based alloys and (Cu-Ni-Fe + MOx) composites were prepared by ball milling, ...

356

Neutron Scattering Studies of Nanomagnetism and Artificially Structured Materials  

Science Conference Proceedings (OSTI)

Nanostructured magnetic materials are intensively studied due to their unusual properties and promise for possible applications. The key issues in these materials relate to the connection between their physical properties (transport, magnetism, mechanical, etc.) and their chemical-physical structure. In principle, a detailed knowledge of the chemical and physical structure allows calculation of their physical properties. Theoretical and computational methods are rapidly evolving so that magnetic properties of nanostructured materials might soon be predicted. Success in this endeavor requires detailed quantitative understanding of the magnetic structure and properties.

Fitzsimmons, M.R.; Bader, S.D.; Borchers, J.A.; Felcher, G.P.; Furdyna, J.K.; Hoffmann, A.; Kortright, J.B.; Schuller, Ivan K.; Schulthess, T.C.; Sinha, S.K.; Toney, M.F.; Weller, D.; Wolf, S.

2003-02-01T23:59:59.000Z

357

Recent progress in nanostructured multiferroic Bi{sub 2}FeCrO{sub 6} thin films  

Science Conference Proceedings (OSTI)

We report the latest progress on the growth and characterization of Bi{sub 2}FeCrO{sub 6} (BFCO), a recently discovered multiferroic system. BFCO thin films and nanostructures exhibit exceptional multiferroic properties at room temperature. The growth of pure BFCO thin films on STO substrates is possible only in a narrow window of deposition parameters (i.e., Oxygen pressure pO{sub 2}=1.2 Multiplication-Sign 10{sup -2} mbar and around a substrate temperature T{sub S}=680 Degree-Sign C). The epitaxial growth stabilizes the metastable single phase of this material and promotes the Fe/Cr cation ordering in both thin films and nanostructures. This cationic ordering which is responsible for good magnetic properties of BFCO is also at the origin of pronounced photovoltaic (PV) properties observed in the epitaxial films grown on STO substrates. The results indicate that the ferroelectric polarization plays a dominant role in the observed PV effect. - Graphical abstract: (Top) Crystal structure of BFCO thin films deposited on (1 1 1)-oriented SrTiO3:Nb substrates and direct evidence of the presence of cationic ordering Fe/Cr in the films. (Bottom) Control of the crystal orientation and the shape of the epitaxial nanostructures by the orientation of the niobium-doped STO substrates. Highlights: Black-Right-Pointing-Pointer Growth optimization of Bi{sub 2}FeCrO{sub 6} (BFCO) thin films and nanostructures by pulsed laser deposition. Black-Right-Pointing-Pointer Ordered BFCO single phase have been stabilized by epitaxial strain. Black-Right-Pointing-Pointer Arbitrary patterns of heteroepitaxial multiferroic BFCO nanostructures have been fabricated by PLD combined with nanostenciling. Black-Right-Pointing-Pointer Experimental characterizations revealed the excellent multiferroic character of BFCO thin films and nanostructures. Black-Right-Pointing-Pointer Unprecedentedly high power conversion efficiency for ferroelectrics was observed in 125 nm-thick highly ordered BFCO films.Graphical abstract legend.

Nechache, Riad, E-mail: Nechache@emt.inrs.ca [NAST Center and Department of Chemical Science and Technology, University of Rome Tor Vergata Via della Ricerca Sceintifica 1, 00133 Rome Italy (Italy); Centre Energie, Materiaux et Telecommunications, INRS, 1650, boulevard Lionel-Boulet, Varennes, Quebec J3x 1S2 (Canada); Rosei, Federico, E-mail: rosei@emt.inrs.ca [Centre Energie, Materiaux et Telecommunications, INRS, 1650, boulevard Lionel-Boulet, Varennes, Quebec J3x 1S2 (Canada)

2012-05-15T23:59:59.000Z

358

TiO{sub 2}/carbon nanotube hybrid nanostructures: Solvothermal synthesis and their visible light photocatalytic activity  

Science Conference Proceedings (OSTI)

MWCNT/TiO{sub 2} hybrid nanostructures were prepared via solvothermal synthesis and sol-gel method with benzyl alcohol as a surfactant. As-prepared hybrid materials were characterized by X-ray diffraction, transmission electron microscopy, UV-vis diffuse reflectance spectra and X-ray photoelectron spectroscopy. The results showed that MWCNTs were uniformly decorated with anatase nanocrystals in solvothermal condition, but MWCNTs were embedded in a majority of TiO{sub 2} nanoparticles by sol-gel method. When the weight ratio of MWCNTs to TiO{sub 2} was 20%, MWCNT/TiO{sub 2} hybrid nanostructures prepared by solvothermal synthesis exhibited higher visible-light-driven photocatalytic activity than that prepared by sol-gel method. Post-annealing of MWCNT/TiO{sub 2} nanostructures at 400 deg. C resulted in the formation of the carbonaceous Ti-C bonds on the interface between TiO{sub 2} and MWCNTs, which enhanced the photoabsorbance of the hybrid materials in the visible light region and improved the visible-light degradation efficiency of methylene blue. - Graphical abstract: MWCNT/TiO{sub 2} nanostructures have been prepared by solvothermal method, which exhibited higher visible-light-driven photocatalytic activity than that prepared by sol-gel method. The carbonaceous Ti-C bonds on the interface between TiO{sub 2} and MWCNTs enhanced the photoabsorbance of the hybrid materials in the visible light region. Highlights: > Anatase TiO{sub 2} nanoparticles were anchored on CNTs surface uniformly via solvothermal method {yields} The morphology facilitated the electron transfer between CNTs and TiO{sub 2} {yields} Ti-C bonds extended the absorption of MWCNT/TiO{sub 2} to the whole visible light region. > The hybrid nanostructures showed enhanced visible-light induced photocatalytic activity.

Tian Lihong [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062 (China); Ye Liqun [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Deng Kejian [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, South-Central University for Nationalities, Wuhan 430074 (China); Zan Ling, E-mail: irlab@whu.edu.cn [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

2011-06-15T23:59:59.000Z

359

Smart detection of leaf wilting by 3D image processing and 2D Fourier transform  

Science Conference Proceedings (OSTI)

Wilting is a common symptom in plants responding to drought stress. Early wilting detection is of high importance for crop precision management. However, it is challenging to develop a reliable measurement technology. This study presents a sensing method ... Keywords: 2D Fourier transform (2DFT), 3D image processing, Laser scanner, Wilting identification, Zucchini

X. Cai; Y. Sun; Y. Zhao; L. Damerow; P. Schulze Lammers; W. Sun; J. Lin; L. Zheng; Y. Tang

2013-01-01T23:59:59.000Z

360

2D Gravity with Torsion, Oriented Matroids and 2+2 Dimensions  

E-Print Network (OSTI)

We find a link between oriented matroid theory and 2d gravity with torsion. Our considerations may be useful in the context of noncommutative phase space in a target spacetime of signature (2+2) and in a possible theory of gravity ramification.

J. A. Nieto; E. A. Leon

2009-05-21T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Universality and nonperturbative definitions of 2D quantum gravity from matrix models  

Science Conference Proceedings (OSTI)

The universality of the nonperturbative definition of Hermitian one-matrix models following the quantum stochastic, or d = 1-like stabilization is discussed in comparison with other procedures. The authors also present another alternative definition, which illustrates the need of new physical input for d = 0 matrix models to make contact with 2D quantum gravity at the nonperturbative level.

Miramontes, J.L. (Theory Div., CERN, CH-1211 Geneve 23 (Switzerland)); Guillen, J.S. (Lund Univ. (Sweden). Dept. of Theoretical Physics)

1992-10-20T23:59:59.000Z

362

Universality and Non-Perturbative Definitions of 2D Quantum Gravity from Matrix Models  

E-Print Network (OSTI)

The universality of the non-perturbative definition of Hermitian one-matrix models following the quantum, stochastic, or $d=1$-like stabilization is discussed in comparison with other procedures. We also present another alternative definition, which illustrates the need of new physical input for $d=0$ matrix models to make contact with 2D quantum gravity at the non-perturbative level.

J. Luis Miramontes; Joaquin Sanchez Guillen

1991-12-09T23:59:59.000Z

363

Surface Sampling of a Snowstorm by a 2D-C Probe with and without Aspiration  

Science Conference Proceedings (OSTI)

A 2D-C probe was mounted on the front of a truck for operation in a horizontal orientation, as on an aircraft, and also in a vertical orientation using an aspirator. A snowstorm with calm conditions was sampled by alternatively driving the truck ...

Edmond W. Holroyd III

1986-12-01T23:59:59.000Z

364

Orientation Angle Distributions of Drops after an 80-m Fall Using a 2D Video Disdrometer  

Science Conference Proceedings (OSTI)

This note reports on the use of a 2D video disdrometer to estimate the orientation of drops (>2 mm) that were generated artificially and allowed to fall 80 m from a bridge with no obstruction and under calm conditions. This experimental setup ...

Gwo-Jong Huang; V. N. Bringi; M. Thurai

2008-09-01T23:59:59.000Z

365

Numerical study of 2D heat transfer in a scraped surface heat exchanger  

E-Print Network (OSTI)

Numerical study of 2D heat transfer in a scraped surface heat exchanger K.-H. Sun a,*, D.L. Pyle heat exchanger with non- Newtonian power law fluids is undertaken. Numerical results are generated of scraped surface heat exchanger design are assessed in the light of the results. Ã? 2003 Elsevier Ltd. All

366

A traceability system incorporating 2D barcode and RFID technology for wheat flour mills  

Science Conference Proceedings (OSTI)

Wheat flour undergoes several processing steps in its transformation from raw wheat in the mill, which differentiates wheat flour from other farm products. At each step, various wheat sources are combined into one batch of wheat flour. This study primarily ... Keywords: 2D barcode, RFID, Supply chain, Traceability, Wheat flour

Jian-Ping Qian; Xin-Ting Yang; Xiao-Ming Wu; Li Zhao; Bei-Lei Fan; Bin Xing

2012-11-01T23:59:59.000Z

367

Gravity modeling of 21/2-D sedimentary basins - a case of variable density contrast  

Science Conference Proceedings (OSTI)

An algorithm and associated codes are developed to determine the depths to bottom of a 2^1^/^2-D sedimentary basin in which the density contrast varies parabolically with depth. This algorithm estimates initial depths of a sedimentary basin automatically ... Keywords: Basement, Gravity anomaly, Modeling, Parabolic density profile, Sedimentary basin

V. Chakravarthi; N. Sundararajan

2005-08-01T23:59:59.000Z

368

A Pipelined Fast 2D-DCT Accelerator for FPGA-based SoCs  

Science Conference Proceedings (OSTI)

Multimedia applications, and in particular the encoding and decoding of standard image and video formats, are usually a typical target for Systemson- Chip (SoC). The bi-dimensional Discrete Cosine Transformation (2D-DCT) is a commonly used frequency ...

Antonino Tumeo; Matteo Monchiero; Gianluca Palermo; Fabrizio Ferrandi; Donatella Sciuto

2007-03-01T23:59:59.000Z

369

CSY3019 -Graphics Programming Assignment 2: Development of 3D graphics software: Java 2D (50%)  

E-Print Network (OSTI)

CSY3019 - Graphics Programming Assignment 2: Development of 3D graphics software: Java 2D (50 and/or strip lights). · User defined or loaded geometry (i.e. not primitive shapes). · The room & Title Page · Table of contents · Introduction · Analysis · Design · Implementation · Testing

Hill, Gary

370

A 2D nearest-neighbor quantum architecture for factoring in polylogarithmic depth  

Science Conference Proceedings (OSTI)

We contribute a 2D nearest-neighbor quantum architecture for Shor's algorithm to factor an n-bit number in O(log3 n) depth. Our implementation uses parallel phase estimation, constant-depth fanout and teleportation, and constant-depth ... Keywords: Shor's algorithm, carry-save addition, nearest-neighbor, prime factorization, quantum architecture

Paul Pham, Krysta M. Svore

2013-11-01T23:59:59.000Z

371

Speckle suppression in SAR images using the 2-D GARCH model  

Science Conference Proceedings (OSTI)

A novel Bayesian-based speckle suppression method for Synthetic Aperture Radar (SAR) images is presented that preserves the structural features and textural information of the scene. First, the logarithmic transform of the original image is analyzed ... Keywords: 2-D GARCH model, MAP estimation, speckle, statistical modeling, synthetic aperture radar

Maryam Amirmazlaghani; Hamidreza Amindavar; Alireza Moghaddamjoo

2009-02-01T23:59:59.000Z

372

Electromagnetic wave interactions with 2D arrays of single-wall carbon nanotubes  

Science Conference Proceedings (OSTI)

We report, for the first time, the scattering, absorption, and reflection characteristics of 2D arrays of finite-length, armchair, single-walled carbon nanotubes (SWNTs) in the visible frequency regime. The analysis is based on the Finite-Element-Method ...

Taha A. Elwi; Hussain M. Al-Rizzo

2011-01-01T23:59:59.000Z

373

A 2D nanosphere array for atomic spectroscopy M. Romanelli(1)  

E-Print Network (OSTI)

A 2D nanosphere array for atomic spectroscopy M. Romanelli(1) , I. Maurin, P. Todorov(2) , Chia boulevard, 1784 Sofia, Bulgaria (3) permanent address: National Central University, Jung-Li City, Taoyuan medium, such as a photonic crystal, with an atomic gas. Here, we discuss the first step of this program

Paris-Sud XI, Université de

374

Connected Components for a Fast and Robust 2D Lidar Data Segmentation  

Science Conference Proceedings (OSTI)

The paper presents a novel segmentation approach applied to a two-dimensional point-cloud extracted by a LIDAR device. The most common approaches perform well in outdoor environments where usually furniture and other objects are rather big and are composed ... Keywords: 2D Lidar Segmentation, Connected Component, Intelligent Vehicles, Point-cloud analysis, Unmanned Ground Vehicle

Daniel Oñoro Rubio, Artem Lenskiy, Jee-Hwan Ryu

2013-07-01T23:59:59.000Z

375

Matrix-assisted energy conversion in nanostructured piezoelectric arrays  

DOE Patents (OSTI)

A nanoconverter is capable of directly generating electricity through a nanostructure embedded in a polymer layer experiencing differential thermal expansion in a stress transfer zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or substantially vertically aligned on a substrate. The resulting nanoforest is then embedded with the polymer layer, which transfers stress to the nanostructures in the stress transfer zone, thereby creating a nanostructure voltage output due to the piezoelectric effect acting on the nanostructure. Electrodes attached at both ends of the nanostructures generate output power at densities of .about.20 nW/cm.sup.2 with heating temperatures of .about.65.degree. C. Nanoconverters arrayed in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries.

Sirbuly, Donald J.; Wang, Xianying; Wang, Yinmin

2013-01-01T23:59:59.000Z

376

Research Areas - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Nanostructured Thin Films Nanostructured Thin Films Theme: The Nanostructured Thin Films program is focused on the synthesis, characterization, and modeling of dimensionally constrained materials systems in which a nano-scale trait of the material (e.g. grain size, film thickness, interfacial boundary, etc.) fundamentally determines its structure-property relationships. The work performed in this program falls primarily into two areas: (1) studies of thin-film growth phenomena and film properties, with emphasis on diamond and multicomponent oxides; and (2) first principles quantum-mechanical calculations that model thin film growth processes and electronic structure. Frequently, the experimental and theoretical efforts are coordinated on common scientific issues in a particular material system. Current research is devoted to (a) growth

377

Research Areas - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

http://www.msd.anl.gov/research-areas Sun, 12 Jan 2014 01:06:27 +0000 Joomla! 1.6 - Open Source Content Management en-gb Dynamics of Active Self-Assemble Materials http://www.msd.anl.gov/research-areas/dynamics-of-active-self-assemble-materials http://www.msd.anl.gov/research-areas/dynamics-of-active-self-assemble-materials krajniak@anl.gov (Ken Krajniak) Fri, 13 May 2011 17:17:28 +0000 Elastic Relaxation and Correlation of Local Strain Gradients with Ferroelectric Domains in (001) BiFeO3 Nanostructures http://www.msd.anl.gov/research-areas/elastic-relaxation-and-correlation-of-local-strain-gradients-with-ferroelectric-domains-in-001-bifeo3-nanostructures http://www.msd.anl.gov/research-areas/elastic-relaxation-and-correlation-of-local-strain-gradients-with-ferroelectric-domains-in-001-bifeo3-nanostructures

378

Nanostructure Arrays for Multijunction Solar Cells: Final Subcontract Report, 12 May 1999--11 July 2002  

DOE Green Energy (OSTI)

This project developed the process technologies for the fabrication of high-efficiency multijunction photovoltaic cells using semiconductor nanostructure arrays. These devices are expected to provide increased energy conversion efficiency, as well as increased carrier collection efficiency. In addition, this approach provides the ability to tune the absorption spectrum to match selected windows of the solar spectrum. At the same time, these devices can be fabricated using existing industrial electrochemical processing techniques that can substantially reduce the cost of each device. The fabrication technique is based on electrochemical synthesis of II-VI semiconductor quantum wires using a preformed alumina template. This project focused on and solved the technical challenges that need to be addressed for the implementation of such devices. Specific issues addressed include (a) improved pore ordering on thin-film templates, (b) synthesis of II-VI semiconductor nanostructures by both AC and DC deposition, (c) an in-situ barrier-layer engineering process that allow the fabrication of superior-quality materials and improved template/substrate interface, (d) characterization techniques for templates, (e) process technology for creating stacked layers of nanostructures, (f) process throughput and improved apparatus, (g) modeling tools, (h) use of glass substrates, and (i) a nonlithographic surface texturing technique for silicon PV cells. An important outcome of this project is the demonstration of the fabrication technique on glass substrates. This breakthrough provides the possibility of covering buildings with''transparent'' solar cells fabricated on architectural glass. The accomplishments of this project position it well for the next phase of research, namely, creation and optimization of the nanostructure-based PV cells.

Das, B.

2004-06-01T23:59:59.000Z

379

Nanostructured lithium nickel manganese oxides for lithium-ion batteries.  

DOE Green Energy (OSTI)

Nanostructured lithium nickel manganese oxides were investigated as advanced positive electrode materials for lithium-ion batteries designated to power plug-in hybrid electric vehicles and all-electric vehicles. The investigation included material characterization and electrochemical testing. In cell tests, the Li{sub 1.375}Ni{sub 0.25}Mn{sub 0.75}O{sub 2.4375} composition achieved high capacity (210 mAh g{sup -1}) at an elevated rate (230 mA g{sup -1}), which makes this material a promising candidate for high energy density Li-ion batteries, as does its being cobalt-free and uncoated. The material has spherical morphology with nanoprimary particles embedded in micrometer-sized secondary particles, possesses a multiphase character (spinel and layered), and exhibits a high packing density (over 2 g cm{sup -3}) that is essential for the design of high energy density positive electrodes. When combined with the Li{sub 4}Ti{sub 5}O{sub 12} stable anode, the cell showed a capacity of 225 mAh g{sup -1} at the C/3 rate (73 mA g{sup -1}) with no capacity fading for 200 cycles. Other chemical compositions, Li{sub (1+x)}Ni{sub 0.25}Mn{sub 0.75}O{sub (2.25+x/2)} (0.32 {le} x {le} 0.65), were also studied, and the relationships among their structural, morphological, and electrochemical properties are reported.

Deng, H.; Belharouak, I.; Cook, R. E.; Wu, H.; Sun, Y.-K.; Amine, K.; Hanyang Univ.

2010-02-25T23:59:59.000Z

380

Comparison of 1D and 2D CSR Models with Application to the FERMI@ELETTRA Bunch Compressors  

SciTech Connect

We compare our 2D mean field (Vlasov-Maxwell) treatment of coherent synchrotron radiation (CSR) effects with 1D approximations of the CSR force which are commonly implemented in CSR codes. In our model we track particles in 4D phase space and calculate 2D forces [1]. The major cost in our calculation is the computation of the 2D force. To speed up the computation and improve 1D models we also investigate approximations to our exact 2D force. As an application, we present numerical results for the Fermi{at}Elettra first bunch compressor with the configuration described in [1].

Bassi, G.; Ellison, J.A.; Heinemann, K.

2011-03-28T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets-  

Open Energy Info (EERE)

D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- Resistivity Distribution To About 3000 M Depth Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- Resistivity Distribution To About 3000 M Depth Details Activities (0) Areas (0) Regions (0) Abstract: With the aim of investigating the possibilities of magnetotelluric methods for the exploration of potential Enhanced Geothermal System (EGS) sites in the Upper Rhine valley, a 2-D magnetotelluric (MT) survey has been carried out on a 13 km long profile across the thermal anomaly in the area of the geothermal power plant of Soultz-sous-Forets in the winter 2007/08. Despite strong artificial noise, processing using remote referencing and Sutarno phase consistent smoothing

382

Universal 2D Soft Nano-Scale Mosaic Structure Theory for Polymers and Colloids  

E-Print Network (OSTI)

A basic concept in chain-particle cluster-motion, from frozen glassy state to melt state, is the 2D soft nano-scale mosaic structure formed by 8 orders of 2D interface excitation (IE) loop-flows, from small to large in inverse cascade and re-arrangement structure in cascade along local one direction. IE has additional repulsive energy and extra vacancy volume. IE results from that the instantaneous synchronal polarized electron charge coupling pair is able to parallel transport on the interface between two neighboring chain-particles with antiparallel delocalization. This structure accords with de Gennes' mosaic structure picture, from which we can directly deduce glass transition temperature, melt temperature, free volume fraction, critical entangled chain length, and activation energy to break solid lattice. This is also the in-herency maximum order-potential structure in random systems.

Jia-lin Wu

2011-05-25T23:59:59.000Z

383

Graphical algorithms and threshold error rates for the 2d colour code  

E-Print Network (OSTI)

Recent work on fault-tolerant quantum computation making use of topological error correction shows great potential, with the 2d surface code possessing a threshold error rate approaching 1% (NJoP 9:199, 2007), (arXiv:0905.0531). However, the 2d surface code requires the use of a complex state distillation procedure to achieve universal quantum computation. The colour code of (PRL 97:180501, 2006) is a related scheme partially solving the problem, providing a means to perform all Clifford group gates transversally. We review the colour code and its error correcting methodology, discussing one approximate technique based on graph matching. We derive an analytic lower bound to the threshold error rate of 6.25% under error-free syndrome extraction, while numerical simulations indicate it may be as high as 13.3%. Inclusion of faulty syndrome extraction circuits drops the threshold to approximately 0.1%.

Wang, D S; Hill, C D; Hollenberg, L C L

2009-01-01T23:59:59.000Z

384

Graphical algorithms and threshold error rates for the 2d colour code  

E-Print Network (OSTI)

Recent work on fault-tolerant quantum computation making use of topological error correction shows great potential, with the 2d surface code possessing a threshold error rate approaching 1% (NJoP 9:199, 2007), (arXiv:0905.0531). However, the 2d surface code requires the use of a complex state distillation procedure to achieve universal quantum computation. The colour code of (PRL 97:180501, 2006) is a related scheme partially solving the problem, providing a means to perform all Clifford group gates transversally. We review the colour code and its error correcting methodology, discussing one approximate technique based on graph matching. We derive an analytic lower bound to the threshold error rate of 6.25% under error-free syndrome extraction, while numerical simulations indicate it may be as high as 13.3%. Inclusion of faulty syndrome extraction circuits drops the threshold to approximately 0.1%.

D. S. Wang; A. G. Fowler; C. D. Hill; L. C. L. Hollenberg

2009-07-10T23:59:59.000Z

385

Symmetries and Conservation Laws for the 2D Ricci Flow Model  

E-Print Network (OSTI)

The paper aims to study the connection between symmetries and conservation laws for the 2D Ricci flow model. The procedure starts by obtaining a set of multipliers which generates conservation laws. Then, using a general relation which connects symmetries and conservation laws for whatever dynamical system, one determines symmetries related to a chosen multiplier. On this basis, new similarity solutions of the model, not yet discussed in literature, are highlighted.

Rodica Cimpoiasu

2011-08-27T23:59:59.000Z

386

Symmetries and Conservation Laws for the 2D Ricci Flow Model  

E-Print Network (OSTI)

The paper aims to study the connection between symmetries and conservation laws for the 2D Ricci flow model. The procedure starts by obtaining a set of multipliers which generates conservation laws. Then, using a general relation which connects symmetries and conservation laws for whatever dynamical system, one determines symmetries related to a chosen multiplier. On this basis, new similarity solutions of the model, not yet discussed in literature, are highlighted.

Cimpoiasu, Rodica

2011-01-01T23:59:59.000Z

387

Optimization of 2D image reconstruction for positron emission mammography using IDL  

Science Conference Proceedings (OSTI)

The Clear-PEM system is a prototype machine for Positron Emission Mammography (PEM) under development within the Portuguese PET-Mammography consortium. We have embedded 2D image reconstruction algorithms implemented in IDL within the prototype's image ... Keywords: ART, Computer implementation, Emission tomography, FDG, FOM, FOV, FWHM, GEANT, IDL, Image reconstruction, Iterative algorithms, LOR, MLEM, NCAT, NME, OSEM, PEM, PET, PSF, Positron emission mammography, ROI

N. Oliveira; N. Matela; R. Bugalho; N. Ferreira; P. Almeida

2009-02-01T23:59:59.000Z

388

Argonne National Laboratory Center for Nanoscale Materials  

NLE Websites -- All DOE Office Websites

Laboratory Center for Nanoscale Materials Laboratory Center for Nanoscale Materials An Office of Science User Facility U.S. Department of Energy Search CNM ... Search CNM Home About CNM Research Facilities People For Users Publications News & Highlights Events Jobs CNM Users Organization Contact Us Other DOE Nanoscale Science Research Centers Casimir force reduction Casimir Force Reduction through Nanostructuring By nanostructuring one of two interacting metal surfaces at scales below the plasma wavelength, a new regime in the Casimir force was observed by researchers in the Center for Nanoscale Materials Nanofabrication & Devices Group working with collaborators at NIST, other national laboratories, and universities. Replacing a flat surface with a deep metallic lamellar grating with <100 nm features strongly suppresses the Casimir force and,

389

Development of an isothermal 2D zonal air volume model with impulse  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of an isothermal 2D zonal air volume model with impulse Development of an isothermal 2D zonal air volume model with impulse conservation Title Development of an isothermal 2D zonal air volume model with impulse conservation Publication Type Conference Paper Year of Publication 2010 Authors Victor, Norrefeldt, Thierry Stephane Nouidui, and Gunnar Gruen Conference Name Clima 2010, 10th Rehva World Congress "Sustainable Energy Use in Buildings" Conference Location Antalya, Turkey Abstract This paper presents a new approach to model air flows with a zonal model. The aim of zonal models is to perform quick simulations of the air distribution in rooms. Therefore an air volume is subdivided into several discrete zones, typically 10 to 100. The zones are connected with flow elements computing the amount of air exchanged between them. In terms of complexity and needed computational time zonal models are a compromise between CFDcalculations and the approximation of perfect mixing. In our approach the air flow velocity is used as property of the zones. Thus the distinction between normal zones and jet or plume influenced zones becomes obsolete. The model is implemented in the object oriented and equation based language Modelica. A drawback of the new formulation is that the calculated flow pattern depends on the discretization. Nevertheless, the results show that the new zonal model performs well and is a useful extension to existing models.

390

An improved perturbation approach to the 2D Edwards polymer - corrections to scaling  

E-Print Network (OSTI)

We present the results of a new perturbation calculation in polymer statistics which starts from a ground state that already correctly predicts the long chain length behaviour of the mean square end--to--end distance hR 2 N i , namely the solution to the two dimensional (2D) Edwards model. The hR 2 N i thus calculated is shown to be convergent in N , the number of steps in the chain, in contrast to previous methods which start from the free random walk solution. This allows us to calculate a new value for the leading correction--to--scaling exponent \\Delta. Writing hR 2 N i = AN 2 (1 +BN \\Gamma\\Delta +CN \\Gamma1 + :::), where = 3=4 in 2D, our result shows that \\Delta = 1=2. This value is also supported by an analysis of 2D self--avoiding walks on the continuum. 36.20.Ey, 64.60.Fr Typeset using REVT E X I. INTRODUCTION The central quantity of interest in polymer statistics is the mean square end--to--end distance hR 2 N i for a chain of N links. The excluded volume ef...

S. R. Shannon; T. C. Choy; R. J. Fleming; I An

1995-01-01T23:59:59.000Z

391

Validation for 2D/3D registration I: A new gold standard data set  

Science Conference Proceedings (OSTI)

Purpose: In this article, the authors propose a new gold standard data set for the validation of two-dimensional/three-dimensional (2D/3D) and 3D/3D image registration algorithms. Methods: A gold standard data set was produced using a fresh cadaver pig head with attached fiducial markers. The authors used several imaging modalities common in diagnostic imaging or radiotherapy, which include 64-slice computed tomography (CT), magnetic resonance imaging using Tl, T2, and proton density sequences, and cone beam CT imaging data. Radiographic data were acquired using kilovoltage and megavoltage imaging techniques. The image information reflects both anatomy and reliable fiducial marker information and improves over existing data sets by the level of anatomical detail, image data quality, and soft-tissue content. The markers on the 3D and 2D image data were segmented using ANALYZE 10.0 (AnalyzeDirect, Inc., Kansas City, KN) and an in-house software. Results: The projection distance errors and the expected target registration errors over all the image data sets were found to be less than 2.71 and 1.88 mm, respectively. Conclusions: The gold standard data set, obtained with state-of-the-art imaging technology, has the potential to improve the validation of 2D/3D and 3D/3D registration algorithms for image guided therapy.

Pawiro, S. A.; Markelj, P.; Pernus, F.; Gendrin, C.; Figl, M.; Weber, C.; Kainberger, F.; Noebauer-Huhmann, I.; Bergmeister, H.; Stock, M.; Georg, D.; Bergmann, H.; Birkfellner, W. [Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, AKH-4L, Waehringer Guertel 18-20, Vienna A-1090 (Austria); Laboratory of Imaging Technologies, Faculty of Electrical Engineering, University of Ljubljana, Trzaska Cesta 25, Ljubljana SI-1000 (Slovenia); Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, AKH-4L, Waehringer Guertel 18-20, Vienna A-1090 (Austria); University Clinic of Radiology, Division of Osteoradiology, Medical University of Vienna, AKH-4L, Waehringer Guertel 18-20, Vienna A-1090 (Austria); Department of Biomedical Research, Medical University Vienna, AKH-4L, Waehringer Guertel 18-20, Vienna A-1090 (Austria); University Clinic of Radiotherapy, Division of Medical Radiation Physics, Medical University of Vienna, Waehringer Guertel 18-20, AKH, Vienna A-1090 (Austria); Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, AKH-4L, Waehringer Guertel 18-20, Vienna A-1090 (Austria)

2011-03-15T23:59:59.000Z

392

Characterization of Si nanostructures using internal quantum efficiency measurements  

DOE Green Energy (OSTI)

Hemispherical reflectance and internal quantum efficiency measurements have been employed to evaluate the response of Si nanostructured surfaces formed by using random and periodic reactive ion etching techniques. Random RIE-textured surfaces have demonstrated solar weighted reflectance of {approx} 3% over 300--1,200-nm spectral range even without the benefit of anti-reflection films. Random RIE-texturing has been found to be applicable over large areas ({approximately} 180 cm{sup 2}) of both single and multicrystalline Si surfaces. Due to the surface contamination and plasma-induced damage, RIE-textured surfaces did not initially provide increased short circuit current as expected from the enhanced absorption. Improved processing combined with wet-chemical damage removal etches resulted in significant improvement in the short circuit current with IQEs comparable to the random, wet-chemically textured surfaces. An interesting feature of the RIE-textured surfaces was their superior performance in the near IR spectral range. The response of RIE-textured periodic surfaces can be broadly classified into three distinct regimes. One-dimensional grating structures with triangular profiles are characterized by exceptionally low, polarization-independent reflective behavior. The reflectance response of such surfaces is similar to a graded-index anti-reflection film. The IQE response from these surfaces is severely degraded in the UV-Visible spectral region due to plasma-induced surface damage. One-dimensional grating structures with rectangular profiles exhibit spectrally selective absorptive behavior with somewhat similar IQE response. The third type of grating structure combines broadband anti-reflection behavior with significant IQE enhancement in 800--1,200-nm spectral region. The hemispherical reflectance of these 2D grating structures is comparable to random RIE-textured surfaces. The IQE enhancement in the long wavelength spectral region can be attributed to increased coupling into obliquely propagating transmitted diffracted orders inside the Si substrate. Random RIE texturing techniques are expected to find widespread commercial applicability in low-cost, large-area multicrystalline Si solar cells. Grating-texturing techniques are expected to find applications in thin-film and space solar cells.

ZAIDI,SALEEM H.

2000-04-01T23:59:59.000Z

393

Final Technical Report: Nanostructured Shape Memory ALloys  

SciTech Connect

With this grant we explored the properties that result from combining the effects of nanostructuring and shape memory using both experimental and theoretical approaches. We developed new methods to make nanostructured NiTi by melt-spinning and cold rolling fabrication strategies, which elicited significantly different behavior. A template synthesis method was also used to created nanoparticles. In order to characterize the particles we created, we developed a new magnetically-assisted particle manipulation technique to manipulate and position nanoscale samples for testing. Beyond characterization, this technique has broader implications for assembly of nanoscale devices and we demonstrated promising applications for optical switching through magnetically-controlled scattering and polarization capabilities. Nanoparticles of nickel-titanium (NiTi) shape memory alloy were also produced using thin film deposition technology and nanosphere lithography. Our work revealed the first direct evidence that the thermally-induced martensitic transformation of these films allows for partial indent recovery on the nanoscale. In addition to thoroughly characterizing and modeling the nanoindentation behavior in NiTi thin films, we demonstrated the feasibility of using nanoindentation on an SMA film for write-read-erase schemes for data storage.

Wendy Crone; Walter Drugan; Arthur Ellis; John Perepezko

2005-07-28T23:59:59.000Z

394

Laser Beam / Nanostructured Powder Interactions Aiming towards ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Joining of Advanced and Specialty Materials (JASM XV). Presentation Title ...

395

Elastic theory of low-dimensional continua and its applications in bio- and nano-structures  

E-Print Network (OSTI)

This review presents the elastic theory of low-dimensional (one- and two-dimensional) continua and its applications in bio- and nano-structures. First, the curve and surface theory, as the geometric representation of the low-dimensional continua, is briefly described through Cartan moving frame method. The elastic theory of Kirchhoff rod, Helfrich rod, bending-soften rod, fluid membrane, and solid shell is revisited. Secondly, the application and availability of the elastic theory of low-dimensional continua in bio-structures, including short DNA rings, lipid membranes, and cell membranes, are discussed. The kink stability of short DNA rings is addressed by using the theory of Kirchhoff rod, Helfrich rod, and bending-soften rod. The lipid membranes obey the theory of fluid membrane. A cell membrane is simplified as a composite shell of lipid bilayer and membrane skeleton, which is a little similar to the solid shell. It is found that the membrane skeleton enhances highly the mechanical stability of cell membranes. Thirdly, the application and availability of the elastic theory of low-dimensional continua in nano-structures, including graphene and carbon nanotubes, are discussed. A revised Lenosky lattice model is proposed based on the local density approximation. Its continuum form up to the second order terms of curvatures and strains is the same as the free energy of 2D solid shells. Several typical mechanical properties of carbon nanotubes are revisited and investigated based on this continuum form. It is possible to avoid introducing the controversial concepts, the Young's modulus and thickness of graphene and single-walled carbon nanotubes, with this continuum form.

Z. C. Tu; Z. C. Ou-Yang

2007-06-01T23:59:59.000Z

396

Self-Assembly of Nanostructured Electronic Devices (454th Brookhaven Lecture)  

Science Conference Proceedings (OSTI)

Given suitable atmospheric conditions, water vapor from the air will crystallize into beautiful structures: snowflakes. Nature provides many other examples of spontaneous organization of materials into regular patterns, which is a process known as self-assembly. Since self-assembly works at all levels, it can be a useful tool for organizing materials on the nanometer scale. In particular, self-assembly provides a precise method for designing materials with improved electronic properties, thereby enabling advances in semiconductor electronics and solar devices. On Wednesday, December 16, at 4 p.m. in Berkner Hall, Charles Black of the Center for Functional Nanomaterials (CFN) will explore this topic during the 454th Brookhaven Lecture, entitled “Self-Assembly of Nanostructured Electronic Devices.” Refreshments will be offered before and after the lecture. To attend this open-to-the-public event, visitors to the Lab ages 16 and older must present photo ID at the Main Gate. During this talk, Dr. Black will discuss examples of how self-assembly is being integrated into semiconductor microelectronics, as advances in the ability to define circuit elements at higher resolution have fueled more than 40 years of performance improvements. Self-assembly also promises advances in the performance of solar devices; thus he will describe his group’s recent results with nanostructured photovoltaic devices.

Black, Charles (Ph.D., Center for Functional Nanomaterials)

2009-12-16T23:59:59.000Z

397

A parallel implementation of Strassen's matrix multiplication algorithm for wormhole-routed all-port 2D torus networks  

Science Conference Proceedings (OSTI)

A new parallel implementation of Strassen's matrix multiplication algorithm is proposed for massively parallel supercomputers with 2D, all-port torus interconnection networks. The proposed algorithm employs a special conflict-free routing pattern for ... Keywords: 2D torus, Fast Matrix Multiplication, Parallel processing, Strassen's matrix multiplication, Torus interconnection networks

Cesur Baransel; Kayhan M. ?mre

2012-10-01T23:59:59.000Z

398

1087-8270/99 $10.00 1999 IEEE Hand-Held Windows: Towards Effective 2D Interaction  

E-Print Network (OSTI)

Graphics The George Washington University, Washington, DC [gogo | sibert | hahn]@seas.gwu.edu Abstract205 1087-8270/99 $10.00 © 1999 IEEE Hand-Held Windows: Towards Effective 2D Interaction. Windowing within immersive virtual environments is an attempt to apply 2D interface techniques to three

Lindeman, Robert W.

399

10878270/99 $10.00 1999 IEEE HandHeld Windows: Towards Effective 2D Interaction  

E-Print Network (OSTI)

Graphics The George Washington University, Washington, DC [gogo | sibert | hahn]@seas.gwu.edu Abstract205 1087­8270/99 $10.00 © 1999 IEEE Hand­Held Windows: Towards Effective 2D Interaction. Windowing within immersive virtual environments is an attempt to apply 2D interface techniques to three

Lindeman, Robert W.

400

IP4DI: A software for time-lapse 2D/3D DC-resistivity and induced polarization tomography  

Science Conference Proceedings (OSTI)

We propose a 2D/3D forward modelling and inversion package to invert direct current (DC)-resistivity, time-domain induced polarization (TDIP), and frequency-domain induced polarization (FDIP) data. Each cell used for the discretization of the 2D/3D problems ... Keywords: Induced polarization, Inversion, Resistivity, Time-lapse

M. Karaoulis, A. Revil, P. Tsourlos, D. D. Werkema, B. J. Minsley

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Nanostructured Composite Electrodes for Lithium Batteries (Final Technical Report)  

DOE Green Energy (OSTI)

The objective of this study was to explore new ways to create nanostructured electrodes for rechargeable lithium batteries. Of particular interests are unique nanostructures created by electrochemical deposition, etching and combustion chemical vapor deposition (CCVD). Three-dimensional nanoporous Cu6Sn5 alloy has been successfully prepared using an electrochemical co-deposition process. The walls of the foam structure are highly-porous and consist of numerous small grains. This represents a novel way of creating porous structures that allow not only fast transport of gas and liquid but also rapid electrochemical reactions due to high surface area. The Cu6Sn5 samples display a reversible capacity of {approx}400 mAhg-1. Furthermore, these materials exhibit superior rate capability. At a current drain of 10 mA/cm2(20C rate), the obtainable capacity was more than 50% of the capacity at 0.5 mA/cm2 (1C rate). Highly open and porous SnO2 thin films with columnar structure were obtained on Si/SiO2/Au substrates by CCVD. The thickness was readily controlled by the deposition time, varying from 1 to 5 microns. The columnar grains were covered by nanoparticles less than 20 nm. These thin film electrodes exhibited substantially high specific capacity. The reversible specific capacity of {approx}3.3 mAH/cm2 was demonstrated for up to 80 cycles at a charge/discharge rate of 0.3 mA/cm2. When discharged at 0.9 mA/cm2, the capacity was about 2.1 mAH/cm2. Tin dioxide box beams or tubes with square or rectangular cross sections were synthesized using CCVD. The cross-sectional width of the SnO2 tubules was tunable from 50 nm to sub-micrometer depending on synthesis temperature. The tubes are readily aligned in the direction perpendicular to the substrate surface to form tube arrays. Silicon wafers were electrochemically etched to produce porous silicon (PS) with honeycomb-type channels and nanoporous walls. The diameters of the channels are about 1 to 3 microns and the depth of the channels can be up to 100 microns. We have successfully used the PS as a matrix for Si-Li-based alloy. Other component(s) can be incorporated into the PS either by an electroless metallization or by kinetically controlled vapor deposition.

Meilin Liu, James Gole

2006-12-14T23:59:59.000Z

402

Electrical Conductivity of 2D-SiCf/CVI-SiC  

Science Conference Proceedings (OSTI)

Materials Development & Plasma-Material Interactions / Proceedings of the Nineteenth Topical Meeting on the Technology of Fusion Energy (TOFE) (Part 1)

G. E. Youngblood; E. C. Thomsen; R. J. Shinavski

403

Photo of the Week: Butterflies, Crystal Nanostructures and Solar Cell  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Butterflies, Crystal Nanostructures and Solar Butterflies, Crystal Nanostructures and Solar Cell Research Photo of the Week: Butterflies, Crystal Nanostructures and Solar Cell Research October 26, 2012 - 11:44am Addthis What do butterflies and solar cell research have in common? Both have been developing tiny crystals that selectively reflect colors. Over millions of years of evolution, butterfly wings have developed the tiny crystal nanostructures that give butterflies their vivid colors. At Argonne National Laboratory, scientists are working to manufacture these crystals, which could one day be used to create "greener" and more efficient paints, fiber optics and solar cells. In this photo, the iridescent scales of an emerald-patched Cattleheart butterfly are magnified 20 times to highlight the crystals that selectively reflect green colors. | Photo courtesy of Argonne National Laboratory.

404

Self-Assembled Peptide Nanostructures for Template Directed ...  

Science Conference Proceedings (OSTI)

... peptide nanostructures with various bioactive and chemically active groups. ... Importance of Microstructure on the Crack Growth Resistance of Dentin ... Influence of Surface Treatment of Nitinol on Adhesion and Proliferation on ...

405

Coherent optical control of electronic excitations in functionalized semiconductor nanostructures  

Science Conference Proceedings (OSTI)

The feasibility of creating and manipulating coherent quantum states on surfaces offunctionalized semiconductor nanostructures is computationally investigated. Quantumdynamics simulations of electron-hole transfer between catechol molecules adsorbed ... Keywords: adsorbates, coherent control, semiconductors, wave-packet dynamics

L. G. C. Rego; S. G. Abuabara; V. S. Batista

2005-07-01T23:59:59.000Z

406

Nonlinear optics of semiconductor and molecular nanostructures; a common perspective  

E-Print Network (OSTI)

nanostructures are, on the other hand, more advanced due to the superior methods of fabrication in experiments that probe biexcitonic reso- nances (Miller et al., 1982; Cingolani et al., 1988; Hulin and Joffre

Mukamel, Shaul

407

On the spectra of carbon nano-structures  

E-Print Network (OSTI)

An explicit derivation of dispersion relations and spectra for periodic Schr\\"{o}dinger operators on carbon nano-structures (including graphen and all types of single-wall nano-tubes) is provided.

Peter Kuchment; Olaf Post

2006-12-07T23:59:59.000Z

408

Synthesis and characterization of ZnTe hierarchical nanostructures  

Science Conference Proceedings (OSTI)

Single-crystalline ZnTe hierarchical nanostructures have been successfully synthesized by a simple thermal evaporation technology. The as-prepared products were characterized with X-ray diffraction (XRD), scanning electron microcopy (SEM), transmission ...

Baohua Zhang; Fuqiang Guo; Wei Wang

2012-01-01T23:59:59.000Z

409

Metal-polymer composites comprising nanostructures and applications thereof  

DOE Patents (OSTI)

Metal-polymer composites, and methods of making and use thereof, said composites comprising a thermally-cured dense polyaniline substrate; an acid dopant; and, metal nanostructure deposits wherein the deposits have a morphology dependent upon the acid dopant.

Wang, Hsing-Lin (Los Alamos, NM); Jeon, Sea Ho (Dracut, MA); Mack, Nathan H. (Los Alamos, NM)

2011-08-02T23:59:59.000Z

410

Metal-polymer composites comprising nanostructures and applications thereof  

SciTech Connect

Metal-polymer composites, and methods of making and use thereof, said composites comprising a thermally-cured dense polyaniline substrate; an acid dopant; and, metal nanostructure deposits wherein the deposits have a morphology dependent upon the acid dopant.

Wang, Hsing-Lin (Los Alamos, NM); Jeon, Sea Ho (Dracut, MA); Mack, Nathan H. (Los Alamos, NM)

2012-04-03T23:59:59.000Z

411

Synthesis, Properties and Applications of Noble Metal Nanostructures  

Science Conference Proceedings (OSTI)

And such non-equilibrium growth process is affected by many factors, such as size ... Improved Field Emission Characteristics of Nano-Structured Carbon Based Thin Films ... Synthesis and Structural Analysis of Nickel-Doped Titanium Dioxide ...

412

Chemical Lithium Intercalation into Nano-Structured Anatase and  

Science Conference Proceedings (OSTI)

The evolution of lithium intercalation into nano-structured TiO2 is studied by 6Li NMR, XRD and TEM studies. The intercalation of lithium into rutile  ...

413

The Effect of Nanostructure on the High-temperature Oxidation ...  

Science Conference Proceedings (OSTI)

In the present study conventional and nanostructured bulk ?-NiAl samples were ... of ReaxFF Reactive Force Fields to Oxidation Reactions in Ni/Al Metal Alloys.

414

Ballistic Transport in Nanostructures, and its Application to Functionalized Nanotubes  

E-Print Network (OSTI)

We developed and implemented a first-principles based theory of the Landauer ballistic conductance, to determine the transport properties of nanostructures and molecular-electronics devices. Our approach starts from a ...

Marzari, Nicola

415

Nanostructures from hydrogen implantation of metals.  

DOE Green Energy (OSTI)

This study investigates a pathway to nanoporous structures created by hydrogen implantation in aluminum. Previous experiments for fusion applications have indicated that hydrogen and helium ion implantations are capable of producing bicontinuous nanoporous structures in a variety of metals. This study focuses specifically on hydrogen and helium implantations of aluminum, including complementary experimental results and computational modeling of this system. Experimental results show the evolution of the surface morphology as the hydrogen ion fluence increases from 10{sup 17} cm{sup -2} to 10{sup 18} cm{sup -2}. Implantations of helium at a fluence of 10{sup 18} cm{sup -2} produce porosity on the order of 10 nm. Computational modeling demonstrates the formation of alanes, their desorption, and the resulting etching of aluminum surfaces that likely drives the nanostructures that form in the presence of hydrogen.

McWatters, Bruce Ray (Sandia National Laboratories, Albuquerque, NM); Causey, Rion A.; DePuit, Ryan J.; Yang, Nancy Y. C.; Ong, Markus D.

2009-09-01T23:59:59.000Z

416

Session H: Materials and Devices for Flexible Electronics  

Science Conference Proceedings (OSTI)

Jun 23, 2010 ... [1] S. K. Park, SPIE Conference Digest, 100 (2007). [2] D. J. Gundlach, et al. Nature Materials, 7(3), 216-221 (2008). [3] D. A. Mourey, et al, IEEE ...

417

Control of Biomaterials Nanostructures for Enhanced Performance  

Science Conference Proceedings (OSTI)

They enable the nanocapsules to penetrate into the cancer tumors to allow a .... Research on Bioinspired Functional Materials Derived from Natural Materials.

418

CHARACTERIZATION BY SEM OF THE PYROCARBON FIBER COATING IN 2D-SIC/CVI-SIC  

Science Conference Proceedings (OSTI)

The previous report examined electrical conductivity (EC) data from RT to 800°C for several forms of two-dimensional silicon carbide composite made with a chemical vapor infiltration (CVI) matrix (2D-SiC/CVI-SiC), an important quantity needed for the design of an FCI. We found that both in-plane and transverse EC-values for 2D-SiC/CVI-SiC strongly depended on the total thickness of the highly conductive pyrocarbon (PyC) fiber coating and the alignment of the carbon coating network. Furthermore, the transverse EC depended on the degree of interconnectivity of this network. For our EC-modeling efforts we used either “nominal” coating thickness values provided by the composite fabricator or we made thickness estimates based on a limited number of fiber cross-section examinations using SEM. Because of the importance of using a truly representative coating thickness value in our analysis, we examined numerous new SEM cross-sectional views to reassess the reliability of our limited number of original coating thickness measurements as well as to obtain an estimate of the variation in thickness values for different composite configurations.

Youngblood, Gerald E.

2011-03-23T23:59:59.000Z

419

A New 2D-Transport, 1D-Diffusion Approximation of the Boltzmann Transport equation  

Science Conference Proceedings (OSTI)

The work performed in this project consisted of the derivation, implementation, and testing of a new, computationally advantageous approximation to the 3D Boltz- mann transport equation. The solution of the Boltzmann equation is the neutron flux in nuclear reactor cores and shields, but solving this equation is difficult and costly. The new “2D/1D” approximation takes advantage of a special geometric feature of typical 3D reactors to approximate the neutron transport physics in a specific (ax- ial) direction, but not in the other two (radial) directions. The resulting equation is much less expensive to solve computationally, and its solutions are expected to be sufficiently accurate for many practical problems. In this project we formulated the new equation, discretized it using standard methods, developed a stable itera- tion scheme for solving the equation, implemented the new numerical scheme in the MPACT code, and tested the method on several realistic problems. All the hoped- for features of this new approximation were seen. For large, difficult problems, the resulting 2D/1D solution is highly accurate, and is calculated about 100 times faster than a 3D discrete ordinates simulation.

Larsen, Edward

2013-06-17T23:59:59.000Z

420

Active Nano-Structured Composite Coatings for Corrosion and Wear Protection of Steel  

E-Print Network (OSTI)

In order to obtain sustainable engineering systems, this research investigates surface and interface properties of metals and active nanostructured coatings. The goal is to develop new approaches in order to improve the corrosion resistance and obtain knowledge in reconstruction of worn and/or corroded surfaces. The research will focus on high carbon steels as the substrate. These materials are used in most of industries and vehicles like aircrafts and automobiles. For anti-corrosion and self-healing applications, the layer-by-layered (LBL) coatings consisting photo-catalytic materials, the corrosion inhibitor, and the polyelectrolyte will be studied. Potential dynamic tests will be carried out in order to characterize the corrosion potential and current. For wear study, we will develop a metallic composite that has several functions, such as corrosion and wear protection, refresh or reverse worn or corroded surface. Characterization techniques used include optical microscope, surface interferometer, tribometer and the hardness tester. The ultimate goal of this research is to understand several types of problems on metal surface, such as corrosion and wear, and explore the possible ways to reduce those by using active nano-structured composite coating on metal surface.

Kim, Yoo Sung

2013-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

GRAV2D: an interactive 2-1/2 dimensional gravity modeling program (user's guide and documentation for Rev. 1)  

DOE Green Energy (OSTI)

GRAV2D is an interactive computer program used for modeling 2-1/2 dimensional gravity data. A forward algorithm is used to give the theoretical attraction of gravity intensity at a station due to a perturbing body given by the initial model. The resultant model can then be adjusted for a better fit by a combination of manual adjustment, one-dimensional automatic search, and Marquardt inversion. GRAV2D has an interactive data management system for data manipulation and display built around subroutines to do a forward problem, a one-dimensional direct search and an inversion. This is a user's guide and documentation for GRAV2D.

Nutter, C.

1980-11-01T23:59:59.000Z

422

DNA-based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response  

E-Print Network (OSTI)

Surface plasmon resonances generated in metallic nanostructures can be utilized to tailor electromagnetic fields. The precise spatial arrangement of such structures can result in surprising optical properties that are not found in any naturally occurring material. Here, the designed activity emerges from collective effects of singular components equipped with limited individual functionality. Top-down fabrication of plasmonic materials with a predesigned optical response in the visible range by conventional lithographic methods has remained challenging due to their limited resolution, the complexity of scaling, and the difficulty to extend these techniques to three-dimensional architectures. Molecular self-assembly provides an alternative route to create such materials which is not bound by the above limitations. We demonstrate how the DNA origami method can be used to produce plasmonic materials with a tailored optical response at visible wavelengths. Harnessing the assembly power of 3D DNA origami, we arranged metal nanoparticles with a spatial accuracy of 2 nm into nanoscale helices. The helical structures assemble in solution in a massively parallel fashion and with near quantitative yields. As a designed optical response, we generated giant circular dichroism and optical rotary dispersion in the visible range that originates from the collective plasmon-plasmon interactions within the nanohelices. We also show that the optical response can be tuned through the visible spectrum by changing the composition of the metal nanoparticles. The observed effects are independent of the direction of the incident light and can be switched by design between left- and right-handed orientation. Our work demonstrates the production of complex bulk materials from precisely designed nanoscopic assemblies and highlights the potential of DNA self-assembly for the fabrication of plasmonic nanostructures.

Anton Kuzyk; Robert Schreiber; Zhiyuan Fan; Günther Pardatscher; Eva-Maria Roller; Alexander Högele; Friedrich C. Simmel; Alexander O. Govorov; Tim Liedl

2011-08-18T23:59:59.000Z

423

Nano-carbon materials for cold cathode applications  

Science Conference Proceedings (OSTI)

Nano-carbon thin film materials were obtained by chemical vapor deposition in dc discharge activated hydrogen-methane gas mixture. Film structure, surface morphology and phase composition was studied by Raman, electron microscopy and electron spectroscopy ... Keywords: CVD, carbon, field emission, nanostructures

A. N. Obraztsov; Al. A. Zakhidov; A. P. Volkov; D. A. Lyashenko

2003-09-01T23:59:59.000Z

424

Calibration of Modulation Transfer Function of Surface Profilometers with 1D and 2D Binary Pseudo-random Array Standards  

E-Print Network (OSTI)

Pseudo-random Grating Standard for Calibration of SurfaceBinary Pseudorandom Grating as a Standard Test Surface for2D Binary Pseudo-random Array Standards Valeriy V. Yashchuk,

Yashchuk, Valeriy V.

2009-01-01T23:59:59.000Z

425

Drop Size Distributions Measured by a 2D Video Disdrometer: Comparison with Dual-Polarization Radar Data  

Science Conference Proceedings (OSTI)

An analysis of drop size distributions (DSDs) measured in four very different precipitation regimes is presented and is compared with polarimetric radar measurements. The DSDs are measured by a 2D video disdrometer, which is designed to measure ...

Terry J. Schuur; Alexander V. Ryzhkov; Dusan S. Zrni?; Michael Schönhuber

2001-06-01T23:59:59.000Z

426

Extreme Chromatography: Faster, Hotter, SmallerChapter 10 Comprehensive 2D GC Methodologies for the Analysis of Lipids  

Science Conference Proceedings (OSTI)

Extreme Chromatography: Faster, Hotter, Smaller Chapter 10 Comprehensive 2D GC Methodologies for the Analysis of Lipids Methods and Analyses eChapters Methods - Analyses Books Downloadable pdf of Chapter 10 Comprehens

427

Condensed Matter Physics & Materials Science Department, Brookhaven  

NLE Websites -- All DOE Office Websites (Extended Search)

People People Facilities Publications Presentations Organizational Chart Other Information Basic Energy Sciences Directorate BNL Site Index Can't View PDFs? :: Next CMPMS Seminar There are no seminars scheduled at this time. Advanced Energy Materials Group We study both the microscopic and macroscopic properties of complex and nano-structured materials with a view to understanding and developing their application in different energy related technologies Group Leader: Qiang Li Condensed Matter Physics and Materials Science Department Brookhaven National Laboratory Upton, New York 11973-5000 (631) 344-4490 qiangli@bnl.gov AEM group news: Current research topics include: Superconducting Materials Nano-scale Materials (S. Wong) Applied Superconductivity Thermoelectric Materials

428

Solar Superabsorption of Semiconductor Materials  

E-Print Network (OSTI)

We theoretically demonstrate the fundamental limit in volume for given materials (e.g. Si, a-Si, CdTe) to fully absorb the solar radiation above bandgap, which we refer as solar superabsorption limit. We also point out the general principles for experimentally designing light trapping structures to approach the superabsorption. This study builds upon an intuitive model, coupled leaky mode theory (CLMT), for the analysis of light absorption in nanostructures. The CLMT provides a useful variable transformation. Unlike the existing methods that rely on information of physical features (e.g. morphology, dimensionality) to analyze light absorption, the CLMT can evaluate light absorption in given materials with only two variables, the radiative loss and the resonant wavelength, of leaky modes, regardless the physical features of the materials. This transformation allows for surveying the entire variable space to find out the solar superabsorption and provides physical insights to guide the design of solar superabso...

Yu, Yiling; Cao, Linyou

2013-01-01T23:59:59.000Z

429

Carbon nanostructures production by AC arc discharge plasma process at atmospheric pressure  

Science Conference Proceedings (OSTI)

Carbon nanostructures have received much attention for a wide range of applications. In this paper, we produced carbon nanostructures by decomposition of benzene using AC arc discharge plasma process at atmospheric pressure. Discharge was carried out ...

Shenqiang Zhao; Ruoyu Hong; Zhi Luo; Haifeng Lu; Biao Yan

2011-01-01T23:59:59.000Z

430

Self-Assembly of Organic Nanostructures  

E-Print Network (OSTI)

This dissertation focuses on investigating the morphologies, optical and photoluminescence properties of porphyrin nanostructures prepared by the self-assembly method. The study is divided into three main parts. In the first part, a large variety of porphyrin nanostructures, including nanoplates, nanofibers, nanoparticles and nanowires, were obtained through direct acidification of tetra(p-carboxyphenyl)porphyrin (TCPP) in aqueous solution. Protonation of the carboxylate groups of TCPP resulted in the formation of nanoplates through the J-aggregation of the porphyrin. Further protonating the core nitrogens of TCPP formed the porphyrin diacids which organized into well-defined structures through their interactions with counter-anions in the solution. The structures of the resulting assemblies were found to be counterion dependent. In the second part of this work, we explored the optical memory effect of the porphyrin thin film. We found that the morphology and the emission of the porpyrin thin film on Si can be changed by varying the pH of its surrounding solution. The changing in morphology and light emission of the thin film resulted from the protonation or deprotonation of TCPP'S core nitrogens. By selectively deprotonating the TCPP dications in a confined region utilizing the water meniscus between an AFM tip and the surface, Fluorescence patterns can be generated on the thin film. The fluorescence patterns can be easily erased by re-protonating the porphyrin. In the third part of this study, porphynoid nanoparticles were deposited on a surface energy gradient, and then characterized by AFM in order to investigate how the surface energy influences thier morphologies. The surface energy gradient was prepared by selectively oxidizing a self-assembly monolayer of octadecyltrichlorosilane (OTS) by UV-ozone. The nanoparticles disassemble into smaller nanoparticles with narrower size distribution on the surface with higher surface energy. Lastly, we engaged in characterizing the morphologies of polymer nanocomposites prepared by layer-by-layer assembly for wettability control. The surface roughness of the nanocopmosite in air and in salt solutions was also measured to study the correlation between the wettability of the polymer surface and its surface roughness.

Wan, Albert

2011-08-01T23:59:59.000Z

431

2D Joint Inversion Of Dc And Scalar Audio-Magnetotelluric Data In The  

Open Energy Info (EERE)

Joint Inversion Of Dc And Scalar Audio-Magnetotelluric Data In The Joint Inversion Of Dc And Scalar Audio-Magnetotelluric Data In The Evaluation Of Low Enthalpy Geothermal Fields Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 2D Joint Inversion Of DC And Scalar Audio-Magnetotelluric Data In The Evaluation Of Low Enthalpy Geothermal Fields Details Activities (0) Areas (0) Regions (0) Abstract: Audio-magnetotelluric (AMT) and resistivity (dc) surveys are often used in environmental, hydrological and geothermal evaluation. The separate interpretation of those geophysical data sets assuming two-dimensional models frequently produces ambiguous results. The joint inversion of AMT and dc data is advocated by several authors as an efficient method for reducing the ambiguity inherent to each of those

432

Diffusivity and Weak Clustering in a Quasi 2D Granular Gas  

E-Print Network (OSTI)

We present results from a detailed simulation of a quasi-2D dissipative granular gas, kept in a non-condensed steady state via vertical shaking over a rough substrate. This gas shows a weak power-law decay in the tails of its Pair Distribution Functions (PDF's), indicating fractality and therefore a tendency to form clusters over several size scales. This clustering depends monotonically on the dissipation coefficient, and disappears when the sphere-sphere collisions are conservative. Clustering is also sensitive to the packing fraction. This gas also displays the standard nonequilibrium characteristics of similar systems, including non-Maxwellian velocity distributions. The diffusion coefficients are calculated over all the conditions of the simulations, and it is found that diluted gases are more diffusive for smaller restitution coefficients.

J. A. Perera-Burgos; G. Perez-Angel; Y. Nahmad-Molinari

2010-06-01T23:59:59.000Z

433

Simulations of 2D magnetic electron drift vortex mode turbulence in plasmas  

E-Print Network (OSTI)

Simulations are performed to investigate turbulent properties of nonlinearly interacting two-dimensional (2D) magnetic electron drift vortex (MEDV) modes in a nonuniform unmagnetized plasma. The relevant nonlinear equations governing the dynamics of the MEDV modes are the wave magnetic field and electron temperature perturbations in the presence of the equilibrium density and temperature gradients. The important nonlinearities come from the advection of the electron fluid velocity perturbation and the electron temperature, as well as from the nonlinear electron Lorentz force. Computer simulations of the governing equations for the nonlinear MEDV modes reveal the generation of streamer-like electron flows, such that the corresponding gradients in the direction of the inhomogeneities tend to flatten out. By contrast, the gradients in an orthogonal direction vary rapidly. Consequently, the inertial range energy spectrum in decaying MEDV mode turbulence exhibits a much steeper anisotropic spectral index. The magn...

Shaikh, Dastgeer

2008-01-01T23:59:59.000Z

434

A 2-D Implicit, Energy and Charge Conserving Particle In Cell Method  

Science Conference Proceedings (OSTI)

Recently, a fully implicit electrostatic 1D charge- and energy-conserving particle-in-cell algorithm was proposed and implemented by Chen et al ([2],[3]). Central to the algorithm is an advanced particle pusher. Particles are moved using an energy conserving scheme and are forced to stop at cell faces to conserve charge. Moreover, a time estimator is used to control errors in momentum. Here we implement and extend this advanced particle pusher to include 2D and electromagnetic fields. Derivations of all modifications made are presented in full. Special consideration is taken to ensure easy coupling into the implicit moment based method proposed by Taitano et al [19]. Focus is then given to optimizing the presented particle pusher on emerging architectures. Two multicore implementations, and one GPU (Graphics Processing Unit) implementation are discussed and analyzed.

McPherson, Allen L. [Los Alamos National Laboratory; Knoll, Dana A. [Los Alamos National Laboratory; Cieren, Emmanuel B. [Los Alamos National Laboratory; Feltman, Nicolas [Los Alamos National Laboratory; Leibs, Christopher A. [Los Alamos National Laboratory; McCarthy, Colleen [Los Alamos National Laboratory; Murthy, Karthik S. [Los Alamos National Laboratory; Wang, Yijie [Los Alamos National Laboratory

2012-09-10T23:59:59.000Z

435

The low frequency 2D vibration sensor based on flat coil element  

SciTech Connect

Vibration like an earthquake is a phenomenon of physics. The characteristics of these vibrations can be used as an early warning system so as to reduce the loss or damage caused by earthquakes. In this paper, we introduced a new type of low frequency 2D vibration sensor based on flat coil element that we have developed. Its working principle is based on position change of a seismic mass that put in front of a flat coil element. The flat coil is a part of a LC oscillator; therefore, the change of seismic mass position will change its resonance frequency. The results of measurements of low frequency vibration sensor in the direction of the x axis and y axis gives the frequency range between 0.2 to 1.0 Hz.

Djamal, Mitra; Sanjaya, Edi; Islahudin; Ramli [Department of Physics, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40116 (Indonesia); Department of Physics, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40116 (Indonesia) and Department of Physics, UIN Syarif Hidayatullah, Jl. Ir.H. Djuanda 95 Ciputat 15412 (Indonesia); MTs NW Nurul Iman Kembang Kerang, Jl. Raya Mataram - Lb.Lombok, NTB (Indonesia); Department of Physics, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40116 (Indonesia) and Department of Physics,Universitas Negeri Padang, Jl. Prof. Hamka, Padang 25132 (Indonesia)

2012-06-20T23:59:59.000Z

436

Materials Synthesis and Characterization | Center for Functional  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Synthesis and Characterization Facility Materials Synthesis and Characterization Facility materials synthesis The Materials Synthesis and Characterization Facility includes laboratories for producing nanostructured materials and characterizing their basic structural, chemical and optical properties. The facility staff has significant experience in solution-phase chemistry of nanocrystal/nanowire materials, synthesis of polymer materials by a range of controlled polymerization techniques; inorganic synthesis by chemical vapor deposition, physical vapor deposition, and atomic layer deposition. The staff includes experts in techniques of nanoscale fabrication by self-assembly. The facility also supports infrastructure and expertise in solution-based processing of organic thin films, including tools for spin-casting, thermal processing, and UV/ozone treatment.

437

Application of 2D VSP Imaging Technology to the Targeting of Exploration  

Open Energy Info (EERE)

VSP Imaging Technology to the Targeting of Exploration VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Phase I will consist of the acquisition, processing and interpretation of two 2-dimensional vertical seismic profiles (VSPs) at strategic positions crossing the range front fault system in the Humboldt House-Rye Patch (HH-RP) geothermal resource area. APEX-HiPoint Reservoir Imaging, Project team partner, will use its borehole seismic technology deploying up to 240 multicomponent phones on a fiber optic wireline system coupled to a high-volume data acquisition system. A vibroseis source will be recorded along the 2D profiles with offsets up to 10,000 feet on either side of the receiver wells, creating a wide horizontal aperture. Using dynamic borehole cooling, the APEX receivers will be deployed in an extended vertical array above and below the interface (and large velocity contrast) between Tertiary valley fill sediments and Triassic and older reservoir rocks, significantly increasing vertical aperture, multiplicity, frequency and signal quality. Optim, Project Team partner, will use its patented nonlinear optimization technique on both borehole and surface data to obtain high resolution velocity models down to target depths, also a "first". HiPoint's patented, time-domain processing techniques will be employed to provide accurate, high-resolution reflection images in a fraction of previous compute times.

438

Self-assembled TiO2-Graphene Hybrid Nanostructures for Enhanced Li-ion Insertion  

SciTech Connect

We used anionic sulfate surfactants to assist the stabilization of graphene in aqueous solutions and facilitate the self-assembly of in-situ grown nanocrystalline TiO2, rutile and anatase, with graphene. These nanostructured TiO2-graphene hybrid materials were used for investigation of Li-ion insertion properties. The hybrid materials showed significantly enhanced Li-ion insertion/extraction in TiO2. The specific capacity was more than doubled at high charge rates, as compared with the pure TiO2 phase. The improved capacity at high charge-discharge rate may be attributed to increased electrode conductivity in presence of a percolated graphene network embedded into the metal oxide electrodes.

Wang, Donghai; Choi, Daiwon; Li, Juan; Yang, Zhenguo; Nie, Zimin; Kou, Rong; Hu, Dehong; Wang, Chong M.; Saraf, Laxmikant V.; Zhang, Jiguang; Aksay, Ilhan A.; Liu, Jun

2009-04-01T23:59:59.000Z

439

NANOSTRUCTURED METAL OXIDES FOR ANODES OF LI-ION RECHARGEABLE BATTERIES  

DOE Green Energy (OSTI)

The aligned nanorods of Co{sub 3}O{sub 4} and nanoporous hollow spheres (NHS) of SnO{sub 2} and Mn{sub 2}O{sub 3} were investigated as the anodes for Li-ion rechargeable batteries. The Co{sub 3}O{sub 4} nanorods demonstrated 1433 mAh/g reversible capacity. The NHS of SnO{sub 2} and Mn{sub 2}O{sub 3} delivered 400 mAh/g and 250 mAh/g capacities respectively in multiple galvonastatic discharge-charge cycles. It was found that high capacity of NHS of metal oxides is sustainable attributed to their unique structure that maintains material integrity during cycling. The nanostructured metal oxides exhibit great potential as the new anode materials for Li-ion rechargeable batteries with high energy density, low cost and inherent safety.

Au, M.

2009-12-04T23:59:59.000Z

440

Kinetics Control towards ZnO 3D Nanostructure - Programmaster.org  

Science Conference Proceedings (OSTI)

Approaching Multimaterial 3D Nanostructured Gas Phase Nanoxerographic Printers · Carbon Nanotube Coatings Laser Power and Energy Measurements.

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Novel Materials 1  

Science Conference Proceedings (OSTI)

Jun 4, 2012 ... Fabrication of Nanostructural Aluminum Alloy Powder with Ball Milling Method: Han Yang1; Ruixiao Zheng1; Yanbo Yuan1; Xiaoning Hao1; ...

442

Photonic switching devices based on semiconductor nanostructures  

E-Print Network (OSTI)

Squeezing and guiding light into semiconductor nanostructures delivers revolutionary concepts of photonic devices, which may offer a practical pathway towards power-efficient optical networks. In this review, we consider photonic switches using semiconductor quantum dots (QDs) and photonic cavities. By intuitively introducing in a field enhancement factor, the optical nonlinearity of nano-photonic switches can be understood and this has shown their unique features to dramatically improve the power-density/speed limitation that has lain in conventional photonic switches for decades. In addition, the power consumption has been reduced due to the atom-like characterization of QDs as well as the nano-size footprint of photonic cavities. Based on this theoretical perspective, the current progress of QD/cavity switches is reviewed in terms of various optical nonlinearities which have been employed to demonstrate photonic switching at the nanoscale. Emerging functionalities enabled by cavity nonlinear effects such as the wavelength tuning and Purcell-factor tuning have been further introduced.

Chao-Yuan Jin; Osamu Wada

2013-08-11T23:59:59.000Z

443

Nanostructured Vanadium Oxide for Supercapacitor Electrodes  

Science Conference Proceedings (OSTI)

Carbon-Sulfur Nanocomposite Cathode Materials for Lithium-Sulfur Batteries · Carbonized Chicken Eggshell Membranes with 3D Architectures as ...

444

Applied NanoStructured Solutions LLC  

Science Conference Proceedings (OSTI)

... of rotation, multi-material flat panels, complex geometries – Fabrics – Prepreg – Wet layup – VARTM – Resin film infusion – Tow/roving ...

2013-10-20T23:59:59.000Z

445

Materials Science  

Science Conference Proceedings (OSTI)

Materials Science. Summary: ... Description: Group focus in materials science (inkjet metrology, micro-macro, advanced characterizations). ...

2012-10-02T23:59:59.000Z

446

OOF And Beyond: 2D Plasticity and 3D Microstructure-based ...  

Science Conference Proceedings (OSTI)

... Sci. – 40th Ann. (1966-2006), (2006). Page 30. http://neutrons.ornl.gov/ ... High Temperature Materials Laboratory User Program (ORNL) ...

2013-07-05T23:59:59.000Z

447

Center for Nanophase Materials Sciences (CNMS) - CNMS User Research  

NLE Websites -- All DOE Office Websites (Extended Search)

tailored from nanostructures as building blocks, are the foundations for constructing nano- and microdevices. However, assembling nanostructures into ordered micronetworks...

448

Computational Study and Analysis of Structural Imperfections in 1D and 2D Photonic Crystals  

SciTech Connect

Dielectric reflectors that are periodic in one or two dimensions, also known as 1D and 2D photonic crystals, have been widely studied for many potential applications due to the presence of wavelength-tunable photonic bandgaps. However, the unique optical behavior of photonic crystals is based on theoretical models of perfect analogues. Little is known about the practical effects of dielectric imperfections on their technologically useful optical properties. In order to address this issue, a finite-difference time-domain (FDTD) code is employed to study the effect of three specific dielectric imperfections in 1D and 2D photonic crystals. The first imperfection investigated is dielectric interfacial roughness in quarter-wave tuned 1D photonic crystals at normal incidence. This study reveals that the reflectivity of some roughened photonic crystal configurations can change up to 50% at the center of the bandgap for RMS roughness values around 20% of the characteristic periodicity of the crystal. However, this reflectivity change can be mitigated by increasing the index contrast and/or the number of bilayers in the crystal. In order to explain these results, the homogenization approximation, which is usually applied to single rough surfaces, is applied to the quarter-wave stacks. The results of the homogenization approximation match the FDTD results extremely well, suggesting that the main role of the roughness features is to grade the refractive index profile of the interfaces in the photonic crystal rather than diffusely scatter the incoming light. This result also implies that the amount of incoherent reflection from the roughened quarterwave stacks is extremely small. This is confirmed through direct extraction of the amount of incoherent power from the FDTD calculations. Further FDTD studies are done on the entire normal incidence bandgap of roughened 1D photonic crystals. These results reveal a narrowing and red-shifting of the normal incidence bandgap with increasing RMS roughness. Again, the homogenization approximation is able to predict these results. The problem of surface scratches on 1D photonic crystals is also addressed. Although the reflectivity decreases are lower in this study, up to a 15% change in reflectivity is observed in certain scratched photonic crystal structures. However, this reflectivity change can be significantly decreased by adding a low index protective coating to the surface of the photonic crystal. Again, application of homogenization theory to these structures confirms its predictive power for this type of imperfection as well. Additionally, the problem of a circular pores in 2D photonic crystals is investigated, showing that almost a 50% change in reflectivity can occur for some structures. Furthermore, this study reveals trends that are consistent with the 1D simulations: parameter changes that increase the absolute reflectivity of the photonic crystal will also increase its tolerance to structural imperfections. Finally, experimental reflectance spectra from roughened 1D photonic crystals are compared to the results predicted computationally in this thesis. Both the computed and experimental spectra correlate favorably, validating the findings presented herein.

K.R. Maskaly

2005-06-01T23:59:59.000Z

449

Nanostructured columnar heterostructures of TiO2 and Cu2O enabled by a thin-film self-assembly approach: Potential for photovoltaics  

Science Conference Proceedings (OSTI)

Significant efforts are being devoted to the development of semiconductor thin film and nanostructured material architectures as components of solar energy harvesting and conversion devices. In particular, nanostructured assemblies with well-defined geometrical shapes have emerged as possible highly efficient and economically viable alternatives to planar junction thin film architectures , , , . However, fabrication of inorganic nanostructures generally requires complicated and multiple step processing techniques, making them less suitable for large-scale manufacturing. Hence, innovative cell architectures and materials processing schemes are essential to large-scale integration and practical viability in photovoltaic devices. Here we present here a new approach towards nanostructured thin film solar cells, by exploiting phase-separated self-assembly , . Through a single-step deposition by rf magnetron sputtering, we demonstrate growth of an epitaxial, composite film matrix formed as self-assembled, well ordered, phase segregated, and oriented p-n type interfacial nanopillars of Cu2O and TiO2. The composite films were structurally characterized to atomic resolution by a variety of analytical tools, and evaluated for preliminary optical properties using absorption measurements. We find nearly atomically distinct Cu2O-TiO2 interfaces (i.e. a p-n junction), and an absorption profile that captures a wide range of the solar spectrum extending from ultraviolet to visible wavelengths. This work opens a novel avenue for development of simple and cost-effective optically active thin film architectures, and offers promise for significantly increased photovoltaic device efficiencies using nanostructured cells that can be optimized for both incident light absorption and carrier collection.

Polat, Ozgur [ORNL; Aytug, Tolga [ORNL; Lupini, Andrew R [ORNL; Paranthaman, Mariappan Parans [ORNL; Ertugrul, Memhet [Ataturk University; Bogorin, Daniela Florentina [ORNL; Meyer III, Harry M [ORNL; Wang, Wei [ORNL; Pennycook, Stephen J [ORNL; Christen, David K [ORNL

2013-01-01T23:59:59.000Z

450

Toward IMRT 2D dose modeling using artificial neural networks: A feasibility study  

Science Conference Proceedings (OSTI)

Purpose: To investigate the feasibility of artificial neural networks (ANN) to reconstruct dose maps for intensity modulated radiation treatment (IMRT) fields compared with those of the treatment planning system (TPS). Methods: An artificial feed forward neural network and the back-propagation learning algorithm have been used to replicate dose calculations of IMRT fields obtained from PINNACLE{sup 3} v9.0. The ANN was trained with fluence and dose maps of IMRT fields for 6 MV x-rays, which were obtained from the amorphous silicon (a-Si) electronic portal imaging device of Novalis TX. Those fluence distributions were imported to the TPS and the dose maps were calculated on the horizontal midpoint plane of a water equivalent homogeneous cylindrical virtual phantom. Each exported 2D dose distribution from the TPS was classified into two clusters of high and low dose regions, respectively, based on the K-means algorithm and the Euclidian metric in the fluence-dose domain. The data of each cluster were divided into two sets for the training and validation phase of the ANN, respectively. After the completion of the ANN training phase, 2D dose maps were reconstructed by the ANN and isodose distributions were created. The dose maps reconstructed by ANN were evaluated and compared with the TPS, where the mean absolute deviation of the dose and the {gamma}-index were used. Results: A good agreement between the doses calculated from the TPS and the trained ANN was achieved. In particular, an average relative dosimetric difference of 4.6% and an average {gamma}-index passing rate of 93% were obtained for low dose regions, and a dosimetric difference of 2.3% and an average {gamma}-index passing rate of 97% for high dose region. Conclusions: An artificial neural network has been developed to convert fluence maps to corresponding dose maps. The feasibility and potential of an artificial neural network to replicate complex convolution kernels in the TPS for IMRT dose calculations have been demonstrated.

Kalantzis, Georgios; Vasquez-Quino, Luis A.; Zalman, Travis; Pratx, Guillem; Lei, Yu [Radiation Oncology Department, University of Texas, Health Science Center San Antonio, Texas 78229 and Radiation Oncology Department, Stanford University School of Medicine, Stanford, California 94305 (United States); Radiation Oncology Department, University of Texas, Health Science Center San Antonio, Texas 78229 (United States); Radiation Oncology Department, Stanford University School of Medicine, Stanford, California 94305 (United States); Radiation Oncology Department, University of Texas, Health Science Center San Antonio, Texas 78229 (United States)

2011-10-15T23:59:59.000Z

451

Modeling of ultrasonic and acoustic waves propagation through 2D lattice structures  

Science Conference Proceedings (OSTI)

Effective non-destructive testing techniques for modern lattice structural materials are in great demand. Amongst the more successful tecniques are ultrasonic and acoustic testing. The focus of this paper is the simulation of wave propagation through ... Keywords: finite element methods, modeling and simulation methodologies, ultrasonic testing of lattice structural materials, visualization

Ales Michtchenko; James A. Smith; Massimo Ruzzene

2007-10-01T23:59:59.000Z

452

Revolutionizing Materials for Energy Storage - TMSI Initiative, PNNL  

NLE Websites -- All DOE Office Websites (Extended Search)

a report published in a report published in Chemical Reviews, PNNL researchers say future batteries used by the energy grid to store power from the wind and the sun must be reliable, durable and safe, but affordability is key to wide- spread market deployment. Transformational Materials Science Initiative Revolutionizing Materials for Energy Storage The Transformational Materials Science Initiative at Pacific Northwest National Laboratory is elucidating the principles of synthesizing and assembling functional nanostructures, understanding nanoscale-to-macroscale phenomena within materials of interest, and developing multi-scale computational models and unique characterization tools to understand essential phenomena in energy storage materials. Chief among PNNL's

453

Synthesis of thin films and materials utilizing a gaseous catalyst  

Science Conference Proceedings (OSTI)

A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.

Morse, Daniel E; Schwenzer, Birgit; Gomm, John R; Roth, Kristian M; Heiken, Brandon; Brutchey, Richard

2013-10-29T23:59:59.000Z

454

Charge-free method of forming nanostructures on a substrate  

DOE Patents (OSTI)

A charge-free method of forming a nanostructure at low temperatures on a substrate. A substrate that is reactive with one of atomic oxygen and nitrogen is provided. A flux of neutral atoms of least one of oxygen and nitrogen is generated within a laser-sustained-discharge plasma source and a collimated beam of energetic neutral atoms and molecules is directed from the plasma source onto a surface of the substrate to form the nanostructure. The energetic neutral atoms and molecules in the beam have an average kinetic energy in a range from about 1 eV to about 5 eV.

Hoffbauer; Mark (Los Alamos, NM), Akhadov; Elshan (Los Alamos, NM)

2010-07-20T23:59:59.000Z

455

Synthesis and Enhanced Intercalation Properties of Nanostructured Vanadium Oxides  

DOE Green Energy (OSTI)

Nanomaterials lie at the heart of the fundamental advances in efficient energy storage/conversion and other types of nanodevices in which the surface process and transport kinetics play determining roles. This review describes some recent developments in the synthesis and characterizations of various vanadium oxide nanostructures including nanowires, nanorolls, nanobelts, and ordered arrays of nanorods, nanotubes, and nanocables for significantly enhanced intercalation properties. The major topic of this article is to highlight the lithium ion intercalation properties of nanostructured vanadium oxides for energy storage as well as other applications in sensors, actuators, and transistors.

Wang, Ying; Cao, Guozhong

2006-05-12T23:59:59.000Z

456

2011 Clusters, Nanocrystals & Nanostructures Gordon Research Conference  

DOE Green Energy (OSTI)

Small particles have been at the heart of nanoscience since the birth of the field and now stand ready to make significant contributions to the big challenges of energy, health and sustainability. Atomic clusters show exquisite size-dependent electronic and magnetic properties and offer a new level of control in catalyses, sensors and biochips; functionalised nanocrystals offer remarkable optical properties and diverse applications in electronic devices, solar energy, and therapy. Both areas are complemented by a raft of recent advances in fabrication, characterization, and performance of a diversity of nanomaterials from the single atom level to nanowires, nanodevices, and biologically-inspired nanosystems. The goal of the 2011 Gordon Conference is thus to continue and enhance the interdisciplinary tradition of this series and discuss the most recent advances, fundamental scientific questions, and emerging applications of clusters, nanocrystals, and nanostructures. A single conference covering all aspects of nanoscience from fundamental issues to applications has the potential to create new ideas and stimulate cross fertilization. The meeting will therefore provide a balance among the three sub-components of the conference, true to its title, with a selection of new topics added to reflect rapid advances in the field. The open atmosphere of a Gordon conference, emphasizing the presentation of unpublished results and extensive discussions, is an ideal home for this rapidly developing field and will allow all participants to enjoy a valuable and stimulating experience. Historically, this Gordon conference has been oversubscribed, so we encourage all interested researchers from academia, industry, and government institutions to apply as early as possible. We also encourage all attendees to submit their latest results for presentation at the poster sessions. We anticipate that several posters will be selected for 'hot topic' oral presentations. Given the important role students and postdocs play in the future of this field, we also anticipate several talks of this kind from young investigators.

Lai-Sheng Wang

2011-07-29T23:59:59.000Z

457

A Complete Onium Program with R2D at RHIC II  

E-Print Network (OSTI)

Following on the discovery of a strongly interacting quark-gluon plasma (QGP) at RHIC, a program of detailed quarkonia measurements is crucial to understanding the nature of deconfinement. Lattice QCD calculations suggest a sequential melting of the quarkonia states in the deconfined medium. Such a melting would lead to a suppression in the measured charmonium and bottomonium yields. However, distinguishing a true suppression from shadowing, absorption, and recombination effects requires detailed measurements of the charmonium states (J/psi, psi', and chi_c) and bottomonium states (Y(1S), Y(2S), and Y(3S)). Also, since measurements are needed not only in A+A, but also in p+p for determining primary yields and in p+A for evaluating absorption, the detector should perform well in all collision environments. To fully realize the program outlined above, a new detector will be required at RHIC-II. We present a proposal for a complete quarkonia program and the abilities of a new detector, R2D, to meet the stated requirements. Comparisons will be made with proposed upgrades to existing RHIC detectors and with the upcoming LHC program.

Richard Witt

2006-05-16T23:59:59.000Z

458

Factorization of Darboux transformations of arbitrary order for 2D Schroedinger type operators  

E-Print Network (OSTI)

We prove the conjecture formulated by Darboux that every Darboux transformation of arbitrary order d for a second-order differential operator on the plane can be factorized into elementary Darboux transformations of order 1. Our proof is constructive. Previously, we established the same result for the Darboux transformations of order 2; we used invariantization and regularized moving frames for pseudogroups of Olver--Pohjanpelto. In the present paper, we use a different, more algebraic, method. We study the algebraic structure and relations for the mappings involved. In the 1D case, a proof of the analogous statement about factorization of the Darboux transformations for Schroedinger operators had been obtained, in four steps, by Veselov and Shabat, and Bagrov--Samsonov. In that case the factorization is not unique and the relations between different factorizations can be described in terms of Yang--Baxter maps (Adler and Veselov). Any analogs of that for the 2D case studied in this paper, remain an open question.

Ekaterina Shemyakova

2013-04-26T23:59:59.000Z

459

Time-dependent 2-D modeling of edge plasma transport with high intermittency due to blobs  

SciTech Connect

The results on time-dependent 2-D fluid modeling of edge plasmas with non-diffusive intermittent transport across the magnetic field (termed cross-field) based on the novel macro-blob approach are presented. The capability of this approach to simulate the long temporal evolution ({approx}0.1 s) of the background plasma and simultaneously the fast spatiotemporal dynamics of blobs ({approx}10{sup -4} s) is demonstrated. An analysis of a periodic sequence of many macro-blobs (PSMB) is given showing that the resulting plasma attains a dynamic equilibrium. Plasma properties in the dynamic equilibrium are discussed. In PSMB modeling, the effect of macro-blob generation frequency on edge plasma parameters is studied. Comparison between PSMB modeling and experimental profile data is given. The calculations are performed for the same plasma discharge using two different models for anomalous cross-field transport: time-average convection and PSMB. Parametric analysis of edge plasma variation with transport coefficients in these models is presented. The capability of the models to accurately simulate enhanced transport due to blobs is compared. Impurity dynamics in edge plasma with macro-blobs is also studied showing strong impact of macro-blob on profiles of impurity charge states caused by enhanced outward transport of high-charge states and simultaneous inward transport of low-charge states towards the core. Macro-blobs cause enhancement of sputtering rates, increase radiation and impurity concentration in plasma, and change erosion/deposition patterns.

Pigarov, A. Yu.; Krasheninnikov, S. I. [University of California at San Diego, La Jolla, California 92093 (United States); Rognlien, T. D. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

2012-07-15T23:59:59.000Z

460

The 2D AKLT state on the honeycomb lattice is a universal resource for quantum computation  

E-Print Network (OSTI)

Universal quantum computation can be achieved by simply performing single-qubit measurements on a highly entangled resource state. Resource states can arise from ground states of carefully designed two-body interacting Hamiltonians. This opens up an appealing possibility of creating them by cooling. The family of Affleck-Kennedy-Lieb-Tasaki (AKLT) states are the ground states of particularly simple Hamiltonians with high symmetry, and their potential use in quantum computation gives rise to a new research direction. Expanding on our prior work [T.-C. Wei, I. Affleck, and R. Raussendorf, Phys. Rev. Lett. 106, 070501 (2011)], we give detailed analysis to explain why the spin-3/2 AKLT state on a two-dimensional honeycomb lattice is a universal resource for measurement-based quantum computation. Along the way, we also provide an alternative proof that the 1D spin-1 AKLT state can be used to simulate arbitrary one-qubit unitary gates. Moreover, we connect the quantum computational universality of 2D random graph states to their percolation property and show that these states whose graphs are in the supercritical (i.e. percolated) phase are also universal resources for measurement-based quantum computation.

Tzu-Chieh Wei; Ian Affleck; Robert Raussendorf

2010-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Electron-impact dissociative excitation and ionization of N{sub 2}D{sup +}  

SciTech Connect

Absolute cross sections for electron-impact dissociation of N{sub 2}D{sup +} producing N{sub 2}{sup +}, ND{sup +}, and N{sup +} ion fragments were measured in the 5- to 100-eV range using a crossed electron-ion beams technique. In the 5- to 20-eV region, in which dissociative excitation (DE) is the principal contributing mechanism, N{sub 2}{sup +} production dominates. The N{sub 2}{sup +} + D dissociation channel shows a large resonant-like structure in the DE cross section, as observed previously in electron impact dissociation of triatomic dihydride species [M. Fogle, E. M. Bahati, M. E. Bannister, S. H. M. Deng, C. R. Vane, R. D. Thomas, and V. Zhaunerchyk, Phys. Rev. A 82, 042720 (2010)]. In the dissociative ionization (DI) region, 20- to 100-eV, N{sub 2}{sup +}, ND{sup +}, and N{sup +} ion fragment production are comparable. The observance of the ND{sup +} and N{sup +} ion fragments indicate breaking of the N - N bond along certain dissociation channels.

Fogle, M.; Bahati, E. M.; Bannister, M. E.; Deng, S. H. M.; Vane, C. R.; Thomas, R. D.; Zhaunerchyk, V. [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States); Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Physics, Albanova, Stockholm University, SE-106 91 Stockholm (Sweden)

2011-09-15T23:59:59.000Z

462

Available Technologies: Nanostructured Water Oxidation Catalysts  

The technology is stable and composed of abundant materials suitable for scalable manufacturing. ... Chemical Communications. Vol. 46: 2920-2922. 2010.

463

Aqueous Chemical Growth of Advanced Nanostructured ... - TMS  

Science Conference Proceedings (OSTI)

Feb 1, 2002 ... A novel concept in materials chemistry have been developed as well as an aqueous low temperature thin film growth technique to create a new ...

464

Development of Novel Nanostructured Electrolytes for Low ...  

Science Conference Proceedings (OSTI)

Design of Light Weight Structure for Wind Turbine Tower by Using Nano- Materials · Development of Highly Active Titania-Based Nanoparticles for Composite ...

465

Electrochemical Synthesis of Nanostructured Vanadium Oxides for ...  

Science Conference Proceedings (OSTI)

Design of Light Weight Structure for Wind Turbine Tower by Using Nano- Materials · Development of Highly Active Titania-Based Nanoparticles for Composite ...

466

Nanostructured 3-D Architectures | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

materials can be achieved by capitalizing on the hierarchical design of 3-dimensional nano-lattices. Such structural metamaterials exhibit superior thermomechanical properties at...

467

Tailoring the Properties of Magnetic Nanostructures | Advanced...  

NLE Websites -- All DOE Office Websites (Extended Search)

One Giant Leap for Radiation Biology? What's in the Cage Matters in Iron Antimonide Thermoelectric Materials Novel Experiments on Cement Yield Concrete Results Science...

468

The Molecular Foundry - Inorganic Nanostructures - Staff Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

R. A. Segalman, and J. J. Urban, "Effect of Interfacial Properties on Polymer-Nanocrystal Thermoelectric Transport," Advanced Materials 25 1629-1633(2013). DOI: 10.1002...

469

Optical Methods for 3-D Nanostructure Metrology  

Science Conference Proceedings (OSTI)

... help enable the cost-effective mass-production of nanotechnology ... focused on patterned semiconductor defect metrology, energy-related materials ...

2013-05-09T23:59:59.000Z

470

Ion Beam Modification of Materials  

SciTech Connect

This volume contains the proceedings of the 14th International Conference on Ion Beam Modification of Materials, IBMM 2004, and is published by Elsevier-Science Publishers as a special issue of Nuclear Instruments and Methods B. The conference series is the major international forum to present and discuss recent research results and future directions in the field of ion beam modification, synthesis and characterization of materials. The first conference in the series was held in Budapest, Hungary, 1978, and subsequent conferences were held every two years at locations around the Globe, most recently in Japan, Brazil, and the Netherlands. The series brings together physicists, materials scientists, and ion beam specialists from all over the world. The official conference language is English. IBMM 2004 was held on September 5-10, 2004. The focus was on materials science involving both basic ion-solid interaction processes and property changes occurring either during or subsequent to ion bombardment and ion beam processing in relation to materials and device applications. Areas of research included Nanostructures, Multiscale Modeling, Patterning of Surfaces, Focused Ion Beams, Defects in Semiconductors, Insulators and Metals, Cluster Beams, Radiation Effects in Materials, Photonic Devices, Ion Implantation, Ion Beams in Biology and Medicine including New Materials, Imaging, and Treatment.

Averback, B; de la Rubia, T D; Felter, T E; Hamza, A V; Rehn, L E

2005-10-10T23:59:59.000Z

471

Advanced Materials for Medical Applications  

Science Conference Proceedings (OSTI)

... results on bioimaging (fluorescence and CARS-microscopy) will be presented. ... Next Generation Biomaterials: Hierarchical Hybrid Nanostructures: Sharmila ...

472

Category:Reference Materials | Open Energy Information  

Open Energy Info (EERE)

Category Category Edit History Facebook icon Twitter icon » Category:Reference Materials (Redirected from Reference Materials) Jump to: navigation, search This is a deprecated subcategory. All Reference Materials will be converted to References. Pages in category "Reference Materials" The following 200 pages are in this category, out of 2,265 total. (previous 200) (next 200) 1 10 CFR § 1021 2 2-D Magnetotellurics At The Geothermal Site At Soultz-Sous-Forets- Resistivity Distribution To About 3000 M Depth 2.8-Ma Ash-Flow Caldera At Chegem River In The Northern Caucasus Mountains (Russia), Contemporaneous Granites, And Associated Ore Deposits 238U Decay Series Systematics Of Young Lavas From Batur Volcano, Sunda Arc 2D Joint Inversion Of Dc And Scalar Audio-Magnetotelluric Data In The Evaluation Of Low Enthalpy Geothermal Fields

473

Improved Solar Cell Efficiency Through the Use of an Additive Nanostructure-Based Optical Downshifter: Final Subcontract Report, January 28, 2010 -- February 28, 2011  

DOE Green Energy (OSTI)

This final report summarizes all SpectraWatt's progress in achieving a boost in solar cell efficiency using an optical downshifter. Spectrawatt's downshifting technology is based on a nanostructured material system which absorbs high energy (short wavelength) light and reemits it at a lower energy (long wavelength) with high efficiency. This system has shown unprecedented performance parameters including near unity quantum yield and high thermal stability.

Kurtin, J.

2011-05-01T23:59:59.000Z

474

A 3D Porous Architecture of Si/graphene Nanocomposite as High-performance Anode Materials for Li-ion Batteries  

SciTech Connect

A 3D porous architecture of Si/graphene nanocomposite has been rationally designed and constructed through a series of controlled chemical processes. In contrast to random mixture of Si nanoparticles and graphene nanosheets, the porous nanoarchitectured composite has superior electrochemical stability because the Si nanoparticles are firmly riveted on the graphene nanosheets through a thin SiO{sub x} layer. The 3D graphene network enhances electrical conductivity, and improves rate performance, demonstrating a superior rate capability over the 2D nanostructure. This 3D porous architecture can deliver a reversible capacity of {approx}900 mA h g{sup -1} with very little fading when the charge rates change from 100 mA g{sup -1} to 1 A g{sup -1}. Furthermore, the 3D nanoarchitechture of Si/graphene can be cycled at extremely high Li{sup +} extraction rates, such as 5 A g{sup -1} and 10 A g{sup -1}, for over than 100 times. Both the highly conductive graphene network and porous architecture are considered to contribute to the remarkable rate capability and cycling stability, thereby pointing to a new synthesis route to improving the electrochemical performances of the Si-based anode materials for advanced Li-ion batteries.

Xin X.; Zhu Y.; Zhou, X.; Wang, F.; Yao, X.; Xu, X.; Liu, Z.

2012-04-28T23:59:59.000Z

475

MAG2D: Interactive 2-1/2-dimensional magnetic modeling program (User's Guide and Documentation for Rev. 1)  

DOE Green Energy (OSTI)

MAG2D is an interactive computer program used for modeling 2-1/2-dimensional magnetic data. A forward algorithm is used to give the theoretical attraction of magnetic intensity at a station due to a perturbing body given by the initial model. The resultant model can then be adjusted for a better fit by a combination of manual adjustment, one-dimensional automatic search, and Marquardt inversion. MAG2D has an interactive data management system for data manipulation and display built around subroutines to do a forward problem, a one-dimensional direct search and an inversion. These subroutines were originally separate batch-mode programs.

Nutter, C.

1981-04-01T23:59:59.000Z

476

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Availability Technology Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And...

477

Performance of Ultrathin Silicon Solar Microcells with Nanostructures of Relief  

E-Print Network (OSTI)

of relief as light trapping structures (LTS) on thin, monocrys- talline silicon solar cells derived fromPerformance of Ultrathin Silicon Solar Microcells with Nanostructures of Relief Formed by Soft, Urbana, Illinois 61801 ABSTRACT Recently developed classes of monocrystalline silicon solar microcells

Rogers, John A.

478

Micro-"factory" for self-assembled peptide nanostructures  

Science Conference Proceedings (OSTI)

This study describes an integrated micro ''factory'' for the preparation of biological self-assembled peptide nanotubes and nanoparticles on a polymer chip, yielding controlled growth conditions. Self-assembled peptides constitute attractive building ... Keywords: Microfluidics, Nanostructures, On-chip fabrication, Peptide nanoparticle, Peptide tube, Self-assembled peptides

Jaime Castillo-León; Romén Rodriguez-Trujillo; Sebastian Gauthier; Alexander C. Ø. Jensen; Winnie E. Svendsen

2011-08-01T23:59:59.000Z

479

Very high resolution etching of magnetic nanostructures in organic gases  

Science Conference Proceedings (OSTI)

Two methods for high resolution dry etching of permalloy (NiFe) and iron (Fe) nanostructures are presented and discussed. The first involves the use of carbon monoxide (CO) and ammonia (NH"3) as etching gases, the second uses methane (CH"4), hydrogen ... Keywords: CH4/H2/O2, CO/NH3, Dry etching, Fe, NiFe

X. Kong; D. Krása; H. P. Zhou; W. Williams; S. McVitie; J. M. R. Weaver; C. D. W. Wilkinson

2008-05-01T23:59:59.000Z

480

Enhanced radiative heat transfer between nanostructured gold plates  

E-Print Network (OSTI)

We compute the radiative heat transfer between nanostructured gold plates in the framework of the scattering theory. We predict an enhancement of the heat transfer as we increase the depth of the corrugations while keeping the distance of closest approach fixed. We interpret this effect in terms of the evolution of plasmonic and guided modes as a function of the grating's geometry.

R. Guérout; J. Lussange; F. S. S. Rosa; J. -P. Hugonin; D. A. R. Dalvit; J. -J. Greffet; A. Lambrecht; S. Reynaud

2012-03-07T23:59:59.000Z

Note: This page contains sample records for the topic "nanostructured materials 2d" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Silicon in functional epitaxial oxides: A new group of nanostructures  

Science Conference Proceedings (OSTI)

The ability to integrate low-dimensional crystalline silicon into crystalline insulators with high dielectric constant (high-k) can open the way for a variety of novel applications ranging from high-k replacement in future nonvolatile memory devices ... Keywords: Molecular beam epitaxy, Nanocluster, Nanostructures, Quantum well, Rare-earth oxides, Silicon

A. Fissel; A. Laha; E. Bugiel; D. Kühne; M. Czernohorsky; R. Dargis; H. J. Osten

2008-03-01T23:59:59.000Z

482

Molecular Combinatory Computing for Nanostructure Synthesis and Control  

E-Print Network (OSTI)

Molecular Combinatory Computing for Nanostructure Synthesis and Control Bruce MacLennan Department-- Molecular combinatory computing makes use of a small set of chemical reactions that together have simulated nano-assembly applications, and discuss a possible molecular implementation in terms of covalently

Tennessee, University of

483

Molecular Combinatory Computing for Nanostructure Synthesis and Control  

E-Print Network (OSTI)

Molecular Combinatory Computing for Nanostructure Synthesis and Control Bruce MacLennan Department--- Molecular combinatory computing makes use of a small set of chemical reactions that together have the approach by several simulated nano­assembly applications, and discuss a possible molecular implementation

Tennessee, University of

484

Contact Guidance Based on the Nanostructures Fabricated by Nanoimprint Lithography  

Science Conference Proceedings (OSTI)

Contact Guidance is an important phenomenon in the bio field. However it is complex and time-consuming to fabricate the micro/nano morphology used to guide cell growth behavior. Nover method of employing nanoimprint lithography to mass-produce nanostructures ...

Hongwen Sun; Jingquan Liu

2009-12-01T23:59:59.000Z

485

A sequential partly iterative approach for multicomponent reactive transport with CORE2D  

SciTech Connect

CORE{sup 2D} V4 is a finite element code for modeling partly or fully saturated water flow, heat transport and multicomponent reactive solute transport under both local chemical equilibrium and kinetic conditions. It can handle coupled microbial processes and geochemical reactions such as acid-base, aqueous complexation, redox, mineral dissolution/precipitation, gas dissolution/exsolution, ion exchange, sorption via linear and nonlinear isotherms, sorption via surface complexation. Hydraulic parameters may change due to mineral precipitation/dissolution reactions. Coupled transport and chemical equations are solved by using sequential iterative approaches. A sequential partly-iterative approach (SPIA) is presented which improves the accuracy of the traditional sequential noniterative approach (SNIA) and is more efficient than the general sequential iterative approach (SIA). While SNIA leads to a substantial saving of computing time, it introduces numerical errors which are especially large for cation exchange reactions. SPIA improves the efficiency of SIA because the iteration between transport and chemical equations is only performed in nodes with a large mass transfer between solid and liquid phases. The efficiency and accuracy of SPIA are compared to those of SIA and SNIA using synthetic examples and a case study of reactive transport through the Llobregat Delta aquitard in Spain. SPIA is found to be as accurate as SIA while requiring significantly less CPU time. In addition, SPIA is much more accurate than SNIA with only a minor increase in computing time. A further enhancement of the efficiency of SPIA is achieved by improving the efficiency of the Newton-Raphson method used for solving chemical equations. Such an improvement is obtained by working with increments of log-concentrations and ignoring the terms of the Jacobian matrix containing derivatives of activity coefficients. A proof is given for the symmetry and non-singularity of the Jacobian matrix. Numerical analyses performed with synthetic examples confirm that these modifications improve the efficiency and convergence of the iterative algorithm.

Samper, J.; Xu, T.; Yang, C.

2008-11-01T23:59:59.000Z

486

Electrical Conductivity of 2D-SiCf/CVI-SiC  

SciTech Connect

Electrical conductivity (EC) data for several plate forms of two-dimensional, silicon carbide composite made with chemical vapor infiltration matrix and with Hi Nicalon{trademark} type S fibers (2D-SiCf/CVI-SiC) were acquired. The composite fibers were coated with pyrocarbon (PyC) of various thicknesses (50 to 310 nm) and an outer thin ({approx}60 {mu}m) SiC 'seal coat' was applied by CVD to the infiltrated plates. The EC was highly anisotropic in the transverse and in-plane directions. In-plane EC ranged from {approx}150 to 1600 S/m, increased slowly with increasing temperature, and depended primarily on the total PyC thickness. High in-plane EC-values occur because it is dominated by conduction along the numerous, continuous PyC fiber coating pathways. Transverse EC ranged from {approx}1 to 60 S/m, and increased strongly with increasing temperature up to 800 C. The transverse EC is controlled by conduction through the interconnections of the carboncoating network within and between fiber bundles, especially at moderate temperatures ({approx}300 to 700 C). Below {approx}300 C, the electrical resistance of the pure SiC seal coat becomes increasingly more important as temperatures are further lowered. Importantly, a '3-layer series' model predicts that transverse EC-values for a standard seal-coated 2DSiCf/ CVI-SiC with a monolayer PyC fiber coating of {approx}50-nm thickness will be <20 S/m for all temperatures up to 800 C, as desired for a flow channel insert in a fusion reactor blanket component.

Youngblood, Gerald E.; Thomsen, Edwin C.; Shinavski, Robert J.

2011-07-11T23:59:59.000Z

487

Test Problem: Tilted Rayleigh-Taylor for 2-D Mixing Studies  

DOE Green Energy (OSTI)

The 'tilted-rig' test problem originates from a series of experiments (Smeeton & Youngs, 1987, Youngs, 1989) performed at AWE in the late 1980's, that followed from the 'rocket-rig' experiments (Burrows et al., 1984; Read & Youngs, 1983), and exploratory experiments performed at Imperial College (Andrews, 1986; Andrews and Spalding, 1990). A schematic of the experiment is shown in Figure 1, and comprises a tank filled with light fluid above heavy, and then 'tilted' on one side of the apparatus, thus causing an 'angled interface' to the acceleration history due to rockets. Details of the configuration given in the next chapter include: fluids, dimensions, and other necessary details to simulate the experiment. Figure 2 shows results from two experiments, Case 110 (which is the source for this test problem) that has an Atwood number of 0.5, and Case 115 (a secondary source described in Appendix B), with Atwood of 0.9 Inspection of the photograph in Figure 2 (the main experimental diagnostic) for Case 110. reveals two main areas for mix development; 1) a large-scale overturning motion that produces a rising plume (spike) on the left, and falling plume (bubble) on the right, that are almost symmetric; and 2) a Rayleigh-Taylor driven mixing central mixing region that has a large-scale rotation associated with the rising and falling plumes, and also experiences lateral strain due to stretching of the interface by the plumes, and shear across the interface due to upper fluid moving downward and to the right, and lower fluid moving upward and to the left. Case 115 is similar but differs by a much larger Atwood of 0.9 that drives a strong asymmetry between a left side heavy spike penetration and a right side light bubble penetration. Case 110 is chosen as the source for the present test problem as the fluids have low surface tension (unlike Case 115) due the addition of a surfactant, the asymmetry small (no need to have fine grids for the spike), and there is extensive reasonable quality photographic data. The photographs in Figure 2 also reveal the appearance of a boundary layer at the left and right walls; this boundary layer has not been included in the test problem as preliminary calculations suggested it had a negligible effect on plume penetration and RT mixing. The significance of this test problem is that, unlike planar RT experiments such as the Rocket-Rig (Youngs, 1984), Linear Electric Motor - LEM (Dimonte, 1990), or the Water Tunnel (Andrews, 1992), the Tilted-Rig is a unique two-dimensional RT mixing experiment that has experimental data and now (in this TP) Direct Numerical Simulation data from Livescu and Wei. The availability of DNS data for the tilted-rig has made this TP viable as it provides detailed results for comparison purposes. The purpose of the test problem is to provide 3D simulation results, validated by comparison with experiment, which can be used for the development and validation of 2D RANS models. When such models are applied to 2D flows, various physics issues are raised such as double counting, combined buoyancy and shear, and 2-D strain, which have not yet been adequately addressed. The current objective of the test problem is to compare key results, which are needed for RANS model validation, obtained from high-Reynolds number DNS, high-resolution ILES or LES with explicit sub-grid-scale models. The experiment is incompressible and so is directly suitable for algorithms that are designed for incompressible flows (e.g. pressure correction algorithms with multi-grid); however, we have extended the TP so that compressible algorithms, run at low Mach number, may also be used if careful consideration is given to initial pressure fields. Thus, this TP serves as a useful tool for incompressible and compressible simulation codes, and mathematical models. In the remainder of this TP we provide a detailed specification; the next section provides the underlying assumptions for the TP, fluids, geometry details, boundary conditions (and alternative set-ups), initial conditions, and acceleration history (an

Andrews, Malcolm J. [Los Alamos National Laboratory; Livescu, Daniel [Los Alamos National Laboratory; Youngs, David L. [AWE

2012-08-14T23:59:59.000Z

488

Droplet Impingement Cooling Experiments on Nano-structured Surfaces  

E-Print Network (OSTI)

Spray cooling has proven to be efficient in managing thermal load in high power applications. Reliability of electronic products relies on the thermal management and understanding of heat transfer mechanisms including those related to spray cooling. However, to date, several of the key heat transfer mechanisms are still not well understood. An alternative approach for improving the heat transfer performance is to change the film dynamics through surface modification. The main goal of this study is to understand the effects of nano-scale features on flat heater surfaces subjected to spray cooling and to determine the major factors in droplet impingement cooling to estimate their effects in the spray cooling system. Single droplet stream and simultaneous triple droplet stream with two different stream spacings (500 ?m and 2000 ?m), experiments have been performed to understand the droplet-surface interactions relevant to spray cooling systems. Experiments have been conducted on nano-structured surfaces as well as on flat (smooth) surfaces. It is observed that nano-structured surfaces result in lower minimum wall temperatures, better heat transfer performance, and more uniform temperature distribution. A new variable, effective thermal diameter (de), was defined based on the radial temperature profiles inside the impact zone to quantify the effects of the nano-structured surface in droplet cooling. Results indicate that larger effective cooling area can be achieved using nano-structured surface in the single droplet stream experiments. In triple stream experiments, nano-structured surface also showed an enhanced heat transfer. In single stream experiments, larger outer ring structures (i.e. larger outer diameters) in the impact crater were observed on the nano-structured surfaces which can be used to explain enhanced heat transfer performance. Smaller stream spacing in triple stream experiments reveal that the outer ring structure is disrupted resulting in lower heat transfer. Lower static contact angle on the nano-structured surface has been observed, which implies that changes in surface properties result in enhanced film dynamics and better heat transfer behavior. The results and conclusions of this study should be useful for understanding the physics of spray cooling and in the design of better spray cooling systems.

Lin, Yen-Po

2010-08-01T23:59:59.000Z

489

Nanostructured lithium-aluminum alloy electrodes for lithium-ion batteries.  

DOE Green Energy (OSTI)

Electrodeposited aluminum films and template-synthesized aluminum nanorods are examined as negative electrodes for lithium-ion batteries. The lithium-aluminum alloying reaction is observed electrochemically with cyclic voltammetry and galvanostatic cycling in lithium half-cells. The electrodeposition reaction is shown to have high faradaic efficiency, and electrodeposited aluminum films reach theoretical capacity for the formation of LiAl (1 Ah/g). The performance of electrodeposited aluminum films is dependent on film thickness, with thicker films exhibiting better cycling behavior. The same trend is shown for electron-beam deposited aluminum films, suggesting that aluminum film thickness is the major determinant in electrochemical performance regardless of deposition technique. Synthesis of aluminum nanorod arrays on stainless steel substrates is demonstrated using electrodeposition into anodic aluminum oxide templates followed by template dissolution. Unlike nanostructures of other lithium-alloying materials, the electrochemical performance of these aluminum nanorod arrays is worse than that of bulk aluminum.

Hudak, Nicholas S.; Huber, Dale L.

2010-12-01T23:59:59.000Z

490

OECD MCCI project long-term 2-D molten core concrete interaction test design report, Rev. 0. September 30, 2002.  

Science Conference Proceedings (OSTI)

The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following two technical objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two objectives