National Library of Energy BETA

Sample records for nanostructured materials 0d

  1. Nanostructured composite reinforced material

    DOE Patents [OSTI]

    Seals, Roland D. (Oak Ridge, TN); Ripley, Edward B. (Knoxville, TN); Ludtka, Gerard M. (Oak Ridge, TN)

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  2. Nanostructured magnetic materials

    E-Print Network [OSTI]

    Chan, Keith T.

    2011-01-01

    Magnetism and Magnetic Materials Conference, Atlanta, GA (Nanostructured Magnetic Materials by Keith T. Chan Doctor ofinduced by a Si-based material occurs at a Si/Ni interface

  3. Nanostructured materials for hydrogen storage

    DOE Patents [OSTI]

    Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  4. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    xi Material CharacterizationThermoelectric Materials . . . . . . . . Graphene-Like5 Nanostructured Materials for Electrochemical Energy

  5. Nanostructured Electrode Materials for Supercapacitors

    E-Print Network [OSTI]

    Wu, Shin-Tson

    and batteries/fuel cells. Nanostructured electrode materials have demonstrated superior electrochemical of polymethine dyes electronic spectra is crucial for successful design of the new molecules with optimized

  6. Method of fabrication of anchored nanostructure materials

    DOE Patents [OSTI]

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-11-26

    Methods for fabricating anchored nanostructure materials are described. The methods include heating a nano-catalyst under a protective atmosphere to a temperature ranging from about 450.degree. C. to about 1500.degree. C. and contacting the heated nano-catalysts with an organic vapor to affix carbon nanostructures to the nano-catalysts and form the anchored nanostructure material.

  7. Anchored nanostructure materials and method of fabrication

    DOE Patents [OSTI]

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2012-11-27

    Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

  8. Quantitative Characterization of Nanostructured Materials

    SciTech Connect (OSTI)

    Dr. Frank Bridges, University of California-Santa Cruz

    2010-08-05

    The two-and-a-half day symposium on the "Quantitative Characterization of Nanostructured Materials" will be the first comprehensive meeting on this topic held under the auspices of a major U.S. professional society. Spring MRS Meetings provide a natural venue for this symposium as they attract a broad audience of researchers that represents a cross-section of the state-of-the-art regarding synthesis, structure-property relations, and applications of nanostructured materials. Close interactions among the experts in local structure measurements and materials researchers will help both to identify measurement needs pertinent to â??real-worldâ?ť materials problems and to familiarize the materials research community with the state-of-the-art local structure measurement techniques. We have chosen invited speakers that reflect the multidisciplinary and international nature of this topic and the need to continually nurture productive interfaces among university, government and industrial laboratories. The intent of the symposium is to provide an interdisciplinary forum for discussion and exchange of ideas on the recent progress in quantitative characterization of structural order in nanomaterials using different experimental techniques and theory. The symposium is expected to facilitate discussions on optimal approaches for determining atomic structure at the nanoscale using combined inputs from multiple measurement techniques.

  9. Multifunctional Nanostructured Materials for Processing of Biomass...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemical commodities. The nanostructured materials will be composed of organic and inorganic species that will work cooperatively to effectively promote chemical conversions...

  10. Chemistry Controls Material's Nanostructure | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Controls Material's Nanostructure Tweaking the chemicals used to form nanorods can be used to control their shape.Controlling a nanorod's shape is a key to controlling...

  11. Nanostructured Thermoelectric Materials and High Efficiency Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanostructured Thermoelectric Materials and High Efficiency Power Generation Modules Home Author: T. Hogan, A. Downey, J. Short, S. D. Mahanti, H. Schock, E. Case Year: 2007...

  12. Innovative Nano-structuring Routes for Novel ThermoelectricMaterials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nano-structuring Routes for Novel Thermoelectric Materials;Phonon Blocking & DOS Engineering Innovative Nano-structuring Routes for Novel Thermoelectric Materials;Phonon Blocking &...

  13. Solution Phase Routes to Functional Nanostructured Materials for Energy Applications

    E-Print Network [OSTI]

    Rauda, Iris Ester

    2012-01-01

    nanostructured materials are excellent candidates for integrating into electronic and energy-storage devices,

  14. Solution Phase Routes to Functional Nanostructured Materials for Energy Applications

    E-Print Network [OSTI]

    Rauda, Iris Ester

    2012-01-01

    synthesis of inorganic semiconductor-based nanostructured materials;inorganic materials. 16,35,62?72 In the synthesis, we begin

  15. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    for Electrochemical Energy Storage Nanostructured Electrodesof the batteries and their energy storage efficiency. viifor Nanostructure-Based Energy Storage and Generation Tech-

  16. Aerogel Derived Nanostructured Thermoelectric Materials

    SciTech Connect (OSTI)

    Wendell E Rhine, PI; Dong, Wenting; Greg Caggiano, PM

    2010-10-08

    America’s dependence on foreign sources for fuel represents a economic and security threat for the country. These non renewable resources are depleting, and the effects of pollutants from fuels such as oil are reaching a problematic that affects the global community. Solar concentration power (SCP) production systems offer the opportunity to harness one of the United States’ most under utilized natural resources; sunlight. While commercialization of this technology is increasing, in order to become a significant source of electricity production in the United States the costs of deploying and operating SCP plants must be further reduced. Parabolic Trough SCP technologies are close to meeting energy production cost levels that would raise interest in the technology and help accelerate its adoption as a method to produce a significant portion of the Country’s electric power needs. During this program, Aspen Aerogels will develop a transparent aerogel insulation that can replace the costly vacuum insulation systems that are currently used in parabolic trough designs. During the Phase I program, Aspen Aerogels will optimize the optical and thermal properties of aerogel to meet the needs of this application. These properties will be tested, and the results will be used to model the performance of a parabolic trough HCE system which uses this novel material in place of vacuum. During the Phase II program, Aspen Aerogels will scale up this technology. Together with industry partners, Aspen Aerogels will build and test a prototype Heat Collection Element that is insulated with the novel transparent aerogel material. This new device will find use in parabolic trough SCP applications.

  17. Final Technical Progress Report NANOSTRUCTURED MAGNETIC MATERIALS

    SciTech Connect (OSTI)

    Charles M. Falco

    2012-09-13

    This report describes progress made during the final phase of our DOE-funded program on Nanostructured Magnetic Materials. This period was quite productive, resulting in the submission of three papers and presentation of three talks at international conferences and three seminars at research institutions. Our DOE-funded research efforts were directed toward studies of magnetism at surfaces and interfaces in high-quality, well-characterized materials prepared by Molecular Beam Epitaxy (MBE) and sputtering. We have an exceptionally well-equipped laboratory for these studies, with: Thin film preparation equipment; Characterization equipment; Equipment to study magnetic properties of surfaces and ultra-thin magnetic films and interfaces in multi-layers and superlattices.

  18. Chemistry and Processing of Nanostructured Materials

    SciTech Connect (OSTI)

    Fox, G A; Baumann, T F; Hope-Weeks, L J; Vance, A L

    2002-01-18

    Nanostructured materials can be formed through the sol-gel polymerization of inorganic or organic monomer systems. For example, a two step polymerization of tetramethoxysilane (TMOS) was developed such that silica aerogels with densities as low as 3 kg/m{sup 3} ({approx} two times the density of air) could be achieved. Organic aerogels based upon resorcinol-formaldehyde and melamine-formaldehyde can also be prepared using the sol-gel process. Materials of this type have received significant attention at LLNL due to their ultrafine cell sizes, continuous porosity, high surface area and low mass density. For both types of aerogels, sol-gel polymerization depends upon the transformation of these monomers into nanometer-sized clusters followed by cross-linking into a 3-dimensional gel network. While sol-gel chemistry provides the opportunity to synthesize new material compositions, it suffers from the inability to separate the process of cluster formation from gelation. This limitation results in structural deficiencies in the gel that impact the physical properties of the aerogel, xerogel or nanocomposite. In order to control the properties of the resultant gel, one should be able to regulate the formation of the clusters and their subsequent cross-linking. Towards this goal, we are utilizing dendrimer chemistry to separate the cluster formation from the gelation so that new nanostructured materials can be produced. Dendrimers are three-dimensional, highly branched macromolecules that are prepared in such a way that their size, shape and surface functionality are readily controlled. The dendrimers will be used as pre-formed clusters of known size that can be cross-linked to form an ordered gel network.

  19. Rheological and morphological characterization of hierarchically nanostructured materials

    E-Print Network [OSTI]

    Wang, Benjamin Ning-Haw

    2007-01-01

    Hierarchically nanostructured materials exhibit order on multiple length scales, with at least one of a few nanometers. The expected enhancements for applications using these materials include improved mechanical, thermal ...

  20. Materials that Power Our World Nanostructured Carbon

    E-Print Network [OSTI]

    Screens, Displays and Solar Electrodes Energy Storage Electrodes and Additives Fuel Cells Bipolar Plates application #12;Strong Earnings Potential · Positive outlook for energy and electronics · Proprietary C presentation) #12;Nanostructured Carbon Mission critical component in advanced energy & electronic devices 2

  1. Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1

    E-Print Network [OSTI]

    Chen, Gang

    Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1 conductivity led to a large increase in the thermoelectric figure of merit in several superlattice systems. Materials with a large thermoelectric figure of merit can be used to develop efficient solid-state devices

  2. Preparation of nanostructured materials having improved ductility

    DOE Patents [OSTI]

    Zhao, Yonghao; Zhu, Yuntian T.

    2010-04-20

    A method for preparing a nanostructured aluminum alloy involves heating an aluminum alloy workpiece at temperature sufficient to produce a single phase coarse grained aluminum alloy, then refining the grain size of the workpiece at a temperature at or below room temperature, and then aging the workpiece to precipitate second phase particles in the nanosized grains of the workpiece that increase the ductility without decreasing the strength of the workpiece.

  3. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    Refrigeration Optimization of Thermoelectric Materialof specific material optimization. One should note, Goldsmidrebirth. Optimization of Thermoelectric Material Systems and

  4. Nanostructured Materials | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopmentEnergyApplicationsLaboratoryNanostructured

  5. Courtesy of Prof. Pamela Norris, UVA A Nanostructured Material with

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    Courtesy of Prof. Pamela Norris, UVA Aerogel: A Nanostructured Material with Fascinating of Mechanical and Aerospace Engineering Director of the Aerogel Research Lab #12;AEROGEL RESEARCH LAB-edge applications of aerogels. Diffusion on a Fractal Length Scale Biological Warfare Detection Basic Science

  6. Thermoelectric energy conversion using nanostructured materials

    E-Print Network [OSTI]

    Chen, Gang

    High performance thermoelectric materials in a wide range of temperatures are essential to broaden the application spectrum of thermoelectric devices. This paper presents experiments on the power and efficiency characteristics ...

  7. Nanostructured Materials as Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOriginMaterials by Ultra-High-ResolutionMaterials as Anodes

  8. Arc Plasma Synthesis of Nanostructured Materials: Techniques and Innovations

    SciTech Connect (OSTI)

    Das, A. K.; Bhoraskar, S. V.; Kakati, M.; Karmakar, Soumen

    2008-10-23

    Arc plasma aided synthesis of nanostructured materials has the potential of producing complex nano phase structures in bulk quantities. Successful implementation of this potential capability to industrial scale nano generation needs establishment of a plasma parameter control regime in terms of plasma gas, flow pattern, pressure, local temperature and the plasma fields to obtain the desired nano phase structures. However, there is a need to design innovative in situ experiments for generation of an extensive database and subsequently to correlate plasma parameters to the size, shape and phase of the generated nanostructures. The present paper reviews the various approaches utilized in the field of arc plasma nanosynthesis in general and in the authors' laboratories in particular. Simple plasma diagnostics and monitoring schemes have been used in conjunction with nano materials characterization tools to explore the possibility of controlling the size, shape, yield and phase composition of the arc generated nanostructures through plasma control. Case studies related to synthesis of AlN, Al2O3, TiO2, ZrO2, ZnO), magnetic (e.g. {gamma}-Fe2O3, Fe3O4) and single elemental materials (e.g. carbon nanotubes) are presented.

  9. High volume production of nanostructured materials

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN); Morrell, Jonathan S. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Ludtka, Gerard M. (Oak Ridge, TN)

    2009-10-13

    A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

  10. Nanomanufacturing : nano-structured materials made layer-by-layer.

    SciTech Connect (OSTI)

    Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen; Tjiptowidjojo, Kristianto; Reedy, Earl David, Jr.; Fan, Hongyou; Schunk, Peter Randall; Chandross, Michael Evan; Roberts, Scott A.

    2011-10-01

    Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

  11. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1995-05-09

    A high performance capacitor is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The notepad capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  12. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1996-01-23

    A high performance capacitor is described which is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200--300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The ``notepad`` capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  13. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, Jr., Troy W. (Palo Alto, CA); Johnson, Gary W. (Livermore, CA); O'Brien, Dennis W. (Livermore, CA)

    1995-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  14. High performance capacitors using nano-structure multilayer materials fabrication

    DOE Patents [OSTI]

    Barbee, Jr., Troy W. (Palo Alto, CA); Johnson, Gary W. (Livermore, CA); O'Brien, Dennis W. (Livermore, CA)

    1996-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  15. Chemical Functionalization of Nanostructured Materials Using Supercritical Reaction Media

    SciTech Connect (OSTI)

    Zemanian, Thomas S.; Fryxell, Glen E.; Liu, Jun; Mattigod, Shas V.; Shin, Yongsoon; Franz, James A.; Ustyugov, Oleksiy A.; Nie, Zimin

    2001-12-15

    There exists a need for durable and thin functional coatings to utilize the afforded surface area of highly porous ceramic materials. Deposition of silane-based Self Assembled Monolayers (SAMs) has thus far been limited to maximum coverages of 4-5 molecules/nm2 and long processing times (up to 2 weeks), due to the restricted internal geometry of the substrates. Results are presented for SAMs deposited on high surface area silica from supercritical fluids (SCFs). The SAMs so produced display unprecedented coverages, high monolayer integrity, and extremely low surface defect density. Moreover, the depositions and subsequent removal of reaction byproducts are complete in a matter of minutes rather than days. Nuclear Magnetic Resonance (NMR) spectra of the surface modified silica are presented, demonstrating the SAM integrity and evolution over time. Sorption of aqueous metal ions is demonstrated, and results are given demonstrating the broad pH stability of the deposited SAMs. A chemical explanation for the enhanced deposition is posited, and the kinetics of mass transport into and out of the nanostructured spaces are discussed.Related experiments using zeolite substrates show deposition of thiol-terminated silanes to internal surfaces of 6? microporous material. After oxidation of the thiol functional group size selective chemistry was demonstrated using the produced catalyst, proving the efficacy of the supercritical reaction medium for installing functional coatings inside pores of similar diameters to the chain length of the deposited molecule[]. Comparisons are made between the response of the different substrates to the supercritical fluid-based processing, and remarks on the utility of SCF based processing of nanostructured materials are presented.

  16. An Experimental Study of Deformation and Fracture of a Nanostructured Metallic Material 

    E-Print Network [OSTI]

    Abdel Al, Nisrin Rizek

    2011-02-22

    , the mechanical behavior of a nanostructured, nearly pure material is investigated in order to link processing conditions, microstructure, and fracture locus in stress space. With focus laid on BCC materials which can undergo a ductile-to-brittle transition...

  17. Three dimensional, bulk nanostructured materials and composites have matured into a new class of materials that is being considered in a variety of engineering applications. The successful synthesis of large-scale nanostructured materials is of

    E-Print Network [OSTI]

    Three dimensional, bulk nanostructured materials and composites have matured into a new class of materials that is being considered in a variety of engineering applications. The successful synthesis of large-scale nanostructured materials is of technological and scientific significance. From

  18. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01

    reactivity of vanadium oxide aerogels." Electrochimica Acta,B. Dunn. “Vanadium Oxide Aerogels: Nanostructured MaterialsE. & Dunn, B. V 2 O 5 aerogel as a versatile host for metal

  19. Tuning energy transport in solar thermal systems using nanostructured materials

    E-Print Network [OSTI]

    Lenert, Andrej

    2014-01-01

    Solar thermal energy conversion can harness the entire solar spectrum and theoretically achieve very high efficiencies while interfacing with thermal storage or back-up systems for dispatchable power generation. Nanostructured ...

  20. Electrochemical Synthesis and Characterization of Nanostructured Chalcogenide Materials

    E-Print Network [OSTI]

    Chang, Chong Hyun

    2011-01-01

    requirements of thin-film solar cell modules--a review.thin films. Figure A1.1 Schematic illustration of fabrication of CdTe NWs/CdS hybrid nanostructures based on solar cells

  1. Optical Properties of Nanostructured Optical Materials Russell J. Gehr* and Robert W. Boyd

    E-Print Network [OSTI]

    Boyd, Robert W.

    Optical Properties of Nanostructured Optical Materials Russell J. Gehr* and Robert W. Boyd Manuscript Received April 24, 1996X The optical properties of nanoscale composite materials are often quite different from the properties of the constituent materials from which the composite is constructed

  2. Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk

    E-Print Network [OSTI]

    Ryan, Dominic

    Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk ion cathode materials for high capacity lithium-ion batteries. Owing to their inherently low electronic in these materials is also to unravel the factors governing ion and electron transport within the lattice. Lithium de

  3. Quantum Simulations of Materials and Nanostructures (Q-SIMAN). Final Report

    SciTech Connect (OSTI)

    Galli, Giulia; Bai, Zhaojun; Ceperley, David; Cai, Wei; Gygi, Francois; Marzari, Nicola; Pickett, Warren; Spaldin, Nicola; Fattebert, Jean-Luc; Schwegler, Eric

    2015-09-16

    The focus of this SciDAC SAP (Scientific Application) is the development and use of quantum simulations techniques to understand materials and nanostructures at the microscopic level, predict their physical and chemical properties, and eventually design integrated materials with targeted properties. (Here the word ‘materials’ is used in a broad sense and it encompasses different thermodynamic states of matter, including solid, liquids and nanostructures.) Therefore our overarching goal is to enable scientific discoveries in the field of condensed matter and advanced materials through high performance computing.

  4. PERFORMANCE OF CdSe TETRAPODS-GOLD AS NANOSTRUCTURE ELECTROCHEMICAL MATERIALS IN PHOTOVOLTAIC CELLS

    E-Print Network [OSTI]

    Natelson, Douglas

    PERFORMANCE OF CdSe TETRAPODS-GOLD AS NANOSTRUCTURE ELECTROCHEMICAL MATERIALS IN PHOTOVOLTAIC CELLS antenna arrays are assembled by coating on CdSe tetrapod templates; the rectifying barrier is formed and reduce the costs associated with conventional solar cells, including multi-bandgap materials [5

  5. Transformational, Large Area Fabrication of Nanostructured Materials Using Plasma Arc Lamps

    SciTech Connect (OSTI)

    2009-03-01

    This factsheet describes a study that will address critical additional steps over large areas of as-synthesized nanostructured materials, such as annealing, phase transformation, or activation of dopants, dramatically reducing the processing costs of the solid-state lighting and photovoltaic materials.

  6. Method of making nanopatterns and nanostructures and nanopatterned functional oxide materials

    DOE Patents [OSTI]

    Dravid, Vinayak P; Donthu, Suresh K; Pan, Zixiao

    2014-02-11

    Method for nanopatterning of inorganic materials, such as ceramic (e.g. metal oxide) materials, and organic materials, such as polymer materials, on a variety of substrates to form nanopatterns and/or nanostructures with control of dimensions and location, all without the need for etching the materials and without the need for re-alignment between multiple patterning steps in forming nanostructures, such as heterostructures comprising multiple materials. The method involves patterning a resist-coated substrate using electron beam lithography, removing a portion of the resist to provide a patterned resist-coated substrate, and spin coating the patterned resist-coated substrate with a liquid precursor, such as a sol precursor, of the inorganic or organic material. The remaining resist is removed and the spin coated substrate is heated at an elevated temperature to crystallize the deposited precursor material.

  7. Chemically modified and nanostructured porous silicon as a drug delivery material and device

    E-Print Network [OSTI]

    Anglin, Emily Jessica

    2007-01-01

    Sailor, M. J. , Engineering the chemistry and nanostructureSailor, M. J. , Engineering the chemistry and nanostructureSailor, M.J. , Engineering the chemistry and nanostructure

  8. Electron Holography of Magnetic and Electric Fields in Nanostructured Materials Prepared for TEM Examination Using Focused Ion Beam Milling

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    Electron Holography of Magnetic and Electric Fields in Nanostructured Materials Prepared for TEM local angle and spacing carry the desired information about magnetic and electric fields. Electron not be perturbed by stray (fringing) magnetic or electric fields. When examining magnetic nanostructures in cross

  9. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    the-art thin film solar cell design and processing becauseto incorporate into the solar cell design the materials withor conventional tandem solar cell designs. The physical

  10. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    E-Print Network [OSTI]

    Goyal, Vivek Kumar

    2011-01-01

    Layer Graphene and Graphene Devices,” Semiconductor ResearchMaterials: From Graphene to Diamond,” Semiconductor ResearchGraphene and Applications in Thermal Management,” Semiconductor

  11. High-capacity nanostructured germanium-containing materials and lithium alloys thereof

    DOE Patents [OSTI]

    Graetz, Jason A. (Upton, NY); Fultz, Brent T. (Pasadena, CA); Ahn, Channing (Pasadena, CA); Yazami, Rachid (Los Angeles, CA)

    2010-08-24

    Electrodes comprising an alkali metal, for example, lithium, alloyed with nanostructured materials of formula Si.sub.zGe.sub.(z-1), where 0

  12. Solution Phase Routes to Functional Nanostructured Materials for Energy Applications

    E-Print Network [OSTI]

    Rauda, Iris Ester

    2012-01-01

    for Rechargeable Lithium-Ion Batteries. Chem. Mater. 2008,Cathode Material for Lithium-Ion Batteries. J. Mater. Chem.of Electrodes in Lithium-Ion Batteries caused by Fast

  13. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    band impact ionization and solar cell efficiency,” J. Appl.Solar Energy Materials and Solar Cells 92, 273, (2008). [28]third generation solar cells Solar cells may be formed using

  14. CRYOGENIC ADSORPTION OF HYDROGEN ISOTOPES OVER NANO-STRUCTURED MATERIALS

    SciTech Connect (OSTI)

    Xiao, S.; Heung, L.

    2010-10-07

    Porous materials such as zeolites, activated carbon, silica gels, alumina and a number of industrial catalysts are compared and ranked for hydrogen and deuterium adsorption at liquid nitrogen temperature. All samples show higher D{sub 2} adsorption than that of H{sub 2}, in which a HY sample has the greatest isotopic effect while 13X has the highest hydrogen uptake capacity. Material's moisture content has significant impact to its hydrogen uptake. A material without adequate drying could result in complete loss of its adsorption capacity. Even though some materials present higher H{sub 2} adsorption capacity at full pressure, their adsorption at low vapor pressure may not be as good as others. Adsorption capacity in a dynamic system is much less than in a static system. A sharp desorption is also expected in case of temperature upset.

  15. MATERIALS, FABRICATION, AND MANUFACTURING OF MICRO/NANOSTRUCTURED SURFACES FOR PHASE-CHANGE HEAT TRANSFER ENHANCEMENT

    SciTech Connect (OSTI)

    McCarthy, M; Gerasopoulos, K; Maroo, SC; Hart, AJ

    2014-07-23

    This article describes the most prominent materials, fabrication methods, and manufacturing schemes for micro- and nanostructured surfaces that can be employed to enhance phase-change heat transfer phenomena. The numerous processes include traditional microfabrication techniques such as thin-film deposition, lithography, and etching, as well as template-assisted and template-free nanofabrication techniques. The creation of complex, hierarchical, and heterogeneous surface structures using advanced techniques is also reviewed. Additionally, research needs in the field and future directions necessary to translate these approaches from the laboratory to high-performance applications are identified. Particular focus is placed on the extension of these techniques to the design of micro/nanostructures for increased performance, manufacturability, and reliability. The current research needs and goals are detailed, and potential pathways forward are suggested.

  16. Methods for high volume production of nanostructured materials

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN); Morrell, Jonathan S. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Ludtka, Gerald M. (Oak Ridge, TN)

    2011-03-22

    A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

  17. Nanostructured material for advanced energy storage : magnesium battery cathode development.

    SciTech Connect (OSTI)

    Sigmund, Wolfgang M.; Woan, Karran V.; Bell, Nelson Simmons

    2010-11-01

    Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

  18. Nanostructure multilayer dielectric materials for capacitors and insulators

    DOE Patents [OSTI]

    Barbee, T.W. Jr.; Johnson, G.W.

    1998-04-21

    A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO{sub 2}) and alumina (Al{sub 2}O{sub 3}). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO{sub 2}) and alumina (Al{sub 2}O{sub 3}) in alternating layers to form a nano-laminate. 1 fig.

  19. Nanostructure multilayer dielectric materials for capacitors and insulators

    DOE Patents [OSTI]

    Barbee, Jr., Troy W. (Palo Alto, CA); Johnson, Gary W. (Livermore, CA)

    1998-04-21

    A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3) in alternating layers to form a nano-laminate.

  20. Reactive Ballistic Deposition of Nanostructured Model Materials for Electrochemical Energy Conversion and Storage

    SciTech Connect (OSTI)

    Flaherty, David W.; Hahn, Nathan T.; May, Robert A.; Berglund, Sean P.; Lin, Yong-Mao; Stevenson, Keith J.; Dohnalek, Zdenek; Kay, Bruce D.; Mullins, C. Buddie

    2012-03-20

    Finely structured, supported thin films offer a host of opportunities for fundamental and applied research. Nanostructured materials often exhibit physical properties which differ from their bulk counterparts due to the increased importance of the surface in determining the thermodynamics and behavior of the system. Thus, control of the characteristic size, porosity, morphology, and surface area presents opportunities to tailor new materials which are useful platforms for elucidating the fundamental processes related to energy conversion and storage. The ability to produce high purity materials with direct control of relevant film parameters such as porosity, film thickness, and film morphology is of immediate interest in the fields of electrochemistry, photocatalysis, and thermal catalysis. Studies of various photoactive materials have introduced questions concerning the effects of film architecture and surface structure on the performance of the materials, while recent work has demonstrated that nanostructured, mesoporous, or disordered materials often deform plastically, making them robust in applications where volumetric expansion and phase transformations occur, such as in materials for lithium-ion batteries. Moreover, renewed emphasis has been placed on the formation of semi-conductive electrodes with controlled pore-size and large surface areas for the study and application of pseudo-capacitance and cation insertion processes for electrical energy storage. Understanding how the performance of such materials depends on morphology, porosity, and surface structure and area requires a synthesis technique which provides for incremental variations in structure and facilitates assessment of the performance with the appropriate analytical tools, preferably those that provide both structural information and kinetic insight into photoelectrochemical processes.

  1. Electrospray neutralization process and apparatus for generation of nano-aerosol and nano-structured materials

    DOE Patents [OSTI]

    Bailey, Charles L. (Cross Junction, VA); Morozov, Victor (Manassas, VA); Vsevolodov, Nikolai N. (Kensington, MD)

    2010-08-17

    The claimed invention describes methods and apparatuses for manufacturing nano-aerosols and nano-structured materials based on the neutralization of charged electrosprayed products with oppositely charged electrosprayed products. Electrosprayed products include molecular ions, nano-clusters and nano-fibers. Nano-aerosols can be generated when neutralization occurs in the gas phase. Neutralization of electrospan nano-fibers with molecular ions and charged nano-clusters may result in the formation of fibrous aerosols or free nano-mats. Nano-mats can also be produced on a suitable substrate, forming efficient nano-filters.

  2. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Mechanical Behavior of Indium Nanostructures Print Wednesday, 26 May 2010 00:00 Indium is a key material in lead-free solder...

  3. Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials. Final Technical Summary

    SciTech Connect (OSTI)

    Mullins, Michael; Rogers, Tony; King, Julia; Keith, Jason; Cornilsen, Bahne; Allen, Jeffrey; Gilbert, Ryan; Holles, Joseph

    2010-09-28

    The core projects for this DOE-sponsored Center at Michigan Tech have focused on several of the materials problems identified by the NAS. These include: new electrode materials, enhanced PEM materials, lighter and more effective bipolar plates, and improvement of the carbon used as a current carrier. This project involved fundamental and applied research in the development and testing of lightweight and nanostructured materials to be used in fuel cell applications and for chemical synthesis. The advent of new classes of materials engineered at the nanometer level can produce materials that are lightweight and have unique physical and chemical properties. The grant was used to obtain and improve the equipment infrastructure to support this research and also served to fund seven research projects. These included: 1. Development of lightweight, thermally conductive bipolar plates for improved thermal management in fuel cells; 2. Exploration of pseudomorphic nanoscale overlayer bimetallic catalysts for fuel cells; 3. Development of hybrid inorganic/organic polymer nanocomposites with improved ionic and electronic properties; 4. Development of oriented polymeric materials for membrane applications; 5. Preparation of a graphitic carbon foam current collectors; 6. The development of lightweight carbon electrodes using graphitic carbon foams for battery and fuel cell applications; and 7. Movement of water in fuel cell electrodes.

  4. Converting environmentally hazardous materials into clean energy using a novel nanostructured photoelectrochemical fuel cell

    SciTech Connect (OSTI)

    Gan, Yong X.; Gan, Bo J.; Clark, Evan; Su, Lusheng; Zhang, Lihua

    2012-09-15

    Highlights: ? A photoelectrochemical fuel cell has been made from TiO{sub 2} nanotubes. ? The fuel cell decomposes environmentally hazardous materials to produce electricity. ? Doping the anode with a transition metal oxide increases the visible light sensitivity. ? Loading the anode with a conducting polymer enhances the visible light absorption. -- Abstract: In this work, a novel photoelectrochemical fuel cell consisting of a titanium dioxide nanotube array photosensitive anode and a platinum cathode was made for decomposing environmentally hazardous materials to produce electricity and clean fuel. Titanium dioxide nanotubes (TiO{sub 2} NTs) were prepared via electrochemical oxidation of pure Ti in an ammonium fluoride and glycerol-containing solution. Scanning electron microscopy was used to analyze the morphology of the nanotubes. The average diameter, wall thickness and length of the as-prepared TiO{sub 2} NTs were determined. The photosensitive anode made from the highly ordered TiO{sub 2} NTs has good photo-catalytic property, as proven by the decomposition tests on urea, ammonia, sodium sulfide and automobile engine coolant under ultraviolet (UV) radiation. To improve the efficiency of the fuel cell, doping the TiO{sub 2} NTs with a transition metal oxide, NiO, was performed and the photosensitivity of the doped anode was tested under visible light irradiation. It is found that the NiO-doped anode is sensitive to visible light. Also found is that polyaniline-doped photosensitive anode can harvest photon energy in the visible light spectrum range much more efficiently than the NiO-doped one. It is concluded that the nanostructured photoelectrochemical fuel cell can generate electricity and clean fuel by decomposing hazardous materials under sunlight.

  5. Nanostructure, Chemistry and Crystallography of Iron Nitride...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanostructure, Chemistry and Crystallography of Iron Nitride Magnetic Materials by Ultra-High-Resolution Electron Microscopy and Related Methods Nanostructure, Chemistry and...

  6. Surface Anchoring of Nematic Phase on Carbon Nanotubes: Nanostructure of Ultra-High Temperature Materials

    SciTech Connect (OSTI)

    Ogale, Amod A

    2012-04-27

    Nuclear energy is a dependable and economical source of electricity. Because fuel supply sources are available domestically, nuclear energy can be a strong domestic industry that can reduce dependence on foreign energy sources. Commercial nuclear power plants have extensive security measures to protect the facility from intruders [1]. However, additional research efforts are needed to increase the inherent process safety of nuclear energy plants to protect the public in the event of a reactor malfunction. The next generation nuclear plant (NGNP) is envisioned to utilize a very high temperature reactor (VHTR) design with an operating temperature of 650-1000�°C [2]. One of the most important safety design requirements for this reactor is that it must be inherently safe, i.e., the reactor must shut down safely in the event that the coolant flow is interrupted [2]. This next-generation Gen IV reactor must operate in an inherently safe mode where the off-normal temperatures may reach 1500�°C due to coolant-flow interruption. Metallic alloys used currently in reactor internals will melt at such temperatures. Structural materials that will not melt at such ultra-high temperatures are carbon/graphtic fibers and carbon-matrix composites. Graphite does not have a measurable melting point; it is known to sublime starting about 3300�°C. However, neutron radiation-damage effects on carbon fibers are poorly understood. Therefore, the goal of this project is to obtain a fundamental understanding of the role of nanotexture on the properties of resulting carbon fibers and their neutron-damage characteristics. Although polygranular graphite has been used in nuclear environment for almost fifty years, it is not suitable for structural applications because it do not possess adequate strength, stiffness, or toughness that is required of structural components such as reaction control-rods, upper plenum shroud, and lower core-support plate [2,3]. For structural purposes, composites consisting of strong carbon fibers embedded in a carbon matrix are needed. Such carbon/carbon (C/C) composites have been used in aerospace industry to produce missile nose cones, space shuttle leading edge, and aircraft brake-pads. However, radiation-tolerance of such materials is not adequately known because only limited radiation studies have been performed on C/C composites, which suggest that pitch-based carbon fibers have better dimensional stability than that of polyacrylonitrile (PAN) based fibers [4]. The thermodynamically-stable state of graphitic crystalline packing of carbon atoms derived from mesophase pitch leads to a greater stability during neutron irradiation [5]. The specific objectives of this project were: (i) to generating novel carbonaceous nanostructures, (ii) measure extent of graphitic crystallinity and the extent of anisotropy, and (iii) collaborate with the Carbon Materials group at Oak Ridge National Lab to have neutron irradiation studies and post-irradiation examinations conducted on the carbon fibers produced in this research project.

  7. Three-dimensional graphene/LiFePO{sub 4} nanostructures as cathode materials for flexible lithium-ion batteries

    SciTech Connect (OSTI)

    Ding, Y.H., E-mail: yhding@xtu.edu.cn [College of Chemical Engineering, Xiangtan University, Hunan 411105 (China); Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Ren, H.M. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China); Huang, Y.Y. [BTR New Energy Materials Inc., Shenzhen 518000 (China); Chang, F.H.; Zhang, P. [Institute of Rheology Mechanics, Xiangtan University, Hunan 411105 (China)

    2013-10-15

    Graphical abstract: Graphene/LiFePO{sub 4} composites as a high-performance cathode material for flexible lithium-ion batteries have been prepared by using a co-precipitation method to synthesize graphene/LiFePO4 powders as precursors and then followed by a solvent evaporation process. - Highlights: • Flexible LiFePO{sub 4}/graphene films were prepared first time by a solvent evaporation process. • The flexible electrode exhibited a high discharge capacity without conductive additives. • Graphene network offers the electrode adequate strength to withstand repeated flexing. - Abstract: Three-dimensional graphene/LiFePO{sub 4} nanostructures for flexible lithium-ion batteries were successfully prepared by solvent evaporation method. Structural characteristics of flexible electrodes were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrochemical performance of graphene/LiFePO{sub 4} was examined by a variety of electrochemical testing techniques. The graphene/LiFePO{sub 4} nanostructures showed high electrochemical properties and significant flexibility. The composites with low graphene content exhibited a high capacity of 163.7 mAh g{sup ?1} at 0.1 C and 114 mAh g{sup ?1} at 5 C without further incorporation of conductive agents.

  8. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Behavior of Indium Nanostructures Print Indium is a key material in lead-free solder applications for microelectronics due to its excellent wetting properties, extended...

  9. Catalytic Nanostructures | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemical commodities. The nanostructured materials will be composed of organic and inorganic species that will work cooperatively to effectively promote chemical conversions...

  10. Ceramic Materials and Nano-structures for Chemical Sensing Abdul-Majeed Azad

    E-Print Network [OSTI]

    Azad, Abdul-Majeed

    , polymer nanofibers are used as selective gas separation membranes, filters, biomedical materials (drug

  11. Density-Enthalpy Phase Diagram 0D Boiler Simulation

    E-Print Network [OSTI]

    Vuik, Kees

    Density-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research Finite Transitions #12;Density-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research;Density-Enthalpy Phase Diagram 0D Boiler Simulation Finite Element Method Further Research Goal

  12. Deeply-trapped molecules in self-nanostructured gas-phase material

    E-Print Network [OSTI]

    Alharbi, M; Debord, B; Gerome, F; Benabid, F

    2015-01-01

    Since the advent of atom laser-cooling, trapping or cooling natural molecules has been a long standing and challenging goal. Here, we demonstrate a method for laser-trapping molecules that is radically novel in its configuration, in its underlined physical dynamics and in its outcomes. It is based on self-optically spatially-nanostructured high pressure molecular hydrogen confined in hollow-core photonic-crystal-fibre. An accelerating molecular-lattice is formed by a periodic potential associated with Raman saturation except for a 1-dimentional array of nanometer wide and strongly-localizing sections. In these sections, molecules with a speed of as large as 1800 m/s are trapped, and stimulated Raman scattering in the Lamb-Dicke regime occurs to generate high power forward and backward-Stokes continuous-wave laser with sideband-resolved sub-Doppler emission spectrum. The spectrum exhibits a central line with a sub-recoil linewidth of as low as 14 kHz, more than 5 orders-of-magnitude narrower than in convention...

  13. Deeply-trapped molecules in self-nanostructured gas-phase material

    E-Print Network [OSTI]

    M. Alharbi; A. Husakou; B. Debord; F. Gerome; F. Benabid

    2015-06-03

    Since the advent of atom laser-cooling, trapping or cooling natural molecules has been a long standing and challenging goal. Here, we demonstrate a method for laser-trapping molecules that is radically novel in its configuration, in its underlined physical dynamics and in its outcomes. It is based on self-optically spatially-nanostructured high pressure molecular hydrogen confined in hollow-core photonic-crystal-fibre. An accelerating molecular-lattice is formed by a periodic potential associated with Raman saturation except for a 1-dimentional array of nanometer wide and strongly-localizing sections. In these sections, molecules with a speed of as large as 1800 m/s are trapped, and stimulated Raman scattering in the Lamb-Dicke regime occurs to generate high power forward and backward-Stokes continuous-wave laser with sideband-resolved sub-Doppler emission spectrum. The spectrum exhibits a central line with a sub-recoil linewidth of as low as 14 kHz, more than 5 orders-of-magnitude narrower than in conventional Raman scattering, and sidebands comprising Mollow triplet, molecular motional-sidebands and four-wave-mixing.

  14. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01

    of High Energy-Density Batteries. Electrochemistry: Past and1971). Huggins, R. A. Advanced Batteries: Materials ScienceC. A. & Scrosati, B. Modern Batteries: An Introduction to

  15. Nanostructured thin film thermoelectric composite materials using conductive polymer PEDOT:PSS

    E-Print Network [OSTI]

    Kuryak, Chris A. (Chris Adam)

    2013-01-01

    Thermoelectric materials have the ability to convert heat directly into electricity. This clean energy technology has advantages over other renewable technologies in that it requires no sunlight, has no moving parts, and ...

  16. Incorporation of Novel Nanostructured Materials into Solar Cells and Nanoelectronic Devices

    SciTech Connect (OSTI)

    Rodriguez, Rene; Pak, Joshua; Holland, Andrew; Hunt, Alan; Bitterwolf, Thomas; Qiang, You; Bergman, Leah; Berven, Christine; Punnoose, Alex; Tenne, Dmitri

    2011-11-11

    Each of the investigators on this project has had significant accomplishments toward the production of semiconductor nanoparticles, particles, and thin films and attempts to incorporate these materials into photovoltaics or sensors; to use them for improving fluorescence diagnostics; or to employ them as cancer fighting agents. The synthesis and characterization of the nanomaterials, and more recently the device construction and testing of these materials, have been the subject of several publications and presentations by team members. During the course of the investigations, several students were fully involved as part of their graduate and undergraduate training. The nature of these projects in material development dictates that the students have gained significant experience in a diverse array of material-related topics.

  17. A facile route for 3D aerogels from nanostructured 1D and 2D materials

    E-Print Network [OSTI]

    Jung, Sung Mi

    Aerogels have numerous applications due to their high surface area and low densities. However, creating aerogels from a large variety of materials has remained an outstanding challenge. Here, we report a new methodology ...

  18. Multiscale Studies of the Formation and Stability of Surface-based Nanostructures, DOE Computational Materials Science Network - Final Report

    SciTech Connect (OSTI)

    Einstein, Theodore L.

    2011-10-31

    Summary of work performed under DOE-CMSN/FG0205ER46227, Multiscale Studies of the Formation and Stability of Surface-based Nanostructures, listing publications, collaborations, and presentations.

  19. Facile synthesis of nanostructured vanadium oxide as cathode materials for efficient Li-ion batteries

    E-Print Network [OSTI]

    Cao, Guozhong

    -ion batteries Yanyi Liu,a Evan Uchaker,a Nan Zhou,ab Jiangang Li,ac Qifeng Zhanga and Guozhong Cao*a Received 23 and VO2 (B) nanorods were tested as active cathode materials for Li-ion batteries. The V2O5 sheet for efficient Li-ion batteries. Introduction The expansion and demands for energy use in the past several

  20. Vanadium oxide based nanostructured materials for catalytic oxidative dehydrogenation of propane : effect of heterometallic centers on the catalyst performance.

    SciTech Connect (OSTI)

    Khan, M. I.; Deb, S.; Aydemir, K.; Alwarthan, A. A.; Chattopadhyay, S.; Miller, J. T.; Marshall, C. L.

    2010-01-01

    Catalytic properties of a series of new class of catalysts materials-[Co{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42} (XO{sub 4})].24H{sub 2}O (VNM-Co), [Fe{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(XO{sub 4})].24H{sub 2}O (VNM-Fe) (X = V, S) and [H{sub 6}Mn{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(VO{sub 4})].30H{sub 2}O for the oxidative dehydrogenation of propane is studied. The open-framework nanostructures in these novel materials consist of three-dimensional arrays of {l_brace}V{sub 18}O{sub 42}(XO{sub 4}){r_brace} (X = V, S) clusters interconnected by {l_brace}-O-M-O-{r_brace} (M = Mn, Fe, Co) linkers. The effect of change in the heterometallic center M (M = Mn, Co, Fe) of the linkers on the catalyst performance was studied. The catalyst material with Co in the linker showed the best performance in terms of propane conversion and selectivity at 350 C. The material containing Fe was most active but least selective and Mn containing catalyst was least active. The catalysts were characterized by Temperature Programmed Reduction (TPR), BET surface area measurement, Diffuse Reflectance Infrared Fourier Transform Spectroscopy, and X-ray Absorption Spectroscopy. TPR results show that all three catalysts are easily reducible and therefore are active at relatively low temperature. In situ X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure spectroscopy (EXAFS) studies revealed that the oxidation state of Co(II) remained unchanged up to 425 C (even after pretreatment). The reduction of Co(II) into metallic form starts at 425 C and this process is completed at 600 C.

  1. Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals

    SciTech Connect (OSTI)

    Runnerstrom, EL; Llordes, A; Lounis, SD; Milliron, DJ

    2014-06-04

    Electrochromic devices, which dynamically change colour under applied potential, are widely studied for use in energy-efficient smart windows. To improve the viability of smart windows, many researchers are utilizing nanomaterials, which can provide electrochromic devices with improved colouration efficiencies, faster switching times, longer cycle lives, and potentially reduced costs. In an effort to demonstrate a new type of electrochromic device that goes beyond the capabilities of commonly used electrochromic materials, researchers have turned to plasmonic transparent conductive oxide (TCO) nanocrystals. Electrochemical injection of electrons into plasmonic TCO nanocrystal films induces a shift in the plasmon frequency and gives rise to the new functionality of selective optical modulation in the near-infrared region of the solar spectrum. These nanocrystals can be used as building blocks to enable creation of advanced electrochromic devices containing mesoporous electrodes or nanocrystal-in-glass composites. Such devices have been important in advancing the field towards achieving the ideal smart window with independent control over visible and NIR transmittance.

  2. Optimal quantum control in nanostructures: Theory and application...

    Office of Scientific and Technical Information (OSTI)

    36 MATERIALS SCIENCE; CONVERGENCE; ENERGY LEVELS; LASER RADIATION; NANOSTRUCTURES; OPTICS; OPTIMAL CONTROL; OPTIMIZATION; PULSES; QUANTUM MECHANICS; USES; WAVE FUNCTIONS Word...

  3. Nanostructures for enzyme stabilization

    SciTech Connect (OSTI)

    Kim, Jungbae; Grate, Jay W.; Wang, Ping

    2006-02-02

    The last decade has witnessed notable breakthroughs in nanotechnology with development of various nanostructured materials such as mesoporous materials and nanoparticles. These nanostructures have been used as a host for enzyme immobilization via various approaches, such as enzyme adsorption, covalent attachment, enzyme encapsulation, and sophisticated combinations of methods. This review discusses the stabilization mechanisms behind these diverse approaches; such as confinement, pore size and volume, charge interaction, hydrophobic interaction, and multipoint attachment. In addition, we will introduce recent rigorous approaches to improve the enzyme stability in these nanostructures or develop new nanostructures for the enzyme stabilization. Especially, we will introduce our recent invention of a nanostructure, called single enzyme nanoparticles (SENs). In the form of SENs, each enzyme molecule is surrounded with a nanometer scale network, resulting in stabilization of enzyme activity without any serious limitation for the substrate transfer from solution to the active site. SENs can be further immobilized into mesoporous silica with a large surface area, providing a hierarchical approach for stable, immobilized enzyme systems for various applications, such as bioconversion, bioremediation, and biosensors.

  4. Nanostructured Materials for Advanced

    E-Print Network [OSTI]

    Cao, Guozhong

    for oil, associated with oil price increase, and environmental issues are continuing to exert pressure density [1]. How- ever, their power density is relatively low because of a large polarization at high

  5. Nanostructured Materials by Machining

    Broader source: Energy.gov [DOE]

    Presentation given at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  6. Process Development for Nanostructured Photovoltaics

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    substrate. The aerogel is then coated with a thin layer of TCO material using atomic layer deposition. Successful scale-up and demonstration of the nanostructured solar cell and...

  7. Nanostructured Metal Oxide Anodes (Presentation)

    SciTech Connect (OSTI)

    Dillon, A. C.; Riley, L. A.; Lee, S.-H.; Kim, Y.-H.; Ban, C.; Gillaspie, D. T.; Pesaran, A.

    2009-05-01

    This summarizes NREL's FY09 battery materials research activity in developing metal oxide nanostructured anodes to enable high-energy, durable and affordable li-ion batteries for HEVs and PHEVs.

  8. D0 - D0bar mixing: theory basics

    E-Print Network [OSTI]

    Diego Guadagnoli

    2007-09-27

    I discuss how the novel experimental data on D0 - D0bar mixing can be combined to provide information on the fundamental theoretical quantities describing the mixing itself. I then discuss the theoretical impact of the new data, focusing in particular on the MSSM.

  9. ITP Nanomanufacturing: Nanostructured Superhydrophobic Coatings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanostructured Superhydrophobic Coatings Large-scale Implementation of Nanostructured Superhydrophobic (SH) Powders for Breakthrough Energy Savings Nanostructured superhydrophobic...

  10. UNCLASSIFIED Institute for Materials ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Garritt Tucker Drexel University, Philadelphia, Pennsylvania Atomistic Methods to Quantify Nanoscale Strain and Deformation Mechanisms in Nanostructured Materials Thursday, August...

  11. Probing Nanostructures for Photovoltaics: Using atomic force microscopy and other tools to characterize nanoscale materials for harvesting solar energy

    E-Print Network [OSTI]

    Zaniewski, Anna Monro

    2012-01-01

    4.2.1 Organic solar cellOrganic Solar Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.3.1 Organic solar cell materials . . . . .

  12. ITP Nanomanufacturing: Nanostructured Superhydrophobic Coatings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanomanufacturing: Nanostructured Superhydrophobic Coatings ITP Nanomanufacturing: Nanostructured Superhydrophobic Coatings nanostructuredsuperhydrophobiccoatings.pdf More...

  13. Branching fraction measurements of the color-suppressed decays B[over-bar] 0 to D[superscript (*)0?0, D[superscript (*)0]?, D[superscript (*)0]?, and D[superscript(*)0]?? and measurement of the polarization in the decay B[over-bar] 0-->D[superscript *0]?

    E-Print Network [OSTI]

    Cowan, Ray Franklin

    We report updated branching fraction measurements of the color-suppressed decays B? 0-->D0?0, D*0?0, D0?, D*0?, D0?, D*0?, D0??, and D*0??. We measure the branching fractions (×10-4): B(B? 0?D0?0)=2.69±0.09±0.13, B(B? ...

  14. Nanostructures, systems, and methods for photocatalysis

    DOE Patents [OSTI]

    Reece, Steven Y.; Jarvi, Thomas D.

    2015-12-08

    The present invention generally relates to nanostructures and compositions comprising nanostructures, methods of making and using the nanostructures, and related systems. In some embodiments, a nanostructure comprises a first region and a second region, wherein a first photocatalytic reaction (e.g., an oxidation reaction) can be carried out at the first region and a second photocatalytic reaction (e.g., a reduction reaction) can be carried out at the second region. In some cases, the first photocatalytic reaction is the formation of oxygen gas from water and the second photocatalytic reaction is the formation of hydrogen gas from water. In some embodiments, a nanostructure comprises at least one semiconductor material, and, in some cases, at least one catalytic material and/or at least one photosensitizing agent.

  15. Novel photonic phenomena in nanostructured material systems with applications and mid-range efficient insensitive wireless energy-transfer

    E-Print Network [OSTI]

    Karalis, Aristeidis, 1978-

    2008-01-01

    A set of novel mechanisms for the manipulation of light in the nanoscale is provided. In the class of all-dielectric material systems, techniques for the suppression of radiative loss from incomplete-photonic-bandgap ...

  16. Nanostructured Transparent Conducting Oxides via Blockcopolymer Patterning

    E-Print Network [OSTI]

    Kim, Joung Youn Ellie

    2014-05-27

    . This can lead to new device designs of organic light emitting diodes (OLEDS), fuel cells, displays and solar cells. Moreover, the ability to incorporate other various functional materials to form a hybrid with the nanostructured TCO allows possibilities...

  17. Biomedical applications of nanostructured polymer films

    E-Print Network [OSTI]

    Gilbert, Jonathan Brian

    2014-01-01

    Functional polymeric thin films are often stratified with nanometer level structure and distinct purposes for each layer. These nanostructured polymeric materials are useful in a wide variety of applications including drug ...

  18. Interfacing nanostructures to biological cells

    DOE Patents [OSTI]

    Chen, Xing; Bertozzi, Carolyn R.; Zettl, Alexander K.

    2012-09-04

    Disclosed herein are methods and materials by which nanostructures such as carbon nanotubes, nanorods, etc. are bound to lectins and/or polysaccharides and prepared for administration to cells. Also disclosed are complexes comprising glycosylated nanostructures, which bind selectively to cells expressing glycosylated surface molecules recognized by the lectin. Exemplified is a complex comprising a carbon nanotube functionalized with a lipid-like alkane, linked to a polymer bearing repeated .alpha.-N-acetylgalactosamine sugar groups. This complex is shown to selectively adhere to the surface of living cells, without toxicity. In the exemplified embodiment, adherence is mediated by a multivalent lectin, which binds both to the cells and the .alpha.-N-acetylgalactosamine groups on the nanostructure.

  19. Mesoporous Co{sub 3}O{sub 4} nanostructured material synthesized by one-step soft-templating: A magnetic study

    SciTech Connect (OSTI)

    Poyraz, Altug S.; Kuo, Chung-Hao; Li, Nan; Hines, William A. Perry, David M.; Suib, Steven L.

    2014-03-21

    A combined magnetization and zero-field {sup 59}Co spin-echo nuclear magnetic resonance (NMR) study has been carried out on one member of a recently developed class of highly ordered mesoporous nanostructured materials, mesoporous Co{sub 3}O{sub 4} (designated UCT-8, University of Connecticut, mesoporous materials). The material was synthesized using one-step soft-templating by an inverse micelles packing approach. Characterization of UCT-8 by powder x-ray diffraction and electron microscopy reveals that the mesostructure consists of random close-packed Co{sub 3}O{sub 4} nanoparticles ??12?nm in diameter. The N{sub 2} sorption isotherm for UCT-8, which is type IV with a type H1 hysteresis loop, yields a 134 m{sup 2}/g BET surface area and a 7.7?nm BJH desorption pore diameter. The effect of heat treatment on the structure is discussed. The antiferromagnetic Co{sub 3}O{sub 4} nanoparticles have a Néel temperature T{sub N}?=?27?K, somewhat lower than the bulk. A fit to the Curie-Weiss law over the temperature range 75?K???T???300?K yields an effective magnetic moment of ?{sub eff}?=?4.36??{sub B} for the Co{sup 2+} ions, indicative of some orbital contribution, and a Curie-Weiss temperature ??=??93.5?K, consistent with antiferromagnetic ordering. The inter-sublattice and intra-sublattice exchange constants for the Co{sup 2+} ions are J{sub 1}/k{sub B}?=?(?)4.75?K and J{sub 2}/k{sub B}?=?(?)0.87?K, respectively, both corresponding to antiferromagnetic coupling. The presence of uncompensated surface spins is observed below T{sub N} with shifts in the hysteresis loops, i.e., an exchange-bias effect. The {sup 59}Co NMR spectrum for UCT-8, which is attributed to Co{sup 2+} ions at the tetrahedral A sites, is asymmetrically broadened with a peak at ?55?MHz (T?=?4.2?K). Since there is cubic symmetry at the A-sites, the broadening is indicative of a magnetic field distribution due to the uncompensated surface spins. The spectrum is consistent with antiferromagnetically ordered particles that are nanometer in size and single domain.

  20. Mesoporous Carbon-based Materials for Alternative Energy Applications

    E-Print Network [OSTI]

    Cross, Kimberly Michelle

    2012-01-01

    Nanostructured materials for advanced energy conversion and storage devices."devices for energy harvesting, storage, and conversion are based on the incorporation of nanostructured

  1. Biologically-templated metal oxide and metal nanostructures for photovoltaic applications

    E-Print Network [OSTI]

    Dorval Courchesne, Noémie-Manuelle

    2015-01-01

    In several electronic, electrochemical and photonic systems, the organization of materials at the nanoscale is critical. Specifically, in nanostructured heterojunction solar cells, active materials with high surface area ...

  2. Ceramic nanostructures and methods of fabrication

    DOE Patents [OSTI]

    Ripley, Edward B. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Morrell, Jonathan S. (Knoxville, TN)

    2009-11-24

    Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

  3. Center for Nanophase Materials Sciences | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in nanostructured materials. Fieldstechniques include scanning probe microscopy, neutron scattering, optical spectroscopy and soft-matter electron and helium ion...

  4. THERMAL TRANSPORT IN SELF-ASSEMBLED NANOSTRUCTURES IAN PEARSON BLITZ

    E-Print Network [OSTI]

    Braun, Paul

    THERMAL TRANSPORT IN SELF-ASSEMBLED NANOSTRUCTURES BY IAN PEARSON BLITZ THESIS Submitted in partial Understanding of phonon mediated thermal transport properties in nanostructured materials is essential of the thermal transport properties of model organic- inorganic, nanoscopically layered systems for the purpose

  5. Nanostructure Templating in Inorganic Solids with Organic Lyotropic Liquid Crystals

    E-Print Network [OSTI]

    Braun, Paul

    successful templated synthesis of periodically nanostructured inorganics which copied directly the symmetryNanostructure Templating in Inorganic Solids with Organic Lyotropic Liquid Crystals Paul V. Braun of Materials Science and Engineering and Chemistry, Northwestern UniVersity, EVanston, Illinois 60208 Recei

  6. Synthesis and Enhanced Intercalation Properties of Nanostructured Vanadium Oxides

    E-Print Network [OSTI]

    Cao, Guozhong

    intercalation properties of nanostructured vanadium oxides for energy storage as well as other applications-volume, and environment friendly energy storage/conversion devices are developed, and nanomaterials are attracting great-18 The nanostructured form of this material has been employed in FETs,19 sensors,20,21 spintronic devices,22

  7. Stepwise Nanopore Evolution in One-Dimensional Nanostructures

    E-Print Network [OSTI]

    Cui, Yi

    dielectric layers in microelectronic devices,5 hydrogen storage materi- als,6 supercapacitor electrodes,7Stepwise Nanopore Evolution in One-Dimensional Nanostructures Jang Wook Choi,, James Mc be used to produce nanopores inside various useful one-dimensional (1D) nanostructures such as zinc oxide

  8. Pore-Controlled Formation of 0D Metal Complexes in Anionic 3D...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pore-Controlled Formation of 0D Metal Complexes in Anionic 3D Metal-Organic Frameworks Previous Next List Muwei Zhang, Mathieu Boscha and Hong-Cai Zhou, Cryst. Eng. Comm, 17,...

  9. Oriented Nanostructures for Energy Conversion and Storage

    SciTech Connect (OSTI)

    Liu, Jun; Cao, Guozhong H.; Yang, Zhenguo; Wang, Donghai; DuBois, Daniel L.; Zhou, Xiao Dong; Graff, Gordon L.; Pederson, Larry R.; Zhang, Jiguang

    2008-08-28

    Recently the role of nanostructured materials in addressing the challenges in energy and natural resources has attracted wide attention. In particular, oriented nanostructures have demonstrated promising properties for energy harvesting, conversion and storage. The purpose of the paper is to review the synthesis and application of oriented nanostructures in a few key areas of energy technologies, namely photovoltaics, batteries, supercapacitors and thermoelectrics. Although the applications differ from field to field, one of the fundamental challenges is to improve the generation and transport of electrons and ions. We will first briefly review the several major approaches to attain oriented nanostructured films that are applicable for energy applications. We will then discuss how such controlled nanostructures can be used in photovoltaics, batteries, capacitors, thermoelectrics, and other unconventional ways of energy conversion. We will highlight the role of high surface area to maximize the surface activity, and the importance of optimum dimension and architecture, controlled pore channels and alignment of the nanocrystalline phase to optimize the electrons and ion transport. Finally, the paper will discuss the challenges in attaining integrated architectures to achieve the desired performance. Brief background information will be provided for the relevant technologies, but the emphasis is focused mainly on the nanoeffects of mostly inorganic based materials and devices.

  10. Crab Shells as Sustainable Templates from Nature for Nanostructured Battery Electrodes

    E-Print Network [OSTI]

    Cui, Yi

    Crab Shells as Sustainable Templates from Nature for Nanostructured Battery Electrodes Hongbin Yao materials issues for enabling next-generation high capacity lithium ion batteries for portable electronics to prepare nanostructured battery electrode materials, we are inspired by the diversity of natural materials

  11. Towards electroformed nanostructured aluminum alloys with high strength and ductility

    E-Print Network [OSTI]

    Ruan, Shiyun

    Nanostructured Al–Mn alloys are proposed as high-strength low-density materials, which can be electroformed (i.e., produced electrolytically and removed from the substrate) from ionic liquid. A variety of current waveforms, ...

  12. Nanomanufacturing of functional nanostructured surfaces for efficient light transport

    E-Print Network [OSTI]

    Kim, Jeong-Gil

    2015-01-01

    Nanostructured surfaces have given rise to many unique optical properties, such as broadband anti-reflectivity, structural coloring effects, and enhanced light extraction from high refractive index materials due to their ...

  13. Process Development for Nanostructured Photovoltaics

    SciTech Connect (OSTI)

    None

    2011-05-31

    Fact sheet describing low-cost nanofabrication method to develop nanostructured, dye-sensitized solar cells

  14. Magnetic/metallic thin films and nanostructures

    E-Print Network [OSTI]

    Lewis, Robert Michael

    examples. During the past decade applications of nano-scale magnetic devices to data storage have hadMagnetic/metallic thin films and nanostructures The College of William and MarY;'l Virginia http://www.as.wm.cdu/Faculty/Lukaszcw.html It is widely believed that revolutionary progress can be made as materials and devices are developed to operate

  15. Patterned Magnetic Nanostructures and Quantized Magnetic Disks

    E-Print Network [OSTI]

    -increasing demands in data storage and to new applications of magnetic devices in the field of sensors. NewPatterned Magnetic Nanostructures and Quantized Magnetic Disks STEPHEN Y. CHOU Invited Paper, opens up new opportunities for engineering innovative magnetic materials and devices, developing ultra

  16. Models of the formation of oxide phases in nanostructured materials based on lead chalcogenides subjected to treatment in oxygen and iodine vapors

    SciTech Connect (OSTI)

    Maraeva, E. V., E-mail: jenvmar@mail.ru; Moshnikov, V. A.; Tairov, Yu. M. [St. Petersburg State Electrotechnical University 'LETI' (Russian Federation)] [St. Petersburg State Electrotechnical University 'LETI' (Russian Federation)

    2013-10-15

    Model concepts concerning control over the formation of oxide layers during the course of oxidation are developed on the basis of experimental results of studies of systematic features of the formation of nanostructured layers after diffusion annealing. Data on a variation in the composition of oxide phases as the extent of deviation from stoichiometry is changed in the initial lead chalcogenide are presented. Model concepts related to the possibility of varying the thickness of the coating oxide phases using annealing in an oxygen-containing medium are developed. It is shown that annealing in an iodine atmosphere ensures the effective penetration of oxygen into the grains, which is necessary for an increase in the photoluminescence efficiency.

  17. Collective Excitations in Nanostructures: Towards Spatially-Resolved EELS

    E-Print Network [OSTI]

    Botti, Silvana

    microscopic structure + design new materials. macro micro Introduction Electron Energy-Loss Spectroscopy #12 structure + design new materials. macro micro How can we obtain information about nanostructures? Introduction Electron Energy-Loss Spectroscopy #12;Material Physics Dream of the Materials Physicist

  18. High-Yield Synthesis of Stoichiometric Boron Nitride Nanostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nocua, José E.; Piazza, Fabrice; Weiner, Brad R.; Morell, Gerardo

    2009-01-01

    Boron nitride (BN) nanostructures are structural analogues of carbon nanostructures but have completely different bonding character and structural defects. They are chemically inert, electrically insulating, and potentially important in mechanical applications that include the strengthening of light structural materials. These applications require the reliable production of bulk amounts of pure BN nanostructures in order to be able to reinforce large quantities of structural materials, hence the need for the development of high-yield synthesis methods of pure BN nanostructures. Using borazine ( B 3 N 3 H 6 ) asmore »chemical precursor and the hot-filament chemical vapor deposition (HFCVD) technique, pure BN nanostructures with cross-sectional sizes ranging between 20 and 50?nm were obtained, including nanoparticles and nanofibers. Their crystalline structure was characterized by (XRD), their morphology and nanostructure was examined by (SEM) and (TEM), while their chemical composition was studied by (EDS), (FTIR), (EELS), and (XPS). Taken altogether, the results indicate that all the material obtained is stoichiometric nanostructured BN with hexagonal and rhombohedral crystalline structure. « less

  19. Measuring Strong Nanostructures

    ScienceCinema (OSTI)

    Andy Minor

    2010-01-08

    Andy Minor of Berkeley Lab's National Center for Electron Microscopy explains measuring stress and strain on nanostructures with the In Situ Microscope. More information: http://newscenter.lbl.gov/press-relea...

  20. Nanostructures in Skutterudites

    Broader source: Energy.gov [DOE]

    In-situ synthesis by thermodynamic means such as phase segregation, for fabricating skutterudite-based nanocomposites yield robust and stable nanostructure phases likely to survive harsh thermoelectric power generation environments

  1. Novel Nanostructured Interface Solution for Automotive Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application...

  2. Nanostructure Fabrication In this project we are developing in situ measurements relevant to the

    E-Print Network [OSTI]

    , structure, and morphology of complex nanostructures to enable control and optimization of the resulting Materials Science and Engineering Laboratory Progress in optimizing materials processing in wet chemicalNanostructure Fabrication Processes METALS In this project we are developing in situ measurements

  3. Nanostructures having high performance thermoelectric properties

    DOE Patents [OSTI]

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I.; Chen, Renkun; Delgado, Raul Diaz

    2015-12-22

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  4. Nanostructures having high performance thermoelectric properties

    DOE Patents [OSTI]

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz

    2014-05-20

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  5. Nanowires, nanostructures and devices fabricated therefrom

    DOE Patents [OSTI]

    Majumdar, Arun (Orinda, CA); Shakouri, Ali (Santa Cruz, CA); Sands, Timothy D. (Moraga, CA); Yang, Peidong (Berkeley, CA); Mao, Samuel S. (Berkeley, CA); Russo, Richard E. (Walnut Creek, CA); Feick, Henning (Kensington, CA); Weber, Eicke R. (Oakland, CA); Kind, Hannes (Schaffhausen, CH); Huang, Michael (Los Angeles, CA); Yan, Haoquan (Albany, CA); Wu, Yiying (Albany, CA); Fan, Rong (El Cerrito, CA)

    2005-04-19

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  6. Mat. Res. Soc. Symp. Proc. Vol. 628 2000 Materials Research Society Hybrid Inorganic/Organic Diblock Copolymers. Nanostructure in Polyhedral Oligomeric

    E-Print Network [OSTI]

    Mather, Patrick T.

    Our main approach to the synthesis and study of hybrid organic/inorganic materials involvesMat. Res. Soc. Symp. Proc. Vol. 628 © 2000 Materials Research Society CC2.6.1 Hybrid Inorganic the synthesis of melt processable, linear hybrid polymers containing pendent inorganic clusters, and allows us

  7. Processes for fabricating composite reinforced material

    SciTech Connect (OSTI)

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  8. Ab Initio Study of Nanostructures for Energy Storage 

    E-Print Network [OSTI]

    Cristancho Albarracin, Dahiyana

    2014-05-07

    with the size of the material and 2 nanostructures with different electronic properties can be self-assembled in order to create a multi-junction that adsorbs solar energy in a wider range of the visible spectrum. 1.2 Solar Cells Solar cells...……………………………………………………………………..xiii CHAPTER I INTRODUCTION ........................................................................................ 1 1.1 Advantages of Using Nanostructures in Energy Storage ......................................... 1 1.2 Solar Cells...

  9. PTG exam 2322011 short answers 75. For this cyclic process: 0dUQW

    E-Print Network [OSTI]

    Zevenhoven, Ron

    PTG exam 2322011 ­ short answers 75. For this cyclic process: 0dUQW a. Q1 + W2 + Q2 + W3 = 0 W3 = ( Q1 + W2 + Q2) = (180 + 50 200) = 30 J; Given off ­W3 = 30 J. Or, if also taking into consideration input W2, then total given off W3 ­ W2 = 20 J (system gain + 20 J) b

  10. Anode materials for lithium-ion batteries

    DOE Patents [OSTI]

    Sunkara, Mahendra Kumar; Meduri, Praveen; Sumanasekera, Gamini

    2014-12-30

    An anode material for lithium-ion batteries is provided that comprises an elongated core structure capable of forming an alloy with lithium; and a plurality of nanostructures placed on a surface of the core structure, with each nanostructure being capable of forming an alloy with lithium and spaced at a predetermined distance from adjacent nanostructures.

  11. Process Development for Nanostructured Photovoltaics

    SciTech Connect (OSTI)

    Elam, Jeffrey W.

    2015-01-01

    Photovoltaic manufacturing is an emerging industry that promises a carbon-free, nearly limitless source of energy for our nation. However, the high-temperature manufacturing processes used for conventional silicon-based photovoltaics are extremely energy-intensive and expensive. This high cost imposes a critical barrier to the widespread implementation of photovoltaic technology. Argonne National Laboratory and its partners recently invented new methods for manufacturing nanostructured photovoltaic devices that allow dramatic savings in materials, process energy, and cost. These methods are based on atomic layer deposition, a thin film synthesis technique that has been commercialized for the mass production of semiconductor microelectronics. The goal of this project was to develop these low-cost fabrication methods for the high efficiency production of nanostructured photovoltaics, and to demonstrate these methods in solar cell manufacturing. We achieved this goal in two ways: 1) we demonstrated the benefits of these coatings in the laboratory by scaling-up the fabrication of low-cost dye sensitized solar cells; 2) we used our coating technology to reduce the manufacturing cost of solar cells under development by our industrial partners.

  12. Synthesis of porphyrin nanostructures

    DOE Patents [OSTI]

    Fan, Hongyou; Bai, Feng

    2014-10-28

    The present disclosure generally relates to self-assembly methods for generating porphyrin nanostructures. For example, in one embodiment a method is provided that includes preparing a porphyrin solution and a surfactant solution. The porphyrin solution is then mixed with the surfactant solution at a concentration sufficient for confinement of the porphyrin molecules by the surfactant molecules. In some embodiments, the concentration of the surfactant is at or above its critical micelle concentration (CMC), which allows the surfactant to template the growth of the nanostructure over time. The size and morphology of the nanostructures may be affected by the type of porphyrin molecules used, the type of surfactant used, the concentration of the porphyrin and surfactant the pH of the mixture of the solutions, and the order of adding the reagents to the mixture, to name a few variables.

  13. NANO EXPRESS Fabrication of Large Area Periodic Nanostructures Using

    E-Print Network [OSTI]

    Mohseni, Hooman

    , such as photonic band-gap materials, high dense data storage, and photonic devices. We have developed a maskless areas, such as photonic band-gap materials [1], high dense data storage [2], and photonic devices [3NANO EXPRESS Fabrication of Large Area Periodic Nanostructures Using Nanosphere Photolithography

  14. Nanostructured catalyst supports

    DOE Patents [OSTI]

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2012-10-02

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  15. Multiscale materials design of natural exoskeletons : fish armor

    E-Print Network [OSTI]

    Song, Juha

    2011-01-01

    Biological materials have developed hierarchical and heterogeneous material nanostructures and microstructures to provide protection against various environmental threats that, in turn, provide bioinspired clues to man-made, ...

  16. Un-Nanostructuring Solar Cells | ANSER Center | Argonne-Northwestern...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Un-Nanostructuring Solar Cells Home > Research > ANSER Research Highlights > Un-Nanostructuring Solar Cells...

  17. Methods for and products of processing nanostructure nitride, carbonitride and oxycarbonitride electrode power materials by utilizing sol gel technology for supercapacitor applications

    DOE Patents [OSTI]

    Huang, Yuhong (West Hills, CA); Wei, Oiang (West Hills, CA); Chu, Chung-tse (Chatsworth, CA); Zheng, Haixing (Oak Park, CA)

    2001-01-01

    Metal nitride, carbonitride, and oxycarbonitride powder with high surface area (up to 150 m.sup.2 /g) is prepared by using sol-gel process. The metal organic precursor, alkoxides or amides, is synthesized firstly. The metal organic precursor is modified by using unhydrolyzable organic ligands or templates. A wet gel is formed then by hydrolysis and condensation process. The solvent in the wet gel is then be removed supercritically to form porous amorphous hydroxide. This porous hydroxide materials is sintered to 725.degree. C. under the ammonia flow and porous nitride powder is formed. The other way to obtain high surface area nitride, carbonitride, and oxycarbonitride powder is to pyrolyze polymerized templated metal amides aerogel in an inert atmosphere. The electrochemical capacitors are prepared by using sol-gel prepared nitride, carbonitride, and oxycarbonitride powder. Two methods are used to assemble the capacitors. Electrode is formed either by pressing the mixture of nitride powder and binder to a foil, or by depositing electrode coating onto metal current collector. The binder or coating is converted into a continuous network of electrode material after thermal treatment to provide enhanced energy and power density. Liquid electrolyte is soaked into porous electrode. The electrochemical capacitor assembly further has a porous separator layer between two electrodes/electrolyte and forming a unit cell.

  18. Enhanced low-temperature impact toughness of nanostructured Ti V. V. Stolyarov and R. Z. Valiev

    E-Print Network [OSTI]

    Zhu, Yuntian T.

    and ductility of nanostructured Ti as well as smaller fracture dimples at lower temperatures. This result not result in high impact toughness if they have low ductility. Recently, some nanostructured materials is whether such an increase in strength and ductility leads to an increase in the impact toughness

  19. IEEE TRANSACTIONS ON MAGNETICS, VOL. 44, NO. 7, JULY 2008 1935 Reversal Mechanisms in Ferromagnetic Nanostructures

    E-Print Network [OSTI]

    Adeyeye, Adekunle

    devices. A major challenge for technological applications of magnetic nanostructures arrays is the precise Nanostructures A. O. Adeyeye, S. Goolaup, N. Singh, W. Jun, C. C. Wang, S. Jain, and D. Tripathy Information Storage Materials Laboratory (ISML), Department of Electrical and Computer Engineering, National

  20. Search for b-->u transitions in B[superscript 0]-->D[superscript 0]K[superscript *0] decays

    E-Print Network [OSTI]

    Fisher, Peter H.

    We present a study of the decays B0-->D0K*0 and B0-->D[over-bar] 0K*0 with K*0-->K+?-. The D0 and the D[over-bar] 0 mesons are reconstructed in the final states f=K+pi-, K+pi-pi0, K+pi-pi+pi-, and their charge conjugates. ...

  1. Nanostructured metal foams: synthesis and applications

    SciTech Connect (OSTI)

    Luther, Erik P; Tappan, Bryce; Mueller, Alex; Mihaila, Bogdan; Volz, Heather; Cardenas, Andreas; Papin, Pallas; Veauthier, Jackie; Stan, Marius

    2009-01-01

    Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

  2. Washington: Graphene Nanostructures for Lithium Batteries Recieves...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

  3. Search for the rare decays B[superscript 0]?D[subscript s][superscript (*)+]a[-over subscript 0(2)

    E-Print Network [OSTI]

    Koeneke, K.

    We have searched for the decays B[superscript 0]?D[subscript s]+a[subscript 0]-, B[superscript 0]?D[subscript s][superscript *]+a[subscript 0]-, B[superscript 0]?D[subscript s]+a[subscript 2]- and B[superscript 0]?D[subscript ...

  4. Luminescent systems based on the isolation of conjugated PI systems and edge charge compensation with polar molecules on a charged nanostructured surface

    DOE Patents [OSTI]

    Ivanov, Ilia N.; Puretzky, Alexander A.; Zhao, Bin; Geohegan, David B.; Styers-Barnett, David J.; Hu, Hui

    2014-07-15

    A photoluminescent or electroluminescent system and method of making a non-luminescent nanostructured material into such a luminescent system is presented. The method of preparing the luminescent system, generally, comprises the steps of modifying the surface of a nanostructured material to create isolated regions to act as luminescent centers and to create a charge imbalance on the surface; applying more than one polar molecule to the charged surface of the nanostructured material; and orienting the polar molecules to compensate for the charge imbalance on the surface of the nanostructured material. The compensation of the surface charge imbalance by the polar molecules allows the isolated regions to exhibit luminescence.

  5. Synthesis of nanostructured materials in supercritical ammonia: nitrides, metals and oxides Desmoulins-Krawiec S., Aymonier C., Loppinet-Serani A., Weill F., Grosse S., Etourneau J., Cansell F.

    E-Print Network [OSTI]

    Boyer, Edmond

    . Abstract : In this study, the synthesis of nanostructured particles of nitrides (Cr2N, Co2N, Fe4N, Cu3N, Ni to copper particle synthesis in a supercritical mixture CO2­ethanol demonstrated that this process allowsN in supercritical cryogenic nitrogen by self-propagating-high- temperature synthesis (6.21 MPa, ­141 °C);19 (ii) Ga

  6. Measurements of time-dependent CP asymmetries in B[superscript 0]-->D(*)[superscript +]D(*)[superscript -] decays

    E-Print Network [OSTI]

    Cowan, Ray Franklin

    We present new measurements of time-dependent CP asymmetries for B[superscript 0]-->D(*)[superscript +]D(*)[superscript -] decays using (467±5)×10[superscript 6] B[bar-over B] pairs collected with the BABAR detector ...

  7. Nanoscale quantification of stress and strain in III-V semiconducting nanostructures

    E-Print Network [OSTI]

    Jones, Eric James, Ph. D. Massachusetts Institute of Technology

    2015-01-01

    III-V semiconducting nanostructures present a promising platform for the realization of advanced optoelectronic devices due to their superior intrinsic materials properties including direct band gap energies that span the ...

  8. Structural Basis for Near Unity Quantum Yield Core/Shell Nanostructures

    E-Print Network [OSTI]

    Pennycook, Steve

    advances in photovoltaics, fuel cells, material composites, catalysis, and even drug discovery.1-3 Fluores of precisely engineered nanostructures with optimized properties is the lack of a means for determining

  9. Wetting and phase-change phenomena on micro/nanostructures for enhanced heat transfer

    E-Print Network [OSTI]

    Xiao, Rong, Ph. D. Massachusetts Institute of Technology

    2013-01-01

    Micro/nanostructures have been extensively studied to amplify the intrinsic wettability of materials to create superhydrophilic or superhydrophobic surfaces. Such extreme wetting properties can influence the heat transfer ...

  10. Three-dimensional nanostructures fabricated by stacking pre-patterned monocrystalline silicon nanomembranes

    E-Print Network [OSTI]

    Fucetola, Corey Patrick

    2013-01-01

    This thesis considers the viability of nanomembrane handling and stacking approaches to enable the fabrication of three-dimensional (3D) nano-structured materials. Sequentially stacking previously-patterned membranes to ...

  11. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

    SciTech Connect (OSTI)

    Gao, Pu-Xian

    2013-07-31

    This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S-poisoning resistance. Further investigation is needed for unraveling the understanding, design and selection principles of this new class of nanostructure based monolithic catalysts.

  12. Enhanced Catalytic Activities of Nanostructured Materials 

    E-Print Network [OSTI]

    Martinez De La Hoz, Julibeth Milena

    2014-10-31

    structure decorated using two Pt13 clusters. Carbon atoms are grey and platinum atoms are blue ......... 95 Figure 6.3 Top view of four unit cells of a proposed NPG structure decorated using one Pt22 cluster. Carbon atoms are grey and platinum atoms... are blue ........... 95 Figure 6.4 Unit cell of a Pt26 cluster interacting with graphene at H=4.9 Ĺ (left) and H=15 Ĺ (right). Carbon atoms are grey and platinum atoms are blue...

  13. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    energy generation and battery storage via the use ofenergy generation and battery storage via the use of nanos-and storage (e.g lithium-ion rechargeable battery)

  14. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    electric energies from photovoltaic, wind, wood, biofuels and hydroelectrics to create a utility scale energy generation andgeneration and storage technologies is important for increasing the share of renewable energy sources and wider use of the plug-in electricgeneration and storage technologies are important for increas- ing the share of renewable energy sources and wider use of the plug-in electric

  15. Intensive Variables & Nanostructuring in Magnetostructural Materials

    SciTech Connect (OSTI)

    Lewis, Laura

    2014-08-13

    Over the course of this project, fundamental inquiry was carried out to investigate, understand and predict the effects of intensive variables, including the structural scale, on magnetostructural phase transitions in the model system of equiatomic FeRh. These transitions comprise simultaneous magnetic and structural phase changes that have their origins in very strong orbital-lattice coupling and thus may be driven by a plurality of effects.

  16. Nanostructured Materials for Renewable Alternative Energy

    SciTech Connect (OSTI)

    Parsons, Gregory

    2013-07-24

    This project has been in effect from July 25th, 2008 to July 24th, 2013. It supported 19 graduate students and 6 post-doctoral students and resulted in 23 publications, 7 articles in preparation, 44 presentations, and many other outreach efforts. Two representative recent publications are appended to this report. The project brought in more than $750,000 in cost share from North Carolina State University. The project funds also supported the purchase and installation of approximately $667,000 in equipment supporting solar energy research.

  17. Nanostructured Materials for Energy Generation and Storage

    E-Print Network [OSTI]

    Khan, Javed Miller

    2012-01-01

    Lithium-ion Batteries: Solid-Electrolyte Interphase. Impe-which address solid electrolyte interphase formation can beis referred to as solid electrolyte interphase (SEI). These

  18. Chemistry Controls Material's Nanostructure | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclear SecurityChattan oogaMakingChemistry Controls

  19. Subtask 5: Functional nanostructured transparent electrode materials |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel Production 1: Total systems analysis,Bio-Inspired

  20. Nanostructured Thermoelectric Materials and High Efficiency Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic Solar Photovoltaic Find More Like This Return to

  1. Method for producing nanostructured metal-oxides

    DOE Patents [OSTI]

    Tillotson, Thomas M.; Simpson, Randall L.; Hrubesh, Lawrence W.; Gash, Alexander

    2006-01-17

    A synthetic route for producing nanostructure metal-oxide-based materials using sol-gel processing. This procedure employs the use of stable and inexpensive hydrated-metal inorganic salts and environmentally friendly solvents such as water and ethanol. The synthesis involves the dissolution of the metal salt in a solvent followed by the addition of a proton scavenger, which induces gel formation in a timely manner. Both critical point (supercritical extraction) and atmospheric (low temperature evaporation) drying may be employed to produce monolithic aerogels and xerogels, respectively. Using this method synthesis of metal-oxide nanostructured materials have been carried out using inorganic salts, such as of Fe.sup.3+, Cr.sup.3+, Al.sup.3+, Ga.sup.3+, In.sup.3+, Hf.sup.4+, Sn.sup.4+, Zr.sup.4+, Nb.sup.5+, W.sup.6+, Pr.sup.3+, Er.sup.3+, Nd.sup.3+, Ce.sup.3+, U.sup.3+ and Y.sup.3+. The process is general and nanostructured metal-oxides from the following elements of the periodic table can be made: Groups 2 through 13, part of Group 14 (germanium, tin, lead), part of Group 15 (antimony, bismuth), part of Group 16 (polonium), and the lanthanides and actinides. The sol-gel processing allows for the addition of insoluble materials (e.g., metals or polymers) to the viscous sol, just before gelation, to produce a uniformly distributed nanocomposites upon gelation. As an example, energetic nanocomposites of Fe.sub.xO.sub.y gel with distributed Al metal are readily made. The compositions are stable, safe, and can be readily ignited to thermitic reaction.

  2. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterialMaterials Materials Access to

  3. Engineering nanostructured electrodes away from equilibrium for lithium-ion Yanyi Liu, Dawei Liu, Qifeng Zhang and Guozhong Cao*

    E-Print Network [OSTI]

    Cao, Guozhong

    Engineering nanostructured electrodes away from equilibrium for lithium-ion batteries Yanyi Liu chapter. His specific research project is focused on nanostructured elec- trodes for efficient lithium ion materials, Li-ion batteries have achieved significant progress in energy storage performance since

  4. Electrical and dielectric properties of polyanilineAl2O3 nanocomposites derived from various Al2O3 nanostructures

    E-Print Network [OSTI]

    Guo, John Zhanhu

    storage devices.10 Nanomaterials are one kind of materials that have sizes smaller than 100 nm in at least nanostructures Jiahua Zhu,a Suying Wei,b Lei Zhang,a Yuanbing Mao,c Jongeun Ryu,d Neel Haldolaarachchige,e David03908j Four Al2O3 nanostructures (i.e. nanofiber, nanoplatelet, nanorod and nanoflake) have been

  5. Electrochemistry, Photoelectrochemistry And Photoelectron Spectroscopy Of Nanostructured Metal Oxides

    E-Print Network [OSTI]

    Södergren, S

    1997-01-01

    Electrochemistry, Photoelectrochemistry And Photoelectron Spectroscopy Of Nanostructured Metal Oxides

  6. 2009 Clusters, Nanocrystals & Nanostructures GRC

    SciTech Connect (OSTI)

    Lai-Sheng Wang

    2009-07-19

    For over thirty years, this Gordon Conference has been the premiere meeting for the field of cluster science, which studies the phenomena that arise when matter becomes small. During its history, participants have witnessed the discovery and development of many novel materials, including C60, carbon nanotubes, semiconductor and metal nanocrystals, and nanowires. In addition to addressing fundamental scientific questions related to these materials, the meeting has always included a discussion of their potential applications. Consequently, this conference has played a critical role in the birth and growth of nanoscience and engineering. The goal of the 2009 Gordon Conference is to continue the forward-looking tradition of this meeting and discuss the most recent advances in the field of clusters, nanocrystals, and nanostructures. As in past meetings, this will include new topics that broaden the field. In particular, a special emphasis will be placed on nanomaterials related to the efficient use, generation, or conversion of energy. For example, we anticipate presentations related to batteries, catalysts, photovoltaics, and thermoelectrics. In addition, we expect to address the controversy surrounding carrier multiplication with a session in which recent results addressing this phenomenon will be discussed and debated. The atmosphere of the conference, which emphasizes the presentation of unpublished results and lengthy discussion periods, ensures that attendees will enjoy a valuable and stimulating experience. Because only a limited number of participants are allowed to attend this conference, and oversubscription is anticipated, we encourage all interested researchers from academia, industry, and government institutions to apply as early as possible. An invitation is not required. We also encourage all attendees to submit their latest results for presentation at the poster sessions. We anticipate that several posters will be selected for 'hot topic' oral presentations. Because of the important role that students and postdocs play in the future of this field, we also anticipate to select several posters from young investigators for oral presentations.

  7. Compositional Variation Within Hybrid Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the metal-alloy tip component of a hybrid nanostructure with that of free-standing metal-alloy nanoparticles. Transmission electron microscopy (TEM) image of PtCo-CdS...

  8. Thermorheological properties of nanostructured dispersions

    E-Print Network [OSTI]

    Gordon, Jeremy B

    2007-01-01

    Nanostructured dispersions, which consist of nanometer-sized particles, tubes, sheets, or droplets that are dispersed in liquids, have exhibited substantially higher thermal conductivities over those of the liquids alone. ...

  9. Growth of metal and semiconductor nanostructures using localized photocatalysts

    SciTech Connect (OSTI)

    Shelnutt, John A; Wang, Zhongchun; Medforth, Craig J

    2006-03-08

    Our overall goal has been to understand and develop a light-driven approach to the controlled growth of novel metal and semiconductor nanostructures and nanomaterials. In this photochemical process, bio-inspired porphyrin-based photocatalysts reduce metal salts in aqueous solutions at ambient temperatures when exposed to visible light, providing metal nucleation and growth centers. The photocatalyst molecules are pre-positioned at the nanoscale to control the location of the deposition of metal and therefore the morphology of the nanostructures that are grown. Self-assembly, chemical confinement, and molecular templating are some of the methods we are using for nanoscale positioning of the photocatalyst molecules. When exposed to light, each photocatalyst molecule repeatedly reduces metal ions from solution, leading to deposition near the photocatalyst and ultimately the synthesis of new metallic nanostructures and nanostructured materials. Studies of the photocatalytic growth process and the resulting nanostructures address a number of fundamental biological, chemical, and environmental issues and draw on the combined nanoscience characterization and multi-scale simulation capabilities of the new DOE Center for Integrated Nanotechnologies at Sandia National Laboratories and the University of Georgia. Our main goals are to elucidate the processes involved in the photocatalytic growth of metal nanomaterials and provide the scientific basis for controlled nanosynthesis. The nanomaterials resulting from these studies have applications in nanoelectronics, photonics, sensors, catalysis, and micromechanical systems. Our specific goals for the past three years have been to understand the role of photocatalysis in the synthesis of dendritic metal (Pt, Pd, Au) nanostructures grown from aqueous surfactant solutions under ambient conditions and the synthesis of photocatalytic porphyrin nanostructures (e.g., nanotubes) as templates for fabrication of photo-active metal-composite nanodevices. The proposed nanoscience concentrates on two thematic research areas: (1) the creation of metal and semiconductor nanostructures and nanomaterials for realizing novel catalytic phenomena and quantum control, (2) understanding photocatalytic metal deposition processes at the nanoscale especially on photocatalytic porphyrin nanostructures such as nanotubes, and (3) the development and use of multi-scale, multi-phenomena theory and simulation for ionic self-assembly and catalytic processes.

  10. Dalitz plot analyses of B[superscript 0] ? D[superscript ?]D[superscript 0]K[superscript +] and B[superscript +] ? [bar over D][superscript 0]D[superscript 0]K[superscript +] decays

    E-Print Network [OSTI]

    Lees, J.?P.

    We present Dalitz plot analyses for the decays of B mesons to D[superscript ?]D[superscript 0]K[superscript +] and [bar over D][superscript 0]D[superscript 0]K[superscript +]. We report the observation of the D[* over ...

  11. Probing structure-induced optical behavior in a new class of self-activated luminescent 0D/1D CaWO? metal oxide – CdSe nanocrystal composite heterostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Han, Jinkyu [Brookhaven National Lab. (BNL), Upton, NY (United States); McBean, Coray [State Univ. of New York at Stony Brook, Stony Brook, NY (United States); Wang, Lei [State Univ. of New York at Stony Brook, Stony Brook, NY (United States); Hoy, Jessica [State Univ. of New York at Stony Brook, Stony Brook, NY (United States); Jaye, Cherno [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Liu, Haiqing [State Univ. of New York at Stony Brook, Stony Brook, NY (United States); Li, Zhuo-Qun [State Univ. of New York at Stony Brook, Stony Brook, NY (United States); Sfeir, Matthew Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Fischer, Daniel A. [National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Taylor, Gordon T. [State Univ. of New York at Stony Brook, Stony Brook, NY (United States); Misewich, James A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wong, Stanislaus S. [Brookhaven National Lab. (BNL), Upton, NY (United States); State Univ. of New York at Stony Brook, Stony Brook, NY (United States)

    2015-02-10

    In this report, we synthesize and characterize the structural and optical properties of novel heterostructures composed of (i) semiconducting nanocrystalline CdSe quantum dot (QDs) coupled with (ii) both one and zero-dimensional (1D and 0D) motifs of self-activated luminescence CaWO? metal oxides. Specifically, ~4 nm CdSe QDs have been anchored onto (i) high-aspect ratio 1D nanowires, measuring ~230 nm in diameter and ~3 ?m in length, as well as onto (ii) crystalline 0D nanoparticles (possessing an average diameter of ~ 80 nm) of CaWO? through the mediation of 3-mercaptopropionic acid (MPA) as a connecting linker. Composite formation was confirmed by complementary electron microscopy and spectroscopy (i.e. IR and Raman) data. In terms of luminescent properties, our results show that our 1D and 0D heterostructures evince photoluminescence (PL) quenching and shortened PL lifetimes of CaWO? as compared with unbound CaWO?. We propose that a photo-induced electron transfer process occurs from CaWO? to CdSe QDs, a scenario which has been confirmed by NEXAFS measurements and which highlights a decrease in the number of unoccupied orbitals in the conduction bands of CdSe QDs. By contrast, the PL signature and lifetimes of MPA-capped CdSe QDs within these heterostructures do not exhibit noticeable changes as compared with unbound MPA-capped CdSe QDs. The striking difference in optical behavior between CaWO? nanostructures and CdSe QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. In addition, the PL quenching behaviors for CaWO? within the heterostructure configuration were examined by systematically varying (i) the quantities and coverage densities of CdSe QDs as well as (ii) the intrinsic morphology (and by extension, the inherent crystallite size) of CaWO? itself.

  12. Probing structure-induced optical behavior in a new class of self-activated luminescent 0D/1D CaWO? metal oxide – CdSe nanocrystal composite heterostructures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Han, Jinkyu; McBean, Coray; Wang, Lei; Hoy, Jessica; Jaye, Cherno; Liu, Haiqing; Li, Zhuo-Qun; Sfeir, Matthew Y.; Fischer, Daniel A.; Taylor, Gordon T.; et al

    2015-01-30

    In this report, we synthesize and characterize the structural and optical properties of novel heterostructures composed of (i) semiconducting nanocrystalline CdSe quantum dot (QDs) coupled with (ii) both one and zero-dimensional (1D and 0D) motifs of self-activated luminescence CaWO? metal oxides. Specifically, ~4 nm CdSe QDs have been anchored onto (i) high-aspect ratio 1D nanowires, measuring ~230 nm in diameter and ~3 ?m in length, as well as onto (ii) crystalline 0D nanoparticles (possessing an average diameter of ~ 80 nm) of CaWO? through the mediation of 3-mercaptopropionic acid (MPA) as a connecting linker. Composite formation was confirmed by complementarymore »electron microscopy and spectroscopy (i.e. IR and Raman) data. In terms of luminescent properties, our results show that our 1D and 0D heterostructures evince photoluminescence (PL) quenching and shortened PL lifetimes of CaWO? as compared with unbound CaWO?. We propose that a photo-induced electron transfer process occurs from CaWO? to CdSe QDs, a scenario which has been confirmed by NEXAFS measurements and which highlights a decrease in the number of unoccupied orbitals in the conduction bands of CdSe QDs. By contrast, the PL signature and lifetimes of MPA-capped CdSe QDs within these heterostructures do not exhibit noticeable changes as compared with unbound MPA-capped CdSe QDs. The striking difference in optical behavior between CaWO? nanostructures and CdSe QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. In addition, the PL quenching behaviors for CaWO? within the heterostructure configuration were examined by systematically varying (i) the quantities and coverage densities of CdSe QDs as well as (ii) the intrinsic morphology (and by extension, the inherent crystallite size) of CaWO? itself.« less

  13. Methods of fabricating nanostructures and nanowires and devices fabricated therefrom

    DOE Patents [OSTI]

    Majumdar,; Arun (Orinda, CA); Shakouri, Ali (Santa Cruz, CA); Sands, Timothy D. (Moraga, CA); Yang, Peidong (Berkeley, CA); Mao, Samuel S. (Berkeley, CA); Russo, Richard E. (Walnut Creek, CA); Feick, Henning (Kensington, CA); Weber, Eicke R. (Oakland, CA); Kind, Hannes (Schaffhausen, CH); Huang, Michael (Los Angeles, CA); Yan, Haoquan (Albany, CA); Wu, Yiying (Albany, CA); Fan, Rong (El Cerrito, CA)

    2009-08-04

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  14. Methods of fabricating nanostructures and nanowires and devices fabricated therefrom

    DOE Patents [OSTI]

    Majumdar, Arun (Orinda, CA); Shakouri, Ali (Santa Cruz, CA); Sands, Timothy D. (Moraga, CA); Yang, Peidong (Berkeley, CA); Mao, Samuel S. (Berkeley, CA); Russo, Richard E. (Walnut Creek, CA); Feick, Henning (Kensington, CA); Weber, Eicke R. (Oakland, CA); Kind, Hannes (Schaffhausen, CH); Huang, Michael (Los Angeles, CA); Yan, Haoquan (Albany, CA); Wu, Yiying (Albany, CA); Fan, Rong (El Cerrito, CA)

    2010-11-16

    One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as "nanowires", include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).

  15. Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse BergkampCentermillion toMSDS onBudgetMaterial

  16. Investigation into Nanostructured Lanthanum Halides and CeBr{sub 3} for Nuclear Radiation Detection

    SciTech Connect (OSTI)

    Guss, P., Guise, R., Mukhopadhyay, S., Yuan, D.

    2011-06-22

    This slide-show presents work on radiation detection with nanostructured lanthanum halides and CeBr{sub 3}. The goal is to extend the gamma energy response on both low and high-energy regimes by demonstrating the ability to detect low-energy x-rays and relatively high-energy activation prompt gamma rays simultaneously using the nano-structured lanthanum bromide, lanthanum fluoride, cerium bromide, or other nanocrystal material. Homogeneous and nano structure cases are compared.

  17. NANOSTRUCTURES, MAGNETIC SEMICONDUCTORS AND SPINELECTRONICS Paata Kervalishvili

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    to data storage, switching, lighting and other devices, can lead to substantially new hardwareNANOSTRUCTURES, MAGNETIC SEMICONDUCTORS AND SPINELECTRONICS Paata Kervalishvili Georgian Technical and manipulation on a nanometre scale, which allows the fabrication of nanostructures with the properties mainly

  18. Key Physical Mechanisms in Nanostructured Solar Cells

    SciTech Connect (OSTI)

    Dr Stephan Bremner

    2010-07-21

    The objective of the project was to study both theoretically and experimentally the excitation, recombination and transport properties required for nanostructured solar cells to deliver energy conversion efficiencies well in excess of conventional limits. These objectives were met by concentrating on three key areas, namely, investigation of physical mechanisms present in nanostructured solar cells, characterization of loss mechanisms in nanostructured solar cells and determining the properties required of nanostructured solar cells in order to achieve high efficiency and the design implications.

  19. Nanogeochemistry: Nanostructures emergent properties and their...

    Office of Scientific and Technical Information (OSTI)

    Nanogeochemistry: Nanostructures emergent properties and their implications to chemical reactions and mass transfers. Citation Details In-Document Search Title:...

  20. Nuclear Spins in Nanostructures

    E-Print Network [OSTI]

    W. A. Coish; J. Baugh

    2009-07-22

    We review recent theoretical and experimental advances toward understanding the effects of nuclear spins in confined nanostructures. These systems, which include quantum dots, defect centers, and molecular magnets, are particularly interesting for their importance in quantum information processing devices, which aim to coherently manipulate single electron spins with high precision. On one hand, interactions between confined electron spins and a nuclear-spin environment provide a decoherence source for the electron, and on the other, a strong effective magnetic field that can be used to execute local coherent rotations. A great deal of effort has been directed toward understanding the details of the relevant decoherence processes and to find new methods to manipulate the coupled electron-nuclear system. A sequence of spectacular new results have provided understanding of spin-bath decoherence, nuclear spin diffusion, and preparation of the nuclear state through dynamic polarization and more general manipulation of the nuclear-spin density matrix through "state narrowing". These results demonstrate the richness of this physical system and promise many new mysteries for the future.

  1. Controlled placement and orientation of nanostructures

    DOE Patents [OSTI]

    Zettl, Alex K; Yuzvinsky, Thomas D; Fennimore, Adam M

    2014-04-08

    A method for controlled deposition and orientation of molecular sized nanoelectromechanical systems (NEMS) on substrates is disclosed. The method comprised: forming a thin layer of polymer coating on a substrate; exposing a selected portion of the thin layer of polymer to alter a selected portion of the thin layer of polymer; forming a suspension of nanostructures in a solvent, wherein the solvent suspends the nanostructures and activates the nanostructures in the solvent for deposition; and flowing a suspension of nanostructures across the layer of polymer in a flow direction; thereby: depositing a nanostructure in the suspension of nanostructures only to the selected portion of the thin layer of polymer coating on the substrate to form a deposited nanostructure oriented in the flow direction. By selectively employing portions of the method above, complex NEMS may be built of simpler NEMSs components.

  2. METALLIC AND HYBRID NANOSTRUCTURES: FUNDAMENTALS AND APPLICATIONS

    SciTech Connect (OSTI)

    Murph, S.

    2012-05-02

    This book chapter presents an overview of research conducted in our laboratory on preparation, optical and physico-chemical properties of metallic and nanohybrid materials. Metallic nanoparticles, particularly gold, silver, platinum or a combination of those are the main focus of this review manuscript. These metallic nanoparticles were further functionalized and used as templates for creation of complex and ordered nanomaterials with tailored and tunable structural, optical, catalytic and surface properties. Controlling the surface chemistry on/off metallic nanoparticles allows production of advanced nanoarchitectures. This includes coupled or encapsulated core-shell geometries, nano-peapods, solid or hollow, monometallic/bimetallic, hybrid nanoparticles. Rational assemblies of these nanostructures into one-, two- and tridimensional nano-architectures is described and analyzed. Their sensing, environmental and energy related applications are reviewed.

  3. In Conversation With Materials Scientist Ron Zuckermann

    ScienceCinema (OSTI)

    Ron Zuckerman

    2010-01-08

    Nov. 11, 2009: Host Alice Egan of Berkeley Lab's Materials Sciences Division interviews scientists about their lives and work in language everyone can understand. Her guest Berkeley Lab's Ron Zuckerman, who discusses biological nanostructures and the world of peptoids.

  4. Elastic strain engineering for unprecedented materials properties

    E-Print Network [OSTI]

    Li, Ju

    “Smaller is stronger.” Nanostructured materials such as thin films, nanowires, nanoparticles, bulk nanocomposites, and atomic sheets can withstand non-hydrostatic (e.g., tensile or shear) stresses up to a significant ...

  5. Sponsored by Nanotechnology Seminar Program Engineering material properties using

    E-Print Network [OSTI]

    Fisher, Frank

    Sponsored by Nanotechnology Seminar Program Engineering material properties using block of other application opportunities in designing material properties through control of their nanostructure copolymers are under intense scrutiny by the semiconductor electronics industry for lithography enhancement

  6. Sintering and ripening resistant noble metal nanostructures

    DOE Patents [OSTI]

    van Swol, Frank B; Song, Yujiang; Shelnutt, John A; Miller, James E; Challa, Sivakumar R

    2013-09-24

    Durable porous metal nanostructures comprising thin metal nanosheets that are metastable under some conditions that commonly produce rapid reduction in surface area due to sintering and/or Ostwald ripening. The invention further comprises the method for making such durable porous metal nanostructures. Durable, high-surface area nanostructures result from the formation of persistent durable holes or pores in metal nanosheets formed from dendritic nanosheets.

  7. Designing Silicon Nanostructures for High Energy Lithium Ion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes Designing Silicon Nanostructures for High Energy Lithium Ion Battery Anodes 2012 DOE Hydrogen and Fuel...

  8. Silicon Nanostructure-based Technology for Next Generation Energy...

    Office of Environmental Management (EM)

    Silicon Nanostructure-based Technology for Next Generation Energy Storage Silicon Nanostructure-based Technology for Next Generation Energy Storage 2013 DOE Hydrogen and Fuel Cells...

  9. Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure...

    Office of Environmental Management (EM)

    2: Silicon Nanostructure-based Technology for Next Generation Energy Storage Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure-based Technology for Next...

  10. Comment on "coherence and uncertainty in nanostructured organic photovoltaics"

    E-Print Network [OSTI]

    Mukamel, S

    2013-01-01

    provide new probes for photovoltaics. The develop- ment ofin Nanostructured Organic Photovoltaics. J. Phys. Chem. Lettin Nanostructured Organic Photovoltaics” Shaul Mukamel

  11. Self-Assembled, Nanostructured Carbon for Energy Storage and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment Self-Assembled, Nanostructured Carbon for Energy Storage and Water Treatment nanostructuredcarbon.pdf...

  12. Selective deposition of nanostructured ruthenium oxide using...

    Office of Scientific and Technical Information (OSTI)

    Selective deposition of nanostructured ruthenium oxide using Tobacco mosaic virus for micro-supercapacitors in solid Nafion electrolyte Citation Details In-Document Search Title:...

  13. Catalyst by Design - Theoretical, Nanostructural, and Experimental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emission Treatment Catalyst Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies of Emission Treatment Catalyst Poster presented at the 16th Directions in...

  14. Assembly and electrical transport characterization of nanostructures...

    Office of Scientific and Technical Information (OSTI)

    Conference: Assembly and electrical transport characterization of nanostructures. Citation Details In-Document Search Title: Assembly and electrical transport characterization of...

  15. Catalyst by Design - Theoretical, Nanostructural, and Experimental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxidation Catalyst for Diesel Engine Emission Treatment Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies of Oxidation Catalyst for Diesel Engine Emission...

  16. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    stage expected to show a 5% fuel efficiency improvement in vehicle platform under US06 drive cycle caylor.pdf More Documents & Publications Nanostructured High-Temperature Bulk...

  17. Tunable quantum temperature oscillations in graphene nanostructures...

    Office of Scientific and Technical Information (OSTI)

    Tunable quantum temperature oscillations in graphene nanostructures Citation Details In-Document Search This content will become publicly available on March 4, 2016 Title: Tunable...

  18. Conducting polymer nanostructures for biological applications

    E-Print Network [OSTI]

    Berdichevsky, Yevgeny

    2006-01-01

    of Electronically Conductive Polymer Nanostructures,” Acc.et al. , “Conjugated-Polymer Micro- and Milliactuators for3. Y. Berdichevsky, Y. -H. Lo, “Polymer Microvalve Based on

  19. Three dimensional nanoporous density graded materials formed by optical exposures through conformable phase masks

    E-Print Network [OSTI]

    Rogers, John A.

    enable additional important classes of 3D nano- structured materials to be formed with PnP. In particular to large areas, they can define three di- mensional 3D nanostructured materials in a single step, this simple method was used to form a variety of 3D nanostructured materials, using exposure light from lasers

  20. Nanostructure of Metallic Particles in Light Water Reactor Used Nuclear Fuel

    SciTech Connect (OSTI)

    Buck, Edgar C.; Mausolf, Edward J.; Mcnamara, Bruce K.; Soderquist, Chuck Z.; Schwantes, Jon M.

    2015-03-11

    The extraordinary nano-structure of metallic particles in light water reactor fuels points to possible high reactivity through increased surface area and a high concentration of high energy defect sites. We have analyzed the metallic epsilon particles from a high burn-up fuel from a boiling water reactor using transmission electron microscopy and have observed a much finer nanostructure in these particles than has been reported previously. The individual round particles that varying in size between ~20 and ~50 nm appear to consist of individual crystallites on the order of 2-3 nm in diameter. It is likely that in-reactor irradiation induce displacement cascades results in the formation of the nano-structure. The composition of these metallic phases is variable yet the structure of the material is consistent with the hexagonal close packed structure of epsilon-ruthenium. These findings suggest that unusual catalytic behavior of these materials might be expected, particularly under accident conditions.

  1. Observation of a backward peak in the gamma d ---> pi0 d cross- section near the eta threshold

    SciTech Connect (OSTI)

    Yordanka Ilieva; Barry Berman; Alexander Kudryavtsev; I.I. Strakovsky; V.E. Tarasov; Moscov Amaryan; Pawel Ambrozewicz; Marco Anghinolfi; G. Asryan; Harutyun Avakian; Hovhannes Baghdasaryan; Nathan Baillie; Jacques Ball; Nathan Baltzell; V. Batourine; Marco Battaglieri; Ivan Bedlinski; Ivan Bedlinskiy; Matthew Bellis; Nawal Benmouna; Angela Biselli; Sylvain Bouchigny; Sergey Boyarinov; Robert Bradford; Derek Branford; William Briscoe; William Brooks; Stephen Bueltmann; Volker Burkert; Cornel Butuceanu; John Calarco; Sharon Careccia; Daniel Carman; Shifeng Chen; Philip Cole; Patrick Collins; Philip Coltharp; Donald Crabb; Volker Crede; R. De Masi; Enzo De Sanctis; Raffaella De Vita; Pavel Degtiarenko; Alexandre Deur; Richard Dickson; Chaden Djalali; Gail Dodge; Joseph Donnelly; David Doughty; Michael Dugger; Oleksandr Dzyubak; Hovanes Egiyan; Kim Egiyan; Latifa Elouadrhiri; Paul Eugenio; Gleb Fedotov; Gerald Feldman; Herbert Funsten; Michel Garcon; Gagik Gavalian; Gerard Gilfoyle; Kevin Giovanetti; Francois-Xavier Girod; John Goetz; Atilla Gonenc; Ralf Gothe; Keith Griffioen; Michel Guidal; Nevzat Guler; Lei Guo; Vardan Gyurjyan; Kawtar Hafidi; Rafael Hakobyan; F. Hersman; Kenneth Hicks; Ishaq Hleiqawi; Maurik Holtrop; Charles Hyde; Charles Hyde-Wright; David Ireland; Boris Ishkhanov; Eugeny Isupov; Mark Ito; David Jenkins; Hyon-Suk Jo; Kyungseon Joo; Henry Juengst; Narbe Kalantarians; James Kellie; Mahbubul Khandaker; Wooyoung Kim; Andreas Klein; Franz Klein; Mikhail Kossov; Zebulun Krahn; Laird Kramer; V. Kubarovsky; Joachim Kuhn; Sebastian Kuhn; Sergey Kuleshov; Jeff Lachniet; Jean Laget; Jorn Langheinrich; David Lawrence; Kenneth Livingston; Haiyun Lu; Marion MacCormick; Nikolai Markov; Bryan McKinnon; Bernhard Mecking; Mac Mestayer; Curtis Meyer; Tsutomu Mibe; Konstantin Mikhaylov; Marco Mirazita; Rory Miskimen; Viktor Mokeev; Kei Moriya; Steven Morrow; M. Moteabbed; E. Munevar; Gordon Mutchler; Pawel Nadel-Turonski; Rakhsha Nasseripour; Silvia Niccolai; Gabriel Niculescu; Maria-Ioana Niculescu; Bogdan Niczyporuk; Megh Niroula; Rustam Niyazov; Mina Nozar; Mikhail Osipenko; Alexander Ostrovidov; K. Park; Evgueni Pasyuk; Craig Paterson; Joshua Pierce; Nikolay Pivnyuk; Oleg Pogorelko; S. Pozdniakov; John Price; Yelena Prok; Dan Protopopescu; Brian Raue; Giovanni Ricco; Marco Ripani; Barry Ritchie; Federico Ronchetti; Guenther Rosner; Patrizia Rossi; Franck Sabatie; Carlos Salgado; Joseph Santoro; Vladimir Sapunenko; Reinhard Schumacher; Vladimir Serov; Youri Sharabian; Nikolay Shvedunov; Elton Smith; Lee Smith; Daniel Sober; Aleksey Stavinskiy; Samuel Stepanyan; Stepan Stepanyan; Burnham Stokes; Paul Stoler; Steffen Strauch; Mauro Taiuti; David Tedeschi; Ulrike Thoma; Avtandil Tkabladze; Svyatoslav Tkachenko; Clarisse Tur; Maurizio Ungaro; Michael Vineyard; Alexander Vlassov; Lawrence Weinstein; Dennis Weygand; M. Williams; Elliott Wolin; Michael Wood; Amrit Yegneswaran; Lorenzo Zana; Jixie Zhang; Bo Zhao; Zhiwen Zhao

    2007-05-14

    High-quality cross sections for the reaction gamma+d->pi^0+d have been measured using the CLAS at Jefferson Lab over a wide energy range near and above the eta-meson photoproduction threshold. At backward c.m. angles for the outgoing pions, we observe a resonance-like structure near E_gamma=700 MeV. Our model analysis shows that it can be explained by eta excitation in the intermediate state. The effect is the result of the contribution of the N(1535)S_11 resonance to the amplitudes of the subprocesses occurring between the two nucleons and of a two-step process in which the excitation of an intermediate eta meson dominates.

  2. Towards Radiation Tolerant Nanostructured Ferritic Alloys

    SciTech Connect (OSTI)

    Miller, Michael K [ORNL; Hoelzer, David T [ORNL; Russell, Kaye F [ORNL

    2010-01-01

    The high temperature and irradiation response of a new class of nanostructured ferritic alloys have been investigated by atom probe tomography. These materials are candidate materials for use in the extreme environments that will be present in the next generation of power generating systems. Atom probe tomography has revealed that the yttria powder is forced into solid solution during the mechanical alloying process andsubsequently 2-nm-diameter Ti-, Y- and O-enriched nanoclusters are formedduring the extrusion process. These nanoclusters have been shown to be remarkably stable during isothermal annealing treatments up to 0.92 of the melting temperature and during proton irradiation up to 3 displacements per atom. No significant difference in sizes, compositions and number densities of the nanoclusters was also observed between the unirradiated and proton irradiated conditions. The grain boundaries were found to have high number densities of nanoclusters as well as chromium and tungsten segregation which pin the grain boundary to minimize creep and grain growth.

  3. Understanding of the contact of nanostructured thermoelectric n-type Bi[subscript 2]Te[subscript 2.7]Se[subscript 0.3] legs for power generation applications

    E-Print Network [OSTI]

    Liu, Weishu

    Traditional processes of making contacts (metallization layer) onto bulk crystalline Bi2Te3-based materials do not work for nanostructured thermoelectric materials either because of weak bonding strength or an unstable ...

  4. Hierarchical Silica Nanostructures Inspired by Diatom Algae Yield Superior Deformability, Toughness, and Strength

    E-Print Network [OSTI]

    Buehler, Markus J.

    Hierarchical Silica Nanostructures Inspired by Diatom Algae Yield Superior Deformability, Toughness algae that is mainly composed of amorphous silica, which features a hierarchical structure that ranges in diatom algae as a basis to study a bioinspired nanoporous material implemented in crystalline silica. We

  5. Nanostructured Titania-Polymer Photovoltaic Devices Made Using PFPE-Based Nanomolding Techniques

    E-Print Network [OSTI]

    McGehee, Michael

    Nanostructured Titania-Polymer Photovoltaic Devices Made Using PFPE-Based Nanomolding Techniques heterojunction photovoltaic (PV) cells using a perfluoropolyether (PFPE) elastomeric mold to control the donor photovoltaic materials because they are strong light absorbers and solution pro- cessable and can be deposited

  6. New Nanostructured Li2S/Silicon Rechargeable Battery with High Specific Energy

    E-Print Network [OSTI]

    Cui, Yi

    of the active electrode materials. KEYWORDS Energy storage, lithium-sulfur battery, mesoporous carbon, silicon, California 94305 ABSTRACT Rechargeable lithium ion batteries are important energy storage devices; howeverNew Nanostructured Li2S/Silicon Rechargeable Battery with High Specific Energy Yuan Yang,,§ Matthew

  7. PetaScale Calculations of the Electronic Structures of Nanostructures with Hundreds of Thousands of Processors

    E-Print Network [OSTI]

    PetaScale Calculations of the Electronic Structures of Nanostructures with Hundreds of Thousands in the material science category. The DFT can be used to calculate the electronic structure, the charge density. To understand the electronic structures of such systems and the corresponding carrier dynamics is essential

  8. Sub-Nanostructured Non Transition Metal Complex Grids for Hydrogen Storage

    SciTech Connect (OSTI)

    Dr. Orhan Talu; Dr. Surendra N. Tewari

    2007-10-27

    This project involved growing sub-nanostructured metal grids to increase dynamic hydrogen storage capacity of metal hydride systems. The nano particles of any material have unique properties unlike its bulk form. Nano-structuring metal hydride materials can result in: {sm_bullet}Increased hydrogen molecule dissociation rate, {sm_bullet} Increased hydrogen atom transport rate, {sm_bullet} Decreased decrepitation caused by cycling, {sm_bullet} Increased energy transfer in the metal matrix, {sm_bullet} Possible additional contribution by physical adsorption, and {sm_bullet} Possible additional contribution by quantum effects The project succeeded in making nano-structured palladium using electrochemical growth in templates including zeolites, mesoporous silica, polycarbonate films and anodized alumina. Other metals were used to fine-tune the synthesis procedures. Palladium was chosen to demonstrate the effects of nano-structuring since its bulk hydrogen storage capacity and kinetics are well known. Reduced project funding was not sufficient for complete characterization of these materials for hydrogen storage application. The project team intends to seek further funding in the future to complete the characterization of these materials for hydrogen storage.

  9. Measurement of the Color-Suppressed B0->D(*)0 pi0 /omega/eta/eta Prime Branching Fractions

    SciTech Connect (OSTI)

    Prudent, X

    2008-11-05

    The authors report results on the branching fraction (BF) measurement of the color-suppressed decays {bar B}{sup 0} {yields} D{sup 0}{pi}{sup 0}, D*{sup 0}{pi}{sup 0}, D{sup 0}{eta}, D*{sup 0}{eta}, D{sup 0}{omega}, D*{sup 0}{omega}, D{sup 0}{eta}{prime}, and D*{sup 0}{eta}{prime}. They measure the branching fractions BF(D{sup 0}{pi}{sup 0}) = (2.78 {+-} 0.08 {+-} 0.20) x 10{sup -4}, BF(D*{sup 0}{pi}{sup 0}) = (1.78 {+-} 0.13 {+-} 0.23) x 10{sup -4}, BF(D{sup 0}{eta}) = (2.41 {+-} 0.09 {+-} 0.17) x 10{sup -4}, BF(D*{sup 0}{eta}) = (2.32 {+-} 0.13 {+-} 0.22) x 10{sup -4}, BF(D{sup 0}{omega}) = (2.77 {+-} 0.13 {+-} 0.22) x 10{sup -4}, BF(D*{sup 0}{omega}) = (4.44 {+-} 0.23 {+-} 0.61) x 10{sup -4}, BF(D{sup 0}{eta}{prime}) = (1.38 {+-} 0.12 {+-} 0.22) x 10{sup -4} and BF(D*{sup 0}{eta}{prime}) = (1.29 {+-} 0.23 {+-} 0.23) x 10{sup -4}, where the first uncertainty is statistical and the second is systematic. The result is based on a sample of (454 {+-} 5) x 10{sup 6} B{bar B} pairs collected at the {Upsilon}(4S) resonance from 1999 to 2007, with the BABAR detector at the PEP-II storage rings at the Stanford Linear Accelerator Center. The measurements are compared to theoretical predictions by factorization, SCET and pQCD. The presence of final state interactions predictions by factorization, SCET and pQCD. The presence of final state interactions is confirmed and the measurements seem to be more in favor of SCET compared to pQCD.

  10. High-Performance Nanostructured Coating

    Office of Energy Efficiency and Renewable Energy (EERE)

    The High-Performance Nanostructured Coating fact sheet details a SunShot project led by a University of California, San Diego research team working to develop a new high-temperature spectrally selective coating for receiver surfaces. These receiver surfaces, used in concentrating solar power systems, rely on high-temperature SSCs to effectively absorb solar energy without emitting much blackbody radiation.The optical properties of the SSC directly determine the efficiency and maximum attainable temperature of solar receivers, which in turn influence the power-conversion efficiency and overall system cost.

  11. Ferroelectric nanostructure having switchable multi-stable vortex states

    DOE Patents [OSTI]

    Naumov, Ivan I. (Fayetteville, AR); Bellaiche, Laurent M. (Fayetteville, AR); Prosandeev, Sergey A. (Fayetteville, AR); Ponomareva, Inna V. (Fayetteville, AR); Kornev, Igor A. (Fayetteville, AR)

    2009-09-22

    A ferroelectric nanostructure formed as a low dimensional nano-scale ferroelectric material having at least one vortex ring of polarization generating an ordered toroid moment switchable between multi-stable states. A stress-free ferroelectric nanodot under open-circuit-like electrical boundary conditions maintains such a vortex structure for their local dipoles when subject to a transverse inhomogeneous static electric field controlling the direction of the macroscopic toroidal moment. Stress is also capable of controlling the vortex's chirality, because of the electromechanical coupling that exists in ferroelectric nanodots.

  12. International Symposium on Clusters and Nanostructures (Energy, Environment, and Health)

    SciTech Connect (OSTI)

    Jena, Puru

    2011-11-10

    The international Symposium on Clusters and Nanostructures was held in Richmond, Virginia during November 7-10, 2011. The symposium focused on the roles clusters and nanostructures play in solving outstanding problems in clean and sustainable energy, environment, and health; three of the most important issues facing science and society. Many of the materials issues in renewable energies, environmental impacts of energy technologies as well as beneficial and toxicity issues of nanoparticles in health are intertwined. Realizing that both fundamental and applied materials issues require a multidisciplinary approach the symposium provided a forum by bringing researchers from physics, chemistry, materials science, and engineering fields to share their ideas and results, identify outstanding problems, and develop new collaborations. Clean and sustainable energy sessions addressed challenges in production, storage, conversion, and efficiency of renewable energies such as solar, wind, bio, thermo-electric, and hydrogen. Environmental issues dealt with air- and water-pollution and conservation, environmental remediation and hydrocarbon processing. Topics in health included therapeutic and diagnostic methods as well as health hazards attributed to nanoparticles. Cross-cutting topics such as reactions, catalysis, electronic, optical, and magnetic properties were also covered.

  13. Emission spectra analysis of arc plasma for synthesis of carbon nanostructures in various magnetic conditions

    SciTech Connect (OSTI)

    Li Jian; Kundrapu, Madhusudhan; Shashurin, Alexey; Keidar, Michael

    2012-07-15

    Arc discharge supported by the erosion of anode materials is one of the most practical and efficient methods to synthesize various high-quality carbon nanostructures. By introducing a non-uniform magnetic field in arc plasmas, high-purity single-walled carbon nanotubes (SWCNT) and large-scale graphene flakes can be obtained in a single step. In this paper, ultraviolet-visible emission spectra of arc in different spots under various magnetic conditions are analyzed to provide an in situ investigation for transformation processes of evaporated species and growth of carbon nanostructures in arc. Based on the arc spectra of carbon diatomic Swan bands, vibrational temperature in arc is determined. The vibrational temperature in arc center was measured around 6950 K, which is in good agreement with our simulation results. Experimental and simulation results suggest that SWCNT are formed in the arc periphery region. Transmission electronic microscope and Raman spectroscope are also employed to characterize the properties of carbon nanostructures.

  14. Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to today’s best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

  15. Constraints on the CKM angle gamma in B[superscript 0]-->D[over-bar][superscript 0]K[superscript *0] and B[superscript 0]-->D[superscript 0]K[superscript *0] from a Dalitz analysis of D[superscript 0] and D[over-bar][superscript 0] decays to K[subscript S] pi+ pi-

    E-Print Network [OSTI]

    Yamamoto, R. K.

    We present constraints on the angle gamma of the unitarity triangle with a Dalitz analysis of neutral D decays to K[subscript S]pi+pi- from the processes B0-->D[over-bar] 0K*0 (B[over-bar] 0-->D0K[over-bar] *0) and ...

  16. Distinguishing quantum and classical transport through nanostructures

    E-Print Network [OSTI]

    Neill Lambert; Clive Emary; Yueh-Nan Chen; Franco Nori

    2010-08-23

    We consider the question of how to distinguish quantum from classical transport through nanostructures. To address this issue we have derived two inequalities for temporal correlations in nonequilibrium transport in nanostructures weakly coupled to leads. The first inequality concerns local charge measurements and is of general validity; the second concerns the current flow through the device and is relevant for double quantum dots. Violation of either of these inequalities indicates that physics beyond that of a classical Markovian model is occurring in the nanostructure.

  17. Materials at UC Santa Barbara Ranked in the top two programs in the country for research impact and citations, materials research at UC

    E-Print Network [OSTI]

    Akhmedov, Azer

    as semiconductors · Soft cellular materials · Nanostructured materials by molecular beam epitaxy Solid chemistry to synthesize conjugated polymer composites for use in photovoltaic and optoelectronic devices in energy efficiency in Buildings, Lighting, Computing, Electronics & Photonics, Energy Production & Storage

  18. Correlated exciton dynamics in semiconductor nanostructures

    E-Print Network [OSTI]

    Wen, Patrick, Ph. D. Massachusetts Institute of Technology

    2013-01-01

    The absorption and dissipation of energy in semiconductor nanostructures are often determined by excited electron dynamics. In semiconductors, one fundamentally important electronic state is an exciton, an excited electron ...

  19. Kinematic and dynamic modeling of Nanostructured Origami

    E-Print Network [OSTI]

    Stellman, Paul Steven

    2006-01-01

    Nanostructured Origami is a manufacturing process that folds nanopatterned thin films into a desired 3D shape. This process extends the properties of 3D design and connectivity found in origami artwork to the bulk fabrication ...

  20. Trends in Particulate Nanostructure | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (nanostructure) of the soot across platforms, heavy-duty and light-duty, and biodiesel blend level. p-10strzelec.pdf More Documents & Publications Investigation of NO2...

  1. Radiation Damage in Nanostructured Metallic Films 

    E-Print Network [OSTI]

    Yu, Kaiyuan

    2013-04-15

    . Such systems obtain high volume fraction of boundaries, which are considered sinks to radiation induced defects. From the viewpoint of nanomechanics, it is of interest to investigate the plastic deformation mechanisms of nanostructured films, which typically...

  2. Nanostructured Solid Oxide Fuel Cell Electrodes

    E-Print Network [OSTI]

    Sholklapper, Tal Zvi

    2007-01-01

    in Solid Oxide Fuel Cells (SOFC IX), S. C. Singhal and J.create connected nanostructured SOFC electrodes is reviewed.of Solid Oxide Fuel Cells (SOFC) to directly and efficiently

  3. Magnetic Nanostructures for post-CMOS Electronics

    E-Print Network [OSTI]

    -high density storage devices. Moreover, the semiconductor industry is looking beyond conventional CMOSMagnetic Nanostructures for post-CMOS Electronics NANOMATERIALS Our goal is to address storage technologies, notably magnetoresistive random access memory and bit-patterned media for ultra

  4. Directed spatial organization of zinc oxide nanostructures

    DOE Patents [OSTI]

    Hsu, Julia (Albuquerque, NM); Liu, Jun (Richland, WA)

    2009-02-17

    A method for controllably forming zinc oxide nanostructures on a surface via an organic template, which is formed using a stamp prepared from pre-defined relief structures, inking the stamp with a solution comprising self-assembled monolayer (SAM) molecules, contacting the stamp to the surface, such as Ag sputtered on Si, and immersing the surface with the patterned SAM molecules with a zinc-containing solution with pH control to form zinc oxide nanostructures on the bare Ag surface.

  5. Emerging quasi-0D states at vanishing total entropy of the 1D hard sphere system: a coarse-grained similarity to the car parking problem

    E-Print Network [OSTI]

    Hiroshi Frusawa

    2014-04-24

    A coarse-grained system of one-dimensional (1D) hard spheres (HSs) is created using the Delaunay tessellation, which enables one to define the quasi-0D state. It is found from comparing the quasi-0D and 1D free energy densities that a frozen state due to the emergence of quasi-0D HSs is thermodynamically more favorable than fluidity with a large-scale heterogeneity above crossover volume fraction of $\\phi_c=e/(1+e)=0.731\\cdots$, at which the total entropy of the 1D state vanishes. The Delaunay-based lattice mapping further provides a similarity between the dense HS system above $\\phi_c$ and the jamming limit in the car parking problem.

  6. Nanostructured electrocatalyst for fuel cells : silica templated synthesis of Pt/C composites.

    SciTech Connect (OSTI)

    Stechel, Ellen Beth; Switzer, Elise E.; Fujimoto, Cy H.; Atanassov, Plamen Borissov; Cornelius, Christopher James; Hibbs, Michael R.

    2007-09-01

    Platinum-based electrocatalysts are currently required for state-of-the-art fuel cells and represent a significant portion of the overall fuel cell cost. If fuel cell technology is to become competitive with other energy conversion technologies, improve the utilization of precious metal catalysts is essential. A primary focus of this work is on creating enhanced nanostructured materials which improve precious-metal utilization. The goal is to engineer superior electrocatalytic materials through the synthesis, development and investigation of novel templated open frame structures synthesized in an aerosol-based approach. Bulk templating methods for both Pt/C and Pt-Ru composites are evaluated in this study and are found to be limited due to the fact that the nanostructure is not maintained throughout the entire sample. Therefore, an accurate examination of structural effects was previously impossible. An aerosol-based templating method of synthesizing nanostructured Pt-Ru electrocatalysts has been developed wherein the effects of structure can be related to electrocatalytic performance. The aerosol-based templating method developed in this work is extremely versatile as it can be conveniently modified to synthesize alternative materials for other systems. The synthesis method was able to be extended to nanostructured Pt-Sn for ethanol oxidation in alkaline media. Nanostructured Pt-Sn electrocatalysts were evaluated in a unique approach tailored to electrocatalytic studies in alkaline media. At low temperatures, nanostructured Pt-Sn electrocatalysts were found to have significantly higher ethanol oxidation activity than a comparable nanostructured Pt catalyst. At higher temperatures, the oxygen-containing species contribution likely provided by Sn is insignificant due to a more oxidized Pt surface. The importance of the surface coverage of oxygen-containing species in the reaction mechanism is established in these studies. The investigations in this work present original studies of anion exchange ionomers as entrapment materials for rotating disc electrode (RDE) studies in alkaline media. Their significance is linked to the development of membrane electrode assemblies (MEAs) with the same ionomer for a KOH-free alkaline fuel cell (AFC).

  7. Multiscale modeling and analysis of nanofibers and nonwoven materials

    E-Print Network [OSTI]

    Buell, Sezen

    2010-01-01

    Nanostructured fibrous materials have been made more readily available in large part owing to recent advances in electrospinning, which is a technique for the production of nanofibers with diameters down to the range of a ...

  8. Titanate and titania nanostructures and nanostructure assemblies, and methods of making same

    DOE Patents [OSTI]

    Wong, Stanislaus S; Mao, Yuanbing

    2013-05-14

    The invention relates to nanomaterials and assemblies including, a micrometer-scale spherical aggregate comprising: a plurality of one-dimensional nanostructures comprising titanium and oxygen, wherein the one-dimensional nanostructures radiate from a hollow central core thereby forming a spherical aggregate.

  9. Structural and optical characterization of Cr{sub 2}O{sub 3} nanostructures: Evaluation of its dielectric properties

    SciTech Connect (OSTI)

    Abdullah, M. M., E-mail: abdullahphyzia@gmail.com [Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box 1988, Najran, 11001 (Saudi Arabia); Department of Physics, College of Science and Arts, Najran University, P.O. Box 1988, Najran, 11001 (Saudi Arabia); Rajab, Fahd M. [Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box 1988, Najran, 11001 (Saudi Arabia) [Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box 1988, Najran, 11001 (Saudi Arabia); Department of Chemical Engineering, College of Engineering, Najran University, P.O. Box 1988, Najran, 11001 (Saudi Arabia); Al-Abbas, Saleh M. [Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box 1988, Najran, 11001 (Saudi Arabia)] [Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, P.O. Box 1988, Najran, 11001 (Saudi Arabia)

    2014-02-15

    The structural, optical and dielectric properties of as-grown Cr{sub 2}O{sub 3} nanostructures are demonstrated in this paper. Powder X-ray diffractometry analysis confirmed the rhombohedral structure of the material with lattice parameter, a = b = 4.953 Ĺ; c = 13.578 Ĺ, and average crystallize size (62.40 ± 21.3) nm. FE-SEM image illustrated the mixture of different shapes (disk, particle and rod) of as-grown nanostructures whereas; EDS spectrum confirmed the elemental purity of the material. FTIR spectroscopy, revealed the characteristic peaks of Cr–O bond stretching vibrations. Energy band gap (3.2 eV) of the nanostructures has been determined using the results of UV-VIS-NIR spectrophotometer. The dielectric properties of the material were checked in the wide frequency region (100Hz-30 MHz). In the low frequency region, the matrix of the dielectric behaves like source as well as sink of electrical energy within the relaxation time. Low value of dielectric loss exhibits that the materials posses good optical quality with lesser defects. The ac conductivity of the material in the high frequency region was found according to frequency power law. The physical-mechanism and the theoretical-interpretation of dielectric-properties of Cr{sub 2}O{sub 3} nanostructures attest the potential candidature of the material as an efficient dielectric medium.

  10. Modification of phonon processes in nano-structured rare-earth-ion-doped crystals

    E-Print Network [OSTI]

    Lutz, Thomas; Thiel, Charles W; Cone, Rufus L; Barclay, Paul E; Tittel, Wolfgang

    2015-01-01

    Nano-structuring impurity-doped crystals affects the phonon density of states and thereby modifies the atomic dynamics induced by interaction with phonons. We propose the use of nano-structured materials in the form of powders or phononic bandgap crystals to enable, or improve, persistent spectral hole-burning and optical coherence for inhomogeneously broadened absorption lines in rare-earth-ion-doped crystals. This is crucial for applications such as ultra-precise radio-frequency spectrum analyzers and certain approaches to optical quantum memories. We specifically discuss how phonon engineering can enable spectral hole burning in erbium-doped materials operating in the telecommunication band, and present simulations for density of states of nano-sized powders and phononic crystals for the case of Y$_2$SiO$_5$, a widely-used material in current quantum memory research.

  11. Qifeng Zhang, Xiaoyuan Zhou, Christopher S. Dandeneau, Kwangsuk Park, Supan Yodyingyong, Guozhong Cao* Materials Science and Engineering, University of Washington, Seattle, WA 98195

    E-Print Network [OSTI]

    Cao, Guozhong

    for energy-conversion-efficiency enhancement in dye-sensitized solar cells. Advanced Functional Materials Cao* Materials Science and Engineering, University of Washington, Seattle, WA 98195 Abstract nanostructures with organic polymer materials. 3. Other Nanostructures with Potential Application in Solar Cells

  12. Comparative Study of Structural Damage Under Irradiation in SiC Nano-structured and Conventional Ceramics

    SciTech Connect (OSTI)

    Leconte, Yann; Herlin-Boime, Nathalie; Reynaud, Cecile; Thome, Lionel

    2008-07-01

    In the context of research on new materials for next generation nuclear reactors, it becomes more and more interesting to know what can be the advantages of nano-structured materials for such applications. In this study, we performed irradiation experiments on micro-structured and nano-structured {beta}-SiC samples, with 95 MeV Xe and 4 MeV Au ions. The structure of the samples was characterized before and after irradiation by grazing incidence X-ray diffraction and Raman spectroscopy. The results showed the occurrence of a synergy between electronic and nuclear energy loss in both samples with 95 MeV Xe ions, while the nano-structured pellet was found to have a better resistance to the irradiation with 4 MeV Au ions. (authors)

  13. Nanostructured polymer composites for electronics and sensor applications

    E-Print Network [OSTI]

    Fisher, Frank

    Michigan University, Kalamazoo, MI Nanostructured composites based on polymer matrix and carbon nanotubesNanostructured polymer composites for electronics and sensor applications Wednesday November 10 (CNT), metallic nanoparticles and polymer core-shell latex systems will play a critical role

  14. Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces

    E-Print Network [OSTI]

    Miljkovic, Nenad

    When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured ...

  15. Electronic noise in nanostructures: limitations and sensing applications 

    E-Print Network [OSTI]

    Kim, Jong Un

    2007-04-25

    and their characteristic length is close to acoustical phonon wavelength. Moreover, because nanostructures include significantly fewer charge carriers than microscale structures, electronic noise in nanostructures is enhanced compared to microscale structures. Additionally...

  16. Processing and Applications of Nanostructured Ceramics Wednesday September 16, 2009

    E-Print Network [OSTI]

    Fisher, Frank

    Processing and Applications of Nanostructured Ceramics Wednesday September 16, 2009 Burchard 118 Methods will be described for the production and consolidation of metastable ceramic powders to yield fully dense nanostructured ceramics, including single- and multi-phase systems. Metastable powders

  17. Measurement of D(0)-D? (0) Mixing from a Time-Dependent Amplitude Analysis of D(0) -->K(+)pi(-)pi(0) Decays

    E-Print Network [OSTI]

    Cowan, Ray Franklin

    We present evidence of D[superscript 0]-D?[superscript 0] mixing using a time-dependent amplitude analysis of the decay D0?K[superscript +]?[superscript -]?[superscript 0] in a data sample of 384??fb[superscript -1] ...

  18. Data:Ae277b8a-06b7-4666-8b14-8019b0d7753c | Open Energy Information

    Open Energy Info (EERE)

    Ae277b8a-06b7-4666-8b14-8019b0d7753c No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading......

  19. Data:F3d511d9-6321-49ce-b5b2-a0d21fd28d52 | Open Energy Information

    Open Energy Info (EERE)

    d9-6321-49ce-b5b2-a0d21fd28d52 No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Loading... 1....

  20. Fe{sub 3}O{sub 4} and CdS based bifunctional core–shell nanostructure

    SciTech Connect (OSTI)

    Joseph, Joshy; Nishad, K.K.; Sharma, M.; Gupta, D.K.; Singh, R.R.; Pandey, R.K.

    2012-06-15

    Highlights: ? First report on a room temperature aqueous process for growth of a hybrid core shell nanostructure containing a magnetic core and a semiconducting shell. ? Formation of distinct core shell nanostructure revealed by high resolution transmission electron microscopy. ? A bifunctional nature combining magnetic as well as photoresponce for the as synthesised core shell nanostructures demonstrated. ? A tendency towards self organisation of the core–shell nanostructure. ? Possible applications including purification and isolation of biological materials, drug delivery system, bio-labels, spintronics, etc. -- Abstract: A room temperature solution process for synthesis of Fe{sub 3}O{sub 4} nanoparticles and their hybrid core shell nanostructures using CdS as the shell material has been described. The as grown particles have been characterised using XRD, Rietveld refinement, high resolution transmission electron microscopy, atomic force microscopy, superconducting quantum interference device, optical absorbance and photoluminescence spectroscopy. A superparamagnetic response revealed from the magnetisation measurements of the as synthesised magnetite nanoparticles was retained even after the growth of the CdS shell. From luminescence and high resolution atomic force microscopy measurements, it is shown that the core–shell structures advantageously combine magnetic as well as fluorescence response with a tendency towards self-organization.

  1. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to develop a fundamental understanding of this material's small-scale mechanical properties and reliability. Researchers from the University of Waterloo, California...

  2. Mechanical Behavior of Indium Nanostructures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Indium Under the Nanoscope In this work, Lee et al. investigated the small-scale plastic deformation of indium nanopillars, a previously unstudied material and crystal...

  3. Hydrogen effects in dilute III-N-V alloys: From defect engineering to nanostructuring

    SciTech Connect (OSTI)

    Pettinari, G. [Dipartimento di Fisica, and CNISM Sapienza Universitŕ di Roma, P.le A. Moro 2, 00185 Roma (Italy); Institute for Photonics and Nanotechnologies (IFN-CNR), National Research Council (CNR), via Cineto Romano 42, 00156 Roma (Italy); Felici, M.; Capizzi, M.; Polimeni, A., E-mail: antonio.polimeni@roma1.infn.it [Dipartimento di Fisica, and CNISM Sapienza Universitŕ di Roma, P.le A. Moro 2, 00185 Roma (Italy); Trotta, R. [Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz (Austria)

    2014-01-07

    The variation of the band gap energy of III-N-V semiconductors induced by hydrogen incorporation is the most striking effect that H produces in these materials. A special emphasis is given here to the combination of N-activity passivation by hydrogen with H diffusion kinetics in dilute nitrides. Secondary ion mass spectrometry shows an extremely steep (smaller than 5?nm/decade) forefront of the H diffusion profile in Ga(AsN) under appropriate hydrogenation conditions. This discovery prompts the opportunity for an in-plane nanostructuring of hydrogen incorporation and, hence, for a modulation of the material band gap energy at the nanoscale. The properties of quantum dots fabricated by a lithographically defined hydrogenation are presented, showing the zero-dimensional character of these novel nanostructures. Applicative prospects of this nanofabrication method are finally outlined.

  4. Tailoring Nanostructures Using Copolymer Nanoimprint Lithography

    E-Print Network [OSTI]

    Pascal Thebault; Stefan Niedermayer; Stefan Landis; Nicolas Chaix; Patrick Guenoun; Jean Daillant; Xingkun Man; David Andelman; Henri Orland

    2012-07-12

    Finding affordable ways of generating high-density ordered nanostructures that can be transferred to a substrate is a major challenge for industrial applications like memories or optical devices with high resolution features. In this work, we report on a novel technique to direct self-assembled structures of block copolymers by NanoImprint Lithography. Surface energy of a reusable mold and nanorheology are used to organize the copolymers in defect-free structures over tens of micrometers in size. Versatile and controlled in-plane orientations of about 25 nm half-period lamellar nanostructures are achieved and, in particular, include applications to circular tracks of magnetic reading heads.

  5. Tailoring Nanostructures Using Copolymer Nanoimprint Lithography

    E-Print Network [OSTI]

    Thebault, Pascal; Landis, Stefan; Chaix, Nicolas; Guenoun, Patrick; Daillant, Jean; Man, Xingkun; Andelman, David; Orland, Henri

    2012-01-01

    Finding affordable ways of generating high-density ordered nanostructures that can be transferred to a substrate is a major challenge for industrial applications like memories or optical devices with high resolution features. In this work, we report on a novel technique to direct self-assembled structures of block copolymers by NanoImprint Lithography. Surface energy of a reusable mold and nanorheology are used to organize the copolymers in defect-free structures over tens of micrometers in size. Versatile and controlled in-plane orientations of about 25 nm half-period lamellar nanostructures are achieved and, in particular, include applications to circular tracks of magnetic reading heads.

  6. Nanoscale topographical replication of graphene architecture by artificial DNA nanostructures

    SciTech Connect (OSTI)

    Moon, Y.; Seo, S.; Park, J.; Park, T.; Ahn, J. R., E-mail: jrahn@skku.edu [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Shin, J.; Dugasani, S. R. [Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Woo, S. H. [College of Pharmacy, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Park, S. H., E-mail: sunghapark@skku.edu [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-06-09

    Despite many studies on how geometry can be used to control the electronic properties of graphene, certain limitations to fabrication of designed graphene nanostructures exist. Here, we demonstrate controlled topographical replication of graphene by artificial deoxyribonucleic acid (DNA) nanostructures. Owing to the high degree of geometrical freedom of DNA nanostructures, we controlled the nanoscale topography of graphene. The topography of graphene replicated from DNA nanostructures showed enhanced thermal stability and revealed an interesting negative temperature coefficient of sheet resistivity when underlying DNA nanostructures were denatured at high temperatures.

  7. Stability of Y Ti O Precipitates in Friction Stir Welded Nanostructured Ferritic Alloys

    SciTech Connect (OSTI)

    Yu, Xinghua; Mazumder, Baishakhi; Miller, Michael K; David, Stan A; Feng, Zhili

    2015-01-01

    Nanostructured ferritic alloys (NFAs), which have complex microstructures consisting of ultrafine ferritic grains with a dispersion of stable oxide particles and nanoclusters (NC), are promising materials for fuel cladding and structural applications in the next generation nuclear reactor. This study evaluates microstructure of friction stir welded NFA using electron microscopy and atom probe tomography (APT) techniques. APT results revealed NCs are coarsened and inhomogeneously distributed in the stir zone. Three hypotheses on coarsening of NC are presented.

  8. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    impact ionization and solar cell efficiency,” J. Appl. Phys.intermediate band high efficiency solar cell,” Prog. Inthe application of high efficiency solar cells [1-5]. The

  9. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    efficiency of solar panels and power to weight ratio insolar cells, there exist two basic processes to convert sunlight power topower to a load connected when charged by Sun. The typical output voltage of a silicon based solar

  10. Metal Oxide Nanostructured Materials for Optical and Energy Applications

    E-Print Network [OSTI]

    Moore, Michael Christopher

    2013-01-01

    and solar fuels Sunlight is an abundant source of clean, renewable power that supplies 36,000 terawatts of power to

  11. Optoacoustic Microscopy for Investigation of MaterialNanostructures...

    Office of Scientific and Technical Information (OSTI)

    device industry. For accomplishing the ambitious technical goals, the research roadmap was designed and implemented in two phases. In Phase I, we constructed a...

  12. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    for concentrator photovoltaic cells (CPV) is 100 K – 200 KConcentrated Photovoltaic (CPV) cells have been demonstratedimplementing photovoltaic and photochemical cells on large

  13. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    is equivalent to irradiance of one solar constant. All thedesigns of QDS solar cells including one, which combined thesunlight into electricity. One is solar thermal electricity

  14. Metal Oxide Nanostructured Materials for Optical and Energy Applications

    E-Print Network [OSTI]

    Moore, Michael Christopher

    2013-01-01

    via phosphorus doping and thermal activation of the dopant.nanowires after thermal activation. ……… 39 Figure 3.1: PhaseZnO nanowires after thermal activation. a) An SEM image of

  15. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    E-Print Network [OSTI]

    Goyal, Vivek Kumar

    2011-01-01

    Graphene and Graphene Oxide Films,” (In Preparation). 18.TIMs) with Graphene Fillers,” (In Preparation). 35. Yu, W. ,Graphene and Graphene Oxide Films,” (In preparation for

  16. Workshop in Novel Emitters and Nanostructured Materials | U.S...

    Office of Science (SC) Website

    EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 09.01.11 Workshop in Novel...

  17. Solution Phase Routes to Functional Nanostructured Materials for Energy Applications

    E-Print Network [OSTI]

    Rauda, Iris Ester

    2012-01-01

    renewable energy sources, which, due to their intermittent nature, will require energy storage devices. Batteries and

  18. Author's Accepted Manuscript Hybrid nanostructured materials for high-

    E-Print Network [OSTI]

    Cui, Yi

    years since they can complement or even replace batteries in the energy storage field, especially when to that of batteries while still maintaining their characteristic high power density. Last, future research directions in developing renewable energy technologies from sustainable and renewable energy resources. In fact

  19. Measurement of Thermal Diffusivity and Conductivity in Advanced Nanostructured Materials

    E-Print Network [OSTI]

    Teweldebrhan, Desalegne Bekuretsion

    2012-01-01

    magnetic recording and spintronic information processingmagnetic recording and spintronic information processing

  20. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    E-Print Network [OSTI]

    Goyal, Vivek Kumar

    2011-01-01

    Diamond-like Carbon, and Nanodiamond,” Phil. Trans. R. Soc.commercially available nanodiamond containing solution (

  1. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    of the intermediate band solar cell under nonideal spaceefficient InGaP/GaAs tandem solar cells,” Appl. Phys. Lett.band impact ionization and solar cell efficiency,” J. Appl.

  2. Metal Oxide Nanostructured Materials for Optical and Energy Applications

    E-Print Network [OSTI]

    Moore, Michael Christopher

    2013-01-01

    al. Electrochemical Energy Storage for Green Grid. Chemicalenergy storage have been considered to help smooth and match grid

  3. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    InGaAs triple-junction solar cells grown inverted with abonded GaAs/InGaAs tandem solar cell,” Appl. Phys. Lett. 89,2 /GaAs tandem-junction solar cells,” Appl. Phys. Lett. 83,

  4. Solution Phase Routes to Functional Nanostructured Materials for Energy Applications

    E-Print Network [OSTI]

    Rauda, Iris Ester

    2012-01-01

    used to control charging of the sample. A 20 eV pass energyused to control charging of the sample. A 20 eV pass energy

  5. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    the intermediate band solar cell under nonideal space chargeInGaP/GaAs tandem solar cells,” Appl. Phys. Lett. 70, 381 (band impact ionization and solar cell efficiency,” J. Appl.

  6. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    1000 suns);23.22%(1 sun) Absorption Energy Overlap (eV) Fig.ways for centuries. The Sun creates its energy through awith optimum energy level separations at 1000 suns and 46050

  7. Spongins: nanostructural investigations and development of biomimetic material model

    E-Print Network [OSTI]

    Maldonado, Manuel

    , papain, elastase, lysozyme, cellulase and amylase /5/. Weak acid or alkaline hydrolysis were no more

  8. Electrochemical Synthesis and Characterization of Nanostructured Chalcogenide Materials

    E-Print Network [OSTI]

    Chang, Chong Hyun

    2011-01-01

    circuits, microelectromechanical systems (MEMS), andcircuits, microelectromechanical systems (MEMS), surface-

  9. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    GaInP/GaAs/InGaAs triple-junction solar cells grown invertedS. Guha, “Triple-junction amorphous silicon alloy solar cell

  10. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    and P. Peumans, “Organic solar cells with solution-processedtypical thickness in organic solar cell application [4]. At

  11. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    Guo, “Metal-semiconductor junction of graphene nanoribbons,”graphene resistors behave more like intrinsic semiconductors.

  12. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    E-Print Network [OSTI]

    Goyal, Vivek Kumar

    2011-01-01

    Graphene-Like" Exfoliation of Quasi-2D Crystals of Bismuth Telluride: Applications in Thermoelectrics and Topological Insulators,” Semiconductor

  13. Solution Phase Routes to Functional Nanostructured Materials for Energy Applications

    E-Print Network [OSTI]

    Rauda, Iris Ester

    2012-01-01

    J. ; Li, J. Enhanced Photocatalysis by Doping Cerium intofrom catalysis and photocatalysis to solar energy harvestingenergy harvesting and photocatalysis generally require mid-

  14. Solution Phase Routes to Functional Nanostructured Materials for Energy Applications

    E-Print Network [OSTI]

    Rauda, Iris Ester

    2012-01-01

    G. Ozone-Based Atomic Layer Deposition of Crystalline V 2 OGeorge, S. M. Atomic Layer Deposition: An Overview. ChemicalPseudocapacitors Based on Atomic Layer Deposition of V 2 O 5

  15. Metal Oxide Nanostructured Materials for Optical and Energy Applications

    E-Print Network [OSTI]

    Moore, Michael Christopher

    2013-01-01

    line pinning to artificial photosynthesis. MRS Bulletin 37,11). Nanowire-based artificial photosynthesis may eventually

  16. Metal Oxide Nanostructured Materials for Optical and Energy Applications

    E-Print Network [OSTI]

    Moore, Michael Christopher

    2013-01-01

    of a Stack of Two Metal Micromeshes. The Journal of Physicalals 3, 601 (2004). M. T. Hill et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Optics

  17. Solution Phase Routes to Functional Nanostructured Materials for Energy Applications

    E-Print Network [OSTI]

    Rauda, Iris Ester

    2012-01-01

    Networks: Ag 2 Se Gels and Aerogels by Cation ExchangeArea Vanadium Oxide Aerogels. Electrochem. Solid State Lett.of a 3D Graphene/Nanoparticle Aerogel. Adv. Mater. 2011, 23,

  18. Measurement of Thermal Diffusivity and Conductivity in Advanced Nanostructured Materials

    E-Print Network [OSTI]

    Teweldebrhan, Desalegne Bekuretsion

    2012-01-01

    magnetic recording and spintronic information processingmagnetic recording and spintronic information processingparadigms, such as spintronics, call for drastic increase in

  19. Solution Phase Routes to Functional Nanostructured Materials for Energy Applications

    E-Print Network [OSTI]

    Rauda, Iris Ester

    2012-01-01

    Nanocrystallised Titania and Zirconia Mesoporous Thin FilmsM. ; Coombs, N. ; Ozin, G. Mesoporous Yttria–Zirconia andMetal–Yttria– Zirconia Solid Solutions for Fuel Cells. Adv.

  20. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    E-Print Network [OSTI]

    Goyal, Vivek Kumar

    2011-01-01

    Yttria- stabilized Zirconia,” J. Appl. Phys. vol. 106,Yttria-stabilized Zirconia,” Acta Mater. vol. 50, 2309, 42.Yttria- stabilized Zirconia,” J. Appl. Phys. vol. 106,

  1. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    1000 suns);23.22%(1 sun) Absorption Energy Overlap (eV) Fig.ways for centuries. The Sun creates its energy through aoptimum energy level separations at 1000 suns and 46050 suns

  2. Metal Oxide Nanostructured Materials for Optical and Energy Applications

    E-Print Network [OSTI]

    Moore, Michael Christopher

    2013-01-01

    concentrating solar thermal energy with a large inexpensivethermal energy to generate electricity and harnessing solar

  3. Optimized Designs and Materials for Nanostructure Based Solar Cells

    E-Print Network [OSTI]

    Shao, Qinghui

    2009-01-01

    the production cost, thin film solar cells with only a fewstate-of-the-art thin film solar cell design and processingintermediate band solar cell,” Thin Solid Films, 511-512,

  4. Solution Phase Routes to Functional Nanostructured Materials for Energy Applications

    E-Print Network [OSTI]

    Rauda, Iris Ester

    2012-01-01

    Doped CeO 2 with Potential for Solar-Cell Use. Nat. Mater.Doped CeO 2 with Potential for Solar-Cell Use. Nat. Mater.Doped CeO 2 with Potential for Solar-Cell Use. Nat. Mater.

  5. Composite, nanostructured, super-hydrophobic material - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit the following commentsMethods forPortal Advanced

  6. 3D Printing of nanostructured catalytic materials | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONeApril351 Substation Demolition --3D Printed3D

  7. Nanostructured materials for advanced catalyst design | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic Solar Photovoltaic Find More Like This

  8. Nano-structured Materials as Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOrigin ofAllenDepartmentNYSERDA S ummaryNamrataAnodes

  9. Optical limiting effects in nanostructured silicon carbide thin films

    SciTech Connect (OSTI)

    Borshch, A A; Starkov, V N; Volkov, V I; Rudenko, V I; Boyarchuk, A Yu; Semenov, A V

    2013-12-31

    We present the results of experiments on the interaction of nanosecond laser radiation at 532 and 1064 nm with nanostructured silicon carbide thin films of different polytypes. We have found the effect of optical intensity limiting at both wavelengths. The intensity of optical limiting at ? = 532 nm (I{sub cl} ? 10{sup 6} W cm{sup -2}) is shown to be an order of magnitude less than that at ? = 1064 nm (I{sub cl} ? 10{sup 7} W cm{sup -2}). We discuss the nature of the nonlinearity, leading to the optical limiting effect. We have proposed a method for determining the amount of linear and two-photon absorption in material media. (nonlinear optical phenomena)

  10. THERMALLY ACTIVATED REVERSAL IN MAGNETIC NANOSTRUCTURES

    E-Print Network [OSTI]

    Usadel, K. D.

    THERMALLY ACTIVATED REVERSAL IN MAGNETIC NANOSTRUCTURES ULRICH NOWAK Theoretische Physik, Gerhard to the nanometer scale. With decreasing size of magnetic particles thermal activation becomes rel­ evant an overview on numerical ap­ proaches to thermal activation in magnetic systems as far as they can

  11. Four-wave mixing microscopy of nanostructures

    E-Print Network [OSTI]

    Potma, Eric Olaf

    Four-wave mixing microscopy of nanostructures Yong Wang, Chia-Yu Lin, Alexei Nikolaenko, Varun July 14, 2010; accepted July 27, 2010; published September 10, 2010 (Doc. ID 128079) The basics of four-wave. Four-Wave Mixing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2

  12. Nanostructured Block Copolymer Dry Electrolyte Ayan Ghosha,

    E-Print Network [OSTI]

    Rubloff, Gary W.

    Nanostructured Block Copolymer Dry Electrolyte Ayan Ghosha, * and Peter Kofinasb,z a Department, College Park, Maryland 20742, USA We report on the synthesis and characterization of a solid-state polymer electrolyte with enhanced lithium transport based on a self-assembled diblock copolymer. The diblock copolymer

  13. University of Kentucky Chemical and Materials Engineering Department

    E-Print Network [OSTI]

    Rankin, Stephen E.

    synthesis and characterization of materials with advanced nanostructure and properties. Examples and control the "bottom- up" formation of these inorganic materials by polymerization, controlled. Understand self-assembly and its use for materials synthesis 6. Be able to apply physical chemical

  14. A Roadmap to Control Penguin Effects in $B^0_d\\to J/?K_{\\rm S}^0$ and $B^0_s\\to J/??$

    E-Print Network [OSTI]

    Kristof De Bruyn; Robert Fleischer

    2015-03-30

    Measurements of CP violation in $B^0_d\\to J/\\psi K_{\\rm S}^0$ and $B^0_s\\to J/\\psi \\phi$ decays play key roles in testing the quark-flavour sector of the Standard Model. The theoretical interpretation of the corresponding observables is limited by uncertainties from doubly Cabibbo-suppressed penguin topologies. With continuously increasing experimental precision, it is mandatory to get a handle on these contributions, which cannot be calculated reliably in QCD. In the case of the measurement of $\\sin2\\beta$ from $B^0_d\\to J/\\psi K_{\\rm S}^0$, the $U$-spin-related decay $B^0_s\\to J/\\psi K_{\\rm S}^0$ offers a tool to control the penguin effects. As the required measurements are not yet available, we use data for decays with similar dynamics and the $SU(3)$ flavour symmetry to constrain the size of the expected penguin corrections. We predict the CP asymmetries of $B^0_s\\to J/\\psi K_{\\rm S}^0$ and present a scenario to fully exploit the physics potential of this decay, emphasising also the determination of hadronic parameters and their comparison with theory. In the case of the benchmark mode $B^0_s\\to J/\\psi \\phi$ used to determine the $B^0_s$-$\\bar B^0_s$ mixing phase $\\phi_s$ the penguin effects can be controlled through $B^0_d\\to J/\\psi \\rho^0$ and $B^0_s\\to J/\\psi \\bar{K}^{*0}$ decays. The LHCb collaboration has recently presented pioneering results on this topic. We analyse their implications and present a roadmap for controlling the penguin effects.

  15. Field Emission and Nanostructure of Carbon Films

    SciTech Connect (OSTI)

    Merkulov, V.I.; Lowndes, D.H.; Baylor, L.R.

    1999-11-29

    The results of field emission measurements of various forms of carbon films are reported. It is shown that the films nanostructure is a crucial factor determining the field emission properties. In particular, smooth, pulsed-laser deposited amorphous carbon films with both high and low sp3 contents are poor field emitters. This is similar to the results obtained for smooth nanocrystalline, sp2-bonded carbon films. In contrast, carbon films prepared by hot-filament chemical vapor deposition (HE-CVD) exhibit very good field emission properties, including low emission turn-on fields, high emission site density, and excellent durability. HF-CVD carbon films were found to be predominantly sp2-bonded. However, surface morphology studies show that these films are thoroughly nanostructured, which is believed to be responsible for their promising field emission properties.

  16. asjc0d2.tmp

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnicalInformation4563 LLNL Small-scale Friction Sensitivityv b W r88fracturing 56581.6

  17. eodd0d4.tmp

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos AlamosSimulationdetonationdustin13 Issuepolicy

  18. Metal oxide and metal fluoride nanostructures and methods of making same

    DOE Patents [OSTI]

    Wong, Stanislaus S. (Stony Brook, NY); Mao, Yuanbing (Los Angeles, CA)

    2009-08-18

    The present invention includes pure single-crystalline metal oxide and metal fluoride nanostructures, and methods of making same. These nanostructures include nanorods and nanoarrays.

  19. Multilevel interference lithography--fabricating sub-wavelength periodic nanostructures

    E-Print Network [OSTI]

    Chang, Chih-Hao, 1980-

    2008-01-01

    Periodic nanostructures have many exciting applications, including high-energy spectroscopy, patterned magnetic media, photonic crystals, and templates for self-assembly. Interference lithography (IL) is an attractive ...

  20. Structure and Dynamics of Domains in Ferroelectric Nanostructures...

    Office of Scientific and Technical Information (OSTI)

    of ferroelectric domains in ferroelectric thin films and nanostructures by advanced transmission electron microscopy (TEM) techniques in close collaboration with phase field...

  1. Three-Dimensional Composite Nanostructures for Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Three-Dimensional Composite Nanostructures for Lean NOx Emission Control Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission...

  2. Three-Dimensional Composite Nanostructures for Lean NOx Emission...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Monolithic Metal Oxide based Composite Nanowire Lean NOx Emission Control Catalysts Three-Dimensional Composite Nanostructures for Lean NOx...

  3. New science at the meso frontier: Dense nanostructure architectures...

    Office of Scientific and Technical Information (OSTI)

    New science at the meso frontier: Dense nanostructure architectures for electrical energy storage Citation Details In-Document Search Title: New science at the meso frontier: Dense...

  4. Center on Nanostructuring for Efficient Energy Conversion - Tutorials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic Layer Deposition | Prof. Stacey Bent - Jun 3, 2013 Center on Nanostructuring for Efficient Energy Conversion is an Energy Frontier Research Center funded by the U.S....

  5. Center on Nanostructuring for Efficient Energy Conversion - Partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    them for specific reductive or energy-generating processes. Center on Nanostructuring for Efficient Energy Conversion is an Energy Frontier Research Center funded by the U.S....

  6. Center on Nanostructuring for Efficient Energy Conversion - Outside...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    contact Elizabeth Mattson at emattson(at)stanford.edu. Center on Nanostructuring for Efficient Energy Conversion is an Energy Frontier Research Center funded by the U.S....

  7. Center on Nanostructuring for Efficient Energy Conversion - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical University of Denmark on computational modeling. Center on Nanostructuring for Efficient Energy Conversion is an Energy Frontier Research Center funded by the U.S....

  8. Center on Nanostructuring for Efficient Energy Conversion - Team...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Staff Team & Research Slideshow Center on Nanostructuring for Efficient Energy Conversion is an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of...

  9. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for...

  10. Nano-structures Thermoelectric Materals - Part 1 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Nano-structures Thermoelectric Materals - Part 1 2002 DEER Conference Presentation: RTI International 2002deervenkatasubramanian1.pdf More Documents & Publications...

  11. Research News Structured Porous Materials via Colloidal

    E-Print Network [OSTI]

    Velev, Orlin D.

    to Metals** By Orlin D. Velev* and Eric W. Kaler The formation of nanostructured materials by using applications in optical information processing and storage, advanced coatings, catalysis, and other emerging, dried colloidal crystals are very brittle and may disperse in water. Any practical device thus requires

  12. Quantum confinement in Si and Ge nanostructures: Theory and experiment

    SciTech Connect (OSTI)

    Barbagiovanni, Eric G.; Lockwood, David J.; Simpson, Peter J.; Goncharova, Lyudmila V.

    2014-03-15

    The role of quantum confinement (QC) in Si and Ge nanostructures (NSs) including quantum dots, quantum wires, and quantum wells is assessed under a wide variety of fabrication methods in terms of both their structural and optical properties. Structural properties include interface states, defect states in a matrix material, and stress, all of which alter the electronic states and hence the measured optical properties. We demonstrate how variations in the fabrication method lead to differences in the NS properties, where the most relevant parameters for each type of fabrication method are highlighted. Si embedded in, or layered between, SiO{sub 2}, and the role of the sub-oxide interface states embodies much of the discussion. Other matrix materials include Si{sub 3}N{sub 4} and Al{sub 2}O{sub 3}. Si NSs exhibit a complicated optical spectrum, because the coupling between the interface states and the confined carriers manifests with varying magnitude depending on the dimension of confinement. Ge NSs do not produce well-defined luminescence due to confined carriers, because of the strong influence from oxygen vacancy defect states. Variations in Si and Ge NS properties are considered in terms of different theoretical models of QC (effective mass approximation, tight binding method, and pseudopotential method). For each theoretical model, we discuss the treatment of the relevant experimental parameters.

  13. D{sup 0}, D{sup +}, D{sub s}{sup +}, and {lambda}{sub c}{sup +} fragmentation functions from CERN LEP1

    SciTech Connect (OSTI)

    Kniehl, Bernd A.; Kramer, Gustav

    2005-05-01

    We present new sets of nonperturbative fragmentation functions for D{sup 0}, D{sup +}, and D{sub s}{sup +} mesons as well as for {lambda}{sub c}{sup +} baryons, both at leading and next-to-leading order in the MS factorization scheme with five massless quark flavors. They are determined by fitting data of e{sup +}e{sup -} annihilation taken by the OPAL Collaboration at CERN LEP1. We take the charm-quark fragmentation function to be of the form proposed by Peterson et al. and thus obtain new values of the {epsilon}{sub c} parameter, which are specific for our choice of factorization scheme.

  14. Hydrothermal synthesis of nanostructured zinc oxide and study of their optical properties

    SciTech Connect (OSTI)

    Moulahi, A.; Sediri, F.; Gharbi, N.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Nanostructured ZnO were successfully obtained by a hydrothermal route. Black-Right-Pointing-Pointer Inorganic precursor and molar ratio are key factors for morphology and particle size. Black-Right-Pointing-Pointer Optical properties were also studied. -- Abstract: Nanostructured ZnO (nanorods, nanoshuttles) have been synthesized by hydrothermal approach using ZnCl{sub 2} or Zn(NO{sub 3}){sub 2}{center_dot}6H{sub 2}O as zinc sources and cetyltrimethylammonium bromide as structure-directing agent. Techniques X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible absorption, Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy have been used to characterize the structure, morphology and composition of the nanostructured zinc oxide. The optical properties of the as-obtained materials were also studied and showing that it is possible to apply the ZnO nanoshuttles and nanorods on the UV filter, photocatalysis, and special optical devices.

  15. Hierarchical Ag/ZnO micro/nanostructure: Green synthesis and enhanced photocatalytic performance

    SciTech Connect (OSTI)

    Gao, Shuyan; Jia, Xiaoxia; Yang, Shuxia; Li, Zhengdao; Jiang, Kai

    2011-04-15

    Ag/ZnO metal-semiconductor nanocomposites with hierarchical micro/nanostructure have been prepared by the hydrothermal synthesis in the presence of bovine serum albumin (BSA). The results suggest that this biomolecule-assisted hydrothermal method is an efficient route for the fabrication of Ag/ZnO nanocomposites by using BSA both a shape controller and a reducing agent of Ag{sup +} ions. Moreover, Ag nanoparticles on the ZnO act as electron sinks, improving the separation of photogenerated electrons and holes, increasing the surface hydroxyl contents of ZnO, facilitating trapping the photoinduced electrons and holes to form more active hydroxyl radicals, and thus, enhancing the photocatalytic efficiency of ZnO. This is a good example for the organic combination of green chemistry and functional materials. -- Graphical Abstract: A green strategy is report to construct Ag/ZnO metal-semiconductor nanocomposites with hierarchical micro/nanostructure and enhanced photocatalytic activity. Display Omitted Research highlights: > Hierarchical micro/nanostructured Ag/ZnO nanocomposites have been prepared via a green route. > Ag nanoparticles improve the separation of photogenerated electrons and holes. > This facilitates trapping the photoinduced electrons and holes to form more hydroxyl radicals. Therefore, it enhances the photocatalytic efficiency of ZnO.

  16. Millifluidics for time-resolved mapping of the growth of gold nanostructures

    SciTech Connect (OSTI)

    Sai Krishna, Katla; Navin, Chelliah; Biswas, Sanchita; Singh, Varshni; Ham, Kyungmin; Bovencamp, L. S.; Theegala, Chandra; Miller, Jeffrey T; Spivey, James J.; Kumar, Challa S.S.R.

    2013-04-10

    Innovative in situ characterization tools are essential for understanding the reaction mechanisms leading to the growth of nanoscale materials. Though techniques, such as in situ transmission X-ray microscopy, fast single-particle spectroscopy, small-angle X-ray scattering, etc., are currently being developed, these tools are complex, not easily accessible, and do not necessarily provide the temporal resolution required to follow the formation of nanomaterials in real time. Here, we demonstrate for the first time the utility of a simple millifluidic chip for an in situ real time analysis of morphology and dimension-controlled growth of gold nano- and microstructures with a time resolution of 5 ms. The structures formed were characterized using synchrotron radiation-based in situ X-ray absorption spectroscopy, 3-D X-ray tomography, and high-resolution electron microscopy. These gold nanostructures were found to be catalytically active for conversion of 4-nitrophenol into 4-aminophenol, providing an example of the potential opportunities for time-resolved analysis of catalytic reactions. While the investigations reported here are focused on gold nanostructures, the technique can be applied to analyze the time-resolved growth of other types of nanostructured metals and metal oxides. With the ability to probe at least a 10-fold higher concentrations, in comparison with traditional microfluidics, the tool has potential to revolutionize a broad range of fields from catalysis, molecular analysis, biodefense, and molecular biology.

  17. Hafnia-Based Nanostructured Thermal Barrier Coatings for Advanced Hydrogen Turbine Technology

    SciTech Connect (OSTI)

    Ramana, Chintalapalle; Choudhuri, Ahsan

    2013-01-31

    Thermal barrier coatings (TBCs) are critical technologies for future gas turbine engines of advanced coal based power generation systems. TBCs protect engine components and allow further increase in engine temperatures for higher efficiency. In this work, nanostructured HfO{sub 2}-based coatings, namely Y{sub 2}O{sub 3}-stabilized HfO{sub 2} (YSH), Gd{sub 2}O{sub 3}-stabilized HfO{sub 2} (GSH) and Y{sub 2}O{sub 3}-stabilized ZrO{sub 2}-HfO{sub 2} (YSZH) were investigated for potential TBC applications in hydrogen turbines. Experimental efforts are aimed at creating a fundamental understanding of these TBC materials. Nanostructured ceramic coatings of YSH, GSH and YSZH were grown by physical vapor deposition methods. The effects of processing parameters and ceramic composition on the microstructural evolution of YSH, GSH and YSZH nanostructured coatings was studied using combined X-ray diffraction (XRD) and Electron microscopy analyses. Efforts were directed to derive a detailed understanding of crystal-structure, morphology, and stability of the coatings. In addition, thermal conductivity as a function of composition in YSH, YSZH and GSH coatings was determined. Laboratory experiments using accelerated test environments were used to investigate the relative importance of various thermo-mechanical and thermo-chemical failure modes of TBCs. Effects of thermal cycling, oxidation and their complex interactions were evaluated using a syngas combustor rig.

  18. Comment on "Coherence and Uncertainty in Nanostructured Organic Photovoltaics"

    E-Print Network [OSTI]

    Mukamel, Shaul

    Comment on "Coherence and Uncertainty in Nanostructured Organic Photovoltaics" Shaul Mukamel of the eigenfunctions of the Schrodinger equation that describes the nanostructured organic photovoltaic blend. (2 universal "coherence effects" in photovoltaics is misguided. There are two types of coherences in many

  19. NANOSTRUCTURED CERAMICS THROUGH SELF-ASSEMBLY Ilhan A. Aksay

    E-Print Network [OSTI]

    Aksay, Ilhan A.

    always starts at the nanometer length scale, in which case, nanostructural design is the building block for Page 1 of 6Chp. 4: Nanostructured Ceramics through Self-assembly 3/15/2005http) controlling the mesophase pore structure and (2) synthesizing large monolithic and mesoporous "building blocks

  20. Spheroidisation of Hypereutectoid State of Nanostructured Bainitic Steel

    E-Print Network [OSTI]

    Cambridge, University of

    annealing [16] but such processes are impractical to adopt for general use. Nanostructured bainitic steels retards the spheroidisation process in high carbon steel during isothermal annealing [17], making it allSpheroidisation of Hypereutectoid State of Nanostructured Bainitic Steel D. Luoa , M.J. Peeta , S

  1. The 2013 Clusters, Nanocrystals & Nanostructures Gordon Research Conference/Gordon Research Seminar

    SciTech Connect (OSTI)

    Krauss, Todd D.

    2014-11-25

    The fundamental properties of small particles and their potential for groundbreaking applications are among the most exciting areas of study in modern physics, chemistry, and materials science. The Clusters, Nanocrystals & Nanostructures Gordon ResearchConference and Gordon Research Seminar synthesize contributions from these inter-related fields that reflect the pivotal role of nano-particles at the interface between these disciplines. Size-dependent optical, electronic, magnetic and catalytic properties offer prospects for applications in many fields, and possible solutions for many of the grand challenges facing energy generation, consumption, delivery, and storage in the 21st century. The goal of the 2013 Clusters, Nanocrystals & Nanostructures Gordon Research Conference and Gordon Research Seminar is to continue the historical interdisciplinary tradition of this series and discuss the most recent advances, basic scientific questions, and emerging applications of clusters, nanocrystals, and nanostructures. The Clusters, Nanocrystals & Nanostructures GRC/GRS traditionally brings together the leading scientific groups that have made significant recent advances in one or more fundamental nanoscience or nanotechnology areas. Broad interests of the DOE BES and Solar Photochemistry Program addressed by this meeting include the areas of solar energy to fuels conversion, new photovoltaic systems, fundamental characterization of nanomaterials, magnetism, catalysis, and quantum physics. The vast majority of speakers and attendees will address either directly the topic of nanotechnology for photoinduced charge transfer, charge transport, and catalysis, or will have made significant contributions to related areas that will impact these fields indirectly. These topics have direct relevance to the mission of the DOE BES since it is this cutting-edge basic science that underpins our energy future.

  2. Nanostructure Arrays for Multijunction Solar Cells: Final Subcontract Report, 12 May 1999--11 July 2002

    SciTech Connect (OSTI)

    Das, B.

    2004-06-01

    This project developed the process technologies for the fabrication of high-efficiency multijunction photovoltaic cells using semiconductor nanostructure arrays. These devices are expected to provide increased energy conversion efficiency, as well as increased carrier collection efficiency. In addition, this approach provides the ability to tune the absorption spectrum to match selected windows of the solar spectrum. At the same time, these devices can be fabricated using existing industrial electrochemical processing techniques that can substantially reduce the cost of each device. The fabrication technique is based on electrochemical synthesis of II-VI semiconductor quantum wires using a preformed alumina template. This project focused on and solved the technical challenges that need to be addressed for the implementation of such devices. Specific issues addressed include (a) improved pore ordering on thin-film templates, (b) synthesis of II-VI semiconductor nanostructures by both AC and DC deposition, (c) an in-situ barrier-layer engineering process that allow the fabrication of superior-quality materials and improved template/substrate interface, (d) characterization techniques for templates, (e) process technology for creating stacked layers of nanostructures, (f) process throughput and improved apparatus, (g) modeling tools, (h) use of glass substrates, and (i) a nonlithographic surface texturing technique for silicon PV cells. An important outcome of this project is the demonstration of the fabrication technique on glass substrates. This breakthrough provides the possibility of covering buildings with''transparent'' solar cells fabricated on architectural glass. The accomplishments of this project position it well for the next phase of research, namely, creation and optimization of the nanostructure-based PV cells.

  3. Matrix-assisted energy conversion in nanostructured piezoelectric arrays

    DOE Patents [OSTI]

    Sirbuly, Donald J.; Wang, Xianying; Wang, Yinmin

    2013-01-01

    A nanoconverter is capable of directly generating electricity through a nanostructure embedded in a polymer layer experiencing differential thermal expansion in a stress transfer zone. High surface-to-volume ratio semiconductor nanowires or nanotubes (such as ZnO, silicon, carbon, etc.) are grown either aligned or substantially vertically aligned on a substrate. The resulting nanoforest is then embedded with the polymer layer, which transfers stress to the nanostructures in the stress transfer zone, thereby creating a nanostructure voltage output due to the piezoelectric effect acting on the nanostructure. Electrodes attached at both ends of the nanostructures generate output power at densities of .about.20 nW/cm.sup.2 with heating temperatures of .about.65.degree. C. Nanoconverters arrayed in a series parallel arrangement may be constructed in planar, stacked, or rolled arrays to supply power to nano- and micro-devices without use of external batteries.

  4. DNA-based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response

    E-Print Network [OSTI]

    Kuzyk, Anton; Fan, Zhiyuan; Pardatscher, Günther; Roller, Eva-Maria; Högele, Alexander; Simmel, Friedrich C; Govorov, Alexander O; Liedl, Tim

    2011-01-01

    Surface plasmon resonances generated in metallic nanostructures can be utilized to tailor electromagnetic fields. The precise spatial arrangement of such structures can result in surprising optical properties that are not found in any naturally occurring material. Here, the designed activity emerges from collective effects of singular components equipped with limited individual functionality. Top-down fabrication of plasmonic materials with a predesigned optical response in the visible range by conventional lithographic methods has remained challenging due to their limited resolution, the complexity of scaling, and the difficulty to extend these techniques to three-dimensional architectures. Molecular self-assembly provides an alternative route to create such materials which is not bound by the above limitations. We demonstrate how the DNA origami method can be used to produce plasmonic materials with a tailored optical response at visible wavelengths. Harnessing the assembly power of 3D DNA origami, we arran...

  5. Synthesis and characterization of nanostructured transition metal oxides for energy storage devices

    E-Print Network [OSTI]

    Kim, Jong Woung

    2012-01-01

    nanostructured transition metal oxides for energy storage devicesnanostructured transition metal oxides for energy storage devices

  6. Electrical property measurements of thin film based Lithium Ion Battery electrodes "Nanostructured Lithium Ion Batteries (LIB) are one of the most promising class of next generation energy

    E-Print Network [OSTI]

    Milgram, Paul

    Electrical property measurements of thin film based Lithium Ion Battery electrodes "Nanostructured Lithium Ion Batteries (LIB) are one of the most promising class of next generation energy storage devices materials during the charging/discharging process. However, in previous graphene based LIB battery research

  7. (Invited) Chapter VII in "Handbook of Nanostructured Biomaterials and Their Applications in Nanobiotechnology," Vol. 2 (ISBN: 1-58883-033-0), edited by Nalwa,

    E-Print Network [OSTI]

    Kiang, Ching-Hwa

    1 (Invited) Chapter VII in "Handbook of Nanostructured Biomaterials and Their Applications. Thus, the very properties that make DNA so effective as genetic material also make it an excellent, sensors, and bioengineering. Detection methods based on these nanobioconjugates show increased selectivity

  8. Thermal conductivity of bulk nanostructured lead telluride

    SciTech Connect (OSTI)

    Hori, Takuma [Department of Mechanical Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); Chen, Gang [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Shiomi, Junichiro, E-mail: shiomi@photon.t.u-tokyo.ac.jp [Department of Mechanical Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan)

    2014-01-13

    Thermal conductivity of lead telluride with embedded nanoinclusions was studied using Monte Carlo simulations with intrinsic phonon transport properties obtained from first-principles-based lattice dynamics. The nanoinclusion/matrix interfaces were set to completely reflect phonons to model the maximum interface-phonon-scattering scenario. The simulations with the geometrical cross section and volume fraction of the nanoinclusions matched to those of the experiment show that the experiment has already reached the theoretical limit of thermal conductivity. The frequency-dependent analysis further identifies that the thermal conductivity reduction is dominantly attributed to scattering of low frequency phonons and demonstrates mutual adaptability of nanostructuring and local disordering.

  9. Stacked mechanical nanogenerator comprising piezoelectric semiconducting nanostructures and Schottky conductive contacts

    DOE Patents [OSTI]

    Wang, Zhong L. (Marietta, GA); Xu, Sheng (Atlanta, GA)

    2011-08-23

    An electric power generator includes a first conductive layer, a plurality of semiconducting piezoelectric nanostructures, a second conductive layer and a plurality of conductive nanostructures. The first conductive layer has a first surface from which the semiconducting piezoelectric nanostructures extend. The second conductive layer has a second surface and is parallel to the first conductive layer so that the second surface faces the first surface of the first conductive layer. The conductive nanostructures depend downwardly therefrom. The second conductive layer is spaced apart from the first conductive layer at a distance so that when a force is applied, the semiconducting piezoelectric nanostructures engage the conductive nanostructures so that the piezoelectric nanostructures bend, thereby generating a potential difference across the at semiconducting piezoelectric nanostructures and also thereby forming a Schottky barrier between the semiconducting piezoelectric nanostructures and the conductive nanostructures.

  10. Nanostructured Solid Oxide Fuel Cell Electrodes

    SciTech Connect (OSTI)

    Sholklapper, Tal Zvi

    2007-12-15

    The ability of Solid Oxide Fuel Cells (SOFC) to directly and efficiently convert the chemical energy in hydrocarbon fuels to electricity places the technology in a unique and exciting position to play a significant role in the clean energy revolution. In order to make SOFC technology cost competitive with existing technologies, the operating temperatures have been decreased to the range where costly ceramic components may be substituted with inexpensive metal components within the cell and stack design. However, a number of issues have arisen due to this decrease in temperature: decreased electrolyte ionic conductivity, cathode reaction rate limitations, and a decrease in anode contaminant tolerance. While the decrease in electrolyte ionic conductivities has been countered by decreasing the electrolyte thickness, the electrode limitations have remained a more difficult problem. Nanostructuring SOFC electrodes addresses the major electrode issues. The infiltration method used in this dissertation to produce nanostructure SOFC electrodes creates a connected network of nanoparticles; since the method allows for the incorporation of the nanoparticles after electrode backbone formation, previously incompatible advanced electrocatalysts can be infiltrated providing electronic conductivity and electrocatalysis within well-formed electrolyte backbones. Furthermore, the method is used to significantly enhance the conventional electrode design by adding secondary electrocatalysts. Performance enhancement and improved anode contamination tolerance are demonstrated in each of the electrodes. Additionally, cell processing and the infiltration method developed in conjunction with this dissertation are reviewed.

  11. Fabrics coated with lubricated nanostructures display robust omniphobicity

    SciTech Connect (OSTI)

    Shillingford, Cicely; MacCallum, Noah; Wong, Tak -Sing; Kim, Philseok; Aizenberg, Joanna

    2013-12-11

    The development of a stain-resistant and pressure-stable textile is desirable for consumer and industrial applications alike, yet it remains a challenge that current technologies have been unable to fully address. Traditional superhydrophobic surfaces, inspired by the lotus plant, are characterized by two main components: hydrophobic chemical functionalization and surface roughness. While this approach produces water-resistant surfaces, these materials have critical weaknesses that hinder their practical utility, in particular as robust stain-free fabrics. For example, traditional superhydrophobic surfaces fail (i.e., become stained) when exposed to low-surface-tension liquids, under pressure when impacted by a high-velocity stream of water (e.g., rain), and when exposed to physical forces such as abrasion and twisting. We have recently introduced slippery lubricant-infused porous surfaces (SLIPS), a self-healing, pressure-tolerant and omniphobic surface, to address these issues. However we present the rational design and optimization of nanostructured lubricant-infused fabrics and demonstrate markedly improved performance over traditional superhydrophobic textile treatments: SLIPS-functionalized cotton and polyester fabrics exhibit decreased contact angle hysteresis and sliding angles, omni-repellent properties against various fluids including polar and nonpolar liquids, pressure tolerance and mechanical robustness, all of which are not readily achievable with the state-of-the-art superhydrophobic coatings.

  12. Fabrics coated with lubricated nanostructures display robust omniphobicity

    SciTech Connect (OSTI)

    Shillingford, C; MacCallum, N; Wong, TS; Kim, P; Aizenberg, J

    2013-12-11

    The development of a stain-resistant and pressure-stable textile is desirable for consumer and industrial applications alike, yet it remains a challenge that current technologies have been unable to fully address. Traditional superhydrophobic surfaces, inspired by the lotus plant, are characterized by two main components: hydrophobic chemical functionalization and surface roughness. While this approach produces water-resistant surfaces, these materials have critical weaknesses that hinder their practical utility, in particular as robust stain-free fabrics. For example, traditional superhydrophobic surfaces fail (i.e., become stained) when exposed to low-surface-tension liquids, under pressure when impacted by a high-velocity stream of water (e. g., rain), and when exposed to physical forces such as abrasion and twisting. We have recently introduced slippery lubricant-infused porous surfaces (SLIPS), a self-healing, pressure-tolerant and omniphobic surface, to address these issues. Herein we present the rational design and optimization of nanostructured lubricant-infused fabrics and demonstrate markedly improved performance over traditional superhydrophobic textile treatments: SLIPS-functionalized cotton and polyester fabrics exhibit decreased contact angle hysteresis and sliding angles, omni-repellent properties against various fluids including polar and nonpolar liquids, pressure tolerance and mechanical robustness, all of which are not readily achievable with the state-of-the-art superhydrophobic coatings.

  13. Fabrics coated with lubricated nanostructures display robust omniphobicity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shillingford, Cicely; MacCallum, Noah; Wong, Tak -Sing; Kim, Philseok; Aizenberg, Joanna

    2013-12-11

    The development of a stain-resistant and pressure-stable textile is desirable for consumer and industrial applications alike, yet it remains a challenge that current technologies have been unable to fully address. Traditional superhydrophobic surfaces, inspired by the lotus plant, are characterized by two main components: hydrophobic chemical functionalization and surface roughness. While this approach produces water-resistant surfaces, these materials have critical weaknesses that hinder their practical utility, in particular as robust stain-free fabrics. For example, traditional superhydrophobic surfaces fail (i.e., become stained) when exposed to low-surface-tension liquids, under pressure when impacted by a high-velocity stream of water (e.g., rain), and whenmore »exposed to physical forces such as abrasion and twisting. We have recently introduced slippery lubricant-infused porous surfaces (SLIPS), a self-healing, pressure-tolerant and omniphobic surface, to address these issues. However we present the rational design and optimization of nanostructured lubricant-infused fabrics and demonstrate markedly improved performance over traditional superhydrophobic textile treatments: SLIPS-functionalized cotton and polyester fabrics exhibit decreased contact angle hysteresis and sliding angles, omni-repellent properties against various fluids including polar and nonpolar liquids, pressure tolerance and mechanical robustness, all of which are not readily achievable with the state-of-the-art superhydrophobic coatings.« less

  14. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    SciTech Connect (OSTI)

    Davids, P. S.; Intravia, F; Dalvit, Diego A.

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.

  15. Periodic nanostructures from self assembled wedge-type block-copolymers

    DOE Patents [OSTI]

    Xia, Yan; Sveinbjornsson, Benjamin R.; Grubbs, Robert H.; Weitekamp, Raymond; Miyake, Garret M.; Piunova, Victoria; Daeffler, Christopher Scot

    2015-06-02

    The invention provides a class of wedge-type block copolymers having a plurality of chemically different blocks, at least a portion of which incorporates a wedge group-containing block providing useful properties. For example, use of one or more wedge group-containing blocks in some block copolymers of the invention significantly inhibits chain entanglement and, thus, the present block copolymers materials provide a class of polymer materials capable of efficient molecular self-assembly to generate a range of structures, such as periodic nanostructures and microstructures. Materials of the present invention include copolymers having one or more wedge group-containing blocks, and optionally for some applications copolymers also incorporating one or more polymer side group-containing blocks. The present invention also provides useful methods of making and using wedge-type block copolymers.

  16. Response of nanostructured ferritic alloys to high-dose heavy ion irradiation

    SciTech Connect (OSTI)

    Parish, Chad M.; White, Ryan M.; LeBeau, James M.; Miller, Michael K.

    2014-02-01

    A latest-generation aberration-corrected scanning/transmission electron microscope (STEM) is used to study heavy-ion-irradiated nanostructured ferritic alloys (NFAs). Results are presented for STEM X-ray mapping of NFA 14YWT irradiated with 10 MeV Pt to 16 or 160 dpa at -100°C and 750°C, as well as pre-irradiation reference material. Irradiation at -100°C results in ballistic destruction of the beneficial microstructural features present in the pre-irradiated reference material, such as Ti-Y-O nanoclusters (NCs) and grain boundary (GB) segregation. Irradiation at 750°C retains these beneficial features, but indicates some coarsening of the NCs, diffusion of Al to the NCs, and a reduction of the Cr-W GB segregation (or solute excess) content. Ion irradiation combined with the latest-generation STEM hardware allows for rapid screening of fusion candidate materials and improved understanding of irradiation-induced microstructural changes in NFAs.

  17. Nanostructured Composite Electrodes for Lithium Batteries (Final Technical Report)

    SciTech Connect (OSTI)

    Meilin Liu, James Gole

    2006-12-14

    The objective of this study was to explore new ways to create nanostructured electrodes for rechargeable lithium batteries. Of particular interests are unique nanostructures created by electrochemical deposition, etching and combustion chemical vapor deposition (CCVD). Three-dimensional nanoporous Cu6Sn5 alloy has been successfully prepared using an electrochemical co-deposition process. The walls of the foam structure are highly-porous and consist of numerous small grains. This represents a novel way of creating porous structures that allow not only fast transport of gas and liquid but also rapid electrochemical reactions due to high surface area. The Cu6Sn5 samples display a reversible capacity of {approx}400 mAhg-1. Furthermore, these materials exhibit superior rate capability. At a current drain of 10 mA/cm2(20C rate), the obtainable capacity was more than 50% of the capacity at 0.5 mA/cm2 (1C rate). Highly open and porous SnO2 thin films with columnar structure were obtained on Si/SiO2/Au substrates by CCVD. The thickness was readily controlled by the deposition time, varying from 1 to 5 microns. The columnar grains were covered by nanoparticles less than 20 nm. These thin film electrodes exhibited substantially high specific capacity. The reversible specific capacity of {approx}3.3 mAH/cm2 was demonstrated for up to 80 cycles at a charge/discharge rate of 0.3 mA/cm2. When discharged at 0.9 mA/cm2, the capacity was about 2.1 mAH/cm2. Tin dioxide box beams or tubes with square or rectangular cross sections were synthesized using CCVD. The cross-sectional width of the SnO2 tubules was tunable from 50 nm to sub-micrometer depending on synthesis temperature. The tubes are readily aligned in the direction perpendicular to the substrate surface to form tube arrays. Silicon wafers were electrochemically etched to produce porous silicon (PS) with honeycomb-type channels and nanoporous walls. The diameters of the channels are about 1 to 3 microns and the depth of the channels can be up to 100 microns. We have successfully used the PS as a matrix for Si-Li-based alloy. Other component(s) can be incorporated into the PS either by an electroless metallization or by kinetically controlled vapor deposition.

  18. Induced patterning of organic and inorganic materials by spatially discrete surface energy Walter Hu,a)

    E-Print Network [OSTI]

    Hu, Wenchuang "Walter"

    Induced patterning of organic and inorganic materials by spatially discrete surface energy Walter surface energies on the substrate induce microfluidic self-patterning of materials that are deposited but spatially organized nanostructures both in organic and inorganic materials. Available methods are mainly

  19. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01

    cells. Solar Energy Materials and Solar Cells, 90:3001–3008,solar cells. Solar Energy Materials and Solar Cells, 68:227–trends. Solar Energy Materials and Solar Cells, 38:501–520,

  20. Scanned probe characterization of semiconductor nanostructures

    E-Print Network [OSTI]

    Law, James Jeremy MacDonald

    2009-01-01

    electronic properties on two semiconductor material systems.semiconductor materials system suffers from perturbations in local electronic structure due to crystallographic defects. Understanding the electronic properties

  1. Manipulation of Electromagnetic Fields with Plasmonic Nanostructures...

    Office of Scientific and Technical Information (OSTI)

    Subject: Materials Science(36); Nanoscience & Nanotechnology(77) Material Science Word Cloud More Like This Full Text File size NAView Full Text View Full Text DOI: 10.2172...

  2. Fourier Analysis and Autocorrelation Function Applied to Periodical Nanostructures

    E-Print Network [OSTI]

    Rockett, Angus

    Fourier Analysis and Autocorrelation Function Applied to Periodical Nanostructures E. Cruz Microscopy (AFM) Image Fast Fourier Transformation Autocorrelation Function(AC) Angular Distribution] Fourier Analysis: analytical and geometrical aspects, Bray William O ed. New York: Marcel Dekker, 1994

  3. Electric-Field-Enhanced Condensation on Superhydrophobic Nanostructured Surfaces

    E-Print Network [OSTI]

    Miljkovic, Nenad

    When condensed droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump due to the conversion of excess surface energy into kinetic energy. This phenomenon has been shown to enhance ...

  4. Tailor Synthesis of Nanostructures for Direct Integration Into Solar Cells 

    E-Print Network [OSTI]

    Van Laer, Maxime 1989-

    2012-05-09

    The groundwork of this project is the application of CVD (chemical vapor deposition) to deposit thin layers of nanostructures; nanowires in particular. Methods and mechanisms will be studied in detail along with thermodynamic ...

  5. Efficient light-trapping nanostructures in thin silicon solar cells

    E-Print Network [OSTI]

    Han, Sang Eon

    We examine light-trapping in thin crystalline silicon periodic nanostructures for solar cell applications. Using group theory, we show that light-trapping can be improved over a broad band when structural mirror symmetry ...

  6. Engineering Strength, Porosity, and Emission Intensity of Nanostructur...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Strength, Porosity, and Emission Intensity of Nanostructured CdSe Networks by Altering the Building-Block Shape Home Author: H. Yu, R. Bellair, R. M. Kannan, S. L....

  7. Semiconducting and Piezoelectric Oxide Nanostructures Induced by Polar Surfaces**

    E-Print Network [OSTI]

    Wang, Zhong L.

    , such as quantum dots and carbon nanotubes, exhibits piezoelectricity. This is an area that remains-dimensional nanostructures, devices have been fabricated utilizing semiconductor nanowires made from Si and InP, for example

  8. De Novo Nanostructures and Their Applications in Energy Storage

    E-Print Network [OSTI]

    Wang, Wei

    2014-01-01

    and carbon nanotube nanostructures for lithium ion battery44 2.2.3 Fabrication and testing of lithium ion battery (cone-shape carbon nanotube clusters for lithium ion battery

  9. Center on Nanostructuring for Efficient Energy Conversion - Contact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tel 650.723.6488 Fax 650.723.5034 emattson(at)stanford.edu Center on Nanostructuring for Efficient Energy Conversion is an Energy Frontier Research Center funded by the U.S....

  10. Graphene and its Hybrid Nanostructures for Nanoelectronics and Energy Applications

    E-Print Network [OSTI]

    LIN, JIAN

    2011-01-01

    ultrasmooth graphene nanoribbon semiconductors. Science,of semiconductor ZnO nanostructures on large area grapheneSemiconductor Parameter Analyzer. 3.3 Results and Discussion 3.3.1 Growth Kinetic of CVD Graphene

  11. Engineering 3D Nanostructures for a Multitude of Applications

    E-Print Network [OSTI]

    Flores, Jose Fernando

    2015-01-01

    ZnO Nanostructures on Stainless Steel . . . . 32 v 3.1.2 ZnOControlled ZnO Growth on Stainless Steel . . 3.2.2 SurfaceIII Appendices A Stainless Steel Cleaning and Composition B

  12. Metal-polymer composites comprising nanostructures and applications thereof

    DOE Patents [OSTI]

    Wang, Hsing-Lin (Los Alamos, NM); Jeon, Sea Ho (Dracut, MA); Mack, Nathan H. (Los Alamos, NM)

    2012-04-03

    Metal-polymer composites, and methods of making and use thereof, said composites comprising a thermally-cured dense polyaniline substrate; an acid dopant; and, metal nanostructure deposits wherein the deposits have a morphology dependent upon the acid dopant.

  13. Growth of nanostructures with controlled diameter

    DOE Patents [OSTI]

    Pfefferle, Lisa; Haller, Gary; Ciuparu, Dragos

    2009-02-03

    Transition metal-substituted MCM-41 framework structures with a high degree of structural order and a narrow pore diameter distribution were reproducibly synthesized by a hydrothermal method using a surfactant and an anti-foaming agent. The pore size and the mesoporous volume depend linearly on the surfactant chain length. The transition metals, such as cobalt, are incorporated substitutionally and highly dispersed in the silica framework. Single wall carbon nanotubes with a narrow diameter distribution that correlates with the pore diameter of the catalytic framework structure were prepared by a Boudouard reaction. Nanostructures with a specified diameter or cross-sectional area can therefore be predictably prepared by selecting a suitable pore size of the framework structure.

  14. Doped carbon nanostructure field emitter arrays for infrared imaging

    DOE Patents [OSTI]

    Korsah, Kofi (Knoxville, TN) [Knoxville, TN; Baylor, Larry R (Farragut, TN) [Farragut, TN; Caughman, John B (Oak Ridge, TN) [Oak Ridge, TN; Kisner, Roger A (Knoxville, TN) [Knoxville, TN; Rack, Philip D (Knoxville, TN) [Knoxville, TN; Ivanov, Ilia N (Knoxville, TN) [Knoxville, TN

    2009-10-27

    An infrared imaging device and method for making infrared detector(s) having at least one anode, at least one cathode with a substrate electrically connected to a plurality of doped carbon nanostructures; and bias circuitry for applying an electric field between the anode and the cathode such that when infrared photons are adsorbed by the nanostructures the emitted field current is modulated. The detectors can be doped with cesium to lower the work function.

  15. Amorphous Silicon-Carbon Nanostructure Photovoltaic Devices

    E-Print Network [OSTI]

    Schriver, Maria Christine

    2012-01-01

    and Photovoltaic Performance . . . . . . . . . . . . . . .Amorphous Silicon as a Photovoltaic Material 2.1.2ii Photovoltaic Model . . . . . . . . . . .

  16. DNA-based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response

    E-Print Network [OSTI]

    Anton Kuzyk; Robert Schreiber; Zhiyuan Fan; Günther Pardatscher; Eva-Maria Roller; Alexander Högele; Friedrich C. Simmel; Alexander O. Govorov; Tim Liedl

    2011-08-18

    Surface plasmon resonances generated in metallic nanostructures can be utilized to tailor electromagnetic fields. The precise spatial arrangement of such structures can result in surprising optical properties that are not found in any naturally occurring material. Here, the designed activity emerges from collective effects of singular components equipped with limited individual functionality. Top-down fabrication of plasmonic materials with a predesigned optical response in the visible range by conventional lithographic methods has remained challenging due to their limited resolution, the complexity of scaling, and the difficulty to extend these techniques to three-dimensional architectures. Molecular self-assembly provides an alternative route to create such materials which is not bound by the above limitations. We demonstrate how the DNA origami method can be used to produce plasmonic materials with a tailored optical response at visible wavelengths. Harnessing the assembly power of 3D DNA origami, we arranged metal nanoparticles with a spatial accuracy of 2 nm into nanoscale helices. The helical structures assemble in solution in a massively parallel fashion and with near quantitative yields. As a designed optical response, we generated giant circular dichroism and optical rotary dispersion in the visible range that originates from the collective plasmon-plasmon interactions within the nanohelices. We also show that the optical response can be tuned through the visible spectrum by changing the composition of the metal nanoparticles. The observed effects are independent of the direction of the incident light and can be switched by design between left- and right-handed orientation. Our work demonstrates the production of complex bulk materials from precisely designed nanoscopic assemblies and highlights the potential of DNA self-assembly for the fabrication of plasmonic nanostructures.

  17. NANOSTRUCTURED METAL OXIDES FOR ANODES OF LI-ION RECHARGEABLE BATTERIES

    SciTech Connect (OSTI)

    Au, M.

    2009-12-04

    The aligned nanorods of Co{sub 3}O{sub 4} and nanoporous hollow spheres (NHS) of SnO{sub 2} and Mn{sub 2}O{sub 3} were investigated as the anodes for Li-ion rechargeable batteries. The Co{sub 3}O{sub 4} nanorods demonstrated 1433 mAh/g reversible capacity. The NHS of SnO{sub 2} and Mn{sub 2}O{sub 3} delivered 400 mAh/g and 250 mAh/g capacities respectively in multiple galvonastatic discharge-charge cycles. It was found that high capacity of NHS of metal oxides is sustainable attributed to their unique structure that maintains material integrity during cycling. The nanostructured metal oxides exhibit great potential as the new anode materials for Li-ion rechargeable batteries with high energy density, low cost and inherent safety.

  18. Cold spray coating: review of material systems and future perspectives

    E-Print Network [OSTI]

    Dao, Ming

    . This includes metallic, ceramic and metal matrix composite (MMC) coatings and their applications. Polymer (both matrix composite, Polymer, Ceramic, Nanostructured Powder This paper is part of a special issue on cold. Different materials such as metals, ceramics, composites and polymers can be deposited using CS, creating

  19. Conditions for diffusion-limited and reaction-limited recombination in nanostructured solar cells

    SciTech Connect (OSTI)

    Ansari-Rad, Mehdi; Department of Physics, University of Shahrood, Shahrood ; Anta, Juan A.; Arzi, Ezatollah

    2014-04-07

    The performance of Dye-sensitized solar cells (DSC) and related devices made of nanostructured semiconductors relies on a good charge separation, which in turn is achieved by favoring charge transport against recombination. Although both processes occur at very different time scales, hence ensuring good charge separation, in certain cases the kinetics of transport and recombination can be connected, either in a direct or an indirect way. In this work, the connection between electron transport and recombination in nanostructured solar cells is studied both theoretically and by Monte Carlo simulation. Calculations using the Multiple-Trapping model and a realistic trap distribution for nanostructured TiO{sub 2} show that for attempt-to-jump frequencies higher than 10{sup 11}–10{sup 13} Hz, the system adopts a reaction limited (RL) regime, with a lifetime which is effectively independent from the speed of the electrons in the transport level. For frequencies lower than those, and depending on the concentration of recombination centers in the material, the system enters a diffusion-limited regime (DL), where the lifetime increases if the speed of free electrons decreases. In general, the conditions for RL or DL recombination depend critically on the time scale difference between recombination kinetics and free-electron transport. Hence, if the former is too rapid with respect to the latter, the system is in the DL regime and total thermalization of carriers is not possible. In the opposite situation, a RL regime arises. Numerical data available in the literature, and the behavior of the lifetime with respect to (1) density of recombination centers and (2) probability of recombination at a given center, suggest that a typical DSC in operation stays in the RL regime with complete thermalization, although a transition to the DL regime may occur for electrolytes or hole conductors where recombination is especially rapid or where there is a larger dispersion of energies of electron acceptors.

  20. Synthesis, characterization, properties, and applications of nanosized ferroelectric, ferromagnetic, or multiferroic materials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dhak, Debasis; Hong, Seungbum; Das, Soma; Dhak, Prasanta

    2015-01-01

    Recently, there has been an enormous increase in research activity in the field of ferroelectrics and ferromagnetics especially in multiferroic materials which possess both ferroelectric and ferromagnetic properties simultaneously. However, the ferroelectric, ferromagnetic, and multiferroic properties should be further improved from the utilitarian and commercial viewpoints. Nanostructural materials are central to the evolution of future electronics and information technologies. Ferroelectrics and ferromagnetics have already been established as a dominant branch in electronics sector because of their diverse applications. The ongoing dimensional downscaling of materials to allow packing of increased numbers of components into integrated circuits provides the momentum for evolutionmore »of nanostructural devices. Nanoscaling of the above materials can result in a modification of their functionality. Furthermore, nanoscaling can be used to form high density arrays of nanodomain nanostructures, which is desirable for miniaturization of devices.« less

  1. Synthesis, characterization, properties, and applications of nanosized ferroelectric, ferromagnetic, or multiferroic materials

    SciTech Connect (OSTI)

    Dhak, Debasis [Sidho-Kanho-Birsha Univ., West Bengal (India). Dept. of Chemistry.; Hong, Seungbum [Argonne National Lab. (ANL), Argonne, IL (United States); Das, Soma [Institute of Technology, Guru Ghasidas Vishwavidyalaya, Bilaspur (India). Electronics & Communication Engineering.; Dhak, Prasanta [Seoul National Univ., Seoul (Republic of Korea). Dept. of Materials Science and Engineering.

    2015-01-01

    Recently, there has been an enormous increase in research activity in the field of ferroelectrics and ferromagnetics especially in multiferroic materials which possess both ferroelectric and ferromagnetic properties simultaneously. However, the ferroelectric, ferromagnetic, and multiferroic properties should be further improved from the utilitarian and commercial viewpoints. Nanostructural materials are central to the evolution of future electronics and information technologies. Ferroelectrics and ferromagnetics have already been established as a dominant branch in electronics sector because of their diverse applications. The ongoing dimensional downscaling of materials to allow packing of increased numbers of components into integrated circuits provides the momentum for evolution of nanostructural devices. Nanoscaling of the above materials can result in a modification of their functionality. Furthermore, nanoscaling can be used to form high density arrays of nanodomain nanostructures, which is desirable for miniaturization of devices.

  2. Fabrication of Metal/Oxide Nanostructures by Anodization Processes for Biosensor, Drug Delivery and Supercapacitor Applications 

    E-Print Network [OSTI]

    Chen, Po-Chun

    2014-01-13

    This dissertation proposed to initiate the research into the fabrication of metal/oxide nanostructures by anodization process for biosensor, drug delivery and supercapacitor applications by producing different nanostructures ...

  3. Topography and refractometry of nanostructures using spatial light interference microscopy (SLIM)

    E-Print Network [OSTI]

    Gillette, Martha U.

    Topography and refractometry of nanostructures using spatial light interference microscopy (SLIM topography at a single atomic layer in graphene. Further, using a decoupling procedure that we developed high- throughput topography and refractometry of man-made and biological nanostructures. Quantitative

  4. Forensics of Soot: C5-Related Nanostructure as a Diagnostic of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forensics of Soot: C5-Related Nanostructure as a Diagnostic of In-Cylinder Chemistry Forensics of Soot: C5-Related Nanostructure as a Diagnostic of In-Cylinder Chemistry Changes...

  5. Size-dependent polarization distribution in ferroelectric nanostructures: Phase field simulations

    E-Print Network [OSTI]

    Chen, Long-Qing

    to memory and storage devices, sen- sors, and actuators. The properties of low-dimensional ferro- electricsSize-dependent polarization distribution in ferroelectric nanostructures: Phase field simulations distribution in ferroelectric nanostructures embedded in a nonferroelectric medium. The simulation results

  6. Covalent Stabilization of Nanostructures: Robust Block Copolymer Templates from Novel Thermoreactive Systems

    E-Print Network [OSTI]

    Harth, Eva M.

    platforms for the fabrication of nanostruc- tured devices for advanced storage and microelec- tronicCovalent Stabilization of Nanostructures: Robust Block Copolymer Templates from Novel, crosslinked nanostructure with greater processing and fabrication potential. © 2005 Wiley Periodicals, Inc. J

  7. Electrochemical Synthesis of One-Dimensional Nanostructures for Sensor and Spintronic Applications

    E-Print Network [OSTI]

    Hangarter, Carlos Maldonado

    2009-01-01

    Nanostructures for Sensor and Spintronic Applications ANanostructures for Sensor and Spintronic Applications byfor sensor and spintronic applications. Conducting polymers

  8. Manipulation of surface chemistry and nanostructure in porous silicon-based chemical sensors

    E-Print Network [OSTI]

    Ruminski, Anne Marie

    2009-01-01

    version 2006; Chemical Abstracts Service: Columbus, OH,Abstract Porous silicon nanostructures attract much interest for chemical and

  9. Final report: high resolution lensless 3D imaging of nanostructures with coherent x-rays

    SciTech Connect (OSTI)

    Jacobsen, Chris

    2014-12-07

    Final report on the project "High resolution lensless 3D imaging of nanostructures with coherent x-rays"

  10. A biotemplated nickel nanostructure: Synthesis, characterization and antibacterial activity

    SciTech Connect (OSTI)

    Ashtari, Khadijeh; Fasihi, Javad; Mollania, Nasrin; Khajeh, Khosro

    2014-02-01

    Highlights: • Nickel nanostructure-encapsulated bacteria were prepared using electroless deposition. • Bacterium surface was activated by red-ox reaction of its surface amino acids. • Interfacial changes at cell surfaces were investigated using fluorescence spectroscopy. • TEM and AFM depicted morphological changes. • Antibacterial activity of nanostructure was examined against different bacteria strains. - Abstract: Nickel nanostructure-encapsulated bacteria were prepared using the electroless deposition procedure and activation of bacterium cell surface by red-ox reaction of surface amino acids. The electroless deposition step occurred in the presence of Ni(II) and dimethyl amine boran (DMAB). Interfacial changes at bacteria cell surfaces during the coating process were investigated using fluorescence spectroscopy. Fluorescence of tryptophan residues was completely quenched after the deposition of nickel onto bacteria surfaces. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) depicted morphological changes on the surface of the bacterium. It was found that the Ni coated nanostructure was mechanically stable after ultrasonication for 20 min. Significant increase in surface roughness of bacteria was also observed after deposition of Ni clusters. The amount of coated Ni on the bacteria surface was calculated as 36% w/w. The antibacterial activity of fabricated nanostructure in culture media was examined against three different bacteria strains; Escherichia coli, Bacillus subtilis and Xantomonas campestris. The minimum inhibitory concentrations (MIC) were determined as 500 mg/L, 350 mg/L and 200 mg/L against bacteria, respectively.

  11. Light trapping in thin-film solar cells via scattering by nanostructured antireflection coatings

    E-Print Network [OSTI]

    Yu, Edward T.

    Light trapping in thin-film solar cells via scattering by nanostructured antireflection coatings X://jap.aip.org/authors #12;Light trapping in thin-film solar cells via scattering by nanostructured antireflection coatings X of nanostructured TiO2 layers fabricated on thin-film solar cells to provide, simultaneously, both antireflection

  12. First Observation of CP Violation in [bar over B][superscript 0] ? D[(*) over CP]h[superscript 0] Decays by a Combined Time-Dependent Analysis of BABAR and Belle Data

    E-Print Network [OSTI]

    Abdesselam, A.

    We report a measurement of the time-dependent CP asymmetry of [bar over B][superscript 0] ? D[(*) over CP]h[superscript 0] decays, where the light neutral hadron h[superscript 0] is a ?[superscript 0], ?, or ? meson, and ...

  13. Toward Nanostructured Thermoelectrics. Synthesis and Characterization of Lead Telluride Gels and Aerogels

    SciTech Connect (OSTI)

    Ganguly, Shreyashi [Wayne State Univ., Detroit, MI (United States); Brock, Stephanie L. [Wayne State Univ., Detroit, MI (United States)

    2011-05-12

    The synthesis and characterization of lead telluride (PbTe) gels and aerogels with nanostructured features of potential benefit for enhanced thermoelectrics is reported. In this approach, discrete thiolate-capped PbTe nanoparticles were synthesized by a solution-based approach followed by oxidation-induced nanoparticle assembly with tetranitromethane or hydrogen peroxide to form wet gels. Drying of the wet gels by supercritical CO? extraction yielded aerogels, whereas xerogels were produced by ambient pressure bench top drying. The gels consist of an interconnected network of colloidal nanoparticles and pores with surface areas up to 74 m˛ g-1. The thermal stability of the nanostructures relative to nanoparticles was probed with the help of in situ transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The aerogels were observed to sublime at a higher temperature and over a larger range (425–500 °C) relative to the precursor nanoparticles. TGA-DSC suggests that organic capping groups can be removed in the region 250–450 °C, and melting of PbTe nanoparticles occurs near the temperature for bulk materials (ca. 920 °C). The good thermal stability combined with the presence of nanoscale interfaces suggests PbTe gels may show promise in thermoelectric devices.

  14. Mn-Substituted Inorganic-Organic Hybrid Materials Based on ZnSe

    E-Print Network [OSTI]

    Li, Jing

    Mn-Substituted Inorganic-Organic Hybrid Materials Based on ZnSe: Nanostructures That May Lead research that deals with synthesis, characterization, and modification of organic-inorganic hybrid to integrate functional materials that utilize both electron charge and spin.1 Thus, the introduction

  15. Ferromagnetic (Ga,Mn)As nanostructures for spintronic applications

    SciTech Connect (OSTI)

    Wosinski, Tadeusz; Andrearczyk, Tomasz; Figielski, Tadeusz; Makosa, Andrzej; Wrobel, Jerzy; Sadowski, Janusz

    2013-12-04

    Magneto-resistive, cross-like nanostructures have been designed and fabricated by electron-beam lithography patterning and chemical etching from thin epitaxial layers of the ferromagnetic semiconductor (Ga,Mn)As. The nanostructures, composed of two perpendicular nanostripes crossing in the middle of their length, represent four-terminal devices, in which an electric current can be driven through any of the two nanostripes. In these devices, a novel magneto-resistive memory effect, related to a rearrangement of magnetic domain walls in the central part of the device, has been demonstrated. It consists in that the zero-field resistance of a nanostripe depends on the direction of previously applied magnetic field. The nanostructures can thus work as two-state devices providing basic elements of nonvolatile memory cells.

  16. Nanostructure templating using low temperature atomic layer deposition

    DOE Patents [OSTI]

    Grubbs, Robert K. (Albuquerque, NM); Bogart, Gregory R. (Corrales, NM); Rogers, John A. (Champaign, IL)

    2011-12-20

    Methods are described for making nanostructures that are mechanically, chemically and thermally stable at desired elevated temperatures, from nanostructure templates having a stability temperature that is less than the desired elevated temperature. The methods comprise depositing by atomic layer deposition (ALD) structural layers that are stable at the desired elevated temperatures, onto a template employing a graded temperature deposition scheme. At least one structural layer is deposited at an initial temperature that is less than or equal to the stability temperature of the template, and subsequent depositions made at incrementally increased deposition temperatures until the desired elevated temperature stability is achieved. Nanostructure templates include three dimensional (3D) polymeric templates having features on the order of 100 nm fabricated by proximity field nanopatterning (PnP) methods.

  17. Trends in Thermoelectric Properties with Nanostructure: Ferecrystals...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    control to interleave on the nanoscale two or more compounds with different crystal structures johnson.pdf More Documents & Publications Ferecrystals: Thermoelectric Materials...

  18. Washington: Graphene Nanostructures for Lithium Batteries Recieves...

    Broader source: Energy.gov (indexed) [DOE]

    Incorporating graphene, a team of scientists at Pacific Northwest National Laboratory, Vorbeck Materials Corporation, and Princeton University have developed a nanocomposite...

  19. Bulk Nanostructured FCC Steels With Enhanced Radiation Tolerance

    SciTech Connect (OSTI)

    Zhang, Xinghang; Hartwig, K. Ted; Allen, Todd; Yang, Yong

    2012-10-27

    The objective of this project is to increase radiation tolerance in austenitic steels through optimization of grain size and grain boundary (GB) characteristics. The focus will be on nanocrystalline austenitic Fe-Cr-Ni alloys with an fcc crystal structure. The long-term goal is to design and develop bulk nanostructured austenitic steels with enhanced void swelling resistance and substantial ductility, and to enhance their creep resistance at elevated temperatures via GB engineering. The combination of grain refinement and grain boundary engineering approaches allows us to tailor the material strength, ductility, and resistance to swelling by 1) changing the sink strength for point defects, 2) by increasing the nucleation barriers for bubble formation at GBs, and 3) by changing the precipitate distributions at boundaries. Compared to ferritic/martensitic steels, austenitic stainless steels (SS) possess good creep and fatigue resistance at elevated temperatures, and better toughness at low temperature. However, a major disadvantage of austenitic SS is that they are vulnerable to significant void swelling in nuclear reactors, especially at the temperatures and doses anticipated in the Advanced Burner Reactor. The lack of resistance to void swelling in austenitic alloys led to the switch to ferritic/martensitic steels as the preferred material for the fast reactor cladding application. Recently a type of austenitic stainless steel, HT-UPS, was developed at ORNL, and is expected to show enhanced void swelling resistance through the trapping of point defects at nanometersized carbides. Reducing the grain size and increasing the fraction of low energy grain boundaries should reduce the available radiation-produced point defects (due to the increased sink area of the grain boundaries), should make bubble nucleation at the boundaries less likely (by reducing the fraction of high-energy boundaries), and improve the strength and ductility under radiation by producing a higher density of nanometer sized carbides on the boundaries. This project will focus on void swelling but advances in processing of austenitic steels are likely to also improve the radiation response of the mechanical properties.

  20. Supercapacitors specialities - Materials review

    SciTech Connect (OSTI)

    Obreja, Vasile V. N.

    2014-06-16

    The electrode material is a key component for supercapacitor cell performance. As it is known, performance comparison of commercial available batteries and supercapacitors reveals significantly lower energy storage capability for supercapacitor devices. The energy density of commercial supercapacitor cells is limited to 10 Wh/kg whereas that of common lead acid batteries reaches 35-40 Wh/kg. For lithium ion batteries a value higher than 100 Wh/kg is easily available. Nevertheless, supercapacitors also known as ultracapacitors or electrochemical capacitors have other advantages in comparison with batteries. As a consequence, many efforts have been made in the last years to increase the storage energy density of electrochemical capacitors. A lot of results from published work (research and review papers, patents and reports) are available at this time. The purpose of this review is a presentation of the progress to date for the use of new materials and approaches for supercapacitor electrodes, with focus on the energy storage capability for practical applications. Many reported results refer to nanostructured carbon based materials and the related composites, used for the manufacture of experimental electrodes. A specific capacitance and a specific energy are seldom revealed as the main result of the performed investigation. Thus for nanoprous (activated) carbon based electrodes a specific capacitance up to 200-220 F/g is mentioned for organic electrolyte, whereas for aqueous electrolyte, the value is limited to 400-500 F/g. Significant contribution to specific capacitance is possible from fast faradaic reactions at the electrode-electrolyte interface in addition to the electric double layer effect. The corresponding energy density is limited to 30-50 Wh/kg for organic electrolyte and to 12-17 Wh/kg for aqueous electrolyte. However such performance indicators are given only for the carbon material used in electrodes. For a supercapacitor cell, where two electrodes and also other materials for cell assembling and packaging are used, the above mentioned values have to be divided by a factor higher than four. As a consequence, the specific energy of a prototype cell, hardly could exceed 10 Wh/kg because of difficulties with the existing manufacturing technology. Graphene based materials and carbon nanotubes and different composites have been used in many experiments reported in the last years. Nevertheless in spite of the outstanding properties of these materials, significant increase of the specific capacitance or of the specific energy in comparison with activated or nanoporous carbon is not achieved. Use of redox materials as metal oxides or conducting polymers in combination with different nanostructured carbon materials (nanocomposite electrodes) has been found to contribute to further increase of the specific capacitance or of the specific energy. Nevertheless, few results are reported for practical cells with such materials. Many results are reported only for a three electrode system and significant difference is possible when the electrode is used in a practical supercapacitor cell. Further improvement in the electrode manufacture and more experiments with supercapacitor cells with the known electrochemical storage materials are required. Device prototypes and commercial products with an energy density towards 15-20 Wh/kg could be realized. These may be a milestone for further supercapacitor device research and development, to narrow the storage energy gap between batteries and supercapacitors.

  1. Synthesis of thin films and materials utilizing a gaseous catalyst

    DOE Patents [OSTI]

    Morse, Daniel E; Schwenzer, Birgit; Gomm, John R; Roth, Kristian M; Heiken, Brandon; Brutchey, Richard

    2013-10-29

    A method for the fabrication of nanostructured semiconducting, photoconductive, photovoltaic, optoelectronic and electrical battery thin films and materials at low temperature, with no molecular template and no organic contaminants. High-quality metal oxide semiconductor, photovoltaic and optoelectronic materials can be fabricated with nanometer-scale dimensions and high dopant densities through the use of low-temperature biologically inspired synthesis routes, without the use of any biological or biochemical templates.

  2. Charge-free method of forming nanostructures on a substrate

    DOE Patents [OSTI]

    Hoffbauer; Mark (Los Alamos, NM), Akhadov; Elshan (Los Alamos, NM)

    2010-07-20

    A charge-free method of forming a nanostructure at low temperatures on a substrate. A substrate that is reactive with one of atomic oxygen and nitrogen is provided. A flux of neutral atoms of least one of oxygen and nitrogen is generated within a laser-sustained-discharge plasma source and a collimated beam of energetic neutral atoms and molecules is directed from the plasma source onto a surface of the substrate to form the nanostructure. The energetic neutral atoms and molecules in the beam have an average kinetic energy in a range from about 1 eV to about 5 eV.

  3. 2011 Clusters, Nanocrystals & Nanostructures Gordon Research Conference

    SciTech Connect (OSTI)

    Lai-Sheng Wang

    2011-07-29

    Small particles have been at the heart of nanoscience since the birth of the field and now stand ready to make significant contributions to the big challenges of energy, health and sustainability. Atomic clusters show exquisite size-dependent electronic and magnetic properties and offer a new level of control in catalyses, sensors and biochips; functionalised nanocrystals offer remarkable optical properties and diverse applications in electronic devices, solar energy, and therapy. Both areas are complemented by a raft of recent advances in fabrication, characterization, and performance of a diversity of nanomaterials from the single atom level to nanowires, nanodevices, and biologically-inspired nanosystems. The goal of the 2011 Gordon Conference is thus to continue and enhance the interdisciplinary tradition of this series and discuss the most recent advances, fundamental scientific questions, and emerging applications of clusters, nanocrystals, and nanostructures. A single conference covering all aspects of nanoscience from fundamental issues to applications has the potential to create new ideas and stimulate cross fertilization. The meeting will therefore provide a balance among the three sub-components of the conference, true to its title, with a selection of new topics added to reflect rapid advances in the field. The open atmosphere of a Gordon conference, emphasizing the presentation of unpublished results and extensive discussions, is an ideal home for this rapidly developing field and will allow all participants to enjoy a valuable and stimulating experience. Historically, this Gordon conference has been oversubscribed, so we encourage all interested researchers from academia, industry, and government institutions to apply as early as possible. We also encourage all attendees to submit their latest results for presentation at the poster sessions. We anticipate that several posters will be selected for 'hot topic' oral presentations. Given the important role students and postdocs play in the future of this field, we also anticipate several talks of this kind from young investigators.

  4. Templated Self Assemble of Nano-Structures

    SciTech Connect (OSTI)

    Suo, Zhigang [Harvard University

    2013-04-29

    This project will identify and model mechanisms that template the self-assembly of nanostructures. We focus on a class of systems involving a two-phase monolayer of molecules adsorbed on a solid surface. At a suitably elevated temperature, the molecules diffuse on the surface to reduce the combined free energy of mixing, phase boundary, elastic field, and electrostatic field. With no template, the phases may form a pattern of stripes or disks. The feature size is on the order of 1-100 nm, selected to compromise the phase boundary energy and the long-range elastic or electrostatic interaction. Both experimental observations and our theoretical simulations have shown that the pattern resembles a periodic lattice, but has abundant imperfections. To form a perfect periodic pattern, or a designed aperiodic pattern, one must introduce a template to guide the assembly. For example, a coarse-scale pattern, lithographically defined on the substrate, will guide the assembly of the nanoscale pattern. As another example, if the molecules on the substrate surface carry strong electric dipoles, a charged object, placed in the space above the monolayer, will guide the assembly of the molecular dipoles. In particular, the charged object can be a mask with a designed nanoscale topographic pattern. A serial process (e.g., e-beam lithography) is necessary to make the mask, but the pattern transfer to the molecules on the substrate is a parallel process. The technique is potentially a high throughput, low cost process to pattern a monolayer. The monolayer pattern itself may serve as a template to fabricate a functional structure. This project will model fundamental aspects of these processes, including thermodynamics and kinetics of self-assembly, templated self-assembly, and self-assembly on unconventional substrates. It is envisioned that the theory will not only explain the available experimental observations, but also motivate new experiments.

  5. Material Misfits

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Issues submit Material Misfits How well nanocomposite materials align at their interfaces determines what properties they have, opening broad new avenues of materials-science...

  6. Excitonic Processes in Nanostructured Optoelectronic Devices...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    At UDC he worked on the application of organic materials to LEDs for full color flat panel displays and thin film photovoltaics for solar cell and detector applications. His...

  7. Discrete Fourier transform in nanostructures using scattering Michael N. Leuenbergera)

    E-Print Network [OSTI]

    Flatte, Michael E.

    Discrete Fourier transform in nanostructures using scattering Michael N. Leuenbergera) and Michael that the discrete Fourier transform DFT can be performed by scattering a coherent particle or laser beam off the initial vector into the two-dimensional potential by means of electric gates, the Fourier

  8. SOFT LASER DESORPTION IONIZATION -MALDI, DIOS AND NANOSTRUCTURES

    E-Print Network [OSTI]

    Vertes, Akos

    Chapter 20 SOFT LASER DESORPTION IONIZATION - MALDI, DIOS AND NANOSTRUCTURES Akos Veites Department on and the method of rapid heating was proposed to minimize the latter (Beuhler, et al., 1974). Lasers with respect to the ultimate size of the biomolecules (m/z Laser Ablation and its

  9. Ripening of one-dimensional molecular nanostructures on

    E-Print Network [OSTI]

    Steinhoff, Heinz-Jürgen

    self-assembly became of great importance to enable the tailoring of such molecular structures (forRipening of one-dimensional molecular nanostructures on insulating surfaces Master Thesis Tobias, because of the well-known physical limits in silicon technology. To overcome obsta- cles of silicon-based

  10. Nanostructure and molecular mechanics of spider dragline silk

    E-Print Network [OSTI]

    Buehler, Markus J.

    Nanostructure and molecular mechanics of spider dragline silk protein assemblies Sinan Keten1 clavipes spider dragline silk sequence, obtained using replica exchange molecular dynamics, and subject found in dragline silks with similar sequences across species (Gatesy et al. 2001). One of the most

  11. Nanostructured transition metal oxides useful for water oxidation catalysis

    DOE Patents [OSTI]

    Frei, Heinz M; Jiao, Feng

    2013-12-24

    The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H.sub.2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.

  12. Nanoscience and Nanostructures for Photovoltaics and Solar Fuels

    E-Print Network [OSTI]

    Wu, Zhigang

    at lower cost. These approaches and applications are labeled third generation solar photon conversionNanoscience and Nanostructures for Photovoltaics and Solar Fuels Arthur J. Nozik National Renewable to enhance the power conversion efficiency of solar cells for photovoltaic and solar fuels production

  13. NANO REVIEW Enhancing Solar Cell Efficiencies through 1-D Nanostructures

    E-Print Network [OSTI]

    Chen, Junhong

    energy is not occurring due to the high cost and inadequate efficiencies of existing solar cells of solar energy is the high cost and inadequate efficiencies of existing solar cells. InnovationsNANO REVIEW Enhancing Solar Cell Efficiencies through 1-D Nanostructures Kehan Yu Ć Junhong Chen

  14. Multi-Exciton Generation in Nanostructured Solar Cells

    E-Print Network [OSTI]

    Multi-Exciton Generation in Nanostructured Solar Cells 1 G.T. Zimanyi UC Davis The energy challenge is one of the greatest moral and intellectual imperatives of our age The science of energy I. Why study Solar Energy Conversion? II. Entry points for physicists into Energy Science III. Multi

  15. Nanostructure Changes in Lung Surfactant Monolayers Induced by Interactions between

    E-Print Network [OSTI]

    Zasadzinski, Joseph A.

    Nanostructure Changes in Lung Surfactant Monolayers Induced by Interactions between: October 4, 2002 Developing synthetic lung surfactants to replace animal extracts requires a fundamental understanding of the roles of the various lipids and proteins in native lung surfactant. We used Brewster angle

  16. Dielectric nanostructures for broadband light trapping in organic solar cells

    E-Print Network [OSTI]

    Fan, Shanhui

    Dielectric nanostructures for broadband light trapping in organic solar cells Aaswath Raman, Zongfu@stanford.edu Abstract: Organic bulk heterojunction solar cells are a promising candidate for low-cost next lying on top of the organic solar cell stack produce a 8-15% increase in photocurrent for a model

  17. Array of titanium dioxide nanostructures for solar energy utilization

    DOE Patents [OSTI]

    Qiu, Xiaofeng; Parans Paranthaman, Mariappan; Chi, Miaofang; Ivanov, Ilia N; Zhang, Zhenyu

    2014-12-30

    An array of titanium dioxide nanostructures for solar energy utilization includes a plurality of nanotubes, each nanotube including an outer layer coaxial with an inner layer, where the inner layer comprises p-type titanium dioxide and the outer layer comprises n-type titanium dioxide. An interface between the inner layer and the outer layer defines a p-n junction.

  18. Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells

    E-Print Network [OSTI]

    Atwater, Harry

    . Photovoltaics (PV) technology is currently enjoying sub- stantial growth and investment. Although there are manyPlasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells Vivian E. Ferry, Luke Physics, California Institute of Technology, Pasadena, California 91125 Received July 25, 2008; Revised

  19. 1 JOURNALOF NANOSCIENCEAND NANCYECHNOLOGY New Hetero Silicon-Carbon Nanostructure

    E-Print Network [OSTI]

    Ayres, Virginia

    by electron microscopies and micro Raman spectroscopies. The potential of this method for large-scale controlled production of nano heterostructures without the requirement of a common catalyst is explored wafer in methane-hydrogen-argon plasma. The carbon nanostructures were shown to be multi-walled carbon

  20. 5D Data Storage by Ultrafast Laser Nanostructuring in Glass

    E-Print Network [OSTI]

    Anderson, Jim

    5D Data Storage by Ultrafast Laser Nanostructuring in Glass Jingyu Zhang* , Mindaugas Gecevicius-assembled form birefringence and retrieved in glass opening the era of unlimited lifetime data storage. © 2013 laser writing in glass were proposed for the polarization multiplexed optical memory, where

  1. Nanostructuring Titania by Embossing with Polymer Molds Made from Anodic

    E-Print Network [OSTI]

    McGehee, Michael

    Nanostructuring Titania by Embossing with Polymer Molds Made from Anodic Alumina Templates Chiatzun(methyl methacrylate) (PMMA) molds to make thin films of titania that have dense arrays of 35-65 nm diameter pores, whose features are 1 order of magnitude smaller than those previously demonstrated for sol-gel molding

  2. Enhanced radiative heat transfer between nanostructured gold plates

    E-Print Network [OSTI]

    R. Guérout; J. Lussange; F. S. S. Rosa; J. -P. Hugonin; D. A. R. Dalvit; J. -J. Greffet; A. Lambrecht; S. Reynaud

    2012-03-07

    We compute the radiative heat transfer between nanostructured gold plates in the framework of the scattering theory. We predict an enhancement of the heat transfer as we increase the depth of the corrugations while keeping the distance of closest approach fixed. We interpret this effect in terms of the evolution of plasmonic and guided modes as a function of the grating's geometry.

  3. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity

    E-Print Network [OSTI]

    Cui, Yi

    and have been used in many applications such as bioelectronics and energy storage devices. They are often demonstrated great potential for a broad range of applications from energy storage devices such as biofuelHierarchical nanostructured conducting polymer hydrogel with high electrochemical activity Lijia

  4. Nanostructured Metal Oxide Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOriginMaterials by Ultra-High-ResolutionMaterials as

  5. Nanostructured Metal Oxide Anodes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOriginMaterials by Ultra-High-ResolutionMaterials as09 DOE

  6. Nanostructures in Skutterudites | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOriginMaterials by Ultra-High-ResolutionMaterials

  7. Composite WO3/TiO2 nanostructures for high electrochromic activity.

    SciTech Connect (OSTI)

    Reyes, Karla Rosa; Stephens, Zachary Dan.; Robinson, David B.

    2013-05-01

    A composite material consisting of TiO2 nanotubes (NTs) with WO3 electrodeposited homogeneously on its surface has been fabricated, detached from its substrate, and attached to a fluorine-doped tin oxide film on glass for application to electrochromic (EC) reactions. A paste of TiO2 made from commercially available TiO2 nanoparticles creates an interface for the TiO2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length on the current density and the EC contrast of the material were studied. The EC redox reaction seen in this material is diffusion- limited, having relatively fast reaction rates at the electrode surface. The composite WO3/TiO2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast and longer memory time compared with the pure WO3 and TiO2.

  8. Novel Approach to Plasma Facing Materials in Nuclear Fusion Reactors

    SciTech Connect (OSTI)

    Livramento, V.; Correia, J. B.; Shohoji, N.; Osawa, E.; Nunes, D.

    2008-04-07

    A novel material design in nuclear fusion reactors is proposed based on W-nDiamond nanostructured composites. Generally, a microstructure refined to the nanometer scale improves the mechanical strength due to modification of plasticity mechanisms. Moreover, highly specific grain-boundary area raises the number of sites for annihilation of radiation induced defects. However, the low thermal stability of fine-grained and nanostructured materials demands the presence of particles at the grain boundaries that can delay coarsening by a pinning effect. As a result, the concept of a composite is promising in the field of nanostructured materials. The hardness of diamond renders nanodiamond dispersions excellent reinforcing and stabilization candidates and, in addition, diamond has extremely high thermal conductivity. Consequently, W-nDiamond nanocomposites are promising candidates for thermally stable first-wall materials. The proposed design involves the production of W/W-nDiamond/W-Cu/Cu layered castellations. The W, W-nDiamond and W-Cu layers are produced by mechanical alloying followed by a consolidation route that combines hot rolling with spark plasma sintering (SPS). Layer welding is achieved by spark plasma sintering. The present work describes the mechanical alloying processsing and consolidation route used to produce W-nDiamond composites, as well as microstructural features and mechanical properties of the material produced Long term plasma exposure experiments are planned at ISTTOK and at FTU (Frascati)

  9. nature materials | VOL 2 | OCTOBER 2003 | www.nature.com/naturematerials 689 ver the past decade great progress has been made on synthesis of

    E-Print Network [OSTI]

    Natelson, Douglas

    the past decade great progress has been made on synthesis of nanostructures as a tool-set for new materials containing ZnO nanocrystals as the inorganic component, both phases are oriented in the hybrid materialARTICLES nature materials | VOL 2 | OCTOBER 2003 | www.nature.com/naturematerials 689 O ver

  10. Volatile Organic Compound Detection Using Nanostructured Copolymers

    E-Print Network [OSTI]

    Weiss, Lee E.

    conductivity of these copolymers increased or decreased depending upon the polymer composition and the specific,3-6 conductive poly- mers (CPs),7-12 and carbon black-polymer composites.13,14 Metal oxide materials Carbon black-polymer composites have also attracted a lot of research interest as a promising sensing

  11. Thermal tuning of infrared resonant absorbers based on hybrid gold-VO{sub 2} nanostructures

    SciTech Connect (OSTI)

    Kocer, Hasan; Butun, Serkan; Aydin, Koray; Banar, Berker; Wang, Kevin; Wu, Junqiao; Tongay, Sefaatttin

    2015-04-20

    Resonant absorbers based on plasmonic materials, metamaterials, and thin films enable spectrally selective absorption filters, where absorption is maximized at the resonance wavelength. By controlling the geometrical parameters of nano/microstructures and materials' refractive indices, resonant absorbers are designed to operate at wide range of wavelengths for applications including absorption filters, thermal emitters, thermophotovoltaic devices, and sensors. However, once resonant absorbers are fabricated, it is rather challenging to control and tune the spectral absorption response. Here, we propose and demonstrate thermally tunable infrared resonant absorbers using hybrid gold-vanadium dioxide (VO{sub 2}) nanostructure arrays. Absorption intensity is tuned from 90% to 20% and 96% to 32% using hybrid gold-VO{sub 2} nanowire and nanodisc arrays, respectively, by heating up the absorbers above the phase transition temperature of VO{sub 2} (68?°C). Phase change materials such as VO{sub 2} deliver useful means of altering optical properties as a function of temperature. Absorbers with tunable spectral response can find applications in sensor and detector applications, in which external stimulus such as heat, electrical signal, or light results in a change in the absorption spectrum and intensity.

  12. New Composite Thermoelectric Materials for Macro-size Applications

    ScienceCinema (OSTI)

    Dresselhaus, Mildred [MIT, Cambridge, Massachusetts, United States

    2010-01-08

    A review will be given of several important recent advances in both thermoelectrics research and industrial thermoelectric applications, which have attracted much attention, increasing incentives for developing advanced materials appropriate for large-scale applications of thermoelectric devices. One promising strategy is the development of materials with a dense packing of random nanostructures as a route for the sacle-up of thermoelectrics applications. The concepts involved in designing composite materials containing nanostructures for thermoelectric applications will be discussed in general terms. Specific application is made to the Bi{sub 2}Te{sub 3} nanocomposite system for use in power generation. Also emphasized are the scientific advantages of the nanocomposite approach for the simultaneous increase in the power factor and decrease of the thermal conductivity, along with the practical advantages of having bulk samples for property measurements and device applications. A straightforward path is identified for the scale-up of thermoelectric materials synthesis containing nanostructured constituents for use in thermoelectric applications. We end with some vision of where the field of thermoelectrics is now heading.

  13. Nanocomposite Magnets: Transformational Nanostructured Permanent Magnets

    SciTech Connect (OSTI)

    2010-10-01

    Broad Funding Opportunity Announcement Project: GE is using nanomaterials technology to develop advanced magnets that contain fewer rare earth materials than their predecessors. Nanomaterials technology involves manipulating matter at the atomic or molecular scale, which can represent a stumbling block for magnets because it is difficult to create a finely grained magnet at that scale. GE is developing bulk magnets with finely tuned structures using iron-based mixtures that contain 80% less rare earth materials than traditional magnets, which will reduce their overall cost. These magnets will enable further commercialization of HEVs, EVs, and wind turbine generators while enhancing U.S. competitiveness in industries that heavily utilize these alternatives to rare earth minerals.

  14. Ternary oxide nanostructures and methods of making same

    DOE Patents [OSTI]

    Wong, Stanislaus S. (Stony Brook, NY); Park, Tae-Jin (Port Jefferson, NY)

    2009-09-08

    A single crystalline ternary nanostructure having the formula A.sub.xB.sub.yO.sub.z, wherein x ranges from 0.25 to 24, and y ranges from 1.5 to 40, and wherein A and B are independently selected from the group consisting of Ag, Al, As, Au, B, Ba, Br, Ca, Cd, Ce, Cl, Cm, Co, Cr, Cs, Cu, Dy, Er, Eu, F, Fe, Ga, Gd, Ge, Hf, Ho, I, In, Ir, K, La, Li, Lu, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Rb, Re, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Tc, Te, Ti, Tl, Tm, U, V, W, Y, Yb, and Zn, wherein the nanostructure is at least 95% free of defects and/or dislocations.

  15. Electrodeposition of Zn based nanostructure thin films for photovoltaic applications

    SciTech Connect (OSTI)

    Al-Bat’hi, S. A. M.

    2015-03-30

    We present here a systematic study on the synthesis thin films of various ZnO, CdO, Zn{sub x}Cd{sub 1-x} (O) and ZnTe nanostructures by electrodeposition technique with ZnCl{sub 2,} CdCl{sub 2} and ZnSO{sub 4} solution as starting reactant. Several reaction parameters were examined to develop an optimal procedure for controlling the size, shape, and surface morphology of the nanostructure. The results showed that the morphology of the products can be carefully controlled through adjusting the concentration of the electrolyte. The products present well shaped Nanorods arrays at specific concentration and temperature. UV-VIS spectroscopy and X-ray diffraction results show that the product presents good crystallinity. A possible formation process has been proposed.

  16. Nanostructure Determination by Co-Refining Models to Multiple Datasets

    SciTech Connect (OSTI)

    Billinge, Simon

    2011-05-31

    The results of the work are contained in the publications resulting from the grant (which are listed below). Here I summarize the main findings from the last period of the award, 2006-2007: • Published a paper in Science with Igor Levin outlining the “Nanostructure Problem”, our inability to solve structure at the nanoscale. • Published a paper in Nature demonstrating the first ever ab-initio structure determination of a nanoparticle from atomic pair distribution function (PDF) data. • Published one book and 3 overview articles on PDF methods and the nanostructure problem. • Completed a project that sought to find a structural response to the presence of the so-called “intermediate phase” in network glasses which appears close to the rigidity percolation threshold in these systems. The main result was that we did not see convincing evidence for this, which drew into doubt the idea that GexSe1-x glasses were a model system exhibiting rigidity percolation.

  17. Effect of Droplet Morphology on Growth Dynamics and Heat Transfer during Condensation on Superhydrophobic Nanostructured Surfaces

    E-Print Network [OSTI]

    Miljkovic, Nenad

    Condensation on superhydrophobic nanostructured surfaces offers new opportunities for enhanced energy conversion, efficient water harvesting, and high performance thermal management. These surfaces are designed to be Cassie ...

  18. Magnetic domain wall manipulation in (Ga,Mn)As nanostructures for spintronic applications

    SciTech Connect (OSTI)

    Wosinski, Tadeusz; Andrearczyk, Tomasz; Figielski, Tadeusz; Olender, Karolina; Wrobel, Jerzy

    2014-02-21

    Ring-shaped nanostructures have been designed and fabricated by electron-beam lithography patterning and chemical etching from thin epitaxial layers of the ferromagnetic semiconductor (Ga,Mn)As. The nanostructures, in a form of planar rings with a slit, were supplied with four electrical terminals and subjected to magneto-transport studies under planar weak magnetic field. Magnetoresistive effects caused by manipulation of magnetic domain walls and magnetization reversal in the nanostructures have been investigated and possible applications of the nanostructures as four-terminal spintronic devices are discussed.

  19. Enhanced anomalous photo-absorption from TiO{sub 2} nanostructures

    SciTech Connect (OSTI)

    Solanki, Vanaraj; Majumder, Subrata; Mishra, Indrani; Varma, Shikha; Dash, P.; Singh, C.; Kanjilal, D.

    2014-03-28

    Two dimensional nanostructures have been created on the rutile TiO{sub 2} (110) surfaces via ion irradiation technique. Enhanced anomalous photo- absorption response is displayed, where nanostructures of 15?nm diameter with 0.5?nm height, and not the smaller nanostructures with larger surface area, delineate highest absorbance. Comprehensive investigations of oxygen vacancy states, on ion- irradiated surfaces, display a remarkable result that the number of vacancies saturates for higher fluences. A competition between the number of vacancy sites on the nanostructure in conjunction with its size is responsible for the observed anomalous photo-absorption.

  20. Design of Nanostructured Solar Cells Using Coupled Optical and Electrical Modeling

    E-Print Network [OSTI]

    Deceglie, Michael G

    2014-01-01

    novel route toward optical solar cell design, in which lightDesign of Nanostructured Solar Cells Using Coupled Opticaland electrical design of light trapping in solar cells is

  1. The interplay of structure and optical properties in individual semiconducting nanostructures

    E-Print Network [OSTI]

    Brewster, Megan Marie

    2011-01-01

    Semiconductor nanostructures exhibit distinct properties by virtue of nano-scale dimensionality, allowing for investigations of fundamental physics and the improvement of optoelectronic devices. Nanoscale morphological ...

  2. Forensics of Soot: C5-Related Nanostructure as a Diagnostic of In-Cylinder Chemistry

    Broader source: Energy.gov [DOE]

    Changes observed in nanostructure of soot produced by experimental light-duty diesel engine with varying degrees of biodiesel fuel blending

  3. CVD Growth of Carbon Nanostructures from Zirconia: Mechanisms and a Method for Enhancing Yield

    E-Print Network [OSTI]

    Kudo, Akira

    By excluding metals from synthesis, growth of carbon nanostructures via unreduced oxide nanoparticle catalysts offers wide technological potential. We report new observations of the mechanisms underlying chemical vapor ...

  4. Many-body Interactions in Magnetic Films and Nanostructures

    SciTech Connect (OSTI)

    Stephen D. Kevan

    2012-12-12

    We describe results supported by DOE grant DE-FG02-04ER46158, which focused on magnetic interaction at surfaces, in thin films, and in metallic nanostructures. We report on three general topics: 1) The Rashba spin splitting at magnetic surfaces of rare earth metals, 2) magnetic nanowires self-assembled on stepped tungsten single crystals, and 3) magnetic interaction in graphene films doped with hydrogen atoms.

  5. Nano-structured polymer composites and process for preparing same

    DOE Patents [OSTI]

    Hillmyer, Marc; Chen, Liang

    2013-04-16

    A process for preparing a polymer composite that includes reacting (a) a multi-functional monomer and (b) a block copolymer comprising (i) a first block and (ii) a second block that includes a functional group capable of reacting with the multi-functional monomer, to form a crosslinked, nano-structured, bi-continuous composite. The composite includes a continuous matrix phase and a second continuous phase comprising the first block of the block copolymer.

  6. Interface and nanostructure evolution of cobalt germanides on Ge(001)

    SciTech Connect (OSTI)

    Grzela, T., E-mail: grzela@ihp-microelectronics.com; Schubert, M. A. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Koczorowski, W. [London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London, WC1H 0AH,United Kingdom (United Kingdom); Institute of Physics, Poznan University of Technology, Nieszawska 13A, 60-965 Poznan (Poland); Capellini, G. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Dipartimento di Scienze, Universitŕ degli Studi Roma Tre, I-00146 Roma (Italy); Czajka, R. [Institute of Physics, Poznan University of Technology, Nieszawska 13A, 60-965 Poznan (Poland); Radny, M. W. [Institute of Physics, Poznan University of Technology, Nieszawska 13A, 60-965 Poznan (Poland); School of Mathematical and Physical Sciences, The University of Newcastle, University Drive, Callaghan NSW, 2308 (Australia); Curson, N.; Schofield, S. R. [London Centre for Nanotechnology, University College London, 17-19 Gordon Street, London, WC1H 0AH,United Kingdom (United Kingdom); Schroeder, T. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); BTU Cottbus, Konrad-Zuse Str. 1, 03046 Cottbus (Germany)

    2014-02-21

    Cobalt germanide (Co{sub x}Ge{sub y}) is a candidate system for low resistance contact modules in future Ge devices in Si-based micro and nanoelectronics. In this paper, we present a detailed structural, morphological, and compositional study on Co{sub x}Ge{sub y} formation on Ge(001) at room temperature metal deposition and subsequent annealing. Scanning tunneling microscopy and low energy electron diffraction clearly demonstrate that room temperature deposition of approximately four monolayers of Co on Ge(001) results in the Volmer Weber growth mode, while subsequent thermal annealing leads to the formation of a Co-germanide continuous wetting layer which evolves gradually towards the growth of elongated Co{sub x}Ge{sub y} nanostructures. Two types of Co{sub x}Ge{sub y} nanostructures, namely, flattop- and ridge-type, were observed and a systematic study on their evolution as a function of temperature is presented. Additional transmission electron microscopy and x-ray photoemission spectroscopy measurements allowed us to monitor the reaction between Co and Ge in the formation process of the Co{sub x}Ge{sub y} continuous wetting layer as well as the Co{sub x}Ge{sub y} nanostructures.

  7. Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces

    SciTech Connect (OSTI)

    Miljkovic, N; Enright, R; Nam, Y; Lopez, K; Dou, N; Sack, J; Wang, E

    2012-01-01

    When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured surfaces can not only allow for easy droplet removal at micrometric length scales during condensation but also promise to enhance heat transfer performance. However, the rationale for the design of an ideal nanostructured surface as well as heat transfer experiments demonstrating the advantage of this jumping behavior are lacking. Here, we show that silanized copper oxide surfaces created via a simple fabrication method can achieve highly efficient jumping-droplet condensation heat transfer. We experimentally demonstrated a 25% higher overall heat flux and 30% higher condensation heat transfer coefficient compared to state-of-the-art hydrophobic condensing surfaces at low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also promises a low cost and scalable approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification. Furthermore, the results offer insights and an avenue to achieve high flux superhydrophobic condensation.

  8. Extraordinary Photon Transport by Near-Field Coupling of a Nanostructured Metamaterial with a Graphene-Covered Plate

    E-Print Network [OSTI]

    Chang, Jui-Yung; Wang, Liping

    2015-01-01

    Coupled surface plasmon/phonon polaritons and hyperbolic modes are known to enhance radiative transport across nanometer vacuum gaps but usually require identical materials. It becomes crucial to achieve strong near-field energy transfer between dissimilar materials for applications like near-field thermophotovoltaic and thermal rectification. In this work, we theoretically demonstrate extraordinary near-field radiative transport between a nanostructured metamaterial emitter and a graphene-covered planar receiver. Strong near-field coupling with two orders of magnitude enhancement in the spectral heat flux is achieved at the gap distance of 20 nm. By carefully selecting the graphene chemical potential and doping levels of silicon nanohole emitter and silicon plate receiver, the total near-field radiative heat flux can reach about 500 times higher than the far-field blackbody limit between 400 K and 300 K. The physical mechanisms are elucidated by the near-field surface plasmon coupling with fluctuational elec...

  9. Covetic Materials

    Broader source: Energy.gov (indexed) [DOE]

    Can re-melt, dilute, alloy... Fabrication of Covetic Materials - Nanocarbon Infusion 3 4 Technical Approach Unusual Characteristics of Covetic Materials ("covalent" &...

  10. A Roadmap to Control Penguin Effects in $B^0_d\\to J/\\psi K_{\\rm S}^0$ and $B^0_s\\to J/\\psi \\phi$

    E-Print Network [OSTI]

    De Bruyn, Kristof

    2014-01-01

    Measurements of CP violation in $B^0_d\\to J/\\psi K_{\\rm S}^0$ and $B^0_s\\to J/\\psi \\phi$ decays play key roles in testing the quark-flavour sector of the Standard Model. The theoretical interpretation of the corresponding observables is limited by uncertainties from doubly Cabibbo-suppressed penguin topologies. With continuously increasing experimental precision, it is mandatory to get a handle on these contributions, which cannot be calculated reliably in QCD. In the case of the measurement of $\\sin2\\beta$ from $B^0_d\\to J/\\psi K_{\\rm S}^0$, the $U$-spin-related decay $B^0_s\\to J/\\psi K_{\\rm S}^0$ offers a tool to control the penguin effects. As the required measurements are not yet available, we use data for decays with similar dynamics and the $SU(3)$ flavour symmetry to constrain the size of the expected penguin corrections. We predict the CP asymmetries of $B^0_s\\to J/\\psi K_{\\rm S}^0$ and present a scenario to fully exploit the physics potential of this decay, emphasising also the determination of hadro...

  11. Survey of Materials for Nanoskiving and Influence of the Cutting Process on the

    E-Print Network [OSTI]

    Church, George M.

    -hexylthiophene) (P3HT), and poly(benzimidazobenzophenanthroline ladder) (BBL), and the conductive polymer poly(3 materials (metals, ceramics, semiconductors, and conjugated polymers), deposition techniques (evaporation the extent of fragmentation of the nanostructures with the composition of the thin films, the methods used

  12. Advanced Materials . 2012, 24, 25922597 High-Rate Capability Silicon Decorated Vertically AlignedCarbon

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    a leading technology for medical and electronic devices as well as electric vehicles. The increasing demand.[1] Then, as nanotechnology develops, various Si-nanostructures have emerged as an appropriate anode material. Specific charge storage capacity about 2000 mAh g-1 is available and stable after one

  13. Probing Compositional Variation within Hybrid Nanostructures

    SciTech Connect (OSTI)

    Yuhas, Benjamin D.; Habas, Susan E.; Fakra, Sirine C.; Mokari, Taleb

    2010-06-22

    We present a detailed analysis of the structural and magnetic properties of solution-grown PtCo-CdS hybrid structures in comparison to similar free-standing PtCo alloy nanoparticles. X-ray absorption spectroscopy is utilized as a sensitive probe for identifying subtle differences in the structure of the hybrid materials. We found that the growth of bimetallic tips on a CdS nanorod substrate leads to a more complex nanoparticle structure composed of a PtCo alloy core and thin CoO shell. The core-shell architecture is an unexpected consequence of the different nanoparticle growth mechanism on the nanorod tip, as compared to free growth in solution. Magnetic measurements indicate that the PtCo-CdS hybrid structures are superparamagnetic despite the presence of a CoO shell. The use of X-ray spectroscopic techniques to detect minute differences in atomic structure and bonding in complex nanosystems makes it possible to better understand and predict catalytic or magnetic properties for nanoscale bimetallic hybrid materials.

  14. material protection

    National Nuclear Security Administration (NNSA)

    %2A en Office of Weapons Material Protection http:www.nnsa.energy.govaboutusourprogramsnonproliferationprogramofficesinternationalmaterialprotectionandcooperation-1

  15. Critical Materials:

    Office of Environmental Management (EM)

    Extraction Separation Processes for Critical Materials in 30- 21 Stage Test Facility (Bruce Moyer) ......

  16. Materials Scientist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Materials Research Engineer; Metallurgical/Chemical Engineer; Product Development Manager;

  17. Formation of Carbon Nanostructures in Cobalt- and Nickel-Doped Carbon Aerogels

    SciTech Connect (OSTI)

    Fu, R; Baumann, T F; Cronin, S; Dresselhaus, G; Dresselhaus, M; Satcher, Jr., J H

    2004-11-09

    We have prepared carbon aerogels (CAs) doped with cobalt or nickel through sol-gel polymerization of formaldehyde with the potassium salt of 2,4-dihydroxybenzoic acid, followed by ion-exchange with M(NO{sub 3}){sub 2} (where M = Co{sup 2+} or Ni{sup 2+}), supercritical drying with liquid CO{sub 2} and carbonization at temperatures between 400 C and 1050 C under an N{sub 2} atmosphere. The nanostructures of these metal-doped carbon aerogels were characterized by elemental analysis, nitrogen adsorption, high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Metallic nickel and cobalt nanoparticles are generated during the carbonization process at about 400 C and 450 C, respectively, forming nanoparticles that are {approx}4 nm in diameter. The sizes and size dispersion of the metal particles increase with increasing carbonization temperatures for both materials. The carbon frameworks of the Ni- and Co-doped aerogels carbonized below 600 C mainly consist of interconnected carbon particles with a size of 15 to 30 nm. When the samples are pyrolyzed at 1050 C, the growth of graphitic nanoribbons with different curvatures is observed in the Ni and Co-doped carbon aerogel materials. The distance of graphite layers in the nanoribbons is about 0.38 nm. These metal-doped CAs retain the overall open cell structure of metal-free CAs, exhibiting high surface areas and pore diameters in the micro and mesoporic region.

  18. Nanostructured Basic Catalysts: Opportunities for Renewable Fuels

    SciTech Connect (OSTI)

    Conner, William C; Huber, George; Auerbach, Scott

    2009-06-30

    This research studied and developed novel basic catalysts for production of renewable chemicals and fuels from biomass. We focused on the development of unique porous structural-base catalysts zeolites. These catalysts were compared to conventional solid base materials for aldol condensation, that were being commercialized for production of fuels from biomass and would be pivotal in future biomass conversion to fuels and chemicals. Specifically, we had studied the aldolpyrolysis over zeolites and the trans-esterification of vegetable oil with methanol over mixed oxide catalysts. Our research has indicated that the base strength of framework nitrogen in nitrogen substituted zeolites (NH-zeolites) is nearly twice as strong as in standard zeolites. Nitrogen substituted catalysts have been synthesized from several zeolites (including FAU, MFI, BEA, and LTL) using NH3 treatment.

  19. Method of making nanostructured glass-ceramic waste forms

    DOE Patents [OSTI]

    Gao, Huizhen; Wang, Yifeng; Rodriguez, Mark A.; Bencoe, Denise N.

    2012-12-18

    A method of rendering hazardous materials less dangerous comprising trapping the hazardous material in nanopores of a nanoporous composite material, reacting the trapped hazardous material to render it less volatile/soluble, sealing the trapped hazardous material, and vitrifying the nanoporous material containing the less volatile/soluble hazardous material.

  20. Aerosol Spray Pyrolysis Synthesis of CZTS Nanostructures for Photovoltaic Applications

    E-Print Network [OSTI]

    Exarhos, Stephen

    2015-01-01

    Cells. ” Solar Energy Materials and Solar Cells 94, no. 12 (Precursors. ” Solar Energy Materials and Solar Cells, 17thNanoparticles? ” Solar Energy Materials and Solar Cells

  1. Growth and Characterization of Semiconductor Nanostructures for Nanoelectronics

    E-Print Network [OSTI]

    Zhong, Jiebin

    2011-01-01

    of semiconductors. Physics and materials properties.of semiconductors. Physics and materials properties, 1996.properties [19, 46-52], compared with bulk materials. In general, when semiconductor

  2. Aerosol Spray Pyrolysis Synthesis of CZTS Nanostructures for Photovoltaic Applications

    E-Print Network [OSTI]

    Exarhos, Stephen

    2015-01-01

    Nanoparticles? ” Solar Energy Materials and Solar CellsPrecursors. ” Solar Energy Materials and Solar Cells 49, no.Precursors. ” Solar Energy Materials and Solar Cells, 17th

  3. Aerosol Spray Pyrolysis Synthesis of CZTS Nanostructures for Photovoltaic Applications

    E-Print Network [OSTI]

    Exarhos, Stephen

    2015-01-01

    Efficiency. ” Advanced Energy Materials 4, no. 7 (2014): n/Nanoparticles? ” Solar Energy Materials and Solar CellsPrecursors. ” Solar Energy Materials and Solar Cells 49, no.

  4. PHYSICAL REVIEW B 84, 045424 (2011) Engineered optical nonlocality in nanostructured metamaterials

    E-Print Network [OSTI]

    2011-01-01

    PHYSICAL REVIEW B 84, 045424 (2011) Engineered optical nonlocality in nanostructured metamaterials-dielectric structures, which can be considered as a simple example of nanostructured metamaterials. We demonstrate that of the transverse-magnetic polarized beam refracted at an air-metamaterial interface. DOI: 10.1103/PhysRevB.84

  5. Three-body abrasive wear of fine pearlite, nanostructured bainite and martensite

    E-Print Network [OSTI]

    Cambridge, University of

    Three-body abrasive wear of fine pearlite, nanostructured bainite and martensite S. Das Bakshi1a steel. The particular steel concerned is a recent innovation capable of generating extremely fine into extremely fine pearlite, nanostructured bainite, and plate martensite. It is found that although the abra

  6. Methods of making metal oxide nanostructures and methods of controlling morphology of same

    DOE Patents [OSTI]

    Wong, Stanislaus S; Hongjun, Zhou

    2012-11-27

    The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.

  7. Nano-structured vanadium: processing and mechanical properties under quasi-static and dynamic compression

    E-Print Network [OSTI]

    Wei, Qiuming

    Nano-structured vanadium: processing and mechanical properties under quasi-static and dynamic compression Q. Wei a,*, T. Jiao a , K.T. Ramesh a , E. Ma b a Department of Mechanical Engineering, The Johns that the grain size of the consolidated V is around 100 nm. Mechanical properties of the nano-structured V were

  8. Nanostructures of Boron, Carbon and Magnesium Diboride for High Temperature Superconductivity

    SciTech Connect (OSTI)

    Pfefferle, Lisa; Fang, Fang; Iyyamperumal, Eswarmoorthi; Keskar, Gayatri

    2013-12-23

    Direct fabrication of MgxBy nanostructures is achieved by employing metal (Ni,Mg) incorporated MCM-41 in the Hybrid Physical-Chemical Vapor Deposition (HPCVD) reaction. Different reaction conditions are tested to optimize the fabrication process. TEM analysis shows the fabrication of MgxBy nanostructures starting at the reaction temperature of 600oC, with the yield of the nanostructures increasing with increasing reaction temperature. The as-synthesized MgxBy nanostructures have the diameters in the range of 3-5nm, which do not increase with the reaction temperature consistent with templated synthesis. EELS analysis of the template removed nanostructures confirms the existence of B and Mg with possible contamination of Si and O. NEXAFS and Raman spectroscopy analysis suggested a concentric layer-by-layer MgxBy nanowire/nanotube growth model for our as-synthesized nanostructures. Ni k-edge XAS indicates that the formation of MgNi alloy particles is important for the Vapor-Liquid-Solid (VLS) growth of MgxBy nanostructures with fine diameters, and the presence of Mg vapor not just Mg in the catalyst is crucial for the formation of Ni-Mg clusters. Physical templating by the MCM-41 pores was shown to confine the diameter of the nanostructures. DC magnetization measurements indicate possible superconductive behaviors in the as-synthesized samples.

  9. University of Pavia -Physics Department "A. Volta" Photonics and Nanostructures Group

    E-Print Network [OSTI]

    ://fisicavolta.unipv.it/Nanophotonics Postdoctoral position on "Radiation-matter interaction in photonic nanostructures" A post-doctoral position/plasmonic nanostructures. Study of light-trapping limits for ultra-thin film solar cells, comparison between ordered Starting date: January 2010 or to be agreed Starting Salary: Euro 18,000/year Contact: Prof. Lucio Claudio

  10. Nanolithographic Write, Read, and Erase via Reversible Nanotemplated Nanostructure Electrodeposition on

    E-Print Network [OSTI]

    Borguet, Eric

    ,17 andscanningprobemicroscopy(SPM) nanolithography.8,18-22 However, previous metal nanostructure nanofabrication processes have substrates. Electrochemical fabrication of metal nanostructures has been reported using SPM-based lithography in a hydrophilic region rather than in a hydrophobic area of the surface.23-25 A number of SPM lithographic methods

  11. Nanostructural considerations in giant magnetoresistive Co-Cu-based symmetric spin valves Harsh Deep Chopra*

    E-Print Network [OSTI]

    Chopra, Harsh Deep

    , for example, magnetic-field sensors and read-heads in data- storage devices.11 A key impedimentNanostructural considerations in giant magnetoresistive Co-Cu-based symmetric spin valves Harsh, on the nanostructure and resulting giant magnetoresistive properties of symmetric spin valves of the type Ni

  12. Reversal mechanisms of coupled bi-component magnetic nanostructures G. Shimon,1,2

    E-Print Network [OSTI]

    Adeyeye, Adekunle

    in applications such as high density information storage,1­3 domain wall (DW) logic,4,5 and memory devices.6Reversal mechanisms of coupled bi-component magnetic nanostructures G. Shimon,1,2 A. O. Adeyeye,1 Institute of Physics. [http://dx.doi.org/10.1063/1.4747446] Thin film ferromagnetic nanostructures have been

  13. Electrochemical Nanoscale Templating: Laterally Self-Aligned Growth of Organic-Metal Nanostructures

    E-Print Network [OSTI]

    Borguet, Eric

    attractive for a wide range of applications such as the fabrication of nanoscale devices, energy storage of nanostructures into 2D or 3D arrays is necessary for the further hierarchical development of devices. TemplatingElectrochemical Nanoscale Templating: Laterally Self-Aligned Growth of Organic-Metal Nanostructures

  14. Investigation of some new hydro(solvo)thermal synthesis routes to nanostructured mixed-metal oxides

    SciTech Connect (OSTI)

    Burnett, David L.; Harunsani, Mohammad H.; Kashtiban, Reza J.; Playford, Helen Y.; Sloan, Jeremy; Hannon, Alex C.; Walton, Richard I.

    2014-06-01

    We present a study of two new solvothermal synthesis approaches to mixed-metal oxide materials and structural characterisation of the products formed. The solvothermal oxidation of metallic gallium by a diethanolamine solution of iron(II) chloride at 240 °C produces a crystalline sample of a spinel-structured material, made up of nano-scale particles typically 20 nm in dimension. XANES spectroscopy at the K-edge shows that the material contains predominantly Fe{sup 2+} in an octahedral environment, but that a small amount of Fe{sup 3+} is also present. Careful analysis using transmission electron microscopy and powder neutron diffraction shows that the sample is actually a mixture of two spinel materials: predominantly (>97%) an Fe{sup 2+} phase Ga{sub 1.8}Fe{sub 1.2}O{sub 3.9}, but with a minor impurity phase that is iron-rich. In contrast, the hydrothermal reaction of titanium bis(ammonium lactato)dihydroxide in water with increasing amounts of Sn(IV) acetate allows nanocrystalline samples of the SnO{sub 2}–TiO{sub 2} solid solution to be prepared directly, as proved by powder XRD and Raman spectroscopy. - Graphical abstract: New solvothermal synthesis approaches to spinel and rutile mixed-metal oxides are reported. - Highlights: • Solvothermal oxidation of gallium metal in organic iron(II) solution gives a novel iron gallate spinel. • Hydrothermal reaction of titanium(IV) complex and tin(IV) acetate produces the complete SnO{sub 2}–TiO{sub 2} solid solution. • Nanostructured mixed-metal oxide phases are produced directly from solution.

  15. Thermoelectric infrared microsensors based on a periodically suspended thermopile integrating nanostructured Ge/SiGe quantum dots superlattice

    SciTech Connect (OSTI)

    Ziouche, K. E-mail: Zahia.bougrioua@iemn.univ-lille1.fr; Bougrioua, Z. E-mail: Zahia.bougrioua@iemn.univ-lille1.fr; Lejeune, P.; Lasri, T.; Leclercq, D.; Savelli, G.; Hauser, D.; Michon, P.-M.

    2014-07-28

    This paper presents an original integration of polycrystalline SiGe-based quantum dots superlattices (QDSL) into Thermoelectric (TE) planar infrared microsensors (?SIR) fabricated using a CMOS technology. The nanostructuration in QDSL results into a considerably reduced thermal conductivity by a factor up to 10 compared to the one of standard polysilicon layers that are usually used for IR sensor applications. A presentation of several TE layers, QDSL and polysilicon, is given before to describe the fabrication of the thermopile-based sensors. The theoretical values of the sensitivity to irradiance of ?SIR can be predicted thanks to an analytical model. These findings are used to interpret the experimental measurements versus the nature of the TE layer exploited in the devices. The use of nanostructured QDSL as the main material in ?SIR thermopile has brought a sensitivity improvement of about 28% consistent with theoretical predictions. The impact of QDSL low thermal conductivity is damped by the contribution of the thermal conductivity of all the other sub-layers that build up the device.

  16. Electrodes synthesized from carbon nanostructures coated with a smooth and conformal metal adlayer

    DOE Patents [OSTI]

    Adzic, Radoslav; Harris, Alexander

    2014-04-15

    High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The preferred manufacturing process involves the initial oxidation of the carbon nanostructures followed by a surface preparation process involving immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing a suitable quantity of non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means. The nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. The process can be controlled and repeated to obtain a desired film coverage. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

  17. Self-Assembled ErSb Nanostructures with Optical Applications...

    Office of Scientific and Technical Information (OSTI)

    electrodes - solar, defects, charge transport, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable...

  18. ZIRCONIUM OXIDE NANOSTRUCTURES PREPARED BY ANODIC OXIDATION

    SciTech Connect (OSTI)

    Dang, Y. Y.; Bhuiyan, M.S.; Paranthaman, M. P.

    2008-01-01

    Zirconium oxide is an advanced ceramic material highly useful for structural and electrical applications because of its high strength, fracture toughness, chemical and thermal stability, and biocompatibility. If highly-ordered porous zirconium oxide membranes can be successfully formed, this will expand its real-world applications, such as further enhancing solid-oxide fuel cell technology. Recent studies have achieved various morphologies of porous zirconium oxide via anodization, but they have yet to create a porous layer where nanoholes are formed in a highly ordered array. In this study, electrochemical methods were used for zirconium oxide synthesis due to its advantages over other coating techniques, and because the thickness and morphology of the ceramic fi lms can be easily tuned by the electrochemical parameters, such as electrolyte solutions and processing conditions, such as pH, voltage, and duration. The effects of additional steps such as pre-annealing and post-annealing were also examined. Results demonstrate the formation of anodic porous zirconium oxide with diverse morphologies, such as sponge-like layers, porous arrays with nanoholes ranging from 40 to 75 nm, and nanotube layers. X-ray powder diffraction analysis indicates a cubic crystallographic structure in the zirconium oxide. It was noted that increased voltage improved the ability of the membrane to stay adhered to the zirconium substrate, whereas lower voltages caused a propensity for the oxide fi lm to fl ake off. Further studies are needed to defi ne the parameters windows that create these morphologies and to investigate other important characteristics such as ionic conductivity.

  19. Method of making nanostructured glass-ceramic waste forms

    SciTech Connect (OSTI)

    Gao, Huizhen; Wang, Yifeng; Rodriguez, Mark A.; Bencoe, Denise N.

    2014-07-08

    A waste form for and a method of rendering hazardous materials less dangerous is disclosed that includes fixing the hazardous material in nanopores of a nanoporous material, reacting the trapped hazardous material to render it less volatile/soluble, and vitrifying the nanoporous material containing the less volatile/soluble hazardous material.

  20. Large area quantitative analysis of nanostructured thin-films

    E-Print Network [OSTI]

    Sliz, Rafal; Eneh, Chibuzor; Suzuki, Yuji; Czajkowski, Jakub; Fabritius, Tapio; Kathirgamanathan, Poopathy; Nathan, Arokia; Myllyla, Risto; Jabbour, Ghassan

    2015-01-09

    of SEM images of quantum dots and InP nanostructured thin-films are provided in the supple- mentary information. 3 Results 3.1 Physical Characterization The AFM and XRD techniques were used to verify the sur- face morphology and provide the reference... research subject for their high applicability in optoelectronics22–24. In addi- tion, self-assembled gold quantum dots and InP-based nanos- tructures were examined. Prior to the analysis, ZnO fabricated thin-films were additionally characterized with AFM...

  1. Engineered Nanostructured MEA Technology for Low Temperature Fuel Cells

    SciTech Connect (OSTI)

    Zhu, Yimin

    2009-07-16

    The objective of this project is to develop a novel catalyst support technology based on unique engineered nanostructures for low temperature fuel cells which: (1) Achieves high catalyst activity and performance; (2) Improves catalyst durability over current technologies; and (3) Reduces catalyst cost. This project is directed at the development of durable catalysts supported by novel support that improves the catalyst utilization and hence reduce the catalyst loading. This project will develop a solid fundamental knowledge base necessary for the synthetic effort while at the same time demonstrating the catalyst advantages in Direct Methanol Fuel Cells (DMFCs).

  2. Covalent functionalization of metal oxide and carbon nanostructures with polyoctasilsesquioxane (POSS) and their incorporation in polymer composites

    SciTech Connect (OSTI)

    Gomathi, A.; Gopalakrishnan, K.; Rao, C.N.R.

    2010-12-15

    Polyoctasilsesquioxane (POSS) has been employed to covalently functionalize nanostructures of TiO{sub 2}, ZnO and Fe{sub 2}O{sub 3} as well as carbon nanotubes, nanodiamond and graphene to enable their dispersion in polar solvents. Covalent functionalization of these nanostructures with POSS has been established by electron microscopy, EDAX analysis and infrared spectroscopy. On heating the POSS-functionalized nanostructures, silica-coated nanostructures are obtained. POSS-functionalized nanoparticles of TiO{sub 2}, Fe{sub 2}O{sub 3} and graphite were utilized to prepare polymer-nanostructure composites based on PVA and nylon-6,6.

  3. Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Database (TPMD) Aerospace Structural Metals Database (ASMD) Damage Tolerant Design Handbook (DTDH) Microelectronics Packaging Materials Database (MPMD) Structural Alloys...

  4. High-efficiency photovoltaics based on semiconductor nanostructures

    SciTech Connect (OSTI)

    Yu, Paul K.L.; Yu, Edward T.; Wang, Deli

    2011-10-31

    The objective of this project was to exploit a variety of semiconductor nanostructures, specifically semiconductor quantum wells, quantum dots, and nanowires, to achieve high power conversion efficiency in photovoltaic devices. In a thin-film device geometry, the objectives were to design, fabricate, and characterize quantum-well and quantum-dot solar cells in which scattering from metallic and/or dielectric nanostructures was employed to direct incident photons into lateral, optically confined paths within a thin (~1-3um or less) device structure. Fundamental issues concerning nonequilibrium carrier escape from quantum-confined structures, removal of thin-film devices from an epitaxial growth substrate, and coherent light trapping in thin-film photovoltaic devices were investigated. In a nanowire device geometry, the initial objectives were to engineer vertical nanowire arrays to optimize optical confinement within the nanowires, and to extend this approach to core-shell heterostructures to achieve broadspectrum absorption while maintaining high opencircuit voltages. Subsequent work extended this approach to include fabrication of nanowire photovoltaic structures on low-cost substrates.

  5. Isotopically Enriched Films and Nanostructures by Ultrafast Pulsed Laser Deposition

    SciTech Connect (OSTI)

    Peter Pronko

    2004-12-13

    This project involved a systematic study to apply newly discovered isotopic enrichment effects in laser ablation plumes to the fabrication of isotopically engineered thin films, superlattices, and nanostructures. The approach to this program involved using ultrafast lasers as a method for generating ablated plasmas that have preferentially structured isotopic content in the body of the ablation plasma plumes. In examining these results we have attempted to interpret the observations in terms of a plasma centrifuge process that is driven by the internal electro-magnetic fields of the plasma itself. The research plan involved studying the following phenomena in regard to the ablation plume and the isotopic mass distribution within it: (1) Test basic equations of steady state centrifugal motion in the ablation plasma. (2) Investigate angular distribution of ions in the ablation plasmas. (3) Examine interactions of plasma ions with self-generated magnetic fields. (3) Investigate ion to neutral ratios in the ablation plasmas. (5) Test concepts of plasma pumping. (6) Fabricate isotopically enriched nanostructures.

  6. Kirkendall-effect-based growth of dendrite-shaped CuO hollow micro/nanostructures for lithium-ion battery anodes

    SciTech Connect (OSTI)

    Hu Yingying, E-mail: yyhu@phy.ccnu.edu.c [Center for Nanoscience and Nanotechnology, Huazhong Normal University, Wuhan 430079, Hubei (China); Huang Xintang, E-mail: xthuang@phy.ccnu.edu.c [Center for Nanoscience and Nanotechnology, Huazhong Normal University, Wuhan 430079, Hubei (China); Wang Kai; Liu Jinping; Jiang Jian; Ding Ruimin; Ji Xiaoxu; Li Xin [Center for Nanoscience and Nanotechnology, Huazhong Normal University, Wuhan 430079, Hubei (China)

    2010-03-15

    Three-dimensional (3D) dendrite-shaped CuO hollow micro/nanostructures have been prepared via a Kirkendall-effect-based approach for the first time and have been demonstrated as a high-performance anode material for lithium-ion batteries. The as-prepared hollow structures were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and electrochemical properties. A CuO hollow structure composed of nanocubes outside and a dense film inside was selected as a typical example of the optimized design; it exhibited significantly improved cyclability at a current rate of 0.5 C, with the average Coulombic efficiency of {approx}97.0% and 57.9% retention of the discharge capacity of the second cycle after 50 cycles. The correlation between the structure features of the hollow CuO and their electrochemical behavior was discussed in detail. Smaller size of primary structure and larger internal space of electrode materials are crucial to better electrochemical performance. This work represents that Kirkendall effect is a promising method to fabricate excellent hollow electrode materials for Li-ion batteries. - Graphical abstract: SEM images of 3D dendrite-shaped CuO hollow micro/nanostructures prepared via a Kirkendall-effect-based approach have been shown. The as-prepared CuO electrode exhibited significantly improved cyclability for Li-ion batteries.

  7. Michigan Technological Center for Nanostructured and Lightweight Materials in the Department of Chemical Engineering (Phase II)

    SciTech Connect (OSTI)

    Mullins, M.; Rogers, T.; King, J.; Holles, J.; Keith, J.; Heiden, P.; Cornilsen, B.; Allen, J.

    2009-12-10

    Summaries of the followings tasks are given in this report: Task 1 - Lightweight, Thermally Conductive Bipolar Plates for Improved Thermal Management in Fuel Cells; Task 2 - Exploration of pseudomorphic nanoscale overlayer bimetallic catalysts; Task 3 - Hybrid inorganic/organic polymer nanocomposites; Task 4 - Carbonaceous Monolithic Electrodes for Fuel Cells and Rechargeable Batteries; and Task 5 - Movement and Freeze of Water in Fuel Cell Electrodes.

  8. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01

    exception being the lithium-ion battery (Table 2.1). Tableconfiguration of a lithium-ion battery is shown in Figureof Nb 2 O 5 as a lithium-ion battery electrode and as an

  9. Chemically modified and nanostructured porous silicon as a drug delivery material and device

    E-Print Network [OSTI]

    Anglin, Emily Jessica

    2007-01-01

    Curtis, C. L. ; Doan, V. V. ; Credo, G. M. ; Sailor, M. J. ,J. L. ; Curtis, C. L. ; Credo, G. M. ; Kavanagh, K. L. ;Curtis, C. L. ; Doan, V. V. ; Credo, G. M. ; Sailor, M. J. ,

  10. Chemically modified and nanostructured porous silicon as a drug delivery material and device

    E-Print Network [OSTI]

    Anglin, Emily Jessica

    2007-01-01

    Sealed Source for Cancer Brachytherapy. Abstracts of Porousnovel approach to brachytherapy in hepatocellular carcinomaSealed Source for Cancer Brachytherapy. Abstracts of Porous

  11. Chemically modified and nanostructured porous silicon as a drug delivery material and device

    E-Print Network [OSTI]

    Anglin, Emily Jessica

    2007-01-01

    band at 242 nm. UV absorbance measurements were takenby concurrent measurements involving UV absorbanceUV-visible absorption spectroscopy), and by measurement of

  12. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01

    J. -M. Electrical energy storage for the grid: a battery ofCorey, G. Energy Storage for the Electricity Grid: Benefitsparticularly into grid-level energy storage. Chapter 10.

  13. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01

    s First Law of Electrochemistry: How Context Develops NewKnowledge. Electrochemistry: Past and Present 32–47 (1989).Density Batteries. Electrochemistry: Past and Present 543–

  14. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01

    1/3 O 2 for advanced lithium-ion batteries. Journal of Powerelectrodes for lithium-ion batteries. Journal of Materialsfor Advanced Lithium-Ion Batteries. Advanced Energy

  15. Nanostructured multifunctional materials for control of light transport and surface wettability

    E-Print Network [OSTI]

    Choi, Hyungryul

    2014-01-01

    Biological surfaces have evolved to optimize their structures and physical and chemical properties at the micro/nanoscale for adaptation to different environments, exhibiting a wide variety of beneficial functions, ranging ...

  16. Molecular Level Assessment of Thermal Transport and Thermoelectricity in Materials: From Bulk Alloys to Nanostructures 

    E-Print Network [OSTI]

    Kinaci, Alper

    2013-05-02

    show that both phonon group velocities and life times are smaller in BN systems. Quantum corrections are also discussed for these classical simulations. The chemical and structural diversity that could be attained by mixing hexagonal boron nitride...

  17. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01

    for a 2 V Rechargeable Lithium Battery. Journal of Thein a rechargeable lithium battery. Journal of Power Sourcesexception being the lithium-ion battery (Table 2.1). Table

  18. Characterization of nanostructured materials for lithium-ion batteries and electrochemical capacitors

    E-Print Network [OSTI]

    Augustyn, Veronica

    2013-01-01

    B. Dunn. "Low-potential lithium-ion reactivity of vanadiumMn 1/3 O 2 for advanced lithium-ion batteries. Journal ofMn, Ni, Co) electrodes for lithium-ion batteries. Journal of

  19. Hybrid chromophore/template nanostructures: A customizable platform material for solar energy storage and conversion

    E-Print Network [OSTI]

    Kolpak, Alexie M.

    Challenges with cost, cyclability, and/or low energy density have largely prevented the development of solar thermal fuels, a potentially attractive alternative energy technology based on molecules that can capture and ...

  20. Structure-Property Relations in Nanostructured Materials: From Solar Cells to Gecko Adhesion

    E-Print Network [OSTI]

    Rong, Zhuxia

    2014-05-27

    and polyethylene oxide (PEO) is investigated. The self-assembly of P3HT in solution induces vertical segregation in blend films, in comparison to typical lateral polymer phase separation structures from non-aggregated solutions. Thin film transistors based on P3HT... presented. In Chapter 7, the vertical segregation by self-assembly in the blends of P3HT and insulat- ing polyethylene oxide (PEO) is investigated. Thin films of P3HT/PEO blends are used to make field-effect transistors (FET), and the effect of film...

  1. APPLIED PHYSICS REVIEWS Ion and electron irradiation-induced effects in nanostructured materials

    E-Print Network [OSTI]

    Nordlund, Kai

    semiconductors and ion beam nitriding of steels, recent experiments show that irradiation can also have at the nanoscale requires having the full microscopic picture of defect production and annealing in nanotargets

  2. Workshop in Novel Emitters and Nanostructured Materials | U.S. DOE Office

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe23-24, 2011Science (SC)ScienceWest VirginiaWorking Groupof

  3. Nanostructured Systems > Complex Oxides > Research > The Energy Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you notHeatMaRIEdioxide capture CS SeminarsNREL PrivateEnergyNSTCenter

  4. Growth, characterization and electrochemical properties of hierarchical CuO nanostructures for supercapacitor applications

    SciTech Connect (OSTI)

    Krishnamoorthy, Karthikeyan; Kim, Sang-Jae

    2013-09-01

    Graphical abstract: - Highlights: • Hierarchical CuO nanostructures were grown on Cu foil. • Monoclinic phase of CuO was grown. • XPS analysis revealed the presence of Cu(2p{sub 3/2}) and Cu(2p{sub 1/2}) on the surfaces. • Specific capacitance of 94 F/g was achieved for the CuO using cyclic voltammetry. • Impedance spectra show their pseudo capacitor applications. - Abstract: In this paper, we have investigated the electrochemical properties of hierarchical CuO nanostructures for pseudo-supercapacitor device applications. Moreover, the CuO nanostructures were formed on Cu substrate by in situ crystallization process. The as-grown CuO nanostructures were characterized using X-ray diffraction (XRD), Fourier transform-infra red spectroscopy (FT-IR), X-ray photoelectron spectroscopy and field emission-scanning electron microscope (FE-SEM) analysis. The XRD and FT-IR analysis confirm the formation of monoclinic CuO nanostructures. FE-SEM analysis shows the formation of leave like hierarchical structures of CuO with high uniformity and controlled density. The electrochemical analysis such as cyclic voltammetry and electrochemical impedance spectroscopy studies confirms the pseudo-capacitive behavior of the CuO nanostructures. Our experimental results suggest that CuO nanostructures will create promising applications of CuO toward pseudo-supercapacitors.

  5. Structural and electrochemical properties of nanostructured nickel silicides by reduction and silicification of high-surface-area nickel oxide

    SciTech Connect (OSTI)

    Chen, Xiao [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)] [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Zhang, Bingsen [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society (Germany)] [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society (Germany); Li, Chuang; Shao, Zhengfeng [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)] [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China); Su, Dangsheng [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society (Germany)] [Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society (Germany); Williams, Christopher T. [Department of Chemical Engineering, Swearingen Engineering Center, University of South Carolina (United States)] [Department of Chemical Engineering, Swearingen Engineering Center, University of South Carolina (United States); Liang, Changhai, E-mail: changhai@dlut.edu.cn [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)] [Laboratory of Advanced Materials and Catalytic Engineering, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024 (China)

    2012-03-15

    Graphical abstract: Nanostructured nickel silicides have been synthesized by reduction and silification of high-surface-area nickel oxide, and exhibited remarkably like-noble metal property, lower electric resistivity, and ferromagnetism at room temperature. Highlights: Black-Right-Pointing-Pointer NiSi{sub x} have been prepared by reduction and silification of high-surface-area NiO. Black-Right-Pointing-Pointer The structure of nickel silicides changed with increasing reaction temperature. Black-Right-Pointing-Pointer Si doping into nickel changed the magnetic properties of metallic nickel. Black-Right-Pointing-Pointer NiSi{sub x} have remarkably lower electric resistivity and like-noble metal property. -- Abstract: Nanostructured nickel silicides have been prepared by reduction and silicification of high-surface-area nickel oxide (145 m{sup 2} g{sup -1}) produced via precipitation. The prepared materials were characterized by nitrogen adsorption, X-ray diffraction, thermal analysis, FT-IR spectroscopy, scanning electron microscopy, transmission electron microscopy, magnetic and electrochemical measurements. The nickel silicide formation involves the following sequence: NiO (cubic) {yields} Ni (cubic) {yields} Ni{sub 2}Si (orthorhombic) {yields} NiSi (orthorhombic) {yields} NiSi{sub 2} (cubic), with particles growing from 13.7 to 21.3 nm. The nickel silicides are ferromagnetic at room temperature, and their saturation magnetization values change drastically with the increase of Si content. Nickel silicides have remarkably low electrical resistivity and noble metal-like properties because of a constriction of the Ni d band and an increase of the electronic density of states. The results suggest that such silicides are promising candidates as inexpensive yet functional materials for applications in electrochemistry as well as catalysis.

  6. NANOSTRUCTURED HIGH PERFORMANCE ULTRAVIOLET AND BLUE LIGHT EMITTING DIODES FOR SOLID STATE LIGHTING

    SciTech Connect (OSTI)

    Arto V. Nurmikko; Jung Han

    2004-10-01

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the first 12 month contract period include (1) new means of synthesizing zero- and one-dimensional GaN nanostructures, (2) establishment of the building blocks for making GaN-based microcavity devices, and (3) demonstration of top-down approach to nano-scale photonic devices for enhanced spontaneous emission and light extraction. These include a demonstration of eight-fold enhancement of the external emission efficiency in new InGaN QW photonic crystal structures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  7. Nanostructured High Performance Ultraviolet and Blue Light Emitting Diodes for Solid State Lighting

    SciTech Connect (OSTI)

    Arto V. Nurmikko; Jung Han

    2005-09-30

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the second 12 month contract period include (i) new means of synthesizing AlGaN and InN quantum dots by droplet heteroepitaxy, (ii) synthesis of AlGaInN nanowires as building blocks for GaN-based microcavity devices, (iii) progress towards direct epitaxial alignment of the dense arrays of nanowires, (iv) observation and measurements of stimulated emission in dense InGaN nanopost arrays, (v) design and fabrication of InGaN photonic crystal emitters, and (vi) observation and measurements of enhanced fluorescence from coupled quantum dot and plasmonic nanostructures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  8. Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient Oxygen-Evolving Catalysts

    SciTech Connect (OSTI)

    Jiao, Feng; Frei, Heinz

    2009-01-01

    The development of integrated artificial photosynthetic systems for the direct conversion of carbon dioxide and water to fuel depends on the availability of efficient and robust catalysts for the chemical transformations. Catalysts need to exhibit turnover frequency (TOF) and density (hence size) commensurate with the solar flux at ground level (1000Wm2, airmass (AM) 1.5)[1]to avoid wasting of incidentsolar photons. For example, a catalyst with a TOF of 100 s1 requires a density of one catalytic site per square nanometer. Catalysts with lower rates or taking up a larger space will require a high-surface-area, nanostructured support that affords tens to hundreds of catalytic sites per square nanometer. Furthermore, catalysts need to operate close to the thermodynamic potential of the redox reaction so that amaximum fraction of the solar photon energy is converted to chemical energy. Stability considerations favor all-inorganic oxide materials, as does avoidance of harsh reaction conditions of pH value or temperature.

  9. Zinc oxide (ZnO) has attracted much interest during last decades as a functional material. It has been known as a conductive material when elements such as indium, gallium and aluminum are doped.

    E-Print Network [OSTI]

    oxide (ITO), graphene, and carbon nanotube film. In addition, a new generation solar cell electrodes. The nanostructures for solar cells using inorganic materials such as silicon (Si), titanium oxide (TiO2), and ZnO have been an interesting topic for research in solar cell community in order

  10. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1994-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  11. Scintillator material

    DOE Patents [OSTI]

    Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

    1992-01-01

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

  12. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1994-06-07

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  13. Scintillator material

    DOE Patents [OSTI]

    Anderson, D.F.; Kross, B.J.

    1992-07-28

    An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

  14. Phase diagram for stimulus-responsive materials containing dipolar colloidal particles Amit Goyal, Carol K. Hall,* and Orlin D. Velev

    E-Print Network [OSTI]

    Velev, Orlin D.

    the potential to serve as the foundation for the next generation of micro- and nanostructures with remarkable due to their tunable materials properties and their potential applications as storage media and display devices 4,5 . Dipolar colloids are ideal building blocks for the assembly of long-range ordered

  15. material recovery

    National Nuclear Security Administration (NNSA)

    dispose of dangerous nuclear and radiological material, and detect and control the proliferation of related WMD technology and expertise.

  16. Aerosol Spray Pyrolysis Synthesis of CZTS Nanostructures for Photovoltaic Applications

    E-Print Network [OSTI]

    Exarhos, Stephen

    2015-01-01

    Cells. ” Solar Energy Materials and Solar Cells 94, no. 12 (Precursors. ” Solar Energy Materials and Solar Cells 49, no.Precursors. ” Solar Energy Materials and Solar Cells, 17th

  17. Aerosol Spray Pyrolysis Synthesis of CZTS Nanostructures for Photovoltaic Applications

    E-Print Network [OSTI]

    Exarhos, Stephen

    2015-01-01

    29th European Photovoltaic Solar Energy Conference andMetal Nanoparticles? ” Solar Energy Materials and SolarB Evaporated Precursors. ” Solar Energy Materials and Solar

  18. Graphene and its Hybrid Nanostructures for Nanoelectronics and Energy Applications

    E-Print Network [OSTI]

    LIN, JIAN

    2011-01-01

    modification of graphene. Advanced Materials, 2008. 20 (16):S. Novoselov. The rise of graphene. Nature Materials, 2007.transport in suspended graphene. Nature Nanotechnology,

  19. On the Determination of C0 (or A0), D0K, H0K, and Some Dark States for Symmetric-top Molecules from Infrared Spectra without the Need for Localized Perturbations

    SciTech Connect (OSTI)

    Maki, Arthur; Masiello, Tony; Blake, Thomas A.; Nibler, Joseph W.; Weber, Alfons

    2009-05-01

    For symmetric top molecules, the normal ?k = 0, ?l = 0 and ?k = ?1, ?l = ?1 selection rules for parallel and perpendicular bands, respectively, do not allow the determination of the K-dependent rotational constants, C0 (or A0), D0K, and H0K. However, we show here that several different combinations of allowed and apparently unperturbed rovibrational infrared transitions can give access to those constants. A necessary ingredient for the application of this technique is a band with selection rules ?k = ?1 (or ?k = 0), ?l = ?2, such as an overtone or difference band, and appropriate other bands. Bands with selection rules ?k = ?2, ?l = ?1 are also useful but are seldom found. As a general rule, more than one vibrational transition is needed. Examples are given for boron trifluoride (BF3), sulfur trioxide (SO3), and cyclopropane (C3H6) for which there are microwave measurements that provide a check on the derived constants. The technique is also extended to a D2d molecule, allene, even though we have no measurements to use as an example. Examples are also given for the determination of dark states from difference bands, and/or hot bands, and also whole forbidden bands that arise from mixing with distant energy levels.

  20. Failure by fracture and fatigue in 'NANO' and 'BIO'materials

    SciTech Connect (OSTI)

    Ritchie, R.O.; Muhlstein, C.L.; Nalla, R.K.

    2003-12-19

    The behavior of nanostructured materials/small-volumestructures and biologi-cal/bio-implantable materials, so-called "nano"and "bio" materials, is currently much in vogue in materials science. Oneaspect of this field, which to date has received only limited attention,is their fracture and fatigue properties. In this paper, we examine twotopics in this area, namely the premature fatigue failure ofsilicon-based micron-scale structures for microelectromechanical systems(MEMS), and the fracture properties of mineralized tissue, specificallyhuman bone.