National Library of Energy BETA

Sample records for nanoscale science research

  1. Nanoscale Science, Engineering and Technology Research Directions

    SciTech Connect (OSTI)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  2. Nanoscale Science Research Centers (NSRCs) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home User Facilities

  3. Nanoscale Science Research Centers (NSRCs) | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Nanoscale Science Research Centers (NSRCs) User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Science Highlights Frequently Asked Questions User Facility News Contact Information Office of

  4. Nanoscale Science Research Centers (NSRCs) | U.S. DOE Office...

    Office of Science (SC) Website

    All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources Neutron ... Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW ...

  5. Center for Nanoscale Materials (CNM) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Nanoscale Materials (CNM) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home

  6. A Nanoscale "Tune-Up" for Fuel Cells | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    A Nanoscale "Tune-Up" for Fuel Cells News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 06.11.12 A Nanoscale "Tune-Up" for Fuel Cells Using sophisticated techniques, EFRC researchers are

  7. Near Zero Friction from Nanoscale Lubricants | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Near Zero Friction from Nanoscale Lubricants Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: Email Us More Information »

  8. Nanoscale Material Properties | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology Drives New Levels of Performance Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Nanotechnology Drives New Levels of Performance GE scientists are discovering new material properties at the nanoscale that drive new performance levels in jet engines, gas and steam turbines, electronic devices and disease

  9. Center for Nanophase Materials Sciences (CNMS) - Nanoscale Measurement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Measurements of Glass Transition Temperature and Temperature-Dependent Mechanical Properties in Polymers M.P. Nikiforov, S. Jesse, L.T. Germinario (CNMS user, Eastman...

  10. What Makes Science, Science? Research, Shared Effort ... & A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Makes Science, Science? Research, Shared Effort ... & A New Office of Science Website What Makes Science, Science? Research, Shared Effort ... & A New Office of Science Website ...

  11. Research Staff | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Staff Research staff members in NREL's Materials Science Center are aligned within four groups: Materials Physics, Analytical Microscopy and Imaging Science, Interfacial and Surface Science, and Thin-Film Materials Science and Processing. For lead researcher contacts, see our research areas. For our business contact, see Work with Us. Photo of Nancy Haegel Nancy Haegel Center Director, Materials Science Center Email | 303-384-6548 Materials Physics Photo of Angelo Mascarenhas Angelo

  12. Earth Sciences Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Research Center - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  13. Inspiring Careers in Science Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inspiring Careers in Science Research Inspiring Careers in Science Research January 21, 2012 Lowell-3_2.JPG David Turner shows Lowell High School students around NERSC's computer room. (Photo by Margie Wylie) In an effort to expose high school students to careers in research, the Lawrence Berkeley National Laboratory's (Berkeley Lab) Computing Sciences Diversity Outreach Program partnered with San Francisco's Lowell High School Science Research Program, an after school program that aims to give

  14. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An optimized nanoparticle separator enabled by elecron beam induced deposition J. D. Fowlkes,1 M. J. Doktycz2 and P. D. Rack1,3 1Nanofabricatin Research Laboratory, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory 2Biological and Nanoscale Systems Group, Biosciences Division, Oak Ridge National Laboratory 3Materials Science and Engineering Department, The University of Tennessee, Knoxville, TN Achievement Size-based separations technologies will inevitably benefit from

  15. DOE A9024 Final Report Functional and Nanoscale Materials Systems...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: DOE A9024 Final Report Functional and Nanoscale Materials Systems: Frontier Programs of Science at the Frederick Seitz Materials Research Laboratory Citation...

  16. Materials Science Research | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Research For photovoltaics and other energy applications, NREL's primary research in materials science includes the following core competencies. A photo of laser light rays going in various directions atop a corrugated metal substrate Materials Physics Through materials growth and characterization, we seek to understand and control fundamental electronic and optical processes in semiconductors. An image of multiple, interconnecting red and blue particles Electronic Structure Theory We

  17. Inspiring Careers in Science Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exposure to science areas across the Laboratory. Scientists who are interested in speaking at Lowell High School about their research can contact Elizabeth at...

  18. Science DMZ Fuels Fusion Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net Science DMZ Fuels Fusion Research General Atomics remote controls fusion experiments, bridges...

  19. Sandia National Laboratories: Research: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science employees and computer research Sandia excels in innovative fundamental materials science research - developing and integrating the theoretical insights,...

  20. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Mapping the Nanoscale Landscape Print Wednesday, 27 September 2006 00:00 For the first time, researchers have successfully mapped the chemical...

  1. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transient-Mediated fate determination in a transcriptional circuit of HIV Leor S. Weinberger (University of California, San Diego), Roy D. Dar (University of Tennessee), and Michael L. Simpson (Center for Nanophase Materials Sciences, Oak Ridge National Laboratory) Achievement One of the greatest challenges in the characterization of complex nanoscale systems is gaining a mechanistic understanding of underlying processes that cannot be directly imaged. Recent research at the CNMS1 explored a

  2. Sandia National Laboratories: Research: Materials Science: Image...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Image Gallery...

  3. Sandia National Laboratories: Research: Materials Science: Video...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Video Gallery Exc An error...

  4. Nuclear waste repository research at the micro- to nanoscale

    SciTech Connect (OSTI)

    Schaefer, T.; Denecke, M. A.

    2010-04-06

    Micro- and nano-focused synchrotron radiation techniques to investigate determinant processes in contaminant transport in geological media are becoming especially an increasingly used tool in nuclear waste disposal research. There are a number of reasons for this but primarily they are driven by the need to characterize actinide speciation localized in components of heterogeneous natural systems. We summarize some of the recent research conducted by researchers of the Institute of Nuclear Waste Disposal (INE) at the Karlsruhe Institute of Technology using micro- and nano-focused X-ray beams for characterization of colloids and their interaction with minerals and of elemental and phase distributions in potential repository host rocks and actinide speciation in a repository natural analogues sample. Such investigations are prerequisite to ensuring reliable assessment of the long term radiological safety for proposed nuclear waste disposal sites.

  5. Proprietary Research at the Center for Nanoscale Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proprietary R esearch a t t he C enter f or N anoscale M aterials ( CNM) This handout provides details on the mechanism for carrying out proprietary user research at the CNM at Argonne National Laboratory (ANL). * Access to the CNM User Facility is granted via a peer-reviewed proposal system. * Users provide sufficient information to ensure that each planned experiment can be performed safely. Argonne personnel provide appropriate safety training and oversight. * Users are charged for

  6. DOE Science Showcase - Neutron Science Research from DOE Databases | OSTI,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US Dept of Energy, Office of Scientific and Technical Information DOE Science Showcase - Neutron Science Research from DOE Databases Additional neutron science research in DOE Databases Information Bridge Neutron scattering research was pioneered in 1946 by ORNL's Clifford G. Shull, winner of 1994 Nobel Prize in Physics. Access Shull's early research records in Energy Citations Database. Neutron scattering research was pioneered in 1946 by ORNL's Clifford G. Shull, winner of 1994 Nobel Prize

  7. Center for Nanophase Materials Sciences (CNMS) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Nanophase Materials Sciences (CNMS) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators'

  8. Fusion materials science and technology research opportunities...

    Office of Scientific and Technical Information (OSTI)

    the ITER era Citation Details In-Document Search Title: Fusion materials science and technology research opportunities now and during the ITER era Several high-priority...

  9. Sandia National Laboratories: Research: Materials Science: About Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science About Materials Science Research Image Gallery Video Gallery Facilities Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research About Materials Science Xunhu Dai Sandia excels in innovative fundamental materials science research - developing and integrating the theoretical insights, computational simulation tools and deliberate

  10. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Research Fusion Energy Sciences (FES) FES Home About Research Fusion Institutions Fusion ... Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences ...

  11. Nuclear Science Research facility at LANSCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron and Nuclear Science (WNR) Facility at LANSCE lansce facility at LANL Introduction to LANSCE The Los Alamos Neutron Science Center (LANSCE) provides the scientific community with intense sources of neutrons for experiments supporting national security, academic and industrial research. LANSCE has two spallation neutron sources: the Manuel Lujan Jr. Neutron Scattering Center (Target-1) and the Neutron and Nuclear Science Research facility (Target-4). Together they provide neutrons over a

  12. Microsoft PowerPoint - Agapov_2015_CNMS Staff Science Highlight_Nanoscale.pptx [Read-Only]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arrays of tilted pillars with heights ranging from hundreds of nanometers to tens of micrometers were fabricated and used as Leidenfrost ratchets to control droplet directionality. Dynamic Leidenfrost droplets on the ratchets with nanoscale features were found to move in the direction of the pillar tilt while the opposite directionality was observed on the microscale ratchets. This remarkable switch in the droplet directionality can be explained by varying contributions from the two distinct

  13. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Research Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences

  14. DOE Office of Science Funded Basic Research at NREL that Impacts Photovoltaic Technologies

    SciTech Connect (OSTI)

    Deb, S. K.

    2005-01-01

    The DOE Office of Science, Basic Energy Sciences, supports a number of basic research projects in materials, chemicals, and biosciences at the National Renewable Energy Laboratory (NREL) that impact several renewable energy technologies, including photovoltaics (PV). The goal of the Material Sciences projects is to study the structural, optical, electrical, and defect properties of semiconductors and related materials using state-of-the-art experimental and theoretical techniques. Specific projects involving PV include: ordering in III-V semiconductors, isoelectronic co-doping, doping bottlenecks in semiconductors, solid-state theory, and computational science. The goal of the Chemical Sciences projects is to advance the fundamental understanding of the relevant science involving materials, photochemistry, photoelectrochemistry, nanoscale chemistry, and catalysis that support solar photochemical conversion technologies. Specific projects relating to PV include: dye-sensitized TiO2 solar cells, semiconductor nanostructures, and molecular semiconductors. This presentation will give an overview of some of the major accomplishments of these projects.

  15. What Makes Science, Science? Research, Shared Effort ... & A New Office of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Website | Department of Energy Makes Science, Science? Research, Shared Effort ... & A New Office of Science Website What Makes Science, Science? Research, Shared Effort ... & A New Office of Science Website March 28, 2011 - 12:10pm Addthis Charles Rousseaux Charles Rousseaux Senior Communications Specialist (detailee) What makes science, science? To find out, click into the new Office of Science (SC) website. You'll see what science is about on the new Office of Science

  16. X-Ray Microscopy and Imaging: Science and Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fields: Biology and Life Sciences Environmental Sciences Materials Science Nanoscience Optics and Fundamental Physics Our research often employs the following techniques: Coherent...

  17. UK Biotechnology and Biological Sciences Research Council | Open...

    Open Energy Info (EERE)

    Biotechnology and Biological Sciences Research Council Jump to: navigation, search Name: UK Biotechnology and Biological Sciences Research Council Place: London, United Kingdom...

  18. Sandia National Labs: PCNSC: Research: Optical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Sciences The focus of the Optical Sciences thrust is to understand and exploit the elegant interaction between light and matter. Our research portfolio encompasses the generation, transmission, manipulation, and detection of light and the development of optical materials with user defined characteristics. We emphasize innovative work in laser and optical materials development, nonlinear optics, spectroscopy, remote sensing, and photon-material interactions. In partnership with our DOE,

  19. Global change research: Science and policy

    SciTech Connect (OSTI)

    Rayner, S.

    1993-05-01

    This report characterizes certain aspects of the Global Change Research Program of the US Government, and its relevance to the short and medium term needs of policy makers in the public and private sectors. It addresses some of the difficulties inherent in the science and policy interface on the issues of global change. Finally, this report offers some proposals for improving the science for policy process in the context of global environmental change.

  20. Molecular Science Research Center 1992 annual report

    SciTech Connect (OSTI)

    Knotek, M.L.

    1994-01-01

    The Molecular Science Research Center is a designated national user facility, available to scientists from universities, industry, and other national laboratories. After an opening section, which includes conferences hosted, appointments, and projects, this document presents progress in the following fields: chemical structure and dynamics; environmental dynamics and simulation; macromolecular structure and dynamics; materials and interfaces; theory, modeling, and simulation; and computing and information sciences. Appendices are included: MSRC staff and associates, 1992 publications and presentations, activities, and acronyms and abbreviations.

  1. Chemistry and Materials Science progress report, first half FY 1992. Weapons-Supporting Research and Laboratory Directed Research and Development

    SciTech Connect (OSTI)

    Not Available

    1992-07-01

    This report contains sections on: Fundamentals of the physics and processing of metals; interfaces, adhesion, and bonding; energetic materials; plutonium research; synchrotron radiation-based materials science; atomistic approach to the interaction of surfaces with the environment: actinide studies; properties of carbon fibers; buried layer formation using ion implantation; active coherent control of chemical reaction dynamics; inorganic and organic aerogels; synthesis and characterization of melamine-formaldehyde aerogels; structural transformation and precursor phenomena in advanced materials; magnetic ultrathin films, surfaces, and overlayers; ductile-phase toughening of refractory-metal intermetallics; particle-solid interactions; electronic structure evolution of metal clusters; and nanoscale lithography induced chemically or physically by modified scanned probe microscopy.

  2. Center for Nanoscale Controls on Geologic CO2 (NCGC) | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Center for Nanoscale Controls on Geologic CO2 (NCGC) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Nanoscale Controls on Geologic CO2 (NCGC) Print Text Size: A A A FeedbackShare Page NCGC Header Director Donald DePaolo Lead Institution Lawrence Berkeley National Laboratory Year Established 2009 Mission To enhance the performance and

  3. GE Researcher Explores Science Behind Movie Chappie | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    When Will We Have Robot Best Friends? A GE Researcher Explores the Science Behind Movie Magic Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) When Will We Have Robot Best Friends? A GE Researcher Explores the Science Behind Movie Magic The film "Chappie" is the story of a Police droid, reprogrammed to become

  4. Thermal Science Leaders Are Also Researchers | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home > Edison's Desk > Thermal Science Leaders Are Also Researchers Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Thermal Science Leaders Are Also Researchers Todd Wetzel 2013.01.08 I've got great news! One of my Lab Managers, Dr. Eric Ruggiero, was just awarded the 2013 AIAA Lawrence Sperry Award. I'm very

  5. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Research Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) Research Abstracts Searchable Archive of BER Highlights External link Facilities Science Highlights Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown

  6. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Understanding the Interaction Between Nanoscale Building Blocks and Biologically Relevant Molecules X. Zhao (CNMS Postdoc), A. Striolo (U of Oklahoma, now CNMS User), and P. T. Cummings (CNMS Staff) Scientists at Oak Ridge National Laboratory's new Center for Nanophase Materials Sciences (CNMS) are leading the way in developing detailed molecular-level understanding of how nanomaterials may interact with biologically important molecules. A provocative experimental study, published in 2004,

  7. Sandia Energy - CNST and Sandia Researchers Publish a Detailed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanomaterials Researchers from the NIST Center for Nanoscale Science and Technology (A. Alec Talin) and Sandia National Laboratories (Franois Lonard) have published...

  8. Energy Frontier Research Center Center for Materials Science...

    Office of Scientific and Technical Information (OSTI)

    for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific ...

  9. Experimental Physical Sciences Vistas: Los Alamos NPAC Research...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Experimental Physical Sciences Vistas: Los Alamos NPAC Research Citation Details In-Document Search Title: Experimental Physical Sciences Vistas: Los Alamos NPAC...

  10. Center for Functional Nanomaterials (CFN) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Functional Nanomaterials (CFN) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES

  11. Center for Integrated Nanotechnologies (CINT) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Integrated Nanotechnologies (CINT) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Center for Functional Nanomaterials (CFN) Center for Integrated Nanotechnologies (CINT) Center for Nanophase Materials Sciences (CNMS) Center for Nanoscale Materials (CNM) The Molecular Foundry (TMF) Projects Accelerator & Detector Research Science Highlights Principal Investigators'

  12. Science Olympiad | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Olympiad Science Olympiad PARC's outreach efforts helped fund students from KIPP Inspire Academy as they competed with other regional schools in the Science Olympiad 2013...

  13. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Mapping the Nanoscale Landscape Print Wednesday, 27 September 2006 00:00 For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave

  14. Responsible Science: Ensuring the Integrity of the Research Process

    SciTech Connect (OSTI)

    Arrison, Thomas Samuel

    2014-03-31

    This is the final technical report for DE-SC0005916 Responsible Science: Ensuring the Integrity of the Research Process.

  15. A Look Inside Argonne's Center for Nanoscale Materials | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory A Look Inside Argonne's Center for Nanoscale Materials Share Topic Programs Materials science Nanoscience

  16. Whirlpools on the Nanoscale Could Multiply Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Whirlpools on the Nanoscale Could Multiply Magnetic Memory Whirlpools on the Nanoscale Could Multiply Magnetic Memory Print Tuesday, 21 May 2013 00:00 Research at the Advanced...

  17. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNMS RESEARCH A Scalable Method for Ab Initio Computation of Free Energies in Nanoscale Systems Markus Eisenbach (Oak Ridge National Laboratory), Chenggang Zhou* (Oak Ridge National Laboratory), Donald M. Nicholson (Oak Ridge National Laboratory), Gregory Brown (Florida State University), Jeff Larkin (Cray Inc.), Thomas C. Schulthess (Oak Ridge National Laboratory and ETH Zürich) Achievement: A team led by Oak Ridge National Laboratory's Markus Eisenbach was awarded the 2009 ACM Gordon Bell

  18. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Ferroelectricity in Crystalline g Glycine Alejandro Heredia,1 Vincent Meunier,2 Igor K. Bdikin,1 José Gracio,3 Nina Balke,4 Stephen Jesse,4 Alexander Tselev,4 Pratul Agarwal,4 Bobby G. Sumpter,4 Sergei V. Kalinin4, and Andrei L. Kholkin1 1-Department of Ceramics and Glass Engineering & CICECO, University of Aveiro, 3810-193 Aveiro, Portugal 2-Physics, Astronomy and Applied Physics Department, Rensselaer Polytechnic Institute, Troy,NY 12180 3-Nanotechnology Research Div., Centre

  19. Sandia National Laboratories: Research: Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    experimental, theoretical, and computational capabilities to establish the state of the art in materials science and technology. Materials science professionals at Sandia perform...

  20. DOE Office of Science Graduate Student Research (SCGSR) Program Homepage |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) Home DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home Eligibility Benefits Participant Obligations How to Apply Information for Laboratory Scientists and Thesis Advisors Key Dates Frequently Asked Questions Contact WDTS Home DOE Office of Science Graduate Student Research Program The Office of Science Graduate Student Research (SCGSR) program is now accepting applications. Applications are due May 11, 2016 at 5:00PM Eastern Time.Read

  1. Nanoscale, multidimensional artificial magnet created

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale, multidimensional artificial magnet created Nanoscale, multidimensional artificial magnet created Applications might range from general magnetism, such as developing sensors, to information encoding. October 26, 2015 Researchers have created a nanoscale, artificial magnet by arranging an array of magnetic nano-islands along a geometry that is not found in natural magnets. As temperature is reduced, magnetic nanoislands (in blue) reach a one-dimensional static, ordered state, while

  2. NREL: Photovoltaics Research - Materials Science Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Staff The Materials Science staff members at the National Renewable Energy Laboratory work within one of four groups: the Materials Physics Group, the Microscopy & Imaging Group, the Interfacial & Surface Science Group, and the Thin Film Material Science & Processing Group. Access the staff members' background, areas of expertise, and contact information below. Nancy Haegel Center Director Paula Robinson Administrative Professional Materials Physics Angelo Mascarenhas Group

  3. Stories of Discovery & Innovation: A Nanoscale "Tune-Up" for Fuel Cells |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) A Nanoscale "Tune-Up" for Fuel Cells Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements Publications History Contact BES Home 06.11.12 Stories of Discovery & Innovation: A Nanoscale "Tune-Up" for Fuel Cells Print Text Size: A A A Subscribe FeedbackShare Page Using sophisticated techniques, EFRC researchers are observing, at the molecular

  4. NETL Researchers Chosen as Science & Engineering Ambassadors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and engineers and to address the need for a greater popular understanding of ... and science centers, business leaders, teachers, energy experts in universities and ...

  5. Research Areas | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Areas Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Research Areas Print Text Size: A A A FeedbackShare Page To meet the challenge of supporting basic research programs that are also energy relevant, the Division manages portfolio components that consist of distinct Core Research Activities

  6. Research Areas | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Research Areas Print Text Size: A A A FeedbackShare Page To meet the challenge of supporting basic research programs that are also energy relevant, the Division manages portfolio components that consist of distinct Core Research Activities

  7. University Research | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Research Universities Universities Home Interactive Grants Map SC In Your State Science Highlights University Research News Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 University Research Print Text Size: A A A Subscribe FeedbackShare Page GO 03.11.16University Research Down the Rabbit Hole: How Electrons Travel Through Exotic New Material External link Researchers at Princeton University have

  8. AUDIT REPORT Office of Science's Bioenergy Research Centers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Research Centers OAI-M-16-01 October 2015 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 October 22, 2015 MEMORANDUM FOR THE ACTING DIRECTOR, OFFICE OF SCIENCE FROM: April G. Stephenson Assistant Inspector General for Inspections Office of Inspector General SUBJECT: INFORMATION: Audit Report: "Office of Science's Bioenergy Research Centers" BACKGROUND In September 2007, Office of Science's

  9. Office of Science's Management of Research Misconduct Allegations

    Energy Savers [EERE]

    Management of Research Misconduct Allegations OAS-M-14-09 August 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 August 12, 2014 MEMORANDUM FOR THE ACTING DIRECTOR, OFFICE OF SCIENCE FROM: George W. Collard Assistant Inspector General for Audits Office of Inspector General SUBJECT: INFORMATION: Audit Report on "Office of Science's Management of Research Misconduct Allegations" BACKGROUND Science and

  10. Charter for the ARM Climate Research Facility Science Board

    SciTech Connect (OSTI)

    Ferrell, W

    2013-03-08

    The objective of the ARM Science Board is to promote the Nation’s scientific enterprise by ensuring that the best quality science is conducted at the DOE’s User Facility known as the ARM Climate Research Facility. The goal of the User Facility is to serve scientific researchers by providing unique data and tools to facilitate scientific applications for improving understanding and prediction of climate science.

  11. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Research Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » Research Print Text Size: A A A FeedbackShare Page Our office sponsors research in many experimental and

  12. Science Against Stress: Research Shows Way to Some Cellular Relief |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Science Against Stress: Research Shows Way to Some Cellular Relief Science Against Stress: Research Shows Way to Some Cellular Relief December 30, 2011 - 10:14am Addthis Researchers at Brookhaven National Lab (BNL) are studying how radiation affects DNA, specifically a tumor-suppressor protein called p53, which deploys cell repair efforts. | Photo courtesy of National Institute of Health. Researchers at Brookhaven National Lab (BNL) are studying how radiation affects

  13. Los Alamos scientists detect and track single molecules with nanoscale

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon cylinders Nanotube "glowsticks" transform surface science tool kit Los Alamos scientists detect and track single molecules with nanoscale carbon cylinders Researchers have now shown that semiconducting carbon nanotubes have the potential to detect and track single molecules in water. January 10, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering

  14. Sandia National Laboratories: Research: Materials Science: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Institute Ion Beam Laboratory Combustion Research Facility Joint BioEnergy Laboratory Explosive Components Facility Nuclear Magnetic Resonance (NMR) Spectroscopy Facility...

  15. Center for Nanoscale Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC. Academic, industrial, and international researchers from across the globe can access the center through its user program. Brief proposals are peer- reviewed for both non-proprietary (at no cost to the user) and proprietary (with cost-recovery rates) research. The center's goal is to support and explore ways to create functional hybrid nanomaterials and to tailor nanoscale interactions for grand

  16. NERSC, LBL Researchers Share Materials Science Advances at APS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC, LBL Researchers Highlight Materials Science at APS NERSC, LBL Researchers Share Materials Science Advances at APS March 3, 2014 APSlogo NERSC and Lawrence Berkeley National Laboratory (LBL) are well represented this week at the American Physical Society (APS) March meeting. Some 10,000 physicists, scientists, and students are expected to attend this year's meeting, which takes place March 3-7 in Denver, CO. Physicists and students will report on groundbreaking research from industry,

  17. NERSC Role in Fusion Energy Science Research Katherine Yelick

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Energy Science Research Katherine Yelick NERSC Director Requirements Workshop NERSC Mission The mission of the National Energy Research Scientific Computing Center (NERSC) is to accelerate the pace of scientific discovery by providing high performance computing, information, data, and communications services for all DOE Office of Science (SC) research. New Type of Nonlinear Plasma Instability Discovered Objective: Study large periodic instabilities called Edge Localized Modes (ELMs) in

  18. Research in the chemical sciences: Summaries of FY 1994

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This summary book is published annually on research supported by DOE`s Division of Chemical Sciences in the Office of Energy Research. Research in photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations and analysis, heavy element chemistry, chemical engineering sciences, and advanced batteries is arranged according to national laboratories, offsite institutions, and small businesses. Goal is to add to the knowledge base on which existing and future efficient and safe energy technologies can evolve. The special facilities used in DOE laboratories are described. Indexes are provided (topics, institution, investigator).

  19. Sandia National Labs: PCNSC: Research: Compound Semiconductor Science and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Compound Semiconductor Science and Technology Thrust The Physical, Chemical, and Nano Sciences Center's vision for Compound Semiconductors is to develop the science of compound semiconductors that will enable us to invent integrated nano-technologies for the microsystems of the future. We will achieve this by advancing the frontiers of semiconductor research in areas such as quantum phenomena, defect physics, materials and device modeling, heteroepitaxy, and by discovering new

  20. Summaries of FY 1993 research in the chemical sciences

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The summaries in photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations and analysis, heavy element chemistry, chemical engineering sciences, and advanced battery technology are arranged according to national laboratories and offsite institutions. Small business innovation research projects are also listed. Special facilities supported wholly or partly by the Division of Chemical Sciences are described. Indexes are provided for selected topics of general interest, institutions, and investigators.

  1. Center for Nanoscale Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNM on Facebook Career Opportunities CNM Intranet CNM on Facebook Argonne National Laboratory Center for Nanoscale Materials About Research Capabilities For Users People...

  2. Summaries of FY 1980 research in the chemical sciences

    SciTech Connect (OSTI)

    1980-09-01

    Brief summaries are given of research programs being pursued by DOE laboratories and offsite facilities in the fields of photochemical and radiation sciences, chemical physics, atomic physics, chemical energy, separations, analysis, and chemical engineering sciences. No actual data is given. Indexes of topics, offsite institutions, and investigators are included. (DLC)

  3. NREL: Photovoltaics Research - Science and Technology Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of laboratory space, office space, and lobby connected by an elevated bridge to the Solar Energy Research Facility (SERF). The S&TF houses the Process Development and...

  4. Science Day Offers Students STEM Activities | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and visited stations to learn about scientific concepts as diverse as the science of music, x-ray and ultrasound, and renewable energy. The event is part of Global Research's...

  5. GE Researcher Explores Science Behind Movie Chappie | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    When Will We Have Robot Best Friends? A GE Researcher Explores the Science Behind Movie Magic Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new...

  6. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative, experimental-based

  7. Energy Frontier Research Center Center for Materials Science of Nuclear

    Office of Scientific and Technical Information (OSTI)

    Fuels (Technical Report) | SciTech Connect Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize

  8. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Research High Energy Physics (HEP) HEP Home About Research Science Drivers of Particle Physics Energy Frontier Intensity Frontier Cosmic Frontier Theoretical and Computational Physics Advanced Technology R&D Accelerator R&D Stewardship Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301)

  9. Energy Frontier Research Center Center for Materials Science of Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuels (Technical Report) | SciTech Connect Technical Report: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Citation Details In-Document Search Title: Energy Frontier Research Center Center for Materials Science of Nuclear Fuels Scientific Successes * The first phonon density of states (PDOS) measurements for UO2 to include anharmonicity were obtained using time-of-flight inelastic neutron scattering at the Spallation Neutron Source (SNS), and an innovative,

  10. Los Alamos honors four for science leadership, research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos honors four for science leadership, research Los Alamos honors four for science leadership, research John Gordon, Geoffrey Reeves, Stephen Doorn and David Jablonski are honored for achievements. January 30, 2012 Left to right: David Jablonski, John Gordon, Stephen Doorn (seated), and Geoffrey Reeves Left to right: David Jablonski, John Gordon, Stephen Doorn (seated), and Geoffrey Reeves Contact Nancy Ambrosiano Communications Office (505) 667-0471 Email Stars in hydrogen storage,

  11. Los Alamos research published in Public Library of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos research published in Public Library of Science Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Los Alamos research published in Public Library of Science Scientists can now monitor and forecast diseases around the globe more effectively by analyzing views of Wikipedia articles January 1, 2015 Wikipedia searches for disease symptoms can help forecast outbreaks around the world Wikipedia searches can help

  12. Computational Science Research in Support of Petascale Electromagnetic Modeling

    SciTech Connect (OSTI)

    Lee, L.-Q.; Akcelik, V; Ge, L; Chen, S; Schussman, G; Candel, A; Li, Z; Xiao, L; Kabel, A; Uplenchwar, R; Ng, C; Ko, K; /SLAC

    2008-06-20

    Computational science research components were vital parts of the SciDAC-1 accelerator project and are continuing to play a critical role in newly-funded SciDAC-2 accelerator project, the Community Petascale Project for Accelerator Science and Simulation (ComPASS). Recent advances and achievements in the area of computational science research in support of petascale electromagnetic modeling for accelerator design analysis are presented, which include shape determination of superconducting RF cavities, mesh-based multilevel preconditioner in solving highly-indefinite linear systems, moving window using h- or p- refinement for time-domain short-range wakefield calculations, and improved scalable application I/O.

  13. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  14. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  15. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  16. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  17. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  18. Mapping the Nanoscale Landscape

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mapping the Nanoscale Landscape Print For the first time, researchers have successfully mapped the chemical structure of conjugated polymer blend films with a spatial resolution of better than 50 nm using scanning transmission x-ray microscopy (STXM). This is not just another application of STXM. It is a breakthrough experiment on several levels. Correlating local composition to electronic/optical device characteristics will pave the way to characterizing a whole new class of materials with

  19. MIT Plasma Science & Fusion Center: research>alcator>research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information Physics Research High-Energy- Density Physics Waves & Beams Fusion Technology & Engineering Plasma Technology Useful Links Collaborations at Alcator...

  20. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Measurements of Glass Transition Temperature and Temperature-Dependent Mechanical Properties in Polymers M.P. Nikiforov, S. Jesse, L.T. Germinario (CNMS user, Eastman...

  1. Watch copper deposited in a chemical reaction at the nanoscale | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Watch copper deposited in a chemical reaction at the nanoscale Share Topic Programs Materials science Nanoscience

  2. Research in the chemical sciences. Summaries of FY 1995

    SciTech Connect (OSTI)

    1995-09-01

    This summary book is published annually to provide information on research supported by the Department of Energy`s Division of Chemical Sciences, which is one of four Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries provide the scientific and technical public, as well as the legislative and executive branches of the Government, information, either generally or in some depth, about the Chemical Sciences program. Scientists interested in proposing research for support will find the publication useful for gauging the scope of the present basic research program and it`s relationship to their interests. Proposals that expand this scope may also be considered or directed to more appropriate offices. The primary goal of the research summarized here is to add significantly to the knowledge base in which existing and future efficient and safe energy technologies can evolve. As a result, scientific excellence is a major criterion applied in the selection of research supported by the Division of Chemical Sciences, but another important consideration is emphasis on science that is advancing in ways that will produce new information related to energy.

  3. Environmental Sciences Division: Summaries of research in FY 1996

    SciTech Connect (OSTI)

    1997-06-01

    This document describes the Fiscal Year 1996 activities and products of the Environmental Sciences Division, Office of Biological and Environmental Research, Office of Energy Research. The report is organized into four main sections. The introduction identifies the basic program structure, describes the programs of the Environmental Sciences Division, and provides the level of effort for each program area. The research areas and project descriptions section gives program contact information, and provides descriptions of individual research projects including: three-year funding history, research objective and approach used in each project, and results to date. Appendixes provide postal and e-mail addresses for principal investigators and define acronyms used in the text. The indexes provide indexes of principal investigators, research institutions, and keywords for easy reference. Research projects are related to climatic change and remedial action.

  4. Fermilab | Science | Particle Physics | Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research & Development VLPC wafer for DZero future detector To investigate the smallest bits of matter, some of which last only a fraction of a second before decaying, scientists need something more powerful than a microscope. To study particles, physicists use particle detectors. These devices sense and record information about particles such as their masses, energies, momenta or points of origin. Different particles and different experiments require different types of particle detectors.

  5. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNMS RESEARCH Systematic reduction of sign errors in many-body calculations of atoms and molecules M. Bajdich,1 M. L. Tiago,1 R. Q. Hood,2 P. R. C. Kent,3 F. A. Reboredo1 1Materials Science and Technology Division, Oak Ridge National Laboratory 2Condensed Matter and Materials Division, Lawrence Livermore National Laboratory 3Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Achievement: We have developed a new systematically convergeable algorithm - Self-Healing Diffusion

  6. Strategic Energy Science Plan for Research, Education, and Extension

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Agriculture Research, Education, and Economics Mission Area TRATEGIC ENERGY SCIENCE PLAN FOR RESEARCH, EDUCATION, AND EXTENSION March 2008 Role: Lead Research, Education, and Extension programs for sustainable production of agriculture-based and natural resource-based renewable energy and effi cient use and conservation of energy - for the benefit of rural communities and the Nation S Vision: "Growing a clean, efficient, sustainable energy future for America" We have a

  7. Summaries of FY 1979 research in the chemical sciences

    SciTech Connect (OSTI)

    Not Available

    1980-05-01

    The purpose of this report is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division wll find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These smmaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program for members of the scientific and technological public, and interested persons in the Legislative and Executive Branches of the Government, in order to indicate the areas of research supported by the Division and energy technologies which may be advanced by use of basic knowledge discovered in this program. Scientific excellence is a major criterion applied in the selection of research supported by Chemical Sciences. Another important consideration is the identifying of chemical, physical and chemical engineering subdisciplines which are advancing in ways which produce new information related to energy, needed data, or new ideas.

  8. Nanoscale Building Blocks and DNA "Glue" Help Shape 3D Architectures |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) Nanoscale Building Blocks and DNA "Glue" Help Shape 3D Architectures Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More

  9. Advancing Research & Technology in the Sciences (ARTS) Forum | Department

    Energy Savers [EERE]

    of Energy Advancing Research & Technology in the Sciences (ARTS) Forum Advancing Research & Technology in the Sciences (ARTS) Forum January 28, 2016 - 4:11pm Addthis VE-Suite, a virtual engineering tool developed at Ames Laboratory, displayed on a six-sided virtual reality room which helps engineers build greener, next-generation power plants faster and less expensively than ever before. VE-Suite, a virtual engineering tool developed at Ames Laboratory, displayed on a six-sided

  10. Summaries of FY 1982 research in the chemical sciences

    SciTech Connect (OSTI)

    1982-09-01

    The purpose of this booklet is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program to members of the scientific and technological public and interested persons in the Legislative and Executive Branches of the Government. Areas of research supported by the Division are to be seen in the section headings, the index and the summaries themselves. Energy technologies which may be advanced by use of the basic knowledge discovered in this program can be seen in the index and again (by reference) in the summaries. The table of contents lists the following: photochemical and radiation sciences; chemical physics; atomic physics; chemical energy; separation and analysis; chemical engineering sciences; offsite contracts; equipment funds; special facilities; topical index; institutional index for offsite contracts; investigator index.

  11. Biological Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Energy Science Engineering Science Environmental Science Fusion Science Math & Computer Science Nuclear Science Share Your Research NERSC Citations Home Science at...

  12. Office of Science Priority Research Areas for SCGSR Program | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Office of Science Priority Research Areas for SCGSR Program DOE Office of Science Graduate Student Research (SCGSR) Program SCGSR Home Eligibility Benefits Participant Obligations How to Apply Identifying a Collaborating DOE Laboratory Scientist Research Proposal Guidelines Office of Science Priority Research Areas for SCGSR Program About the Office of Science Office of Science User Facilities Priority Areas For Past SCGSR Solicitations Letters of Support Graduate

  13. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    growth modes for ZnO at the nanoscale. Under typical growth conditions the surface migration of adatoms across a hexagonally-faceted ZnO protrusion will lead to growth of a...

  14. 2010 Atmospheric System Research (ASR) Science Team Meeting Summary

    SciTech Connect (OSTI)

    Dupont, DL

    2011-05-04

    This document contains the summaries of papers presented in poster format at the March 2010 Atmospheric System Research Science Team Meeting held in Bethesda, Maryland. More than 260 posters were presented during the Science Team Meeting. Posters were sorted into the following subject areas: aerosol-cloud-radiation interactions, aerosol properties, atmospheric state and surface, cloud properties, field campaigns, infrastructure and outreach, instruments, modeling, and radiation. To put these posters in context, the status of ASR at the time of the meeting is provided here.

  15. Science Highlights Presentations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights Presentations Science Highlights Presentations NERSC collects highlights of recent scientific work carried out by its users. If you are a user and have work that you would like us to highlight please send e-mail to consult@nersc.gov. In the list below, names of researchers who did the work appear in brackets. December 2015 Presentation [PDF] Creating Nanoscale Ferroelectricity from a Nonferroelectric Film [X. Wu, Temple University, Science, 349, 6254, 1314-1317, Sep. 2015] [BES]

  16. Earth Sciences Division Research Summaries 2006-2007

    SciTech Connect (OSTI)

    DePaolo, Donald; DePaolo, Donald

    2008-07-21

    Research in earth and atmospheric sciences has become increasingly important in light of the energy, climate change, and other environmental issues facing the United States and the world. The development of new energy resources other than fossil hydrocarbons, the safe disposal of nuclear waste and greenhouse gases, and a detailed understanding of the climatic consequences of our energy choices are all critical to meeting energy needs while ensuring environmental safety. The cleanup of underground contamination and the preservation and management of water supplies continue to provide challenges, as they will for generations into the future. To address the critical energy and environmental issues requires continuing advances in our knowledge of Earth systems and our ability to translate that knowledge into new technologies. The fundamental Earth science research common to energy and environmental issues largely involves the physics, chemistry, and biology of fluids in and on the Earth. To manage Earth fluids requires the ability to understand their properties and behavior at the most fundamental molecular level, as well as prediction, characterization, imaging, and manipulation of those fluids and their behavior in real Earth reservoirs. The broad range of disciplinary expertise, the huge range of spatial and time scales, and the need to integrate theoretical, computational, laboratory and field research, represent both the challenge and the excitement of Earth science research. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is committed to addressing the key scientific and technical challenges that are needed to secure our energy future in an environmentally responsibly way. Our staff of over 200 scientists, UC Berkeley faculty, support staff and guests perform world-acclaimed fundamental research in hydrogeology and reservoir engineering, geophysics and geomechanics, geochemistry, microbial ecology, climate systems, and environmental engineering. Building on this scientific foundation, we also perform applied earth science research and technology development to support DOE in a number of its program areas. We currently organize our efforts in the following Division Programs: Fundamental and Exploratory Research--fundamental research in geochemistry, geophysics, and hydrology to provide a basis for new and improved energy and environmental technologies; Climate and Carbon Sciences--carbon cycling in the terrestrial biosphere and oceans, and global and regional climate modeling, are the cornerstones of a major developing divisional research thrust related to understanding and mitigating the effects of increased greenhouse gas concentrations in the atmosphere; Energy Resources--collaborative projects with industry to develop or improve technologies for the exploration and production of oil, gas, and geothermal reservoirs, and for the development of bioenergy; Environmental Remediation and Water Resources--innovative technologies for locating, containing, and remediating metals, radionuclides, chlorinated solvents, and energy-related contaminants in soils and groundwaters; Geologic Carbon Sequestration--development and testing of methods for introducing carbon dioxide to subsurface geologic reservoirs, and predicting and monitoring its subsequent migration; and Nuclear Waste and Energy--theoretical, experimental, and simulation studies of the unsaturated zone at Yucca Mountain, Nevada. These programs draw from each of ESD's disciplinary departments: Climate Science, Ecology, Geochemistry, Geophysics, and Hydrogeology. Short descriptions of these departments are provided as introductory material. In this document, we present summaries of selected current research projects. While it is not a complete accounting, the projects described here are representative of the nature and breadth of the ESD research effort. We are proud of our scientific accomplishments and we hope that you will find this material useful and exciting. A list of publications for the period from January 2006 to June 2007, along with a listing of our personnel, are also appended. Any comments on our research are appreciated and can be sent to me personally.

  17. Atmospheric System Research (ASR) Program | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Atmospheric System Research (ASR) Program Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program

  18. Subsurface Biogeochemical Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Subsurface Biogeochemical Research Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Climate and Environmental Sciences Division (CESD) ARM Climate Research Facility Atmospheric System Research (ASR) Program Data Management Earth System Modeling (ESM) Program William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) Integrated Assessment of Global Climate Change Regional & Global Climate Modeling (RGCM) Program Subsurface

  19. Research Conduct Policies | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory...

  20. Earth Sciences Division Research Summaries 2002-2003

    SciTech Connect (OSTI)

    Bodvarsson, G.S.

    2003-11-01

    Research in earth and atmospheric sciences is becoming increasingly important in light of the energy, climate change, and environmental issues facing the United States and the world. The development of new energy resources other than hydrocarbons and the safe disposal of nuclear waste and greenhouse gases (such as carbon dioxide and methane) are critical to the future energy needs and environmental safety of this planet. In addition, the cleanup of many contaminated sites in the U.S., along with the preservation and management of our water supply, remain key challenges for us as well as future generations. Addressing these energy, climate change, and environmental issues requires the timely integration of earth sciences' disciplines (such as geology, hydrology, oceanography, climatology, geophysics, geochemistry, geomechanics, ecology, and environmental sciences). This integration will involve focusing on fundamental crosscutting concerns that are common to many of these issues. A primary focus will be the characterization, imaging, and manipulation of fluids in the earth. Such capabilities are critical to many DOE applications, from environmental restoration to energy extraction and optimization. The Earth Sciences Division (ESD) of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) is currently addressing many of the key technical issues described above. In this document, we present summaries of many of our current research projects. While it is not a complete accounting, it is representative of the nature and breadth of our research effort. We are proud of our scientific efforts, and we hope that you will find our research useful and exciting. Any comments on our research are appreciated and can be sent to me personally. This report is divided into five sections that correspond to the major research programs in the Earth Sciences Division: (1) Fundamental and Exploratory Research; (2) Nuclear Waste; (3) Energy Resources; (4) Environmental Remediation Technology; and (5) Climate Variability and Carbon Management. These programs draw from each of ESD's disciplinary departments: Microbial Ecology and Environmental Engineering, Geophysics and Geomechanics, Geochemistry, and Hydrogeology and Reservoir Dynamics. Short descriptions of these departments are provided as introductory material. A list of publications for the period from January 2002 to June 2003, along with a listing of our personnel, are appended to the end of this report.

  1. Center for Nanophase Materials Sciences (CNMS) - Archived CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights CNMS USER RESEARCH Fluctuations and Correlations in Physical and Biological Nanosystems Michael L. Simpson and Peter T. Cummings Center for Nanophase Materials Science, Oak Ridge National Laboratory When components at one level (atoms, molecules, nanostructures, etc) are coupled together to form higher-level - mesoscale - structures, new collective phenomena emerge. Optimizing such systems requires embracing stochastic fluctuations in a manner similar to that found in nature.

  2. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Micro/nanofabricated environments for synthetic biology C. Patrick Collier and Michael L. Simpson Nanofabrication Research Laboratory, Center for Nanophase Materials Sciences Oak Ridge National Laboratory, Oak Ridge, TN 37831-6493 A better understanding of how confinement, crowding and reduced dimensionality modulate reactivity and reaction dynamics will aid in the rational and systematic discovery of functionality in complex biological systems. Artificial micro- and nanofabricated structures

  3. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Antioxidant Deactivation on Graphenic Nanocarbon Surfaces Xinyuan Liu,1 Sujat Sen,1 Jingyu Liu,1 Indrek Kulaots,2 David Geohegan,3 Agnes Kane,4 Alex A. Puretzky,3 Christopher M. Rouleau,3 Karren L. More,5 G. Tayhas R. Palmore,2 and Robert H. Hurt2 1-Dept Chemistry, Brown University 2-School of Engineering, Brown University 3-Center for Nanophase Materials Sciences, Oak Ridge National Laboratory 4-Dept Pathology & Laboratory Medicine, Brown University 5-Shared Research Equipment Facility, Oak

  4. DOE Science Showcase - Carbon Capture research in DOE Databases | OSTI,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US Dept of Energy, Office of Scientific and Technical Information DOE Science Showcase - Carbon Capture research in DOE Databases Information Bridge : Natural materials for carbon capture. ... Realistic costs of carbon capture ... Technology and international climate policy Energy Citations Database : What Can China Do? China's Best Alternative Outcome for Energy Efficiency and CO2 Emissions ... Effects of warming on the structure and function of a boreal black spruce forest ...

  5. Computer Science Research Institute 2005 annual report of activities.

    SciTech Connect (OSTI)

    Watts, Bernadette M.; Collis, Samuel Scott; Ceballos, Deanna Rose; Womble, David Eugene

    2008-04-01

    This report summarizes the activities of the Computer Science Research Institute (CSRI) at Sandia National Laboratories during the period January 1, 2005 to December 31, 2005. During this period, the CSRI hosted 182 visitors representing 83 universities, companies and laboratories. Of these, 60 were summer students or faculty. The CSRI partially sponsored 2 workshops and also organized and was the primary host for 3 workshops. These 3 CSRI sponsored workshops had 105 participants, 78 from universities, companies and laboratories, and 27 from Sandia. Finally, the CSRI sponsored 12 long-term collaborative research projects and 3 Sabbaticals.

  6. Computer Science Research Institute 2003 annual report of activities.

    SciTech Connect (OSTI)

    DeLap, Barbara J.; Womble, David Eugene; Ceballos, Deanna Rose

    2006-03-01

    This report summarizes the activities of the Computer Science Research Institute (CSRI) at Sandia National Laboratories during the period January 1, 2003 to December 31, 2003. During this period the CSRI hosted 164 visitors representing 78 universities, companies and laboratories. Of these 78 were summer students or faculty members. The CSRI partially sponsored 5 workshops and also organized and was the primary host for 3 workshops. These 3 CSRI sponsored workshops had 178 participants--137 from universities, companies and laboratories, and 41 from Sandia. Finally, the CSRI sponsored 18 long-term collaborative research projects and 5 Sabbaticals.

  7. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and researchers at work. News Releases Science Briefs Photos Picture of the Week Social Media Videos Fact Sheets Publications PHOTOS BY TOPIC Careers Community Visitors...

  8. Atmospheric Sciences Program summaries of research in FY 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    This document describes the activities and products of the Atmospheric Science Program of the Environmental Sciences Division, Office of Health and Environmental Research, Office of Energy Research, in FY 1993. Each description contains the project`s title; three-year funding history; the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date. Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states its goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used. This document has been indexed to aid the reader in locating research topics, participants, and research institutions in the text and the project descriptions. Comprehensive subject, principal investigator, and institution indexes are provided at the end of the text for this purpose. The comprehensive subject index includes keywords from the introduction and chapter texts in addition to those from the project descriptions.

  9. MEIS: Molecular Environmental & Interface Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    People BL 11-2 Reports &Publications Model Compound Library SixPACK Glitch Curves MES User Resources & Instrumentation Environmental Remediation Science at SSRL MEIS Home SSRL Stanford EMSI SLAC Beam line resources and instrumentation Fundamental and applied research Why synchrotrons for environmental science? Molecular Environmental Science (MES) research at SSRL focuses on the fundamental interfacial, molecular- and nano-scale processes that control contaminant and nutrient cycling in

  10. Nanoscale Synthesis and Characterization Laboratory Annual Report 2007

    SciTech Connect (OSTI)

    Hamza, A V

    2008-04-07

    The Nanoscale Synthesis and Characterization Laboratory's (NSCL) primary mission is to create and advance interdisciplinary research and development opportunities in nanoscience and technology. The NSCL is delivering on its mission providing Laboratory programs with scientific solutions through the use of nanoscale synthesis and characterization. While this annual report summarizes 2007 activities, we have focused on nanoporous materials, advanced high strength, nanostructured metals, novel 3-dimensional lithography and characterization at the nanoscale for the past 3 years. In these three years we have synthesized the first monolithic nanoporous metal foams with less than 10% relative density; we have produced ultrasmooth nanocrystalline diamond inertial confinement fusion capsules; we have synthesized 3-dimensional graded density structures from full density to 5% relative density using nanolithography; and we have established ultrasmall angle x-ray scattering as a non-destructive tool to determine the structure on the sub 300nm scale. The NSCL also has a mission to recruit and to train personnel for Lab programs. The NSCL continues to attract talented scientists to the Laboratory. Andrew Detor from Massachusetts Institute of Technology, Sutapa Ghosal from the University of California, Irvine, Xiang Ying Wang from Shanghai Institute of Technology, and Arne Wittstock from University of Bremen joined the NSCL this year. The NSCL is pursuing four science and technology themes: nanoporous materials, advanced nanocrystalline materials, novel three-dimensional nanofabrication technologies, and nondestructive characterization at the mesoscale. The NSCL is also pursuing building new facilities for science and technology such as nanorobotics and atomic layer deposition.

  11. 2004 research briefs :Materials and Process Sciences Center.

    SciTech Connect (OSTI)

    Cieslak, Michael J.

    2004-01-01

    This report is the latest in a continuing series that highlights the recent technical accomplishments associated with the work being performed within the Materials and Process Sciences Center. Our research and development activities primarily address the materials-engineering needs of Sandia's Nuclear-Weapons (NW) program. In addition, we have significant efforts that support programs managed by the other laboratory business units. Our wide range of activities occurs within six thematic areas: Materials Aging and Reliability, Scientifically Engineered Materials, Materials Processing, Materials Characterization, Materials for Microsystems, and Materials Modeling and Simulation. We believe these highlights collectively demonstrate the importance that a strong materials-science base has on the ultimate success of the NW program and the overall DOE technology portfolio.

  12. ScienceLive chat page: on the future of fusion research | Princeton Plasma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Lab ScienceLive chat page: on the future of fusion research American Fusion News Category: U.S. Universities Link: ScienceLive chat page: on the future of fusion research

  13. The Art of Research: Opportunities for a Science-Based Approach...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: The Art of Research: Opportunities for a Science-Based Approach. Citation Details In-Document Search Title: The Art of Research: Opportunities for a Science-Based...

  14. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    SciTech Connect (OSTI)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X-ray sources, neutron sources, nanoscale science research centers, and supercomputers, offer the opportunity to transform and accelerate the fundamental materials and chemical sciences that underpin technology development for advanced nuclear energy systems. The fundamental challenge is to understand and control chemical and physical phenomena in multi-component systems from femto-seconds to millennia, at temperatures to 1000?C, and for radiation doses to hundreds of displacements per atom (dpa). This is a scientific challenge of enormous proportions, with broad implications in the materials science and chemistry of complex systems. New understanding is required for microstructural evolution and phase stability under relevant chemical and physical conditions, chemistry and structural evolution at interfaces, chemical behavior of actinide and fission-product solutions, and nuclear and thermomechanical phenomena in fuels and waste forms. First-principles approaches are needed to describe f-electron systems, design molecules for separations, and explain materials failure mechanisms. Nanoscale synthesis and characterization methods are needed to understand and design materials and interfaces with radiation, temperature, and corrosion resistance. Dynamical measurements are required to understand fundamental physical and chemical phenomena. New multiscale approaches are needed to integrate this knowledge into accurate models of relevant phenomena and complex systems across multiple length and time scales.

  15. Core Research Activities and Studies of the Computer Science and Telecommunications Board

    SciTech Connect (OSTI)

    Eisenberg, Jon K.

    2015-02-11

    Lists activities of the Computer Science and Telecommunications Board and summarizes research results partly enabled by this award.

  16. STICKY FINGERS: How One Researcher is Improving the Science of Fingerprints

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy STICKY FINGERS: How One Researcher is Improving the Science of Fingerprints STICKY FINGERS: How One Researcher is Improving the Science of Fingerprints May 1, 2015 - 3:42pm Addthis Linda Lewis takes a materials science approach to forensics research at Oak Ridge National Laboratory. | Photo courtesy of Oak Ridge National Laboratory. Linda Lewis takes a materials science approach to forensics research at Oak Ridge National Laboratory. | Photo courtesy of Oak Ridge

  17. Center for Nanophase Materials Sciences (CNMS) - Archived CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights ARCHIVED CNMS RESEARCH HIGHLIGHTS Correlating Electronic Transport to Atomic Structures in Self-Assembled Quantum Wires Shengyong Qin,1 Tae-Hwan Kim,1 Yanning Zhang,2 Wenjie Ouyang,2 Hanno H. Weitering,3 Chih-Kang Shih,4 Arthur P. Baddorf,1 Ruqian Wu,2 and An-Ping Li1 1-Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA 2-Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA 3-Department of Physics and

  18. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Journal Cover Journal of Applied Physics March 15, 2008 issue A team of researchers from the Center for Nanophase Materials Sciences (CNMS) has written the cover article in the March 15, 2008, issue of the Journal of Applied Physics. "Surface characterization and functionalization of carbon nanofibers" is a comprehensive review article authored by K. L. Klein, A. V. Melechko, T. E. McKnight, S. T. Retterer, P. D. Rack, J. D. Fowlkes, D. C. Joy and M. L. Simpson. This team is widely

  19. NREL: Biomass Research - Chemical and Catalyst Science Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical and Catalyst Science Projects A photo of a large white tank the size of a water heater. Several metal fittings stick out of the sides of the tank. Thin tubes are attached to some of the fittings and lead to flow meters and other metal pipes. Researchers use experimental data from this four-inch fluidized bed reactor to develop and validate gasification process models. NREL uses chemical analysis to study biomass-derived products online during the conversion process. Catalysts are used

  20. Materials Science of Actinides (MSA) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Materials Science of Actinides (MSA) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Materials Science of Actinides (MSA) Print Text Size: A A A FeedbackShare Page MSA Header Director Peter Burns Lead Institution University of Notre Dame Year Established 2009 Mission To understand and control, at the nanoscale, materials that contain actinides (radioactive heavy elements

  1. Research & Evaluation Prototypes (REP) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Research & Evaluation Prototypes (REP) Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities User Facilities Accessing ASCR Facilities Computational Science Graduate Fellowship (CSGF) Research & Evaluation Prototypes (REP) Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown

  2. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Control of Silica Morphology During Diatom Cell Wall Formation M. Hildebrand, E. York, J. I. Kelz, A. K. Davis, and L. G. Frigeri (Scripps Institution of Oceanography, University of California-San Diego), D. P. Allison (University of Tennessee, Knoxville), M. J. Doktycz (CNMS Staff) Scientific Achievement A unique approach that combines biological manipulation with advanced imaging tools was used to examine silica cell wall synthesis in the diatom Thalassiosira pseudonana. The innate

  3. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directed Assembly of Patterned Thin Films into Nanoparticle Ensembles Philip Rack, Yinfeng Guan (The University of Tennessee, Knoxville); Anatoli Melechko (North Carolina State University); Jason D. Fowlkes and Michael Simpson (CNMS) Achievement Predictable and repeatable directed-assembly of thin nickel films into ensembles of nanoscale particles was enabled by using electron beam lithography and pulsed laser heating to define and treat thin nickel films of various shapes. The edges and

  4. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vertically Aligned Carbon Nanofibers Arrays Record Electrophysiological Signals Zhe Yu and Barclay Morrison III, (Department of Biomedical Engineering, Columbia University), T. E. McKnight, M. N. Ericson, (ESTD, ORNL) A. V. Melechko, and M. L. Simpson (CNMS, ORNL) Achievement The controlled synthesis and directed assembly of nanoscale materials is a key requirement to create functional interfaces between synthetic and biological systems. Along these lines, recent advances in the controlled

  5. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Link to the ASCR Computer Science Web Page APPLIED MATHEMATICS The Applied Mathematics ... Link to the ASCR Applied Mathematics Web Page NEXT GENERATION NETWORKING FOR SCIENCE ...

  6. Connecting Lab-Based Attosecond Science with FEL research

    ScienceCinema (OSTI)

    None

    2011-10-06

    In the last few years laboratory-scale femtosecond laser-based research using XUV light has developed dramatically following the successful development of attosecond laser pulses by means of high-harmonic generation. Using attosecond laser pulses, studies of electron dynamics on the natural timescale that electronic processes occur in atoms, molecules and solids can be contemplated, providing unprecedented insight into the fundamental role that electrons play in photo-induced processes. In my talk I will briefly review the present status of the attosecond science research field in terms of present and foreseen capabilities, and discuss a few recent applications, including a first example of the use of attosecond laser pulses in molecular science. In addition, I will discuss very recent results of experiments where photoionization of dynamically aligned molecules is investigated using a high-harmonics XUV source. Photoionization of aligned molecules becomes all the more interesting if the experiment is performed using x-ray photons. Following the absorption of x-rays, ejected photoelectrons can be used as a probe of the (time-evolving) molecular structure, making use of intra-molecular electron diffraction. This amounts, as some have stated, to ?illuminating the molecule from within?. I will present the present status of our experiments on this topic making use of the FLASH free electron laser in Hamburg. Future progress in this research field not only depends on the availability of better and more powerful light sources, but also requires sophisticated detector strategies. In my talk I will explain how we are trying to meet some of the experimental challenges by using the Medipix family of detectors, which we have already used for time- and space-resolved imaging of electrons and ions.

  7. Nanoscale Materials Safety at the Department's Laboratories

    Office of Environmental Management (EM)

    U.S. Department of Energy Office of Inspector General Office of Audit Services Audit Report Nanoscale Materials Safety at the Department's Laboratories DOE/IG-0788 February 2008 Department of Energy Washington, DC 2 0 5 8 5 February 28, 2008 MEMORANDUM FOR FROM: Inspector General SUBJECT: IhTFORMATION: Audit Report on "Nanoscale Materials Safety at the Department's Laboratories" BACKGROUND The National Nanotechnology Initiative was established as a multi-agency research and

  8. Report of the Cyber Security Research Needs for Open Science Workshop |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy the Cyber Security Research Needs for Open Science Workshop Report of the Cyber Security Research Needs for Open Science Workshop Protecting systems and users, while maintaining ease of access, represents the "perfect storm" of challenges in the area of cyber security. PDF icon Report of the Cyber Security Research Needs for Open Science Workshop More Documents & Publications Networking and Information Technology Research and Development Supplement to the

  9. About the Neutron and Nuclear Science Research (WNR) facility at LANSCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About the Neutron and Nuclear Science (WNR) Facility The Neutron and Nuclear Science (WNR) Facility provides neutron and proton beams and detector arrays for basic, applied, industrial, and defense-related research. Neutron and Nuclear Science The Neutron and Nuclear Science (WNR) Facility consists of a high-energy "white" neutron source (Target 4) with 6 flight paths, three low-energy nuclear science flight paths at the Lujan Center (Target-1), and a proton reaction area (Target-2).

  10. Rocket Science? No, It's Harder | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Opens in new window) Rocket Science? No, It's Harder "Sometimes our subsea engineers joke that it is more difficult than rocket science to put a machine on the ocean floor,...

  11. AmeriFlux Measurement Network: Science Team Research

    SciTech Connect (OSTI)

    Law, B E

    2012-12-12

    Research involves analysis and field direction of AmeriFlux operations, and the PI provides scientific leadership of the AmeriFlux network. Activities include the coordination and quality assurance of measurements across AmeriFlux network sites, synthesis of results across the network, organizing and supporting the annual Science Team Meeting, and communicating AmeriFlux results to the scientific community and other users. Objectives of measurement research include (i) coordination of flux and biometric measurement protocols (ii) timely data delivery to the Carbon Dioxide Information and Analysis Center (CDIAC); and (iii) assurance of data quality of flux and ecosystem measurements contributed by AmeriFlux sites. Objectives of integration and synthesis activities include (i) integration of site data into network-wide synthesis products; and (ii) participation in the analysis, modeling and interpretation of network data products. Communications objectives include (i) organizing an annual meeting of AmeriFlux investigators for reporting annual flux measurements and exchanging scientific information on ecosystem carbon budgets; (ii) developing focused topics for analysis and publication; and (iii) developing data reporting protocols in support of AmeriFlux network goals.

  12. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science Office of Science * * * Office of Science Office of * * * * * Office of Science Office of Science * * * Office of Science * * * * 287 115...

  13. Garry Rumbles - Research Fellow | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Garry Rumbles - Research Fellow Photo of Garry Rumbles Research Fellows Dr. Garry Rumbles is a Research Fellow at the National Renewable Energy Laboratory (NREL). He joined NREL in 2000 and is widely recognized for his research in photochemistry and photophysics of conjugated molecular systems, energy conversion in organic light emitting diodes and organic photovoltaic devices, and nanoscale morphology. Dr. Rumbles' current research interests are in solar energy with a focus on the basic science

  14. Whirlpools on the Nanoscale Could Multiply Magnetic Memory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Whirlpools on the Nanoscale Could Multiply Magnetic Memory Whirlpools on the Nanoscale Could Multiply Magnetic Memory Print Tuesday, 21 May 2013 00:00 Research at the Advanced Light Source may lead to four-bit magnetic cells housed on nanoscale metal disks, instead of the two-bit magnetic domains of standard magnetic memories. In magnetic vortices, parallel electron spins point either clockwise or counterclockwise, while in their crowded centers the spins point either down or up. "From the

  15. X-Stack Software Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    X-Stack Software Research Advanced Scientific Computing Research (ASCR) ASCR Home About Research Applied Mathematics Computer Science Exascale Tools Workshop Programming Challenges Workshop Architectures I Workshop External link Architectures II Workshop External link Next Generation Networking Scientific Discovery through Advanced Computing (SciDAC) ASCR SBIR-STTR Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC)

  16. HIV genetic research to be discussed at Bradbury Science Museum lecture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feb. 12 HIV genetic research to be discussed Feb. 12 HIV genetic research to be discussed at Bradbury Science Museum lecture Feb. 12 Tanmoy Bhattacharya will talk about the Lab's research in HIV genetics and how the deluge of new data is going to impact its future. February 7, 2014 Bradbury Science Museum Bradbury Science Museum Contact Steve Sandoval Communications Office (505) 665-9206 Email "In biology, access to large amounts of genetic information about organisms revolutionized the

  17. DOE Office of Basic Sciences: An Overview of Basic Research Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Office of Basic Sciences: An Overview of Basic Research Activities on Thermoelectrics Presents overview of BES Physical Behavior of Materials Program including examples of ...

  18. Chemistry {ampersand} Materials Science progress report summary of selected research and development topics, FY97

    SciTech Connect (OSTI)

    Newkirk, L.

    1997-12-01

    This report contains summaries of research performed in the Chemistry and Materials Science division. Topics include Metals and Ceramics, High Explosives, Organic Synthesis, Instrument Development, and other topics.

  19. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gordon Bell Prize Emerges From Ongoing Computational Nanoscience Endstation Effort Achievement: A team led by Thomas Schulthess, including Gonzalo Alvarez, Mike Summers, Thomas Maier, and Paul Kent from the Computer Science and Mathematics Division (CSMD) and the Center for Nanophase Materials Sciences (CNMS) Nanomaterials Theory Institute; Jeremy Meredith and Ed D'Azevedo from CSMD; Markus Eisenbach and Don Maxwell from the National Center for Computational Sciences (NCCS); and Jeff Larkin and

  20. NERSC, LBL Researchers Share Materials Science Advances at APS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (University of Chicago): Computing quasiparticle energies and band offsets for large systems Session M27, March 5: Applications and Opportunities for Materials Science III Sherri...

  1. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tunable Metallic Conductance in Ferroelectric Nanodomains Peter Maksymovych,1 Anna N. Morozovska,2,3 Pu Yu,4 Eugene A. Eliseev,3 Ying-Hao Chu,4,5 Ramamoorthy Ramesh,4 Arthur P. Baddorf,1 and Sergei V. Kalinin1 1 Center for Nanophase Materials Science, Oak Ridge National Laboratory, Oak Ridge, TN, 37831 2 Institute of Semiconductor Physics, National Academy of Science of Ukraine,41, pr. Nauki, 03028 Kiev, Ukraine 3 Institute for Problems of Materials Science, National Academy of Science of

  2. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge, TN 37831 2-University of Heidelberg, Heidelberg, Germany 3-National Academy of Science of Ukraine, Kiev, Ukraine Achievement Here we report direct measurements of oxygen...

  3. Data Science Makes Trains More Efficient | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications: Small Device, Broad Impact in Power Electronics barbecue BBQ - Is it Science or Art? direct write2square The GE Store for Technology is Open for Business...

  4. STICKY FINGERS: How One Researcher is Improving the Science of...

    Energy Savers [EERE]

    Buchanan Through the Looking Glass: The Art and Science of Hand-Polishing Precision Optics Sally Dawson is an award-winning theoretical physicist seeking to better understand...

  5. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AL 35487 (USA) 2-Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (USA) 3-Department of Chemistry, University of Kentucky,...

  6. Annular Core Research Reactor - Critical to Science-Based Weapons...

    National Nuclear Security Administration (NNSA)

    - Critical to Science-Based Weapons Design, Certification | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile ...

  7. Opportunities for Materials Science and Biological Research at the OPAL Research Reactor

    SciTech Connect (OSTI)

    Kennedy, S. J.

    2008-03-17

    Neutron scattering techniques have evolved over more than 1/2 century into a powerful set of tools for determination of atomic and molecular structures. Modern facilities offer the possibility to determine complex structures over length scales from {approx}0.1 nm to {approx}500 nm. They can also provide information on atomic and molecular dynamics, on magnetic interactions and on the location and behaviour of hydrogen in a variety of materials. The OPAL Research Reactor is a 20 megawatt pool type reactor using low enriched uranium fuel, and cooled by water. OPAL is a multipurpose neutron factory with modern facilities for neutron beam research, radioisotope production and irradiation services. The neutron beam facility has been designed to compete with the best beam facilities in the world. After six years in construction, the reactor and neutron beam facilities are now being commissioned, and we will commence scientific experiments later this year. The presentation will include an outline of the strengths of neutron scattering and a description of the OPAL research reactor, with particular emphasis on it's scientific infrastructure. It will also provide an overview of the opportunities for research in materials science and biology that will be possible at OPAL, and mechanisms for accessing the facilities. The discussion will emphasize how researchers from around the world can utilize these exciting new facilities.

  8. DOE Office of Science Releases Journal of Undergraduate Research Volume VII

    Office of Science (SC) Website

    | U.S. DOE Office of Science (SC) DOE Office of Science Releases Journal of Undergraduate Research Volume VII News News Home Featured Articles Science Headlines 2015 2014 2013 2016 2012 2011 2010 2009 2008 2007 2006 2005 Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 11.20.07 DOE Office of Science Releases Journal

  9. MIT Plasma Science & Fusion Center: research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Program Information Publications & News Meetings & Seminars Contact Information Physics Research Fusion Technology & Engineering Plasma Technology Waves & Beams Useful...

  10. MIT Plasma Science & Fusion Center: research, alcator, publications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Program Information Publications & News Meetings & Seminars Contact Information Physics Research High-Energy- Density Physics Waves & Beams Technology & Engineering...

  11. Center for Nanophase Materials Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic and Ionic Functionality on the Nanoscale * Developing instrumentation and techniques to image and understand the functionality of nanoscale materials and interacting assemblies * Research on optoelectronic, ferroelectric, ionic and electronic transport, and catalytic phenomena at the nanoscale * Understand energy transfer at nanoscale interfaces Functional Polymer and Hybrid Architectures * Advancing our fundamental understanding of the links between polymer structure, property and

  12. Rocket Science? No, It's Harder | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rocket Science? No, It's Harder Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Rocket Science? No, It's Harder "Sometimes our subsea engineers joke that it is more difficult than rocket science to put a machine on the ocean floor, under extreme pressures and in a highly corrosive environment", says Juan

  13. BBQ -- Is It Science or Art? | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BBQ - Is it Science or Art? Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) BBQ - Is it Science or Art? Lynn DeRose 2015.03.13 This is the first in a five-part series of dispatches from GE's Science of Barbecue Experience at South by Southwest. Our state-of-the-art Brilliant Super-Smoker is outfitted with sensors to

  14. GE's BBQ Science Experiments Produce Results |GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BBQ Science Experiments Reveal Winning Rack of Ribs Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) BBQ Science Experiments Reveal Winning Rack of Ribs Lynn DeRose 2015.03.16 This is the fourth in a five-part series of dispatches from GE's Science of Barbecue Experience at South by Southwest. Our state-of-the-art

  15. Mapping the Impact of Research Infrastructure | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Mapping the Impact of Research Infrastructure News News Home Featured Articles 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 Science Headlines Science Highlights Presentations & Testimony News Archives Communications and Public Affairs Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 06.10.15 Mapping the Impact of Research Infrastructure New online map shows the broad use of

  16. Third DOE BES Separations Research Workshop | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Third DOE BES Separations Research Workshop Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Reports and Activities Third DOE BES Separations Research Workshop Print Text Size: A A A FeedbackShare Page Third DOE/BES Separations Research Workshop Hilton DeSoto Hotel Savannah Georgia May 12-14, 1999 Organizing Committee Dr. Richard Gordon

  17. NREL: Biomass Research - Chemical and Catalyst Science Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical and Catalyst Science Capabilities A photo of a man in a white lab coat and dark goggles looking at a microscope. A bright green light shines down from the microscope lens...

  18. Breakthrough: The Stories Behind the Science | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home > Impact > Breakthrough: The Stories Behind the Science Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in...

  19. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supramolecular Self-Assembly of p-conjugated Hydrocarbons via 2D Cooperative CH/p Interaction Qing Li*, Chengbo Han**, Scott R Horton*, Miguel Fuentes-Cabrera*, Bobby G. Sumpter*, Wenchang Lu**, Jerry Bernholc**†, Petro Maksymovych*, and Minghu Pan* *Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge,Tennessee **Center for High Performance Simulation and Department of Physics, North Carolina State University, Raleigh, North Carolina †Computer Science and

  20. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization and Carbonization of Highly-Oriented Poly(diiododiacetylene) Nanofibers Judson D. Ryckman†, Marco Liscidini‡, J. E. Sipe§, and S. M. Weiss† †Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235, USA ‡Dipartimento di Fisica "A. Volta", Universita degli Studi di Pavia, via Bassi 6, 27100 Pavia, Italy §Department of Physics and Institute for Optical Sciences, University of Toronto, 60 St. George St.

  1. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electromechanical Actuation and Current-Induced Metastable States in Suspended Single-Crystalline VO2 Nanoplatelets A. Tselev,1 J. D. Budai,2 E. Strelcov,3 J. Z. Tischler,2 A. Kolmakov3, and S. V. Kalinin1 1-Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 2-Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 3-Physics Department, Southern Illinois University Carbondale, Carbondale, IL 62901 Achievement A

  2. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Direct Imprinting of Porous Substrates: A Rapid and Low-Cost Approach for Patterning Porous Nanomaterials Judson D. Ryckman†, Marco Liscidini‡, J. E. Sipe§, and S. M. Weiss† †Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235, USA ‡Dipartimento di Fisica "A. Volta", Universita degli Studi di Pavia, via Bassi 6, 27100 Pavia, Italy §Department of Physics and Institute for Optical Sciences, University of Toronto, 60 St.

  3. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intrinsic Nucleation Mechanism of Polarization Switching on Ferroelectric Surfaces Peter Maksymovych,1 Stephen Jesse,1 Mark Huijben,2 Ramamoorthy Ramesh,2 Anna Morozovska,3 Samrat Choudhury,4 Long-Qing Chen,4 Arthur P. Baddorf,1 and Sergei V. Kalinin1 1Center for Nanophase Materials Sciences, Oak Ridge National Laboratory; 2Department of Materials Sciences and Engineering and Department of Physics, University of California Berkeley; 3Lashkaryov Institute for Semiconductor Physics, National

  4. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polarization Control of Electron Tunneling into Ferroelectric Surfaces Peter Maksymovych1, Stephen Jesse1, Pu Yu2, Ramamoorthy Ramesh2, Arthur P. Baddorf,1 and Sergei V. Kalinin1 1 The Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 2Department of Materials Sciences and Engineering and Department of Physics, University of California Berkeley Achievement We have discovered that polarization switching in 30-50 nm oxide films of lead-zirconate and bismuth

  5. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Angle Neutron Scattering Study of Conformation of Oligo(ethylene glycol)-Grafted Polystyrene in Dilute Solutions: Effect of the Backbone Length Gang Cheng,1 Yuri B. Melnichenko,1 George D. Wignall,1 Fengjun Hua,2 Kunlun Hong,2 and Jimmy W. Mays2 1Neutron Scattering Sciences Division, Oak Ridge National Laboratory 2Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Achievement: The cooperative interactions among functional segments of biopolymers have led to attempts to

  6. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Interface Reconstruction in Functional Oxides Junsoo Shin,1,2 Albina Borisevich,1 Vincent Meunier,3 Jing Zhou,4 E. Ward Plummer,5 Sergei V. Kalinin,3 and Arthur P. Baddorf3 1-Materials Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 2-Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996 3-Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 4-Department of

  7. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synthesis of Well-defined Poly(amino acids): Polytyrosine Derivatives Jamie M. Messman1, Deanna L. Pickel1, Apostolos Avgeropoulos2, and Nikolaos Politakos2 1Macromolecular Nanomaterials Group, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831 2Department of Materials Science and Engineering, University of Ioannina, Greece Achievement In collaboration with CNMS users from the University of Ioannina, Greece, we developed a synthesis route for the monomer,

  8. Chapter 9: Enabling Capabilities for Science and Energy

    Office of Environmental Management (EM)

    9: Enabling Capabilities for Science and Energy September 2015 Quadrennial Technology Review 9 Enabling Capabilities for Science and Energy Tools for Scientific Discovery and Technology Development  Investment in basic science research is expanding our understanding of how structure leads to function-from the atomic- and nanoscale to the mesoscale and beyond-in natural systems, and is enabling a transformation from observation to control and design of new systems with properties tailored to

  9. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Research Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Grand ... Print Text Size: A A A FeedbackShare Page The EFRC awards span the full range of energy ...

  10. DOE Science Showcase - Exciting Higgs Boson Research | OSTI,...

    Office of Scientific and Technical Information (OSTI)

    Exciting Higgs Boson Research Image Credit: Claudia Marcelloni, CERN Some of the most exciting research happening in recent decades has been the observation and tentative ...

  11. ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing of Surfaces with Nanoscale and Microscale Features ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale and Microscale Features PDF icon...

  12. Magnetics + Mechanics + Nanoscale = Electromagnetics Future (Tuesday, March

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15) | The Ames Laboratory Magnetics + Mechanics + Nanoscale = Electromagnetics Future (Tuesday, March 15) DATE: Tuesday, March 15, 1:10 pm LOCATION: 3043 Coover Hall Greg P. Carman, Professor, Mechanical and Aerospace Engineering Department, UCLA Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles. Efficient control of small scale magnetism presents a significant problem for future miniature electromagnetic devices. In most macroscale

  13. Science as Art: Materials Characterization Art | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science as Art: Materials Characterization Art Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Science as Art: Materials Characterization Art Vin Smentkowski 2012.05.08 Our next image in the series was submitted by Srinivasan Swarminathan. This is one of the more compelling and interesting photos to look at it if you

  14. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization and Carbonization of Highly-Oriented Poly(diiododiacetylene) Nanofibers Liang Luo,1 Christopher Wilhelm,1 Christopher N. Young,2 Clare P. Grey,1 Gary P. Halada,2 Kai Xiao,3 Ilia N. Ivanov,3 Jane Y. Howe,4 David B. Geohegan,3 and Nancy S. Goroff1 1-Department of Chemistry, State University of New York, Stony Brook, NY 11794 2-Department of Material Science and Engineering, State University of New York, Stony Brook, NY 11794 3-Center for Nanophase Materials Sciences, Oak Ridge

  15. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Low-Voltage, Low-Power Organic Light-Emitting Transistors for AMOLED Displays M. A. McCarthy,1,2 B. Liu,1 E. P. Donoghue,1 I. Kravchenko,3 D. Y. Kim,2 F. So,2 and A. G. Rinzler1 1-Department of Physics, University of Florida, Gainesville, FL 32611 2-Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 3-Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830 Achievement Organic light-emitting diode (OLED) layers have

  16. Advanced 3D Detectors for Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Advanced 3D Detectors for Research Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » 01.01.13 Advanced 3D Detectors for Research Gamma-ray detectors built with silicon

  17. Researcher, Los Alamos National Laboratory - Space Science and Applications

    National Nuclear Security Administration (NNSA)

    Group | National Nuclear Security Administration Science and Applications Group | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press

  18. Accelerator & Detector Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Accelerator & Detector Research Scientific User Facilities (SUF) Division SUF Home About User Facilities Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home Accelerator & Detector Research Print Text Size: A A A FeedbackShare Page This research area supports basic research in accelerator physics and x-ray and neutron detectors. Accelerator research is the corner stone for the development of new technologies that will improve

  19. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    H. Weitering, Nature Materials 7, 539 (2008). The research was sponsored by the National Human Genome Research Institute, National Institutes of Health Grant R01HG002647 (CZ), NSF...

  20. User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Facilities Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home User Facilities Print Text Size: A A A FeedbackShare Page BES User Facilities Brochure BES User Facilities Brochure .pdf file (7.4MB) The BES user facilities provide open access to specialized instrumentation and

  1. Dr Altaf (Tof) Carim | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Altaf (Tof) Carim Scientific User Facilities (SUF) Division SUF Home About Staff Dr. James B. Murphy What's New User Facilities Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home Staff Dr. Altaf (Tof) Carim Print Text Size: A A A FeedbackShare Page Carim Program Manager Nanoscale Science Research Centers Office of Basic Energy Sciences SC-22.3/Germantown Building U.S. Department of Energy 1000 Independence Avenue, SW Washington, D.C.

  2. DOE Science Showcase - Computing Research | OSTI, US Dept of Energy, Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Scientific and Technical Information DOE Science Showcase - Computing Research For the growing number of problems where experiments are impossible, dangerous, or inordinately costly, exascale computing will enable the solution of vastly more accurate predictive models and the analysis of massive quantities of data, producing advances in areas of science and technology that are essential to DOE and Office of Science missions and, in the hands of the private sector, drive U.S.

  3. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nature of the Pairing Interaction in the Hubbard Model of High-Temperature Superconductors Thomas A. Maier (CNMS Staff); Douglas J. Scalapino (CNMS User), University of California, Santa Barbara, and Mark Jarrell (CNMS User) University of Cincinnati Achievement The nature of the pairing interaction that mediates superconductivity in the two-dimensional Hubbard model has been addressed numerically in a user project at the Center for Nanophase Materials Sciences. The Hubbard model exhibits several

  4. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1980

    SciTech Connect (OSTI)

    Holland, L.M.; Stafford, C.G.; Bolen, S.K.

    1981-09-01

    Highlights of research progress accomplished in the Life Sciences Division during the year ending December 1980 are summarized. Reports from the following groups are included: Toxicology, Biophysics, Genetics; Environmental Pathology, Organic Chemistry, and Environmental Sciences. Individual abstracts have been prepared for 46 items for inclusion in the Energy Data Base. (RJC)

  5. DOE Science Showcase - "PECASE: Outstanding early career research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    honored" | OSTI, US Dept of Energy, Office of Scientific and Technical Information "PECASE: Outstanding early career research honored" Energy Department Scientists & Engineers Honored with Presidential Early Career Awards PECASE award ceremony DOE recently recognized the following scientists and engineers at the outset of their independent research careers: Dillon Fong and Elena V. Shevchenko of Argonne National Laboratory Find Dillon Fong's research in the Energy

  6. Center for Nanophase Materials Sciences (CNMS) - Research Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RESEARCH CAPABILITIES The CNMS provides users with access to a complete suite of nanoscience research Capabilities (facilities and expertise) housed in an 80,000-ft2 building adjacent to the Spallation Neutron Source at ORNL. The links to pages below provide descriptions of the equipment, facilities, and staff expertise that comprise the research capabilities being offered to users. Prospective users should consult this list, the associated web links, and the staff scientists when developing

  7. MIT Plasma Science & Fusion Center: research>alcator>publications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & News Meetings & Seminars Contact Information Physics Research High-Energy- Density Physics Waves & Beams Technology & Engineering Useful Links APS Presentations New Orleans...

  8. MIT Plasma Science & Fusion Center: research>alcator>introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information Physics Research High-Energy- Density Physics Waves & Beams Fusion Technology & Engineering Francis Bitter Magnet Laboratoroy Useful Links The links...

  9. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    meet various research needs. The chemical or physical exfoliation of graphite is a straightforward method to produce graphene with minimal synthesis effort, since it takes...

  10. DOE Science Showcase - Oil Shale Research | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    William Watson, Physicist, OSTI staff. Image Credit: Argonne National Laboratory Additional Links of Interest DOE Office of Oil & Natural Gas DOE oil shale research information in ...

  11. University Research National Labs | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    About » University Research & National Labs » University Research National Labs Alpha Listing High Energy Physics (HEP) HEP Home About Organization Chart .pdf file (141KB) Staff HEP Budget HEP Committees of Visitors Directions Jobs University Research & National Labs University Research National Labs Alpha Listing Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department

  12. Early Career Research Program Homepage | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Funding Opportunities » Early Career Research Program Home Early Career Research Program Contact Information Early Career Research Program U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-1293 F: (301) 903-7780 Print Text Size: A A A FeedbackShare Page The Office of Science of the Department of Energy announces the fiscal year 2016 Early Career Research Program. The funding opportunity for researchers in universities and DOE

  13. Graham Leggett | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Graham Leggett Graham Leggett Graham Leggett Graham Leggett Professor E-mail: graham.leggett@sheffield.ac.uk Website: University of Sheffield Theme 2 Member Dr. Leggett's research group utilizes scanning probe microscopy (SPM) to characterize the surface morphologies of complex and difficult materials, and to modify surface molecular structure. Professor of Nanoscale Analytical Science Bio Theme 2 Members

  14. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PS-b-P3HT Copolymers as P3HT/PCBM Interfacial Compatibilizers for High Efficiency Photovoltaics Zhenzhong Sun1, Kai Xiao2, Jong Kahk Keum3, Xiang Yu2, Kunlun Hong1, Jim Browning3, Ilia Ivanov1, Jihua Chen2, Jose Alonzo3, Dawen Li1, Bobby Sumpter2, Andrew Payzant2, Christopher Rouleau2, and David Geohegan2 1-Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL 2-Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 3-Neutron

  15. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamic Conductivity of Ferroelectric Domain Walls in BiFeO3 Peter Maksymovych,1 Jan Seidel,2-3 Ying Hao Chu,4 Pingping Wu,5 Arthur P. Baddorf,1 Long-Qing Chen,5 Sergei V. Kalinin,1 and Ramamoorthy Ramesh2-3 1 Center for Nanophase Materials Science, Oak Ridge National Laboratory 2 Lawrence Berkeley National Laboratory 3 University of California, Berkeley 4 National Chiao Tung University, Taiwan 5 Pennsylvania State University Achievement Two years ago, electrical conductivity was discovered in

  16. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controlling the Edge Morphology in Graphene Layers using Electron Irradiation: From Sharp Atomic Edges to Coalesced Layers Forming Loops Eduardo Cruz-Silva,1 Andrés R. Botello-Méndez,2 Zachary Barnett,1 X. Jia,3 M.S. Dresselhaus,4 Humberto Terrones,2 Mauricio Terrones,5 Bobby G. Sumpter,1 Vincent Meunier1 1- Oak Ridge National Laboratory, Oak Ridge, TN 2-Université Catholique de Louvain, Institute of Condensed Matter and Nanosciences, Belgium 3-Department of Materials Science and

  17. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    domain structures and mesoscopic phase transition in relaxor ferroelectrics A.L. Kholkin,1 A. N. Morozovska,2 D. A. Kiselev,1 I.K. Bdikin,1 B.J. Rodriguez,3 P. Wu,4 A.A. Bokov,5 Z.-G. Ye,5 B. Dkhil,6 L.-Q. Chen,4 M. Kosec,7 S. V. Kalinin8 1University of Aveiro, Portugal, 2National Academy of Science of Ukraine, 3University College Dublin, Ireland 4Pennsylvania State University, 5Simon Fraser University, Canada, 6Ecole Centrale Paris, 7Jozef Stefan Institute, Slovenia, 8Oak Ridge National

  18. Applied Science Division annual report, Environmental Research Program FY 1983

    SciTech Connect (OSTI)

    Cairns, E.J.; Novakov, T.

    1984-05-01

    The primary concern of the Environmental Research Program is the understanding of pollutant formation, transport, and transformation and the impacts of pollutants on the environment. These impacts include global, regional, and local effects on the atmosphere and hydrosphere, and on certain aspects of human health. This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. During FY 1983, research concentrated on atmospheric physics and chemistry, applied physics and laser spectroscopy, combustion theory and phenomena, environmental effects of oil shale processing, freshwater ecology and acid precipitation, trace element analysis for the investigation of present and historical environmental impacts, and a continuing survey of instrumentation for environmental monitoring.

  19. Jefferson Lab research into the pentaquark is ranked among the top science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stories of 2003 | Jefferson Lab research into the pentaquark is ranked among the top science stories of 2003 December 24, 2003 Twice during the last month the discovery of the pentaquark has been named among the top science stories for 2003. Researchers working at the Department of Energy's Jefferson Lab, located in Newport News, Va., are among those to identify some of the most convincing evidence yet of the subatomic particle's existence. Discover Magazine's January 2004 issue listed the

  20. DOE Science Showcase - Research on the "Go" with OSTI mobile...

    Office of Scientific and Technical Information (OSTI)

    The new mobile OSTI website http:m.osti.gov is ready to travel and provides the latest research, OSTI news, award-winning OSTIblog, as well as OSTI YouTube, Facebook & Twitter ...

  1. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Achievement: The material of choice for spintronics device today is FeMgOFe tunnel ... by modi?cation of the interface is an important topic in spintronics research. ...

  2. Research | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    A A A FeedbackShare Page BER Imaging and Measurement Cover Program Brochure .pdf file (5.2MB) Research Approach In FY 2014, five pilot projects were initiated at separate DOE...

  3. Environmental Sciences Division: Summaries of research in FY 1995

    SciTech Connect (OSTI)

    1996-09-01

    This report focuses on research in global change, as well as environmental remediation. Global change research investigates the following: distribution and balance of radiative heat energy; identification of the sources and sinks of greenhouse gases; and prediction of changes in the climate and concomitant ecological effects. Environmental remediation develops the basic understanding needed to remediate soils, sediments, and ground water that have undergone radioactive and chemical contamination.

  4. DOE Science Showcase - Featured Climate Change Research from DOE Databases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | OSTI, US Dept of Energy, Office of Scientific and Technical Information Featured Climate Change Research from DOE Databases Search Results from DOE Databases View research documents, citations, accomplishments, patents, and projects related to climate change, one of the primary scientific challenges addressed through the Incite Program. Climate Change Information Bridge Energy Citations Database DOE R&D Accomplishments Database DOE Data Explorer Climate Modeling Information Bridge

  5. DOE Science Showcase - Rare Earth Metal Research from DOE Databases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information Rare Earth Metal Research from DOE Databases Information Bridge Energy Citations Database Highlighted documents of Rare Earth Metal research in DOE databases Information Bridge - Corrosion-resistant metal surfaces DOE R&D Project Summaries - Structural and magnetic studies on heavy rare earth metals at high pressures using designer diamonds Energy Citations Database - Intermultiplet transitions in rare-earth metals

  6. Supporting Advanced Scientific Computing Research * Basic Energy Sciences * Biological

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy S ciences N etwork Enabling Virtual Science June 9, 2009 Steve C o/er steve@es.net Dept. H ead, E nergy S ciences N etwork Lawrence B erkeley N aDonal L ab The E nergy S ciences N etwork The D epartment o f E nergy's O ffice o f S cience i s o ne o f t he l argest s upporters o f basic r esearch i n t he p hysical s ciences i n t he U .S. * Directly s upports t he r esearch o f s ome 1 5,000 s cienDsts, p ostdocs a nd g raduate s tudents at D OE l aboratories, u niversiDes, o ther F

  7. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Stockpile Stewardship National Security National Competitiveness Fusion and Ignition Energy for the Future How to Make a Star Discovery Science Photon Science HAPLS

  8. University Research & National Labs | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    University Research & National Labs High Energy Physics (HEP) HEP Home About Organization Chart .pdf file (141KB) Staff HEP Budget HEP Committees of Visitors Directions Jobs University Research & National Labs University Research National Labs Alpha Listing Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave.,

  9. Photosynthetic Antenna Research Center (PARC) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Photosynthetic Antenna Research Center (PARC) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Photosynthetic Antenna Research Center (PARC) Print Text Size: A A A FeedbackShare Page PARC Header Director Robert Blankenship Lead Institution Washington University in St. Louis Year Established 2009 Mission To understand the basic scientific principles that underpin

  10. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomistic Branching Mechanism for Carbon Nanotubes: Sulfur as the Triggering Agent Jose M. Romo-Herrera [CNMS User, Institute for Scientific and Technological Research of San Luis Potosi (IPICYT)], Bobby G. Sumpter (CNMS Staff), David A. Cullen (Arizona State University), Humberto Terrones (CNMS User, IPICYT), Eduardo Cruz-Silva (CNMS User, IPICYT), David J. Smith (ASU), Vincent Meunier (CNMS Staff), Mauricio Terrones (CNMS User, IPICYT) Achievement Experimental realization of nanonetworks is

  11. Center for Nanophase Materials Sciences (CNMS) - CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CNMS RESEARCH Synthesis and Directed Growth of Single-Crystal TCNQ-Cu Organic Nanowires K. Xiao, J. Tao, and Z. Liu (CNMS Postdocs); I. N. Ivanov, A.A. Puretzky, Z. Pan, and D.B. Geohegan (CNMS Staff); and S. J. Pennycook (ORNL) Achievement Few synthesis experiments have been reported for nanowires of organic semiconductors, despite the proposed use of organic thin-film materials in energy-related optoelectronic devices such as solid state lighting and photovoltaic cells. Although nanostructures

  12. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gene Network Shaping of Inherent Noise Spectra Michael L. Simpson and Nagiza Samatova (CNMS Users from ORNL); U of Tennessee Users: Derek W. Austin (CNMS Research Scholar), Michael S. Allen, James M. McCollum, John R. Wilgus, Gary S. Sayler, and Chris D. Cox. Achievement A new appreciation of the role of stochastic processes (noise) in decision making in biological systems is emerging, as it is now understood that these processes may play a pivotal role in gene network functionality. Previous

  13. Computing at the leading edge: Research in the energy sciences

    SciTech Connect (OSTI)

    Mirin, A.A.; Van Dyke, P.T.

    1994-02-01

    The purpose of this publication is to highlight selected scientific challenges that have been undertaken by the DOE Energy Research community. The high quality of the research reflected in these contributions underscores the growing importance both to the Grand Challenge scientific efforts sponsored by DOE and of the related supporting technologies that the National Energy Research Supercomputer Center (NERSC) and other facilities are able to provide. The continued improvement of the computing resources available to DOE scientists is prerequisite to ensuring their future progress in solving the Grand Challenges. Titles of articles included in this publication include: the numerical tokamak project; static and animated molecular views of a tumorigenic chemical bound to DNA; toward a high-performance climate systems model; modeling molecular processes in the environment; lattice Boltzmann models for flow in porous media; parallel algorithms for modeling superconductors; parallel computing at the Superconducting Super Collider Laboratory; the advanced combustion modeling environment; adaptive methodologies for computational fluid dynamics; lattice simulations of quantum chromodynamics; simulating high-intensity charged-particle beams for the design of high-power accelerators; electronic structure and phase stability of random alloys.

  14. Center for Nanophase Materials Sciences (CNMS) - CNMS User Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Phonon softening and metallization of a narrow-gap semiconductor by thermal disorder O. Delaire,1 K. Marty,1 M. B. Stone,1 P. R. C. Kent,1 M. S. Lucas,2 D. L. Abernathy,1 D. Mandrus,1 B. C. Sales1 1- Oak Ridge National Laboratory, Oak Ridge, TN 37831 2-Air Force Research Laboratory, Wright-Patterson AFB, OH 45433 Achievement We have shown how, in some materials, there can be a surprisingly strong coupling between certain features of the electronic structure and the way the atoms in a solid

  15. Center for Nanophase Materials Sciences (CNMS) - Archived CNMS Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights CNMS RESEARCH HIGHLIGHTS Title Authors Journal Publication Date In-situ Fabrication of Ultrathin Metallic Nanowires from Semiconducting Monolayers J. Lin, O. Cretu, W. Zhou, K. Suenaga, D. Prasai, K. I. Bolotin, N. Thanh Cuong, M. Otani, S. Okada, A. R. Lupini, J-C. Idrobo, D. Caudel, A. Burger, N.l J. Ghimire, J. Yan, D. G. Mandrus, S. J. Pennycook, S. T. Pantelides Nature Nanotechnology DOI: 10.1038/nnano.201481 September 2014 PDF In-situ Fabrication of Ultrathin Metallic

  16. DOE Science Showcase - Cool roofs, cool research, at DOE | OSTI, US Dept of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Office of Scientific and Technical Information Cool roofs, cool research, at DOE Science Accelerator returns cool roof documents from 6 DOE Databases Executive Order on Sustainability Secretary Chu Announces Steps to Implement One Cool Roof Cool Roofs Lead to Cooler Cities Guidelines for Selecting Cool Roofs DOE Cool Roof Calculator Visit the Science Showcase homepage. Last updated on Wednesday 12 February 2014

  17. Letter to Science from Michael Wang, Center for Transportation Research, Argonne National Laboratory

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Letter to Science (Original version submitted to Science on Feb. 14 th , 2008; revised on March 14 th , 2008) Michael Wang Center for Transportation Research Argonne National Laboratory Zia Haq Office of Biomass Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy The article by Searchinger et al. in Sciencexpress ("Use of U.S. Croplands for Biofuels Increases Greenhouse Gases through Emissions from Land Use Change," February 7, 2008) provides a timely

  18. BES User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    BES User Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Science Highlights Frequently Asked Questions User Facility News Contact Information Office of Science U.S. Department of Energy

  19. Neutron Scattering Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Neutron Scattering Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Science Highlights Frequently Asked Questions User Facility News Contact Information Office of Science U.S. Department

  20. X-Ray Light Sources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    X-Ray Light Sources User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) BER User Facilities FES User Facilities HEP User Facilities NP User Facilities User Resources User Statistics Policies and Processes Science Highlights Frequently Asked Questions User Facility News Contact Information Office of Science U.S. Department of Energy

  1. Atmospheric Science Program. Summaries of research in FY 1994

    SciTech Connect (OSTI)

    1995-06-01

    This report provides descriptions for all projects funded by ESD under annual contracts in FY 1994. Each description contains the project`s title; three-year funding history (in thousands of dollars); the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date (for most projects older than one year). Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states it goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used.

  2. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wikipedia to forecast diseases November 13, 2014 Los Alamos research published in Public Library of Science LOS ALAMOS, N.M., Nov. 13, 2014-Scientists can now monitor and forecast diseases around the globe more effectively by analyzing views of Wikipedia articles, according to a team from Los Alamos National Laboratory. "A global disease-forecasting system will improve the way we respond to epidemics," scientist Sara Del Valle said. "In the same way we check the weather each

  3. The Oak Ridge Institute for Science and Education Human Subjects Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Human Subjects Research Program Privacy/Security Statement Contact | Forms Purpose/Mission Legal Requirements Overview Forms Membership List Operating Procedures (pdf) "How to" for PIs (pdf) The Oak Ridge Institute for Science and Education (ORISE) Human Subjects Research Program Oak Ridge Associated Universities (ORAU) is responsible for ensuring the protection of human subjects involved in research/projects that are: proposed or conducted by ORAU or ORISE, conducted by or

  4. Chapter 9: Enabling Capabilities for Science and Energy | A Comparison of Research Funding Modalities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Modalities High-Performance Computing Capabilities and Allocations User Facility Statistics Examples and Case Studies ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 A Comparison of Research Center Funding Modalities Chapter 9: Enabling Capabilities for Science and Energy A Comparison of Multi-disciplinary, Multi-scale Research Center Funding Modalities Three Department of Energy (DOE) research center modalities-the Energy Frontier

  5. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems New ALS Technique Gives Nanoscale Views of Complex Systems Print Wednesday, 28 May 2014 00:00 Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks

  6. Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation.

    SciTech Connect (OSTI)

    Saffer, Shelley I.

    2014-12-01

    This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.

  7. Center for Nanoscale Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Lithium-Air Battery Based on Lithium Superoxide More Borophene: Atomically Thin Metallic Boron More Ratiometric Sensing of Toxins using Quantum Dots More One Direction: nanocircuitry with semiconducting graphene nanoribbons More Keys to Access: Argonne-INCREASE partnership opens doors to collaboration More Video Highlight A Look Inside Argonne's Center for Nanoscale Materials BROCHURES & NEWSLETTERS CNM Overview Brochure CNM Fact Sheet Key Research Areas Nanofabrication & Devices

  8. Nanoscale relaxation oscillator

    DOE Patents [OSTI]

    Zettl, Alexander K. (Kensington, CA); Regan, Brian C. (Los Angeles, CA); Aloni, Shaul (Albany, CA)

    2009-04-07

    A nanoscale oscillation device is disclosed, wherein two nanoscale droplets are altered in size by mass transport, then contact each other and merge through surface tension. The device may also comprise a channel having an actuator responsive to mechanical oscillation caused by expansion and contraction of the droplets. It further has a structure for delivering atoms between droplets, wherein the droplets are nanoparticles. Provided are a first particle and a second particle on the channel member, both being made of a chargeable material, the second particle contacting the actuator portion; and electrodes connected to the channel member for delivering a potential gradient across the channel and traversing the first and second particles. The particles are spaced apart a specified distance so that atoms from one particle are delivered to the other particle by mass transport in response to the potential (e.g. voltage potential) and the first and second particles are liquid and touch at a predetermined point of growth, thereby causing merging of the second particle into the first particle by surface tension forces and reverse movement of the actuator. In a preferred embodiment, the channel comprises a carbon nanotube and the droplets comprise metal nanoparticles, e.g. indium, which is readily made liquid.

  9. Piezoelectrically enhanced ferroelectric polymers via nanoscale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control nanoscale material properties and molecular orientation using intensive local stress. Significance and Impact Nanoscale mechanical annealing process can be used to improve...

  10. UNCLASSIFIED Institute for Materials Science Sponsored Lecture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Garritt Tucker Drexel University, Philadelphia, Pennsylvania Atomistic Methods to Quantify Nanoscale Strain and Deformation Mechanisms in Nanostructured Materials Thursday, August 27, 2015 3:00 - 4:00pm MSL Auditorium (TA-03, Bldg. 1698, Room A103) Abstract: As the theoretical physicist, Sir Frederick Charles Franck, said, 'Crystals are like people: it is the defects in them that make them interesting.' Fundamental research in Materials Science and Engineering focuses on linking structure and

  11. Advanced Light Source (ALS) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Light Source (ALS) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Advanced Light Source (ALS) Advanced Photon Source (APS) Linac Coherent Light Source (LCLS) National Synchrotron Light Source II (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home X-Ray Light

  12. Advanced Photon Source (APS) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Photon Source (APS) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Advanced Light Source (ALS) Advanced Photon Source (APS) Linac Coherent Light Source (LCLS) National Synchrotron Light Source II (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home X-Ray Light

  13. Spallation Neutron Source (SNS) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Neutron Scattering Facilities » Spallation Neutron Source (SNS) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Spallation Neutron Source (SNS) High Flux Isotope Reactor (HFIR) Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home Neutron Scattering Facilities Spallation Neutron Source (SNS) Print Text Size: A A A

  14. X-Ray Light Sources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Sources Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Advanced Light Source (ALS) Advanced Photon Source (APS) Linac Coherent Light Source (LCLS) National Synchrotron Light Source II (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home User Facilities X-Ray Light

  15. High Flux Isotope Reactor (HFIR) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Facilities » High Flux Isotope Reactor (HFIR) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Spallation Neutron Source (SNS) High Flux Isotope Reactor (HFIR) Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home Neutron Scattering Facilities High Flux Isotope Reactor (HFIR) Print Text Size: A A A FeedbackShare Page Quick

  16. Neutron Scattering Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Facilities Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Spallation Neutron Source (SNS) High Flux Isotope Reactor (HFIR) Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home User Facilities Neutron Scattering Facilities Print Text Size: A A A FeedbackShare Page This activity supports the operation of two neutron scattering

  17. Linac Coherent Light Source (LCLS) | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linac Coherent Light Source (LCLS) Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Advanced Light Source (ALS) Advanced Photon Source (APS) Linac Coherent Light Source (LCLS) National Synchrotron Light Source II (NSLS-II) Stanford Synchrotron Radiation Light Source (SSRL) Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home

  18. Center for Nanoscale Materials Fact Sheet | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fact Sheet The Center for Nanoscale Materials at Argonne National Laboratory is a premier user facility providing expertise, instruments, and infrastructure for interdisciplinary nanoscience and nanotechnology research. Academic, industrial, and international researchers can access the center through its user program for both nonproprietary and proprietary research. PDF icon cnm_fact_sheet

  19. DOE Science Showcase - Fuel Cells Research | OSTI, US Dept of Energy,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Scientific and Technical Information DOE Science Showcase - Fuel Cells Research Clean, Efficient, and Reliable Power for the 21st Century Fuel cells are an important enabling technology for the nation's energy portfolio and have the potential to revolutionize the way we power our nation, offering cleaner, more-efficient alternatives to the combustion of gasoline and other fossil fuels. Courtesy of DOE Fuel Cell Technologies Program Fuel Cells Research Results in DOE Databases DOE

  20. Tour Brookhaven Lab's Future Hub for Energy Research: The Interdisciplinary Science Building

    ScienceCinema (OSTI)

    Gerry Stokes; Jim Misewich

    2013-07-19

    Construction is under way for the Interdisciplinary Science Building (ISB), a future world-class facility for energy research at Brookhaven Lab. Meet two scientists who will develop solutions at the ISB to tackle some of the nation's energy challenges, and tour the construction site.

  1. Physical Sciences and Engineering Directorate Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (CEES II) P. Fenter (CSE) Center for Nanoscale Materials S. Guha Argonne Tandem Linac Accelerator System G. Savard (PHY) Center for Emergent Conductivity (CES) W....

  2. Bradbury Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    celebrates NanoDays 2013. NanoDays is a national campaign, engaging people of all ages in learning about the emerging field of nanoscale science and engineering. The Bradbury...

  3. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    SciTech Connect (OSTI)

    Gerber, Richard; Wasserman, Harvey

    2011-03-31

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a brief summary of those relevant to issues raised by researchers at the workshop.

  4. Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics

    SciTech Connect (OSTI)

    Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos

    2015-05-21

    Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we develop a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena of associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture of the void probability and solvation free energy of apolar particles of different sizes. The present fluid model is well suited for a understanding emergent phenomena in nano-scale fluid systems.

  5. Centers | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Centers Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Print Text Size: A A A FeedbackShare Page EFRC Map Centers ordered alphabetically by state and then by center name California Light-Material Interactions in Energy Conversion (LMI) Ralph Nuzzo, California Institute of Technology Center for Nanoscale Controls on Geologic CO2 (NCGC) Donald DePaolo, Lawrence Berkeley

  6. CSTEC | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    CSTEC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers CSTEC Print Text Size: A A A FeedbackShare Page Center for Solar and Thermal Energy Conversion (CSTEC) Director(s): Peter F. Green Lead Institution: University of Michigan Years: 2009-2014 Mission: To study complex material structures on the nanoscale to identify key features for their potential use as materials to

  7. MEEM | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    MEEM Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers MEEM Print Text Size: A A A FeedbackShare Page Molecularly Engineered Energy Materials (MEEM) Director(s): Vidvuds Ozolins Lead Institution: University of California, Los Angeles Years: 2009-2014 Mission: To acquire fundamental understanding and control of nanoscale materials for solar energy generation and electrical

  8. Los Alamos Life Sciences Division's biomedical and environmental research programs. Progress report, January-December 1981. [Leading abstract

    SciTech Connect (OSTI)

    Holland, L.M.; Stafford, C.G.

    1982-10-01

    This report summarizes research and development activities of the Los Alamos Life Sciences Division's Biomedical and Environmental Research program for the calendar year 1981. Individual reports describing the current status of projects have been entered individually into the data base.

  9. Pacific Northwest Laboratory annual report for 1984 to the DOE Office of Energy Research. Part 2. Ecological sciences

    SciTech Connect (OSTI)

    Novich, C.M.

    1985-02-01

    Research progress is reported in the following areas: (1) the terrestrial ecology of semi-arid sites; (2) marine sciences; (3) radionuclide fate and effects; (4) waste mobilization, fate and effects; and (5) theoretical research on environmental sampling. (ACR)

  10. Fusion materials science and technology research opportunities now and during the ITER era

    SciTech Connect (OSTI)

    S.J. Zinkle; J.P. Planchard; R.W. Callis; C.E. Kessel; P.J. Lee; K.A. McCarty; Various Others

    2014-10-01

    Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: (1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the singleeffects concept exploration stage, technology readiness levels >3), (2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and (3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

  11. A Look Inside Argonne's Center for Nanoscale Materials

    ScienceCinema (OSTI)

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla, Saw; Liu, Yuzi

    2014-09-15

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  12. A Look Inside Argonne's Center for Nanoscale Materials

    SciTech Connect (OSTI)

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla, Saw; Liu, Yuzi

    2014-01-29

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  13. Sandia Vertical-Axis Wind-Turbine Research Presented at Science of Making

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Torque from Wind Conference Vertical-Axis Wind-Turbine Research Presented at Science of Making Torque from Wind Conference - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power &

  14. ARM - Procedure for Submitting Science and Research Products to the Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archive DocumentationProcedure for Submitting Science and Research Products to the Data Archive Policies, Plans, Descriptions Data Documentation Home Data Sharing and Distribution Policy Data Management and Documentation Plan Data Product Registration and Submission Statement on Digital Data Management Guidelines for Integrating Data Products and Algorithms to ARM Data Libraries Reading netCDF and HDF Data Files Time in ARM netCDF Data Files Data Archive Documentation ARM Archive's Catalog

  15. Koel applies science of surface chemistry to fusion research at PPPL |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Koel applies science of surface chemistry to fusion research at PPPL By Catherine Zandonella March 26, 2012 Tweet Widget Google Plus One Share on Facebook To study the interactions of lithium under conditions similar to what might be found in a fusion reactor, lithium on a sample of TZM molybdenum, which is an alloy of molybdenum, titanium, zirconium and carbon known for its high strength and temperature properties, is heated inside an ultrahigh vacuum chamber

  16. Department of Energy's Biological and Environmental Research Strategic Data Roadmap for Earth System Science

    SciTech Connect (OSTI)

    Williams, Dean N.; Palanisamy, Giri; Shipman, Galen; Boden, Thomas A.; Voyles, Jimmy W.

    2014-04-25

    Rapid advances in experimental, sensor, and computational technologies and techniques are driving exponential growth in the volume, acquisition rate, variety, and complexity of scientific data. This wealth of scientifically meaningful data has tremendous potential to lead to scientific discovery. However, to achieve scientific breakthroughs, these data must be exploitable—they must be analyzed effectively and efficiently and the results shared and communicated easily within the wider Department of Energy’s (DOE’s) Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) community. The explosion in data complexity and scale makes these tasks exceedingly difficult to achieve, particularly given that an increasing number of disciplines are working across techniques, integrating simulation and experimental or observational results (see Table 5 in Appendix 2). Consequently, we need new approaches to data management, analysis, and visualization that provide research teams with easy-to-use and scalable end-to-end solutions. These solutions must facilitate (and where feasible, automate and capture) every stage in the data lifecycle (shown in Figure 1), from collection to management, annotation, sharing, discovery, analysis, and visualization. In addition, the core functionalities are the same across climate science communities, but they require customization to adapt to specific needs and fit into research and analysis workflows. To this end, the mission of CESD’s Data and Informatics Program is to integrate all existing and future distributed CESD data holdings into a seamless and unified environment for the acceleration of Earth system science.

  17. Tiny subject, big fun with NanoDays at Bradbury Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Museum NanoDays is a national campaign, engaging people of all ages in learning about the emerging field of nanoscale science and engineering. March 18, 2013...

  18. science

    National Nuclear Security Administration (NNSA)

    through the Predictive Capability Framework (PCF). The PCF is a long-term integrated roadmap to guide the science, technology and engineering activities and Directed Stockpile...

  19. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of energy atmospheric radiation measurement program ARM ARM The ... of Science created the Atmospheric Radiation Measurement (ARM) Program within the ...

  20. U.S, Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect (OSTI)

    2009-07-01

    Alternative fuels from renewable cellulosic biomass--plant stalks, trunks, stems, and leaves--are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced'. In the United States, the Energy Independence and Security Act (EISA) of 2007 is an important driver for the sustainable development of renewable biofuels. As part of EISA, the Renewable Fuel Standard mandates that 36 billion gallons of biofuels are to be produced annually by 2022, of which 16 billion gallons are expected to come from cellulosic feedstocks. Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain--the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 25 years. The DOE Genomic Science Program is advancing a new generation of research focused on achieving whole-systems understanding for biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. New interdisciplinary research communities are emerging, as are knowledgebases and scientific and computational resources critical to advancing large-scale, genome-based biology. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs will provide the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use. The scientific rationale for these centers and for other fundamental genomic research critical to the biofuel industry was established at a DOE workshop involving members of the research community (see sidebar, Biofuel Research Plan, below). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations--the Southeast, the Midwest, and the West Coast--with partners across the nation. DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC); and DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California. Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies,

  1. MEMORANDUM OF MUTUAL UNDERSTANDING FOR RESEARCH COOPERATION BETWEEN SCHOOL OF OCEAN & EARTH SCIENCES & TECHNOLOGY (SOEST), UNI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AGREEMENT FOR INTERNATIONAL RESEARCH COOPERATION USING THE EARTH SIMULATOR BETWEEN THE EARTH SIMULATOR CENTER OF JAPAN MARINE SCIENCE & TECHNOLOGY CENTER (ESC/JAMSTEC) AND NATIONAL ENERGY RESEARCH SCEINTIFIC COMPUTING (NERSC) CENTER AT LAWRENCE BERKELEY NATIONAL LABORATORY WHEREAS, the Earth Simulator Center of Japan Marine Science and Technology Center (hereinafter referred to as "ESC/JAMSTEC") and the National Energy Research Scientific Computing Center (hereinafter referred to

  2. Science for Energy Technology: Strengthening the Link Between Basic Research and Industry

    SciTech Connect (OSTI)

    2010-04-01

    The nation faces two severe challenges that will determine our prosperity for decades to come: assuring clean, secure, and sustainable energy to power our world, and establishing a new foundation for enduring economic and jobs growth. These challenges are linked: the global demand for clean sustainable energy is an unprecedented economic opportunity for creating jobs and exporting energy technology to the developing and developed world. But achieving the tremendous potential of clean energy technology is not easy. In contrast to traditional fossil fuel-based technologies, clean energy technologies are in their infancy, operating far below their potential, with many scientific and technological challenges to overcome. Industry is ultimately the agent for commercializing clean energy technology and for reestablishing the foundation for our economic and jobs growth. For industry to succeed in these challenges, it must overcome many roadblocks and continuously innovate new generations of renewable, sustainable, and low-carbon energy technologies such as solar energy, carbon sequestration, nuclear energy, electricity delivery and efficiency, solid state lighting, batteries and biofuels. The roadblocks to higher performing clean energy technology are not just challenges of engineering design but are also limited by scientific understanding.Innovation relies on contributions from basic research to bridge major gaps in our understanding of the phenomena that limit efficiency, performance, or lifetime of the materials or chemistries of these sustainable energy technologies. Thus, efforts aimed at understanding the scientific issues behind performance limitations can have a real and immediate impact on cost, reliability, and performance of technology, and ultimately a transformative impact on our economy. With its broad research base and unique scientific user facilities, the DOE Office of Basic Energy Sciences (BES) is ideally positioned to address these needs. BES has laid out a broad view of the basic and grand challenge science needs for the development of future clean energy technologies in a series of comprehensive 'Basic Research Needs' workshops and reports (inside front cover and http://www.sc.doe.gov/bes/reports/list.html) and has structured its programs and launched initiatives to address the challenges. The basic science needs of industry, however, are often more narrowly focused on solving specific nearer-term roadblocks to progress in existing and emerging clean energy technologies. To better define these issues and identify specific barriers to progress, the Basic Energy Sciences Advisory Committee (BESAC) sponsored the Workshop on Science for Energy Technology, January 18-21, 2010. A wide cross-section of scientists and engineers from industry, universities, and national laboratories delineated the basic science Priority Research Directions most urgently needed to address the roadblocks and accelerate the innovation of clean energy technologies. These Priority Research Directions address the scientific understanding underlying performance limitations in existing but still immature technologies. Resolving these performance limitations can dramatically improve the commercial penetration of clean energy technologies. A key conclusion of the Workshop is that in addition to the decadal challenges defined in the 'Basic Research Needs' reports, specific research directions addressing industry roadblocks are ripe for further emphasis. Another key conclusion is that identifying and focusing on specific scientific challenges and translating the results to industry requires more direct feedback and communication and collaboration between industrial and BES-supported scientists. BES-supported scientists need to be better informed of the detailed scientific issues facing industry, and industry more aware of BES capabilities and how to utilize them. An important capability is the suite of BES scientific user facilities, which are seen as playing a key role in advancing the science of clean energy technology. Working together, in

  3. U.S. Department of Energy's Bioenergy Research Centers An Overview of the Science

    SciTech Connect (OSTI)

    2010-07-01

    Alternative fuels from renewable cellulosic biomass - plant stalks, trunks, stems, and leaves - are expected to significantly reduce U.S. dependence on imported oil while enhancing national energy security and decreasing the environmental impacts of energy use. Ethanol and other advanced biofuels from cellulosic biomass are renewable alternatives that could increase domestic production of transportation fuels, revitalize rural economies, and reduce carbon dioxide and pollutant emissions. According to U.S. Secretary of Energy Steven Chu, 'Developing the next generation of biofuels is key to our effort to end our dependence on foreign oil and address the climate crisis while creating millions of new jobs that can't be outsourced.' Although cellulosic ethanol production has been demonstrated on a pilot level, developing a cost-effective, commercial-scale cellulosic biofuel industry will require transformational science to significantly streamline current production processes. Woodchips, grasses, cornstalks, and other cellulosic biomass are widely abundant but more difficult to break down into sugars than corn grain - the primary source of U.S. ethanol fuel production today. Biological research is key to accelerating the deconstruction of cellulosic biomass into sugars that can be converted to biofuels. The Department of Energy (DOE) Office of Science continues to play a major role in inspiring, supporting, and guiding the biotechnology revolution over the past 30 years. The DOE Genomic Science program is advancing a new generation of research focused on achieving whole-systems understanding of biology. This program is bringing together scientists in diverse fields to understand the complex biology underlying solutions to DOE missions in energy production, environmental remediation, and climate change science. For more information on the Genomic Science program, see p. 26. To focus the most advanced biotechnology-based resources on the biological challenges of biofuel production, DOE established three Bioenergy Research Centers (BRCs) in September 2007. Each center is pursuing the basic research underlying a range of high-risk, high-return biological solutions for bioenergy applications. Advances resulting from the BRCs are providing the knowledge needed to develop new biobased products, methods, and tools that the emerging biofuel industry can use (see sidebar, Bridging the Gap from Fundamental Biology to Industrial Innovation for Bioenergy, p. 6). The DOE BRCs have developed automated, high-throughput analysis pipelines that will accelerate scientific discovery for biology-based biofuel research. The three centers, which were selected through a scientific peer-review process, are based in geographically diverse locations - the Southeast, the Midwest, and the West Coast - with partners across the nation (see U.S. map, DOE Bioenergy Research Centers and Partners, on back cover). DOE's Lawrence Berkeley National Laboratory leads the DOE Joint BioEnergy Institute (JBEI) in California; DOE's Oak Ridge National Laboratory leads the BioEnergy Science Center (BESC) in Tennessee; and the University of Wisconsin-Madison leads the Great Lakes Bioenergy Research Center (GLBRC). Each center represents a multidisciplinary partnership with expertise spanning the physical and biological sciences, including genomics, microbial and plant biology, analytical chemistry, computational biology and bioinformatics, and engineering. Institutional partners include DOE national laboratories, universities, private companies, and nonprofit organizations.

  4. Science Headlines | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Read More External linkage 03.16.16User Facility Advanced Energy Storage Material Gets Unprecedented Nanoscale Analysis External link Researchers at the Department of Energy's Oak ...

  5. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 2: Environmental sciences

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    This 1993 Annual Report from Pacific Northwest Laboratory (PNL) to the US DOE describes research in environment and health conducted during fiscal year (FY) 1993. The report is divided into four parts, each in a separate volume. This part, Volume 2, covers Environmental Sciences. The research is directed toward developing a fundamental understanding of subsurface and terrestrial systems as a basis for both managing these critical resources and addressing environmental problems such as environmental restoration and global change. There are sections on Subsurface Science, Terrestrial Science, Technology Transfer, Interactions with Educational Institutions, and Laboratory Directed Research and Development.

  6. Summary report for nanoscale magnetics

    SciTech Connect (OSTI)

    Tobin, J.G.; Waddill, G.D.; Jankowski, A.F.; Tamura, E.; Sterne, P.A.; Pappas, D.P.; Tong, S.Y.

    1993-09-23

    We have probed the electronic, geometric, and magnetic nanoscale structure of ultrathin magnetic films, both monolayers and multilayers (Fe/Cu(001), FePt, FeCoPt, UFe{sub 2}, U-S). Techniques used included the MCD (magnetic circular dichroism)-variants of of x-ray absorption, core-level photoemission, and photoelectron diffraction. Progress has been made on nanoscale structure-property relations, in part of coupling of world-class experimentation and theoretical modeling. Feasibility of investigations of 5f magnetism using bulk uranium samples also has been demonstrated.

  7. Engineered Nano-scale Ceramic Supports for PEM Fuel Cells | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Engineered Nano-scale Ceramic Supports for PEM Fuel Cells Engineered Nano-scale Ceramic Supports for PEM Fuel Cells Presented at the Department of Energy Fuel Cell Projects Kickoff Meeting, September 1 - October 1, 2009 PDF icon brosha_lanl_kickoff.pdf More Documents & Publications Long Term Innovative Technologies The Science And Engineering of Duralbe Ultralow PGM Catalysts DOE Durability Working Group October 2010 Meeting Minutes

  8. Energy Frontier Research Center Materials Science of Actinides (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Burns, Peter (Director, Materials Science of Actinides); MSA Staff

    2011-11-03

    'Energy Frontier Research Center Materials Science of Actinides' was submitted by the EFRC for Materials Science of Actinides (MSA) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. MSA is directed by Peter Burns at the University of Notre Dame, and is a partnership of scientists from ten institutions.The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges.

  9. ARM - Key Science Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govScienceKey Science Questions Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional &...

  10. ARM - Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govScience Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global Climate Modeling Terrestrial Ecosystem Science Performance Metrics User Meetings Past ARM Science Team Meetings ASR Meetings Accomplishments Accomplishments in Atmospheric Science, 2008-2013 (PDF, 7.4MB) ARM Accomplishments from the Science Program and User Facility, 1989-2008 (PDF, 696KB) Science New C-band scanning ARM

  11. 1992 annual report on scientific programs: A broad research program on the sciences of complexity

    SciTech Connect (OSTI)

    Not Available

    1992-12-31

    In 1992 the Santa Fe Institute hosted more than 100 short- and long-term research visitors who conducted a total of 212 person-months of residential research in complex systems. To date this 1992 work has resulted in more than 50 SFI Working Papers and nearly 150 publications in the scientific literature. The Institute`s book series in the sciences of complexity continues to grow, now numbering more than 20 volumes. The fifth annual complex systems summer school brought nearly 60 graduate students and postdoctoral fellows to Santa Fe for an intensive introduction to the field. Research on complex systems-the focus of work at SFI-involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex adaptive behavior range upwards from DNA through cells and evolutionary systems to human societies. Research models exhibiting complex behavior include spin glasses, cellular automata, and genetic algorithms. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simple components; (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy); and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions.

  12. Advanced Resources for Catalysis Science; Recommendations for a National Catalysis Research Institute

    SciTech Connect (OSTI)

    Peden, Charles HF.; Ray, Douglas

    2005-10-05

    Catalysis is one of the most valuable contributors to our economy and historically an area where the United States has enjoyed, but is now losing, international leadership. While other countries are stepping up their work in this area, support for advanced catalysis research and development in the U.S. has diminished. Yet, more than ever, innovative and improved catalyst technologies are imperative for new energy production processes to ease our dependence on imported resources, for new energy-efficient and environmentally benign chemical production processes, and for new emission reduction technologies to minimize the environmental impact of an active and growing economy. Addressing growing concerns about the future direction of U.S. catalysis science, experts from the catalysis community met at a workshop to determine and recommend advanced resources needed to address the grand challenges for catalysis research and development. The workshop's primary conclusion: To recapture our position as the leader in catalysis innovation and practice, and promote crucial breakthroughs, the U.S. must establish one or more well-funded and well-equipped National Catalysis Research Institutes competitively selected, centered in the national laboratories and, by charter, networked to other national laboratories, universities, and industry. The Institute(s) will be the center of a national collaboratory that gives catalysis researchers access to the most advanced techniques available in the scientific enterprise. The importance of catalysis to our energy, economic, and environmental security cannot be overemphasized. Catalysis is a vital part of our core industrial infrastructure, as it is integral to chemical processing and petroleum refining, and is critical to proposed advances needed to secure a sustainable energy future. Advances in catalysis could reduce our need for foreign oil by making better use of domestic carbon resources, for example, allowing cost-effective and zero emission conversion of coal into transportation fuels. No matter what energy sources are being considered (oil, natural gas, coal, biomass, solar, or nuclear based), a clean, sustainable energy future will involve catalysis to improve energy efficiency and storage and use options, and to mitigate environmental impacts. Recent revolutionary advances in nanotechnology and high-performance computing are enabling the breakthroughs in catalysis science and technology essential for a secure energy future. Thus, the time is right for substantially increased investments in catalysis science and technology.

  13. Radiation Resistant Foams | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Radiation Resistant Foams Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights Highlight Archives News & Events Publications History Contact BES Home 04.27.12 Radiation Resistant Foams Print Text Size: A A A FeedbackShare Page Scientific Achievement Experiments and computer simulations demonstrate that nanoscale gold foams can be designed for radiation resistanceSignificance and Impact May lead to the design of new radiation resistant materials that extend

  14. Thermal and Non-thermal Physiochemical Processes in Nanoscale Films of Amorphous Solid Water

    SciTech Connect (OSTI)

    Smith, R. Scott; Petrik, Nikolay G.; Kimmel, Gregory A.; Kay, Bruce D.

    2012-01-17

    Amorphous solid water (ASW) is a metastable form of water created by vapor deposition onto a cold substrate (typically less than 130 K). Since this unusual form of water only exists on earth in laboratories with highly specialized equipment, it is fair to ask why there is any interest in studying this esoteric material. Much of the scientific interest involves using ASW as a model system to explore the physical and reactive properties of liquid water and aqueous solutions. Other researchers are interested in ASW because it is believed to be the predominate form of water in the extreme cold temperatures found in many astrophysical and planetary environments. In addition, ASW is a convenient model system for studying the stability of metastable systems (glasses) and the properties of highly porous materials. A fundamental understanding of such properties has applications in a diverse range of disciplines including cryobiology, food science, pharmaceuticals, astrophysics and nuclear waste storage among others.There exist several excellent reviews on the properties of ASW and supercooled liquid water and a new comprehensive review is beyond the scope of this Account. Instead, we focus on our research over the past 15 years using molecular beams and surface science techniques to probe the thermal and non thermal properties of nanoscale films of ASW. We use molecular beams to precisely control the deposition conditions (flux, incident, energy, incident angle) to create compositionally-tailored, nanoscale films of ASW at low temperatures. To study the transport properties (viscosity, diffusivity), the amorphous films can be heated above their glass transition temperatures, Tg, at which time they transform into deeply supercooled liquids prior to crystallization. The advantage of this approach is that at temperatures near Tg the viscosity is approximately 15 orders of magnitude larger than a normal liquid, and therefore the crystallization kinetics are dramatically slowed, increasing the time available for experiments. For example, near Tg, on a typical laboratory time scale (e.g. {approx}1000 s), a water molecule moves less than a molecular distance. For this reason, nanoscale films help to probe the behavior and reactions of supercooled liquid at these low temperatures. ASW films can be used for investigating the non-thermal reactions relevant to radiolysis. In this account we will present a survey of our research on the thermal and non thermal properties of ASW using this approach.

  15. Pacific Northwest Laboratory annual report for 1993 to the DOE Office of Energy Research. Part 1: Biomedical Sciences

    SciTech Connect (OSTI)

    Lumetta, C.C.; Park, J.F.

    1994-03-01

    This report summarizes FY 1993 progress in biological and general life sciences research programs conducted for the Department of Energy`s Office of Health and Environmental REsearch (OHER) at Pacific Northwest Laboratory (PNL). This research provides knowledge of fundamental principles necessary to identify, understand, and anticipate the long-term health consequences of exposure to energy-related radiation and chemicals. The Biological Research section contains reports of studies using laboratory animals, in vitro cell systems, and molecular biological systems. This research includes studies of the impact of radiation, radionuclides, and chemicals on biological responses at all levels of biological organization. The General Life Sciences Research section reports research conducted for the OHER human genome program.

  16. Inverse Design: Playing "Jeopardy" in Materials Science (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Alex Zunger (former Director, Center for Inverse Design); Tumas, Bill (Director, Center for Inverse Design); CID Staff

    2011-11-02

    'Inverse Design: Playing 'Jeopardy' in Materials Science' was submitted by the Center for Inverse Design (CID) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CID, an EFRC directed by Bill Tumas at the National Renewable Energy Laboratory is a partnership of scientists from five institutions: NREL (lead), Northwestern University, University of Colorado, Stanford University, and Oregon State University. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Inverse Design is 'to replace trial-and-error methods used in the development of materials for solar energy conversion with an inverse design approach powered by theory and computation.' Research topics are: solar photovoltaic, photonic, metamaterial, defects, spin dynamics, matter by design, novel materials synthesis, and defect tolerant materials.

  17. Nanoscale engineering boosts performance of quantum dot light emitting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diodes Quantum dot light emitting diodes Nanoscale engineering boosts performance of quantum dot light emitting diodes Quantum dots are nano-sized semiconductor particles whose emission color can be tuned by simply changing their dimensions. October 25, 2013 Postdoctoral researcher Young-Shin Park characterizing emission spectra of LEDs in the Los Alamos National Laboratory optical laboratory. Postdoctoral researcher Young-Shin Park characterizing emission spectra of LEDs in the Los Alamos

  18. Fusion Materials Science and Technology Research Needs: Now and During the ITER era

    SciTech Connect (OSTI)

    Wirth, Brian D.; Kurtz, Richard J.; Snead, Lance L.

    2013-09-30

    The plasma facing components, first wall and blanket systems of future tokamak-based fusion power plants arguably represent the single greatest materials engineering challenge of all time. Indeed, the United States National Academy of Engineering has recently ranked the quest for fusion as one of the top grand challenges for engineering in the 21st Century. These challenges are even more pronounced by the lack of experimental testing facilities that replicate the extreme operating environment involving simultaneous high heat and particle fluxes, large time varying stresses, corrosive chemical environments, and large fluxes of 14-MeV peaked fusion neutrons. This paper will review, and attempt to prioritize, the materials research and development challenges facing fusion nuclear science and technology into the ITER era and beyond to DEMO. In particular, the presentation will highlight the materials degradation mechanisms we anticipate to occur in the fusion environment, the temperature- displacement goals for fusion materials and plasma facing components and the near and long-term materials challenges required for both ITER, a fusion nuclear science facility and longer term ultimately DEMO.

  19. Nuclear Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science Nuclear Science Experimental and theoretical nuclear research carried out at NERSC is driven by the quest for improving our understanding of the building blocks of...

  20. Computer Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cite Seer Department of Energy provided open access science research citations in chemistry, physics, materials, engineering, and computer science IEEE Xplore Full text...

  1. Nanoscale Molecules Under Thermodynamic Control:" Digestive Ripening" or " Nanomachining"

    SciTech Connect (OSTI)

    Klabunde, Kenneth J.

    2015-06-04

    Overall Research Goals and Specific Objectives: Nanoscale materials are becoming ubiquitous in science and engineering, and are found widely in nature. However, their formation processes and uniquely high chemical reactivities are not understood well, indeed are often mysterious. Over recent years, a number of research teams have described nanoparticle synthesis, and aging, thermal treatment, or etching times have been mentioned. We have used the terms digestive ripening and nanomachining and have suggested that thermodynamics plays an important part in the size adjustment to monodisperse arrays being formed. Since there is scant theoretical understanding of digestive ripening, the overall goal in our research is to learn what experimental parameters (ligand used, temperature, solvent, time) are most important, how to control nanoparticle size and shape after initial crude nanoparticles have been synthesized, and gain better understanding of the chemical mechanism details. Specific objectives for the past twentynine months since the grant began have been to (1) Secure and train personnel;as of 2011, a postdoc Deepa Jose, female from the Indian Institute of Science in Bangalore, India; Yijun Sun, a second year graduate student, female from China; and Jessica Changstrom, female from the USA, GK12 fellow (program for enhancing teaching ability) are actively carrying out research. (2) Find out what happens to sulfur bound hydrogen of thiol when it interacts with gold nanoparticles. Our findings are discussed in detail later. (3) Determine the effect of particle size, shape, and temperature on dodecyl thiol assited digestive ripening of gold nanoparticles. See our discussions later. (4) To understand in detail the ligand interaction in molecular clusters and nanoparticles (5) Determine the effect of chain length of amines on Au nanoparticle size under digestive ripening conditions (carbon chain length varied from 4-18). (6) Determine the catalytic activity of gold superlattices obtained by digestive ripening for oxidation of CO to CO2 at room temperature. (7) Determine the photocatalytic activity of metal nanoparticles like Au, Ag,Cu, and Pd supported on TiO2 toward photocatalytic hydrogen production.

  2. Science and Technology Research and Development in Support to ITER and the Broader Approach at CEA

    SciTech Connect (OSTI)

    Becoulet, A.; Hoang, G T; Abiteboul, J.; Achard, J.; Alarcon, T.; Klepper, C Christopher

    2013-01-01

    In parallel to the direct contribution to the procurement phase of ITER and Broader Approach, CEA has initiated research & development programmes, accompanied by experiments together with a significant modelling effort, aimed at ensuring robust operation, plasma performance, as well as mitigating the risks of the procurement phase. This overview reports the latest progress in both fusion science and technology including many areas, namely the mitigation of superconducting magnet quenches, disruption-generated runaway electrons, edge-localized modes (ELMs), the development of imaging surveillance, and heating and current drive systems for steady-state operation. The WEST (W Environment for Steady-state Tokamaks) project, turning Tore Supra into an actively cooled W-divertor platform open to the ITER partners and industries, is presented.

  3. Support for the Core Research Activities and Studies of the Computer Science and Telecommunications Board (CSTB)

    SciTech Connect (OSTI)

    Jon Eisenberg, Director, CSTB

    2008-05-13

    The Computer Science and Telecommunications Board of the National Research Council considers technical and policy issues pertaining to computer science (CS), telecommunications, and information technology (IT). The functions of the board include: (1) monitoring and promoting the health of the CS, IT, and telecommunications fields, including attention as appropriate to issues of human resources and funding levels and program structures for research; (2) initiating studies involving CS, IT, and telecommunications as critical resources and sources of national economic strength; (3) responding to requests from the government, non-profit organizations, and private industry for expert advice on CS, IT, and telecommunications issues; and to requests from the government for expert advice on computer and telecommunications systems planning, utilization, and modernization; (4) fostering interaction among CS, IT, and telecommunications researchers and practitioners, and with other disciplines; and providing a base of expertise in the National Research Council in the areas of CS, IT, and telecommunications. This award has supported the overall operation of CSTB. Reports resulting from the Board's efforts have been widely disseminated in both electronic and print form, and all CSTB reports are available at its World Wide Web home page at cstb.org. The following reports, resulting from projects that were separately funded by a wide array of sponsors, were completed and released during the award period: 2007: * Summary of a Workshop on Software-Intensive Systems and Uncertainty at Scale * Social Security Administration Electronic Service Provision: A Strategic Assessment * Toward a Safer and More Secure Cyberspace * Software for Dependable Systems: Sufficient Evidence? * Engaging Privacy and Information Technology in a Digital Age * Improving Disaster Management: The Role of IT in Mitigation, Preparedness, Response, and Recovery 2006: * Renewing U.S. Telecommunications Research * Letter Report on Electronic Voting * Summary of a Workshop on the Technology, Policy, and Cultural Dimensions of Biometric System 2005: * Catalyzing Inquiry at the Interface of Computing and Biology * Summary of a Workshop on Using IT to Enhance Disaster Management * Asking the Right Questions About Electronic Voting * Building an Electronic Records Archive at NARA: Recommendations for a Long-Term Strategy * Signposts in Cyberspace: The Domain Name System and Internet Navigation 2004: * ITCP: Information Technology and Creative Practices (brochure) * Radio Frequency Identification (RFID) Technologies: A Workshop Summary * Getting up to Speed: The Future of Supercomputing * Summary of a Workshop on Software Certification and Dependability * Computer Science: Reflections on the Field, Reflections from the Field CSTB conducted numerous briefings of these reports and transmitted copies of these reports to researchers and key decision makers in the public and private sectors. It developed articles for journals based on several of these reports. As requested, and in fulfillment of its congressional charter to act as an independent advisor to the federal government, it arranged for congressional testimony on several of these reports. CSTB also convenes a number of workshops and other events, either as part of studies or in conjunctions with meetings of the CSTB members. These events have included the following: two 2007 workshops explored issues and challenges related to state voter registration databases, record matching, and database interoperability. A Sept. 2007 workshop, Trends in Computing Performance, explored fundamental trends in areas such as power, storage, programming, and applications. An Oct. 2007, workshop presented highlights of CSTB's May 2007 report, Software for Dependable Systems: Sufficient Evidence?, along with several panels discussing the report's conclusions and their implications. A Jan. 2007 workshop, Uncertainty at Scale, explored engineering uncertainty, system complexity, and scale issues in developing large software systems. A Feb. 2007

  4. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    key to stockpile stewardship A new video shows how researchers use scientific guns to induce shock waves into explosive materials to study their performance and...

  5. Biological and Environmental Research: Climate and Environmental Sciences Division: U.S./European Workshop on Climate Change Challenges and Observations

    SciTech Connect (OSTI)

    Mather, James; McCord, Raymond; Sisterson, Doug; Voyles, Jimmy

    2012-11-08

    The workshop aimed to identify outstanding climate change science questions and the observational strategies for addressing them. The scientific focus was clouds, aerosols, and precipitation, and the required ground- and aerial-based observations. The workshop findings will be useful input for setting priorities within the Department of Energy (DOE) and the participating European centers. This joint workshop was envisioned as the first step in enhancing the collaboration among these climate research activities needed to better serve the science community.

  6. COMPUTATIONAL SCIENCE CENTER

    SciTech Connect (OSTI)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together researchers in these areas and to provide a focal point for the development of computational expertise at the Laboratory. These efforts will connect to and support the Department of Energy's long range plans to provide Leadership class computing to researchers throughout the Nation. Recruitment for six new positions at Stony Brook to strengthen its computational science programs is underway. We expect some of these to be held jointly with BNL.

  7. Organization by Gordon Research Conferences of the 2012 Plasma Processing Science Conference 22-27 July 2012

    SciTech Connect (OSTI)

    Jane Chang

    2012-07-27

    The 2012 Gordon Research Conference on Plasma Processing Science will feature a comprehensive program that will highlight the most cutting edge scientific advances in plasma science and technology as well as explore the applications of this nonequilibrium medium in possible approaches relative to many grand societal challenges. Fundamental science sessions will focus on plasma kinetics and chemistry, plasma surface interactions, and recent trends in plasma generation and multi-phase plasmas. Application sessions will explore the impact of plasma technology in renewable energy, the production of fuels from renewable feedstocks and carbon dioxide neutral solar fuels (from carbon dioxide and water), and plasma-enabled medicine and sterilization.

  8. Mapping photovoltaic performance with nanoscale resolution (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | DOE PAGES DOE PAGES Search Results Accepted Manuscript: Mapping photovoltaic performance with nanoscale resolution This content will become publicly available on October 16, 2016 Title: Mapping photovoltaic performance with nanoscale resolution Photo-conductive AFM spectroscopy ('pcAFMs') is proposed as a high-resolution approach for investigating nanostructured photovoltaics, uniquely providing nanoscale maps of photovoltaic (PV) performance parameters such as the short circuit

  9. Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium-Ion Anodes | Department of Energy Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel Lithium-Ion Anodes Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel Lithium-Ion Anodes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es061_kumta_2012_p.pdf More Documents & Publications Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel Lithium-Ion Anodes Novel

  10. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Nanoscale Chemical Imaging of a Working Catalyst Print Wednesday, 28 January 2009 00:00 The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support,

  11. Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium-Ion Anodes Nanoscale Heterostructures and Thermoplastic Resin Binders: Novel Lithium-Ion Anodes 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies...

  12. Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research

    SciTech Connect (OSTI)

    Riley, R.G.; Zachara, J.M. )

    1992-04-01

    This report identifies individual contaminants and contaminant mixtures that have been measured in the ground at 91 waste sites at 18 US Department of Energy (DOE) facilities within the weapons complex. The inventory of chemicals and mixtures was used to identify generic chemical mixtures to be used by DOE's Subsurface Science Program in basic research on the subsurface geochemical and microbiological behavior of mixed contaminants (DOE 1990a and b). The generic mixtures contain specific radionuclides, metals, organic ligands, organic solvents, fuel hydrocarbons, and polychlorinated biphenyls (PCBs) in various binary and ternary combinations. The mixtures are representative of in-ground contaminant associations at DOE facilities that are likely to exhibit complex geochemical behavior as a result of intercontaminant reactions and/or microbiologic activity stimulated by organic substances. Use of the generic mixtures will focus research on important mixed contaminants that are likely to be long-term problems at DOE sites and that will require cleanup or remediation. The report provides information on the frequency of associations among different chemicals and compound classes at DOE waste sites that require remediation.

  13. Materials Science Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Materials Science Applications VASP VASP is a plane wave ab initio code for quantum mechanical molecular dynamics. It is highly scalable and shows very good parallel performance for a variety of chemical and materials science calculations. VASP is available to NERSC users who already have a VASP license. Read More » Quantum ESPRESSO/PWscf Quantum Espresso is an integrated suite of computer codes for electronic structure calculations and materials modeling at the nanoscale. It builds on

  14. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal

  15. 1995 Federal Research and Development Program in Materials Science and Technology

    SciTech Connect (OSTI)

    1995-12-01

    The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly a century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The materials R&D program also supports the Administration's specific technological objectives, emphasizing development of affordable, high-performance commercial and military aircraft; ultra-fuel-efficient, low-emissions automobiles that are also safe and comfortable; powerful yet inexpensive electronic systems; environmentally safe products and processes; and a durable building and transportation infrastructure.

  16. NREL: Energy Sciences - Chemical and Materials Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the U.S. Department of Energy (DOE) National Photovoltaic Program and DOE Basic Energy Sciences Program. Materials Science. The Materials Science Group's research...

  17. Sandia National Labs: Physical, Chemical and Nano Sciences Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Semiconductor & Optical Sciences Energy Sciences Small Science Cluster Business Office News Partnering Research Departments Radiation, Nano Materials, & Interface Sciences...

  18. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  19. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  20. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  1. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  2. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  3. New ALS Technique Gives Nanoscale Views of Complex Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Gives Nanoscale Views of Complex Systems Print Studying and identifying molecules at the mesoscale has always been challenging-even the best microscopes and spectrometers have difficulty simultaneously identifying and spatially resolving this realm of matter, which ranges from about 10 to 1000 nanometers in size. But ALS researchers recently developed a broadband imaging technique that looks inside the mesoscale realm with unprecedented sensitivity and range. The new technique,

  4. Nanophotonic Architectures for Nanoscale Light Control (invited).

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Nanophotonic Architectures for Nanoscale Light Control (invited). Citation Details In-Document Search Title: Nanophotonic Architectures for Nanoscale Light Control (invited). Abstract not provided. Authors: Subramania, Ganapathi Subramanian ; Fischer, Arthur Joseph ; Koleske, Daniel ; Xiao, Xiaoyin ; Wang, George T. ; Brener, Igal ; Wright, Jeremy Benjamin ; Liu, Sheng ; Wierer, Jonathan , ; Luk, Ting S. ; Tsao, Jeffrey Yeenien Publication Date:

  5. Probing nanoscale behavior of magnetic materials with soft x...

    Office of Scientific and Technical Information (OSTI)

    Probing nanoscale behavior of magnetic materials with soft x-ray spectromicroscopy Citation Details In-Document Search Title: Probing nanoscale behavior of magnetic materials with...

  6. Emerging Nanoscale Memory Technologies: The Solution to Extreme...

    Office of Scientific and Technical Information (OSTI)

    Emerging Nanoscale Memory Technologies: The Solution to Extreme Scale Problems. Citation Details In-Document Search Title: Emerging Nanoscale Memory Technologies: The Solution to ...

  7. Nanoscale Imaging of Lithium Ion Distribution During In Situ...

    Office of Scientific and Technical Information (OSTI)

    Nanoscale Imaging of Lithium Ion Distribution During In Situ Operation of Battery Electrode and Electrolyte Citation Details In-Document Search Title: Nanoscale Imaging of Lithium ...

  8. Nanoscale friction properties of graphene and graphene oxide...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale friction properties of graphene and graphene oxide Title Nanoscale friction properties of graphene and graphene oxide Publication Type Journal Article Year of Publication...

  9. Scientists use world's fastest computer to simulate nanoscale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale material failure Scientists use world's fastest computer to simulate nanoscale material failure With this new tool, scientists can better study what nanowires do under...

  10. Other: Nanoscale Machines: These Squeaky Wheels Will Get No Grease...

    Office of Scientific and Technical Information (OSTI)

    Nanoscale Machines: These Squeaky Wheels Will Get No Grease Citation Details Title: Nanoscale Machines: These Squeaky Wheels Will Get No Grease...

  11. Big Thinking: The Power of Nanoscience (LBNL Science at the Theater)

    SciTech Connect (OSTI)

    Milliron, Delia; Sanili, Babak; Weber-Bargioni, Alex; Xu, Ting

    2011-06-06

    Science at the Theater, June 6th, 2011: Berkeley Lab scientists reveal how nanoscience will bring us cleaner energy, faster computers, and improved medicine. Alex Weber-Bargioni: How can we see things at the nanoscale? Alex is pioneering new methods that provide unprecedented insight into nanoscale materials and molecular interactions. The goal is to create rules for building nanoscale materials. Babak Sanii: Nature is an expert at making nanoscale devices such as proteins. Babak is developing ways to see these biological widgets, which could help scientists develop synthetic devices that mimic the best that nature has to offer. Ting Xu: How are we going to make nanoscale devices? A future in which materials and devices are able to assemble themselves may not be that far down the road. Ting is finding ways to induce a wide range of nanoscopic building blocks to assemble into complex structures. Delia Milliron: The dividends of nanoscience could reshape the way we live, from smart windows and solar cells to artificial photosynthesis and improved medical diagnosis. Delia is at the forefront of converting fundamental research into nanotechnology. Moderated by Jim DeYoreo, interim director of the Molecular Foundry, a facility located at Berkeley Lab where scientists from around the world address the myriad challenges in nanoscience.

  12. DOE Office of Basic Sciences: An Overview of Basic Research Activities...

    Broader source: Energy.gov (indexed) [DOE]

    Chemical Transformations Nanoscience and Electron Microscopy Centers X-Ray and Neutron Scattering Facilities Scientific User Facilities Division Materials Sciences and...

  13. Research Needs for Magnetic Fusion Energy Sciences. Report of the Research Needs Workshop (ReNeW) Bethesda, Maryland, June 8-12, 2009

    SciTech Connect (OSTI)

    2009-06-08

    Nuclear fusion - the process that powers the sun - offers an environmentally benign, intrinsically safe energy source with an abundant supply of low-cost fuel. It is the focus of an international research program, including the ITE R fusion collaboration, which involves seven parties representing half the world's population. The realization of fusion power would change the economics and ecology of energy production as profoundly as petroleum exploitation did two centuries ago. The 21st century finds fusion research in a transformed landscape. The worldwide fusion community broadly agrees that the science has advanced to the point where an aggressive action plan, aimed at the remaining barriers to practical fusion energy, is warranted. At the same time, and largely because of its scientific advance, the program faces new challenges; above all it is challenged to demonstrate the timeliness of its promised benefits. In response to this changed landscape, the Office of Fusion Energy Sciences (OFES ) in the US Department of Energy commissioned a number of community-based studies of the key scientific and technical foci of magnetic fusion research. The Research Needs Workshop (ReNeW) for Magnetic Fusion Energy Sciences is a capstone to these studies. In the context of magnetic fusion energy, ReNeW surveyed the issues identified in previous studies, and used them as a starting point to define and characterize the research activities that the advance of fusion as a practical energy source will require. Thus, ReNeW's task was to identify (1) the scientific and technological research frontiers of the fusion program, and, especially, (2) a set of activities that will most effectively advance those frontiers. (Note that ReNeW was not charged with developing a strategic plan or timeline for the implementation of fusion power.) This Report presents a portfolio of research activities for US research in magnetic fusion for the next two decades. It is intended to provide a strategic framework for realizing practical fusion energy. The portfolio is the product of ten months of fusion-community study and discussion, culminating in a Workshop held in Bethesda, Maryland, from June 8 to June 12, 2009. The Workshop involved some 200 scientists from Universities, National Laboratories and private industry, including several scientists from outside the US. Largely following the Basic Research Needs model established by the Office of Basic Energy Sciences (BES ), the Report presents a collection of discrete research activities, here called 'thrusts.' Each thrust is based on an explicitly identified question, or coherent set of questions, on the frontier of fusion science. It presents a strategy to find the needed answers, combining the necessary intellectual and hardware tools, experimental facilities, and computational resources into an integrated, focused program. The thrusts should be viewed as building blocks for a fusion program plan whose overall structure will be developed by OFES , using whatever additional community input it requests. Part I of the Report reviews the issues identified in previous fusion-community studies, which systematically identified the key research issues and described them in considerable detail. It then considers in some detail the scientific and technical means that can be used to address these is sues. It ends by showing how these various research requirements are organized into a set of eighteen thrusts. Part II presents a detailed and self-contained discussion of each thrust, including the goals, required facilities and tools for each. This Executive Summary focuses on a survey of the ReNeW thrusts. The following brief review of fusion science is intended to provide context for that survey. A more detailed discussion of fusion science can be found in an Appendix to this Summary, entitled 'A Fusion Primer.'

  14. Energy Frontier Research Centers (EFRCs): A Response to Five Challenges for Science and the Imagination (2011 EFRC Summit, panel session)

    ScienceCinema (OSTI)

    Alivisatos, Paul (Director, LBNL); Crabtree, George (ANL); Dresselhaus, Mildred (MIT); Ratner, Mark (Northwestern University)

    2012-03-14

    A distinguished panel of speakers at the 2011 EFRC Summit looks at the EFRC Program and how it serves as a response to "Five Challenges for Science and the Imagination?, the culminating report that arose from a series of Basic Research Needs workshops. The panel members are Paul Alivisatos, the Director of Lawrence Berkeley National Laboratory, George Crabtree, Distinguished Fellow at Argonne National Laboratory, Mildred Dresselhause, Institute Professor at the Massachusetts Institute of Technology, and Mark Ratner, Professor at Northwestern University. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  15. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    SciTech Connect (OSTI)

    NONE

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  16. Energy Frontier Research Center, Center for Materials Science of Nuclear Fuels

    SciTech Connect (OSTI)

    Todd R. Allen

    2011-12-01

    This is a document required by Basic Energy Sciences as part of a mid-term review, in the third year of the five-year award period and is intended to provide a critical assessment of the Center for Materials Science of Nuclear Fuels (strategic vision, scientific plans and progress, and technical accomplishments).

  17. Statement from Secretary of Energy Samuel W. Bodman on the National Academy of Sciences Report: Review of the Research Program of the FreedomCAR and Fuel Partnership

    Broader source: Energy.gov [DOE]

    Washington, DC - Late yesterday the National Academy of Sciences (NAS) National Research Council issued a report titled: Review of the Research Program of the FreedomCAR and Fuel Partnership....

  18. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal lecture series

  19. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal lecture series

  20. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal lecture series

  1. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Highlights Print Science Highlights Featured scientific research based on publications resulting from work done at the ALS. Highlights are nominated by management and beamline scientists for their scientific significance. Current highlights (2004-present), highlight archives (1995-2004), and Summary Slides of ALS Science Highlights are also available. Science Briefs Short reports on recent research submitted by ALS beamline scientists and users. Science Cafés Informal lecture series

  2. Chemical Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Science /science-innovation/_assets/images/icon-science.jpg Chemical Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Actinide Chemistry» Modeling & Simulation» Synthetic and Mechanistic Chemistry» Chemistry for Measurement and Detection Science» Chemical Researcher Jeff Pietryga shows two vials of

  3. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research. Part 2, Environmental sciences

    SciTech Connect (OSTI)

    Perez, D.A.

    1992-02-01

    This report summarizes progress in environmental sciences research conducted by Pacific Northwest Laboratory (PNL) for the US Department of Energy`s (DOE) Office of Health and Environmental Research in FY 1991. Each project in the PNL research program is a component in an integrated laboratory, intermediate-scale, and field approach designed to examine multiple phenomena at increasing levels of complexity. Examples include definition of the role of fundamental geochemical and physical phenomena on the diversity and function of microorganisms in the deep subsurface, and determination of the controls on nutrient, water, and energy dynamics in arid ecosystems and their response to stress at the landscape scale. The Environmental Science Research Center has enable PNL to extend fundamental knowledge of subsurface science to develop emerging new concepts for use in natural systems and in environmental restoration of DOE sites. New PNL investments have been made in developing advanced concepts for addressing chemical desorption kinetics, enzyme transformations and redesign, the role of heterogeneity in contaminant transport, and modeling of fundamental ecological processes.

  4. DOE-Funded Research Wins 26 Awards | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Eleven of the awards are joint awards with companies or universities. Descriptions of the technologies are available on the Office of Science web site and R&D Magazine. The winning ...

  5. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RAPTOR telescope witnesses black hole birth science-innovationassetsimagesicon-science.jpg Top Science of 2013 Our strong interdisciplinary teaming and unique research...

  6. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid-scanning technology boosts airport security science-innovationassetsimagesicon-science.jpg Top Science of 2013 Our strong interdisciplinary teaming and unique research...

  7. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    P.J. Kooyman, H.W. Zandbergen, C. Morin, B.M. Weckhuysen, and F.M.F. de Groot, "Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy," Nature...

  8. Statistical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 Statistical Sciences Applying statistical reasoning and rigor to multidisciplinary scientific investigations Contact Us Group Leader Joanne Wendelberger Email Deputy Group Leader James R. Gattiker Email Group Administrator LeeAnn Martinez (505) 667-3308 Email Statistical Sciences Statistical Sciences provides statistical reasoning and rigor to multidisciplinary scientific investigations and development, application, and communication of cutting-edge statistical sciences research. Statistical

  9. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  10. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  11. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  12. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  13. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  14. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  15. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  16. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  17. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles dispersed on high-surface-area supports. While these particles are the active elements of the catalyst, the overall performance depends not only on their size and composition but also on their multiple interactions with the support, reactants, and products. Probing this chemical soup in real time under realistic reaction

  18. Nanoscale Reinforced, Polymer Derived Ceramic Matrix Coatings

    SciTech Connect (OSTI)

    Rajendra Bordia

    2009-07-31

    The goal of this project was to explore and develop a novel class of nanoscale reinforced ceramic coatings for high temperature (600-1000 C) corrosion protection of metallic components in a coal-fired environment. It was focused on developing coatings that are easy to process and low cost. The approach was to use high-yield preceramic polymers loaded with nano-size fillers. The complex interplay of the particles in the polymer, their role in controlling shrinkage and phase evolution during thermal treatment, resulting densification and microstructural evolution, mechanical properties and effectiveness as corrosion protection coatings were investigated. Fe-and Ni-based alloys currently used in coal-fired environments do not possess the requisite corrosion and oxidation resistance for next generation of advanced power systems. One example of this is the power plants that use ultra supercritical steam as the working fluid. The increase in thermal efficiency of the plant and decrease in pollutant emissions are only possible by changing the properties of steam from supercritical to ultra supercritical. However, the conditions, 650 C and 34.5 MPa, are too severe and result in higher rate of corrosion due to higher metal temperatures. Coating the metallic components with ceramics that are resistant to corrosion, oxidation and erosion, is an economical and immediate solution to this problem. Good high temperature corrosion protection ceramic coatings for metallic structures must have a set of properties that are difficult to achieve using established processing techniques. The required properties include ease of coating complex shapes, low processing temperatures, thermal expansion match with metallic structures and good mechanical and chemical properties. Nanoscale reinforced composite coatings in which the matrix is derived from preceramic polymers have the potential to meet these requirements. The research was focused on developing suitable material systems and processing techniques for these coatings. In addition, we investigated the effect of microstructure on the mechanical properties and oxidation protection ability of the coatings. Coatings were developed to provide oxidation protection to both ferritic and austentic alloys and Ni-based alloys. The coatings that we developed are based on low viscosity pre-ceramic polymers. Thus they can be easily applied to any shape by using a variety of techniques including dip-coating, spray-coating and painting. The polymers are loaded with a variety of nanoparticles. The nanoparticles have two primary roles: control of the final composition and phases (and hence the properties); and control of the shrinkage during thermal decomposition of the polymer. Thus the selection of the nanoparticles was the most critical aspect of this project. Based on the results of the processing studies, the performance of selected coatings in oxidizing conditions (both static and cyclic) was investigated.

  19. High-speed Visualization of Polarization Charges using a Nanoscale...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tip in the absence of surface screening charges. Research Team Seungbum Hong, Woon Ik Park (Argonne Materials Science Division), Sheng Tong, Andreas Roelofs (Argonne...

  20. Annular Core Research Reactor - Critical to Science-Based Weapons Design,

    National Nuclear Security Administration (NNSA)

    Certification | National Nuclear Security Administration - Critical to Science-Based Weapons Design, Certification | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony

  1. ARM Climate Research Facility | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    ARM Climate Research Facility Print Text Size: A A A FeedbackShare Page The Atmospheric Radiation Measurement (ARM) Climate Research Facility (www.arm.gov) is a multi-platform ...

  2. Developing a Research Proposal | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Developing a Research Proposal Visiting Faculty Program (VFP) VFP Home Eligibility Benefits Participant Obligations How to Apply Selecting a Host DOE Laboratory Developing a Research Proposal Recommender Information Student Participants Submitting a Proposal to DOE Application Selection Process and Notification Key Dates Frequently Asked Questions Contact WDTS Home How to Apply Developing a Research Proposal Print Text Size: A A A FeedbackShare Page Developing a Research Project and Required

  3. DOE Office of Basic Sciences: An Overview of Basic Research Activities on Thermoelectrics

    Broader source: Energy.gov [DOE]

    Presents overview of BES Physical Behavior of Materials Program including examples of research related to thermoelectric technologies

  4. Sandia Energy - Computational Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science Home Energy Research Advanced Scientific Computing Research (ASCR) Computational Science Computational Sciencecwdd2015-03-26T13:35:2...

  5. Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science /science-innovation/_assets/images/icon-science.jpg Office of Science Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. Advanced Scientific Computing Research» Basic Energy Sciences» Biological and Environmental Research» Fusion Energy Sciences» High Energy Physics» Nuclear Physics» Fusion Energy Science Research LANL fusion materials researchers use Titan supercomputer to

  6. Science and Science Fiction

    ScienceCinema (OSTI)

    Scherrer, Robert [Vanderbilt University, Nashville, Tennessee, United States

    2009-09-01

    I will explore the similarities and differences between the process of writing science fiction and the process of 'producing' science, specifically theoretical physics. What are the ground rules for introducing unproven new ideas in science fiction, and how do they differ from the corresponding rules in physics? How predictive is science fiction? (For that matter, how predictive is theoretical physics?) I will also contrast the way in which information is presented in science fiction, as opposed to its presentation in scientific papers, and I will examine the relative importance of ideas (as opposed to the importance of the way in which these ideas are presented). Finally, I will discuss whether a background as a research scientist provides any advantage in writing science fiction.

  7. Sandia National Labs: PCNSC: Research: Science-based Solutions for NNSA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mission Needs Science-Based Solutions for NNSA Mission Needs Sandia's existence stems from its engineering support of the Manhattan Project during the 1940's to develop Nuclear Weapons (NWs), and its first and foremost mission remains engineering support for the NW program. This mission represents a significant fraction of the total effort at Sandia, which is administered by the National Nuclear Security Administration (NNSA). Not surprisingly, Center 1100 has had many core thrusts that have

  8. DOE Science Showcase - DOE Plasma Research | OSTI, US Dept of Energy,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Scientific and Technical Information DOE Plasma Research Image credit: NASA Plasma, the electrified gas that surrounds and illuminates our world, is the fourth state of matter. The behavior, nature, and complexity of plasma allows DOE scientists, research institutions and international partners to research a diverse number of applications that are significant to our world. DOE plasma theorists are developing the fundamental plasma theory and computational base needed to understand

  9. DOE Science Showcase - Heat Pump Research | OSTI, US Dept of Energy, Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Scientific and Technical Information Heat Pump Research DOE and its predecessor agencies have been researching heat pump technology since the early 1950's. This heat pump research information has been made available to DOE's Office of Scientific and Technical Information for inclusion in OSTI's free web-based resources. Image Credit: EERE Image Credit: EERE Among these wonderful resources is the DOE Information Bridge. This database provides users a rapid way to find the latest DOE

  10. COMPUTER SCIENCE RESEARCH MELISSES: Liquid Services for Scalable Multithreaded and Multicore Execution on Emerging Supercomputers

    SciTech Connect (OSTI)

    Dimitrios S. Nikolopoulos

    2008-08-10

    In this final report, we summarize the contributions made through support from the DOE ECPI award to research and training in advanced computing systems.

  11. Research Proposal Guidelines | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    including the Merit Review Criteria that applications will be reviewed against, to help guide the content of their SCGSR research proposal. It is the primary responsibility of the...

  12. Sandia National Laboratories: Research: Research Foundations: Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Research Foundations Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Engineering Science The Engineering Science Research Foundation is leading engineering transitions in advanced, highly critical systems by integrating theory development, experimental discovery and diagnostics, modeling, and computational approaches to refine our

  13. Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee

    SciTech Connect (OSTI)

    2003-02-01

    This report has highlighted many of the possible fundamental research areas that will help our country avoid a future energy crisis. The report may not have adequately captured the atmosphere of concern that permeated the discussions at the workshop. The difficulties facing our nation and the world in meeting our energy needs over the next several decades are very challenging. It was generally felt that traditional solutions and approaches will not solve the total energy problem. Knowledge that does not exist must be obtained to address both the quantity of energy needed to increase the standard of living world-wide and the quality of energy generation needed to preserve the environment. In terms of investments, it was clear that there is no single research area that will secure the future energy supply. A diverse range of economic energy sources will be required--and a broad range of fundamental research is needed to enable these. Many of the issues fall into the traditional materials and chemical sciences research areas, but with specific emphasis on understanding mechanisms, energy related phenomena, and pursuing novel directions in, for example, nanoscience and integrated modeling. An important result from the discussions, which is hopefully apparent from the brief presentations above, is that the problems that must be dealt with are truly multidisciplinary. This means that they require the participation of investigators with different skill sets. Basic science skills have to be complemented by awareness of the overall nature of the problem in a national and world context, and with knowledge of the engineering, design, and control issues in any eventual solution. It is necessary to find ways in which this can be done while still preserving the ability to do first-class basic science. The traditional structure of research, with specific disciplinary groupings, will not be sufficient. This presents great challenges and opportunities for the funders of the research that must be done. For example, the applied research programs in the DOE need a greater awareness of the user facilities and an understanding of how to use them to solve their unique problems. The discussions reinforced what all of the participants already knew: the issue of energy security is of major importance both for the U.S. and for the world. Furthermore, it is clear that major changes in the primary energy sources, in energy conversion, and in energy use, must be achieved within the next fifty years. This time scale is determined by two drivers: increasing world population and increasing expectations of that population. Much of the research and development currently being done are concerned with incremental improvements in what has been done in the immediate past; and it is necessary to take this path because improvements will be needed across the board. These advances extend the period before the radical changes have to be made; however, they will not solve the underlying, long-range problem. The Subpanel recommends that a major program be funded to conduct a multidisciplinary research program to address the issues to ensure a secure energy future for the U.S. It is necessary to recognize that this program must be ensured of a long-term stability. It is also necessary that a management and funding structure appropriate for such an approach be developed. The Department of Energy's Office of Basic Energy Sciences is well positioned to support this initiative by enhancement of their already world-class scientific research programs and user facilities.

  14. ARM - Research Themes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govScienceResearch Themes Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional & Global...

  15. 1993 Annual report on scientific programs: A broad research program on the sciences of complexity

    SciTech Connect (OSTI)

    1993-12-31

    This report provides a summary of many of the research projects completed by the Santa Fe Institute (SFI) during 1993. These research efforts continue to focus on two general areas: the study of, and search for, underlying scientific principles governing complex adaptive systems, and the exploration of new theories of computation that incorporate natural mechanisms of adaptation (mutation, genetics, evolution).

  16. Seventh BES (Basic Energy Sciences) catalysis and surface chemistry research conference

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Research programs on catalysis and surface chemistry are presented. A total of fifty-seven topics are included. Areas of research include heterogeneous catalysis; catalysis in hydrogenation, desulfurization, gasification, and redox reactions; studies of surface properties and surface active sites; catalyst supports; chemical activation, deactivation; selectivity, chemical preparation; molecular structure studies; sorption and dissociation. Individual projects are processed separately for the data bases. (CBS)

  17. DOE-Funded Research Wins 26 Awards | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    October 12, 2004 DOE-Funded Research Projects Win 36 R&D 100 Awards for 2004 WASHINGTON , DC - Secretary of Energy Spencer Abraham today announced that researchers at Department of Energy (DOE) national laboratories and companies with research funded by DOE have won 36 of the 100 awards given this year by R&D Magazine for the most outstanding technology developments with commercial potential. The R&D 100 Awards recognize the most promising new products, processes, materials, or

  18. NSS-8 Workshop Summary International Workshop on Nanoscale Spectroscopy and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology | Argonne National Laboratory NSS-8 Workshop Summary International Workshop on Nanoscale Spectroscopy and Nanotechnology August 1, 2014 Tweet EmailPrint Organized by Center for Nanoscale Materials and Advanced Photon Source The International Workshop on Nanoscale Spectroscopy and Nanotechnology 8 (NSS-8), organized by the Center for Nanoscale Materials (CNM) and Advanced Photon Source (APS), was held under sunny, summer skies from July 28-31, 2014, in the world-class Gleacher

  19. WTEC Panel Report on International Assessment of Research and Development in Simulation-Based Engineering and Science

    SciTech Connect (OSTI)

    Glotzer, S. C.; Kim, S.; Cummings, P. T.; Deshmukh, A.; Head-Gordon, M.; Karniadakis, G.; Petzold, L.; Sagui, C.; Shinozuka, M.

    2013-07-30

    This WTEC panel report assesses the international research and development activities in the field of Simulation- Based Engineering and Science (SBE&S). SBE&S involves the use of computer modeling and simulation to solve mathematical formulations of physical models of engineered and natural systems. SBE&S today has reached a level of predictive capability that it now firmly complements the traditional pillars of theory and experimentation/observation. As a result, computer simulation is more pervasive today – and having more impact – than at any other time in human history. Many critical technologies, including those to develop new energy sources and to shift the cost-benefit factors in healthcare, are on the horizon that cannot be understood, developed, or utilized without simulation. A panel of experts reviewed and assessed the state of the art in SBE&S as well as levels of activity overseas in the broad thematic areas of life sciences and medicine, materials, and energy and sustainability; and in the crosscutting issues of next generation hardware and algorithms; software development; engineering simulations; validation, verification, and uncertainty quantification; multiscale modeling and simulation; and SBE&S education. The panel hosted a U.S. baseline workshop, conducted a bibliometric analysis, consulted numerous experts and reports, and visited 59 institutions and companies throughout East Asia and Western Europe to explore the active research projects in those institutions, the computational infrastructure used for the projects, the funding schemes that enable the research, the collaborative interactions among universities, national laboratories, and corporate research centers, and workforce needs and development for SBE&S.

  20. Report to Congress on the U.S. Department of Energy`s Environmental Management Science Program: Research funded and its linkages to environmental cleanup problems, and Environmental Management Science Program research award abstracts. Volume 2 of 3 -- Appendix B

    SciTech Connect (OSTI)

    1998-04-01

    The Department of Energy`s Environmental Management Science Program (EMSP) serves as a catalyst for the application of scientific discoveries to the development and deployment of technologies that will lead to reduction of the costs and risks associated with cleaning up the nation`s nuclear complex. Appendix B provides details about each of the 202 research awards funded by the EMSP. This information may prove useful to researchers who are attempting to address the Department`s environmental management challenges in their work, program managers who are planning, integrating, and prioritizing Environmental Management projects, and stakeholders and regulators who are interested in the Department`s environmental challenges. The research award information is organized by the state and institution in which the lead principal investigator is located. In many cases, the lead principal investigator is one of several investigators at a number of different institutions. In these cases, the lead investigator (major collaborator) at each of the additional institutions is listed. Each research award abstract is followed by a list of high cost projects that can potentially be impacted by the research results. High cost projects are Environmental Management projects that have total costs greater than $50 million from the year 2007 and beyond, based on the March 1998 Accelerating Cleanup: Paths to Closure Draft data, and have costs or quantities of material associated with an Environmental Management problem area. High cost projects which must remain active in the year 2007 and beyond to manage high risk are also identified. Descriptions of these potentially related high cost Environmental Management projects can be found in Appendix C. Additional projects in the same problem area as a research award can be located using the Index of High Cost Environmental Management Projects by Problem Area, at the end of Appendices B and C.

  1. Long Range Interactions in Nanoscale Science (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    less + Show Author Affiliations DuPont Company National Institutes of Health Massachusetts Institute of Technology (MIT) Lehigh University, Bethlehem, PA Clemson University...

  2. ARM - Funded Research Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Proposals Science Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) Earth System Modeling Regional &...

  3. 1991 Annual report on scientific programs: A broad research program on the sciences of complexity

    SciTech Connect (OSTI)

    Not Available

    1991-12-31

    1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.

  4. 1991 Annual report on scientific programs: A broad research program on the sciences of complexity

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.

  5. Science Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Programs /science-innovation/_assets/images/icon-science.jpg Science Programs The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Applied Energy Programs» Civilian Nuclear Programs» Laboratory Directed Research & Development» Office of Science»

  6. DOE Science Showcase - DOE's Smart Grid Research | OSTI, US Dept of Energy,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Scientific and Technical Information DOE's Smart Grid Research Image credit: DOE Office of Electricity Delivery & Energy Reliability A modernized electrical smart grid is needed to handle the exploding requirements of digital and computerized equipment and technology dependent on it as well as one that can automate and manage the increasing complexity and needs of electricity in the 21st Century. The Department of Energy (DOE) is working to increase the reliability, efficiency,

  7. DOE Science Showcase - Light-emitting Diode (LED) Lighting Research | OSTI,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    US Dept of Energy, Office of Scientific and Technical Information Light-emitting Diode (LED) Lighting Research Light-emitting diode (LED) lighting is a type of solid-state lighting that uses a semiconductor to convert electricity to light. LED lighting products are beginning to appear in a wide variety of home, business, and industrial products such as holiday lighting, replacement bulbs for incandescent lamps, street lighting, outdoor area lighting and indoor ambient lighting. Over the past

  8. Introduction to the Summit Session, "Leading Perspectives in Energy Research", from the Director of the DOE Office of Science, Bill Brinkman (2011 EFRC Summit)

    SciTech Connect (OSTI)

    Brinkman, Bill

    2011-05-25

    In this video Bill Brinkman, Director of DOE's Office of Science, introduces the session, "Leading Perspectives in Energy Research," at the 2011 EFRC Summit and Forum. During the introduction of the senior representatives from both the public and private sector, Dr. Brinkman explained the motivation for creating the Energy Frontiers Research Centers program. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several grand challenges and use-inspired basic research needs recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  9. Introduction to the Summit Session, "Leading Perspectives in Energy Research", from the Director of the DOE Office of Science, Bill Brinkman (2011 EFRC Summit)

    ScienceCinema (OSTI)

    Brinkman, Bill (Director, DOE Office of Science)

    2012-03-14

    In this video Bill Brinkman, Director of DOE's Office of Science, introduces the session, "Leading Perspectives in Energy Research," at the 2011 EFRC Summit and Forum. During the introduction of the senior representatives from both the public and private sector, Dr. Brinkman explained the motivation for creating the Energy Frontiers Research Centers program. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  10. Photon Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Science Along with its primary missions-global security, energy security, basic science, and national competitiveness-the NIF & Photon Science Directorate also pursues research and development projects to innovate and develop cutting-edge technologies in support of those missions. This effort strategically invests in new technologies and development of large-scale photon systems for various federal agencies and industry sponsors. NIF&PS researchers are developing world-class

  11. research

    National Nuclear Security Administration (NNSA)

    through the Predictive Capability Framework (PCF). The PCF is a long-term integrated roadmap to guide the science, technology and engineering activities and Directed Stockpile...

  12. Harnessing Light: Capitalizing on Optical Science Trends and Challenges for Future Research. Final Technical Report

    SciTech Connect (OSTI)

    Svedberg, Erik

    2014-02-06

    The committee has during the earlier period finalized their work on the report, Optics and Photonics: Essential Technologies for Our Nation (2013) . The report did undergo review and initial editorial processing. The NRC released a pre-publication report on August 13, 2012. A final report is now available. The study director has been able to practice his skills in running a national academies committee. From a research perspective the grant has generated a report with recommendations to the government. The work itself is the meetings where the committee convened to hear presenters and to discuss the status of optics and photonics as well as writing the report.

  13. The Center for Material Science of Nuclear Fuel (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Allen, Todd (Director, Center for Material Science of Nuclear Fuel); CMSNF Staff

    2011-11-02

    'The Center for Material Science of Nuclear Fuel (CMSNF)' was submitted by the CMSNF to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CMSNF, an EFRC directed by Todd Allen at the Idaho National Laboratory is a partnership of scientists from six institutions: INL (lead), Colorado School of Mines, University of Florida, Florida State University, Oak Ridge National Laboratory, and the University of Wisconsin at Madison. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Materials Science of Nuclear Fuels is 'to achieve a first-principles based understanding of the effect of irradiation-induced defects and microstructures on thermal transport in oxide nuclear fuels.' Research topics are: phonons, thermal conductivity, nuclear, extreme environment, radiation effects, defects, and matter by design.

  14. [Climate implications of terrestrial paleoclimate]. Quaternary Sciences Center, Desert Research Institute annual report, fiscal year 1994/1995

    SciTech Connect (OSTI)

    Wigand, P.E.

    1995-12-31

    The objective of this study is to collect terrestrial climate indicators for paleoclimate synthesis. The paleobiotic and geomorphic records are being examined for the local and regional impact of past climates to assess Yucca Mountain`s suitability as a high-level nuclear waste repository. In particular these data are being used to provide estimates of the timing, duration and extremes of past periods of moister climate for use in hydrological models of local and regional recharge that are being formulated by USGS and other hydrologists for the Yucca Mountain area. The project includes botanical, faunal, and geomorphic components that will be integrated to accomplish this goal. To this end personnel at the Quaternary Sciences Center of the Desert Research Institute in Reno, Nevada are conducting the following activities: Analyses of packrat middens; Analysis of pollen samples; and Determination of vegetation climate relationships.

  15. Researchers Demonstrate Microstructure and Charge Yield in Semiconducting Polymers (Fact Sheet), NREL Highlights, Science

    SciTech Connect (OSTI)

    Not Available

    2012-02-01

    Microstructure determines the yield of free charge in neat semiconducting polymers. Understanding the fundamental photophysics of poly(3-hyxylthiophene) films, and that of conjugated polymers in general, is essential if we are to realize their full potential as low-cost active layers for coal-competitive solar power generation. Yet, the value of one of the most basic photophysical parameters of these materials - the yield of free charges upon photoexcitation of neat films - has remained controversial because of a wide variation between previous measurements. Researchers at the National Renewable Energy Laboratory (NREL) have resolved this controversy by showing that the yield of free charges depends sensitively on the solid-state microstructure of the film. The microstructure was varied systematically through control of the polymers molecular weight and processing conditions, while the charge carrier yield was measured using time-resolved microwave conductivity - a unique technique to which only a few groups in the world have access. The researchers found that the yield of long-lived free charges depends on the co-existence of amorphous and crystalline domains in the polymer, and this behavior was attributed to charge separation at the interface between these two domains of order.

  16. Programs for attracting under-represented minority students to graduate school and research careers in computational science. Final report for period October 1, 1995 - September 30, 1997

    SciTech Connect (OSTI)

    Turner, James C. Jr.; Mason, Thomas; Guerrieri, Bruno

    1997-10-01

    Programs have been established at Florida A & M University to attract minority students to research careers in mathematics and computational science. The primary goal of the program was to increase the number of such students studying computational science via an interactive multimedia learning environment One mechanism used for meeting this goal was the development of educational modules. This academic year program established within the mathematics department at Florida A&M University, introduced students to computational science projects using high-performance computers. Additional activities were conducted during the summer, these included workshops, meetings, and lectures. Through the exposure provided by this program to scientific ideas and research in computational science, it is likely that their successful applications of tools from this interdisciplinary field will be high.

  17. Nanoscale Studies of Pyroelectric and Thermoelectric Phenomena

    SciTech Connect (OSTI)

    Gruverman, Alexei; Ducharme, Stephen

    2014-07-31

    This research project is focused on (1) development of novel scanning probe microscopy techniques for investigation of the thermally and electrically induced changes in the physical properties of organic polymer ferroelectrics; (2) fabrication of ferroelectric nanostructures and investigation of their functional behavior; (3) fabrication and testing of the organic photovoltaic devices with enhanced energy conversion efficiency. Research activities throughout this project resulted in novel effects and exciting physics reported in 10 papers published in high-profile journals, including Nature Materials, Nano Letters, Advanced Materials, Energy and Environmental Science and Applied Physics Letters. These findings have been presented at a number of domestic and international conferences such as MRS Spring and Fall meetings, International Symposium on Integrated Functionalities, International Symposium on Applications of Ferroelectrics (in total 9 presentations). Below we summarize the most important findings of this project.

  18. APS Science 2007.

    SciTech Connect (OSTI)

    Not Available

    2008-05-30

    This report provides research highlights from the Advanced Photon Source (APS). Although these highlights represent less than 10% of the published work from the APS in 2007, they give a flavor of the diversity and impact of user research at the facility. In the strategic planning the aim is to foster the growth of existing user communities and foresee new areas of research. This coming year finds the APS engaged in putting together, along with the users, a blueprint for the next five years, and making the case for a set of prioritized investments in beamlines, the accelerator, and infrastructure, each of which will be transformational in terms of scientific impact. As this is written plans are being formulated for an important user workshop on October 20-21, 2008, to prioritize strategic plans. The fruit from past investments can be seen in this report. Examples include the creation of a dedicated beamline for x-ray photon correlation spectroscopy at Sector 8, the evolution of dedicated high-energy x-ray scattering beamlines at sectors 1 and 11, a dedicated imaging beamline at Sector 32, and new beamlines for inelastic scattering and powder diffraction. A single-pulse facility has been built in collaboration with Sector 14 (BioCARS) and Phil Anfinrud at the National Institutes of Health, which will offer exceptionally high flux for single-pulse diffraction. The nanoprobe at Sector 26, built and operated jointly by the Argonne Center for Nanoscale Materials and the X-ray Operations and Research (XOR) section of the APS X-ray Science Division, has come on line to define the state of the art in nanoscience.

  19. Science and Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation /science-innovation/_assets/images/icon-science.jpg Science and Innovation Our strong interdisciplinary teaming and unique research facilities allow us to develop solutions to complex problems, and to support partners and collaborators, all with the goal of strengthening national security and making a safer world. Science & Engineering Capabilities» Science Programs» Science Facilities» Features» Capabilities Strategy: Science Pillars» Top Ten Innovations of 2013 Science and

  20. Programmed assembly of nanoscale structures using peptoids.

    SciTech Connect (OSTI)

    Ren, Jianhua; Russell, Scott; Morishetti, Kiran; Robinson, David B.; Zuckermann, Ronald N.; Buffleben, George M.; Hjelm, Rex P.; Kent, Michael Stuart

    2011-02-01

    Sequence-specific polymers are the basis of the most promising approaches to bottom-up programmed assembly of nanoscale materials. Examples include artificial peptides and nucleic acids. Another class is oligo(N-functional glycine)s, also known as peptoids, which permit greater sidegroup diversity and conformational control, and can be easier to synthesize and purify. We have developed a set of peptoids that can be used to make inorganic nanoparticles more compatible with biological sequence-specific polymers so that they can be incorporated into nucleic acid or other biologically based nanostructures. Peptoids offer degrees of modularity, versatility, and predictability that equal or exceed other sequence-specific polymers, allowing for rational design of oligomers for a specific purpose. This degree of control will be essential to the development of arbitrarily designed nanoscale structures.

  1. Annihilating nanoscale defects | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annihilating nanoscale defects Author: Justin H.S. Breaux January 13, 2016 Facebook Twitter LinkedIn Google E-mail Printer-friendly version Target dates are critical when the semiconductor industry adds small, enhanced features to our favorite devices by integrating advanced materials onto the surfaces of computer chips. Missing a target means postponing a device's release, which could cost a company millions of dollars or, worse, the loss of competitiveness and an entire industry. But meeting

  2. Nanoscale molecularly imprinted polymers and method thereof

    DOE Patents [OSTI]

    Hart, Bradley R. (Brentwood, CA); Talley, Chad E. (Brentwood, CA)

    2008-06-10

    Nanoscale molecularly imprinted polymers (MIP) having polymer features wherein the size, shape and position are predetermined can be fabricated using an xy piezo stage mounted on an inverted microscope and a laser. Using an AMF controller, a solution containing polymer precursors and a photo initiator are positioned on the xy piezo and hit with a laser beam. The thickness of the polymeric features can be varied from a few nanometers to over a micron.

  3. APS Science 2006.

    SciTech Connect (OSTI)

    Gibson, J. M.; Fenner, R. B.; Long, G.; Borland, M.; Decker, G.

    2007-05-24

    In my five years as the Director of the Advanced Photon Source (APS), I have been fortunate to see major growth in the scientific impact from the APS. This year I am particularly enthusiastic about prospects for our longer-term future. Every scientific instrument must remain at the cutting edge to flourish. Our plans for the next generation of APS--an APS upgrade--got seriously in gear this year with strong encouragement from our users and sponsors. The most promising avenue that has emerged is the energy-recovery linac (ERL) (see article on page xx), for which we are beginning serious R&D. The ERL{at}APS would offer revolutionary performance, especially for x-ray imaging and ultrafast science, while not seriously disrupting the existing user base. I am very proud of our accelerator physics and engineering staff, who not only keep the current APS at the forefront, but were able to greatly impress our international Machine Advisory Committee with the quality of their work on the possible upgrade option (see page xx). As we prepare for long-term major upgrades, our plans to develop and optimize all the sectors at APS in the near future are advancing. Several new beamlines saw first light this year, including a dedicated powder diffraction beamline (11-BM), two instruments for inelastic x-ray scattering at sector 30, and the Center for Nanoscale Materials (CNM) Nanoprobe beamline at sector 26. Our partnership in the first x-ray free-electron laser (LCLS) to be built at Stanford contributes to revolutionary growth in ultrafast science (see page xx), and we are developing a pulse chirping scheme to get ps pulses at sector 7 of the APS within a year or so. In this report, you will find selected highlights of scientific research at the APS from calendar year 2006. The highlighted work covers diverse disciplines, from fundamental to applied science. In the article on page xx you can see the direct impact of APS research on technology. Several new products have emerged from work at the APS, to complement the tremendous output of work in basic science, which often has payoff in technology but over decades rather than years. Highlights in this report also reflect the relevance of APS work to Department of Energy missions, for example a route to more efficient fuel cells (page xx mr-88-073113) addresses the energy challenge, and natural approaches to cleaning up the environment.

  4. Mapping photovoltaic performance with nanoscale resolution

    SciTech Connect (OSTI)

    Kutes, Yasemin; Aguirre, Brandon A.; Bosse, James L.; Cruz-Campa, Jose L.; Zubia, David; Huey, Bryan D.

    2015-10-16

    Photo-conductive AFM spectroscopy (pcAFMs) is proposed as a high-resolution approach for investigating nanostructured photovoltaics, uniquely providing nanoscale maps of photovoltaic (PV) performance parameters such as the short circuit current, open circuit voltage, maximum power, or fill factor. The method is demonstrated with a stack of 21 images acquired during in situ illumination of micropatterned polycrystalline CdTe/CdS, providing more than 42,000 I/V curves spatially separated by ~5 nm. For these CdTe/CdS microcells, the calculated photoconduction ranges from 0 to 700 picoSiemens (pS) upon illumination with ~1.6 suns, depending on location and biasing conditions. Mean short circuit currents of 2 pA, maximum powers of 0.5 pW, and fill factors of 30% are determined. The mean voltage at which the detected photocurrent is zero is determined to be 0.7 V. Significantly, enhancements and reductions in these more commonly macroscopic PV performance metrics are observed to correlate with certain grains and grain boundaries, and are confirmed to be independent of topography. Furthermore, these results demonstrate the benefits of nanoscale resolved PV functional measurements, reiterate the importance of microstructural control down to the nanoscale for 'PV devices, and provide a widely applicable new approach for directly investigating PV materials.

  5. Recommendations for Tritium Science and Technology Research and Development in Support of the Tritium Readiness Campaign, TTP-7-084

    SciTech Connect (OSTI)

    Senor, David J.

    2013-10-30

    Between 2006 and 2012 the Tritium Readiness Campaign Development and Testing Program produced significant advances in the understanding of in-reactor TPBAR performance. Incorporating these data into existing TPBAR performance models has improved permeation predictions, and the discrepancy between predicted and observed tritium permeation in the WBN1 coolant has been decreased by about 30%. However, important differences between predicted and observed permeation still remain, and there are significant knowledge gaps that hinder the ability to reliably predict other aspects of TPBAR performance such as tritium distribution, component integrity, and performance margins. Based on recommendations from recent Tritium Readiness Campaign workshops and reviews coupled with technical and programmatic priorities, high-priority activities were identified to address knowledge gaps in the near- (3-5 year), middle- (5-10 year), and long-term (10+ year) time horizons. It is important to note that there are many aspects to a well-integrated research and development program. The intent is not to focus exclusively on one aspect or another, but to approach the program in a holistic fashion. Thus, in addition to small-scale tritium science studies, ex-reactor tritium technology experiments such as TMED, and large-scale in-reactor tritium technology experiments such as TMIST, a well-rounded research and development program must also include continued analysis of WBN1 performance data and post-irradiation examination of TPBARs and lead use assemblies to evaluate model improvements and compare separate-effects and integral component behavior.

  6. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    SciTech Connect (OSTI)

    Park, J.F.

    1984-02-01

    This report summarizes progress on Office of Health and Environmental Research (OHER) biomedical and health effects research conducted at PNL in FY 1983 to develop the information required for a comprehensive understanding of the interaction of energy-related pollutants with living organisms. The first section is devoted to an evaluation of possible health effects among nuclear workers. The next three sections, which contain reports of health effects research in biological systems, are grouped according to the major endpoint being studied: carcinogenesis, mutagenesis, and systems damage. Since some projects have multiple objectives, a section may contain data concerning other endpoints as well. The section on carcinogenesis presents results from laboratory animal dose-effect relationship studies from both nuclear and synfuels materials. These data, along with metabolism and modeling studies, provide a basis for predicting human risks in the absence of relevant human exposure. This year we include a report on our 22nd Hanford Life Sciences Symposium, which dealt with this problem of extrapolating the results of animal studies to man. Of particular importance in carcinogenesis has been the demonstration that the carcinogenic potencies of complex organic synfuel mixtures may be much lower (or, occasionally, higher) than the sum of the potencies of the individual components. The mutagenesis section is primarily concerned with the results of microbial mutagenesis studies with synfuel materials. These studies provide valuable information on the carcinogenic potential of these complex organic mixtures. With results from studies reported in the carcinogenesis section, they are also being used to establish an adequate data base for determining the correlation between mutagenic and carcinogenic processes. Separate abstracts have been prepared for each program for inclusion in the Energy Data Base.

  7. Nanoscale Synthesis and Characterization Laboratory Annual Report 2005

    SciTech Connect (OSTI)

    Hamza, A V; Lesuer, D R

    2006-01-03

    The Nanoscale Synthesis and Characterization Laboratory's (NSCL) primary mission is to create and advance interdisciplinary research and development opportunities in nanoscience and technology. The initial emphasis of the NSCL has been on development of scientific solutions in support of target fabrication for the NIF laser and other stockpile stewardship experimental platforms. Particular emphasis has been placed on the design and development of innovative new materials and structures for use in these targets. Projects range from the development of new high strength nanocrystalline alloys to graded density materials to high Z nanoporous structures. The NSCL also has a mission to recruit and train personnel for Lab programs such as the National Ignition Facility (NIF), Defense and Nuclear Technologies (DNT), and Nonproliferation, Arms control and International security (NAI). The NSCL continues to attract talented scientists to the Laboratory.

  8. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Wednesday, 21 December 2005 00:00 Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features

  9. Fermilab | Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feature photo feature photo feature photo feature photo feature photo Science Navbar Toggle About Quick Info Science History Organization Photo and video gallery Diversity Education Safety Sustainability and environment Contact Newsroom Spotlight Press releases Fact sheets and brochures symmetry Interactions.org Photo and video archive Resources for ... Employees Researchers, Postdocs and Graduate Students Job Seekers Neighbors Industry K-12 Students, Teachers and Undergraduates Media Science

  10. Sandia National Laboratories: Research: Research Foundations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Foundations Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Research Foundations Leadership in innovation Integrating unique resources and technical excellence to benefit our nation. Certain research areas are considered key to the success of Sandia's national security programs. These areas - known as research foundations - underpin

  11. Nanoscale Morphological and Chemical Changes of High Voltage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Morphological and Chemical Changes of High Voltage Lithium-Manganese Rich NMC Composite Cathodes with Cycling Friday, August 29, 2014 Renewable energy is critical for the...

  12. Nanoscale engineering boosts performance of quantum dot light...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum dot light emitting diodes Nanoscale engineering boosts performance of quantum dot light emitting diodes Quantum dots are nano-sized semiconductor particles whose emission...

  13. Is sustainability science really a science?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is sustainability science really a science? Is sustainability science really a science? The team's work shows that although sustainability science has been growing explosively since the late 1980s, only in the last decade has the field matured into a cohesive area of science. November 22, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience,

  14. Research Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Gallery Research Gallery Exhibits in this gallery capture Laboratory's leading-edge research in many areas of science and technology to help solve national problems related to energy, the environment, infrastructure, and health. August 18, 2014 Museum floor plan showing the Research Gallery Basic research conducted here enhances our national defense and global security missions. Science serving society The Laboratory conducts leading-edge research in many areas of science and technology

  15. Genomic Science | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Genomic Science Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Genomic Science DOE Bioenergy Research Centers Bioimaging Technology DOE Joint Genome Institute Structural Biology Radiochemistry & Imaging Instrumentation Radiobiology: Low Dose Radiation Research DOE Human Subjects Protection Program Climate and Environmental Sciences Division (CESD) Research Abstracts Searchable Archive of BER Highlights External link Facilities

  16. Basic Energy Sciences Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences Reports Basic Energy Sciences Reports The list below of Basic Energy Sciences workshop reports addresses the status of some important research areas that can help identify research directions for a decades-to-century energy strategy. Basic Energy Sciences (BES) Workshop Reports The Energy Challenges Report: New Science for a Secure and Sustainable Energy Future This Basic Energy Sciences Advisory Committee (BESAC) report summarizes a 2008 study by the Subcommittee on Facing

  17. Sandia National Laboratories: Research: Research Foundations: Geoscience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geoscience Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Geoscience Geoscience photo The Geoscience Research Foundation performs recognized world-class earth and atmospheric sciences research and development to support Sandia's national security missions. Why our work matters Knowledge of the Earth's subsurface properties, structure and

  18. Pacific Northwest Laboratory annual report for 1981 to the DOE Office of Energy Research. Part 4. Physical sciences. [Lead abstract

    SciTech Connect (OSTI)

    Nielsen, J.M.

    1982-02-01

    Separate abstracts were prepared for the 13 reports in this 1981 annual report from Battelle Pacific Northwest Laboratory which deals with the physical sciences. (KRM)

  19. BER Science Network Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BER Science Network Requirements Report of the Biological and Environmental Research Network Requirements Workshop Conducted July 26 and 27, 2007 BER Science Network Requirements Workshop Biological and Environmental Research Program Office, DOE Office of Science Energy Sciences Network Bethesda, MD - July 26 and 27, 2007 ESnet is funded by the US Dept. of Energy, Office of Science, Advanced Scientific Computing Research (ASCR) program. Dan Hitchcock is the ESnet Program Manager. ESnet is

  20. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOE Patents [OSTI]

    Bond, Tiziana C; Miles, Robin; Davidson, James; Liu, Gang Logan

    2015-11-03

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  1. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOE Patents [OSTI]

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2015-07-14

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  2. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOE Patents [OSTI]

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  3. Fundamental Science Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fundamental Science Applications Fundamental Science Applications Supporing research to understand, predict and ultimately control matter and energy at the electronic, atomic, and molecular levels. Contact thumbnail of Business Development Executive Don Hickmott Business Development Executive Richard P. Feynman Center for Innovation (505) 667-8753 Email Fundamental Science Applications The DOE Basic Energy Science (BES) program supports research to understand, predict and ultimately control

  4. 300_Area_Nanoscale_Research_and_Development Proj.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  5. Science Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights Science Highlights Science highlights feature research conducted by staff and users at the ALS. If a Power Point summary slide or a PDF handout of the highlight is available, you will find it linked beneath the highlight listing and on the highlight's page. You may also print a version of a highlight by clicking the print icon associated with each highlight. Manganese Reduction-Oxidation Drives Plant Debris Decomposition Print Monday, 22 February 2016 00:00 ALS research has shown that

  6. Method to determine thermal profiles of nanoscale circuitry

    DOE Patents [OSTI]

    Zettl, Alexander K; Begtrup, Gavi E

    2013-04-30

    A platform that can measure the thermal profiles of devices with nanoscale resolution has been developed. The system measures the local temperature by using an array of nanoscale thermometers. This process can be observed in real time using a high resolution imagining technique such as electron microscopy. The platform can operate at extremely high temperatures.

  7. ORISE: Research Experiences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Experiences Research Experiences The Oak Ridge Institute for Science and Education (ORISE) administers more than 150 science education programs on behalf of the U.S....

  8. Pacific Northwest Laboratory annual report for 1989 to the DOE (Department of Energy) Office of Energy Research - Part 2: Environmental Sciences

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    This report summarizes progress in environmental sciences research conducted by Pacific Northwest Laboratory (PBL) for the Office of Health and Environmental Research in FY 1989. Research is directed toward developing a fundamental understanding of processes controlling the long-term fate and biological effects of fugitive chemicals and other stressors resulting from energy development. The report is organized by major research areas. Within this division, individual reports summarize the progress of projects in these areas. Additional sections summarize exploratory research, educational institutional interactions, technology transfer, and publications. The research, focused principally on subsurface contaminant transport and detection and management of human-induced changes in biological systems, forms the basis for defining and quantifying processes that affect humans and the environment at the local, regional, and global levels.

  9. Science Highlights | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Sciences Laboratory (EMSL) Atmospheric Radiation Measurement Climate Research Facility ... Read More Data collected from the Atmospheric Radiation Measurement Climate Research ...

  10. Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Research Isotopes produced at Los Alamos National Laboratory are saving lives, advancing cutting-edge research and keeping the U.S. safe. Research thorium test foil A thorium test foil target for proof-of-concept actinium-225 production In addition to our routine isotope products, the LANL Isotope Program is focused on developing the next suite of isotopes and services to meet the Nation's emerging needs. The LANL Isotope Program's R&D strategy is focused on four main areas (see

  11. Joint federal research and development process to meet state and local needs. Part 1. Science and technology and political decision making

    SciTech Connect (OSTI)

    Wise, H F; Smith, L K; Einsweiler, R C; Jensen, D E

    1980-10-01

    This part of the handbook addresses the basic how to do it - how states and local governments can identify complex and cross-cutting issues and develop and manage scientific and technical resources in seeking policy solutions to such issues. The following subjects are discussed: background statement of the issue; the research/decision-making process; defining problems and identifying research components; research and decision-making strategies; how to identify existing knowledge or ongoing research in the area of policy concern; and managing multi-disciplinary research. The fourteen agencies involved in this effort include: US Departments of Energy, Agriculture, Transportation, Housing and Urban Development, Environmental Protection Agency, and National Science Foundation. (PSB)

  12. Control of friction at the nanoscale

    DOE Patents [OSTI]

    Barhen, Jacob; Braiman, Yehuda Y.; Protopopescu, Vladimir

    2010-04-06

    Methods and apparatus are described for control of friction at the nanoscale. A method of controlling frictional dynamics of a plurality of particles using non-Lipschitzian control includes determining an attribute of the plurality of particles; calculating an attribute deviation by subtracting the attribute of the plurality of particles from a target attribute; calculating a non-Lipschitzian feedback control term by raising the attribute deviation to a fractionary power .xi.=(2m+1)/(2n+1) where n=1, 2, 3 . . . and m=0, 1, 2, 3 . . . , with m strictly less than n and then multiplying by a control amplitude; and imposing the non-Lipschitzian feedback control term globally on each of the plurality of particles; imposing causes a subsequent magnitude of the attribute deviation to be reduced.

  13. Apparatus for producing nanoscale ceramic powders

    DOE Patents [OSTI]

    Helble, Joseph J. (Andover, MA); Moniz, Gary A. (Windham, NH); Morse, Theodore F. (Little Compton, RI)

    1995-09-05

    An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.

  14. Apparatus for producing nanoscale ceramic powders

    DOE Patents [OSTI]

    Helble, Joseph J. (Andover, MA); Moniz, Gary A. (Windham, NH); Morse, Theodore F. (Little Compton, RI)

    1997-02-04

    An apparatus provides high temperature and short residence time conditions for the production of nanoscale ceramic powders. The apparatus includes a confinement structure having a multiple inclined surfaces for confining flame located between the surfaces so as to define a flame zone. A burner system employs one or more burners to provide flame to the flame zone. Each burner is located in the flame zone in close proximity to at least one of the inclined surfaces. A delivery system disposed adjacent the flame zone delivers an aerosol, comprising an organic or carbonaceous carrier material and a ceramic precursor, to the flame zone to expose the aerosol to a temperature sufficient to induce combustion of the carrier material and vaporization and nucleation, or diffusion and oxidation, of the ceramic precursor to form pure, crystalline, narrow size distribution, nanophase ceramic particles.

  15. BES Science Network Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Network Requirements Report of the Basic Energy Sciences Network Requirements Workshop Conducted June 4-5, 2007 BES Science Network Requirements Workshop Basic Energy Sciences Program Office, DOE Office of Science Energy Sciences Network Washington, DC - June 4 and 5, 2007 ESnet is funded by the US Dept. of Energy, Office of Science, Advanced Scientific Computing Research (ASCR) program. Dan Hitchcock is the ESnet Program Manager. ESnet is operated by Lawrence Berkeley National Laboratory, which

  16. Earth, Space Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth, Space Sciences /science-innovation/_assets/images/icon-science.jpg Earth, Space Sciences National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Climate, Ocean and Sea Ice Modeling (COSIM)» Earth and Environmental Sciences Division» Intelligence and Space Research» Earth Read caption + A team of scientists is working to understand

  17. Nanoscale characterization of the biomechanical properties of...

    Office of Scientific and Technical Information (OSTI)

    We propose that PFQNM has significant potential in ocular biomechanics and biophysics ... LIFE SCIENCES; ATOMIC FORCE MICROSCOPY; BIOPHYSICS; COLLAGEN; EYES; NANOSTRUCTURES Word ...

  18. Neutron and Nuclear Science News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Recent news and events related to neutron and nuclear science at LANSCE. Neutron and Nuclear Science News Nuclear and Materials Science Research at LANSCE Nuclear science observations and opportunities at the Los Alamos Neutron Science Center Links Neutron and Nuclear Science News Media Links Profiles Events at LANSCE LAPIS (LANSCE Proposal Intake System

  19. Sandia National Laboratories: Research: Research Foundations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Effects and High Energy Density Science Rings of Saturn, Sandia's workhorse pulsed-power machine. The Radiation Effects and High Energy Density Science Research...

  20. Research Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Highlights Form Submit a New Research Highlight Sort Highlights Submitter Title Research Area Working Group Submission Date DOE Progress Reports Notable Research Findings for 2001-2006 Office of Science Abstracts Database Research Highlights Summaries Research Highlights Members of ARM's science team are major contributors to radiation and cloud research. ARM investigators publish about 150 refereed journal articles per year, and ARM data are used in many studies published by other scientific

  1. Research Highlights | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Highlights All Highlights Division of Chemical and Biological Sciences Highlights Division of Materials Science and Engineering Highlights...

  2. Synthesizing High-Quality Calcium Boride at Nanoscale - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boride at Nanoscale Argonne National Laboratory Contact ANL About This Technology CaB6 particles coated for 20 cycles at 1600 C. CaB6 particles...

  3. Science Undergraduate Laboratory Internships (SULI)

    Broader source: Energy.gov [DOE]

    The Science Undergraduate Laboratory Internship (SULI) program encourages undergraduate students to pursue science, technology, engineering, and mathematics (STEM) careers by providing research...

  4. APS Science | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science APS Science features articles on Advanced Photon Source research and engineering highlights that are written for the interested public as well as the synchrotron x-ray,...

  5. ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Microscale Features | Department of Energy Manufacturing of Surfaces with Nanoscale and Microscale Features ITP Nanomanufacturing: Manufacturing of Surfaces with Nanoscale and Microscale Features PDF icon superhydrophobic_surfaces.pdf More Documents & Publications ITP Nanomanufacturing: Nanomanufacturing Portfolio: Manufacturing Processes and Applications to Accelerate Commercial Use of Nanomaterials, January 2011 Low-Cost Self-Cleaning Coatings for CSP Collectors Advanced Heat/Mass

  6. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the

  7. Nanoscale characterization of the biomechanical properties of collagen

    Office of Scientific and Technical Information (OSTI)

    fibrils in the sclera (Journal Article) | SciTech Connect Nanoscale characterization of the biomechanical properties of collagen fibrils in the sclera Citation Details In-Document Search Title: Nanoscale characterization of the biomechanical properties of collagen fibrils in the sclera We apply the PeakForce Quantitative Nanomechanical Property Mapping (PFQNM) atomic force microscopy mode for the investigation of regional variations in the nanomechanical properties of porcine sclera. We

  8. Emerging Nanoscale Memory Technologies: The Solution to Extreme Scale

    Office of Scientific and Technical Information (OSTI)

    Problems. (Conference) | SciTech Connect Emerging Nanoscale Memory Technologies: The Solution to Extreme Scale Problems. Citation Details In-Document Search Title: Emerging Nanoscale Memory Technologies: The Solution to Extreme Scale Problems. Abstract not provided. Authors: Marinella, Matthew Publication Date: 2014-03-01 OSTI Identifier: 1140869 Report Number(s): SAND2014-2102C 505337 DOE Contract Number: DE-AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: Nano and

  9. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the

  10. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the

  11. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the

  12. Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacancy-Induced Nanoscale Wire Structure in Gallium Selenide Layers Print Low-dimensional materials have gained much attention not only because of the nonstop march toward miniaturization in the electronics industry but also for the exotic properties that are inherent in their small size. One approach for creating low-dimensional structures is to exploit the nanoscale or atomic-scale features that exist naturally in the three-dimensional (bulk) form of materials. By this means, a group from the

  13. Nanoscale friction properties of graphene and graphene oxide | Argonne

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratory Nanoscale friction properties of graphene and graphene oxide Title Nanoscale friction properties of graphene and graphene oxide Publication Type Journal Article Year of Publication 2015 Authors Berman, D, Erdemir, A, Zinovev, AV, Sumant, AV Journal Diamond and Related materials Volume 54 Start Page 91 Pagination 7 Date Published 04012015 Keywords adhesion, AFM lateral force, friction, oxidation Abstract Achieving superlow friction and wear at the micro/nano-scales through

  14. Spin Coherence at the Nanoscale: Polymer Surfaces and Interfaces (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Spin Coherence at the Nanoscale: Polymer Surfaces and Interfaces Citation Details In-Document Search Title: Spin Coherence at the Nanoscale: Polymer Surfaces and Interfaces Breakthrough results were achieved during the reporting period in the areas of organic spintronics. (A) For the first time the giant magnetic resistance (GMR) was observed in spin valve with an organic spacer. Thus we demonstrated the ability of organic semiconductors to transport spin in GMR

  15. Thermal Transport at the Nanoscale. (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Thermal Transport at the Nanoscale. Citation Details In-Document Search Title: Thermal Transport at the Nanoscale. Abstract not provided. Authors: Harris, Charles Thomas Publication Date: 2012-09-01 OSTI Identifier: 1116414 Report Number(s): SAND2012-8231C 480452 DOE Contract Number: AC04-94AL85000 Resource Type: Conference Resource Relation: Conference: CINT User Workshop held September 19, 2012 in Albuquerque, NM.; Related Information: Proposed for presentation at the CINT User Workshop held

  16. Research Library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL Research Library: delivering essential knowledge services for national security sciences since 1947 About the Research Library Mission We deliver agile, responsive knowledge services, connecting people with information, technology and resources. Vision Essential knowledge services for national security sciences. The Research Library provides extensive collections of books, journals, databases, patents and technical reports and offers literature searching, training and outreach services. The

  17. Funding Opportunities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Opportunities Basic Energy Sciences (BES) BES Home About Research Facilities Science ... link Early Career Research Program Basic Energy Sciences Advisory Committee (BESAC) ...

  18. PNNL: Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research at PNNL Research is our business With an unwavering focus on our missions, scientists and engineers at PNNL deliver science and technology. We conduct basic research that advances the frontiers of science. We translate discoveries into tools and technologies in science, energy, the environment and national security. For more than four decades, our experts have teamed with government, industry and academia to tackle some of the toughest problems facing our nation. The result: We're

  19. Non-Equilibrium Nanoscale Self-Organization

    SciTech Connect (OSTI)

    Aziz, Michael J

    2006-03-09

    Self-organized one- and two-dimensional arrays of nanoscale surface features ("ripples" and "dots") sometimes form spontaneously on initially flat surfaces eroded by a directed ion beam in a process called "sputter patterning". Experiments on this sputter patterning process with focused and unfocused ion beams, combined with theoretical advances, have been responsible for a number of scientific advances. Particularly noteworthy are (i) the discovery of propagative, rather than dissipative, behavior under some ion erosion conditions, permitting a pattern to be fabricated at a large length scale and propagated over large distances while maintaining, or even sharpening, the sharpest features; (ii) the first demonstration of guided self-organization of sputter patterns, along with the observation that defect density is minimized when the spacing between boundaries is near an integer times the natural spatial period; and (iii) the discovery of metastability of smooth surfaces, which contradicts the nearly universally accepted linear stability theory that predicts that any surface is linearly unstable to sinusoidal perturbations of some wave vector.

  20. 2013 POLAR MARINE SCIENCE GORDON RESEARCH CONFERENCE AND GORDON RESEARCH SEMINAR (MARCH 10-15, 2013 - FOUR POINTS SHERATON, VENTURA CA)

    SciTech Connect (OSTI)

    Bowman, Jeff S.

    2012-12-15

    As dynamic and thermodynamic processes associated with warming trends are impacting sea ice cover, oceanographic processes and atmosphere-ocean interactions across polar regions at unprecedented rate, observations and models show fundamentally different regional ecosystem responses. The non-linear and multi-directional biogeochemical responses of polar systems to atmospheric and oceanographic forcings emphasize the need to consider and reconcile observations and models at global and regional scales. The 9th GRC on Polar Marine Science will discuss recent developments and challenges emerging from contemporary and paleo-climate observations and models, encompassing regional and global scales. The GRC addresses the structure, functionalities and controls of polar marine systems through topics such as sea ice biogeochemistry, atmosphere-ocean forcings and interactions, food web trophodynamics, carbon and elemental cycling and fluxes, and a spectrum of ecological processes and interactions.

  1. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 2. Environmental sciences

    SciTech Connect (OSTI)

    Wildung, R.E.

    1986-03-01

    This 1985 annual report describes research in environment, health, and safety conducted during fiscal year 1985. Individual abstracts have been prepared for the program areas. (ACR)

  2. Naming of the Office of Science | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Naming of the Office of Science Basic Energy Sciences (BES) BES Home About Organization ... Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy ...

  3. Fusion Energy Sciences (FES) Homepage | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Programs FES Home Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory ...

  4. Basic Energy Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Basic Energy Sciences Basic Energy Sciences Supporing research to understand, predict and ultimately control matter and energy at the electronic, atomic, and molecular levels. Get Expertise Toni Taylor (505) 665-0030 Email Quanxi Jia (505) 667-2716 Email David Morris (505) 665-6487 Email Claudia Mora (505) 665-7832 Email Research fosters fundamental scientific discoveries to meet energy, environmental, and national security challenges The DOE Office of Science's Basic Energy Sciences program

  5. Sandia National Laboratories: Research: Research Foundations: Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Effects and High Energy Density Science Radiation Effects and High Energy Density Science Rings of Saturn, Sandia's workhorse pulsed-power machine. The Radiation Effects and High Energy Density Science Research Foundation seeks to advance science and engineering in the areas of radiation effects sciences, high energy density science, and pulsed-power science and technology to address critical national security issues. Why our work matters We address several issues key to nuclear security and

  6. Pacific Northwest Laboratory annual report for 1988 to the DOE Office of Energy Research: Part 1, Biomedical Sciences

    SciTech Connect (OSTI)

    Park, J.F.

    1989-06-01

    This report summarizes progress on OHER biomedical and health-effects research conducted at PNL in FY 1988. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health-effects risk estimates from existing and/or developing energy-related technologies through an increased understanding of how radiation and chemicals cause health effects. The report is arranged to reflect PNL research relative to OHER programmatic structure. The first section, on human health effects, concerns statistical and epidemiological studies for assessing health risks. The next section, which contains reports of health-effects research in biological systems, includes research with radiation and chemicals.

  7. Carbon in Underland (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    ScienceCinema (OSTI)

    DePaolo, Donald J. (Director, Center for Nanoscale Control of Geologic CO2); NCGC Staff

    2011-11-02

    'Carbon in Underland' was submitted by the Center for Nanoscale Control of Geologic CO2 (NCGC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was selected as one of five winners by a distinguished panel of judges for its 'entertaining animation and engaging explanations of carbon sequestration'. NCGC, an EFRC directed by Donald J. DePaolo at Lawrence Berkeley National Laboratory is a partnership of scientists from seven institutions: LBNL (lead) Massachusetts Institute of Technology, Lawrence Livermore National Laboratory, Oak Ridge National Laboratory, University of California, Davis, Ohio State University, and Washington University in St. Louis. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Nanoscale Control of Geologic CO{sub 2} is 'to use new investigative tools, combined with experiments and computer simulations, to build a fundamental understanding of molecular-to-pore-scale processes in fluid-rock systems, and to demonstrate the ability to control critical aspects of flow, transport, and mineralization in porous rock media as applied to geologic sequestration of CO{sub 2}. Research topics are: bio-inspired, CO{sub 2} (store), greenhouse gas, and interfacial characterization.

  8. Home | ScienceCinema

    Broader source: All U.S. Department of Energy (DOE) Office Webpages

    ScienceCinema Home About ScienceCinema FAQ Site Map Contact Us DOE Home » ScienceCinema Navigation ScienceCinema Home About ScienceCinema FAQ Site Map Contact Us OSTI Home DOE Home ScienceCinema Database Searchable Videos Showcasing DOE Research Search DOE ScienceCinema for Multimedia Find + Fielded Search Audio Search × Fielded Search Title: Description/Abstract: Bibliographic Data: Author/Speaker: Name Name ORCID Media Type: All Audio Video Subject: Identifier Numbers: Media Source: All DOE

  9. Catalysis Science | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Catalysis Science Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs Reports and Activities Science Highlights Principal Investigators' Meetings BES Home Research Areas Catalysis Science Print Text Size: A A A FeedbackShare Page Notice: NOVEMBER 16, 2015 is the Catalysis Science target date for submission of proposals to be considered for funding within fiscal year 2016. Proposals

  10. Pacific Northwest Laboratory Annual Report for 1987 to the DOE Office of Energy Research: Part 4, Physical Sciences

    SciTech Connect (OSTI)

    Toburen, L.H.

    1988-06-01

    This 1987 annual report from Pacific Northwest Laboratory describes research in environment, health, and safety conducted during fiscal year 1987. The report again consists of five parts, each in a separate volume. Part 4 includes those programs funded under the title ''Physical and Technological Research.'' The Field Task Program Studies reports in this document are grouped by budget category and each section is introduced by an abstract that indicates the Field Task Proposal/Agreement reported in that section.

  11. Undergraduate Research at the Center for Energy Efficient Materials (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum

    ScienceCinema (OSTI)

    Bowers, John (Director, Center for Energy Efficient Materials ); CEEM Staff

    2011-11-02

    'Undergraduate Research at the Center for Energy Efficient Materials (CEEM)' was submitted by CEEM to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. CEEM, an EFRC directed by John Bowers at the University of California, Santa Barbara is a partnership of scientists from four institutions: UC, Santa Barbara (lead), UC, Santa Cruz, Los Alamos National Laboratory, and National Renewable Energy Laboratory. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Energy Efficient Materials is 'to discover and develop materials that control the interactions between light, electricity, and heat at the nanoscale for improved solar energy conversion, solid-state lighting, and conversion of heat into electricity.' Research topics are: solar photovoltaic, photonic, solid state lighting, optics, thermoelectric, bio-inspired, electrical energy storage, batteries, battery electrodes, novel materials synthesis, and scalable processing.

  12. Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program

    SciTech Connect (OSTI)

    SA Edgerton; LR Roeder

    2008-09-30

    The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhouse gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.

  13. Sandia National Laboratories: Research: Research Foundations: Computing and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Science Research Foundations Bioscience Computing and Information Science Electromagnetics Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Computing and Information Science Red Storm photo Our approach Vertically integrated, scalable supercomputing Goal Increase capability while reducing the space and power requirements of future computing systems by changing the nature of computing devices,

  14. Research Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LaboratoryNational Security Education Center Menu NSEC Educational Programs Los Alamos Dynamics Summer School Science of Signatures Advanced Studies Institute Judicial Science School SHM Data Sets and Software Research Projects Current Projects Past Projects Publications NSEC » Engineering Institute » Research Projects » Joint Los Alamos National Laboratory/UCSD research projects Past Research Projects Previous collaborations between Los Alamos National Laboratory and the University of

  15. Heart of the Solution - Energy Frontiers (A "Life at the Frontiers of Energy Research" contest entry from the 2011 Energy Frontier Research Centers (EFRCs) Summit and Forum)

    ScienceCinema (OSTI)

    Green, Peter F. (Director, Center for Solar and Thermal Energy Conversion, University of Michigan); CSTEC Staff

    2011-11-02

    'Heart of the Solution - Energy Frontiers' was submitted by the Center for Solar and Thermal Energy Conversion (CSTEC) to the 'Life at the Frontiers of Energy Research' video contest at the 2011 Science for Our Nation's Energy Future: Energy Frontier Research Centers (EFRCs) Summit and Forum. Twenty-six EFRCs created short videos to highlight their mission and their work. This video was both the People's Choice Award winner and selected as one of five winners by a distinguished panel of judges for its 'exemplary explanation of the role of an Energy Frontier Research Center'. The Center for Solar and Thermal Energy Conversion is directed by Peter F. Green at the University of Michigan. The Office of Basic Energy Sciences in the U.S. Department of Energy's Office of Science established the 46 Energy Frontier Research Centers (EFRCs) in 2009. These collaboratively-organized centers conduct fundamental research focused on 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The overall purpose is to accelerate scientific progress toward meeting the nation's critical energy challenges. The mission of the Center for Solar and Thermal Energy Conversion is 'to study complex material structures on the nanoscale to identify key features for their potential use as materials to convert solar energy and heat to electricity.' Research topics are: solar photovoltaic, photonic, optics, solar thermal, thermoelectric, phonons, thermal conductivity, solar electrodes, defects, ultrafast physics, interfacial characterization, matter by design, novel materials synthesis, charge transport, and self-assembly.

  16. Pacific Northwest Laboratory annual report for 1985 to the DOE Office of Energy Research. Part 3. Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1986-02-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales. In 1985, this research has examined the transport and diffusion of atmospheric contaminants in areas of complex terrain, summarized the field studies and analyses of dry deposition and resuspension conducted in past years, and begun participation in a large, multilaboratory program to assess the precipitation scavenging processes important to the transformation and wet deposition of chemicals composing ''acid rain.'' The description of atmospheric research at PNL is organized in terms of the following study areas: Atmospheric Studies in Complex Terrain; Dispersion, Deposition, and Resuspension of Atmospheric Contaminants; and Processing of Emissions by Clouds and Precipitation (PRECP).

  17. Pacific Northwest Laboratory annual report for 1983 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    SciTech Connect (OSTI)

    Drucker, H.

    1983-02-01

    Biomedical and health effects research conducted at PNL in 1982 on the evaluation of risk to man from existing and/or developing energy-related technologies are described. Most of the studies described in this report relate to activities for three major energy technologies: nuclear fuel cycle; fossil fuel cycle (oil, gas, and coal process technologies, mining, and utilization; synfuel development), and fudion (biomagnetic effects). The report is organized under these technologies. In addition, research reports are included on the application of nuclear energy to biomedical problems. Individual projects are indexed separately.

  18. Basic Energy Sciences Update

    Broader source: Energy.gov (indexed) [DOE]

    Operations Office of Science Vacant Patricia Dehmer (A) Nuclear Physics Tim Hallman Advanced Scientific Computing Research Steve Binkley Nuclear Energy Pete Lyons Fossil Energy...

  19. Predictive modeling of synergistic effects in nanoscale ion track formation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zarkadoula, Eva; Pakarinen, Olli H.; Xue, Haizhou; Zhang, Yanwen; Weber, William J.

    2015-08-05

    Molecular dynamics techniques and the inelastic thermal spike model are used to study the coupled effects of inelastic energy loss due to 21 MeV Ni ion irradiation and pre-existing defects in SrTiO3. We determine the dependence on pre-existing defect concentration of nanoscale track formation occurring from the synergy between the inelastic energy loss and the pre-existing atomic defects. We show that the nanoscale ion tracks’ size can be controlled by the concentration of pre-existing disorder. This work identifies a major gap in fundamental understanding concerning the role played by defects in electronic energy dissipation and electron–lattice coupling.

  20. A New Route to Nanoscale Conducting Channels in Insulating Oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Route to Nanoscale Conducting Channels in Insulating Oxides A New Route to Nanoscale Conducting Channels in Insulating Oxides Print Wednesday, 29 August 2012 00:00 Two-dimensional electron gases (2DEGs)-narrow conducting channels at the surfaces and interfaces of semiconductor materials-are the bedrock of conventional electronics. The startling 2004 discovery that such 2DEGs could be engineered at the interface between two insulating transition-metal oxides, SrTiO3 and LaAlO3, initiated a

  1. Evidence for Anisotropic Mechanical Behavior and Nanoscale Chemical

    Office of Scientific and Technical Information (OSTI)

    Heterogeneity in Cycled LiCoO2 (Journal Article) | SciTech Connect Evidence for Anisotropic Mechanical Behavior and Nanoscale Chemical Heterogeneity in Cycled LiCoO2 Citation Details In-Document Search Title: Evidence for Anisotropic Mechanical Behavior and Nanoscale Chemical Heterogeneity in Cycled LiCoO2 Authors: Diercks, D. R. ; Musselman, M. ; Morgenstern, A. ; Wilson, T. ; Kumar, M. ; Smith, K. ; Kawase, M. ; Gorman, B. P. ; Eberhart, M. ; Packard, C. E. Publication Date: 2014-01-01

  2. Science for Our Nation's Energy Future | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Science for Our Nation's Energy Future Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News EFRC Events DOE Announcements ...

  3. Pacific Northwest Laboratory: Annual report for 1986 to the DOE Office of Energy Research: Part 3, Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1987-06-01

    The goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales. In 1986, atmospheric research examined the transport and diffusion of atmospheric contaminants in areas of complex terrain and participated in a large, multilaboratory program to assess the precipitation scavenging processes important to the transformation and wet deposition of chemicals composing ''acid rain.'' In addition, during 1986, a special opportunity for measuring the transport and removal of radioactivity occurred after the Chernobyl reactor accident in April 1986. Separate abstracts were prepared for individual projects.

  4. Pacific Northwest Laboratory annual report for 1987 to the DOE Office of Energy Research: Part 3, Atmospheric sciences

    SciTech Connect (OSTI)

    Elderkin, C.E.

    1988-08-01

    Currently, the broad goals of atmospheric research at Pacific Northwest Laboratory (PNL) are to describe and predict the nature and fate of atmospheric contaminants and to develop an understanding of the atmospheric processes contributing to their distribution on local, regional, and continental scales in the air, in clouds, and on the surface. For several years, studies of transport and diffusion have been extended to mesoscale areas of complex terrain. Atmospheric cleansing research has expanded to a regional scale, multilaboratory investigation of precipitation scavenging processes involving the transformation and wet deposition of chemicals composing ''acid rain.'' In addition, the redistribution and long-range transport of transformed contaminants passing through clouds is recognized as a necessary extension of our research to even larger scales in the future. A few long-range tracer experiments conducted in recent years and the special opportunity for measuring the transport and removal of radioactivity following the Chernobyl reactor accident of April 1986 offer important initial data bases for studying atmospheric processes at these super-regional scales.

  5. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    SciTech Connect (OSTI)

    Cha, Jennifer N.; Wang, Joseph

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds, (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely controlled, the nanocrystals boast a defined shape, morphology, orientation and size and are synthesized at benign reaction conditions. Adapting the methods of biomineralization towards the synthesis of platinum nanocrystals will allow effective control at a molecular level of the synthesis of highly active metal electrocatalysts, with readily tailored properties, through tuning of the biochemical inputs. The proposed research will incorporate many facets of biomineralization by: (1) isolating peptides that selectively bind particular crystal faces of platinum (2) isolating peptides that promote the nucleation and growth of particular nanocrystal morphologies (3) using two-dimensional DNA scaffolds to control the spatial orientation and density of the platinum nucleating peptides, and (4) combining bio-templating and soluble peptides to control crystal nucleation, orientation, and morphology. The resulting platinum nanocrystals will be evaluated for their electrocatalytic behavior (on common carbon supports) to determine their optimal size, morphology and crystal structure. We expect that such rational biochemical design will lead to highly uniform and efficient platinum nanocrystal catalysts for fuel cell applications.

  6. Pacific Northwest Laboratory annual report for 1984 to the DOE Office of Energy Research. Part 1. Biomedical sciences

    SciTech Connect (OSTI)

    Felton, D.L.

    1985-02-01

    Research progress is reported in the following areas: (1) evaluation of possible health effects among nuclear workers; (2) dose-effect relationship studies of carcinogenesis from both nuclear materials and complex mixtures; (3) microbial mutagenesis studies with 6-aminochrysene and benzo(a)pyrene in coal-derived complex mixtures; and (4) a variety of studies relating to noncarcinogenic and nonmutagenic endpoints, including teratology, perinatal studies and studies to determine absorption, metabolism, and doses to critical tissues and organs of coal-derived mixtures and radionuclides. Items have been individually abstracted for the data base. (ACR)

  7. Science Highlights | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Science Highlights Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More Information » Science Highlights Print Text Size: A A A Subscribe FeedbackShare Page Filter

  8. Basic Research Needs for Solid-State Lighting. Report of the Basic Energy Sciences Workshop on Solid-State Lighting, May 22-24, 2006

    SciTech Connect (OSTI)

    Phillips, J. M.; Burrows, P. E.; Davis, R. F.; Simmons, J. A.; Malliaras, G. G.; So, F.; Misewich, J.A.; Nurmikko, A. V.; Smith, D. L.; Tsao, J. Y.; Kung, H.; Crawford, M. H.; Coltrin, M. E.; Fitzsimmons, T. J.; Kini, A.; Ashton, C.; Herndon, B.; Kitts, S.; Shapard, L.; Brittenham, P. W.; Vittitow, M. P.

    2006-05-24

    The workshop participants enthusiastically concluded that the time is ripe for new fundamental science to beget a revolution in lighting technology. SSL sources based on organic and inorganic materials have reached a level of efficiency where it is possible to envision their use for general illumination. The research areas articulated in this report are targeted to enable disruptive advances in SSL performance and realization of this dream. Broad penetration of SSL technology into the mass lighting market, accompanied by vast savings in energy usage, requires nothing less. These new ?good ideas? will be represented not by light bulbs, but by an entirely new lighting technology for the 21st century and a bright, energy-efficient future indeed.

  9. ORISE: Science Education Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Education Events Science Education Events Recognizing that vast improvements in science, technology, engineering and math are key to innovation and economic growth, the Oak Ridge Institute for Science and Education (ORISE) manages high-profile local and national education and research initiatives. For example, scholarly competitions, summer education workshops and teacher professional development programs create excitement and inspire educators and students to pursue interests in

  10. NERSC Science Engagements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NERSC Science Engagements NERSC Science Engagements At NERSC, science comes first. NERSC systems and services are designed to enable and support cutting-edge research within the U.S. Deparment of Energy's Office of Science. NERSC engages with the scientific community in many ways both formally and informally. Among the more formal mechanisms are the NERSC Requirements Reviews, which have now become the DOE Exascale Requirements Reviews jointly with the Argonne and Oak Ridge Leadership Computing

  11. Bradbury Science Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bradbury Science Museum Bradbury Science Museum Providing a window into the history of LANL, its national security mission, and the broad range of exciting science and technology research programs undertaken to improve our nation's future. June 13, 2012 Young visitor shakes the hand of an Oppenheimer statue J. Robert Oppenheimer is a welcoming presence in the Bradbury Science Museum's History Gallery. Visitors go on to explore the Laboratory's beginnings during the Manhattan Project through

  12. Biological Systems Science Division (BSSD) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Biological Systems Science Division (BSSD) Biological and Environmental Research (BER) BER Home About Research Biological Systems Science Division (BSSD) Genomic Science DOE Bioenergy Research Centers Bioimaging Technology DOE Joint Genome Institute Structural Biology Radiochemistry & Imaging Instrumentation Radiobiology: Low Dose Radiation Research DOE Human Subjects Protection Program Climate and Environmental Sciences Division (CESD) Research Abstracts Searchable Archive of BER

  13. Sandia Energy - Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Science, Research & Capabilities Sandia Research Featured on Journal of Physical Chemistry A Cover As part of Sandia's core geochemistry program funded by DOE Office of...

  14. Acoustic Detection of Phase Transitions at the Nanoscale

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vasudevan, Rama K.; Khassaf, Hamidreza; Cao, Ye; Zhang, Shujun; Tselev, Alexander; Carmichael, Ben D.; Okatan, Mahmut Baris; Jesse, Stephen; Chen, Long-Qing; Alpay, S. Pamir; et al

    2016-01-25

    On page 478, N. Bassiri-Gharb and co-workers demonstrate acoustic detection in nanoscale volumes by use of an atomic force microscope tip technique. Elastic changes in volume are measured by detecting changes in resonance of the cantilever. Also, the electric field in this case causes a phase transition, which is modeled by Landau theory.

  15. Researchers - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our-Peopple-Hero_v2.jpg Researchers Who We Are JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Recent Science Technology Transfer Awards & Honors Senior Management Scientific Leadership Researchers Governance & Advisory Boards Operations & Administration Who we are Overview JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Our Achievements Recent Science Technology Transfer Awards & Honors Our People Senior Management Scientific Leadership Researchers

  16. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research conducted by E. de Smit, I. Swart, C. Morin, B.M. Weckhuysen, and F.M.F. de Groot (Utrecht University, The Netherlands); J.F. Creemer, G.H. Hoveling, P.J. Kooyman, and...

  17. Information Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Information Sciences Uncovering actionable knowledge and generating insight into exascale datasets from heterogeneous sources in real time Leadership Group Leader Patrick M. Kelly Email Deputy Group Leader Amy Larson Email Contact Us Administrator Yvonne McKelvey Email Conceptual illustration of futuristic data stream processing. Developing methods and tools for understanding complex interactions and extracting actionable information from massive data streams. Basic and applied research

  18. Top Science of 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Space probes predict hazards to protect spacecraft /science-innovation/_assets/images/icon-science.jpg Top Science of 2013 Our strong interdisciplinary teaming and unique research facilities allow us to develop solutions to complex problems, and to support partners and collaborators, all with the goal of strengthening national security and making a safer world. Space probes predict hazards to protect spacecraft placeholder Researchers think they've solved a 50-year-old space mystery about how

  19. Science | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 GeV Upgrade Science A Schematic of the 12 GeV Upgrade The 12 GeV Upgrade will greatly expand the research capabilities of Jefferson Lab, adding a fourth experimental hall, upgrading existing halls and doubling the power of the lab's accelerator. Read more User Information Science Accelerator Magnets Magnets ready for installation at Jefferson Lab as part of the 12 GeV Upgrade project. Read more Experiment Research Science Jefferson Lab's Accelerator Tunnel Jefferson Lab's accelerator is

  20. Recent Science - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent Science Who We Are JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Recent Science Technology Transfer Awards & Honors Senior Management Scientific Leadership Researchers Governance & Advisory Boards Operations & Administration Who we are Overview JCAP Mission JCAP At A Glance Fact Sheets Organizational Chart Our Achievements Recent Science Technology Transfer Awards & Honors Our People Senior Management Scientific Leadership Researchers Governance &